WO2020204603A1 - 통신 시스템에서 신호 송수신 방법 및 장치 - Google Patents

통신 시스템에서 신호 송수신 방법 및 장치 Download PDF

Info

Publication number
WO2020204603A1
WO2020204603A1 PCT/KR2020/004465 KR2020004465W WO2020204603A1 WO 2020204603 A1 WO2020204603 A1 WO 2020204603A1 KR 2020004465 W KR2020004465 W KR 2020004465W WO 2020204603 A1 WO2020204603 A1 WO 2020204603A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
bwp
sidelink
resource pool
channel
Prior art date
Application number
PCT/KR2020/004465
Other languages
English (en)
French (fr)
Inventor
여정호
김태형
류현석
오진영
신철규
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to US17/599,129 priority Critical patent/US12069618B2/en
Priority to EP20781752.9A priority patent/EP3934350A4/en
Publication of WO2020204603A1 publication Critical patent/WO2020204603A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present disclosure relates to a communication system, and relates to a method and apparatus for transmitting and receiving downlink, uplink, and sidelink signals. More specifically, it relates to a method of defining a control information resource set for transmitting control information in a sidelink and a method of mapping a sidelink control information signal. According to another example, a method of setting a bandwidth part (BWP) in a Uu link, which is a communication link with a base station, and a BWP in a sidelink, which is a communication link between terminals, and a signal transmission/reception method and apparatus of a terminal according thereto It is about.
  • BWP bandwidth part
  • the 5G communication system or the pre-5G communication system is called a communication system after a 4G network (Beyond 4G Network) or a system after an LTE system (Post LTE).
  • the 5G communication system is being considered for implementation in the ultra high frequency (mmWave) band (eg, 60 gigabyte (70 GHz) band).
  • ACM advanced coding modulation
  • FQAM Hybrid FSK and QAM Modulation
  • SWSC Small Cell Superposition Coding
  • advanced access technologies such as Filter Bank Multi Carrier (FBMC), NOMA (non-orthogonal multiple access), and sparse code multiple access (SCMA) have been developed.
  • FBMC Filter Bank Multi Carrier
  • NOMA non-orthogonal multiple access
  • SCMA sparse code multiple access
  • IoT Internet of Things
  • M2M Machine to machine
  • MTC Machine Type Communication
  • a 5G communication system to an IoT network.
  • technologies such as sensor network, machine to machine (M2M), and machine type communication (MTC) are implemented by techniques such as beamforming, MIMO, and array antenna, which are 5G communication technologies.
  • M2M machine to machine
  • MTC machine type communication
  • beamforming MIMO
  • array antenna which are 5G communication technologies.
  • cloud RAN cloud radio access network
  • a bandwidth portion can be defined in downlink and uplink, and a terminal can transmit or receive a signal only within the defined bandwidth portion. That is, the terminal can perform the transmission/reception operation only within a specific set frequency bandwidth, not the entire system frequency bandwidth.
  • the UE can decode and receive downlink control information in the set control channel region.
  • a sidelink may be used to enable communication between terminals based on NR.
  • a bandwidth portion in the sidelink may be defined, and a control channel region may be set in the corresponding bandwidth portion.
  • some terminals may transmit control signals and some terminals may receive control signals.
  • the present disclosure provides a method and apparatus for setting a control channel region in a sidelink to perform the above operation, and provides a slot structure for transmitting and receiving a sidelink signal.
  • the present disclosure includes receiving a setting related to a control channel from a base station and transmitting or receiving a control signal based on the setting in order to perform communication between terminals in a communication system. It features.
  • the present disclosure includes performing channel access and transmitting a preamble to perform inter-terminal communication in a communication system.
  • the present disclosure is a method of a terminal in a wireless communication system, a configuration including information on a first bandwidth part (BWP) configuration information and a resource pool for a sidelink from a base station.
  • BWP bandwidth part
  • PRB physical resource block
  • the present disclosure provides a terminal in a wireless communication system, comprising: a transceiver; Receives configuration information including first bandwidth part (BWP) configuration information and resource pool information for the sidelink from the base station through the transceiver, and checks the resource pool for the sidelink based on the configuration information And a control unit for performing communication with another terminal based on the resource pool, wherein the information on the resource pool includes a lowest physical resource block (PRB) index of the resource pool.
  • BWP bandwidth part
  • PRB physical resource block
  • a region in which a control channel is transmitted/received in a sidelink for communication between terminals is defined, and a transmission/reception operation in a corresponding control channel region is provided, so that sidelink transmission/reception between terminals can be smoothly performed.
  • 1 is a diagram showing a downlink or uplink time-frequency domain transmission structure of a new radio system.
  • FIG. 2 is a diagram illustrating an example in which data for eMBB, URLLC, and mMTC are allocated in a frequency-time resource in a communication system.
  • FIG. 3 is a diagram illustrating another example in which data for eMBB, URLLC, and mMTC are allocated in a frequency-time resource in a communication system.
  • FIG. 4 is a diagram showing a structure in which one transport block is divided into several code blocks and a CRC is added.
  • 5 is a diagram showing a structure in which an outer code is applied and coded.
  • FIG. 6 is a diagram showing a block diagram according to whether or not an outer code is applied.
  • FIG. 7 is a diagram illustrating a structure in which a single transport block is divided into a plurality of code blocks and an outer code is applied to generate a parity code block.
  • FIG. 8 is a diagram illustrating a processing time of a terminal according to timing advance according to a distance between a terminal and a base station when a terminal receives a first signal and the terminal transmits a second signal for it in an NR system.
  • FIG. 9 is a diagram illustrating an example in which one-to-one communication, that is, unicast communication, is performed through a sidelink between two terminals according to the present disclosure.
  • FIG. 10 is a diagram illustrating an example of groupcast communication in which one terminal transmits common data to a plurality of terminals through a sidelink according to the present disclosure.
  • 11 is a diagram illustrating a process of transmitting information related to success or failure of data reception to a terminal transmitting data by terminals that have received common data using groupcast communication according to the present disclosure.
  • FIG. 12 is a diagram illustrating an example of a BWP set for sidelink communication and a resource pool set in the BWP according to an embodiment of the present disclosure.
  • FIG. 13 is a diagram illustrating an example of transmitting a physical channel for sidelink transmission in one slot according to an embodiment of the present disclosure.
  • FIG. 14 is a diagram illustrating an example in which physical channels are transmitted in one slot in a sidelink according to an embodiment of the present disclosure.
  • 15 is a diagram illustrating an example in which a terminal performs channel access and transmits a signal accordingly according to an embodiment of the present disclosure.
  • 16 is a diagram illustrating an example in which at least two terminals transmit channel access and preamble when at least two terminals exist according to an embodiment of the present disclosure.
  • 17 is a diagram illustrating an internal structure of a terminal according to embodiments of the present disclosure.
  • FIG. 18 is a diagram illustrating an internal structure of a base station according to embodiments of the present disclosure.
  • the 5G communication system or the pre-5G communication system is called a communication system after a 4G network (Beyond 4G Network) or a system after an LTE system (Post LTE).
  • the 5G communication system defined by 3GPP is called the New Radio (NR) system.
  • the 5G communication system is being considered for implementation in the ultra-high frequency (mmWave) band (eg, such as the 60 Giga (60 GHz) band).
  • ACM advanced coding modulation
  • FQAM Hybrid FSK and QAM Modulation
  • SWSC Small Cell Superposition Coding
  • advanced access technologies such as Filter Bank Multi Carrier (FBMC), NOMA (non-orthogonal multiple access), and sparse code multiple access (SCMA) have been developed.
  • FBMC Filter Bank Multi Carrier
  • NOMA non-orthogonal multiple access
  • SCMA sparse code multiple access
  • IoT Internet of Things
  • M2M Machine to machine
  • MTC Machine Type Communication
  • 5G communication such as a sensor network, machine to machine (M2M), and machine type communication (MTC) is being implemented by techniques such as beamforming, MIMO, and array antenna.
  • M2M machine to machine
  • MTC machine type communication
  • cloud RAN cloud radio access network
  • the new 5G communication NR New Radio access technology
  • it is designed to allow various services to be freely multiplexed in time and frequency resources, and accordingly, waveform/numerology, and reference signals, etc., are dynamic according to the needs of the service. Can be assigned as or freely.
  • wireless communication in order to provide an optimal service to a terminal, optimized data transmission through measurement of channel quality and interference amount is important, and thus accurate channel state measurement is essential.
  • the 5G channel greatly changes the channel and interference characteristics depending on the service, so the FRG (frequency resource Ggroup) dimension that allows measurement by dividing them.
  • the types of services supported may be classified into categories such as enhanced mobile broadband (eMBB), massive machine type communications (mMTC), and ultra-reliable and low-latency communications (URLLC).
  • eMBB is a high-speed transmission of high-capacity data
  • mMTC is a service aiming at minimizing terminal power and connecting multiple terminals
  • URLLC is a service aiming at high reliability and low latency. Different requirements may be applied according to the type of service applied to the terminal.
  • next-generation communication system As research on a next-generation communication system has recently progressed, various methods for scheduling communication with a terminal are being discussed. Accordingly, there is a need for an efficient scheduling and data transmission/reception scheme in consideration of the characteristics of a next-generation communication system.
  • a plurality of services can be provided to users in a communication system, and in order to provide such a plurality of services to users, a method and apparatus using the same are required to provide each service within the same time period according to characteristics. .
  • each block of the flowchart diagrams and combinations of the flowchart diagrams may be executed by computer program instructions. Since these computer program instructions can be mounted on the processor of a general purpose computer, special purpose computer or other programmable data processing equipment, the instructions executed by the processor of the computer or other programmable data processing equipment are described in the flowchart block(s). It creates a means to perform functions. These computer program instructions can also be stored in computer-usable or computer-readable memory that can be directed to a computer or other programmable data processing equipment to implement a function in a particular way, so that the computer-usable or computer-readable memory It is also possible to produce an article of manufacture containing instruction means for performing the functions described in the flowchart block(s).
  • Computer program instructions can also be mounted on a computer or other programmable data processing equipment, so that a series of operating steps are performed on a computer or other programmable data processing equipment to create a computer-executable process to create a computer or other programmable data processing equipment. It is also possible for instructions to perform processing equipment to provide steps for executing the functions described in the flowchart block(s).
  • each block may represent a module, segment, or part of code that contains one or more executable instructions for executing the specified logical function(s).
  • functions mentioned in blocks may occur out of order. For example, two blocks shown in succession may in fact be executed substantially simultaneously, or the blocks may sometimes be executed in reverse order depending on the corresponding function.
  • the term' ⁇ unit' used in the present embodiment means software or hardware components such as FPGA or ASIC, and' ⁇ unit' performs certain roles.
  • The' ⁇ unit' may be configured to be in an addressable storage medium, or may be configured to reproduce one or more processors.
  • ' ⁇ unit' refers to components such as software components, object-oriented software components, class components and task components, processes, functions, properties, and procedures. , Subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, database, data structures, tables, arrays, and variables.
  • components and functions provided in the' ⁇ units' may be combined into a smaller number of elements and' ⁇ units', or may be further divided into additional elements and' ⁇ units'.
  • components and' ⁇ units' may be implemented to play one or more CPUs in a device or a security multimedia card.
  • the' ⁇ unit' may include one or more processors.
  • the wireless communication system deviates from the initial voice-oriented service, for example, 3GPP high speed packet access (HSPA), long term evolution (LTE, or evolved universal terrestrial radio access (E-UTRA)), LTE-Advanced. (LTE-A), 3GPP2's HRPD (high rate packet data), UMB (ultra mobile broadband), and IEEE 802.16e communication standards, such as a broadband wireless communication system that provides high-speed, high-quality packet data services Are doing.
  • a communication standard of 5G or NR new radio
  • 5th generation wireless communication system is being created as a 5th generation wireless communication system.
  • an NR system employs a downlink (DL) and an orthogonal frequency division multiplexing (OFDM) scheme in an uplink.
  • DL downlink
  • OFDM orthogonal frequency division multiplexing
  • CP-OFDM cyclic-prefix OFDM
  • DFT-S-OFDM discrete Fourier transform spreading OFDM
  • Uplink refers to a radio link through which a user equipment (UE) or a mobile station (MS)) transmits data or control signals to a base station (gNode B or base station (BS)), and downlink refers to a base station It means a wireless link that transmits data or control signals.
  • the data or control information of each user is classified by allocation and operation so that the time-frequency resources for carrying data or control information for each user do not overlap each other, that is, orthogonality is established. do.
  • the NR system employs a hybrid automatic repeat request (HARQ) scheme in which a physical layer retransmits corresponding data when a decoding failure occurs in initial transmission.
  • HARQ hybrid automatic repeat request
  • the receiver when the receiver fails to accurately decode (decode) data, the receiver transmits information (NACK; negative acknowledgment) notifying the transmitter of the decoding failure so that the transmitter can retransmit the corresponding data in the physical layer.
  • NACK negative acknowledgment
  • the receiver improves data reception performance by combining the data retransmitted by the transmitter with data that has previously failed to be decoded.
  • an acknowledgment (ACK) notifying the transmitter of decoding success may be transmitted to the transmitter so that the transmitter can transmit new data.
  • FIG. 1 is a diagram showing the basic structure of a time-frequency domain, which is a radio resource domain in which the data or control channel is transmitted in downlink or uplink in an NR system.
