WO2020211268A1 - 一种双层叠置含煤层气系统单井排采装置及排采方法 - Google Patents

一种双层叠置含煤层气系统单井排采装置及排采方法 Download PDF

Info

Publication number
WO2020211268A1
WO2020211268A1 PCT/CN2019/105035 CN2019105035W WO2020211268A1 WO 2020211268 A1 WO2020211268 A1 WO 2020211268A1 CN 2019105035 W CN2019105035 W CN 2019105035W WO 2020211268 A1 WO2020211268 A1 WO 2020211268A1
Authority
WO
WIPO (PCT)
Prior art keywords
coal
double
coalbed methane
stacked
methane system
Prior art date
Application number
PCT/CN2019/105035
Other languages
English (en)
French (fr)
Inventor
吴财芳
刘宁宁
房孝杰
韩江
张二超
蒋秀明
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to AU2019427989A priority Critical patent/AU2019427989B2/en
Publication of WO2020211268A1 publication Critical patent/WO2020211268A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices or the like
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/006Production of coal-bed methane
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • E21B43/121Lifting well fluids
    • E21B43/126Adaptations of down-hole pump systems powered by drives outside the borehole, e.g. by a rotary or oscillating drive
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/14Obtaining from a multiple-zone well

Definitions

  • the invention relates to the technical field of coal mining, in particular to a single well drainage device and a drainage method of a double-stacked coal-bed methane system.
  • the coalbed methane reservoir in the multi-coal area shows different accumulation characteristics from a single coal seam.
  • the background of the extensive development of coal seam groups makes it have the characteristics of two-layer or even multi-layer independent coal-bed methane systems in the vertical direction. They are independent of each other and unified within the coal-bed methane system.
  • the inter-system combined layer drainage often leads to inter-layer interference, so that it has an effect of 1+1 ⁇ 1, which is not conducive to the release of CBM production capacity.
  • the existing CBM mining well types are more limited in the application of multi-layer stacked coal-bed methane reservoirs.
  • the severe interlayer interference causes the low production of coal-bed methane wells in the multi-layer stacked coalbed methane reservoirs, which cannot achieve the purpose of commercial development.
  • the present invention provides a single well drainage device and a drainage method for a double-stacked coal-bed methane system.
  • the technical scheme adopted by the present invention is: a double-stacked single well drainage device of a coal-bed methane system, including an upper coal-bed methane system extraction end, a lower coal-bed methane system extraction end, and a ground drive device.
  • An outer casing is arranged in the well.
  • the upper coalbed methane system extraction end and the lower coalbed methane system extraction end are both arranged inside the outer casing, and the inner wall of the outer casing is sleeved with an inner casing.
  • the inner casing The outer wall of the pipe does not overlap with the inner wall of the outer sleeve, the diameter of the inner sleeve is equal to the radius of the outer sleeve, the lower half of the annulus between the inner sleeve and the outer sleeve is provided with a grouting consolidation body, the bottom of the inner sleeve and Artificial bottom hole is set on the top of grouting consolidation body;
  • a pumping system is arranged in the inner sleeve, and the annulus between the inner sleeve and the outer sleeve is also provided with a pumping system, and the pumping system is connected to a ground driving device;
  • the inner casing and the pumping system constitute the extraction end of the lower coalbed methane system
  • the annulus between the inner casing and the outer casing and the pumping system constitute the extraction end of the upper coalbed methane system
  • the pumping system includes an oil pipe, a sucker rod is arranged inside the oil pipe, a screw pump is installed at the lower part of the oil pipe, and the top end of the sucker rod is connected to a ground driving device.
  • the bottom of the screw pump is provided with a screen, and the bottom end of the screen is also provided with a plug.
  • the ground driving device includes a connected power steering assembly and a belt transmission assembly, the belt transmission assembly is connected with the engine, and the power steering assembly is composed of a longitudinal bevel gear, a transverse bevel gear set and a threaded rod.
  • the longitudinal bevel gears of the power steering assembly move left and right on the threaded rod to adapt to the transverse bevel gear sets of different sizes, and the transverse bevel gear sets of different sizes can realize the double-stacked coal-bed methane system at different speeds. Drain gas.
  • the drainage device further includes a centralizer for fixing the relative positions of the inner casing and the oil pipe in the extraction end of the upper coalbed methane system, and a cable channel is provided in the center of the centralizer.
  • both the inner and outer pipe walls of the inner sleeve are provided with a pressure gauge cable, the bottom end of the pressure gauge cable is connected to a pressure gauge, the top end of the pressure gauge cable passes through the cable channel and is connected to the surface instrument, and the pressure gauge is fixedly installed On the bottom surface of the inner and outer tube walls.
  • a single-well drainage and production method of a double-stacked coalbed methane system includes the following steps:
  • Step 1 Based on the coupling effect of coal-bearing strata structure-sedimentation-hydrology in the system analysis work area, search for the double-stacked coalbed methane-bearing system area suitable for layered drainage, and divide the double-stacked coalbed methane system into the upper layer The extraction end of the coalbed methane system and the extraction end of the lower coalbed methane system.
  • Step 2 Determine the length of the inner casing, outer casing, tubing, and sucker rod according to the depth of the coal seam at the extraction end of the two superimposed CBM-bearing systems, and select the screw pump with appropriate size, displacement and head, according to the upper CBM-bearing
  • the depth of the bottom boundary of the drainage end of the system determines the grouting consolidation height; after drilling and cementing, before fracturing, run the inner casing along any side of the inner wall of the outer casing, and place the other casing between the outer casing and the inner casing. Reserve as much annulus as possible on the side, and inject cement slurry from the inside of the inner casing.
  • the cement slurry in the inner and outer casing annulus returns to the bottom boundary of the extraction end of the upper coalbed methane system and is consolidated.
