WO2020218085A1 - Vehicle headlight - Google Patents

Vehicle headlight Download PDF

Info

Publication number
WO2020218085A1
WO2020218085A1 PCT/JP2020/016404 JP2020016404W WO2020218085A1 WO 2020218085 A1 WO2020218085 A1 WO 2020218085A1 JP 2020016404 W JP2020016404 W JP 2020016404W WO 2020218085 A1 WO2020218085 A1 WO 2020218085A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
reflector
focal point
reflecting surface
low beam
Prior art date
Application number
PCT/JP2020/016404
Other languages
French (fr)
Japanese (ja)
Inventor
貴志 芥川
良昭 秋山
達也 関口
克司 大野
Original Assignee
スタンレー電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スタンレー電気株式会社 filed Critical スタンレー電気株式会社
Priority to CN202080029831.5A priority Critical patent/CN113728195B/en
Publication of WO2020218085A1 publication Critical patent/WO2020218085A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/143Light emitting diodes [LED] the main emission direction of the LED being parallel to the optical axis of the illuminating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/19Attachment of light sources or lamp holders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/33Multi-surface reflectors, e.g. reflectors with facets or reflectors with portions of different curvature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/36Combinations of two or more separate reflectors
    • F21S41/365Combinations of two or more separate reflectors successively reflecting the light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/65Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources
    • F21S41/663Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources by switching light sources