  • the horizontal axis represents the time domain and the vertical axis represents the frequency domain.
  • the minimum transmission unit in the time domain is an OFDM symbol, and N symb (1-02) OFDM symbols are collected to form one slot (1-06).
  • the length of the subframe is defined as 1.0 ms, and the radio frames 1-14 are defined as 10 ms.
  • the minimum transmission unit in the frequency domain is a subcarrier, and the bandwidth of the entire system transmission bandwidth is composed of a total of N BW (1-04) subcarriers.
  • the basic unit of a resource in the time-frequency domain is a resource element (RE) (1-12), which can be represented by an OFDM symbol index and a subcarrier index.
  • Resource block (RB or physical resource block; PRB) (1-08) is N symb (1-02) consecutive OFDM symbols in the time domain and N RB (1-10) consecutive subs in the frequency domain. It is defined as a carrier.
  • one RB (1-08) is composed of N symb x N RB REs (1-12).
  • the minimum transmission unit of data is the RB unit.
  • N BW and N RB are proportional to the bandwidth of the system transmission band.
  • the data rate may increase in proportion to the number of RBs scheduled to the terminal.
  • the downlink transmission bandwidth and the uplink transmission bandwidth may be different from each other.
  • the channel bandwidth represents the RF bandwidth corresponding to the system transmission bandwidth.
  • Table 1 shows the correspondence between the system transmission bandwidth and the channel bandwidth defined in the LTE system, which is a 4G wireless communication, before the NR system.
  • LTE system which is a 4G wireless communication
  • Table 1 shows the correspondence between the system transmission bandwidth and the channel bandwidth defined in the LTE system, which is a 4G wireless communication, before the NR system.
  • an LTE system having a 10 MHz channel bandwidth may have a transmission bandwidth of 50 RBs.
  • DCI downlink control information
  • DCI is defined according to various formats, depending on each format, whether it is scheduling information for uplink data (UL grant) or scheduling information for downlink data (DL grant), whether it is a compact DCI with a small size of control information , Whether spatial multiplexing using multiple antennas is applied, whether DCI is used for power control, etc. may be indicated.
  • DCI format 1-1 which is scheduling control information (DL grant) for downlink data, may include at least one of the following control information.
  • -Carrier indicator indicates on which frequency carrier is transmitted.
  • -DCI format indicator This is an indicator that identifies whether the DCI is for downlink or uplink.
  • BWP Bandwidth part
  • -Frequency domain resource allocation indicates the RB of the frequency domain allocated for data transmission.
  • the resources expressed are determined according to the system bandwidth and resource allocation method.
  • -Time domain resource allocation indicates a slot to which a data-related channel is to be transmitted and an OFDM symbol.
  • -VRB-to-PRB mapping Indicate how to map a virtual RB (virtual RB: VRB) index and a physical RB (physical RB: PRB) index.
  • MCS Modulation and coding scheme
  • -CBG transmission information (codeblock group transmission information): When CBG retransmission is set, indicates information on which CBG is transmitted.
  • -HARQ process number indicates the process number of HARQ.
  • -New data indicator indicates whether HARQ initial transmission or retransmission.
  • -Redundancy version indicates a redundancy version of HARQ.
  • TPC transmit power control
  • PUCCH physical uplink control channel
  • the time domain resource assignment may be transmitted by information on a slot in which a PUSCH is transmitted and a start symbol position S in a corresponding slot and the number of symbols L to which the PUSCH is mapped.
  • S may be a relative position from the beginning of the slot
  • L may be the number of consecutive symbols
  • S and L may be determined from a start and length indicator value (SLIV) defined as follows. .
  • information including information on a SLIV value, a PUSCH mapping type, and a slot in which a PUSCH is transmitted can be set in one row through RRC configuration.
  • the information may be configured in the form of a table, for example.
  • the base station can transmit the SLIV value, the PUSCH mapping type, and information on the slot in which the PUSCH is transmitted to the terminal.
  • PUSCH mapping types are defined as type A and type B.
  • the first symbol among DMRS symbols is located in the second or third OFDM symbol in the slot.
  • the first symbol among DMRS symbols is located in the first OFDM symbol in the time domain resource allocated for PUSCH transmission.
  • the DCI may be transmitted on a downlink physical downlink control channel (PDCCH) through channel coding and modulation processes.
  • the DCI transmitted on the PDCCH is used interchangeably with the term control information.
  • the process of transmitting and receiving DCI through the PDCCH may be expressed as transmitting and receiving the PDCCH.
  • the DCI is independently scrambled with a specific radio network temporary identifier (RNTI) (or terminal identifier) for each terminal to add a cyclic redundancy check (CRC), channel-coded, and then each independent PDCCH. Is transmitted.
  • RNTI radio network temporary identifier
  • CRC cyclic redundancy check
  • the PDCCH is mapped and transmitted in a control resource set (CORESET) set to the terminal.
  • CORESET control resource set
  • Downlink data may be transmitted on a physical downlink shared channel (PDSCH), which is a physical channel for downlink data transmission.
  • PDSCH physical downlink shared channel
  • the PDSCH may be transmitted after the control channel transmission period, and scheduling information such as a specific mapping position and modulation scheme in the frequency domain is determined based on the DCI transmitted through the PDCCH.
  • the base station notifies the terminal of the modulation scheme applied to the PDSCH to be transmitted and the size of the data to be transmitted (transport block size (TBS)).
  • the MCS may consist of 5 bits or more or fewer bits.
  • the TBS corresponds to a size before channel coding for error correction is applied to data (transport block, TB) intended to be transmitted by the base station.
  • a transport block refers to a medium access control (MAC) header, a control element (CE), one or more MAC service data units (SDUs), and padding bits.
  • MAC medium access control
  • CE control element
  • SDU MAC service data units
  • I can.
  • TB may indicate a unit of data delivered from the MAC layer to a physical layer or a MAC protocol data unit (PDU).
  • PDU MAC protocol data unit
  • the modulation schemes supported by the NR system are QPSK (quadrature phase shift keying), 16QAM (quadrature amplitude modulation), 64QAM, and 256QAM, and each modulation order (Qm) corresponds to 2, 4, 6, and 8. do. That is, in the case of QPSK modulation, 2 bits per symbol, in the case of 16QAM modulation, 4 bits per symbol, in the case of 64QAM modulation, 6 bits per symbol can be transmitted, and in the case of 256QAM modulation, 8 bits per symbol can be transmitted.
  • FIGS. 2 and 3 illustrate an example in which data for eMBB, URLLC, and mMTC, which are services considered in a 5G or NR system, are allocated in a frequency-time resource.
  • data for eMBB, URLLC, and mMTC may be allocated in the entire system frequency band 2-00.
  • eMBB (2-01) and mMTC (2-09) data can be allocated and transmitted in a specific frequency band, and URLLC data (2-03, 2-05, 2-07) is generated while the data is being transmitted. If transmission is required, empty the part where the eMBB (2-01) and mMTC (2-09) data are already allocated, or URLLC data (2-03, 2-05, 2-07) without transmitting the data Can be transmitted.
  • URLLC data may be allocated (2-03, 2-05, 2-07) to a part of the resource (2-01) to which the eMBB is allocated and transmitted.
  • eMBB data may not be transmitted in the overlapping frequency-time resource, and thus transmission performance of eMBB data may be lowered. That is, in the above case, eMBB data transmission failure may occur due to URLLC allocation.
  • each service and data may be transmitted in each subband (3-02, 3-04, 3-06) by dividing the entire system frequency band (3-00).
  • the information related to the subband configuration may be determined in advance, and the base station may transmit the information to the terminal through higher level signaling. Alternatively, the information related to the subband may be arbitrarily divided by a base station or a network node to provide services without transmitting additional subband configuration information to the terminal.
  • subband 3-02 is used for eMBB data transmission
  • subband 3-04 is used for URLLC data transmission
  • subband 306 is used for mMTC data transmission.
  • the length of the transmission time interval (TTI) used for URLLC transmission may be shorter than the length of the TTI used for eMBB or mMTC transmission.
  • the response of information related to URLLC can be transmitted faster than eMBB or mMTC, and accordingly, information can be transmitted and received with low delay.
  • the structure of a physical layer channel used for each type to transmit the three services or data may be different. For example, at least one of a length of a transmission time interval (TTI), an allocation unit of frequency resources, a structure of a control channel, and a data mapping method may be different.
  • the terms physical channel and signal in the NR system may be used to describe the method and apparatus proposed in the embodiment.
  • the content of the present disclosure can be applied to a wireless communication system other than an NR system.
  • FIG. 4 is a diagram illustrating a process in which one transport block is divided into several code blocks and a CRC is added.
  • a CRC (4-03) may be added to the last or first part of one transport block (TB) (4-01) to be transmitted in uplink or downlink.
  • the CRC may have 16 bits or 24 bits, a predetermined number of bits, or a variable number of bits according to channel conditions, and may be used to determine whether channel coding is successful.
  • a block with CRC (4-03) added to TB (4-01) can be divided into several codeblocks (CBs) (4-07, 4-09, 4-11, 4-13) ( 4-05).
  • the code block can be divided by a predetermined maximum size.
  • the last code block (4-13) may be smaller in size than other code blocks, or 0, random value, or 1 is inserted to determine the length with other code blocks. You can match them to be the same.
  • CRCs (4-17, 4-19, 4-21, 4-23) may be added to the divided code blocks (4-15).
  • the CRC may have 16 bits, 24 bits, or a predetermined number of bits, and may be used to determine whether channel coding is successful.
  • TB (4-01) and a cyclic generator polynomial may be used to generate the CRC (4-03), and the cyclic generator polynomial may be defined in various ways.
  • the CRC length L is 24 has been described as an example, but the length may be determined in various lengths such as 12, 16, 24, 32, 40, 48, 64.
  • CRC After adding CRC to TB according to the above procedure, it is divided into N CBs (4-07, 4-09, 4-11, 4-13).
  • CRC (4-17, 4-19, 4-21, 4-23) can be added to each of the divided CBs (4-07, 4-09, 4-11, 4-13) (4- 15).
  • the CRC added to the CB may be a CRC of a length different from the CRC added to the TB or a different cyclic generator polynomial.
  • the CRC added to the TB (4-03) and the CRCs added to the code block (4-17, 4-19, 4-21, 4-23) may be omitted depending on the type of channel code to be applied to the code block. May be.
  • the CRCs 4-17, 4-19, 4-21, and 4-23 to be inserted for each code block may be omitted.
  • the CRCs 4-17, 4-19, 4-21, and 4-23 may be added to the code block as it is.
  • a CRC may be added or omitted.
  • the maximum length of one code block is determined according to the type of channel coding applied to the TB to be transmitted, and the CRC added to the TB and the TB according to the maximum length of the code block is a code block.
  • a CRC for CB is added to the divided CB, and the data bits and CRC of the CB are encoded with a channel code to determine coded bits, and each of the coded bits is as promised in advance. Together, the number of rate-matched bits is determined.
  • FIG. 5 is a diagram showing a method in which an outer code is used and transmitted
  • FIG. 6 is a block diagram showing the structure of a communication system in which the outer code is used.
  • bits or symbols (5-04) at the same position in each code block are encoded as a second channel code, and parity bits or symbols ( 5-06) can be created (5-02). Thereafter, CRCs may be added to the code blocks and the parity code blocks generated by the second channel code encoding (5-08, 5-10).
  • the CRC may vary depending on the type of channel code.
  • the turbo code when used as the first channel code, the CRC (5-08, 5-10) is added, but after that, each code block and parity code blocks may be encoded by the first channel code encoding.
  • the first channel code may be a convolutional code, an LDPC code, a turbo code, a polar code, or the like.
  • the present disclosure is not limited thereto, and various channel codes may be applied to the present disclosure.
  • the second channel code may be, for example, a Reed-solomon code, a BCH code, a Raptor code, a parity bit generation code, or the like.
  • the present disclosure is not limited thereto, and various channel codes may be applied to the present disclosure as the second channel codes.
  • data to be transmitted passes through a second channel coding encoder 6-09.
  • the bits or symbols passed through the second channel coding encoder 6-09 pass through the first channel coding encoder 6-11.
  • the receiver uses the first channel coding decoder 6-15 and the second channel coding decoder 6-17 based on the received signal. Can be operated sequentially.
  • the first channel coding decoder 6-15 and the second channel coding decoder 6-17 perform operations corresponding to the first channel coding encoder 6-11 and the second channel coding encoder 6-11, respectively. can do.
  • the first channel coding encoder 6-01 and the first channel coding decoder 6-05 are used in the transceiver.
  • the two channel coding encoder and the second channel coding decoder are not used.
  • the first channel coding encoder 6-01 and the first channel coding decoder 6-05 may be configured in the same manner as when the outer code is used.
  • FIG. 7 is a diagram showing a structure in which one transport block is divided into a plurality of code blocks and an outer code is applied to generate a parity code block.
  • FIG. 7 is a diagram illustrating an example in which one transport block is divided into several code blocks, and then one or more parity code blocks are generated by applying a second channel code or an outer code.
  • one transport block may be divided into one or more code blocks. In this case, when only one code block is generated according to the transport block size, the CRC may not be added to the corresponding code block.
  • parity code blocks 7-40 and 7-42 are generated (7-24).