  • Artificial bottom holes are arranged on the top of the grouting consolidation body.
  • Step 3 Install pressure gauges at the bottom of the inner tube wall of the inner casing and the upper layer of the outer tube wall of the inner casing at the bottom of the extraction end of the coalbed methane system, and connect the pressure gauge cable to the two pressure gauges along the inner and outer walls of the inner casing Connect and seal the pressure gauge and its cable connection with the pressure gauge.
  • Step 4 Install the screw pump stator at the bottom of the inner wall of the tubing, connect the screw pump rotor at the bottom end of the sucker rod, lower the plug, screen, screw pump, tubing, and sucker rod to the specified depth, and pump the upper and lower layers of the coalbed methane system
  • the suction port of the screw pump at the mining end should be located at the height of the direct top of the uppermost coal seam corresponding to the extraction end of the upper and lower coalbed methane system to ensure that the coal seam in the system is not exposed during the drainage process.
  • Step 5 Choose lateral bevel gear sets of different sizes according to the difference in water richness of coal seams between double-stacked CBM systems. For gas systems composed of weak water-bearing coal seams, select lateral bevel gear sets with larger diameters and strong water-bearing coal seams. The gas-containing system should select a transverse bevel gear set with a smaller diameter.
  • Step 6 Install a centralizer in the annulus between the outer casing, inner casing, and tubing near the wellhead.
  • the pressure gauge cable passes through the centralizer through the cable channel and is connected to the surface instrument.
  • the tops of the two sucker rods are driven by the ground.
  • the two horizontal bevel gear sets of the device are connected, and each horizontal bevel gear set is engaged with two longitudinal bevel gears respectively.
  • the two engines respectively supply power to the power steering assembly through the belt drive assembly, start the ground drive device, and start the dual stacking Set up the CBM resources of the CBM-containing system.
  • Step 7 In the process of drainage, follow the principle of "continuous, slow, stable, and long-term” drainage, by adjusting the power of the engine that supplies energy to the extraction end of each coal-bed methane system, and adjusting the transverse bevel gear set as required The radius of the working gear can effectively control the pumping speed of the screw pump.
  • Step 8 In the late stage of extraction, if the extraction end of a coalbed methane system is depressurized to the depletion pressure of the coal reservoir along with the drainage work, the engine that powers the extraction end of the coalbed methane system can be shut down.
  • the extraction end of the other coal-bed methane system can continue to discharge until the extraction end of the coal-bed methane system also discharges and reduces the pressure to the depletion pressure of the corresponding coal reservoir, and the double-stacked coal-bed methane system is depressurized to each depletion
  • the well is stopped, and the components other than the inner and outer casing are taken out from the well in the reverse order of the run-in, and the well is sealed.
  • the device structure of the present invention can realize the formation of two independent drainage spaces in a single wellbore on the basis of combining with large-diameter drilling technology, avoid resource waste and cost increase caused by repeated drilling, and can also prevent two The occurrence of inconvenience and uncertainty caused by close fracturing of wells or multiple wells and construction.
  • the inside of the inner casing and the annulus of the inner and outer casings respectively form the liquid level of the lower coalbed methane system and the upper coalbed methane system, which is the basis for rational control of engine power and selection of lateral bevel gear sets with appropriate working radius Above, finely control the drainage rate at the extraction end of the upper and lower coalbed methane systems to promote the desorption of coalbed methane and release reservoir productivity.
  • Figure 1 is a schematic structural diagram of a single well drainage device and a drainage method of a double-stacked coalbed methane-containing system of the present invention
  • Figure 2 is a sectional view of A-A in Figure 1;
  • Fig. 3 is a schematic diagram of the structure of the ground driving device in the present invention.
  • 1- ground drive device 2- pressure gauge cable, 3- screw pump, 4- screen pipe, 5- wire plug, 6-grouting consolidation body, 7- pressure gauge, 8- artificial bottom, 9- Inner casing, 10-outer casing, 11- sucker rod, 12- tubing, 13- centralizer, 14- cable channel, 15- power steering assembly, 16- belt drive assembly, 17- longitudinal bevel gear, 18- Lateral bevel gear set, 19-threaded rod, 20-upper coalbed methane system extraction end, 21-lower coalbed methane extraction end, 22-pumping system.
  • a double-stacked single well drainage device of a coalbed methane system includes an upper coalbed methane system extraction end 20, a lower coalbed methane system extraction end 21, and a ground drive device 1.
  • An outer casing 10 is provided in the coal-bed methane well.
  • the upper coal-bed methane system extraction end 20 and the lower coal-bed methane system extraction end 21 are both arranged inside the outer casing 10, and one side of the outer casing 10 is sheathed with
  • the inner sleeve 9, the outer wall of the inner sleeve 9 and the inner wall of the outer sleeve 10 do not overlap, the diameter of the inner sleeve 9 is equal to the radius of the outer sleeve 10, and the lower half of the space between the inner sleeve 9 and the outer sleeve 10
  • a grouting consolidation body 6 is provided, and an artificial bottom hole 8 is provided at the bottom of the inner casing 9 and the top of the grouting consolidation body 6.
  • a pumping system 21 is provided in the inner sleeve, and the annulus between the inner sleeve 9 and the outer sleeve 10 is also provided with a pumping system 21.
  • the pumping system 21 is connected to a ground drive device. 1 is connected; the inner casing 9 and the pumping system 21 constitute the lower coalbed methane system extraction end 21, the inner casing 9 and the outer casing 10 annulus and the pumping system 21 constitute the upper coalbed methane system Extraction end 20.
  • the pumping system 21 includes an oil pipe 12 with a sucker rod 11 arranged inside the oil pipe 12, and a screw pump 3 is installed at the lower part of the oil pipe 12, and the top end of the sucker rod 11 is connected to a ground driving device 1;