Definitions

  • the present invention relates to vehicle headlights.
  • This application claims priority based on Japanese Patent Application No. 2019-081103 filed on April 22, 2019, the contents of which are incorporated herein by reference.
  • saddle-type vehicles such as motorcycles and tricycles.
  • the headlamps for vehicles mounted in the center of the front side of a saddle-mounted vehicle have a passing beam (low beam) that forms a low-beam light distribution pattern including a cut-off line at the upper end, similar to a motorcycle.
  • the traveling beam (high beam) that forms the high beam light distribution pattern above the low beam light distribution pattern are radiated in a switchable manner toward the front of the vehicle (vehicle traveling direction).
  • the vehicle headlights mounted on such saddle-type vehicles have a low beam light source and a high beam light source inside a lamp body composed of a housing having an open front surface and a lens cover covering the opening of the housing. And a reflector are arranged, and the light emitted from each light source is reflected by the reflector and irradiated toward the front of the vehicle (see, for example, Patent Document 1 below).
  • the low beam light source and the high beam light source are separately arranged inside the lamp body, and the reflectors arranged according to the respective light sources are used.
  • the low beam and high beam are emitted from different positions toward the front of the vehicle.
  • the reflector is composed of a rotating paraboloid reflecting surface whose focal point is the center (light emitting point) of the light source so as to surround the periphery of the light source except in front of it.
  • the reflector reflects the light emitted from the light source toward the front of the vehicle while collimating in the vertical direction.
  • aspects of the present invention provide vehicle headlights with high light utilization efficiency.
  • a vehicle headlight that illuminates the front of a vehicle by freely switching between a low beam and a high beam.
  • a light source unit including at least a low beam light source that emits light that becomes the low beam and a high beam light source that emits the high beam light.
  • a first reflector which is arranged in front of the light source unit and reflects the light emitted from the light source unit toward the periphery of the light source unit, It is provided with a second reflector which is arranged around the light source unit and reflects the light reflected by the first reflector toward the front of the vehicle.
  • the first reflector includes a spheroidal reflecting surface.
  • the second reflector includes a rotating parabolic reflector.
  • the first focal point of the spheroidal reflecting surface is located on the light emitting surface of the low beam light source.
  • a vehicle headlight in which the second focal point of the spheroidal reflecting surface and the focal point of the rotating parabolic reflecting surface coincide with each other.
  • the first reflector includes a pair of spheroidal reflecting surfaces that are symmetrical with respect to the optical axis of light emitted from the low beam light source. Of the pair of spheroidal reflecting surfaces, the first focal point of the first spheroidal reflecting surface and the first focal point of the second spheroidal reflecting surface are in the width direction with the center of the light emitting surface of the low beam light source interposed therebetween.
  • the second focal point of the first spheroidal reflecting surface and the second focal point of the second spheroidal reflecting surface are located at positions that coincide with each other in the front-rear direction and the vertical direction.
  • the second focal point of the first spheroidal reflecting surface and the second focal point of the second spheroidal reflecting surface are located at overlapping positions with each other.
  • the light emitting surface of the low beam light source has a rectangular shape.
  • the first focal point of the first spheroidal reflecting surface and the first focal point of the second spheroidal reflecting surface are located at the upper corners of the light emitting surface of the low beam light source, either [2] or [3].
  • the pair of rotating elliptical reflecting surfaces form a reflecting region divided across a dividing line in the left-right direction orthogonal to a center line in the vertical direction passing through the optical axis of the light emitted from the low beam light source.
  • the vehicle headlight according to the aspect of [5] above.
  • the second reflector is a vehicle headlight according to the embodiment [5] or [6], which is arranged below or above the light source unit.
  • the first reflector includes a central spheroidal reflecting surface arranged between the pair of spheroidal reflecting surfaces.
  • the first focal point of the central spheroidal reflecting surface is between the first focal point of the first spheroidal reflecting surface on the light emitting surface of the low beam light source and the first focal point of the second spheroidal reflecting surface.
  • the light emitting surface of the low beam light source has a rectangular shape and has a rectangular shape.
  • the spheroidal reflection surface includes a reflection region symmetrically divided across a center line in the vertical direction passing through the optical axis of light emitted from the low beam light source [8] to [10].
  • the second reflector is a vehicle headlight according to any one of the above [8] to [12], which is symmetrically arranged on both sides in the width direction of the light source unit.
  • the second reflector has a light diffusing shape that reflects light incident on the rotating parabolic reflection surface while diffusing it in the width direction of the vehicle.
  • Vehicle headlights according to the section.
  • the light source unit is inserted into the inside of the lamp body through a mounting hole provided on the back surface side of the lamp body in which the first reflector and the second reflector are housed.
  • the vehicle headlight according to any one of the above [1] to [14], which is composed of a socket with a coupler that is detachably attached to the periphery of the headlight.
  • FIG. 5 is a perspective perspective view showing a first reflector and a light source unit included in the vehicle headlight shown in FIG. 1. It is a top view which shows the position of the 1st focal point of a pair of spheroidal reflecting surfaces which make up a 1st reflector, and the light emitting surface of a low beam light source and a high beam light source which make up a light source unit.
  • 6A is a light source image obtained by synthesizing the light source images shown in FIGS.
  • FIG. 6A to 6D It is a perspective perspective view which shows the 1st reflector and a light source unit to be compared.
  • FIG. 5 is a plan view showing the positions of the first focal point of the spheroidal reflecting surface constituting the first reflector shown in FIG. 7 and the light emitting surfaces of the low beam light source and the high beam light source constituting the light source unit.
  • It is a schematic diagram which shows the light source image of the light when the 1st reflector shown in FIG. 7 is used.
  • It is a front view which shows the structure of the headlight for a vehicle which concerns on 2nd Embodiment of this Embodiment. It is sectional drawing of the headlight for a vehicle by the line segment XI-XI shown in FIG. FIG.
  • FIG. 5 is a perspective perspective view showing a first reflector and a light source unit included in the vehicle headlight shown in FIG. 10.
  • FIG. 5 is a plan view showing the positions of the first focal points of the pair of spheroidal reflecting surfaces and the central spheroidal reflecting surface constituting the first reflector, and the light emitting surfaces of the low beam light source and the high beam light source constituting the light source unit. ..
  • It is a schematic diagram which shows the light source image of the light reflected by one spheroidal reflection surface.
  • It is a schematic diagram which shows the light source image of the light reflected by the spheroidal reflection surface in the center.
  • It is a schematic diagram which shows the light source image of the light reflected by the other spheroidal reflection surface.
  • FIG. 5 is a plan view showing the positions of the first focal point of the spheroidal reflecting surface constituting the first reflector shown in FIG. 15 and the light emitting surfaces of the low beam light source and the high beam light source constituting the light source unit. It is a schematic diagram which shows the light source image of the light when the 1st reflector shown in FIG. 15 is used.
  • FIG. 1 is a front view showing the configuration of the vehicle headlight 1A.
  • FIG. 2 is a cross-sectional view of the vehicle headlight 1A by the line segments II-II shown in FIG.
  • FIG. 3 is a cross-sectional view showing the configuration of the light source unit 5 included in the vehicle headlight 1A.
  • FIG. 4 is a perspective perspective view showing the first reflector 6 and the light source unit 5 included in the vehicle headlight 1A.
  • FIG 5 shows the first focal points F1a and F1b of the pair of spheroidal reflecting surfaces 6a and 6b constituting the first reflector 6, and the light emitting surfaces 8a of the low beam light source 8 and the high beam light source 9 constituting the light source unit 5. It is a top view which shows the position with 9a.
  • the XYZ Cartesian coordinate system is set, the X-axis direction is the front-rear direction (length direction) of the vehicle headlight 1A, and the Y-axis direction is the left-right direction (width) of the vehicle headlight 1A.
  • Direction) and Z-axis direction shall be indicated as the vertical direction (height direction) of the vehicle headlight 1A, respectively.
  • the vehicle headlight 1A of the present embodiment is, for example, among the saddle-type vehicle lighting fixtures mounted on the front center of a saddle-type vehicle (not shown) such as a motorcycle or a three-wheeled vehicle.
  • the present invention is applied to a headlamp that irradiates a headlamp that freely switches between a low beam and a high beam toward the front.
  • front means that the vehicle headlight 1A is viewed from the front (front of the vehicle) unless otherwise specified. It shall mean each direction at the time.
  • the vehicle headlight 1A of the present embodiment is a lamp body 4 composed of a housing 2 having an open front surface and a transparent lens cover 3 covering the opening of the housing 2. It has.
  • the shape of the lamp body 4 can be appropriately changed according to the design of the saddle-mounted vehicle and the like.
  • the saddle-mounted vehicle lamp 1 includes a light source unit 5, a first reflector 6, and a second reflector 7 inside the lamp body 4.
  • the light source unit 5 is a socket with a coupler on which a low beam light source 8 and a high beam light source 9 are mounted, and is detachably attached to a mounting hole 10 provided on the back side of the lamp body 4. ing.
  • the light source unit 5 has a plurality of claws 11 that prevent the mounting holes 10 from coming off, and is mounted on the outer periphery thereof by rotating the front side thereof in the circumferential direction while fitting the front side into the mounting holes 10. It is detachably attached around the attachment hole 10 via a ring-shaped packing (O-ring) 12.
  • O-ring ring-shaped packing
  • the light source unit 5 is replaceably attached to the lamp body 4. Therefore, for example, even if a problem occurs in the low beam light source 8 or the high beam light source 9, only the light source unit 5 needs to be replaced.
  • the vehicle headlight 1A of the present embodiment by providing the light source unit 5 constituting such a socket with a coupler, it is possible to improve workability in maintenance and the like and reduce the cost required for maintenance and the like. Is.
  • the light source unit 5 is provided with a first substrate 13 on which low beam and high beam light sources 8 and 9 are mounted, and a second substrate 14 provided with a drive circuit 14 for driving the light sources 8 and 9.
  • a substrate 15 a first housing 17 provided with a heat radiating portion 16 that dissipates heat generated by each of the light sources 8 and 9, and a connector portion that is electrically connected to the first substrate 13 and the second substrate 14. It is provided with a second housing 19 provided with 18.
  • the low beam and high beam light sources 8 and 9 consist of, for example, LEDs that emit white light. Further, as the LED, a high output (high brightness) type LED (for example, SMD LED) for vehicle lighting can be used.
  • a high output (high brightness) type LED for example, SMD LED
  • the low beam light source 8 has a rectangular (horizontally long rectangular shape in this embodiment) light emitting surface 8a, and is mounted on the front surface side of the first substrate 13.
  • the low beam light source 8 radiates light that becomes a passing beam (low beam) that forms a low beam light distribution pattern including a cut-off line at the upper end toward the front of the vehicle.
  • the high beam light source 9 has a rectangular (horizontally long rectangular shape in this embodiment) light emitting surface 9a, and is mounted on the front surface side of the first substrate 13. Further, the high beam light source 9 is arranged above the low beam light source 8. The high beam light source 9 radiates light that becomes a traveling beam (high beam) that forms a high beam light distribution pattern above the low beam light distribution pattern toward the front of the vehicle.
  • a traveling beam high beam
  • the low beam and high beam light sources 8 and 9 may emit light in a radial manner, and in addition to the above-mentioned LEDs, for example, a light emitting element such as a laser diode (LD) can be used. is there. Further, the color of the light emitted by the low beam and high beam light sources 8 and 9 is not limited to the white light described above, and can be changed to, for example, yellow light.
  • a light emitting element such as a laser diode (LD)
  • LD laser diode
  • the color of the light emitted by the low beam and high beam light sources 8 and 9 is not limited to the white light described above, and can be changed to, for example, yellow light.
  • the first substrate 13 is a rectangular flat-plate-shaped printed wiring board (PWB), and is a wiring (not shown) electrically connected to one surface (surface) of an insulating substrate with light sources 8 and 9 for low beam and high beam. ) Is provided on a single-sided wiring board.
  • PWB printed wiring board
  • the first substrate 13 is provided with a plurality of first hole portions 13a penetrating in the thickness direction.
  • the first hole portion 13a is a portion into which the lead terminal 18a of the connector portion 18 described later is inserted, and the periphery of the first hole portion 13a is electrically connected to the light sources 8 and 9 described above. Lands (not shown) that form part of the wiring are provided.
  • the second substrate 15 is a rectangular printed circuit board (PCB) larger than the first substrate 13, and mounting components (not shown) constituting the drive circuit 14 are mounted on the above-mentioned PWB. It has a structure.
  • the second substrate 15 is composed of a single-sided or double-sided wiring board provided with wiring (not shown) electrically connected to the mounting component on at least one surface (front surface) or both sides (front surface and back surface) of the insulating substrate. ..
  • the second substrate 15 is provided with a plurality of second holes 15a penetrating in the thickness direction.
  • the second hole portion 15a is a portion into which the lead terminal 18a of the connector portion 18 to be described later is inserted, and around the second hole portion 15a, the mounting components constituting the drive circuit 14 described above and electrical components are electrically connected. Lands (not shown) are provided to form part of the wiring connected to.
  • the first housing 17 has a substantially circular flat plate-shaped front wall portion 17a, a substantially cylindrical peripheral wall portion 17b that surrounds the front side and the back surface side of the front wall portion 17a, and a diameter from the back side of the peripheral wall portion 17b. It has a substantially annular flat plate-shaped enlarged diameter portion 17c protruding in the radial direction, and a substantially cylindrical extension portion 17d surrounding the periphery of the enlarged diameter portion 17c on the back surface side. Further, on the back surface of the enlarged diameter portion 17c, a fitting convex portion 17e having a substantially rectangular tubular shape with rounded four corners is provided so as to project. The plurality of claw portions 11 are provided so as to project from the outer periphery of the peripheral wall portion 17b. The packing 12 is attached to the outer periphery of the enlarged diameter portion 17c.
  • the heat radiating unit 16 efficiently dissipates the heat generated by the light sources 8 and 9 to the outside, so that at least a part or all of the first housing 17 is made of a metal material or a resin material having high thermoconductivity, or a composite thereof. It is composed by using materials and the like. That is, the heat radiating unit 16 can have a structure in which a heat radiating member (heat sink) is attached to the first housing 17, or a structure in which the first housing 17 itself is a heat radiating member (heat sink).
  • the first housing 17 is provided with a plurality of third hole portions 17f penetrating the front wall portion 17a.
  • the third hole portion 17f has a diameter larger than that of the first hole portion 13a in order to penetrate the lead terminal 18a of the connector portion 18 described later in a non-contact state.
  • the third hole 17f does not necessarily have to be provided according to the number of lead terminals 18a, and is formed as one hole (opening) through which the plurality of lead terminals 18a penetrate in a non-contact state. Is also possible.
  • the second housing 19 has a substantially rectangular flat plate-shaped rear wall portion 19a with rounded four corners and a substantially rectangular tubular socket portion 19b located on the back side of the rear wall portion 19a with rounded four corners. I have. Further, on the front surface of the rear wall portion 19a, a fitting recess 19c having a substantially rectangular frame shape with rounded four corners is provided.
  • the second housing 19 has a pedestal portion 19d protruding from the front surface of the rear wall portion 19a.
  • the pedestal portion 19d is located at the central portion of the rear wall portion 19a, and forms a circular stepped surface in a plan view that is one step higher than the front surface of the rear wall portion 19a.
  • a columnar protrusion 19e is provided so as to project from the center of the pedestal portion 19d.
  • a fourth hole portion 15b through which the protrusion 19e is penetrated is provided in the central portion of the second substrate 15.
  • the connector portion 18 has a plurality of lead terminals 18a inside the socket portion 19b.
  • Each lead terminal 18a is integrally attached to the second housing 19 in a state of penetrating the rear wall portion 19a in the front-rear direction.
  • the plurality of lead terminals 18a have a lead terminal 19a that is relatively long on the front side of the rear wall portion 19a and a lead terminal 19a that is relatively short on the front side of the rear wall portion 9a.
  • the second substrate 15 is a pedestal by thermally caulking the tip of the protrusion 19e in a state where the protrusion 19e is penetrated through the fourth hole 15b. It is mounted on the stepped surface of the portion 19d.
  • the land around each of the second hole portions 15a and the lead terminal 18a are fixed by solder in a state where the lead terminal 18a is passed through each of the second hole portions 15a. By doing so, it is electrically connected to the lead terminal 18a.
  • the second substrate 15 is attached to the front side of the second housing 19.
  • the fitting convex portion 17e provided on the back side of the first housing 17 is fitted into the fitting recess 19c provided on the front side of the second housing 19 in a state of being fitted.
  • the fitting convex portion 17e fitted in the fitting recess 19c is fixed over the entire circumference by the adhesive S injected into the joint recess 19c.
  • the back side of the first housing 17 and the front side of the second housing 19 are integrally attached.
  • the second substrate 15 is arranged so as to face the back surface of the front wall portion 17a with a space in between, in a state of being in non-contact with the peripheral wall portion 17b of the first housing 17.
  • each of the third hole portions 14a penetrates the above-mentioned longer lead terminal 18a in a non-contact state.
  • the first substrate 13 is attached to the front surface of the front wall portion 17a using an adhesive having high thermal conductivity (not shown). Further, when the front wall portion 17a is made of a conductive material such as metal, the first substrate 13 is attached in a state of being electrically insulated from the first housing 17.
  • the first substrate 13 has a land around each first hole portion 13a and a longer lead terminal in a state where the longer lead terminal 18a is passed through each first hole portion 13a. By fixing the 18a with solder, it is electrically connected to the longer lead terminal 19a.
  • the longer lead terminal 19a of the plurality of lead terminals 19a supplies power to the light sources 8 and 9 and the drive circuit 14 of the wires provided on the first board 13 and the second board 15. It is electrically connected to the feed line and ground line for On the other hand, the shorter lead terminal 19a is electrically connected to the control line for transmitting the control signal to the drive circuit 14 among the wirings provided on the second substrate 15.
  • the first reflector 6 is arranged in front of the light source unit 5, and directs the light L emitted from the light source unit 5 toward the periphery of the light source unit 5. And reflect. Specifically, the first reflector 6 has a pair of spheroidal reflecting surfaces 6a and 6b that are symmetrical with respect to the optical axis of the light emitted from the low beam light source 8.
  • the pair of spheroidal reflecting surfaces 6a and 6b are concave reflecting surfaces obtained by rotating a part of an elliptical line having two focal points so as to surround the periphery of the light source unit 5 except below.
  • the first focal point F1a of one spheroidal reflecting surface 6a (first spheroidal reflecting surface 6a) and the other spheroidal reflecting surface 6b (second spheroidal reflecting surface 6b).
  • the first focal point F1b is located on both sides of the light emitting surface 8a of the low beam light source 8 in the width direction with the center in between.
  • the first focal point F1a of one spheroidal reflecting surface 6a and the first focal point F1b of the other spheroidal reflecting surface 6b are located at the upper corners of the light emitting surface 8a of the low beam light source 8. ing.
  • the pair of rotating elliptical reflecting surfaces 6a and 6b have four reflecting regions 61a with a dividing line in the horizontal direction orthogonal to the center line in the vertical direction passing through the optical axis of the light emitted from the low beam light source 8. , 62a, 61b, 62b.
  • one spheroidal reflection surface 6a is divided into a first reflection region 61a and a second reflection region 62a in the vertical direction.
  • the other spheroidal reflection surface 6b is divided into a third reflection region 61b and a fourth reflection region 62b in the vertical direction.
  • the first reflection region 61a and the third reflection region 61b are arranged symmetrically.
  • the second reflection region 62a and the fourth reflection region 62b are arranged symmetrically.
  • first reflection region 61a and the second reflection region 62a are arranged on the left and right sides opposite to each other. Further, the third reflection region 61b and the fourth reflection region 62b are arranged on the left and right sides opposite to each other. That is, the first reflection region 61a and the second reflection region 62a (and the first reflection region 61a and the second) which are a part of the same rotating elliptical reflection surfaces 6a and 6b in which the focal points F1a and F1b are aligned.
  • the third reflection region 61b and the fourth reflection region 62b which are a part of the rotating elliptical reflection surfaces 6a and 6b having the first focal points F1a and F1b at different positions from the reflection region 62a of the above, are centered in the vertical direction. It is located diagonally across the intersection of the line and the dividing line in the left-right direction.
  • the upper second reflection region 62a and the fourth reflection region 62b have a ray angle with respect to the optical axis of the light emitted from the low beam light source 8. Increasing light is incident.
  • the second focal point F2a of one spheroidal reflection surface 6a (first and second reflection regions 61a, 62a) and the other spheroidal reflection surface 6b (third and fourth reflection regions)
  • the second focal point F2b of 61b, 62b) is at a position coincident with each other.
  • the first reflector 6 concentrates the light L incident on the pair of spheroidal reflecting surfaces 6a and 6b toward the second focal points F2a and F2b that coincide with each other, and causes the second reflector 7 below. Reflect toward.
  • the second reflector 7 is arranged around the light source unit 5 and reflects the light L reflected by the first reflector 6 toward the front of the vehicle. Specifically, the second reflector 7 is arranged below the light source unit 5. Further, the second reflector 7 has a spheroidal parabolic surface 7a facing the pair of spheroidal paraboloids 6a and 6b of the first reflector 1.
  • the second reflector 7 is not limited to the configuration arranged below the light source unit 5 described above, but may be arranged above the light source unit 5. In that case, the first reflector 6 may be configured to reflect toward the upper second reflector 7.
  • the rotating parabolic reflecting surface 7a is a concave reflecting surface obtained by rotating a part of a parabola having the second focal points F2a and F2b of the rotating elliptical reflecting surfaces 6a and 6b that coincide with each other as the focal point F3. That is, the focal point F3 of the rotating parabolic reflecting surface 7a and the second focal points F2a and F2b of the pair of rotating elliptical reflecting surfaces 6a and 6b are at positions that coincide with each other.
  • the second reflector 7 reflects the light L incident on the rotating parabolic reflection surface 7a while collimating in the vertical direction toward the front of the vehicle.
  • the second reflector 7 has a light diffusion shape that reflects the light L incident on the rotating parabolic reflection surface 7a while diffusing it in the width direction of the vehicle. Specifically, the second reflector 7 controls the reflection direction of the light incident on each reflection region by forming a multi-reflector shape that divides the rotating parabolic reflection surface 7a into a plurality of reflection regions. It is possible to reflect the light L incident on the rotating parabolic reflection surface 7a while diffusing it in the width direction of the vehicle.
  • the light emitted from the low beam light source 8 is reflected by the first reflector 6 and the second reflector 7 as a passing beam (low beam). While irradiating toward the front of the vehicle. As a result, a low beam light distribution pattern including a cut-off line can be formed at the upper end.
  • the light emitted from the high beam light source 9 is reflected by the first reflector 6 and the second reflector 7 as the traveling beam (hyme) of the vehicle. Irradiate toward the front. As a result, the high beam light distribution pattern can be formed above the low beam light distribution pattern.
  • the vehicle headlight 1A of the present embodiment not only reduces the number of parts but also reduces the number of parts by providing the light source unit 5 constituting the socket with a coupler equipped with the above-mentioned low beam and high beam light sources 8 and 9. , It is possible to design the lamp body 4 more compactly.
  • the light L emitted from the light source unit 5 described above is reflected by the pair of spheroidal reflecting surfaces 6a and 6b of the first reflector 6 (first to fourth reflecting regions). 61a, 62a, 61b, 62b) efficiently reflects toward the second reflector 7, and this light L is efficiently reflected toward the front of the vehicle by the spheroidal paraboloid 7a of the second reflector 7. Can be done. This makes it possible to improve the utilization efficiency of the light L emitted from the light source unit 5.
  • the first focal point F1a of one spheroidal reflecting surface 6a and the first focal point F1b of the other spheroidal reflecting surface 6b described above are used by the low beam light source 8.
  • the low beam light source 8a By locating the light emitting surface 8a at both upper end corners, it is possible to form a low beam light distribution pattern including a cut-off line at the upper end without using a shade.
  • a light source image of light reflected by the four reflection regions 61a, 62a, 61b, 62b of the spheroidal reflection surfaces 6a, 6b constituting the first reflector 6 and a light source image obtained by synthesizing these light source images Is shown in FIGS. 6A to 6E.
  • FIG. 6A is a schematic view showing a light source image of the light reflected by the second reflection region 62a and the first focal point F1a of one spheroidal reflection surface 6a.
  • FIG. 6B is a schematic view showing a light source image of light reflected by the fourth reflection region 62b and a first focal point F1b of the other spheroidal reflection surface 6b.
  • FIG. 6C is a schematic view showing a light source image of light reflected by the first reflection region 61a and a first focal point F1a of one spheroidal reflection surface 6a.
  • FIG. 6D is a schematic view showing a light source image of light reflected by the third reflection region 61b and a first focal point F1b of the other spheroidal reflection surface 6b.
  • FIG. 6E is a light source image obtained by synthesizing the light source images shown in FIGS. 6A to 6D.
  • FIG. 7 is a perspective perspective view showing the first reflector 60 and the light source unit 5 to be compared.
  • FIG. 8 shows the positions of the first focal point F1 of the spheroidal reflecting surface 60a constituting the first reflector 60 and the light emitting surfaces 8a and 9a of the low beam light source 8 and the high beam light source 9 constituting the light source unit 5. It is a plan view.
  • FIG. 9 is a schematic view showing a light source image of the light reflected by the first reflector 60.
  • the first reflector 60 to be compared has the center of the low beam light source 8 (the central portion of the light emitting surface 8a) as the first focal point F1 and the focal point F3 of the rotating paraboloid reflecting surface 7a. It has a rotating elliptical reflecting surface 60a as a second focal point (not shown).
  • the first reflector 60 When the first reflector 60 is used, it is possible to improve the utilization efficiency of the light L emitted from the light source unit 5 as in the case where the first reflector 6 described above is used.
  • the light source image of the light reflected by the spheroidal reflecting surface 60a as shown in the enclosed portion B in FIG. 9, glare light may be generated in the upper part of the light source image.
  • the light source images of the light reflected by the four reflection regions 61a, 62a, 61b, 62b are synthesized. Therefore, it is possible to form a light source image (low beam light distribution pattern) including a good cut-off line while preventing the occurrence of glare.
  • the second focal points F2a and F2b of the spheroidal reflecting surfaces 6a and 6b and the focal points F3 of the spheroidal reflecting surface 7a are all overlapped in the front-rear direction, the left-right direction, and the up-down direction.
  • the focal points F2a, F2b and the focal point F3 are matched with each other in the direction of the above, but the three focal points F2a, F2 and the focal point F3 are such that the light distribution does not separate in the left-right direction (Y-axis direction).
  • the configuration may be arranged so as to be shifted in the left-right direction.
  • the focal points F2a and F2b may be arranged at positions sandwiching the focal points F3 in the left-right direction.
  • the second focal points F2a and F2b and the focal points F3 may be arranged so as to coincide with each other in the front-rear direction (X-axis direction) and the up-down direction (Z-axis direction).
  • the utilization efficiency of the light L emitted from the light source unit 5 is high, and the number of parts is reduced and the structure is simplified. It is possible to further reduce the size of the body 4.
  • FIG. 10 is a front view showing the configuration of the vehicle headlight 1B.
  • FIG. 11 is a cross-sectional view of the vehicle headlight 1B by the line segments XI-XI shown in FIG.
  • FIG. 12 is a perspective perspective view showing the first reflector 21 and the light source unit 5 included in the vehicle headlight 1B.
  • FIG. 13 shows the first focal points F1a, F1b, F1c of the pair of spheroidal reflecting surfaces 21a and 21b forming the first reflector 21 and the central spheroidal reflecting surface 21c, and the low beam light source 8 forming the light source unit 5. It is a plan view which shows the position of the high beam light source 9 with the light emitting surface 8a, 9a. Further, in the following description, the same parts as those of the vehicle headlight 1A will be omitted and the same reference numerals will be given in the drawings.
  • the vehicle headlight 1B of the present embodiment includes a light source unit 5, a first reflector 21, and a pair of firsts inside a light body 4 (not shown). It is provided with 2 reflectors 22.
  • the first reflector 21 is arranged in front of the light source unit 5 and reflects the light L emitted from the light source unit 5 toward the periphery of the light source unit 5.
  • the first reflector 21 includes a pair of spheroidal reflecting surfaces 21a and 21b and a pair of spheroidal reflecting surfaces 21a, which are vertically symmetrical with respect to the optical axis of the light emitted from the low beam light source 8. It has a central spheroidal reflecting surface 21c arranged between 21b.
  • the pair of spheroidal reflecting surfaces 21a and 21b are concave reflecting surfaces obtained by rotating a part of an elliptical line having two focal points so as to surround the upper side and the lower side of the light source unit 5. ..
  • the first focal point F1a of one spheroidal reflecting surface 21a (first spheroidal reflecting surface 21a) and the other spheroidal reflecting surface 21b (second spheroidal reflecting surface 21b).
  • the first focal point F1b is located on both sides of the light emitting surface 8a of the low beam light source 8 in the width direction with the center in between.
  • the first focal point F1a of one spheroidal reflecting surface 21a and the first focal point F1b of the other spheroidal reflecting surface 21b are located at the upper corners of the light emitting surface 8a of the low beam light source 8. ing.
  • the pair of spheroidal reflecting surfaces 21a and 21b are symmetrical with respect to the center line in the vertical direction passing through the optical axis of the light emitted from the low beam light source 8, respectively. It is divided into 212b. Specifically, one spheroidal reflection surface 21a is divided into a pair of symmetrical first reflection regions 211a and a second reflection region 212a. The other spheroidal reflection surface 21b is divided into a pair of symmetrical third reflection regions 211b and a fourth reflection region 212b.
  • the first reflector 21 is located on the other side in the left-right direction while condensing the light L incident on the first reflection region 211a and the third reflection region 211b located on one side in the left-right direction. It reflects toward the second reflector 22. Further, the first reflector 21 is located on one side in the left-right direction while condensing the light L incident on the second reflection region 212a and the fourth reflection region 212b located on the other side in the left-right direction. It reflects toward the reflector 22 of 2.
  • the central spheroidal reflecting surface 21c is a concave reflecting surface obtained by rotating a part of an elliptical line having two focal points between a pair of spheroidal reflecting surfaces 21a and 21b.
  • the first focal point F1c of the central spheroidal reflecting surface 21c is the first focal point F1a of one spheroidal reflecting surface 21a on the light emitting surface 8a of the low beam light source 8 and the first focal point F1b of the other spheroidal reflecting surface 21b. It is located between. Specifically, the first focal point F1c of the central spheroidal reflecting surface is located at the upper central end of the light emitting surface 8a of the low beam light source 8.
  • the central spheroidal reflection surface 21c is divided into a pair of reflection regions 211c and 212c that are symmetrical with respect to the center line in the vertical direction passing through the optical axis of the light emitted from the low beam light source 8. Specifically, the central spheroidal reflection surface 21c is divided into a pair of symmetrical fifth reflection regions 211c and sixth reflection regions 212c.
  • the first reflector 21 directs the light L incident on the fifth reflection region 211c located on one side in the left-right direction toward the second reflector 22 located on the other side in the left-right direction. And reflect. Further, the first reflector 21 focuses the light L incident on the sixth reflection region 212c located on the other side in the left-right direction, and toward the second reflector 22 located on the other side in the left-right direction. reflect.
  • the second focal point F2a of one spheroidal reflecting surface 21a (first and second reflecting regions 211a, 212a) and the other spheroidal reflecting surface 21b (third and fourth reflecting regions)
  • the second focal point F2b of 211b, 212b) and the second focal point F2c of the central spheroidal reflecting surface 21c are located at positions that coincide with each other.
  • the first reflector 21 collects the light L incident on the pair of spheroidal reflecting surfaces 21a and 21b and the central spheroidal reflecting surface 21c toward the second focal points F2a, F2b and F2c that coincide with each other. However, it reflects toward the pair of second reflectors 22.
  • the first reflector 21 is reflected by a pair of spheroidal reflecting surfaces 21a and 21b and a central spheroidal reflecting surface 21c (first to sixth reflecting regions 211a, 212a, 211b, 212b, 211c, 212c). It has a pair of through holes 23a and 23b through which the light L is passed toward the second reflector 22.
  • a pair of through holes 23a and 23b are provided on both the left and right sides of the central spheroidal reflecting surface 21c.
  • the second focus F2a of the first reflection region 211a, the second focus F2b of the third reflection region 211b, and the second focus F2c of the fifth reflection region 211b are formed in one through hole 23a (first through hole 23a). It is located inside.
  • the second focus F2a of the second reflection region 212a, the second focus F2b of the fourth reflection region 212b, and the second focus F2c of the sixth reflection region 212c are the other through holes 23b (second). It is located inside the through hole 23b).
  • the pupil diameter of the light L reflected while being focused by the pair of spheroidal reflecting surfaces 21a, 21b is a pair of through holes. It can be made smaller at the position where it passes through 23a and 23b. This makes it possible to reduce the diameter of the pair of through holes 23a and 23b formed in the central spheroidal reflecting surface 21c.
  • the pair of second reflectors 22 are symmetrically arranged on both sides in the width direction with the light source unit 5 interposed therebetween.
  • the second reflector 22 reflects the light L reflected by the first reflector 6 toward the front of the vehicle.
  • the pair of second reflectors 22 have a rotating object-based reflecting surface 22a facing the pair of through holes 23a and 23b.
  • the rotating parabolic reflection surface 22a is a concave reflection obtained by rotating a part of a parabola having the second focal points F2a, F2b, F2c of the rotating elliptical reflecting surfaces 21a, 21b, 21c that coincide with each other as the focal point F3. It is a face. That is, the focal point F3 of the rotating parabolic reflecting surface 22a and the second focal points F2a, F2b, F2c of the rotating elliptical reflecting surfaces 21a, 21b, 21c are located at positions that coincide with each other inside the through holes 23a, 23b. is there.
  • the focal point F3 of the rotating parabolic reflection surface 22a in one of the reflectors 22 and the second of the first, third and fifth reflection regions 211a, 211b, 211c are located inside one of the through holes 23a so as to coincide with each other.
  • the focal point F3 of the rotating parabolic reflection surface 22a in the other reflector 22 and the second focal points F2a, F2b, F2c of the second, fourth and sixth reflection regions 212a, 212b, 212c are Inside the other through hole 23b, they are in positions that coincide with each other.
  • the pair of second reflectors 22 reflect the light L incident on the respective rotating object system reflecting surfaces 22a while collimating in the vertical direction toward the front of the vehicle.
  • the light emitted from the low beam light source 8 is used as the passing beam (low beam) by the first reflector 21 and the pair of second reflectors 22. It illuminates toward the front of the vehicle while reflecting more. As a result, a low beam light distribution pattern including a cut-off line can be formed at the upper end.
  • the light emitted from the high beam light source 9 is reflected by the first reflector 21 and the pair of second reflectors 22 as the traveling beam (hyme) while being reflected. Irradiate toward the front of the vehicle. As a result, the high beam light distribution pattern can be formed above the low beam light distribution pattern.
  • the vehicle headlight 1B of the present embodiment not only reduces the number of parts but also reduces the number of parts by providing the light source unit 5 constituting the socket with a coupler equipped with the above-mentioned low beam and high beam light sources 8 and 9. , It is possible to design the lamp body 4 more compactly.
  • the light L emitted from the light source unit 5 described above is used by the pair of spheroidal reflecting surfaces 21a and 22b of the first reflector 21 and the central spheroidal reflecting surface 21c (The first to sixth reflection regions 211a, 212a, 211b, 212b, 211c, 212c) efficiently reflect the light L toward the pair of second reflectors 22, and the light L is a spheroidal paraboloid of the second reflector 21.
  • the surface 22a can efficiently reflect the light toward the front of the vehicle. This makes it possible to improve the utilization efficiency of the light L emitted from the light source unit 5.
  • the first focal point F1a of one of the spheroidal reflecting surfaces 21a and the first focal point F1b of the other spheroidal reflecting surface 21b described above are used by the low beam light source 8.
  • a shade is used by locating the first focal point F1c of the central spheroidal reflecting surface 21c at the upper central end of the light emitting surface 8a of the low beam light source 8 while locating it at both upper end corners of the light emitting surface 8a. It is possible to form a low beam light distribution pattern including a cut-off line at the upper end without any problem.
  • a light source image of light reflected by a pair of spheroidal reflecting surfaces 21a and 21b constituting the first reflector 21 and a central spheroidal reflecting surface 21c, and a light source image obtained by synthesizing these light source images are shown. 14A to 14D are shown.
  • FIG. 14A is a schematic view showing a light source image of light reflected by one of the spheroidal reflecting surfaces 21a.
  • FIG. 14B is a schematic view showing a light source image of light reflected by the central spheroidal reflecting surface 21c.
  • FIG. 14C is a schematic view showing a light source image of light reflected by the other spheroidal reflecting surface 21b.
  • FIG. 14D is a light source image obtained by synthesizing the light source images shown in FIGS. 14A to 14C.
  • FIG. 15 is a perspective perspective view showing the first reflector 210 and the light source unit 5 to be compared.
  • FIG. 16 shows the positions of the first focal point F1 of the spheroidal reflecting surface 210a constituting the first reflector 210 and the light emitting surfaces 8a and 9a of the low beam light source 8 and the high beam light source 9 constituting the light source unit 5. It is a plan view.
  • FIG. 17 is a schematic view showing a light source image of the light reflected by the first reflector 210.
  • the first reflector 210 to be compared has the center of the low beam light source 8 (the central portion of the light emitting surface 8a) as the first focal point F1 and the focal point F3 of the rotating paraboloid reflecting surface 22a. It has a rotating elliptical reflecting surface 210a as a second focal point (not shown). Further, the spheroidal reflection surface 210a is divided into a pair of reflection regions 210b and 210c that are symmetrical with respect to the center line in the vertical direction passing through the optical axis of the light emitted from the low beam light source 8.
  • the first reflector 210 When the first reflector 210 is used, it is possible to improve the utilization efficiency of the light L emitted from the light source unit 5 as in the case of using the first reflector 21 described above.
  • the light source image of the light reflected by the spheroidal reflecting surface 210a as shown in the enclosed portion D in FIG. 17, glare light may be generated in the upper part of the light source image.
  • the light is reflected by the pair of spheroidal reflecting surfaces 21a and 21b and the central spheroidal reflecting surface 21c.
  • a light source image low beam light distribution pattern
  • the second focal points F2a, F2b, F2c of the spheroidal reflecting surfaces 21a, 21b, 21c described above and the focal points F3 of the rotating parabolic reflecting surface 7a overlap in the front-rear direction, the left-right direction, and
  • the focal points F2a, F2b, F2c and the focal point F3 are matched with each other in all the vertical directions, and the four focal points F2a, F2b, F2c and the focal point F3 are in the left-right direction (Y-axis axis direction). ) May be arranged so as to be shifted in the left-right direction so that the light distribution does not separate.
  • the focal points F2a and F2b may be arranged at positions such that the focal points F2a and F2b sandwich the focal points F3 in the left-right direction and the focal points F2c coincide with the focal points F3.
  • the second focal points F2a and F2b and the focal points F3 may be arranged so as to coincide with each other in the front-rear direction (X-axis direction) and the up-down direction (Z-axis direction).
  • the utilization efficiency of the light L emitted from the light source unit 5 is high, and the number of parts is reduced and the structure is simplified. It is possible to further reduce the size of the body 4.
  • the light source unit 5 described above is configured by a socket with a coupler attached separately from the lamp body 4, but is not necessarily limited to such a configuration. Instead, the light source unit 5 may be integrally mounted inside the lamp body 4.
  • the light source unit 5 has a configuration in which the above-mentioned low beam light source 8 and high beam light source 9 are mounted, but the configuration is not necessarily limited to such a configuration, and the light source unit 5 is at least The configuration may be such that the low beam light source 8 is mounted, and the high beam light source 9 may be omitted and the high beam light source 9 may be attached separately from the low beam light source 8.
  • the rotating paraboloids 7a and 22a have the rotating paraboloid as a basic shape, and the rotating paraboloid surface is formed to the extent that the focal point F3 is formed and the collimating function in the vertical direction is maintained. It may be a reflective surface in which a part or the whole of the above is deformed.
  • the present invention is applied to the headlamps (headlamps) for vehicles of saddle-type vehicles such as the above-mentioned motorcycles and tricycles has been illustrated, but the front end of vehicles such as four-wheeled vehicles has been illustrated. It is also possible to apply the present invention to vehicle headlamps mounted on both corners on the side.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