  • the parity code block can be located after the last code block (7-24).
  • an uplink scheduling grant signal and a downlink data signal are referred to as a first signal.
  • an uplink data signal for uplink scheduling authorization and HARQ ACK/NACK for a downlink data signal are referred to as a second signal. That is, in the present disclosure, among signals transmitted from the base station to the terminal, a signal that expects a response from the terminal may be the first signal, and the response signal of the terminal corresponding to the first signal may be the second signal.
  • the first signal and the second signal of the present disclosure are not limited to the signal, and the first signal and the second signal may be used to distinguish different signals.
  • the service type of the first signal may belong to categories such as eMBB, mMTC, and URLLC.
  • the TTI length of the first signal means the length of time during which the first signal is transmitted.
  • the TTI length of the second signal means the length of time during which the second signal is transmitted.
  • the second signal transmission timing is information on a time point (or timing) at which the terminal transmits the second signal and the base station receives the second signal, and may be referred to as a second signal transmission/reception timing.
  • the base station can receive a signal transmitted from the terminal after a propagation delay.
  • the transmission delay time may be determined as a value obtained by dividing a path through which radio waves are transmitted from the terminal to the base station by the speed of light, and in general, it may be determined as a value obtained by dividing the distance from the terminal to the base station by the speed of light. For example, in the case of a terminal located 100 km away from the base station, a signal transmitted from the terminal may be received by the base station after about 0.34 msec. Conversely, the signal transmitted from the base station can be received by the terminal after about 0.34 msec.
  • the time when the signal transmitted from the terminal arrives at the base station may vary. Therefore, if several terminals located in different locations simultaneously transmit signals, the arrival times at the base station may all be different. In order to solve this phenomenon and allow signals transmitted from multiple terminals to arrive at the base station at the same time, the transmission time may be slightly different for each terminal according to the location, and this is called timing advance in NR and LTE systems.
  • FIG. 8 is a diagram illustrating a processing time of a terminal according to timing advance according to a distance between a terminal and a base station when a terminal receives a first signal and the terminal transmits a second signal for it in an NR system.
  • the base station transmits uplink scheduling approval or downlink control signal and data to the terminal in slot n (8-02)
  • the terminal transmits the uplink scheduling approval or downlink control signal and data in slot n (8-04).
  • the terminal may receive a transmission delay time T P (8-10) later than a time transmitted by the base station.
  • the terminal when the terminal receives the first signal in slot n, the terminal transmits the second signal in slot n+4 (406). Even when the terminal transmits a signal to the base station, in order to arrive at the base station at a certain time, the terminal is uplinked to a timing (8-06) that is earlier than the slot n+4 of the received signal by T A (8-12).
  • HARQ ACK/NACK for link data or downlink data can be transmitted. Therefore, in this example, the time that the terminal can prepare for receiving uplink scheduling approval and transmitting uplink data or receiving downlink data and transmitting HARQ ACK or NACK is T A at a time corresponding to three slots. It becomes the time to be excluded (8-14).
  • the base station may calculate the absolute value of the TA of the corresponding terminal.
  • the base station may calculate the absolute value of the TA by adding or subtracting the change amount of the TA value transmitted to the higher level signaling to the TA value initially transmitted to the terminal in the random access step.
  • the absolute value of TA may be a value obtained by subtracting the start time of the nth TTI received by the UE from the start time of the nth TTI transmitted by the UE.
  • one of the important criteria for the performance of a cellular wireless communication system is packet data latency.
  • signals are transmitted and received in units of subframes having a transmission time interval (TTI) of 1 ms.
  • TTI transmission time interval
  • UE terminal
  • the transmission time interval may be shorter than 1ms.
  • Short-TTI terminals are expected to be suitable for services such as Voice over LTE (VoLTE) service and remote control, where delay time is important.
  • VoIP Voice over LTE
  • the short-TTI terminal is expected as a means to realize the Internet of things (IoT), which is mission critical on a cellular basis.
  • IoT Internet of things
  • the base station when a base station transmits a PDSCH including downlink data, the base station may indicate a K 1 value corresponding to timing information for transmitting HARQ-ACK information of the PDSCH in DCI scheduling the PDSCH.
  • the HARQ-ACK information including timing advance, may be transmitted by the UE to the base station when it is not indicated to be transmitted before the symbol L 1 . That is, HARQ-ACK information may be transmitted from the terminal to the base station at a time point equal to or later than the symbol L 1 including timing advance.
  • the terminal may not be valid HARQ-ACK information in HARQ-ACK transmission to the base station.
  • the symbol L 1 is from the last time point of the PDSCH Afterwards, the cyclic prefix (CP) may indicate the first symbol that begins. remind Can be calculated as the following [Equation 1].
  • N 1 , d 1,1 , d 1,2 , ⁇ , ⁇ , and T C may be defined as follows.
  • the terminal has been configured with a plurality of active constituent carriers or carriers, the maximum timing difference between carriers should be reflected in the second signal transmission.
  • N 1 is defined as in the following table according to ⁇ .
  • N 1 The value of N 1 provided in the above table may be used according to the UE capability.
  • the base station when the base station transmits control information including uplink scheduling approval, the base station may indicate a K 2 value corresponding to timing information at which the terminal transmits uplink data or PUSCH using the control information. .
  • the UE may transmit to the base station. That is, the PUSCH may be transmitted from the terminal to the base station at a time point equal to or later than the symbol L 2 including timing advance.
  • the UE may ignore uplink scheduling admission control information from the base station.
  • the symbol L 2 is from the last time point of the PDCCH including the scheduling approval Afterwards, the cyclic prefix (CP) may indicate the first symbol that begins. remind Can be calculated as in [Equation 2] below.
  • N 2 , d 2,1 , ⁇ , ⁇ , and T C may be defined as follows.
  • the terminal has been configured with a plurality of active constituent carriers or carriers, the maximum timing difference between carriers should be reflected in the second signal transmission.
  • N 2 is defined as in the following table according to ⁇ .
  • the N 2 value provided in the above table may be used according to UE capability.
  • the NR system may set a bandwidth portion (BWP) within one carrier so that a specific terminal transmits and receives signals within the set BWP. This may be aimed at reducing power consumption of the terminal.
  • the base station can set a plurality of BWPs and can change the activated BWP in the control information. The time for the BWP to be changed may be defined as shown in [Table 2] below.
  • Frequency Range 1 means a frequency band of 6 GHz or less
  • Frequency Range 1 means a frequency band of 6 GHz or more.
  • type 1 and type 2 may be determined according to UE capability.
  • scenarios 1,2,3,4 may be determined as shown in the following table.
  • the BWP information indicated by the bandwidth part (BWP) indicator included in the control information indicates a BWP different from the currently active BWP. Can mean that is changed. Conversely, if it points to the same BWP as the currently active BWP, it can be considered that there is no request to change the BWP.
  • a method and apparatus for transmitting and receiving data between a base station and a terminal or a terminal are provided.
  • data may be transmitted from one terminal to a plurality of terminals, or data may be transmitted from one terminal to one terminal.
  • it may be a case in which data is transmitted from the base station to a plurality of terminals.
  • the present disclosure is not limited thereto, and the present disclosure may be applied in various cases.
  • FIG. 9 is a diagram illustrating an example in which one-to-one communication, that is, unicast communication, is performed through a sidelink between two terminals according to the present disclosure.
  • FIG 9 shows an example in which a signal is transmitted from the first terminal 9-01 to the second terminal 9-05, and the direction of signal transmission may be reversed. That is, a signal may be transmitted from the second terminal 9-05 to the first terminal 9-01.
  • Other terminals (9-07, 9-09) other than the first terminal and the second terminal (9-01, 9-05) are unicast between the first terminal and the second terminal (9-01, 9-05) Signals transmitted and received through cannot be received. Transmission and reception of signals through unicast between the first terminal and the second terminal (9-01, 9-05) is mapped in the resources promised between the first terminal and the second terminal (9-01, 9-05) or , Scrambling using mutually agreed values, mapping of control information, data transmission using mutually set values, and a process of checking each other's unique ID values.
  • the terminal may be a terminal that moves like a vehicle. In order to transmit and receive signals through the unicast, separate control information, a physical control channel, and data may be transmitted.
  • FIG. 10 is a diagram illustrating an example of groupcast communication in which one terminal transmits common data to a plurality of terminals through a sidelink according to the present disclosure.
  • FIG. 10 shows an example in which a first terminal 10-01 transmits a signal to other terminals 10-03, 10-05, 10-07, and 10-09 in the group, and other terminals not included in the group
  • the terminals 10-11 and 10-13 may not be able to receive signals transmitted for groupcast.
  • the terminal transmitting the signal for the groupcast may be another terminal in the group, and the resource allocation for signal transmission is provided by the base station, or the terminal serving as a leader in the group, or the terminal transmitting the signal. You can choose this yourself.
  • the terminal may be a terminal that moves like a vehicle. In order to transmit and receive signals through the groupcast, separate control information, a physical control channel, and data may be transmitted.
  • 11 is a diagram illustrating a process of transmitting information related to success or failure of data reception to a terminal transmitting data by terminals that have received common data using groupcast communication according to the present disclosure.
  • Terminals that have received common data through groupcast may transmit information related to success or failure of data reception to the terminal 11-01.
  • the information may be information such as HARQ-ACK feedback (11-11).
  • the terminals may be terminals having an LTE-based sidelink or an NR-based sidelink function. If a terminal having only an LTE-based sidelink function may not be able to transmit and receive an NR-based sidelink signal and a physical channel.
  • the sidelink may be used interchangeably with PC5 or V2X or D2D.
  • FIGS. 10 and 11 Although an example of transmission and reception according to groupcasting has been described in FIGS. 10 and 11, this can be applied to transmission and reception of a unicast signal between a terminal and a terminal.
  • a sidelink control channel may be referred to as a physical sidelink control channel (PSCCH), and a sidelink shared channel or a data channel may be referred to as a physical sidelink shared channel (PSSCH).
  • PSCCH physical sidelink control channel
  • PSSCH physical sidelink shared channel
  • a broadcast channel broadcast with a synchronization signal may be referred to as a PSBCH (physical sidelink broadcast channel)
  • PSFCH physical sidelink feedback channel
  • PSCCH or PSSCH may be used and transmitted for feedback transmission.
  • LTE-PSCCH, LTE-PSSCH, NR-PSCCH, NR-PSSCH, or the like a sidelink may mean a link between terminals, and a Uu link may mean a link between a base station and a terminal.
  • the base station is a subject that performs resource allocation of the terminal, and is at least one of a gNode B (gNB), an eNode B (eNB), a Node B, a base station (BS), a radio access unit, a base station controller, or a node on the network.
  • the terminal may include a user equipment (UE), a mobile station (MS), a cellular phone, a smart phone, a computer, or a multimedia system capable of performing a communication function.
  • downlink refers to a radio transmission path of a signal transmitted from a base station to a terminal
  • uplink refers to a radio transmission path of a signal transmitted from a terminal to a base station.
  • DL downlink
  • uplink uplink
  • UL uplink
  • the embodiments of the present disclosure will be described below using an NR system as an example, but the embodiments of the present disclosure may be applied to other communication systems having similar technical backgrounds or channel types.
  • the embodiments of the present disclosure may be applied to other communication systems through some modifications without significantly departing from the scope of the present disclosure, as determined by a person having skilled technical knowledge.
  • the PSSCH is a physical channel through which data is transmitted on the sidelink, but in the present disclosure, the PSSCH may be referred to as data.
  • higher signaling is a signal transmission method that is transmitted from the base station to the terminal using a downlink data channel of the physical layer or from the terminal to the base station using an uplink data channel of the physical layer, and RRC signaling or MAC control element It may also be referred to as (CE; control element).
  • a BWP, a resource pool, and a control resource set (CORESET) and a search space for transmission of control information are set by the terminal to perform sidelink communication.
  • the terminal may receive configuration information from the base station, or may be preset, or may receive configuration information from another terminal through a sidelink.
  • the discovery region and CORESET may be resources for mapping sidelink control information or a physical sidelink control channel (PSCCH) to transmit.
  • the terminal may receive a BWP for sidelink communication within one carrier being transmitted/received for sidelink communication.
  • the terminal may receive a resource pool set within the set BWP.
  • the resource pool may be a resource pool for sidelink transmission, a resource pool for sidelink reception, or a resource pool for sidelink transmission and reception.
  • the configuration information on the resource pool may include n_PRBstartRP, which is the lowest PRB index of the resource pool.
  • the lowest PRB index of the resource pool may be transmitted using an offset value based on the smallest PRB in the BWP to which the resource pool belongs. That is, n_PRBstartRP, which is the lowest PRB index of the resource pool, may mean the n_PRBstartRP-th PRB from the smallest PRB of the corresponding BWP.
  • the reference point in allocating frequency resources of the resource pool may be the lowest PRB number of the corresponding BWP.
  • FIG. 12 is a diagram illustrating an example of a BWP set for sidelink communication and a resource pool set in the BWP according to an embodiment of the present disclosure.
  • RBs included in the resource pool may be assigned an index of 0, 1, 2, 3,..., N RP -1 from the RB located in the lowest frequency band.
  • N RP is the number of RBs corresponding to the resource pool.
  • RB 0 in resource pool 2 (RP2) (12-02), that is, RB (12-03) with the lowest RB index in resource pool 2 corresponds to the lowest PRB number in the BWP. It may be set through offset information determined based on the PRB.