  • the bottom of the screw pump 3 is provided with a screen 4, and the bottom of the screen 4 is also provided with a plug 5.
  • the ground driving device 1 includes a power steering assembly 15 and a belt drive assembly 16 connected to each other.
  • the belt drive assembly 16 is connected to the engine.
  • the power steering assembly 15 is composed of a longitudinal bevel gear 17, a transverse cone
  • the gear set 18 and the threaded rod 19 are composed; the longitudinal bevel gear 17 of the power steering assembly 15 moves left and right on the threaded rod 19 to adapt to the transverse bevel gear set 18 of different sizes, which can be Realize the double-stacked coalbed methane system to drain gas at different rates.
  • the drainage device further includes a centralizer 13 for fixing the relative position of the inner casing 9 and the oil pipe 12 in the upper coalbed methane system extraction end 20, and the centralizer 13 is provided with a centralizer 13 in the center.
  • Cable channel 14; both the inner and outer pipe walls of the inner sleeve 9 are provided with a pressure gauge cable 2.
  • the bottom end of the pressure gauge cable 2 is connected to a pressure gauge 7, and the top end of the pressure gauge cable 2 passes through the cable channel 14 and the surface instrument
  • the pressure gauge 7 is fixedly installed on the bottom surface of the inner and outer tube walls of the inner sleeve 9.
  • the single-well drainage and production method of the double-stacked CBM-bearing system includes the following steps:
  • Step 1 Based on the coupling effect of coal-bearing strata structure-sedimentation-hydrology in the system analysis work area, search for the double-stacked coalbed methane-bearing system area suitable for layered drainage, and divide the double-stacked coalbed methane system into the upper layer The extraction end of the coalbed methane system and the extraction end of the lower coalbed methane system.
  • Step 2 Determine the length of the inner casing, outer casing, tubing, and sucker rod according to the depth of the coal seam at the extraction end of the two superimposed CBM-bearing systems, and select the screw pump with appropriate size, displacement and head, according to the upper CBM-bearing
  • the depth of the bottom boundary of the drainage end of the system determines the grouting consolidation height; after drilling and cementing, before fracturing, run the inner casing along any side of the inner wall of the outer casing, and place the other casing between the outer casing and the inner casing. Reserve as much annulus as possible on the side, and inject cement slurry from the inside of the inner casing.
  • the cement slurry in the inner and outer casing annulus returns to the bottom boundary of the extraction end of the upper coalbed methane system and is consolidated.
  • Artificial bottom holes are arranged on the top of the grouting consolidation body.
  • Step 3 Install pressure gauges at the bottom of the inner tube wall of the inner casing and the upper layer of the outer tube wall of the inner casing at the bottom of the extraction end of the coalbed methane system, and connect the pressure gauge cable to the two pressure gauges along the inner and outer walls of the inner casing Connect and seal the pressure gauge and its cable connection with the pressure gauge.
  • Step 4 Install the screw pump stator at the bottom of the inner wall of the tubing, connect the screw pump rotor at the bottom end of the sucker rod, lower the plug, screen, screw pump, tubing, and sucker rod to the specified depth, and pump the upper and lower layers of the coalbed methane system
  • the suction port of the screw pump at the mining end should be located at the height of the direct top of the uppermost coal seam corresponding to the extraction end of the upper and lower coalbed methane system to ensure that the coal seam in the system is not exposed during the drainage process.
  • Step 5 Choose lateral bevel gear sets of different sizes according to the difference in water richness of coal seams between double-stacked CBM systems. For gas systems composed of weak water-bearing coal seams, select lateral bevel gear sets with larger diameters and strong water-bearing coal seams. The gas-containing system should select a transverse bevel gear set with a smaller diameter.
  • Step 6 Install a centralizer in the annulus between the outer casing, inner casing, and tubing near the wellhead.
  • the pressure gauge cable passes through the centralizer through the cable channel and is connected to the surface instrument.
  • the tops of the two sucker rods are driven by the ground.
  • the two transverse bevel gear sets of the device are connected, and each transverse bevel gear set is engaged with two longitudinal bevel gears respectively.
  • the two engines respectively supply energy for the power steering assembly through the belt drive assembly, start the ground drive device, and start the dual discharge at the same time. Stack the coal-bed methane resources of the coal-bed methane system.
  • Step 7 In the process of drainage, follow the principle of "continuous, slow, stable, and long-term” drainage, by adjusting the power of the engine that supplies energy to the extraction end of each coal-bed methane system, and adjusting the transverse bevel gear set as required The radius of the working gear can effectively control the pumping speed of the screw pump.
  • Step 8 In the late stage of extraction, if the extraction end of a coalbed methane system is depressurized to the depletion pressure of the coal reservoir along with the drainage work, the engine that powers the extraction end of the coalbed methane system can be shut down.
  • the extraction end of the other coal-bed methane system can continue to discharge until the extraction end of the coal-bed methane system also discharges and reduces the pressure to the depletion pressure of the corresponding coal reservoir, and the double-stacked coal-bed methane system is depressurized to each depletion
  • the well is stopped, and the components other than the inner and outer casing are taken out from the well in the reverse order of the run-in, and the well is sealed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Sliding-Contact Bearings (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Earth Drilling (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种双层叠置含煤层气系统单井排采装置及排采方法,包括上层含煤层气系统抽采端(20)、下层含煤层气系统抽采端(21)和地面驱动装置(1),在煤层气井内设置有外套管(10),上层含煤层气系统抽采端(20)与下层含煤层气系统抽采端(21)均设置在外套管(10)内部,外套管(10)一侧内壁套设有内套管(9);内套管(9)内设置有泵挂系统(22),内套管(9)与外套管(10)环空处也设置有泵挂系统(22),泵挂系统(22)均与地面驱动装置(1)相连接;内套管(9)与泵挂系统(22)构成下层含煤层气系统抽采端(21),内套管(9)与外套管(10)环空处和泵挂系统(22)构成上层含煤层气系统抽采端(20)。该装置能够在单一井筒内分别形成两个独立的排采空间,既可以避免排采时系统间干扰,又可以减少成本。