This vehicle headlight comprises: a light source unit (5) including a low beam light source (8) and a high beam light source (9); a first reflector (6) that reflects light emitted from the light source unit (5) to the surrounding area; and a second reflector (7) that reflects the light that was reflected by the first reflector (6) towards the front. The first reflector (6) includes a rotating elliptical reflection surface (6a, 6b). The second reflector (7) includes a rotating parabolic reflection surface (7a). A first focal point (F1b) of the rotating elliptical reflection surface (6a, 6b) is located on a light emission surface of the low beam light source (8), and a second focal point (F2a, F2b) of the rotating elliptical reflection surface (6a, 6b) is located at the same position as a focal point (F3) of the rotating parabolic reflection surface (7).

Description

車両用前照灯Vehicle headlights
 本発明は、車両用前照灯に関する。
 本願は、2019年4月22日に出願された日本国特願2019-081103号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to vehicle headlights.
This application claims priority based on Japanese Patent Application No. 2019-081103 filed on April 22, 2019, the contents of which are incorporated herein by reference.
 例えば、自動二輪車や自動三輪車などの鞍乗型車両がある。鞍乗型車両の前側中央部に搭載される車両用前照灯(ヘッドランプ)では、自動四輪車と同様に、上端にカットオフラインを含むロービーム用配光パターンを形成するすれ違い用ビーム(ロービーム)と、ロービーム用配光パターンの上方にハイビーム用配光パターンを形成する走行用ビーム(ハイビーム)とを、それぞれ車両の前方(車両進行方向)に向けて切り替え自在に照射する。 For example, there are saddle-type vehicles such as motorcycles and tricycles. The headlamps for vehicles mounted in the center of the front side of a saddle-mounted vehicle have a passing beam (low beam) that forms a low-beam light distribution pattern including a cut-off line at the upper end, similar to a motorcycle. ) And the traveling beam (high beam) that forms the high beam light distribution pattern above the low beam light distribution pattern are radiated in a switchable manner toward the front of the vehicle (vehicle traveling direction).
 このような鞍乗型車両に搭載される車両用前照灯は、前面が開口したハウジングと、ハウジングの開口を覆うレンズカバーとにより構成される灯体の内側に、ロービーム用光源及びハイビーム用光源と、リフレクタとを配置し、それぞれの光源から出射された光をリフレクタにより反射しながら、車両の前方に向けて照射する構成となっている(例えば、下記特許文献1を参照。)。 The vehicle headlights mounted on such saddle-type vehicles have a low beam light source and a high beam light source inside a lamp body composed of a housing having an open front surface and a lens cover covering the opening of the housing. And a reflector are arranged, and the light emitted from each light source is reflected by the reflector and irradiated toward the front of the vehicle (see, for example, Patent Document 1 below).
特開2013-171710号公報Japanese Unexamined Patent Publication No. 2013-171710
 ところで、上述した鞍乗型車両に搭載される車両用前照灯では、ロービーム用光源とハイビーム用光源とを灯体の内側に別々に配置し、それぞれの光源に合わせて配置されたリフレクタによって、それぞれ異なる位置からロービームとハイビームとを車両の前方に向けて照射する構成となっている。 By the way, in the vehicle headlight mounted on the saddle-mounted vehicle described above, the low beam light source and the high beam light source are separately arranged inside the lamp body, and the reflectors arranged according to the respective light sources are used. The low beam and high beam are emitted from different positions toward the front of the vehicle.
 また、リフレクタは、その前方を除く光源の周囲を囲むように、光源の中心(発光点)を焦点とする回転放物系反射面により構成されている。これにより、リフレクタは、光源から出射された光を車両の前方に向けて上下方向においてコリメートしながら反射している。 In addition, the reflector is composed of a rotating paraboloid reflecting surface whose focal point is the center (light emitting point) of the light source so as to surround the periphery of the light source except in front of it. As a result, the reflector reflects the light emitted from the light source toward the front of the vehicle while collimating in the vertical direction.
 しかしながら、従来の車両用前照灯では、光源から出射された光のうち、リフレクタの反射面に入射する光は50%程度である。一方、残りの光はリフレクタに入射することなく、リフレクタの前面側から外部へと漏れ出す光となっている。このため、光源から出射された光の利用効率が悪くなっている。 However, in the conventional headlights for vehicles, about 50% of the light emitted from the light source is incident on the reflecting surface of the reflector. On the other hand, the remaining light is light that leaks from the front side of the reflector to the outside without being incident on the reflector. Therefore, the utilization efficiency of the light emitted from the light source is deteriorated.
 本発明の態様は、光の利用効率が高い車両用前照灯を提供する。 Aspects of the present invention provide vehicle headlights with high light utilization efficiency.
 本発明の態様は、以下の構成を提供する。
〔1〕 車両の前方に向けてロービームとハイビームとを切り替え自在に照射する車両用前照灯であって、
 少なくとも前記ロービームとなる光を出射するロービーム用光源及び前記ハイビームとなる光を出射するハイビーム用光源を含む光源ユニットと、
 前記光源ユニットの前方に配置されて、前記光源ユニットから出射された光を前記光源ユニットの周囲に向けて反射する第1のリフレクタと、
 前記光源ユニットの周囲に配置されて、前記第1のリフレクタで反射された光を前記車両の前方に向けて反射する第2のリフレクタとを備え、
 前記第1のリフレクタは、回転楕円反射面を含み、
 前記第2のリフレクタは、回転放物系反射面を含み、
 前記回転楕円反射面の第1焦点が、前記ロービーム用光源の発光面に位置し、
 前記回転楕円反射面の第2焦点と、前記回転放物系反射面の焦点とが、互いに一致した位置にある車両用前照灯。
〔2〕 前記第1のリフレクタは、前記ロービーム用光源から出射される光の光軸を挟んで対称となる一対の回転楕円反射面を含み、
 前記一対の回転楕円反射面のうち、第一回転楕円反射面の第1焦点と、第二回転楕円反射面の第1焦点とが、前記ロービーム用光源の発光面における中心を挟んだ幅方向の両側にあり、
 前記第一回転楕円反射面の第2焦点と、前記第二回転楕円反射面の第2焦点とが、互いに前後方向及び上下方向において一致した位置にあり、
 前記一対の回転楕円反射面の第2焦点と、前記回転放物系反射面の焦点とが、互いに前後方向及び上下方向において一致した位置にある前記〔1〕の態様の車両用前照灯。
〔3〕 前記第一回転楕円反射面の第2焦点と、前記第二回転楕円反射面の第2焦点とが、互いに重なった位置にあり、
 前記一対の回転楕円反射面の第2焦点と、前記回転放物系反射面の焦点とが、互いに重なった位置にある前記〔2〕の態様の車両用前照灯。
〔4〕 前記ロービーム用光源の発光面は、矩形状を有し、
 前記第一回転楕円反射面の第1焦点と、前記第二回転楕円反射面の第1焦点とが、前記ロービーム用光源の発光面における上側の両端角部にある前記〔2〕又は〔3〕の態様の車両用前照灯。
〔5〕 前記一対の回転楕円反射面は、前記ロービーム用光源から出射される光の光軸を挟んで左右対称に配置されている前記〔2〕~〔4〕の何れか一項の態様の車両用前照灯。
〔6〕 前記一対の回転楕円反射面は、前記ロービーム用光源から出射される光の光軸を通る上下方向の中心線に対して直交する左右方向の分割線を挟んで分割された反射領域を含む前記〔5〕の態様の車両用前照灯。
〔7〕 前記第2のリフレクタは、前記光源ユニットの下方又は上方に配置されている前記〔5〕又は〔6〕の態様の車両用前照灯。
〔8〕 前記一対の回転楕円反射面は、前記ロービーム用光源から出射される光の光軸を挟んで上下対称に配置されている前記〔2〕~〔4〕の何れか一項の態様の車両用前照灯。
〔9〕 前記第1のリフレクタは、前記一対の回転楕円反射面の間に配置された中央の回転楕円反射面を含み、
 前記中央の回転楕円反射面の第1焦点が、前記ロービーム用光源の発光面における前記第一回転楕円反射面の第1焦点と、前記第二回転楕円反射面の第1焦点との間にあり、
 前記中央の回転楕円反射面の第2焦点と、前記回転放物系反射面の焦点とが、互いに前後方向及び上下方向において一致した位置にある前記〔8〕の態様の車両用前照灯。
〔10〕 前記ロービーム用光源の発光面は、矩形状を有し、
 前記中央の回転楕円反射面の第1焦点が、前記ロービーム用光源の発光面における上側の中央端部にある前記〔9〕の態様の車両用前照灯。
〔11〕 前記回転楕円反射面は、前記ロービーム用光源から出射される光の光軸を通る上下方向の中心線を挟んで左右対称に分割された反射領域を含む前記〔8〕~〔10〕の何れか一項の態様の車両用前照灯。
〔12〕 前記第1のリフレクタは、前記反射領域により反射された光を前記第2のリフレクタに向けて通過させる一対の貫通孔を有する前記〔11〕の態様の車両用前照灯。
〔13〕 前記第2のリフレクタは、前記光源ユニットを挟んだ幅方向の両側に左右対称に配置されている前記〔8〕~〔12〕の何れか一項の態様の車両用前照灯。
〔14〕 前記第2のリフレクタは、前記回転放物系反射面に入射した光を前記車両の幅方向に拡散しながら反射する光拡散形状を有する前記〔1〕~〔13〕の何れか一項の態様の車両用前照灯。
〔15〕 前記光源ユニットは、前記第1のリフレクタ及び前記第2のリフレクタが収容された灯体の背面側に設けられた取付孔から前記灯体の内側に挿入された状態で、前記取付孔の周囲に着脱自在に取り付けられるカプラー付ソケットにより構成されている前記〔1〕~〔14〕の何れか一項の態様の車両用前照灯。
Aspects of the present invention provide the following configurations.
[1] A vehicle headlight that illuminates the front of a vehicle by freely switching between a low beam and a high beam.
A light source unit including at least a low beam light source that emits light that becomes the low beam and a high beam light source that emits the high beam light.
A first reflector, which is arranged in front of the light source unit and reflects the light emitted from the light source unit toward the periphery of the light source unit,
It is provided with a second reflector which is arranged around the light source unit and reflects the light reflected by the first reflector toward the front of the vehicle.
The first reflector includes a spheroidal reflecting surface.
The second reflector includes a rotating parabolic reflector.
The first focal point of the spheroidal reflecting surface is located on the light emitting surface of the low beam light source.
A vehicle headlight in which the second focal point of the spheroidal reflecting surface and the focal point of the rotating parabolic reflecting surface coincide with each other.
[2] The first reflector includes a pair of spheroidal reflecting surfaces that are symmetrical with respect to the optical axis of light emitted from the low beam light source.
Of the pair of spheroidal reflecting surfaces, the first focal point of the first spheroidal reflecting surface and the first focal point of the second spheroidal reflecting surface are in the width direction with the center of the light emitting surface of the low beam light source interposed therebetween. On both sides,
The second focal point of the first spheroidal reflecting surface and the second focal point of the second spheroidal reflecting surface are located at positions that coincide with each other in the front-rear direction and the vertical direction.
The vehicle headlight according to the embodiment [1], wherein the second focal point of the pair of spheroidal reflecting surfaces and the focal point of the rotating parabolic reflecting surface coincide with each other in the front-rear direction and the vertical direction.
[3] The second focal point of the first spheroidal reflecting surface and the second focal point of the second spheroidal reflecting surface are located at overlapping positions with each other.
The vehicle headlight according to the embodiment [2], wherein the second focal point of the pair of spheroidal reflecting surfaces and the focal point of the rotating parabolic reflecting surface overlap each other.
[4] The light emitting surface of the low beam light source has a rectangular shape.
The first focal point of the first spheroidal reflecting surface and the first focal point of the second spheroidal reflecting surface are located at the upper corners of the light emitting surface of the low beam light source, either [2] or [3]. Vehicle headlights of the above aspect.
[5] The aspect of any one of the above [2] to [4], wherein the pair of spheroidal reflecting surfaces are arranged symmetrically with respect to the optical axis of the light emitted from the low beam light source. Headlights for vehicles.
[6] The pair of rotating elliptical reflecting surfaces form a reflecting region divided across a dividing line in the left-right direction orthogonal to a center line in the vertical direction passing through the optical axis of the light emitted from the low beam light source. The vehicle headlight according to the aspect of [5] above.
[7] The second reflector is a vehicle headlight according to the embodiment [5] or [6], which is arranged below or above the light source unit.
[8] The aspect of any one of the above [2] to [4], wherein the pair of spheroidal reflecting surfaces are arranged vertically symmetrically with an optical axis of light emitted from the low beam light source. Headlights for vehicles.
[9] The first reflector includes a central spheroidal reflecting surface arranged between the pair of spheroidal reflecting surfaces.
The first focal point of the central spheroidal reflecting surface is between the first focal point of the first spheroidal reflecting surface on the light emitting surface of the low beam light source and the first focal point of the second spheroidal reflecting surface. ,
The vehicle headlight according to the embodiment [8], wherein the second focal point of the central spheroidal reflecting surface and the focal point of the rotating parabolic reflecting surface coincide with each other in the front-rear direction and the vertical direction.
[10] The light emitting surface of the low beam light source has a rectangular shape and has a rectangular shape.
The vehicle headlight according to the embodiment [9], wherein the first focal point of the central spheroidal reflecting surface is at the upper central end of the light emitting surface of the low beam light source.
[11] The spheroidal reflection surface includes a reflection region symmetrically divided across a center line in the vertical direction passing through the optical axis of light emitted from the low beam light source [8] to [10]. A headlight for a vehicle according to any one of the above.
[12] The vehicle headlight according to the embodiment [11], wherein the first reflector has a pair of through holes for passing light reflected by the reflection region toward the second reflector.
[13] The second reflector is a vehicle headlight according to any one of the above [8] to [12], which is symmetrically arranged on both sides in the width direction of the light source unit.
[14] The second reflector has a light diffusing shape that reflects light incident on the rotating parabolic reflection surface while diffusing it in the width direction of the vehicle. Vehicle headlights according to the section.
[15] The light source unit is inserted into the inside of the lamp body through a mounting hole provided on the back surface side of the lamp body in which the first reflector and the second reflector are housed. The vehicle headlight according to any one of the above [1] to [14], which is composed of a socket with a coupler that is detachably attached to the periphery of the headlight.
 以上のように、本発明によれば、光の利用効率が高い車両用前照灯を提供することが可能である。 As described above, according to the present invention, it is possible to provide a vehicle headlight having high light utilization efficiency.
本実施形態の第1の実施形態に係る車両用前照灯の構成を示す正面図である。It is a front view which shows the structure of the headlight for a vehicle which concerns on 1st Embodiment of this Embodiment. 図1中に示す線分II-IIによる車両用前照灯の断面図である。It is sectional drawing of the headlight for a vehicle by the line segment II-II shown in FIG. 図1に示す車両用前照灯が備える光源ユニットの構成を示す断面図である。It is sectional drawing which shows the structure of the light source unit provided in the headlight for a vehicle shown in FIG. 図1に示す車両用前照灯が備える第1のリフレクタ及び光源ユニットを示す透視斜視図である。FIG. 5 is a perspective perspective view showing a first reflector and a light source unit included in the vehicle headlight shown in FIG. 1. 第1のリフレクタを構成する一対の回転楕円反射面の第1焦点と、光源ユニットを構成するロービーム用光源及びハイビーム用光源の発光面との位置を示す平面図である。It is a top view which shows the position of the 1st focal point of a pair of spheroidal reflecting surfaces which make up a 1st reflector, and the light emitting surface of a low beam light source and a high beam light source which make up a light source unit. 第2の反射領域により反射された光の光源像及び一方の回転楕円反射面の第1焦点を示す模式図である。It is a schematic diagram which shows the light source image of the light reflected by the 2nd reflection region, and the 1st focal point of one spheroidal reflection surface. 第4の反射領域により反射された光の光源像及び他方の回転楕円反射面の第1焦点を示す模式図であるIt is a schematic diagram which shows the light source image of the light reflected by the 4th reflection region, and the 1st focus of the other spheroidal reflection surface. 第1の反射領域により反射された光の光源像及び一方の回転楕円反射面の第1焦点を示す模式図である。It is a schematic diagram which shows the light source image of the light reflected by the 1st reflection region, and the 1st focus of one spheroidal reflection surface. 第3の反射領域により反射された光の光源像及び他方の回転楕円反射面の第1焦点を示す模式図である。It is a schematic diagram which shows the light source image of the light reflected by the 3rd reflection region, and the 1st focus of the other spheroidal reflection surface. 図6A~図6Dに示す光源像を合成した光源像である。6A is a light source image obtained by synthesizing the light source images shown in FIGS. 6A to 6D. 比較対象となる第1のリフレクタ及び光源ユニットを示す透視斜視図である。It is a perspective perspective view which shows the 1st reflector and a light source unit to be compared. 図7に示す第1のリフレクタを構成する回転楕円反射面の第1焦点と、光源ユニットを構成するロービーム用光源及びハイビーム用光源の発光面との位置を示す平面図である。FIG. 5 is a plan view showing the positions of the first focal point of the spheroidal reflecting surface constituting the first reflector shown in FIG. 7 and the light emitting surfaces of the low beam light source and the high beam light source constituting the light source unit. 図7に示す第1のリフレクタを用いた場合の光の光源像を示す模式図である。It is a schematic diagram which shows the light source image of the light when the 1st reflector shown in FIG. 7 is used. 本実施形態の第2の実施形態に係る車両用前照灯の構成を示す正面図である。It is a front view which shows the structure of the headlight for a vehicle which concerns on 2nd Embodiment of this Embodiment. 図10中に示す線分XI-XIによる車両用前照灯の断面図である。It is sectional drawing of the headlight for a vehicle by the line segment XI-XI shown in FIG. 図10に示す車両用前照灯が備える第1のリフレクタ及び光源ユニットを示す透視斜視図である。FIG. 5 is a perspective perspective view showing a first reflector and a light source unit included in the vehicle headlight shown in FIG. 10. 第1のリフレクタを構成する一対の回転楕円反射面及び中央の回転楕円反射面の第1焦点と、光源ユニットを構成するロービーム用光源及びハイビーム用光源の発光面との位置を示す平面図である。FIG. 5 is a plan view showing the positions of the first focal points of the pair of spheroidal reflecting surfaces and the central spheroidal reflecting surface constituting the first reflector, and the light emitting surfaces of the low beam light source and the high beam light source constituting the light source unit. .. 一方の回転楕円反射面により反射された光の光源像を示す模式図である。It is a schematic diagram which shows the light source image of the light reflected by one spheroidal reflection surface. 中央の回転楕円反射面により反射された光の光源像を示す模式図である。It is a schematic diagram which shows the light source image of the light reflected by the spheroidal reflection surface in the center. 他方の回転楕円反射面により反射された光の光源像を示す模式図である。It is a schematic diagram which shows the light source image of the light reflected by the other spheroidal reflection surface. 図14A~図14Cに示す光源像を合成した光源像である。It is a light source image which combined the light source images shown in FIGS. 14A to 14C. 比較対象となる第1のリフレクタを示す透視斜視図である。It is a perspective perspective view which shows the 1st reflector to be compared. 図15に示す第1のリフレクタを構成する回転楕円反射面の第1焦点と、光源ユニットを構成するロービーム用光源及びハイビーム用光源の発光面との位置を示す平面図である。FIG. 5 is a plan view showing the positions of the first focal point of the spheroidal reflecting surface constituting the first reflector shown in FIG. 15 and the light emitting surfaces of the low beam light source and the high beam light source constituting the light source unit. 図15に示す第1のリフレクタを用いた場合の光の光源像を示す模式図である。It is a schematic diagram which shows the light source image of the light when the 1st reflector shown in FIG. 15 is used.
 以下、本発明の実施形態について、図面を参照して詳細に説明する。
 なお、以下の説明で用いる図面においては、各構成要素を見やすくするため、構成要素によって寸法の縮尺を異ならせて示すことがあり、各構成要素の寸法比率などが実際と同じであるとは限らない。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
In the drawings used in the following description, in order to make each component easier to see, the scale of the dimensions may be different depending on the component, and the dimensional ratio of each component is not always the same as the actual one. Absent.
(第1の実施形態)
 先ず、本発明の第1の実施形態として、例えば図1~図5に示す車両用前照灯1Aについて説明する。
 なお、図1は、車両用前照灯1Aの構成を示す正面図である。図2は、図1中に示す線分II-IIによる車両用前照灯1Aの断面図である。図3は、車両用前照灯1Aが備える光源ユニット5の構成を示す断面図である。図4は、車両用前照灯1Aが備える第1のリフレクタ6及び光源ユニット5を示す透視斜視図である。図5は、第1のリフレクタ6を構成する一対の回転楕円反射面6a,6bの第1焦点F1a,F1bと、光源ユニット5を構成するロービーム用光源8及びハイビーム用光源9の発光面8a,9aとの位置を示す平面図である。
(First Embodiment)
First, as a first embodiment of the present invention, for example, the vehicle headlight 1A shown in FIGS. 1 to 5 will be described.
Note that FIG. 1 is a front view showing the configuration of the vehicle headlight 1A. FIG. 2 is a cross-sectional view of the vehicle headlight 1A by the line segments II-II shown in FIG. FIG. 3 is a cross-sectional view showing the configuration of the light source unit 5 included in the vehicle headlight 1A. FIG. 4 is a perspective perspective view showing the first reflector 6 and the light source unit 5 included in the vehicle headlight 1A. FIG. 5 shows the first focal points F1a and F1b of the pair of spheroidal reflecting surfaces 6a and 6b constituting the first reflector 6, and the light emitting surfaces 8a of the low beam light source 8 and the high beam light source 9 constituting the light source unit 5. It is a top view which shows the position with 9a.
 また、以下に示す図面では、XYZ直交座標系を設定し、X軸方向を車両用前照灯1Aの前後方向(長さ方向)、Y軸方向を車両用前照灯1Aの左右方向(幅方向)、Z軸方向を車両用前照灯1Aの上下方向(高さ方向)として、それぞれ示すものとする。 Further, in the drawings shown below, the XYZ Cartesian coordinate system is set, the X-axis direction is the front-rear direction (length direction) of the vehicle headlight 1A, and the Y-axis direction is the left-right direction (width) of the vehicle headlight 1A. Direction) and Z-axis direction shall be indicated as the vertical direction (height direction) of the vehicle headlight 1A, respectively.