  • a terminal capable of transmitting and receiving uplink and downlink data by accessing a base station attempts to communicate with another terminal through a sidelink, a signal in Uu, a link between the base station and the terminal, It provides a method and apparatus for operation according to the BWP for transmission and reception and BWP for sidelink transmission and reception.
  • the UE may be configured with a BWP for downlink to receive a downlink signal from the base station, and may also be configured with a BWP for uplink to transmit an uplink signal to the base station.
  • the settings may be transmitted from the corresponding base station to the terminal through higher level signaling.
  • the terminal can receive the setting for the sidelink BWP, and the setting for the sidelink BWP is stored in advance by the terminal, or transmitted through higher-level signaling when accessing the base station, or communication between terminals. It can be transmitted through higher level signaling between terminals.
  • the downlink or uplink BWP may be referred to as U-BWP
  • the sidelink BWP may be referred to as SL-BWP
  • the sidelink BWP may be a sidelink transmission BWP or a sidelink reception BWP.
  • the downlink BWP and the uplink BWP may be different, but in this embodiment, it is assumed that the downlink BWP and the uplink BWP are the same.
  • the invention is not limited thereto, and the downlink BWP and the uplink BWP may be applied in different cases.
  • Case 1 Provides a terminal operation when the U-BWP and SL-BWP partially or entirely overlap in the frequency domain.
  • the terminal When the terminal is configured to overlap U-BWP and SL-BWP, the terminal performs a transmission/reception operation for U-BWP, that is, transmission/reception with the base station, in the frequency domain where U-BWP and SL-BWP overlap, and SL-BWP
  • the operation for, that is, the inter-terminal transmission/reception operation may be omitted without performing.
  • the terminal may perform an operation for the SL-BWP, that is, an inter-terminal transmission/reception operation.
  • the operation of the SL-BWP may include receiving and decoding sidelink control information, identifying sidelink frequency domain or channel occupancy, receiving and decoding sidelink data, and transmitting sidelink control information and data. This may mean that the SL-BWP does not operate for transmission or reception of the U-BWP.
  • Case 1-1 Provides another example of a terminal operation when the U-BWP and the SL-BWP partially or all overlap in the frequency domain.
  • the UE can perform transmission/reception operation for U-BWP and operation for SL-BWP in the frequency domain where U-BWP and SL-BWP overlap.
  • the terminal may transmit signals to the base station and transmit signals to other terminals at the same time, or receive signals from the base station and signals from other terminals at the same time. I can.
  • the terminal does not perform an operation for the SL-BWP, that is, an inter-terminal transmission/reception operation.
  • the operation of the SL-BWP may include receiving and decoding sidelink control information, identifying sidelink frequency domain or channel occupancy, receiving and decoding sidelink data, and transmitting sidelink control information and data. This may mean not performing a sidelink operation in a frequency domain other than U-BWP for transmission or reception of U-BWP.
  • Case 2 Provides a terminal operation when the U-BWP and SL-BWP do not overlap in the frequency domain.
  • the operation of the SL-BWP may include receiving and decoding sidelink control information, identifying sidelink frequency domain or channel occupancy, receiving and decoding sidelink data, and transmitting sidelink control information and data.
  • a sidelink operation is not performed in a frequency domain other than the U-BWP.
  • a structure of physical channels in a sidelink slot is provided, and a method and apparatus for performing channel sensing to check whether a resource for sidelink transmission is free (or occupied) is provided.
  • FIG. 13 is a diagram illustrating an example of transmitting a physical channel for sidelink transmission in one slot according to an embodiment of the present disclosure.
  • Control information is transmitted through the control channel PSCCH to the symbols in front of the slot, data is transmitted through the data channel PSSCH (physical sidelink shared channel), and feedback information through the feedback channel PSFCH (physical sidelink feedback channel) Can be transmitted.
  • a type of preamble may be transmitted before a slot including at least one of a channel PSCCH, PSSCH, and PSFCH for transmitting a control signal or data or feedback signal to be transmitted on the sidelink.
  • the purpose of transmitting the preamble is to enable the receiving end receiving the signal transmitted on the sidelink to perform automatic gain control (AGC) before receiving the actual control channel or data channel to adjust the amplification gain of the amplifier. There may be.
  • AGC automatic gain control
  • the GAP after the PSFCH may be a region in which signal transmission/reception is not performed, and the GAP time may be a time used for the UE to switch from transmission to reception or for switching from reception to transmission.
  • the number or time of symbols used for the preamble transmission may be determined based on a subcarrier spacing (SCS) used for sidelink transmission. For example, if an SCS of 15 kHz is used for sidelink transmission, 1 symbol may be used, and if an SCS of 30 kHz is used, two symbols may be used for preamble transmission.
  • SCS subcarrier spacing
  • the length of the preamble that the transmitter should transmit is Like usec, it can be provided as an expression for ⁇ .
  • the preamble may be transmitted in the last symbols of the previous slot of the slot in which the transmitting terminal in the sidelink transmits one or more of PSCCH, PSSCH, and PSFCH, but the preamble may not always be transmitted.
  • the transmitting terminal when the transmitting terminal attempts to transmit PSCCH, PSSCH, or PSFCH in slot n, it means that the terminal can transmit the preamble during the last symbols of slot n-1 or the last specific time of slot n-1.
  • the terminal can transmit the preamble during the last symbols of slot n-1 or the last specific time of slot n-1.
  • transmission of the preamble may be omitted.
  • the terminal may perform a step of amplifying the received signal.
  • how much the received signal is amplified may be determined based on the strength of the signal and the dynamic range of the terminal amplifier.
  • the dynamic range may mean a range of signal strength in which the input and output of the amplifier have a linear relationship. If there is no linear relationship between the input and output of the amplifier and the phase changes arbitrarily, the signal may not be available for data reception.
  • the terminal needs to amplify the received signal with an appropriate strength. Therefore, it may be important for the UE to first find out the strength of the received signal when performing amplification. For example, if the intensity of the received signal is too large, the amplification degree is reduced, and if the received signal is too small, the amplification degree is increased. In this way, the terminal needs to change the amplification degree according to the strength of the received signal, and this operation is called automatic gain control (AGC).
  • AGC automatic gain control
  • the input signal of the terminal is first amplified by passing through a variable gain amplifier (VGA), which is transmitted to a detector that estimates the amplification intensity.
  • VGA variable gain amplifier
  • the estimated signal strength is compared with a set point determined by the dynamic range of the terminal to check the difference value, and this value is transferred as a parameter of VGA.
  • the degree of amplification in VGA is determined according to the difference between the estimated signal strength and the reference value, and the amplification degree serves to include the amplified signal in the dynamic range of the terminal amplifier. Consequently, the AGC operation may be a step of determining how much to amplify the received signal.
  • FIG. 14 is a diagram illustrating an example in which physical channels are transmitted in one slot in a sidelink according to an embodiment of the present disclosure.
  • the UE Before transmitting data through a specific slot, the UE may perform a channel access process or listen-before-talk (LBT) for determining whether the channel is empty.
  • LBT listen-before-talk
  • the step of determining that the channel is empty and thus can be transmitted may be referred to as channel access, LBT, or energy detection.
  • the terminal may measure power or energy of a received signal, and compare the measured power or energy with a preset or set value. Therefore, if the measured value is greater than a preset or set value, it is assumed that the channel is occupied and another terminal is transmitting a signal through the channel. It can be determined that the terminal can transmit a signal through the channel.
  • Channel access of the terminal may be performed in at least one symbol 14-02 before the slot 14-03 in which the terminal intends to transmit a sidelink signal.
  • the at least one symbol (14-02) may be a symbol to which a preamble must be transmitted first in order to transmit a sidelink signal in the next slot (14-03).
  • determining that the other terminal is transmitting a signal in the at least one symbol (14-02) by performing channel access means that the terminal transmitting the preamble in the corresponding symbol PSCCH, PSSCH, in the next slot (14-03)
  • this may mean that the corresponding slot 14-03 is already occupied.
  • the start point at which the terminal performs channel access may be determined as a random value or a random value from the first symbol of symbols 14-02 included in the previous slot of the slot 14-03 in which the terminal intends to transmit a sidelink signal. Or, it may be determined based on QoS values such as priority and latency transmitted from an upper level for a signal to be transmitted.
  • the terminal when the last symbols of slot n-1 in which the preamble can be transmitted (i.e., the previous slot of the slot for transmitting the sidelink signal) are determined and given, the terminal performs channel access in the first section of the symbols. It can be meaning. More specifically, when it is set or predetermined to transmit the preamble in the 12th and 13th symbols of slot n-1, channel access may be performed for a specific time from the beginning of the 12th symbol. The specific time may be fixed in advance, but may be a randomly selected time period.
  • the sidelink signal may mean one or more of PSCCH, PSSCH, and PSFCH.
  • 15 is a diagram illustrating an example in which a terminal performs channel access and transmits a signal accordingly according to an embodiment of the present disclosure.
  • a period in which a preamble can be transmitted before a slot in which the terminal intends to transmit a sidelink signal is defined or set as 2 symbols.
  • the embodiment of the present disclosure is not limited thereto, and the number of symbols in a section in which the preamble can be transmitted may be changed.
  • the terminal determines t sensing (15-01), which is the time to perform channel access based on the QoS parameter or by selecting a random value, and accesses the channel during t sensing (15-01) from the start of the period in which the preamble should be transmitted. You can do it.
  • Performing the channel access may include a process of measuring the strength of a received signal during a corresponding period. If it is determined that the channel is available by performing channel access in the (15-01) section, the UE may transmit a preamble signal that is already defined or arbitrarily determined during the remaining preamble transmission section, t Tx (15-02). After that, when the slot time to transmit the sidelink signal starts, the terminal transmits the physical channel or signal to be transmitted.
  • 16 is a diagram illustrating an example in which at least two terminals transmit channel access and preamble when at least two terminals exist according to an embodiment of the present disclosure.
  • two terminals may determine time t 1 (16-01) and t 2 (16-02), which are times for performing channel access, respectively, and perform channel access.
  • t 1 (16-01)
  • t 2 (16-02)
  • a case in which the channel access time t 2 determined by the terminal 2 is greater than the channel access time t 1 determined by the terminal 1, that is, the case where the terminal 2 performs the channel access procedure for a longer time will be described as an example.
  • embodiments of the present disclosure are not limited thereto.
  • terminal 2 may fail to access the channel due to the preamble transmitted by terminal 1. That is, since terminal 1 occupies and uses the channel first, terminal 2 may be determined not to occupy the channel. This method allows the terminal to arbitrarily determine the channel access time or determine it by the QoS parameter, thereby minimizing the simultaneous use of the sidelink channel (or slot) between the two terminals.
  • the terminal performs channel access and determines that the channel is empty, that is, passes through energy detection, or if the measured energy or power value is fixed or smaller than a set value, the terminal is Link signals can be transmitted.
  • the terminal performing the channel access and determining that the channel is empty may transmit an arbitrary signal from the time when the channel is determined to be empty until the next slot boundary time.
  • the arbitrary signal may be a signal generated by repetition or the like using a symbol to be transmitted in the next slot, or may be a signal using a fixed or preset sequence.
  • the terminal performs channel access and determines that the channel is empty, that is, passes through energy detection, or if the measured energy or power value is fixed or smaller than a set value, the terminal is Link signals can be transmitted.
  • a transmitting unit, a receiving unit, and a processing unit of the terminal and the base station are shown in FIGS. 17 and 18, respectively.
  • the receiving unit, the processing unit, and the transmitting unit of the base station and the terminal must each operate according to the embodiment.
  • FIG. 17 is a block diagram illustrating an internal structure of a terminal according to an embodiment of the present disclosure.
  • the terminal of the present disclosure may include a terminal receiving unit 17-00, a terminal transmitting unit 17-04, and a terminal processing unit 17-02.
  • the terminal reception unit 17-00 and the terminal may collectively refer to the transmission unit 17-04, and may be referred to as a transmission/reception unit in the embodiment of the present disclosure.
  • the transceiver may transmit and receive signals with the base station.
  • the signal may include control information and data.
  • the transceiver unit may include an RF transmitter that up-converts and amplifies a frequency of a transmitted signal, and an RF receiver that amplifies a received signal with low noise and down-converts a frequency.
  • the transmission/reception unit may receive a signal through a wireless channel, output it to the terminal processing unit 17-02, and transmit the signal output from the terminal processing unit 17-02 through a wireless channel.
  • the terminal processing unit 17-02 may control a series of processes so that the terminal can operate according to the embodiment of the present disclosure described above.
  • the terminal receiving unit 17-00 receives control information including scheduling information from the base station, and the terminal processing unit 17-02 determines the minimum processing time according to whether the BWP is switched and performs signal processing accordingly. have. Thereafter, the terminal transmission unit 17-04 may perform uplink transmission corresponding to the control information.
  • FIG. 18 is a block diagram illustrating an internal structure of a base station according to an embodiment of the present disclosure.
  • the base station of the present disclosure may include a base station receiving unit 18-01, a base station transmitting unit 18-05, and a base station processing unit 18-03.
  • the base station receiving unit 18-01 and the base station transmitting unit 18-05 may be collectively referred to as a transmitting/receiving unit in the embodiment of the present disclosure.