Description

一种双层叠置含煤层气系统单井排采装置及排采方法 技术领域
本发明涉及煤矿开采技术领域,特别是涉及一种双层叠置含煤层气系统单井排采装置及排采方法。
背景技术
多煤层区煤层气藏呈现出与单一煤层不同的成藏特征,煤层群广泛发育的背景使其在垂向上具有双层甚至多层叠置独立含煤层气系统的特点,各独立含煤层气系统间相互独立,含煤层气系统内部相互统一。系统间合层排采往往导致层间干扰,以至于起到1+1<1的效果,不利于煤层气产能释放。现有的煤层气开采井型在多层叠置煤层气藏区应用较为局限,严重的层间干扰致使多层叠置煤层气藏区煤层气井产量偏低,无法达到商业化开发的目的。
针对多层叠置煤层气藏区开发井型受限的现状,专利文献CN104295292A,专利名称为“多层叠置煤层气系统开采井设计方法”中指出在同一钻井平台上分别向各个含气系统层各钻进一口煤层气垂直井,这虽然可以有效缓解层间干扰,但多煤层区单一系统煤厚普遍较小,煤层气储量有限,这种开采方法大幅度增加了开采成本,经济性差,且在一个较小的钻井平台内钻进两口甚至数口井,当上层含煤层气系统压裂时很可能会影响邻近排采下层含气系统煤层气的气井井筒的稳定性,该方法在经济性和可行性方面均存在不容忽视的问题。
发明内容
为了克服上述现有技术的不足,本发明提供了一种双层叠置含煤层气系统单井排采装置及排采方法。
本发明所采用的技术方案是:一种双层叠置含煤层气系统单井排采装置,包括上层含煤层气系统抽采端、下层含煤层气系统抽采端和地面驱动装置,在煤层气井内设置有外套管,所述上层含煤层气系统抽采端与下层含煤层气系统抽采端均设置在外套管内部,所述外套管一侧内壁套设有内套管,所述内套管外壁与外套管内壁不重叠,所述内套管直径等于外套管半径,所述内套管与外套管环空处下半段空间设置有注浆固结体,所述内套管底部和注浆固结体顶部设置有人工井底;
所述内套管内设置有泵挂系统,所述内套管与外套管环空处也设置有泵挂系统,所述泵挂系统均与地面驱动装置相连接;
所述内套管与泵挂系统构成下层含煤层气系统抽采端,所述内套管与外套管环空处和泵挂系统构成上层含煤层气系统抽采端。
进一步地,所述泵挂系统包括油管,所述油管内部设置有抽油杆,并且油管下部安装有螺杆泵,所述抽油杆的顶端连接地面驱动装置。
进一步地,所述螺杆泵的底部设有筛管,所述筛管底端还设有丝堵。
进一步地,所述地面驱动装置包括相连接的动力转向组件和皮带传动组件,所述皮带传动组件与发动机相连,所述动力转向组件由纵向锥齿轮、横向锥齿轮组和螺纹杆组成。
进一步地,所述动力转向组件的纵向锥齿轮在螺纹杆上左右移动,以适应不同尺寸的横向锥齿轮组,所述不同尺寸的横向锥齿轮组可实现双层叠置含煤层气系统以不同速率排水采气。
进一步地,所述排采装置还包括用以固定内套管和上层含煤层气系统抽采端中油管相对位置的扶正器,所述扶正器的中心设有过电缆通道。
进一步地,所述内套管内、外管壁均设有压力计电缆,所述压力计电缆底端连接压力计,压力计电缆顶端穿过过电缆通道与地表仪表相连,所述压力计固定安装在内套管内、外管壁底部表面。
一种双层叠置含煤层气系统单井排采方法,包括以下步骤:
步骤一:在系统分析工作区含煤地层构造-沉积-水文耦合作用的基础上,寻找适合分层排采的双层叠置含煤层气系统区域,并将双层叠置含煤层气系统划分为上层含煤层气系统抽采端和下层含煤层气系统抽采端。
步骤二:根据两叠置含煤层气系统抽采端煤层埋深确定内套管、外套管、油管、抽油杆长度,并选择尺寸、排量及扬程合适的螺杆泵,根据上层含煤层气系统抽采端底界埋深确定注浆固结高度;在钻井、固井之后,压裂之前,沿外套管内壁任意一侧下入内套管,并在外套管与内套管之间另一侧预留尽可能大的环空,自内套管内部注入水泥浆,水泥浆在内、外套管环空返至上层含煤层气系统抽采端底界并固结,在内套管底部和注浆固结体顶部分别布置人工井底。