 本実施形態の車両用前照灯1Aは、例えば、自動二輪車や自動三輪車などの鞍乗型車両(図示せず。)の前側中央部に搭載される鞍乗型車両用灯具のうち、車両の前方に向けてロービームとハイビームとを切り替え自在に照射するヘッドランプに本発明を適用したものである。 The vehicle headlight 1A of the present embodiment is, for example, among the saddle-type vehicle lighting fixtures mounted on the front center of a saddle-type vehicle (not shown) such as a motorcycle or a three-wheeled vehicle. The present invention is applied to a headlamp that irradiates a headlamp that freely switches between a low beam and a high beam toward the front.
 なお、以下の説明において、「前」「後」「左」「右」「上」「下」との記載は、特に断りのない限り、車両用前照灯1Aを正面(車両前方)から見たときのそれぞれの方向を意味するものとする。 In the following explanation, the descriptions "front", "rear", "left", "right", "top", and "bottom" mean that the vehicle headlight 1A is viewed from the front (front of the vehicle) unless otherwise specified. It shall mean each direction at the time.
 本実施形態の車両用前照灯1Aは、図1及び図2に示すように、前面が開口したハウジング2と、このハウジング2の開口を覆う透明なレンズカバー3とにより構成される灯体4を備えている。なお、灯体4の形状については、鞍乗型車両のデザイン等に合わせて、適宜変更することが可能である。 As shown in FIGS. 1 and 2, the vehicle headlight 1A of the present embodiment is a lamp body 4 composed of a housing 2 having an open front surface and a transparent lens cover 3 covering the opening of the housing 2. It has. The shape of the lamp body 4 can be appropriately changed according to the design of the saddle-mounted vehicle and the like.
 鞍乗型車両用灯具1は、この灯体4の内側に、光源ユニット5と、第1のリフレクタ6と、第2のリフレクタ7とを備えている。 The saddle-mounted vehicle lamp 1 includes a light source unit 5, a first reflector 6, and a second reflector 7 inside the lamp body 4.
 光源ユニット5は、図2に示すように、ロービーム用光源8とハイビーム用光源9とを搭載したカプラー付ソケットであり、灯体4の背面側に設けられた取付孔10に着脱自在に取り付けられている。 As shown in FIG. 2, the light source unit 5 is a socket with a coupler on which a low beam light source 8 and a high beam light source 9 are mounted, and is detachably attached to a mounting hole 10 provided on the back side of the lamp body 4. ing.
 具体的に、この光源ユニット5は、取付孔10に対する抜け止めとなる複数の爪部11を有し、その前面側を取付孔10に嵌め込みながら周方向に回転させることで、その外周に取り付けられたリング状のパッキン(Oリング)12を介して取付孔10の周囲に着脱自在に取り付けられている。 Specifically, the light source unit 5 has a plurality of claws 11 that prevent the mounting holes 10 from coming off, and is mounted on the outer periphery thereof by rotating the front side thereof in the circumferential direction while fitting the front side into the mounting holes 10. It is detachably attached around the attachment hole 10 via a ring-shaped packing (O-ring) 12.
 これにより、本実施形態の車両用前照灯1Aでは、灯体4に対して光源ユニット5が交換(取替)可能に取り付けられている。したがって、例えばロービーム用光源8やハイビーム用光源9に不具合等が生じた場合でも、光源ユニット5のみを交換すればよい。 As a result, in the vehicle headlight 1A of the present embodiment, the light source unit 5 is replaceably attached to the lamp body 4. Therefore, for example, even if a problem occurs in the low beam light source 8 or the high beam light source 9, only the light source unit 5 needs to be replaced.
 本実施形態の車両用前照灯1Aでは、このようなカプラー付ソケットを構成する光源ユニット5を備えることで、メンテナンス等における作業性を向上させると共に、メンテナンス等にかかるコストを低減することが可能である。 In the vehicle headlight 1A of the present embodiment, by providing the light source unit 5 constituting such a socket with a coupler, it is possible to improve workability in maintenance and the like and reduce the cost required for maintenance and the like. Is.
 光源ユニット5は、図3に示すように、ロービーム用及びハイビーム用光源8,9が実装された第1の基板13と、各光源8,9を駆動する駆動回路14が設けられた第2の基板15と、各光源8,9が発する熱を放熱させる放熱部16が設けられた第1の筐体17と、第1の基板13及び第2の基板14と電気的に接続されるコネクタ部18が設けられた第2の筐体19とを備えている。 As shown in FIG. 3, the light source unit 5 is provided with a first substrate 13 on which low beam and high beam light sources 8 and 9 are mounted, and a second substrate 14 provided with a drive circuit 14 for driving the light sources 8 and 9. A substrate 15, a first housing 17 provided with a heat radiating portion 16 that dissipates heat generated by each of the light sources 8 and 9, and a connector portion that is electrically connected to the first substrate 13 and the second substrate 14. It is provided with a second housing 19 provided with 18.
 ロービーム用及びハイビーム用光源8,9は、例えば白色光を発するLEDからなる。また、LEDには、車両照明用の高出力(高輝度)タイプのもの(例えばSMD LEDなど。)を使用することができる。 The low beam and high beam light sources 8 and 9 consist of, for example, LEDs that emit white light. Further, as the LED, a high output (high brightness) type LED (for example, SMD LED) for vehicle lighting can be used.
 ロービーム用光源8は、矩形状(本実施形態では横長の長方形状)の発光面8aを有して、第1の基板13の前面側に実装されている。ロービーム用光源8は、上端にカットオフラインを含むロービーム用配光パターンを形成するすれ違い用ビーム(ロービーム)となる光を車両の前方に向かって放射状に出射する。 The low beam light source 8 has a rectangular (horizontally long rectangular shape in this embodiment) light emitting surface 8a, and is mounted on the front surface side of the first substrate 13. The low beam light source 8 radiates light that becomes a passing beam (low beam) that forms a low beam light distribution pattern including a cut-off line at the upper end toward the front of the vehicle.
 ハイビーム用光源9は、矩形状(本実施形態では横長の長方形状)の発光面9aを有して、第1の基板13の前面側に実装されている。また、ハイビーム用光源9は、ロービーム用光源8よりも上方に配置されている。ハイビーム用光源9は、ロービーム用配光パターンの上方にハイビーム用配光パターンを形成する走行用ビーム(ハイビーム)となる光を車両の前方に向かって放射状に出射する。 The high beam light source 9 has a rectangular (horizontally long rectangular shape in this embodiment) light emitting surface 9a, and is mounted on the front surface side of the first substrate 13. Further, the high beam light source 9 is arranged above the low beam light source 8. The high beam light source 9 radiates light that becomes a traveling beam (high beam) that forms a high beam light distribution pattern above the low beam light distribution pattern toward the front of the vehicle.
 なお、ロービーム用及びハイビーム用光源8,9については、光を放射状に出射するものであればよく、上述したLEDの他にも、例えばレーザーダイオード(LD)などの発光素子を用いることも可能である。また、ロービーム用及びハイビーム用光源8,9が発する光の色については、上述した白色光に限らず、例えば黄色光などに変更することも可能である。 The low beam and high beam light sources 8 and 9 may emit light in a radial manner, and in addition to the above-mentioned LEDs, for example, a light emitting element such as a laser diode (LD) can be used. is there. Further, the color of the light emitted by the low beam and high beam light sources 8 and 9 is not limited to the white light described above, and can be changed to, for example, yellow light.
 第1の基板13は、矩形平板状のプリント配線基板(PWB)であり、絶縁基板の一面(表面)にロービーム用及びハイビーム用光源8,9と電気的に接続される配線(図示せず。)が設けられた片面配線基板からなる。 The first substrate 13 is a rectangular flat-plate-shaped printed wiring board (PWB), and is a wiring (not shown) electrically connected to one surface (surface) of an insulating substrate with light sources 8 and 9 for low beam and high beam. ) Is provided on a single-sided wiring board.
 第1の基板13には、厚み方向に貫通する複数の第1の孔部13aが設けられている。第1の孔部13aは、後述するコネクタ部18のリード端子18aが挿入される部分であり、この第1の孔部13aの周囲には、上述した各光源8,9と電気的に接続される配線の一部を形成するランド(図示せず。)が設けられている。 The first substrate 13 is provided with a plurality of first hole portions 13a penetrating in the thickness direction. The first hole portion 13a is a portion into which the lead terminal 18a of the connector portion 18 described later is inserted, and the periphery of the first hole portion 13a is electrically connected to the light sources 8 and 9 described above. Lands (not shown) that form part of the wiring are provided.
 第2の基板15は、第1の基板13よりも大きい矩形平板状のプリント回路基板(PCB)であり、上述したPWBに駆動回路14を構成する実装部品(図示せず。)が実装された構造を有している。第2の基板15は、絶縁基板の少なくとも一面(表面)又は両面(表面及び裏面)に実装部品と電気的に接続される配線(図示せず。)が設けられた片面又は両面配線基板からなる。 The second substrate 15 is a rectangular printed circuit board (PCB) larger than the first substrate 13, and mounting components (not shown) constituting the drive circuit 14 are mounted on the above-mentioned PWB. It has a structure. The second substrate 15 is composed of a single-sided or double-sided wiring board provided with wiring (not shown) electrically connected to the mounting component on at least one surface (front surface) or both sides (front surface and back surface) of the insulating substrate. ..
 第2の基板15には、厚み方向に貫通する複数の第2の孔部15aが設けられている。第2の孔部15aは、後述するコネクタ部18のリード端子18aが挿入される部分であり、この第2の孔部15aの周囲には、上述した駆動回路14を構成する実装部品と電気的に接続される配線の一部を形成するランド(図示せず。)が設けられている。 The second substrate 15 is provided with a plurality of second holes 15a penetrating in the thickness direction. The second hole portion 15a is a portion into which the lead terminal 18a of the connector portion 18 to be described later is inserted, and around the second hole portion 15a, the mounting components constituting the drive circuit 14 described above and electrical components are electrically connected. Lands (not shown) are provided to form part of the wiring connected to.
 第1の筐体17は、略円形平板状の前壁部17aと、前壁部17aの前面側及び背面側の周囲を囲む略円筒状の周壁部17bと、周壁部17bの背面側から径径方向に突出された略円環平板状の拡径部17cと、拡径部17cの背面側の周囲を囲む略円筒状の延長部17dとを有している。また、拡径部17cの背面には、四隅が丸みを帯びた略矩形筒状の嵌合凸部17eが突出して設けられている。複数の爪部11は、周壁部17bの外周から突出して設けられている。パッキン12は、拡径部17cの外周に取り付けられている。 The first housing 17 has a substantially circular flat plate-shaped front wall portion 17a, a substantially cylindrical peripheral wall portion 17b that surrounds the front side and the back surface side of the front wall portion 17a, and a diameter from the back side of the peripheral wall portion 17b. It has a substantially annular flat plate-shaped enlarged diameter portion 17c protruding in the radial direction, and a substantially cylindrical extension portion 17d surrounding the periphery of the enlarged diameter portion 17c on the back surface side. Further, on the back surface of the enlarged diameter portion 17c, a fitting convex portion 17e having a substantially rectangular tubular shape with rounded four corners is provided so as to project. The plurality of claw portions 11 are provided so as to project from the outer periphery of the peripheral wall portion 17b. The packing 12 is attached to the outer periphery of the enlarged diameter portion 17c.
 放熱部16は、各光源8,9が発する熱を外部に効率良く放熱させるため、第1の筐体17の少なくとも一部又は全部において、熱電導性の高い金属材料や樹脂材料、これらの複合材料などを用いることによって構成されている。すなわち、放熱部16は、第1の筐体17に放熱部材(ヒートシンク)を取り付けられた構成や、第1の筐体17自体を放熱部材(ヒートシンク)とした構成とすることが可能である。 The heat radiating unit 16 efficiently dissipates the heat generated by the light sources 8 and 9 to the outside, so that at least a part or all of the first housing 17 is made of a metal material or a resin material having high thermoconductivity, or a composite thereof. It is composed by using materials and the like. That is, the heat radiating unit 16 can have a structure in which a heat radiating member (heat sink) is attached to the first housing 17, or a structure in which the first housing 17 itself is a heat radiating member (heat sink).
 第1の筐体17には、前壁部17aを貫通する複数の第3の孔部17fが設けられている。第3の孔部17fは、後述するコネクタ部18のリード端子18aを非接触な状態で貫通させるため、第1の孔部13aよりも大きな径を有している。なお、第3の孔部17fについては、必ずしもリード端子18aの数に合わせて設ける必要はなく、複数のリード端子18aを非接触な状態で貫通させる1つの孔部(開口部)として形成することも可能である。 The first housing 17 is provided with a plurality of third hole portions 17f penetrating the front wall portion 17a. The third hole portion 17f has a diameter larger than that of the first hole portion 13a in order to penetrate the lead terminal 18a of the connector portion 18 described later in a non-contact state. The third hole 17f does not necessarily have to be provided according to the number of lead terminals 18a, and is formed as one hole (opening) through which the plurality of lead terminals 18a penetrate in a non-contact state. Is also possible.
 第2の筐体19は、四隅が丸みを帯びた略矩形平板状の後壁部19aと、後壁部19aの背面側に位置して四隅が丸みを帯びた略矩形筒状のソケット部19bと有している。また、後壁部19aの前面には、四隅が丸みを帯びた略矩形枠状の嵌合凹部19cが設けられている。 The second housing 19 has a substantially rectangular flat plate-shaped rear wall portion 19a with rounded four corners and a substantially rectangular tubular socket portion 19b located on the back side of the rear wall portion 19a with rounded four corners. I have. Further, on the front surface of the rear wall portion 19a, a fitting recess 19c having a substantially rectangular frame shape with rounded four corners is provided.
 また、第2の筐体19は、後壁部19aの前面から突出された台座部19dを有している。台座部19dは、後壁部19aの中央部に位置して、後壁部19aの前面よりも一段高くなる平面視で円形状の段差面を形成している。また、台座部19dの中央部には、円柱状の突起部19eが突出して設けられている。一方、第2の基板15の中央部には、この突起部19eを貫通させる第4の孔部15bが設けられている。 Further, the second housing 19 has a pedestal portion 19d protruding from the front surface of the rear wall portion 19a. The pedestal portion 19d is located at the central portion of the rear wall portion 19a, and forms a circular stepped surface in a plan view that is one step higher than the front surface of the rear wall portion 19a. Further, a columnar protrusion 19e is provided so as to project from the center of the pedestal portion 19d. On the other hand, in the central portion of the second substrate 15, a fourth hole portion 15b through which the protrusion 19e is penetrated is provided.
 コネクタ部18は、ソケット部19bの内側に複数のリード端子18aを有している。各リード端子18aは、後壁部19aを前後方向に貫通した状態で、第2の筐体19に一体に取り付けられている。また、複数のリード端子18aは、後壁部19aの前面側において相対的に長くなるリード端子19aと、後壁部9aの前面側において相対的に短くなるリード端子19aとを有している。 The connector portion 18 has a plurality of lead terminals 18a inside the socket portion 19b. Each lead terminal 18a is integrally attached to the second housing 19 in a state of penetrating the rear wall portion 19a in the front-rear direction. Further, the plurality of lead terminals 18a have a lead terminal 19a that is relatively long on the front side of the rear wall portion 19a and a lead terminal 19a that is relatively short on the front side of the rear wall portion 9a.
 以上のような構成を有する光源ユニット5において、第2の基板15は、第4の孔部15bに突起部19eを貫通させた状態で、この突起部19eの先端を熱カシメすることによって、台座部19dの段差面上に取り付けられている。 In the light source unit 5 having the above configuration, the second substrate 15 is a pedestal by thermally caulking the tip of the protrusion 19e in a state where the protrusion 19e is penetrated through the fourth hole 15b. It is mounted on the stepped surface of the portion 19d.
 また、第2の基板15は、各第2の孔部15aにリード端子18aをそれぞれ貫通させた状態で、各第2の孔部15aの周囲にあるランドと、リード端子18aとをはんだにより固定することによって、リード端子18aと電気的に接続されている。 Further, in the second substrate 15, the land around each of the second hole portions 15a and the lead terminal 18a are fixed by solder in a state where the lead terminal 18a is passed through each of the second hole portions 15a. By doing so, it is electrically connected to the lead terminal 18a.
 これにより、第2の筐体19の前面側に第2の基板15が取り付けられた状態となっている。この状態から、第2の筐体19の前面側に設けられた嵌合凹部19cに、第1の筐体17の背面側に設けられた嵌合凸部17eが嵌合された状態で、嵌合凹部19cに注入された接着剤Sによって、嵌合凹部19cに嵌合された嵌合凸部17eが全周に亘って固定されている。 As a result, the second substrate 15 is attached to the front side of the second housing 19. From this state, the fitting convex portion 17e provided on the back side of the first housing 17 is fitted into the fitting recess 19c provided on the front side of the second housing 19 in a state of being fitted. The fitting convex portion 17e fitted in the fitting recess 19c is fixed over the entire circumference by the adhesive S injected into the joint recess 19c.
 これにより、第1の筐体17の背面側と第2の筐体19の前面側とが一体に取り付けられた状態となっている。また、この状態において、第2の基板15は、第1の筐体17の周壁部17bとは非接触な状態で、前壁部17aの背面と空間を隔てて対向して配置されている。また、各第3の孔部14aは、上述した長い方のリード端子18aを非接触な状態で貫通させている。 As a result, the back side of the first housing 17 and the front side of the second housing 19 are integrally attached. Further, in this state, the second substrate 15 is arranged so as to face the back surface of the front wall portion 17a with a space in between, in a state of being in non-contact with the peripheral wall portion 17b of the first housing 17. Further, each of the third hole portions 14a penetrates the above-mentioned longer lead terminal 18a in a non-contact state.
 この状態から、第1の基板13は、熱伝導性の高い接着剤(図示せず。)を用いて、前壁部17aの前面に取り付けられている。また、第1の基板13は、前壁部17aが金属などの導電性材料からなる場合、第1の筐体17とは電気的に絶縁された状態で取り付けられる。 From this state, the first substrate 13 is attached to the front surface of the front wall portion 17a using an adhesive having high thermal conductivity (not shown). Further, when the front wall portion 17a is made of a conductive material such as metal, the first substrate 13 is attached in a state of being electrically insulated from the first housing 17.
 また、第1の基板13は、各第1の孔部13aに長い方のリード端子18aをそれぞれ貫通させた状態で、各第1の孔部13aの周囲にあるランドと、長い方のリード端子18aとをはんだにより固定することによって、長い方のリード端子19aと電気的に接続されている。 Further, the first substrate 13 has a land around each first hole portion 13a and a longer lead terminal in a state where the longer lead terminal 18a is passed through each first hole portion 13a. By fixing the 18a with solder, it is electrically connected to the longer lead terminal 19a.
 これにより、複数のリード端子19aのうち、長い方のリード端子19aは、第1の基板13及び第2の基板15に設けられた配線のうち、各光源8,9及び駆動回路14に給電するための給電線及び接地線と電気的に接続されている。一方、短い方のリード端子19aは、第2の基板15に設けられた配線のうち、駆動回路14に制御信号を伝送するための制御線と電気的に接続されている。 As a result, the longer lead terminal 19a of the plurality of lead terminals 19a supplies power to the light sources 8 and 9 and the drive circuit 14 of the wires provided on the first board 13 and the second board 15. It is electrically connected to the feed line and ground line for On the other hand, the shorter lead terminal 19a is electrically connected to the control line for transmitting the control signal to the drive circuit 14 among the wirings provided on the second substrate 15.
 第1のリフレクタ6は、図1、図2、図4及び図5に示すように、光源ユニット5の前方に配置されて、光源ユニット5から出射された光Lを光源ユニット5の周囲に向けて反射する。具体的に、この第1のリフレクタ6は、ロービーム用光源8から出射される光の光軸を挟んで左右対称となる一対の回転楕円反射面6a,6bを有している。 As shown in FIGS. 1, 2, 4, and 5, the first reflector 6 is arranged in front of the light source unit 5, and directs the light L emitted from the light source unit 5 toward the periphery of the light source unit 5. And reflect. Specifically, the first reflector 6 has a pair of spheroidal reflecting surfaces 6a and 6b that are symmetrical with respect to the optical axis of the light emitted from the low beam light source 8.
 一対の回転楕円反射面6a,6bは、その下方を除く光源ユニット5の周囲を囲むように、2つの焦点を持つ楕円線の一部を回転させることによって得られる凹面状の反射面である。 The pair of spheroidal reflecting surfaces 6a and 6b are concave reflecting surfaces obtained by rotating a part of an elliptical line having two focal points so as to surround the periphery of the light source unit 5 except below.
 一対の回転楕円反射面6a,6bのうち、一方の回転楕円反射面6a(第一回転楕円反射面6a)の第1焦点F1aと、他方の回転楕円反射面6b(第二回転楕円反射面6b)の第1焦点F1bとは、ロービーム用光源8の発光面8aにおける中心を挟んだ幅方向の両側に位置している。具体的に、一方の回転楕円反射面6aの第1焦点F1aと、他方の回転楕円反射面6bの第1焦点F1bとは、ロービーム用光源8の発光面8aにおける上側の両端角部に位置している。 Of the pair of spheroidal reflecting surfaces 6a and 6b, the first focal point F1a of one spheroidal reflecting surface 6a (first spheroidal reflecting surface 6a) and the other spheroidal reflecting surface 6b (second spheroidal reflecting surface 6b). ), The first focal point F1b is located on both sides of the light emitting surface 8a of the low beam light source 8 in the width direction with the center in between. Specifically, the first focal point F1a of one spheroidal reflecting surface 6a and the first focal point F1b of the other spheroidal reflecting surface 6b are located at the upper corners of the light emitting surface 8a of the low beam light source 8. ing.
 また、一対の回転楕円反射面6a,6bは、ロービーム用光源8から出射される光の光軸を通る上下方向の中心線に対して直交する左右方向の分割線を挟んで4つの反射領域61a,62a,61b,62bに分割されている。 Further, the pair of rotating elliptical reflecting surfaces 6a and 6b have four reflecting regions 61a with a dividing line in the horizontal direction orthogonal to the center line in the vertical direction passing through the optical axis of the light emitted from the low beam light source 8. , 62a, 61b, 62b.
 具体的に、一方の回転楕円反射面6aは、上下方向において第1の反射領域61aと第2の反射領域62aとに分割されている。他方の回転楕円反射面6bは、上下方向において第3の反射領域61bと第4の反射領域62bとに分割されている。また、第1の反射領域61aと第3の反射領域61bとは、左右対称に配置されている。同様に、第2の反射領域62aと第4の反射領域62bとは、左右対称に配置されている。 Specifically, one spheroidal reflection surface 6a is divided into a first reflection region 61a and a second reflection region 62a in the vertical direction. The other spheroidal reflection surface 6b is divided into a third reflection region 61b and a fourth reflection region 62b in the vertical direction. Further, the first reflection region 61a and the third reflection region 61b are arranged symmetrically. Similarly, the second reflection region 62a and the fourth reflection region 62b are arranged symmetrically.