  • the transceiver may transmit and receive signals with the terminal.
  • the signal may include control information and data.
  • the transceiver unit may include an RF transmitter that up-converts and amplifies a frequency of a transmitted signal, and an RF receiver that amplifies a received signal with low noise and down-converts a frequency.
  • the transmission/reception unit may receive a signal through a wireless channel, output it to the base station processing unit 18-03, and transmit the signal output from the terminal processing unit 18-03 through a wireless channel.
  • the base station processing unit 18-03 may control a series of processes so that the base station can operate according to the above-described embodiment of the present disclosure.
  • the base station processing unit 18-03 may control to determine a minimum processing time according to whether the BWP is switched, and to determine a second signal transmission timing accordingly. Thereafter, the base station transmitter 18-05 transmits control information accompanying the timing information determined above, and the base station receiver 18-01 receives the second signal from the terminal at the timing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 개시는 4G 시스템 이후 보다 높은 데이터 전송률을 지원하기 위한 5G 통신 시스템을 IoT 기술과 융합하는 통신 기법 및 그 시스템에 관한 것이다. 본 개시는 5G 통신 기술 및 IoT 관련 기술을 기반으로 지능형 서비스 (예를 들어, 스마트 홈, 스마트 빌딩, 스마트 시티, 스마트 카 혹은 커넥티드 카, 헬스 케어, 디지털 교육, 소매업, 보안 및 안전 관련 서비스 등)에 적용될 수 있다. 또한, 본 개시에 따르면, 무선 통신 시스템에서 단말의 방법에 있어서, 기지국으로부터 사이드링크에 대한 제1 대역폭 부분 (bandwidthpart: BWP) 설정 정보 및 리소스풀에 대한 정보를 포함하는 설정 정보를 수신하는 단계; 상기 설정 정보에 기반하여 사이드링크를 위한 리소스풀을 확인하는 단계; 및 상기 리소스풀에 기반하여 다른 단말과 통신을 수행하는 단계를 포함하며, 상기 리소스풀에 대한 정보는 상기 리소스풀의 가장 낮은 물리적 자원 블록 (physical resource block: PRB) 인덱스를 포함하는 것을 특징으로 한다.

Description

통신 시스템에서 신호 송수신 방법 및 장치
본 개시는 통신 시스템에 대한 것으로서, 하향링크, 상향링크, 그리고 사이드링크 신호 송수신 방법 및 장치에 관한 것이다. 보다 구체적으로는, 사이드링크에서의 제어정보를 전송하기 위한 제어정보 자원 집합을 정의하는 방법 및 사이드링크 제어정보 신호를 매핑하는 방법에 관한 것이다. 또 다른 일례에 따르면, 기지국과의 통신 링크인 Uu링크에서의 대역폭 부분 (bandwidth part; BWP)와 단말들간의 통신 링크인 사이드링크에서의 BWP를 설정하는 방법과 이에 따르는 단말의 신호 송수신 방법 및 장치에 관한 것이다.
4G(4th generation) 통신 시스템 상용화 이후 증가 추세에 있는 무선 데이터 트래픽 수요를 충족시키기 위해, 개선된 5G(5th generation) 통신 시스템 또는 pre-5G 통신 시스템을 개발하기 위한 노력이 이루어지고 있다. 이러한 이유로, 5G 통신 시스템 또는 pre-5G 통신 시스템은 4G 네트워크 이후 (Beyond 4G Network) 통신 시스템 또는 LTE 시스템 이후 (Post LTE) 이후의 시스템이라 불리어지고 있다. 높은 데이터 전송률을 달성하기 위해, 5G 통신 시스템은 초고주파(mmWave) 대역 (예를 들어, 60기가(70GHz) 대역과 같은)에서의 구현이 고려되고 있다. 초고주파 대역에서의 전파의 경로손실 완화 및 전파의 전달 거리를 증가시키기 위해, 5G 통신 시스템에서는 빔포밍(beamforming), 거대 배열 다중 입출력(massive MIMO), 전차원 다중입출력(Full Dimensional MIMO: FD-MIMO), 어레이 안테나(array antenna), 아날로그 빔형성(analog beam-forming), 및 대규모 안테나 (large scale antenna) 기술들이 논의되고 있다. 또한 시스템의 네트워크 개선을 위해, 5G 통신 시스템에서는 진화된 소형 셀, 개선된 소형 셀 (advanced small cell), 클라우드 무선 액세스 네트워크 (cloud radio access network: cloud RAN), 초고밀도 네트워크 (ultra-dense network), 기기 간 통신 (Device to Device communication: D2D), 무선 백홀 (wireless backhaul), 이동 네트워크 (moving network), 협력 통신 (cooperative communication), CoMP (Coordinated Multi-Points), 및 수신 간섭제거 (interference cancellation) 등의 기술 개발이 이루어지고 있다. 이 밖에도, 5G 시스템에서는 진보된 코딩 변조(Advanced Coding Modulation: ACM) 방식인 FQAM (Hybrid FSK and QAM Modulation) 및 SWSC (Sliding Window Superposition Coding)과, 진보된 접속 기술인 FBMC(Filter Bank Multi Carrier), NOMA(non-orthogonal multiple access), 및 SCMA(sparse code multiple access) 등이 개발되고 있다.
한편, 인터넷은 인간이 정보를 생성하고 소비하는 인간 중심의 연결 망에서, 사물 등 분산된 구성 요소들 간에 정보를 주고 받아 처리하는 IoT(Internet of Things, 사물인터넷) 망으로 진화하고 있다. 클라우드 서버 등과의 연결을 통한 빅데이터(Big data) 처리 기술 등이 IoT 기술에 결합된 IoE (Internet of Everything) 기술도 대두되고 있다. IoT를 구현하기 위해서, 센싱 기술, 유무선 통신 및 네트워크 인프라, 서비스 인터페이스 기술, 및 보안 기술과 같은 기술 요소 들이 요구되어, 최근에는 사물간의 연결을 위한 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 기술이 연구되고 있다. IoT 환경에서는 연결된 사물들에서 생성된 데이터를 수집, 분석하여 인간의 삶에 새로운 가치를 창출하는 지능형 IT(Internet Technology) 서비스가 제공될 수 있다. IoT는 기존의 IT(information technology)기술과 다양한 산업 간의 융합 및 복합을 통하여 스마트홈, 스마트 빌딩, 스마트 시티, 스마트 카 혹은 커넥티드 카, 스마트 그리드, 헬스 케어, 스마트 가전, 첨단의료서비스 등의 분야에 응용될 수 있다.
이에, 5G 통신 시스템을 IoT 망에 적용하기 위한 다양한 시도들이 이루어지고 있다. 예를 들어, 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 기술이 5G 통신 기술인 빔 포밍, MIMO 및 어레이 안테나 등의 기법에 의해 구현되고 있는 것이다. 앞서 설명한 빅데이터 처리 기술로써 클라우드 무선 액세스 네트워크(cloud RAN)가 적용되는 것도 5G 기술과 IoT 기술 융합의 일 예라고 할 수 있을 것이다.
무선통신 시스템, 특히 new radio (NR) 시스템에서는 하향링크 및 상향링크에서 대역폭 부분을 정의하고, 단말이 정의된 대역폭 부분 이내에서만 신호를 송신하거나 수신할 수 있도록 할 수 있다. 즉, 단말이 전체 시스템 주파수 대역폭이 아니라 특정 설정된 주파수 대역폭 이내에서만 송수신 동작을 수행할 수 있다. 또한 특정 대역폭 부분 이내에서 제어채널 영역을 설정하여, 단말이 설정된 제어채널 영역에서 하향링크 제어정보를 디코딩할 수 있게 하고, 수신할 수 다.
한편, NR 기반으로 단말 간 통신을 할 수 있도록 하기 위해 사이드링크를 이용할 수 있다. 사이드링크를 이용하기 위해, 사이드링크에서의 대역폭 부분이 정의될 수 있고, 해당 대역폭 부분에서 제어채널 영역을 설정할 수 있다. 해당 제어채널 영역에서 어떠한 단말은 제어신호를 송신하고, 어떠한 단말들은 제어신호를 수신할 수 있다. 본 개시에서는 위의 동작을 수행하기 위해서 사이드링크에서 제어채널 영역을 설정하는 방법 및 장치를 제공하고, 사이드링크 신호 송수신을 위한 슬롯 구조를 제공한다.
상기와 같은 문제점을 해결하기 위해 본 개시는 통신 시스템에서 단말간 통신을 수행하기 위해, 기지국으로부터 제어채널에 관련된 설정을 수신하는 단계 및 상기 설정에 기반하여 제어신호를 송신 또는 수신하는 단계를 포함하는 것을 특징으로 한다.
본 개시의 다른 양태에 따르면, 본 개시는 통신 시스템에서 단말간 통신을 수행하기 위해 채널 엑세스를 수행하는 단계 및 프리앰블을 송신하는 단계를 포함하는 것을 특징으로 한다.
또한, 상기와 같은 문제점을 해결하기 위해 본 개시는 무선 통신 시스템에서 단말의 방법에 있어서, 기지국으로부터 사이드링크에 대한 제1 대역폭 부분 (bandwidthpart: BWP) 설정 정보 및 리소스풀에 대한 정보를 포함하는 설정 정보를 수신하는 단계; 상기 설정 정보에 기반하여 사이드링크를 위한 리소스풀을 확인하는 단계; 및 상기 리소스풀에 기반하여 다른 단말과 통신을 수행하는 단계를 포함하며, 상기 리소스풀에 대한 정보는 상기 리소스풀의 가장 낮은 물리적 자원 블록 (physical resource block: PRB) 인덱스를 포함하는 것을 특징으로 한다.
또한, 상기와 같은 문제점을 해결하기 위해 본 개시는 무선 통신 시스템에서 단말에 있어서, 송수신부; 상기 송수신부를 통해 기지국으로부터 사이드링크에 대한 제1 대역폭 부분 (bandwidthpart: BWP) 설정 정보 및 리소스풀에 대한 정보를 포함하는 설정 정보를 수신하고, 상기 설정 정보에 기반하여 사이드링크를 위한 리소스풀을 확인하고, 상기 리소스풀에 기반하여 다른 단말과 통신을 수행하는 제어부를 포함하며, 상기 리소스풀에 대한 정보는 상기 리소스풀의 가장 낮은 물리적 자원 블록 (physical resource block: PRB) 인덱스를 포함하는 것을 특징으로 한다.
본 개시에서는 단말간 통신을 위해 사이드링크에서 제어채널이 송수신되는 영역을 정의하고 해당 제어채널 영역에서의 송수신 동작을 제공하여, 단말간 사이드링크 송수신을 원활하게 할 수 있도록 한다.
도 1은 new radio 시스템의 하향링크 혹은 상향링크 시간-주파수영역 전송 구조를 나타낸 도면이다.
도 2는 통신 시스템에서 eMBB, URLLC, mMTC용 데이터들이 주파수-시간자원에서 할당된 일 예를 도시한 도면이다.
도 3은 통신 시스템에서 eMBB, URLLC, mMTC용 데이터들이 주파수-시간자원에서 할당된 다른 예를 도시한 도면이다.
도 4는 하나의 트랜스포트 블록이 여럿의 코드 블록으로 나뉘고 CRC가 추가되는 구조를 나타낸 도면이다.
도 5는 아우터코드가 적용되어 코딩되는 구조를 나타낸 도면이다.
도 6은 아우터코드 적용 유무에 따른 블록도를 나타낸 도면이다.
도 7은 하나의 트랜스포트 블록이 여럿의 코드 블록으로 나뉘고 아우터 코드가 적용되어 패리티코드블록이 생성된 구조를 도시한 도면이다.
도 8은 NR 시스템에서 단말이 제1신호를 수신하고, 이에 대한 제2신호를 단말이 송신할 때, 단말과 기지국 사이의 거리에 따른 timing advance에 따른 단말의 프로세싱 타임을 도시한 도면이다.
도 9는 본 개시에 따라 두 단말 간에 일대일 통신, 즉 유니캐스트 (unicast) 통신이 사이드링크를 통해 수행되는 일례를 도시한 도면이다.
도 10은 본 개시에 따라 하나의 단말이 복수의 단말들에게 공통의 데이터를 사이드링크를 통해 전송하는 그룹캐스트 (groupcast) 통신의 일례를 도시한 도면이다.
도 11은 본 개시에 따라 그룹캐스트 통신을 이용하여 공통의 데이터를 수신한 단말들이 데이터 수신 성공 또는 실패와 관련된 정보를 데이터를 전송한 단말에게 송신하는 과정을 도시한 도면이다.
도 12는 본 개시의 일 실시예에 따라 사이드링크 통신을 위해 설정된 BWP와 상기 BWP 내에 설정된 리소스풀의 일례를 도시한 도면이다.
도 13은 본 개시의 일 실시예에 따라 하나의 슬롯에서 사이드링크 전송을 위한 물리채널을 전송하는 일례를 도시한 도면이다.
도 14는 본 개시의 일 실시예에 따라 사이드링크에서 물리채널들이 한 슬롯에서 전송되는 일례를 도시한 도면이다.
도 15는 본 개시의 일 실시예에 따라 단말이 채널 엑세스를 수행하고 그에 따라 신호를 송신하는 일례를 도시한 도면이다.