步骤三:在内套管内管壁底部和内套管外管壁上层含煤层气系统抽采端底端安装压力计,将压力计电缆沿内套管内管壁和外管壁分别与两压力计相连,并对压力计及其与压力计电缆连接处进行密封处理。
步骤四:在油管内壁底部安装螺杆泵定子,抽油杆底端连接螺杆泵转子,将丝堵、筛管、螺杆泵、油管、抽油杆下至指定深度,上、下层含煤层气系统抽采端的螺杆泵吸水口应分别位于上、下层含煤层气系统抽采端相对应的最上层煤层直接顶高度处,以保证排采过程中本系统内煤层不暴露。
步骤五:根据双层叠置含煤层气系统间煤层的富水性差异选择不同尺寸的横向锥齿轮组,弱含水煤层组成的含气系统应选择直径较大的横向锥齿轮组,强含水煤层组成的含气系统应选择直径较小的横向锥齿轮组。
步骤六:在外套管、内套管、油管之间的环空靠近井口处安装扶正器,压力计电缆穿过扶正器过电缆通道并与地表仪表相连,两根抽油杆顶端分别与地面驱动装置的两个横向锥齿轮组相连,每个横向锥齿轮组分别与两个纵向锥齿轮咬合,两个发动机分别通过皮带传动组件为动力转向组件供能,启动地面驱动装置,开始排采双层叠置含煤层气系统的煤层气资源。
步骤七:排采过程中,应遵循“连续、缓慢、稳定、长期”的排采原则,通过调整为各含煤层气系统抽采端供能的发动机的功率,以及根据需要调整横向锥齿轮组的工作齿轮半径,实现对螺杆泵抽采速度的有效控制。
步骤八:抽采后期,若某一含煤层气系统抽采端随排采工作进行降压至该系统煤储层的枯竭压力,可以关闭为该含煤层气系统抽采端供能的发动机,另一含煤层气系统抽采端可继续排采,直至该含煤层气系统抽采端也排采降压至相应煤储层的枯竭压力,双层叠置含煤层气系统均降压至各自枯竭压力后,停井,从井内以与下入时相反的顺序依次取出除、内外套管外的其他组件,封井。
与现有技术相比,本发明的有益效果是:
1、本发明中的装置结构在与大直径钻井技术相结合的基础上能够实现在单一井筒内分别形成两个独立的排采空间,避免重复钻井造成的资源浪费和成本增加,还可以防止两井或多井近距离压裂及施工带来的不便及不确定性隐患的发生。
2、在内套管内部和内、外套管的环空中分别形成下层含煤层气系统和上层含煤层气系统的动液面,在合理调控发动机功率及选择工作半径合适的横向锥齿轮组的基础上,对上、下层含煤层气系统抽采端的排水速率进行精细化控制,促进煤层气解吸,释放储层产能。
附图说明
图1为本发明双层叠置含煤层气系统单井排采装置及排采方法的结构示意图;
图2为图1中A-A的剖面图;
图3为本发明中地面驱动装置的结构示意图。
其中:1-地面驱动装置,2-压力计电缆,3-螺杆泵,4-筛管,5-丝堵,6-注浆固结体,7-压力计,8-人工井底,9-内套管,10-外套管,11-抽油杆,12-油管,13-扶正器,14-过电缆通道,15-动力转向组件,16-皮带传动组件,17-纵向锥齿轮,18-横向锥齿轮组,19-螺纹杆, 20-上层含煤层气系统抽采端,21-下层含煤层气系统抽采端,22-泵挂系统。
具体实施方式
为了加深对本发明的理解,下面结合附图和实施例对本发明进一步说明,该实施例仅用于解释本发明,并不对本发明的保护范围构成限定。
如图1和图2所示,一种双层叠置含煤层气系统单井排采装置,包括上层含煤层气系统抽采端20、下层含煤层气系统抽采端21和地面驱动装置1,在煤层气井内设置有外套管10,所述上层含煤层气系统抽采端20与下层含煤层气系统抽采端21均设置在外套管10内部,所述外套管10一侧内壁套设有内套管9,所述内套管9外壁与外套管10内壁不重叠,所述内套管9直径等于外套管10半径,所述内套管9与外套管10环空处下半段空间设置有注浆固结体6,所述内套管9底部和注浆固结体6顶部设置有人工井底8。
在上述实施例中,所述内套管内设置有泵挂系统21,所述内套管9与外套管10环空处也设置有泵挂系统21,所述泵挂系统21均与地面驱动装置1相连接;所述内套管9与泵挂系统21构成下层含煤层气系统抽采端21,所述内套管9与外套管10环空处和泵挂系统21构成上层含煤层气系统抽采端20。