 但し、第1の反射領域61aと第2の反射領域62aとは、左右で逆側に配置されている。また、第3の反射領域61bと第4の反射領域62bとは、左右で逆側に配置されている。すなわち、焦点F1a,F1bが一致している同一の回転楕円反射面6a,6bの一部である第1の反射領域61aと第2の反射領域62aと(及び第1の反射領域61aと第2の反射領域62aとは異なる位置の第1焦点F1a,F1bを有する回転楕円反射面6a,6bの一部である第3の反射領域61bと第4の反射領域62bと)は、上下方向の中心線と左右方向の分割線との交点を挟んで斜めに位置している。 However, the first reflection region 61a and the second reflection region 62a are arranged on the left and right sides opposite to each other. Further, the third reflection region 61b and the fourth reflection region 62b are arranged on the left and right sides opposite to each other. That is, the first reflection region 61a and the second reflection region 62a (and the first reflection region 61a and the second) which are a part of the same rotating elliptical reflection surfaces 6a and 6b in which the focal points F1a and F1b are aligned. The third reflection region 61b and the fourth reflection region 62b, which are a part of the rotating elliptical reflection surfaces 6a and 6b having the first focal points F1a and F1b at different positions from the reflection region 62a of the above, are centered in the vertical direction. It is located diagonally across the intersection of the line and the dividing line in the left-right direction.
 4つの反射領域61a,62a,61b,62bのうち、上側の第2の反射領域62a及び第4の反射領域62bには、ロービーム用光源8から出射される光の光軸に対して光線角度が大きくなる光が入射する。 Of the four reflection regions 61a, 62a, 61b, 62b, the upper second reflection region 62a and the fourth reflection region 62b have a ray angle with respect to the optical axis of the light emitted from the low beam light source 8. Increasing light is incident.
  第1のリフレクタ6において、一方の回転楕円反射面6a(第1及び第2の反射領域61a,62a)の第2焦点F2aと、他方の回転楕円反射面6b(第3及び第4の反射領域61b,62b)の第2焦点F2bとは、互いに一致した位置にある。 In the first reflector 6, the second focal point F2a of one spheroidal reflection surface 6a (first and second reflection regions 61a, 62a) and the other spheroidal reflection surface 6b (third and fourth reflection regions) The second focal point F2b of 61b, 62b) is at a position coincident with each other.
 これにより、第1のリフレクタ6は、一対の回転楕円反射面6a,6bに入射した光Lを互いに一致した第2焦点F2a,F2bに向けて集光しながら、下方の第2のリフレクタ7に向けて反射する。 As a result, the first reflector 6 concentrates the light L incident on the pair of spheroidal reflecting surfaces 6a and 6b toward the second focal points F2a and F2b that coincide with each other, and causes the second reflector 7 below. Reflect toward.
 第2のリフレクタ7は、図1及び図2に示すように、光源ユニット5の周囲に配置されて、第1のリフレクタ6で反射された光Lを車両の前方に向けて反射する。具体的に、この第2のリフレクタ7は、光源ユニット5の下方に配置されている。また、第2のリフレクタ7は、第1のリフレクタ1の一対の回転楕円放物面6a,6bと向かい合う回転放物系反射面7aを有している。 As shown in FIGS. 1 and 2, the second reflector 7 is arranged around the light source unit 5 and reflects the light L reflected by the first reflector 6 toward the front of the vehicle. Specifically, the second reflector 7 is arranged below the light source unit 5. Further, the second reflector 7 has a spheroidal parabolic surface 7a facing the pair of spheroidal paraboloids 6a and 6b of the first reflector 1.
 なお、第2のリフレクタ7については、上述した光源ユニット5の下方に配置された構成に限らず、光源ユニット5の上方に配置した構成とすることも可能である。その場合、第1のリフレクタ6は、上方の第2のリフレクタ7に向けて反射する構成とすればよい。 The second reflector 7 is not limited to the configuration arranged below the light source unit 5 described above, but may be arranged above the light source unit 5. In that case, the first reflector 6 may be configured to reflect toward the upper second reflector 7.
 回転放物系反射面7aは、互いに一致した回転楕円反射面6a,6bの第2焦点F2a,F2bを焦点F3とする放物線の一部を回転させることによって得られる凹面状の反射面である。すなわち、この回転放物系反射面7aの焦点F3と、一対の回転楕円反射面6a,6bの第2焦点F2a,F2bとは、互いに一致した位置にある。 The rotating parabolic reflecting surface 7a is a concave reflecting surface obtained by rotating a part of a parabola having the second focal points F2a and F2b of the rotating elliptical reflecting surfaces 6a and 6b that coincide with each other as the focal point F3. That is, the focal point F3 of the rotating parabolic reflecting surface 7a and the second focal points F2a and F2b of the pair of rotating elliptical reflecting surfaces 6a and 6b are at positions that coincide with each other.
 これにより、第2のリフレクタ7は、回転放物系反射面7aに入射した光Lを車両の前方に向けて上下方向においてコリメートしながら反射する。 As a result, the second reflector 7 reflects the light L incident on the rotating parabolic reflection surface 7a while collimating in the vertical direction toward the front of the vehicle.
 また、第2のリフレクタ7は、回転放物系反射面7aに入射した光Lを車両の幅方向に拡散しながら反射する光拡散形状を有している。具体的に、この第2のリフレクタ7は、回転放物系反射面7aを複数の反射領域に分割するマルチリフレクタ形状とすることによって、各反射領域に入射した光の反射方向を制御し、この回転放物系反射面7aに入射した光Lを車両の幅方向に拡散しながら反射することが可能となっている。 Further, the second reflector 7 has a light diffusion shape that reflects the light L incident on the rotating parabolic reflection surface 7a while diffusing it in the width direction of the vehicle. Specifically, the second reflector 7 controls the reflection direction of the light incident on each reflection region by forming a multi-reflector shape that divides the rotating parabolic reflection surface 7a into a plurality of reflection regions. It is possible to reflect the light L incident on the rotating parabolic reflection surface 7a while diffusing it in the width direction of the vehicle.
 以上のような構成を有する本実施形態の車両用前照灯1Aでは、すれ違い用ビーム(ロービーム)として、ロービーム用光源8から出射される光を第1のリフレクタ6及び第2のリフレクタ7により反射しながら、車両の前方に向けて照射する。これにより、上端にカットオフラインを含むロービーム用配光パターンを形成することができる。 In the vehicle headlight 1A of the present embodiment having the above configuration, the light emitted from the low beam light source 8 is reflected by the first reflector 6 and the second reflector 7 as a passing beam (low beam). While irradiating toward the front of the vehicle. As a result, a low beam light distribution pattern including a cut-off line can be formed at the upper end.
 一方、本実施形態の車両用前照灯1Aでは、走行用ビーム(ハイーム)として、ハイビーム用光源9から出射される光を第1のリフレクタ6及び第2のリフレクタ7により反射しながら、車両の前方に向けて照射する。これにより、ロービーム用配光パターンの上方にハイビーム用配光パターンを形成することができる。 On the other hand, in the vehicle headlight 1A of the present embodiment, the light emitted from the high beam light source 9 is reflected by the first reflector 6 and the second reflector 7 as the traveling beam (hyme) of the vehicle. Irradiate toward the front. As a result, the high beam light distribution pattern can be formed above the low beam light distribution pattern.
 本実施形態の車両用前照灯1Aでは、上述したロービーム用及びハイビーム用光源8,9とを搭載したカプラー付ソケットを構成する光源ユニット5を備えることで、部品点数の削減を図るだけでなく、灯体4をよりコンパクトに設計することが可能である。 The vehicle headlight 1A of the present embodiment not only reduces the number of parts but also reduces the number of parts by providing the light source unit 5 constituting the socket with a coupler equipped with the above-mentioned low beam and high beam light sources 8 and 9. , It is possible to design the lamp body 4 more compactly.
 また、本実施形態の車両用前照灯1Aでは、上述した光源ユニット5から出射された光Lを第1のリフレクタ6の一対の回転楕円反射面6a,6b(第1~第4の反射領域61a,62a,61b,62b)により第2のリフレクタ7に向けて効率良く反射し、この光Lを第2のリフレクタ7の回転楕円放物面7aにより車両の前方に向けて効率良く反射することができる。これにより、光源ユニット5から出射された光Lの利用効率を高めることが可能である。 Further, in the vehicle headlight 1A of the present embodiment, the light L emitted from the light source unit 5 described above is reflected by the pair of spheroidal reflecting surfaces 6a and 6b of the first reflector 6 (first to fourth reflecting regions). 61a, 62a, 61b, 62b) efficiently reflects toward the second reflector 7, and this light L is efficiently reflected toward the front of the vehicle by the spheroidal paraboloid 7a of the second reflector 7. Can be done. This makes it possible to improve the utilization efficiency of the light L emitted from the light source unit 5.
 また、本実施形態の車両用前照灯1Aでは、上述した一方の回転楕円反射面6aの第1焦点F1aと、他方の回転楕円反射面6bの第1焦点F1bとを、ロービーム用光源8の発光面8aにおける上側の両端角部に位置させることで、シェードを用いることなく、上端にカットオフラインを含むロービーム用配光パターンを形成することが可能である。 Further, in the vehicle headlight 1A of the present embodiment, the first focal point F1a of one spheroidal reflecting surface 6a and the first focal point F1b of the other spheroidal reflecting surface 6b described above are used by the low beam light source 8. By locating the light emitting surface 8a at both upper end corners, it is possible to form a low beam light distribution pattern including a cut-off line at the upper end without using a shade.
 ここで、第1のリフレクタ6を構成する回転楕円反射面6a,6bの4つの反射領域61a,62a,61b,62bにより反射された光の光源像と、これらの光源像を合成した光源像とを図6A~図6Eに示す。 Here, a light source image of light reflected by the four reflection regions 61a, 62a, 61b, 62b of the spheroidal reflection surfaces 6a, 6b constituting the first reflector 6 and a light source image obtained by synthesizing these light source images. Is shown in FIGS. 6A to 6E.
 なお、図6Aは、第2の反射領域62aにより反射された光の光源像及び一方の回転楕円反射面6aの第1焦点F1aを示す模式図である。図6Bは、第4の反射領域62bにより反射された光の光源像及び他方の回転楕円反射面6bの第1焦点F1bを示す模式図である。図6Cは、第1の反射領域61aにより反射された光の光源像及び一方の回転楕円反射面6aの第1焦点F1aを示す模式図である。図6Dは、第3の反射領域61bにより反射された光の光源像及び他方の回転楕円反射面6bの第1焦点F1bを示す模式図である。図6Eは、図6A~図6Dに示す光源像を合成した光源像である。 Note that FIG. 6A is a schematic view showing a light source image of the light reflected by the second reflection region 62a and the first focal point F1a of one spheroidal reflection surface 6a. FIG. 6B is a schematic view showing a light source image of light reflected by the fourth reflection region 62b and a first focal point F1b of the other spheroidal reflection surface 6b. FIG. 6C is a schematic view showing a light source image of light reflected by the first reflection region 61a and a first focal point F1a of one spheroidal reflection surface 6a. FIG. 6D is a schematic view showing a light source image of light reflected by the third reflection region 61b and a first focal point F1b of the other spheroidal reflection surface 6b. FIG. 6E is a light source image obtained by synthesizing the light source images shown in FIGS. 6A to 6D.
 一方、比較対象として、図7に示す第1のリフレクタ60を用いた場合の光の光源像について、図8及び図9を参照しながら説明する。 On the other hand, as a comparison target, a light source image of light when the first reflector 60 shown in FIG. 7 is used will be described with reference to FIGS. 8 and 9.
 なお、図7は、比較対象となる第1のリフレクタ60及び光源ユニット5を示す透視斜視図である。図8は、第1のリフレクタ60を構成する回転楕円反射面60aの第1焦点F1と、光源ユニット5を構成するロービーム用光源8及びハイビーム用光源9の発光面8a,9aとの位置を示す平面図である。図9は、第1のリフレクタ60により反射された光の光源像を示す模式図である。 Note that FIG. 7 is a perspective perspective view showing the first reflector 60 and the light source unit 5 to be compared. FIG. 8 shows the positions of the first focal point F1 of the spheroidal reflecting surface 60a constituting the first reflector 60 and the light emitting surfaces 8a and 9a of the low beam light source 8 and the high beam light source 9 constituting the light source unit 5. It is a plan view. FIG. 9 is a schematic view showing a light source image of the light reflected by the first reflector 60.
 比較対象となる第1のリフレクタ60は、図8に示すように、ロービーム用光源8の中心(発光面8aの中央部)を第1焦点F1とし、回転放物系反射面7aの焦点F3を第2焦点(図示せず。)とする回転楕円反射面60aを有している。 As shown in FIG. 8, the first reflector 60 to be compared has the center of the low beam light source 8 (the central portion of the light emitting surface 8a) as the first focal point F1 and the focal point F3 of the rotating paraboloid reflecting surface 7a. It has a rotating elliptical reflecting surface 60a as a second focal point (not shown).
 第1のリフレクタ60を用いた場合、上述した第1のリフレクタ6を用いた場合と同様に、光源ユニット5から出射された光Lの利用効率を高めることが可能である。一方、回転楕円反射面60aにより反射された光の光源像は、図9中の囲み部分Bに示すように、光源像の上部にグレアとなる光が発生することがある。 When the first reflector 60 is used, it is possible to improve the utilization efficiency of the light L emitted from the light source unit 5 as in the case where the first reflector 6 described above is used. On the other hand, in the light source image of the light reflected by the spheroidal reflecting surface 60a, as shown in the enclosed portion B in FIG. 9, glare light may be generated in the upper part of the light source image.
 これに対して、本実施形態の車両用前照灯1Aでは、図6A~図6Eに示すように、4つの反射領域61a,62a,61b,62bにより反射された光の光源像を合成することによって、グレアの発生を防ぎつつ、良好なカットオフラインを含む光源像(ロービーム用配光パターン)を形成することが可能である。 On the other hand, in the vehicle headlight 1A of the present embodiment, as shown in FIGS. 6A to 6E, the light source images of the light reflected by the four reflection regions 61a, 62a, 61b, 62b are synthesized. Therefore, it is possible to form a light source image (low beam light distribution pattern) including a good cut-off line while preventing the occurrence of glare.
 なお、本実施形態では、上述した回転楕円反射面6a,6bの第2焦点F2a,F2bと回転放物系反射面7aの焦点F3とが重なるように、前後方向・左右方向・上下方向の全ての方向において互いの焦点F2a,F2b及び焦点F3を一致させた構成となっているが、これら3つの焦点F2a,F2及び焦点F3は、左右方向(Y軸軸方向)において配光が離反しない程度に、左右方向にずらして配置された構成であってもよい。例えば、焦点F2a,F2bが左右方向において焦点F3を挟むような位置に配置された構成であってよい。この場合も、良好なカットオフラインを形成するため、第2焦点F2a,F2bと焦点F3とは、前後方向(X軸方向)及び上下方向(Z軸方向)において互いに一致した配置とすればよい。 In this embodiment, the second focal points F2a and F2b of the spheroidal reflecting surfaces 6a and 6b and the focal points F3 of the spheroidal reflecting surface 7a are all overlapped in the front-rear direction, the left-right direction, and the up-down direction. The focal points F2a, F2b and the focal point F3 are matched with each other in the direction of the above, but the three focal points F2a, F2 and the focal point F3 are such that the light distribution does not separate in the left-right direction (Y-axis direction). In addition, the configuration may be arranged so as to be shifted in the left-right direction. For example, the focal points F2a and F2b may be arranged at positions sandwiching the focal points F3 in the left-right direction. Also in this case, in order to form a good cut-off line, the second focal points F2a and F2b and the focal points F3 may be arranged so as to coincide with each other in the front-rear direction (X-axis direction) and the up-down direction (Z-axis direction).
 以上のように、本実施形態の車両用前照灯1Aでは、光源ユニット5から出射される光Lの利用効率が高く、なお且つ、部品点数の削減及び構造の簡素化を図ることによって、灯体4の更なる小型化を図ることが可能である。 As described above, in the vehicle headlight 1A of the present embodiment, the utilization efficiency of the light L emitted from the light source unit 5 is high, and the number of parts is reduced and the structure is simplified. It is possible to further reduce the size of the body 4.
(第2の実施形態)
 次に、本発明の第2の実施形態として、例えば図10~図13に示す車両用前照灯1Bについて説明する。
 なお、図10は、車両用前照灯1Bの構成を示す正面図である。図11は、図10中に示す線分XI-XIによる車両用前照灯1Bの断面図である。図12は、車両用前照灯1Bが備える第1のリフレクタ21及び光源ユニット5を示す透視斜視図である。図13は、第1のリフレクタ21を構成する一対の回転楕円反射面21a,21b及び中央の回転楕円反射面21cの第1焦点F1a,F1b,F1cと、光源ユニット5を構成するロービーム用光源8及びハイビーム用光源9の発光面8a,9aとの位置を示す平面図である。また、以下の説明では、上記車両用前照灯1Aと同等の部位については、説明を省略すると共に、図面において同じ符号を付すものとする。
(Second Embodiment)
Next, as a second embodiment of the present invention, for example, the vehicle headlight 1B shown in FIGS. 10 to 13 will be described.
Note that FIG. 10 is a front view showing the configuration of the vehicle headlight 1B. FIG. 11 is a cross-sectional view of the vehicle headlight 1B by the line segments XI-XI shown in FIG. FIG. 12 is a perspective perspective view showing the first reflector 21 and the light source unit 5 included in the vehicle headlight 1B. FIG. 13 shows the first focal points F1a, F1b, F1c of the pair of spheroidal reflecting surfaces 21a and 21b forming the first reflector 21 and the central spheroidal reflecting surface 21c, and the low beam light source 8 forming the light source unit 5. It is a plan view which shows the position of the high beam light source 9 with the light emitting surface 8a, 9a. Further, in the following description, the same parts as those of the vehicle headlight 1A will be omitted and the same reference numerals will be given in the drawings.
 本実施形態の車両用前照灯1Bは、図10及び図11に示すように、灯体4(図示せず。)の内側に、光源ユニット5と、第1のリフレクタ21と、一対の第2のリフレクタ22とを備えている。 As shown in FIGS. 10 and 11, the vehicle headlight 1B of the present embodiment includes a light source unit 5, a first reflector 21, and a pair of firsts inside a light body 4 (not shown). It is provided with 2 reflectors 22.
 第1のリフレクタ21は、図10~図13に示すように、光源ユニット5の前方に配置されて、光源ユニット5から出射された光Lを光源ユニット5の周囲に向けて反射する。具体的に、この第1のリフレクタ21は、ロービーム用光源8から出射される光の光軸を挟んで上下対称となる一対の回転楕円反射面21a,21bと、一対の回転楕円反射面21a,21bの間に配置された中央の回転楕円反射面21cとを有している。 As shown in FIGS. 10 to 13, the first reflector 21 is arranged in front of the light source unit 5 and reflects the light L emitted from the light source unit 5 toward the periphery of the light source unit 5. Specifically, the first reflector 21 includes a pair of spheroidal reflecting surfaces 21a and 21b and a pair of spheroidal reflecting surfaces 21a, which are vertically symmetrical with respect to the optical axis of the light emitted from the low beam light source 8. It has a central spheroidal reflecting surface 21c arranged between 21b.
 一対の回転楕円反射面21a,21bは、光源ユニット5の上側及び下側の周囲を囲むように、2つの焦点を持つ楕円線の一部を回転させることによって得られる凹面状の反射面である。 The pair of spheroidal reflecting surfaces 21a and 21b are concave reflecting surfaces obtained by rotating a part of an elliptical line having two focal points so as to surround the upper side and the lower side of the light source unit 5. ..
 一対の回転楕円反射面21a,21bのうち、一方の回転楕円反射面21a(第一回転楕円反射面21a)の第1焦点F1aと、他方の回転楕円反射面21b(第二回転楕円反射面21b)の第1焦点F1bとは、ロービーム用光源8の発光面8aにおける中心を挟んだ幅方向の両側に位置している。具体的に、一方の回転楕円反射面21aの第1焦点F1aと、他方の回転楕円反射面21bの第1焦点F1bとは、ロービーム用光源8の発光面8aにおける上側の両端角部に位置している。 Of the pair of spheroidal reflecting surfaces 21a and 21b, the first focal point F1a of one spheroidal reflecting surface 21a (first spheroidal reflecting surface 21a) and the other spheroidal reflecting surface 21b (second spheroidal reflecting surface 21b). ), The first focal point F1b is located on both sides of the light emitting surface 8a of the low beam light source 8 in the width direction with the center in between. Specifically, the first focal point F1a of one spheroidal reflecting surface 21a and the first focal point F1b of the other spheroidal reflecting surface 21b are located at the upper corners of the light emitting surface 8a of the low beam light source 8. ing.
 また、一対の回転楕円反射面21a,21bは、それぞれロービーム用光源8から出射される光の光軸を通る上下方向の中心線を挟んで左右対称となる一対の反射領域211a,212a,211b,212bに分割されている。具体的に、一方の回転楕円反射面21aは、左右対称となる一対の第1の反射領域211aと第2の反射領域212aとに分割されている。他方の回転楕円反射面21bは、左右対称となる一対の第3の反射領域211bと第4の反射領域212bとに分割されている。 Further, the pair of spheroidal reflecting surfaces 21a and 21b are symmetrical with respect to the center line in the vertical direction passing through the optical axis of the light emitted from the low beam light source 8, respectively. It is divided into 212b. Specifically, one spheroidal reflection surface 21a is divided into a pair of symmetrical first reflection regions 211a and a second reflection region 212a. The other spheroidal reflection surface 21b is divided into a pair of symmetrical third reflection regions 211b and a fourth reflection region 212b.
 これにより、第1のリフレクタ21は、左右方向の一方側に位置する第1の反射領域211a及び第3の反射領域211bに入射した光Lを集光しながら、左右方向の他方側に位置する第2のリフレクタ22に向けて反射する。また、第1のリフレクタ21は、左右方向の他方側に位置する第2の反射領域212a及び第4の反射領域212bに入射した光Lを集光しながら、左右方向の一方側に位置する第2のリフレクタ22に向けて反射する。 As a result, the first reflector 21 is located on the other side in the left-right direction while condensing the light L incident on the first reflection region 211a and the third reflection region 211b located on one side in the left-right direction. It reflects toward the second reflector 22. Further, the first reflector 21 is located on one side in the left-right direction while condensing the light L incident on the second reflection region 212a and the fourth reflection region 212b located on the other side in the left-right direction. It reflects toward the reflector 22 of 2.
 中央の回転楕円反射面21cは、一対の回転楕円反射面21a,21bの間で2つの焦点を持つ楕円線の一部を回転させることによって得られる凹面状の反射面である。 The central spheroidal reflecting surface 21c is a concave reflecting surface obtained by rotating a part of an elliptical line having two focal points between a pair of spheroidal reflecting surfaces 21a and 21b.
 中央の回転楕円反射面21cの第1焦点F1cは、ロービーム用光源8の発光面8aにおける一方の回転楕円反射面21aの第1焦点F1aと、他方の回転楕円反射面21bの第1焦点F1bとの間に位置している。具体的に、中央の回転楕円反射面の第1焦点F1cは、ロービーム用光源8の発光面8aにおける上側の中央端部に位置している。 The first focal point F1c of the central spheroidal reflecting surface 21c is the first focal point F1a of one spheroidal reflecting surface 21a on the light emitting surface 8a of the low beam light source 8 and the first focal point F1b of the other spheroidal reflecting surface 21b. It is located between. Specifically, the first focal point F1c of the central spheroidal reflecting surface is located at the upper central end of the light emitting surface 8a of the low beam light source 8.