도 16은 본 개시의 일 실시예에 따라 적어도 두 개의 단말이 존재할 때 상기 적어도 두 개의 단말이 채널 엑세스와 프리앰블을 전송하는 일례를 도시한 도면이다.
도 17은 본 개시의 실시예들에 따른 단말의 내부 구조를 도시하는 도면이다.
도 18은 본 개시의 실시예들에 따른 기지국의 내부 구조를 도시하는 도면이다.
4G 통신 시스템 상용화 이후 증가 추세에 있는 무선 데이터 트래픽 수요를 충족시키기 위해, 개선된 5G 통신 시스템 또는 pre-5G 통신 시스템을 개발하기 위한 노력이 이루어지고 있다. 이러한 이유로, 5G 통신 시스템 또는 pre-5G 통신 시스템은 4G 네트워크 이후 (Beyond 4G Network) 통신 시스템 또는 LTE 시스템 이후 (Post LTE) 이후의 시스템이라 불리어지고 있다. 3GPP에서 정한 5G 통신 시스템은 New Radio (NR) 시스템이라고 불리고 있다. 높은 데이터 전송률을 달성하기 위해, 5G 통신 시스템은 초고주파(mmWave) 대역 (예를 들어, 60기가(60GHz) 대역과 같은)에서의 구현이 고려되고 있다. 초고주파 대역에서의 전파의 경로손실 완화 및 전파의 전달 거리를 증가시키기 위해, 5G 통신 시스템에서는 빔포밍(beamforming), 거대 배열 다중 입출력(massive MIMO), 전차원 다중입출력(Full Dimensional MIMO: FD-MIMO), 어레이 안테나(array antenna), 아날로그 빔형성(analog beam-forming), 및 대규모 안테나 (large scale antenna) 기술들이 논의되었고, NR 시스템에 적용되었다. 또한 시스템의 네트워크 개선을 위해, 5G 통신 시스템에서는 진화된 소형 셀, 개선된 소형 셀 (advanced small cell), 클라우드 무선 액세스 네트워크 (cloud radio access network: cloud RAN), 초고밀도 네트워크 (ultra-dense network), 기기 간 통신 (Device to Device communication: D2D), 무선 백홀 (wireless backhaul), 이동 네트워크 (moving network), 협력 통신 (cooperative communication), CoMP (Coordinated Multi-Points), 및 수신 간섭제거 (interference cancellation) 등의 기술 개발이 이루어지고 있다. 이 밖에도, 5G 시스템에서는 진보된 코딩 변조(Advanced Coding Modulation: ACM) 방식인 FQAM (Hybrid FSK and QAM Modulation) 및 SWSC (Sliding Window Superposition Coding)과, 진보된 접속 기술인 FBMC(Filter Bank Multi Carrier), NOMA(non-orthogonal multiple access), 및 SCMA(sparse code multiple access) 등이 개발되고 있다.
한편, 인터넷은 인간이 정보를 생성하고 소비하는 인간 중심의 연결 망에서, 사물 등 분산된 구성 요소들 간에 정보를 주고 받아 처리하는 IoT(Internet of Things, 사물인터넷) 망으로 진화하고 있다. 클라우드 서버 등과의 연결을 통한 빅데이터(Big data) 처리 기술 등이 IoT 기술에 결합된 IoE (Internet of Everything) 기술도 대두되고 있다. IoT를 구현하기 위해서, 센싱 기술, 유무선 통신 및 네트워크 인프라, 서비스 인터페이스 기술, 및 보안 기술과 같은 기술 요소 들이 요구되어, 최근에는 사물간의 연결을 위한 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 기술이 연구되고 있다. IoT 환경에서는 연결된 사물들에서 생성된 데이터를 수집, 분석하여 인간의 삶에 새로운 가치를 창출하는 지능형 IT(Internet Technology) 서비스가 제공될 수 있다. IoT는 기존의 IT(information technology)기술과 다양한 산업 간의 융합 및 복합을 통하여 스마트홈, 스마트 빌딩, 스마트 시티, 스마트 카 혹은 커넥티드 카, 스마트 그리드, 헬스 케어, 스마트 가전, 첨단의료서비스 등의 분야에 응용될 수 있다.
이에, 5G 통신 시스템을 IoT 망에 적용하기 위한 다양한 시도들이 이루어지고 있다. 예를 들어, 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 5G 통신이 빔 포밍, MIMO, 및 어레이 안테나 등의 기법에 의해 구현되고 있는 것이다. 앞서 설명한 빅데이터 처리 기술로써 클라우드 무선 액세스 네트워크(cloud RAN)가 적용되는 것도 5G 기술과 IoT 기술 융합의 일 예라고 할 수 있을 것이다.
한편, 새로운 5G 통신인 NR (New Radio access technology)에서는 시간 및 주파수 자원에서 다양한 서비스들이 자유롭게 다중화 될 수 있도록 하기 위하여 디자인되고 있으며, 이에 따라 waveform/numerology 등과 기준 신호 등이 해당 서비스의 필요에 따라 동적으로 혹은 자유롭게 할당될 수 있다. 무선 통신에서 단말에게 최적의 서비스를 제공하기 위해서는 채널의 질과 간섭량의 측정을 통한 최적화 된 데이터 송신이 중요하며, 이에 따라 정확한 채널 상태 측정은 필수적이다. 하지만, 주파수 자원에 따라 채널 및 간섭 특성이 크게 변화하지 않는 4G 통신과는 달리 5G 채널의 경우 서비스에 따라 채널 및 간섭 특성이 크게 변화하기 때문에 이를 나누어 측정할 수 있도록 하는 FRG (frequency resource Ggroup) 차원의 subset의 지원이 필요하다. 한편, NR 시스템에서는 지원되는 서비스의 종류를 eMBB (Enhanced mobile broadband), mMTC (massive machine type communications) (mMTC), URLLC (ultra-reliable and low-latency communications) 등의 카테고리로 나눌 수 있다. eMBB는 고용량데이터의 고속 전송, mMTC는 단말전력 최소화와 다수 단말의 접속, URLLC는 고신뢰도와 저지연을 목표로 하는 서비스라고 볼 수 있다. 단말에게 적용되는 서비스의 종류에 따라 서로 다른 요구사항들이 적용될 수 있다.
한편, 최근 차세대 통신 시스템에 대한 연구가 진행됨에 따라 단말과의 통신을 스케줄링하는 여러 가지 방안들이 논의되고 있다. 이에 따라, 차세대 통신 시스템의 특성을 고려한 효율적인 스케줄링 및 데이터 송수신 방안이 요구되는 실정이다.
이와 같이 통신 시스템에서 복수의 서비스가 사용자에게 제공될 수 있으며, 이와 같은 복수의 서비스를 사용자에게 제공하기 위해 특징에 맞게 각 서비스를 동일한 시구간 내에서 제공할 수 있는 방법 및 이를 이용한 장치가 요구된다.
이하, 본 개시의 실시 예를 첨부된 도면을 참조하여 상세하게 설명한다.
실시 예를 설명함에 있어서 본 개시가 속하는 기술 분야에 익히 알려져 있고 본 개시와 직접적으로 관련이 없는 기술 내용에 대해서는 설명을 생략한다. 이는 불필요한 설명을 생략함으로써 본 개시의 요지를 흐리지 않고 더욱 명확히 전달하기 위함이다.
마찬가지 이유로 첨부 도면에 있어서 일부 구성요소는 과장되거나 생략되거나 개략적으로 도시되었다. 또한, 각 구성요소의 크기는 실제 크기를 전적으로 반영하는 것이 아니다. 각 도면에서 동일한 또는 대응하는 구성요소에는 동일한 참조 번호를 부여하였다.
본 개시의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나 본 개시는 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시 예들은 본 개시의 개시가 완전하도록 하고, 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 개시는 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
이 때, 처리 흐름도 도면들의 각 블록과 흐름도 도면들의 조합들은 컴퓨터 프로그램 인스트럭션들에 의해 수행될 수 있음을 이해할 수 있을 것이다. 이들 컴퓨터 프로그램 인스트럭션들은 범용 컴퓨터, 특수용 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서에 탑재될 수 있으므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서를 통해 수행되는 그 인스트럭션들이 흐름도 블록(들)에서 설명된 기능들을 수행하는 수단을 생성하게 된다. 이들 컴퓨터 프로그램 인스트럭션들은 특정 방식으로 기능을 구현하기 위해 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 지향할 수 있는 컴퓨터 이용 가능 또는 컴퓨터 판독 가능 메모리에 저장되는 것도 가능하므로, 그 컴퓨터 이용가능 또는 컴퓨터 판독 가능 메모리에 저장된 인스트럭션들은 흐름도 블록(들)에서 설명된 기능을 수행하는 인스트럭션 수단을 내포하는 제조 품목을 생산하는 것도 가능하다. 컴퓨터 프로그램 인스트럭션들은 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에 탑재되는 것도 가능하므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에서 일련의 동작 단계들이 수행되어 컴퓨터로 실행되는 프로세스를 생성해서 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 수행하는 인스트럭션들은 흐름도 블록(들)에서 설명된 기능들을 실행하기 위한 단계들을 제공하는 것도 가능하다.
또한, 각 블록은 특정된 논리적 기능(들)을 실행하기 위한 하나 이상의 실행 가능한 인스트럭션들을 포함하는 모듈, 세그먼트 또는 코드의 일부를 나타낼 수 있다. 또, 몇 가지 대체 실행 예들에서는 블록들에서 언급된 기능들이 순서를 벗어나서 발생하는 것도 가능함을 주목해야 한다. 예컨대, 잇달아 도시되어 있는 두 개의 블록들은 사실 실질적으로 동시에 수행되는 것도 가능하고 또는 그 블록들이 때때로 해당하는 기능에 따라 역순으로 수행되는 것도 가능하다.
이 때, 본 실시 예에서 사용되는 '~부'라는 용어는 소프트웨어 또는 FPGA또는 ASIC과 같은 하드웨어 구성요소를 의미하며, '~부'는 어떤 역할들을 수행한다. 그렇지만 '~부'는 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. '~부'는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다. 따라서, 일 예로서 '~부'는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들, 및 변수들을 포함한다. 구성요소들과 '~부'들 안에서 제공되는 기능은 더 작은 수의 구성요소들 및 '~부'들로 결합되거나 추가적인 구성요소들과 '~부'들로 더 분리될 수 있다. 뿐만 아니라, 구성요소들 및 '~부'들은 디바이스 또는 보안 멀티미디어카드 내의 하나 또는 그 이상의 CPU들을 재생시키도록 구현될 수도 있다. 또한 실시 예에서 '~부'는 하나 이상의 프로세서를 포함할 수 있다.
무선 통신 시스템은 초기의 음성 위주의 서비스를 제공하던 것에서 벗어나 예를 들어, 3GPP의 HSPA(high speed packet access), LTE(long term evolution 혹은 E-UTRA(evolved universal terrestrial radio access)), LTE-Advanced (LTE-A), 3GPP2의 HRPD(high rate packet data), UMB(ultra mobile broadband), 및 IEEE의 802.16e 등의 통신 표준과 같이 고속, 고품질의 패킷 데이터 서비스를 제공하는 광대역 무선 통신 시스템으로 발전하고 있다. 또한, 5세대 무선통신 시스템으로 5G 혹은 NR (new radio)의 통신표준이 만들어지고 있다.
상기 광대역 무선 통신 시스템의 대표적인 예로, NR 시스템에서는 하향링크(downlink; DL) 및 상향링크에서는 OFDM(orthogonal frequency division multiplexing) 방식을 채용하고 있다. 다만 보다 구체적으로는 하향링크에서는 CP-OFDM (cyclic-prefix OFDM) 방식이 채용되었고, 상향링크에서는 CP-OFDM과 더불어 DFT-S-OFDM (discrete Fourier transform spreading OFDM) 방식 두 가지가 채용되었다. 상향링크는 단말(user equipment: UE) 혹은 MS(mobile station))이 기지국(gNode B, 혹은 base station (BS))으로 데이터 혹은 제어신호를 전송하는 무선링크를 의미하고, 하향링크는 기지국이 단말로 데이터 혹은 제어신호를 전송하는 무선링크를 의미한다. 상기와 같은 다중 접속 방식은, 통상 각 사용자 별로 데이터 혹은 제어정보를 실어 보낼 시간-주파수 자원을 서로 겹치지 않도록, 즉 직교성 (orthogonality)이 성립하도록, 할당 및 운용함으로써 각 사용자의 데이터 혹은 제어정보를 구분한다.
NR 시스템은 초기 전송에서 복호 실패가 발생된 경우, 물리 계층에서 해당 데이터를 재전송하는 HARQ (hybrid automatic repeat request) 방식을 채용하고 있다. HARQ 방식이란 수신기가 데이터를 정확하게 복호화(디코딩)하지 못한 경우, 수신기가 송신기에게 디코딩 실패를 알리는 정보(NACK; negative acknowledgement)를 전송하여 송신기가 물리 계층에서 해당 데이터를 재전송할 수 있게 한다. 수신기는 송신기가 재전송한 데이터를 이전에 디코딩 실패한 데이터와 결합하여 데이터 수신성능을 높이게 된다. 또한, 수신기가 데이터를 정확하게 복호한 경우 송신기에게 디코딩 성공을 알리는 정보(ACK; acknowledgement)를 전송하여 송신기가 새로운 데이터를 전송할 수 있도록 할 수 있다.