在上述实施例中,所述泵挂系统21包括油管12,所述油管12内部设置有抽油杆11,并且油管12下部安装有螺杆泵3,所述抽油杆11的顶端连接地面驱动装置1;所述螺杆泵3的底部设有筛管4,所述筛管4底端还设有丝堵5。
如图3所示,所述地面驱动装置1包括相连接的动力转向组件15和皮带传动组件16,所述皮带传动组件16与发动机相连,所述动力转向组件15由纵向锥齿轮17、横向锥齿轮组18和螺纹杆19组成;所述动力转向组件15的纵向锥齿轮17在螺纹杆19上左右移动,以适应不同尺寸的横向锥齿轮组18,所述不同尺寸的横向锥齿轮组18可实现双层叠置含煤层气系统以不同速率排水采气。
在上述实施例中,所述排采装置还包括用以固定内套管9和上层含煤层气系统抽采端20中油管12相对位置的扶正器13,所述扶正器13的中心设有过电缆通道14;所述内套管9内、外管壁均设有压力计电缆2,所述压力计电缆2底端连接压力计7,压力计电缆2顶端穿过过电缆通道14与地表仪表相连,所述压力计7固定安装在内套管9内、外管壁底部表面。
在上述实施例中,双层叠置含煤层气系统单井排采方法,包括以下步骤:
步骤一:在系统分析工作区含煤地层构造-沉积-水文耦合作用的基础上,寻找适合分层排采的双层叠置含煤层气系统区域,并将双层叠置含煤层气系统划分为上层含煤层气系统抽采端 和下层含煤层气系统抽采端。
步骤二:根据两叠置含煤层气系统抽采端煤层埋深确定内套管、外套管、油管、抽油杆长度,并选择尺寸、排量及扬程合适的螺杆泵,根据上层含煤层气系统抽采端底界埋深确定注浆固结高度;在钻井、固井之后,压裂之前,沿外套管内壁任意一侧下入内套管,并在外套管与内套管之间另一侧预留尽可能大的环空,自内套管内部注入水泥浆,水泥浆在内、外套管环空返至上层含煤层气系统抽采端底界并固结,在内套管底部和注浆固结体顶部分别布置人工井底。
步骤三:在内套管内管壁底部和内套管外管壁上层含煤层气系统抽采端底端安装压力计,将压力计电缆沿内套管内管壁和外管壁分别与两压力计相连,并对压力计及其与压力计电缆连接处进行密封处理。
步骤四:在油管内壁底部安装螺杆泵定子,抽油杆底端连接螺杆泵转子,将丝堵、筛管、螺杆泵、油管、抽油杆下至指定深度,上、下层含煤层气系统抽采端的螺杆泵吸水口应分别位于上、下层含煤层气系统抽采端相对应的最上层煤层直接顶高度处,以保证排采过程中本系统内煤层不暴露。
步骤五:根据双层叠置含煤层气系统间煤层的富水性差异选择不同尺寸的横向锥齿轮组,弱含水煤层组成的含气系统应选择直径较大的横向锥齿轮组,强含水煤层组成的含气系统应选择直径较小的横向锥齿轮组。
步骤六:在外套管、内套管、油管之间的环空靠近井口处安装扶正器,压力计电缆穿过扶正器过电缆通道并与地表仪表相连,两根抽油杆顶端分别与地面驱动装置的两个横向锥齿轮组相连,每个横向锥齿轮组分别与两个纵向锥齿轮咬合,两个发动机分别通过皮带传动组件为动力转向组件供能,启动地面驱动装置,同时开始排采双层叠置含煤层气系统的煤层气资源。
步骤七:排采过程中,应遵循“连续、缓慢、稳定、长期”的排采原则,通过调整为各含煤层气系统抽采端供能的发动机的功率,以及根据需要调整横向锥齿轮组的工作齿轮半径,实现对螺杆泵抽采速度的有效控制。
步骤八:抽采后期,若某一含煤层气系统抽采端随排采工作进行降压至该系统煤储层的枯竭压力,可以关闭为该含煤层气系统抽采端供能的发动机,另一含煤层气系统抽采端可继续排采,直至该含煤层气系统抽采端也排采降压至相应煤储层的枯竭压力,双层叠置含煤层气系统均降压至各自枯竭压力后,停井,从井内以与下入时相反的顺序依次取出除、内外套管外的其他组件,封井。
本发明的实施例公布的是较佳的实施例,但并不局限于此,本领域的普通技术人员,极易根据上述实施例,领会本发明的精神,并做出不同的引申和变化,但只要不脱离本发明的精神,都在本发明的保护范围内。