 また、中央の回転楕円反射面21cは、ロービーム用光源8から出射される光の光軸を通る上下方向の中心線を挟んで左右対称となる一対の反射領域211c,212cに分割されている。具体的に、中央の回転楕円反射面21cは、左右対称となる一対の第5の反射領域211cと第6の反射領域212cとに分割されている。 Further, the central spheroidal reflection surface 21c is divided into a pair of reflection regions 211c and 212c that are symmetrical with respect to the center line in the vertical direction passing through the optical axis of the light emitted from the low beam light source 8. Specifically, the central spheroidal reflection surface 21c is divided into a pair of symmetrical fifth reflection regions 211c and sixth reflection regions 212c.
 これにより、第1のリフレクタ21は、左右方向の一方側に位置する第5の反射領域211cに入射した光Lを集光しながら、左右方向の他方側に位置する第2のリフレクタ22に向けて反射する。また、第1のリフレクタ21は、左右方向の他方側に位置する第6の反射領域212cに入射した光Lを集光しながら、左右方向の一方側に位置する第2のリフレクタ22に向けて反射する。 As a result, the first reflector 21 directs the light L incident on the fifth reflection region 211c located on one side in the left-right direction toward the second reflector 22 located on the other side in the left-right direction. And reflect. Further, the first reflector 21 focuses the light L incident on the sixth reflection region 212c located on the other side in the left-right direction, and toward the second reflector 22 located on the other side in the left-right direction. reflect.
 第1のリフレクタ21において、一方の回転楕円反射面21a(第1及び第2の反射領域211a,212a)の第2焦点F2aと、他方の回転楕円反射面21b(第3及び第4の反射領域211b,212b)の第2焦点F2bと、中央の回転楕円反射面21c(第5及び第6の反射領域211c,212c)の第2焦点F2cとは、互いに一致した位置にある。 In the first reflector 21, the second focal point F2a of one spheroidal reflecting surface 21a (first and second reflecting regions 211a, 212a) and the other spheroidal reflecting surface 21b (third and fourth reflecting regions) The second focal point F2b of 211b, 212b) and the second focal point F2c of the central spheroidal reflecting surface 21c (fifth and sixth reflecting regions 211c, 212c) are located at positions that coincide with each other.
 これにより、第1のリフレクタ21は、一対の回転楕円反射面21a,21b及び中央の回転楕円反射面21cに入射した光Lを互いに一致した第2焦点F2a,F2b,F2cに向けて集光しながら、一対の第2のリフレクタ22に向けて反射する。 As a result, the first reflector 21 collects the light L incident on the pair of spheroidal reflecting surfaces 21a and 21b and the central spheroidal reflecting surface 21c toward the second focal points F2a, F2b and F2c that coincide with each other. However, it reflects toward the pair of second reflectors 22.
 また、第1のリフレクタ21は、一対の回転楕円反射面21a,21b及び中央の回転楕円反射面21c(第1~第6の反射領域211a,212a,211b,212b、211c,212c)により反射された光Lを第2のリフレクタ22に向けて通過させる一対の貫通孔23a,23bを有している。 Further, the first reflector 21 is reflected by a pair of spheroidal reflecting surfaces 21a and 21b and a central spheroidal reflecting surface 21c (first to sixth reflecting regions 211a, 212a, 211b, 212b, 211c, 212c). It has a pair of through holes 23a and 23b through which the light L is passed toward the second reflector 22.
 一対の貫通孔23a,23bは、中央の回転楕円反射面21cの左右両側に設けられている。第1の反射領域211aの第2焦点F2a、第3の反射領域211bの第2焦点F2b及び第5の反射領域211bの第2焦点F2cは、一方の貫通孔23a(第一貫通孔23a)の内側に位置している。これに対して、第2の反射領域212aの第2焦点F2a、第4の反射領域212bの第2焦点F2b及び第6の反射領域212cの第2焦点F2cは、他方の貫通孔23b(第二貫通孔23b)の内側に位置している。 A pair of through holes 23a and 23b are provided on both the left and right sides of the central spheroidal reflecting surface 21c. The second focus F2a of the first reflection region 211a, the second focus F2b of the third reflection region 211b, and the second focus F2c of the fifth reflection region 211b are formed in one through hole 23a (first through hole 23a). It is located inside. On the other hand, the second focus F2a of the second reflection region 212a, the second focus F2b of the fourth reflection region 212b, and the second focus F2c of the sixth reflection region 212c are the other through holes 23b (second). It is located inside the through hole 23b).
 この場合、一対の回転楕円反射面21a,21b(第1~第6の反射領域211a,212a,211b,212b,211c,212c)により集光しながら反射される光Lの瞳径を一対貫通孔23a,23bを通過する位置で小さくすることができる。これにより、中央の回転楕円反射面21cに形成される一対貫通孔23a,23bの口径を小さくすることが可能である。 In this case, the pupil diameter of the light L reflected while being focused by the pair of spheroidal reflecting surfaces 21a, 21b (first to sixth reflecting regions 211a, 212a, 211b, 212b, 211c, 212c) is a pair of through holes. It can be made smaller at the position where it passes through 23a and 23b. This makes it possible to reduce the diameter of the pair of through holes 23a and 23b formed in the central spheroidal reflecting surface 21c.
 一対の第2のリフレクタ22は、図10及び図11に示すように、光源ユニット5を挟んだ幅方向の両側に左右対称に配置されている。第2のリフレクタ22は、第1のリフレクタ6で反射された光Lを車両の前方に向けて反射する。具体的に、一対の第2のリフレクタ22は、一対の貫通孔23a,23bと向かい合う回転放物系反射面22aを有している。 As shown in FIGS. 10 and 11, the pair of second reflectors 22 are symmetrically arranged on both sides in the width direction with the light source unit 5 interposed therebetween. The second reflector 22 reflects the light L reflected by the first reflector 6 toward the front of the vehicle. Specifically, the pair of second reflectors 22 have a rotating object-based reflecting surface 22a facing the pair of through holes 23a and 23b.
 回転放物系反射面22aは、互いに一致した回転楕円反射面21a,21b,21cの第2焦点F2a,F2b,F2cを焦点F3とする放物線の一部を回転させることによって得られる凹面状の反射面である。すなわち、この回転放物系反射面22aの焦点F3と、回転楕円反射面21a,21b,21cの第2焦点F2a,F2b,F2cとは、貫通孔23a,23bの内側において、互いに一致した位置にある。 The rotating parabolic reflection surface 22a is a concave reflection obtained by rotating a part of a parabola having the second focal points F2a, F2b, F2c of the rotating elliptical reflecting surfaces 21a, 21b, 21c that coincide with each other as the focal point F3. It is a face. That is, the focal point F3 of the rotating parabolic reflecting surface 22a and the second focal points F2a, F2b, F2c of the rotating elliptical reflecting surfaces 21a, 21b, 21c are located at positions that coincide with each other inside the through holes 23a, 23b. is there.
 具体的に、一対の第2のリフレクタ22のうち、一方のリフレクタ22における回転放物系反射面22aの焦点F3と、第1、第3及び第5の反射領域211a,211b,211cの第2焦点F2a,F2b,F2cとは、一方の貫通孔23aの内側において、互いに一致した位置にある。これに対して、他方のリフレクタ22における回転放物系反射面22aの焦点F3と、第2、第4及び第6の反射領域212a,212b,212cの第2焦点F2a,F2b,F2cとは、他方の貫通孔23bの内側において、互いに一致した位置にある。 Specifically, of the pair of second reflectors 22, the focal point F3 of the rotating parabolic reflection surface 22a in one of the reflectors 22 and the second of the first, third and fifth reflection regions 211a, 211b, 211c. The focal points F2a, F2b, and F2c are located inside one of the through holes 23a so as to coincide with each other. On the other hand, the focal point F3 of the rotating parabolic reflection surface 22a in the other reflector 22 and the second focal points F2a, F2b, F2c of the second, fourth and sixth reflection regions 212a, 212b, 212c are Inside the other through hole 23b, they are in positions that coincide with each other.
 これにより、一対の第2のリフレクタ22は、それぞれの回転放物系反射面22aに入射した光Lを車両の前方に向けて上下方向においてコリメートしながら反射する。 As a result, the pair of second reflectors 22 reflect the light L incident on the respective rotating object system reflecting surfaces 22a while collimating in the vertical direction toward the front of the vehicle.
 以上のような構成を有する本実施形態の車両用前照灯1Bでは、すれ違い用ビーム(ロービーム)として、ロービーム用光源8から出射される光を第1のリフレクタ21及び一対の第2のリフレクタ22により反射しながら、車両の前方に向けて照射する。これにより、上端にカットオフラインを含むロービーム用配光パターンを形成することができる。 In the vehicle headlight 1B of the present embodiment having the above configuration, the light emitted from the low beam light source 8 is used as the passing beam (low beam) by the first reflector 21 and the pair of second reflectors 22. It illuminates toward the front of the vehicle while reflecting more. As a result, a low beam light distribution pattern including a cut-off line can be formed at the upper end.
 一方、本実施形態の車両用前照灯1Bでは、走行用ビーム(ハイーム)として、ハイビーム用光源9から出射される光を第1のリフレクタ21及び一対の第2のリフレクタ22により反射しながら、車両の前方に向けて照射する。これにより、ロービーム用配光パターンの上方にハイビーム用配光パターンを形成することができる。 On the other hand, in the vehicle headlight 1B of the present embodiment, the light emitted from the high beam light source 9 is reflected by the first reflector 21 and the pair of second reflectors 22 as the traveling beam (hyme) while being reflected. Irradiate toward the front of the vehicle. As a result, the high beam light distribution pattern can be formed above the low beam light distribution pattern.
 本実施形態の車両用前照灯1Bでは、上述したロービーム用及びハイビーム用光源8,9とを搭載したカプラー付ソケットを構成する光源ユニット5を備えることで、部品点数の削減を図るだけでなく、灯体4をよりコンパクトに設計することが可能である。 The vehicle headlight 1B of the present embodiment not only reduces the number of parts but also reduces the number of parts by providing the light source unit 5 constituting the socket with a coupler equipped with the above-mentioned low beam and high beam light sources 8 and 9. , It is possible to design the lamp body 4 more compactly.
 また、本実施形態の車両用前照灯1Bでは、上述した光源ユニット5から出射された光Lを第1のリフレクタ21の一対の回転楕円反射面21a,22b及び中央の回転楕円反射面21c(第1~第6の反射領域211a,212a,211b,212b,211c,212c)により一対の第2のリフレクタ22に向けて効率良く反射し、この光Lを第2のリフレクタ21の回転楕円放物面22aにより車両の前方に向けて効率良く反射することができる。これにより、光源ユニット5から出射された光Lの利用効率を高めることが可能である。 Further, in the vehicle headlight 1B of the present embodiment, the light L emitted from the light source unit 5 described above is used by the pair of spheroidal reflecting surfaces 21a and 22b of the first reflector 21 and the central spheroidal reflecting surface 21c ( The first to sixth reflection regions 211a, 212a, 211b, 212b, 211c, 212c) efficiently reflect the light L toward the pair of second reflectors 22, and the light L is a spheroidal paraboloid of the second reflector 21. The surface 22a can efficiently reflect the light toward the front of the vehicle. This makes it possible to improve the utilization efficiency of the light L emitted from the light source unit 5.
 また、本実施形態の車両用前照灯1Bでは、上述した一方の回転楕円反射面21aの第1焦点F1aと、他方の回転楕円反射面21bの第1焦点F1bとを、ロービーム用光源8の発光面8aにおける上側の両端角部に位置させると共に、中央の回転楕円反射面21cの第1焦点F1cをロービーム用光源8の発光面8aにおける上側の中央端部に位置させることで、シェードを用いることなく、上端にカットオフラインを含むロービーム用配光パターンを形成することが可能である。 Further, in the vehicle headlight 1B of the present embodiment, the first focal point F1a of one of the spheroidal reflecting surfaces 21a and the first focal point F1b of the other spheroidal reflecting surface 21b described above are used by the low beam light source 8. A shade is used by locating the first focal point F1c of the central spheroidal reflecting surface 21c at the upper central end of the light emitting surface 8a of the low beam light source 8 while locating it at both upper end corners of the light emitting surface 8a. It is possible to form a low beam light distribution pattern including a cut-off line at the upper end without any problem.
 ここで、第1のリフレクタ21を構成する一対の回転楕円反射面21a,21b及び中央の回転楕円反射面21cにより反射された光の光源像と、これらの光源像を合成した光源像とを図14A~図14Dに示す。 Here, a light source image of light reflected by a pair of spheroidal reflecting surfaces 21a and 21b constituting the first reflector 21 and a central spheroidal reflecting surface 21c, and a light source image obtained by synthesizing these light source images are shown. 14A to 14D are shown.
 なお、図14Aは、一方の回転楕円反射面21aにより反射された光の光源像を示す模式図である。図14Bは、中央の回転楕円反射面21cにより反射された光の光源像を示す模式図である。図14Cは、他方の回転楕円反射面21bにより反射された光の光源像を示す模式図である。図14Dは、図14A~図14Cに示す光源像を合成した光源像である。 Note that FIG. 14A is a schematic view showing a light source image of light reflected by one of the spheroidal reflecting surfaces 21a. FIG. 14B is a schematic view showing a light source image of light reflected by the central spheroidal reflecting surface 21c. FIG. 14C is a schematic view showing a light source image of light reflected by the other spheroidal reflecting surface 21b. FIG. 14D is a light source image obtained by synthesizing the light source images shown in FIGS. 14A to 14C.
 一方、比較対象として、図15に示す第1のリフレクタ210を用いた場合の光の光源像について、図16及び図17を参照しながら説明する。 On the other hand, as a comparison target, a light source image of light when the first reflector 210 shown in FIG. 15 is used will be described with reference to FIGS. 16 and 17.
 なお、図15は、比較対象となる第1のリフレクタ210及び光源ユニット5を示す透視斜視図である。図16は、第1のリフレクタ210を構成する回転楕円反射面210aの第1焦点F1と、光源ユニット5を構成するロービーム用光源8及びハイビーム用光源9の発光面8a,9aとの位置を示す平面図である。図17は、第1のリフレクタ210により反射された光の光源像を示す模式図である。 Note that FIG. 15 is a perspective perspective view showing the first reflector 210 and the light source unit 5 to be compared. FIG. 16 shows the positions of the first focal point F1 of the spheroidal reflecting surface 210a constituting the first reflector 210 and the light emitting surfaces 8a and 9a of the low beam light source 8 and the high beam light source 9 constituting the light source unit 5. It is a plan view. FIG. 17 is a schematic view showing a light source image of the light reflected by the first reflector 210.
 比較対象となる第1のリフレクタ210は、図16に示すように、ロービーム用光源8の中心(発光面8aの中央部)を第1焦点F1とし、回転放物系反射面22aの焦点F3を第2焦点(図示せず。)とする回転楕円反射面210aを有している。また、回転楕円反射面210aは、ロービーム用光源8から出射される光の光軸を通る上下方向の中心線を挟んで左右対称となる一対の反射領域210b,210cに分割されている。 As shown in FIG. 16, the first reflector 210 to be compared has the center of the low beam light source 8 (the central portion of the light emitting surface 8a) as the first focal point F1 and the focal point F3 of the rotating paraboloid reflecting surface 22a. It has a rotating elliptical reflecting surface 210a as a second focal point (not shown). Further, the spheroidal reflection surface 210a is divided into a pair of reflection regions 210b and 210c that are symmetrical with respect to the center line in the vertical direction passing through the optical axis of the light emitted from the low beam light source 8.
 第1のリフレクタ210を用いた場合、上述した第1のリフレクタ21を用いた場合と同様に、光源ユニット5から出射された光Lの利用効率を高めることが可能である。一方、回転楕円反射面210aにより反射された光の光源像は、図17中の囲み部分Dに示すように、光源像の上部にグレアとなる光が発生することがある。 When the first reflector 210 is used, it is possible to improve the utilization efficiency of the light L emitted from the light source unit 5 as in the case of using the first reflector 21 described above. On the other hand, in the light source image of the light reflected by the spheroidal reflecting surface 210a, as shown in the enclosed portion D in FIG. 17, glare light may be generated in the upper part of the light source image.
 これに対して、本実施形態の車両用前照灯1Bでは、図14(a)~(d)に示すように、一対の回転楕円反射面21a,21b及び中央の回転楕円反射面21cにより反射された光の光源像を合成することによって、グレアの発生を防ぎつつ、良好なカットオフラインを含む光源像(ロービーム用配光パターン)を形成することが可能である。 On the other hand, in the vehicle headlight 1B of the present embodiment, as shown in FIGS. 14A to 14D, the light is reflected by the pair of spheroidal reflecting surfaces 21a and 21b and the central spheroidal reflecting surface 21c. By synthesizing the light source image of the light, it is possible to form a light source image (low beam light distribution pattern) including a good cut-off line while preventing the occurrence of glare.
 なお、本実施形態では、上述した回転楕円反射面21a,21b,21cの第2焦点F2a,F2b,F2cと回転放物系反射面7aの焦点F3とが重なるように、前後方向・左右方向・上下方向の全ての方向において互いの焦点F2a,F2b,F2c及び焦点F3を一致させた構成となっているが、これら4つの焦点F2a,F2b,F2c及び焦点F3は、左右方向(Y軸軸方向)において配光が離反しない程度に、左右方向にずらして配置された構成であってもよい。例えば、焦点F2a,F2bが左右方向において焦点F3を挟み、焦点F2cが焦点F3と一致するような位置に配置された構成であってよい。この場合も、良好なカットオフラインを形成するため、第2焦点F2a,F2bと焦点F3とは、前後方向(X軸方向)及び上下方向(Z軸方向)において互いに一致した配置とすればよい。 In the present embodiment, the second focal points F2a, F2b, F2c of the spheroidal reflecting surfaces 21a, 21b, 21c described above and the focal points F3 of the rotating parabolic reflecting surface 7a overlap in the front-rear direction, the left-right direction, and The focal points F2a, F2b, F2c and the focal point F3 are matched with each other in all the vertical directions, and the four focal points F2a, F2b, F2c and the focal point F3 are in the left-right direction (Y-axis axis direction). ) May be arranged so as to be shifted in the left-right direction so that the light distribution does not separate. For example, the focal points F2a and F2b may be arranged at positions such that the focal points F2a and F2b sandwich the focal points F3 in the left-right direction and the focal points F2c coincide with the focal points F3. In this case as well, in order to form a good cut-off line, the second focal points F2a and F2b and the focal points F3 may be arranged so as to coincide with each other in the front-rear direction (X-axis direction) and the up-down direction (Z-axis direction).
 以上のように、本実施形態の車両用前照灯1Bでは、光源ユニット5から出射される光Lの利用効率が高く、なお且つ、部品点数の削減及び構造の簡素化を図ることによって、灯体4の更なる小型化を図ることが可能である。 As described above, in the vehicle headlight 1B of the present embodiment, the utilization efficiency of the light L emitted from the light source unit 5 is high, and the number of parts is reduced and the structure is simplified. It is possible to further reduce the size of the body 4.
 なお、本発明は、上記実施形態のものに必ずしも限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。 The present invention is not necessarily limited to that of the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
 例えば、上記車両用前照灯1A,1Bでは、上述した光源ユニット5が灯体4とは別体に取り付けられたカプラー付ソケットにより構成されているが、このような構成に必ずしも限定されるものではなく、光源ユニット5については、灯体4の内側に一体に取り付けられた構成であってもよい。 For example, in the vehicle headlights 1A and 1B, the light source unit 5 described above is configured by a socket with a coupler attached separately from the lamp body 4, but is not necessarily limited to such a configuration. Instead, the light source unit 5 may be integrally mounted inside the lamp body 4.
 また、上記光源ユニット5は、上述したロービーム用光源8とハイビーム用光源9とを搭載した構成となっているが、このような構成に必ずしも限定されるものではなく、光源ユニット5については、少なくともロービーム用光源8を搭載した構成であればよく、ハイビーム用光源9を省略し、このハイビーム用光源9をロービーム用光源8とは別に取り付ける構成とすることも可能である。 Further, the light source unit 5 has a configuration in which the above-mentioned low beam light source 8 and high beam light source 9 are mounted, but the configuration is not necessarily limited to such a configuration, and the light source unit 5 is at least The configuration may be such that the low beam light source 8 is mounted, and the high beam light source 9 may be omitted and the high beam light source 9 may be attached separately from the low beam light source 8.
 また、上記回転放物系反射面7a,22aについては、回転放物面を基本形状として、焦点F3が形成される程度、且つ、上下方向のコリメート機能が保持される程度に、回転放物面の一部又は全体を変形させた反射面としてもよい。 The rotating paraboloids 7a and 22a have the rotating paraboloid as a basic shape, and the rotating paraboloid surface is formed to the extent that the focal point F3 is formed and the collimating function in the vertical direction is maintained. It may be a reflective surface in which a part or the whole of the above is deformed.
 なお、上記実施形態では、上述した自動二輪車や自動三輪車などの鞍乗型車両の車両用前照灯(ヘッドランプ)に本発明を適用した場合を例示したが、四輪自動車などの車両の前端側の両コーナー部に搭載される車両用前照灯(ヘッドランプ)に本発明を適用することも可能である。 In the above embodiment, the case where the present invention is applied to the headlamps (headlamps) for vehicles of saddle-type vehicles such as the above-mentioned motorcycles and tricycles has been illustrated, but the front end of vehicles such as four-wheeled vehicles has been illustrated. It is also possible to apply the present invention to vehicle headlamps mounted on both corners on the side.
 1A,1B…車両用前照灯 4…灯体 5…光源ユニット 6…第1のリフレクタ 6a…一方の回転楕円反射面 6b…他方の回転楕円反射面 7…第2のリフレクタ 7a…回転放物系反射面 8…ロービーム用光源 9…ハイビーム用光源 21…第1のリフレクタ 21a…一方の回転楕円反射面 21b…他方の回転楕円反射面 21c…中央の回転楕円反射面 22…第2のリフレクタ 22a…回転放物系反射面 23a,23b…貫通孔 61a…第1の反射領域 62a…第2の反射領域 61b…第3の反射領域 62b…第4の反射領域 211a…第1の反射領域 212a…第2の反射領域 211b…第3の反射領域 212b…第4の反射領域 211c…第5の反射領域 212c…第6の反射領域 1A, 1B ... Vehicle headlight 4 ... Lamp 5 ... Light source unit 6 ... First reflector 6a ... One rotating elliptical reflecting surface 6b ... The other rotating elliptical reflecting surface 7 ... Second reflector 7a ... Rotating object System reflecting surface 8 ... Low beam light source 9 ... High beam light source 21 ... First reflector 21a ... One rotating elliptical reflecting surface 21b ... The other rotating elliptical reflecting surface 21c ... Central rotating elliptical reflecting surface 22 ... Second reflector 22a ... Rotating parabolic reflection surfaces 23a, 23b ... Through holes 61a ... First reflection area 62a ... Second reflection area 61b ... Third reflection area 62b ... Fourth reflection area 211a ... First reflection area 212a ... 2nd reflection area 211b ... 3rd reflection area 212b ... 4th reflection area 211c ... 5th reflection area 212c ... 6th reflection area