도 1은 NR 시스템에서 하향링크 혹은 상향링크에서 상기 데이터 혹은 제어채널이 전송되는 무선자원영역인 시간-주파수영역의 기본 구조를 나타낸 도면이다.
도 1에서 가로축은 시간영역을, 세로축은 주파수영역을 나타낸다. 시간영역에서의 최소 전송단위는 OFDM 심볼로서, Nsymb (1-02)개의 OFDM 심볼이 모여 하나의 슬롯(1-06)을 구성한다. 서브프레임의 길이는 1.0ms으로 정의되고, 라디오 프레임(1-14)은 10 ms로 정의된다. 주파수영역에서의 최소 전송단위는 서브캐리어로서, 전체 시스템 전송 대역(Transmission bandwidth)의 대역폭은 총 NBW (1-04)개의 서브캐리어로 구성된다.
시간-주파수영역에서 자원의 기본 단위는 리소스 엘리먼트(resource element; RE)(1-12)로서 OFDM 심볼 인덱스 및 서브캐리어 인덱스로 나타낼 수 있다. 리소스 블록(resource block; RB 혹은 physical resource block; PRB)(1-08)은 시간영역에서 Nsymb(1-02)개의 연속된 OFDM 심볼과 주파수 영역에서 NRB(1-10)개의 연속된 서브캐리어로 정의된다. 따라서, 하나의 RB(1-08)는 Nsymb x NRB 개의 RE(1-12)로 구성된다. 일반적으로 데이터의 최소 전송단위는 상기 RB 단위이다.
NR 시스템에서 일반적으로 상기 Nsymb = 14, NRB=12 이고, NBW 및 NRB는 시스템 전송 대역의 대역폭에 비례한다. 단말에게 스케줄링 되는 RB 개수에 비례하여 데이터 레이트가 증가할 수 있다. NR 시스템에서는 하향링크와 상향링크를 주파수로 구분하여 운영하는 FDD 시스템의 경우, 하향링크 전송 대역폭과 상향링크 전송 대역폭이 서로 다를 수 있다. 채널 대역폭은 시스템 전송 대역폭에 대응되는 RF 대역폭을 나타낸다.
표 1은 NR 시스템 이전에 4세대 무선 통신인 LTE 시스템에 정의된 시스템 전송 대역폭과 채널 대역폭 (channel bandwidth)의 대응관계를 나타낸다. 예를 들어, 10MHz 채널 대역폭을 갖는 LTE 시스템은 전송 대역폭이 50개의 RB로 구성될 수 있다.
[표 1]
Figure PCTKR2020004465-appb-I000001
NR 시스템에서는 [표 1]에서 제시된 LTE의 채널 대역폭보다 더 넓은 채널 대역폭에서 동작할 수 있다.
NR 시스템에서 하향링크 데이터 혹은 상향링크 데이터에 대한 스케줄링 정보는 하향링크 제어정보(downlink control information; DCI)를 통해 기지국으로부터 단말에게 전달된다. DCI는 여러 가지 포맷에 따라 정의되며, 각 포멧에 따라 상향링크 데이터에 대한 스케줄링 정보 (UL grant) 인지 하향링크 데이터에 대한 스케줄링 정보(DL grant) 인지 여부, 제어정보의 크기가 작은 컴팩트 DCI인지 여부, 다중안테나를 사용한 공간 다중화(spatial multiplexing)을 적용하는지 여부, 전력제어 용 DCI인지 여부 등을 나타낼 수 있다. 예컨대, 하향링크 데이터에 대한 스케줄링 제어정보(DL grant)인 DCI format 1-1 은 적어도 다음과 같은 제어정보들 중 하나를 포함할 수 있다.
- 캐리어 지시자: 어떠한 주파수 캐리어에서 전송되는지를 지시한다.
- DCI 포맷 지시자: 해당 DCI가 하향링크용인지 상향링크용인지 구분하는 지시자이다.
- 대역폭 부분 (bandwidth part; BWP) 지시자: 어떠한 BWP에서 전송되는지를 지시한다.
- 주파수영역 자원 할당: 데이터 전송에 할당된 주파수영역의 RB를 지시한다. 시스템 대역폭 및 리소스 할당 방식에 따라 표현하는 리소스가 결정된다.
- 시간영역 자원 할당: 데이터 관련 채널이 전송될 슬롯 및 OFDM 심볼을 지시한다.
- VRB-to-PRB 매핑: 가상 RB(virtual RB: VRB) 인덱스와 물리 RB(physical RB: PRB) 인덱스를 어떤 방식으로 매핑할 것인지를 지시한다.
- 변조 및 코딩 방식 (modulation and coding scheme; MCS): 데이터 전송에 사용된 변조방식과 코딩 레이트를 지시한다. 즉, QPSK인지, 16QAM인지, 64QAM인지, 256QAM인지에 대한 정보와 함께 TBS 및 채널코딩 정보를 알려줄 수 있는 코딩 레이트 값을 지시할 수 있다.
- CBG 전송 정보 (codeblock group transmission information): CBG 재전송이 설정되었을 때, 어느 CBG가 전송되는지에 대한 정보를 지시한다.
- HARQ 프로세스 번호 (HARQ process number): HARQ 의 프로세스 번호를 지시한다.
- 새로운 데이터 지시자 (new data indicator): HARQ 초기전송인지 재전송인지를 지시한다.
- 중복 버전 (redundancy version): HARQ 의 중복 버전(redundancy version) 을 지시한다.
- PUCCH를 위한 전송 전력 제어 명령 (transmit power control (TPC) command) for PUCCH (physical uplink control channel): 상향링크 제어 채널인 PUCCH 에 대한 전송 전력 제어 명령을 지시한다.
상기에서 PUSCH 전송의 경우 시간영역 자원 할당 (time domain resource assignment)은 PUSCH가 전송되는 슬롯에 관한 정보 및, 해당 슬롯에서의 시작 심볼 위치 S와 PUSCH가 매핑되는 심볼 개수 L에 의해 전달될 수 있다. 상기에서 S는 슬롯의 시작으로부터 상대적인 위치일 수 있고, L은 연속된 심볼 개수 일 수 있으며, S와 L은 아래와 같이 정의되는 시작 및 길이 지시자 값 (start and length indicator value: SLIV)로부터 결정될 수 있다.
Figure PCTKR2020004465-appb-I000002
NR 시스템에서는 일반적으로 RRC 설정을 통해서, 하나의 행에 SLIV 값과 PUSCH 매핑 타입 및 PUSCH가 전송되는 슬롯에 대한 정보가 포함된 정보를 설정 받을 수 있다. 상기 정보는 예를 들어, 상기 정보는 표의 형태로 구성될 수 있다. 이후 상기 DCI의 시간영역 자원 할당에서는 상기 설정된 표에서의 index 값을 지시함으로써 기지국이 단말에게 SLIV 값, PUSCH 매핑 타입, PUSCH가 전송되는 슬롯에 대한 정보를 전달할 수 있다.
NR 시스템에서는 PUSCH 매핑 타입은 타입 A (type A)와 타입 B (type B)가 정의되었다. PUSCH 매핑 타입 A는 슬롯에서 두 번째 혹은 세 번째 OFDM 심볼에서 DMRS 심볼 중 첫 번째 심볼이 위치해 있다. PUSCH 매핑 타입 B는 PUSCH 전송으로 할당 받은 시간영역 자원에서의 첫 번째 OFDM 심볼에서 DMRS 심볼 중 첫 번째 심볼이 위치해 있다.
상기 DCI는 채널코딩 및 변조과정을 거쳐 하향링크 물리제어채널인 PDCCH (physical downlink control channel) 상에서 전송될 수 있다. 상기 PDCCH 상에서 전송되는 DCI는 제어 정보라는 용어와 혼용하여 사용하도록 한다. 또한, 상기 PDCCH를 통해 DCI가 송수신되는 과정은 PDCCH가 송수신된다고 표현될 수 있다.
일반적으로 상기 DCI는 각 단말에 대해 독립적으로 특정 RNTI (radio network temporary identifier)(또는, 단말 식별자)로 스크램블 되어 CRC (cyclic redundancy check)가 추가되고, 채널코딩된 후, 각각 독립적인 PDCCH로 구성되어 전송된다. 상기 PDCCH는 단말에게 설정된 제어자원집합 (control resource set: CORESET)에서 매핑되어 전송된다.
하향링크 데이터는 하향링크 데이터 전송용 물리채널인 PDSCH (physical downlink shared channel) 상에서 전송 될 수 있다. PDSCH는 상기 제어채널 전송구간 이후부터 전송될 수 있으며, 주파수 영역에서의 구체적인 매핑 위치, 변조 방식 등의 스케줄링 정보는 상기 PDCCH를 통해 전송되는 DCI를 기반으로 결정된다.
상기 DCI를 구성하는 제어정보 중에서 MCS 를 통해서, 기지국은 단말에게 전송하고자 하는 PDSCH에 적용된 변조방식과 전송하고자 하는 데이터의 크기 (transport block size; TBS)를 통지한다. 실시 예에서 MCS 는 5비트 혹은 그보다 더 많거나 적은 비트로 구성될 수 있다. 상기 TBS 는 기지국이 전송하고자 하는 데이터 (transport block, TB)에 오류정정을 위한 채널코딩이 적용되기 이전의 크기에 해당한다.
본 개시에서 트랜스포트블록(transport block; TB)라 함은, MAC (medium access control) 헤더, MAC 제어요소 (control element; CE), 1개 이상의 MAC SDU (service data unit), padding 비트들을 포함할 수 있다. 또는 TB는 MAC 계층에서 물리계층 (physical layer)로 내려주는 (deliver) 데이터의 단위 혹은 MAC PDU (protocol data unit)를 가리킬 수 있다.
NR 시스템에서 지원하는 변조방식은 QPSK (quadrature phase shift keying), 16QAM (quadrature amplitude modulation), 64QAM, 및 256QAM으로서, 각각의 변조오더 (modulation order)(Qm)는 2, 4, 6, 8에 해당한다. 즉, QPSK 변조의 경우 심볼 당 2 비트, 16QAM 변조의 경우 심볼 당 4 비트, 64QAM 변조의 경우 심볼당 6 비트를 전송할 수 있으며, 256QAM 변조의 경우 심볼당 8비트를 전송할 수 있다.
도 2와 도 3은 5G 혹은 NR 시스템에서 고려되는 서비스인 eMBB, URLLC, mMTC용 데이터들이 주파수-시간자원에서 할당된 일 예를 도시한다.
도 2 및 도 3을 참조하면, 각 시스템에서 정보 전송을 위해 주파수 및 시간 자원이 할당된 방식을 확인할 수 있다.
도 2를 참고하면, 전제 시스템 주파수 대역(2-00)에서 eMBB, URLLC, mMTC용 데이터가 할당될 수 있다. eMBB(2-01)와 mMTC(2-09) 데이터가 특정 주파수 대역에서 할당되어 전송될 수 있으며, 상기 데이터가 전송되는 중에 URLLC 데이터(2-03, 2-05, 2-07)가 발생하여 전송이 필요한 경우, eMBB(2-01) 및 mMTC(2-09) 데이터가 이미 할당된 부분을 비우거나, 상기 데이터를 전송을 하지 않고 URLLC 데이터(2-03, 2-05, 2-07)를 전송할 수 있다.
상기 서비스 중에서 URLLC 서비스는 지연시간을 줄이는 것이 필요하기 때문에, eMBB가 할당된 자원(2-01)의 일부분에 URLLC 데이터가 할당(2-03, 2-05, 2-07)되어 전송될 수 있다. 물론 eMBB가 할당된 자원에서 URLLC가 추가로 할당되어 전송되는 경우, 중복되는 주파수-시간 자원에서는 eMBB 데이터가 전송되지 않을 수 있으며, 따라서 eMBB 데이터의 전송 성능이 낮아질 수 있다. 즉, 상기의 경우에 URLLC 할당으로 인한 eMBB 데이터 전송 실패가 발생할 수 있다.
도 3을 참고하면, 전체 시스템 주파수 대역(3-00)을 나누어 각 서브밴드(3-02, 3-04, 3-06)에서 각 서비스 및 데이터가 전송될 수 있다. 상기 서브밴드 설정과 관련된 정보는 미리 결정될 수 있으며, 기지국이 단말에게 상위 시그널링을 통해 상기 정보를 전송할 수 있다. 혹은 상기 서브 밴드와 관련된 정보는 기지국 또는 네트워크 노드가 임의로 나누어 단말에게 별도의 서브밴드 설정 정보의 전송 없이 서비스들을 제공할 수도 있다. 도 3에서는 서브밴드 3-02는 eMBB 데이터 전송, 서브밴드 3-04는 URLLC 데이터 전송, 서브밴드 306에서는 mMTC 데이터 전송에 사용되는 모습을 도시한다.
실시 예 전반에서 URLLC 전송에 사용되는 전송시간구간 (transmission time interval: TTI)의 길이는 eMBB 혹은 mMTC 전송에 사용되는 TTI 길이보다 짧을 수 있다. 또한 URLLC와 관련된 정보의 응답을 eMBB 또는 mMTC보다 빨리 전송할 수 이 있으며, 이에 따라 낮은 지연으로 정보를 송수신 할 수 있다. 상기 3가지의 서비스 혹은 데이터를 전송하기 위해 각 타입별로 사용하는 물리계층 채널의 구조는 다를 수 있다. 예를 들어, 전송시간구간(TTI)의 길이, 주파수 자원의 할당 단위, 제어채널의 구조 및 데이터의 매핑 방법 중 적어도 하나가 다를 수 있을 것이다.