Claims (8)

  1. 一种双层叠置含煤层气系统单井排采装置,其特征在于:包括上层含煤层气系统抽采端(20)、下层含煤层气系统抽采端(21)和地面驱动装置(1),在煤层气井内设置有外套管(10),所述上层含煤层气系统抽采端(20)与下层含煤层气系统抽采端(21)均设置在外套管(10)内部,所述外套管(10)一侧内壁套设有内套管(9),所述内套管(9)外壁与外套管(10)内壁不重叠,所述内套管(9)直径等于外套管(10)半径,所述内套管(9)与外套管(10)环空处下半段空间设置有注浆固结体(6),所述内套管(9)底部和注浆固结体(6)顶部设置有人工井底(8);
    所述内套管内设置有泵挂系统(21),所述内套管(9)与外套管(10)环空处也设置有泵挂系统(21),所述泵挂系统(21)均与地面驱动装置(1)相连接;
    所述内套管(9)与泵挂系统(21)构成下层含煤层气系统抽采端(21),所述内套管(9)与外套管(10)环空处和泵挂系统(21)构成上层含煤层气系统抽采端(20)。
  2. 根据权利要求1所述的双层叠置含煤层气系统单井排采装置,其特征在于:所述泵挂系统(21)包括油管(12),所述油管(12)内部设置有抽油杆(11),并且油管(12)下部安装有螺杆泵(3),所述抽油杆(11)的顶端连接地面驱动装置(1)。
  3. 根据权利要求2所述的双层叠置含煤层气系统单井排采装置,其特征在于:所述螺杆泵(3)的底部设有筛管(4),所述筛管(4)底端还设有丝堵(5)。
  4. 根据权利要求1所述的双层叠置含煤层气系统单井排采装置,其特征在于:所述地面驱动装置(1)包括相连接的动力转向组件(15)和皮带传动组件(16),所述皮带传动组件(16)与发动机相连,所述动力转向组件(15)由纵向锥齿轮(17)、横向锥齿轮组(18)和螺纹杆(19)组成。
  5. 根据权利要求1所述的双层叠置含煤层气系统单井排采装置,其特征在于:所述动力转向组件(15)的纵向锥齿轮(17)在螺纹杆(19)上左右移动,以适应不同尺寸的横向锥齿轮组(18),所述不同尺寸的横向锥齿轮组(18)可实现双层叠置含煤层气系统以不同速率排水采气。
  6. 根据权利要求1所述的双层叠置含煤层气系统单井排采装置,其特征在于:所述排采装置还包括用以固定内套管(9)和上层含煤层气系统抽采端(20)中油管(12)相对位置的扶正器(13),所述扶正器(13)的中心设有过电缆通道(14)。
  7. 根据权利要求1所述的双层叠置含煤层气系统单井排采装置,其特征在于:所述内套管(9)内、外管壁均设有压力计电缆(2),所述压力计电缆(2)底端连接压力计(7),压力计电缆(2)顶端穿过过电缆通道(14)与地表仪表相连,所述压力计(7)固定安装在内套 管(9)内、外管壁底部表面。
  8. 一种双层叠置含煤层气系统单井排采方法,其特征在于,包括以下步骤:
    步骤一:确定分层排采的双层叠置含煤层气系统区域,并将双层叠置含煤层气系统划分为上层含煤层气系统抽采端和下层含煤层气系统抽采端;
    步骤二:确定内套管、外套管、油管、抽油杆长度,并选择合适的螺杆泵,确定注浆固结高度;在钻井、固井之后,压裂之前,沿外套管内壁下入内套管,并在外套管与内套管之间另一侧预留尽可能大的环空,自内套管内部注入水泥浆,水泥浆在内、外套管环空返至上层含煤层气系统抽采端底界并固结,在内套管底部和注浆固结体顶部分别布置人工井底;
    步骤三:在内套管内、外管壁设置压力计电缆,安装压力计,并对压力计及其与压力计电缆连接处进行密封处理;
    步骤四:在油管内壁底部安装螺杆泵定子,抽油杆底端连接螺杆泵转子,将丝堵、筛管、螺杆泵、油管、抽油杆下至指定深度,上、下层含煤层气系统抽采端的螺杆泵吸水口应分别位于上、下层含煤层气系统抽采端中相对应最上层煤层直接顶高度处;
    步骤五:选择适合尺寸的横向锥齿轮组;
    步骤六:在外套管、内套管、油管之间的环空靠近井口处安装扶正器,在井口安装地面驱动装置,启动地面驱动装置,开始排采双层叠置含煤层气系统的煤层气资源;
    步骤七:排采过程中,调整合适的发动机功率和横向锥齿轮组的工作齿轮半径;
    步骤八:抽采后期,若某一含煤层气系统抽采端工作至该系统煤储层的枯竭压力,可以关闭该含煤层气系统抽采端,另一含煤层气系统抽采端继续排采,直至该含煤层气系统抽采端也工作至相应煤储层的枯竭压力,双层叠置含煤层气系统均降压至各自枯竭压力后,停井,从井内取出除、内外套管外的其他组件,封井。
PCT/CN2019/105035 2019-04-17 2019-09-10 一种双层叠置含煤层气系统单井排采装置及排采方法 WO2020211268A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2019427989A AU2019427989B2 (en) 2019-04-17 2019-09-10 Single-well drainage and production device and method for double-layer superposed CBM-bearing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910308790.2A CN109973058B (zh) 2019-04-17 2019-04-17 一种双层叠置含煤层气系统单井排采装置及排采方法
CN201910308790.2 2019-04-17

Publications (1)

Publication Number Publication Date
WO2020211268A1 true WO2020211268A1 (zh) 2020-10-22

Family

ID=67085042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105035 WO2020211268A1 (zh) 2019-04-17 2019-09-10 一种双层叠置含煤层气系统单井排采装置及排采方法

Country Status (3)