Claims (15)

  1.  車両の前方に向けてロービームとハイビームとを切り替え自在に照射する車両用前照灯であって、
     前記ロービームとなる光を出射するロービーム用光源及び前記ハイビームとなる光を出射するハイビーム用光源を含む光源ユニットと、
     前記光源ユニットの前方に配置されて、前記光源ユニットから出射された光を前記光源ユニットの周囲に向けて反射する第1のリフレクタと、
     前記光源ユニットの周囲に配置されて、前記第1のリフレクタで反射された光を前記車両の前方に向けて反射する第2のリフレクタとを備え、
     前記第1のリフレクタは、回転楕円反射面を含み、
     前記第2のリフレクタは、回転放物系反射面を含み、
     前記回転楕円反射面の第1焦点が、前記ロービーム用光源の発光面に位置し、
     前記回転楕円反射面の第2焦点と、前記回転放物系反射面の焦点とが、互いに一致した位置にある
     車両用前照灯。
    It is a vehicle headlight that illuminates the front of the vehicle by switching between low beam and high beam.
    A light source unit including a low beam light source that emits the low beam light and a high beam light source that emits the high beam light.
    A first reflector, which is arranged in front of the light source unit and reflects the light emitted from the light source unit toward the periphery of the light source unit,
    It is provided with a second reflector which is arranged around the light source unit and reflects the light reflected by the first reflector toward the front of the vehicle.
    The first reflector includes a spheroidal reflecting surface.
    The second reflector includes a rotating parabolic reflector.
    The first focal point of the spheroidal reflecting surface is located on the light emitting surface of the low beam light source.
    A vehicle headlight in which the second focal point of the spheroidal reflecting surface and the focal point of the rotating parabolic reflecting surface coincide with each other.
  2.  前記第1のリフレクタは、前記ロービーム用光源から出射される光の光軸を挟んで対称となる一対の回転楕円反射面を含み、
     前記一対の回転楕円反射面のうち、第一回転楕円反射面の第1焦点と、第二回転楕円反射面の第1焦点とが、前記ロービーム用光源の発光面における中心を挟んだ幅方向の両側にあり、
     前記第一回転楕円反射面の第2焦点と、前記第二回転楕円反射面の第2焦点とが、互いに前後方向及び上下方向において一致した位置にあり、
     前記一対の回転楕円反射面の第2焦点と、前記回転放物系反射面の焦点とが、互いに前後方向及び上下方向において一致した位置にある
     請求項1に記載の車両用前照灯。
    The first reflector includes a pair of spheroidal reflecting surfaces that are symmetrical with respect to the optical axis of the light emitted from the low beam light source.
    Of the pair of spheroidal reflecting surfaces, the first focal point of the first spheroidal reflecting surface and the first focal point of the second spheroidal reflecting surface are in the width direction with the center on the light emitting surface of the low beam light source. On both sides,
    The second focal point of the first spheroidal reflecting surface and the second focal point of the second spheroidal reflecting surface are located at positions that coincide with each other in the front-rear direction and the vertical direction.
    The vehicle headlight according to claim 1, wherein the second focal point of the pair of spheroidal reflecting surfaces and the focal point of the rotating parabolic reflecting surface coincide with each other in the front-rear direction and the vertical direction.
  3.  前記第一回転楕円反射面の第2焦点と、前記第二回転楕円反射面の第2焦点とが、互いに重なった位置にあり、
     前記一対の回転楕円反射面の第2焦点と、前記回転放物系反射面の焦点とが、互いに重なった位置にある
     請求項2に記載の車両用前照灯。
    The second focal point of the first spheroidal reflecting surface and the second focal point of the second spheroidal reflecting surface are located at overlapping positions.
    The vehicle headlight according to claim 2, wherein the second focal point of the pair of spheroidal reflecting surfaces and the focal point of the rotating parabolic reflecting surface overlap each other.
  4.  前記ロービーム用光源の発光面は、矩形状を有し、
     前記第一回転楕円反射面の第1焦点と、前記第二回転楕円反射面の第1焦点とが、前記ロービーム用光源の発光面における上側の両端角部にある
     請求項2又は3に記載の車両用前照灯。
    The light emitting surface of the low beam light source has a rectangular shape and has a rectangular shape.
    The second or third aspect of claim 2 or 3, wherein the first focal point of the first spheroidal reflecting surface and the first focal point of the second spheroidal reflecting surface are located at the upper corners of the light emitting surface of the low beam light source. Headlights for vehicles.
  5.  前記一対の回転楕円反射面は、前記ロービーム用光源から出射される光の光軸を挟んで左右対称に配置されている
     請求項2~4の何れか一項に記載の車両用前照灯。
    The vehicle headlight according to any one of claims 2 to 4, wherein the pair of spheroidal reflecting surfaces are arranged symmetrically with respect to an optical axis of light emitted from the low beam light source.
  6.  前記一対の回転楕円反射面は、前記ロービーム用光源から出射される光の光軸を通る上下方向の中心線に対して直交する左右方向の分割線を挟んで分割された反射領域を含む
     請求項5に記載の車両用前照灯。
    A claim that the pair of rotating elliptical reflecting surfaces includes a reflecting region divided across a dividing line in the horizontal direction orthogonal to a center line in the vertical direction passing through the optical axis of light emitted from the low beam light source. The vehicle headlight according to 5.
  7.  前記第2のリフレクタは、前記光源ユニットの下方又は上方に配置されている
     請求項5又は6に記載の車両用前照灯。
    The vehicle headlight according to claim 5 or 6, wherein the second reflector is arranged below or above the light source unit.
  8.  前記一対の回転楕円反射面は、前記ロービーム用光源から出射される光の光軸を挟んで上下対称に配置されている
     請求項2~4の何れか一項に記載の車両用前照灯。
    The vehicle headlight according to any one of claims 2 to 4, wherein the pair of spheroidal reflecting surfaces are arranged vertically symmetrically with respect to an optical axis of light emitted from the low beam light source.
  9.  前記第1のリフレクタは、前記一対の回転楕円反射面の間に配置された中央の回転楕円反射面を含み、
     前記中央の回転楕円反射面の第1焦点が、前記ロービーム用光源の発光面における前記第一回転楕円反射面の第1焦点と、前記第二回転楕円反射面の第1焦点との間にあり、
     前記中央の回転楕円反射面の第2焦点と、前記回転放物系反射面の焦点とが、互いに前後方向及び上下方向において一致した位置にある
     請求項8に記載の車両用前照灯。
    The first reflector includes a central spheroidal reflecting surface arranged between the pair of spheroidal reflecting surfaces.
    The first focal point of the central spheroidal reflecting surface is between the first focal point of the first spheroidal reflecting surface on the light emitting surface of the low beam light source and the first focal point of the second spheroidal reflecting surface. ,
    The vehicle headlight according to claim 8, wherein the second focal point of the central spheroidal reflecting surface and the focal point of the rotating parabolic reflecting surface coincide with each other in the front-rear direction and the vertical direction.
  10.  前記ロービーム用光源の発光面は、矩形状を有し、
     前記中央の回転楕円反射面の第1焦点が、前記ロービーム用光源の発光面における上側の中央端部にある
     請求項9に記載の車両用前照灯。
    The light emitting surface of the low beam light source has a rectangular shape and has a rectangular shape.
    The vehicle headlight according to claim 9, wherein the first focal point of the central spheroidal reflecting surface is at the upper central end of the light emitting surface of the low beam light source.
  11.  前記回転楕円反射面は、前記ロービーム用光源から出射される光の光軸を通る上下方向の中心線を挟んで左右対称に分割された反射領域を含む
     請求項8~10の何れか一項に記載の車両用前照灯。
    The spheroidal reflecting surface is any one of claims 8 to 10 including a reflecting region symmetrically divided with a center line in the vertical direction passing through the optical axis of the light emitted from the low beam light source. Headlights for vehicles listed.
  12.  前記第1のリフレクタは、前記反射領域により反射された光を前記第2のリフレクタに向けて通過させる一対の貫通孔を有する
     請求項11に記載の車両用前照灯。
    The vehicle headlight according to claim 11, wherein the first reflector has a pair of through holes for passing light reflected by the reflection region toward the second reflector.
  13.  前記第2のリフレクタは、前記光源ユニットを挟んだ幅方向の両側に左右対称に配置されている
     請求項8~12の何れか一項に記載の車両用前照灯。
    The vehicle headlight according to any one of claims 8 to 12, wherein the second reflector is symmetrically arranged on both sides in the width direction of the light source unit.
  14.  前記第2のリフレクタは、前記回転放物系反射面に入射した光を前記車両の幅方向に拡散しながら反射する光拡散形状を有する
     請求項1~13の何れか一項に記載の車両用前照灯。
    The vehicle use according to any one of claims 1 to 13, wherein the second reflector has a light diffusion shape that reflects light incident on the rotating parabolic reflection surface while diffusing it in the width direction of the vehicle. Headlight.
  15.  前記光源ユニットは、前記第1のリフレクタ及び前記第2のリフレクタが収容された灯体の背面側に設けられた取付孔から前記灯体の内側に挿入された状態で、前記取付孔の周囲に着脱自在に取り付けられるカプラー付ソケットにより構成されている
     請求項1~14の何れか一項に記載の車両用前照灯。
    The light source unit is inserted into the inside of the lamp body from a mounting hole provided on the back surface side of the lamp body in which the first reflector and the second reflector are housed, and is around the mounting hole. The vehicle headlight according to any one of claims 1 to 14, which is composed of a socket with a coupler that can be detachably attached.
PCT/JP2020/016404 2019-04-22 2020-04-14 Vehicle headlight WO2020218085A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080029831.5A CN113728195B (en) 2019-04-22 2020-04-14 Headlight for vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-081103 2019-04-22
JP2019081103A JP7265922B2 (en) 2019-04-22 2019-04-22 vehicle headlight