Country Link
CN (1) CN109973058B (zh)
AU (1) AU2019427989B2 (zh)
WO (1) WO2020211268A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113338867A (zh) * 2021-06-17 2021-09-03 中国石油化工股份有限公司 一种多煤层合采防串压力自调节装置
CN114412417A (zh) * 2020-10-28 2022-04-29 中国石油天然气股份有限公司 多级煤层气合采实验装置
CN117514119A (zh) * 2024-01-03 2024-02-06 中国石油大学(华东) 一种页岩油立体开发压裂装置及压裂方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109973058B (zh) * 2019-04-17 2021-04-30 中国矿业大学 一种双层叠置含煤层气系统单井排采装置及排采方法
CN110714739B (zh) * 2019-11-25 2021-09-24 中国矿业大学 一种双层叠置含煤层气系统单井排采地面装置
CN110965965A (zh) * 2019-12-18 2020-04-07 山西蓝焰煤层气集团有限责任公司 一种利用煤层气枯竭井开发下伏煤储层的方法
CN112832716A (zh) * 2021-01-15 2021-05-25 中煤科工集团西安研究院有限公司 一种双煤层孔眼限流分层控水煤层气井排采方法及装置
CN113803032B (zh) * 2021-09-18 2023-05-26 青岛爱派能源科技有限公司 深层煤层气排采控制设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104989339A (zh) * 2015-08-04 2015-10-21 太原理工大学 一种老空区抽采煤层气的系统及方法
CN107387020A (zh) * 2017-08-30 2017-11-24 中联煤层气有限责任公司 一种两气共采装置
WO2018035733A1 (zh) * 2016-08-24 2018-03-01 中为(上海)能源技术有限公司 用于煤炭地下气化过程的产出井设备及其应用
CN207194871U (zh) * 2017-07-24 2018-04-06 山西晋城无烟煤矿业集团有限责任公司 一种煤层气井双排采管柱装置
CN109458161A (zh) * 2018-10-24 2019-03-12 中国矿业大学 一种多煤层独立含气系统控压单泵排采装置及排采方法
CN109973058A (zh) * 2019-04-17 2019-07-05 中国矿业大学 一种双层叠置含煤层气系统单井排采装置及排采方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3797573A (en) * 1972-09-05 1974-03-19 Baker Oil Tools Inc Full opening safety valve
CN2344541Y (zh) * 1998-08-20 1999-10-20 马建民 双管液压动力采油装置
US7552770B2 (en) * 2005-10-13 2009-06-30 Conocophillips Company Heavy wax stimulation diverting agent
RU2396424C1 (ru) * 2009-05-13 2010-08-10 Аванян Эдуард Александрович Устройство селективного заканчивания скважины
US9790773B2 (en) * 2013-07-29 2017-10-17 Bp Corporation North America Inc. Systems and methods for producing gas wells with multiple production tubing strings
US9470076B2 (en) * 2013-07-29 2016-10-18 Bp Corporation North America Inc. Systems and methods for production of gas wells
CN207647706U (zh) * 2017-12-27 2018-07-24 宁波合力机泵股份有限公司 一种立式传动多缸往复泵
CN108035698B (zh) * 2017-12-31 2019-11-08 黑龙江兰德超声科技股份有限公司 一种油田开采装置
CN108395902B (zh) * 2018-04-02 2020-09-25 朱红璋 一种石油开采中泥沙分离方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104989339A (zh) * 2015-08-04 2015-10-21 太原理工大学 一种老空区抽采煤层气的系统及方法
WO2018035733A1 (zh) * 2016-08-24 2018-03-01 中为(上海)能源技术有限公司 用于煤炭地下气化过程的产出井设备及其应用
CN207194871U (zh) * 2017-07-24 2018-04-06 山西晋城无烟煤矿业集团有限责任公司 一种煤层气井双排采管柱装置
CN107387020A (zh) * 2017-08-30 2017-11-24 中联煤层气有限责任公司 一种两气共采装置
CN109458161A (zh) * 2018-10-24 2019-03-12 中国矿业大学 一种多煤层独立含气系统控压单泵排采装置及排采方法
CN109973058A (zh) * 2019-04-17 2019-07-05 中国矿业大学 一种双层叠置含煤层气系统单井排采装置及排采方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114412417A (zh) * 2020-10-28 2022-04-29 中国石油天然气股份有限公司 多级煤层气合采实验装置
CN114412417B (zh) * 2020-10-28 2024-03-26 中国石油天然气股份有限公司 多级煤层气合采实验装置
CN113338867A (zh) * 2021-06-17 2021-09-03 中国石油化工股份有限公司 一种多煤层合采防串压力自调节装置
CN117514119A (zh) * 2024-01-03 2024-02-06 中国石油大学(华东) 一种页岩油立体开发压裂装置及压裂方法
CN117514119B (zh) * 2024-01-03 2024-04-12 中国石油大学(华东) 一种页岩油立体开发压裂装置及压裂方法

Also Published As

Publication number Publication date
CN109973058B (zh) 2021-04-30
AU2019427989A1 (en) 2020-11-05
CN109973058A (zh) 2019-07-05
AU2019427989B2 (en) 2022-07-07

Similar Documents

Publication Publication Date Title
WO2020211268A1 (zh) 一种双层叠置含煤层气系统单井排采装置及排采方法
US11506033B2 (en) Oil extraction and gas production method capable of in-situ sand control and removal by downhole hydraulic lift
US9850744B2 (en) Method for extracting coalbed gas through water and coal dust drainage and a device thereof
CN202157792U (zh) 油井用井下配产器
CN102777155A (zh) 一种页岩气桥塞分段完井方法
CN201620853U (zh) 多层开采单泵定压防气管柱
CN201705276U (zh) 水平井的完井、采油管柱
CN102767355A (zh) 稠油蒸汽吞吐注采一体化采油装置
CN107023259B (zh) 一种基于双壁钻杆的钻井系统
CN102242614A (zh) 同轴双层注气井口装置
CN104563873B (zh) 一种井下套管动力导向装置
CN106401541B (zh) 一种多油层合采的采油结构
CN107387020A (zh) 一种两气共采装置
CN112878904B (zh) 一种双层管双梯度钻井技术的井身结构优化方法
CN111894528B (zh) 一种煤系地层多气合采及产能接替方法
JP7297353B1 (ja) 天然ガスハイドレート-浅層ガス-深層ガスマルチソースマルチ方法共同採掘システム及び方法
CN107989578A (zh) 一种连续油管可再循环氮气射流泵排液系统及方法
CN201460826U (zh) 分层合采分抽工艺管柱
CN205503007U (zh) 一种基于双壁钻杆的钻井系统
CN200975246Y (zh) 积分分层配水装置
CN204941490U (zh) 一种注采一体压锥降水管柱结构
CN107191144A (zh) 一种海底换钻头装置
CN104213884B (zh) 一种抽油井杆控式换层开关及其换层采油方法
CN201574737U (zh) 一种可分体式细分层采油装置
CN105863527A (zh) 一种可提高连续油管延伸极限的装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019427989

Country of ref document: AU

Date of ref document: 20190910

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19925133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19925133

Country of ref document: EP

Kind code of ref document: A1