Publications (1)

Publication Number Publication Date
WO2020218085A1 true WO2020218085A1 (en) 2020-10-29

Family

ID=72936053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/016404 WO2020218085A1 (en) 2019-04-22 2020-04-14 Vehicle headlight

Country Status (3)

Country Link
JP (1) JP7265922B2 (en)
CN (1) CN113728195B (en)
WO (1) WO2020218085A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019129100A1 (en) * 2019-10-29 2021-04-29 HELLA GmbH & Co. KGaA Headlights for vehicles
CN117515468B (en) * 2024-01-02 2024-04-12 华域视觉科技(上海)有限公司 Lighting module, lighting system and vehicle

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007324002A (en) * 2006-06-01 2007-12-13 Ichikoh Ind Ltd Lamp for vehicle
JP2008041557A (en) * 2006-08-09 2008-02-21 Ichikoh Ind Ltd Lamp unit for vehicle headlight
JP2009064729A (en) * 2007-09-07 2009-03-26 Stanley Electric Co Ltd Lighting fixture unit for vehicle
JP2010170811A (en) * 2009-01-22 2010-08-05 Stanley Electric Co Ltd Vehicle lamp
JP2011146133A (en) * 2010-01-12 2011-07-28 Koito Mfg Co Ltd Head lamp for vehicle
JP2011181314A (en) * 2010-03-01 2011-09-15 Ichikoh Ind Ltd Lighting fixture for vehicle
JP2012099228A (en) * 2010-10-29 2012-05-24 Koito Mfg Co Ltd Vehicular lighting fixture
JP2016046172A (en) * 2014-08-25 2016-04-04 スタンレー電気株式会社 Vehicular lighting fixture
JP2016207632A (en) * 2015-04-16 2016-12-08 隆達電子股▲ふん▼有限公司 Vehicular lamp
JP2018037361A (en) * 2016-09-02 2018-03-08 株式会社小糸製作所 Vehicular lighting fixture

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2944578B1 (en) * 2009-04-21 2013-08-02 Valeo Vision Sas MODULE AND LIGHTING DEVICE FOR VEHICLE WITH ENHANCED ROAD FUNCTION
JP5592154B2 (en) * 2010-05-10 2014-09-17 スタンレー電気株式会社 Vehicle headlamp
JP6051533B2 (en) * 2012-02-02 2016-12-27 市光工業株式会社 Vehicle headlamp and vehicle headlamp device
JP6410341B2 (en) * 2014-05-23 2018-10-24 株式会社小糸製作所 Vehicle headlamp
JP2017103189A (en) * 2015-12-04 2017-06-08 パナソニックIpマネジメント株式会社 Headlamp and movable body

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007324002A (en) * 2006-06-01 2007-12-13 Ichikoh Ind Ltd Lamp for vehicle
JP2008041557A (en) * 2006-08-09 2008-02-21 Ichikoh Ind Ltd Lamp unit for vehicle headlight
JP2009064729A (en) * 2007-09-07 2009-03-26 Stanley Electric Co Ltd Lighting fixture unit for vehicle
JP2010170811A (en) * 2009-01-22 2010-08-05 Stanley Electric Co Ltd Vehicle lamp
JP2011146133A (en) * 2010-01-12 2011-07-28 Koito Mfg Co Ltd Head lamp for vehicle
JP2011181314A (en) * 2010-03-01 2011-09-15 Ichikoh Ind Ltd Lighting fixture for vehicle
JP2012099228A (en) * 2010-10-29 2012-05-24 Koito Mfg Co Ltd Vehicular lighting fixture
JP2016046172A (en) * 2014-08-25 2016-04-04 スタンレー電気株式会社 Vehicular lighting fixture
JP2016207632A (en) * 2015-04-16 2016-12-08 隆達電子股▲ふん▼有限公司 Vehicular lamp
JP2018037361A (en) * 2016-09-02 2018-03-08 株式会社小糸製作所 Vehicular lighting fixture

Also Published As

Publication number Publication date
JP7265922B2 (en) 2023-04-27
CN113728195A (en) 2021-11-30
JP2020177864A (en) 2020-10-29
CN113728195B (en) 2023-08-18

Similar Documents

Publication Publication Date Title
US10309606B2 (en) Vehicle lamp
JP4047266B2 (en) Lamp
JP4289268B2 (en) Vehicle headlamp unit
US6948836B2 (en) Light source unit having orthogonally disposed semiconductor light emitter
US20050162857A1 (en) Lamp unit for vehicle and illumination lamp for vehicle
US7318662B2 (en) Vehicular headlamp
JP4526256B2 (en) Light source module and lamp having the light source module
US7866862B2 (en) Vehicular lamp
WO2009131125A1 (en) Light source module and lighting device for vehicle
JP5955110B2 (en) Vehicle lighting
US20030214815A1 (en) Light source unit for vehicular lamp
JP5526453B2 (en) Vehicle headlamp
JP2009277481A (en) Lighting fixture for vehicle
JP6774817B2 (en) Vehicle lighting
JP5033530B2 (en) Light source unit for vehicle lamp
WO2020218085A1 (en) Vehicle headlight
JP5941383B2 (en) Vehicle lighting
JP2012119229A (en) Vehicular headlight
US8256942B2 (en) Vehicle headlamp
US10655809B1 (en) Vehicle lamp
JP6154257B2 (en) Vehicle lighting
JP7171413B2 (en) vehicle lamp
JP2011181421A (en) Vehicular headlight
JP2020098726A (en) Saddle-type vehicle lighting appliance
JP4644243B2 (en) Vehicle headlamp

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20795964

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20795964

Country of ref document: EP

Kind code of ref document: A1