상기에서는 3가지의 서비스와 3가지의 데이터로 설명을 하였지만 더 많은 종류의 서비스와 그에 해당하는 데이터가 존재할 수 있으며, 이 경우에도 본 개시의 내용이 적용될 수 있다.
실시 예에서 제안하는 방법 및 장치를 설명하기 위해 NR 시스템에서의 물리채널 (physical channel)과 신호(signal)라는 용어가 사용될 수 있다. 하지만 본 개시의 내용은 NR 시스템이 아닌 무선 통신 시스템에서 적용될 수 있는 것이다.
도 4는 하나의 트랜스포트 블록이 여러 개의 코드 블록으로 나뉘고 CRC가 추가되는 과정을 도시한 도면이다.
도 4를 참조하면, 상향링크 또는 하향링크에서 전송하고자 하는 하나의 트랜스포트블록 (TB)(4-01)의 마지막 또는 맨 앞부분에 CRC(4-03)가 추가될 수 있다. 상기 CRC는 16비트 혹은 24비트 혹은 미리 고정된 비트 수를 가지거나 채널 상황 등에 따라 가변적인 비트 수를 가질 수 있으며, 채널코딩의 성공 여부를 판단하는데 사용될 수 있다.
TB(4-01)에 CRC(4-03)가 추가된 블록은 여러 개의 코드블록(codeblock; CB)들(4-07, 4-09, 4-11, 4-13)로 나뉠 수 있다(4-05). 상기 코드블록은 최대 크기가 미리 정해져서 나뉠 수 있으며, 이 경우 마지막 코드블록(4-13)은 다른 코드블록보다 크기가 작을 수 있거나, 혹은 0, 랜덤 값 혹은 1을 넣어 다른 코드블록들과 길이를 같도록 맞추어줄 수 있다. 상기 나뉜 코드블록들에 각각 CRC들(4-17, 4-19, 4-21, 4-23)이 추가될 수 있다(4-15). 상기 CRC는 16비트 혹은 24비트 혹은 미리 고정된 비트수를 가질 수 있으며, 채널코딩의 성공 여부를 판단할 수 있는데 사용될 수 있다.
상기 CRC(4-03)을 생성하기 위해 TB(4-01)와 cyclic generator polynomial이 사용될 수 있으며, 상기 cyclic generator polynomial은 다양한 방법으로 정의될 수 있다. 예를 들어, 24비트 CRC를 위한 cyclic generator polynomial gCRC24A(D) = D24 + D23 + D18 + D17 + D14 + D11 + D10 + D7 + D6 + D5 + D4 + D3 + D + 1 라고 가정하고, L=24라 할 때, TB 데이터
Figure PCTKR2020004465-appb-I000003
에 대해, CRC
Figure PCTKR2020004465-appb-I000004
Figure PCTKR2020004465-appb-I000005
를 상기 gCRC24A(D)로 나누어 나머지가 0이 되는 값으로
Figure PCTKR2020004465-appb-I000006
를 결정할 수 있다.
상기에서 CRC 길이 L은 24인 경우를 일례로 설명하였지만 상기 길이는 12, 16, 24, 32, 40, 48, 64 등 여러 가지 길이로 결정 될 수 있다. 상기 과정에 따라 TB에 CRC를 추가후, N개의 CB로 분할한다(4-07, 4-09, 4-11, 4-13). 분할된 각각의 CB들(4-07, 4-09, 4-11, 4-13)에 CRC(4-17, 4-19, 4-21, 4-23)가 추가될 수 있다(4-15). 상기 CB에 추가되는 CRC는 TB에 추가된 CRC와는 다른 길이의 CRC 혹은 다른 cyclic generator polynomial이 사용될 수 있다. 하지만 상기 TB에 추가된 CRC(4-03)과 코드블록에 추가된 CRC들(4-17, 4-19, 4-21, 4-23)은 코드블록에 적용될 채널코드의 종류에 따라 생략될 수도 있다. 예를 들어, 터보코드가 아니라 LDPC 코드가 코드블록에 적용될 경우, 코드블록마다 삽입될 CRC들(4-17, 4-19, 4-21, 4-23)은 생략될 수도 있다. 하지만, LDPC가 적용되는 경우에도 CRC들(4-17, 4-19, 4-21, 4-23)은 그대로 코드블록에 추가될 수 있다. 또한 폴라 코드가 사용되는 경우에도 CRC가 추가되거나 생략 될 수 있다.
도 4에서 도시한 바와 같이, 전송하고자 하는 TB는 적용되는 채널코딩의 종류에 따라 하나의 코드블록의 최대길이가 정해지고, 상기 코드블록의 최대길이에 따라 TB 및 TB에 추가되는 CRC는 코드블록으로 분할된다. 종래 LTE 시스템에서는 상기 분할된 CB에 CB용 CRC가 추가되고, CB의 데이터 비트 및 CRC는 채널코드로 인코딩되어 코딩된 비트들(coded bits)이 결정되고, 각각의 코딩된 비트들은 미리 약속된 바와 같이 레이트 매칭되는 비트수가 결정된다.
도 5는 아우터코드가 사용되어 전송되는 방식을 도시한 도면이고, 도 6은 상기 아우터코드가 사용된 통신시스템의 구조를 나타낸 블록도이다.
도 5 및 도 6을 참고하여 아우터 코드를 사용하여 신호를 전송하는 방법에 대해서 설명한다.
도 5에 따르면, 하나의 트랜스포트 블록이 여러 개의 코드블록으로 나뉜 후, 각 코드블록에서 같은 위치에 있는 비트 혹은 심볼들(5-04)끼리 제2 채널코드로 인코딩 되어 패리티 비트 혹은 심볼들(5-06)이 생성될 수 있다(5-02). 이후, 각 코드블록들과 제2 채널코드 인코딩으로 생성된 패리티 코드 블록들에 각각 CRC들이 추가될 수 있다(5-08, 5-10).
상기 CRC는 채널코드의 종류에 따라 추가여부가 달라질 수 있다. 예를 들어 터보코드가 제1 채널코드로 사용되는 경우에는 상기 CRC(5-08, 5-10)가 추가되지만, 이후에는 제1 채널코드 인코딩으로 각각의 코드블록 및 패리티 코드 블록들이 인코딩 될 수 있다. 본 개시에서 제1 채널코드는 convolutional code, LDPC code, turbo code, polar code 등이 될 수 있다. 하지만 이에 한정되지 않고, 다양한 채널코드가 본 개시에 적용 될 수 있다.
본 개시에서 상기 제2 채널코드는 예를 들어 Reed-solomon code, BCH code, Raptor code, 패리티비트 생성 코드 등이 될 수 있다. 하지만 이에 한정되지 않고 다양한 채널코드가 제2 채널코드로 본 개시에 적용될 수 있을 것이다.
도 6b를 참고하면, 아우터 코드가 사용되는 경우, 송신할 데이터는 제2 채널코딩 인코더(6-09)를 통과한다. 이렇게 제2 채널코딩 인코더(6-09)를 통과한 비트 또는 심볼들은 제1 채널코딩 인코더(6-11)를 통과한다. 이렇게 채널코딩된 심볼들이 채널(6-13)을 통과하여 수신기에 수신되면, 수신기 측에서는 수신한 신호를 기반으로 제1 채널코딩 디코더(6-15)와 제2 채널코딩 디코더(6-17)를 순차적으로 동작시킬 수 있다. 제1 채널코딩 디코더(6-15) 및 제2 채널코딩 디코더(6-17)은 각각 제1 채널 코딩 인코더(6-11) 및 제2 채널 코딩 인코더(6-09)와 대응되는 동작을 수행할 수 있다.
반면, 도 6a를 참고하면, 아우터코드가 사용되지 않은 채널코딩 블록도()에서는 제1채널코딩 인코더(6-01)와 제1 채널코딩 디코더(6-05)만 송수신기에서 각각 사용되며, 제2 채널코딩 인코더와 제2 채널코딩 디코더는 사용되지 않는다. 아우터 코드가 사용되지 않는 경우에도 제1채널코딩 인코더(6-01)와 제1 채널코딩 디코더(6-05)는 아우터 코드가 사용된 경우와 동일하게 구성될 수 있다.
도 7은 하나의 트랜스포트 블록이 다수의 코드 블록으로 분할되고 아우터 코드가 적용되어 패리티코드블록이 생성된 구조를 도시한 도면이다.
도 7은 하나의 트랜스포트 블록이 여러 개의 코드 블록으로 분할된 후 제2 채널코드 혹은 아우터 코드가 적용되어 하나 이상의 패리티 코드 블록이 생성된 일례를 도시한 도면이다. 상기 도 4와 같이 하나의 트랜스포트 블록은 하나 이상의 코드 블록으로 분할될 수 있다. 이 때 트랜스포트 블록 크기에 따라 코드 블록이 하나만 생성되는 경우에는 해당 코드블록에 CRC가 더해지지 않을 수 있다.
전송하고자 하는 코드블록들에 아우터코드를 적용하면, 패리티 코드블록(7-40, 7-42)이 생성된다(7-24). 아우터코드를 사용할 때 패리티 코드 블록은 맨 마지막 코드블록 뒤에 위치할 수 있다(7-24). 아우터코드를 적용한 이후, CRC(7-26, 7-28, 7-30, 7-32, 7-34, 7-36)를 추가한다(7-38). 이후 각 코드블록 및 패리티 코드 블록은 CRC와 함께 채널코드를 이용하여 인코딩 될 수 있다.
이하 본 개시에서는 상향링크 스케줄링 승인 신호와 하향링크 데이터 신호를 제1 신호라 칭한다. 또한 본 개시에서는 상향링크 스케줄링 승인에 대한 상향링크 데이터 신호와, 하향링크 데이터 신호에 대한 HARQ ACK/NACK을 제2 신호라 칭한다. 즉, 본 개시에서는 기지국이 단말에게 전송하는 신호 중에서, 단말로부터의 응답을 기대하는 신호이면 제1 신호가 될 수 있으며, 제1 신호에 해당하는 단말의 응답신호가 제2 신호로 될 수 있다. 다만, 본 개시의 제1 신호 제2 신호는 상기 신호에 한정되는 것은 아니며, 서로 다른 신호를 구분하기 위해 제1 신호와 제2 신호가 사용될 수 있다.
또한 본 개시에서 제1 신호의 서비스 종류는 eMBB, mMTC, URLLC (등의 카테고리에 속할 수 있다.
이하 본 개시에서 제1 신호의 TTI길이는, 제1 신호가 전송되는 시간의 길이를 의미한다. 또한 본 개시에서 제2 신호의 TTI길이는, 제2 신호가 전송되는 시간의 길이를 의미한다. 또한 본 개시에서 제2 신호 전송 타이밍은 단말이 제2 신호를 송신하고, 기지국이 제2 신호를 언제 수신하는 시점 (또는 타이밍)에 대한 정보이며, 제2 신호 송수신 타이밍이라 칭할 수 있다.
단말은 일반적으로 기지국으로부터 떨어져 있기 때문에, 기지국은 단말에서 송신한 신호를 전달지연시간(propagation delay)만큼 이후에 수신할 수 있다. 상기 전달지연시간은 단말로부터 기지국까지 전파가 전달되는 경로를 빛의 속도로 나눈 값으로 결정될 수 있으며, 일반적으로 단말로부터 기지국까지의 거리를 빛의 속도로 나눈 값으로도 결정될 수 있다. 일례로 기지국으로부터 100km 떨어진 곳에 위치한 단말의 경우, 단말에서 송신한 신호는 약 0.34 msec 이후에 기지국이 수신할 수 있다. 반대로 기지국에서 송신된 신호는 약 0.34 msec 이후에 단말이 수신할 수 있다. 상기와 같이 단말과 기지국 사이의 거리에 따라 단말에서 송신한 신호가 기지국에 도착하는 시간이 달라질 수 있다. 따라서 위치가 다른 곳에 존재하는 여러 개의 단말이 동시에 신호를 전송하게 되면 기지국에 도착하는 시간이 모두 다를 수 있다. 이러한 현상을 해결하여, 여러 단말로부터 송신된 신호가 기지국에 동시에 도착하게 하기 위해, 단말별로 위치에 따라 송신하는 시간을 조금씩 다르게 할 수 있으며, 이를 NR 및 LTE 시스템에서는 timing advance라고 한다.
도 8은 NR 시스템에서 단말이 제1 신호를 수신하고, 이에 대한 제2 신호를 단말이 송신할 때, 단말과 기지국 사이의 거리에 따른 timing advance에 따른 단말의 프로세싱 타임을 도시한 도면이다. 슬롯 n (8-02)에서 기지국이 상향링크 스케줄링 승인 혹은 하향링크 제어신호와 데이터를 단말에게 송신하면, 단말은 슬롯 n (8-04)에서 상기 상향링크 스케줄링 승인 혹은 하향링크 제어신호와 데이터를 수신할 수 있다. 이 때, 단말은 기지국이 전송한 시간 보다 전달지연시간 TP (8-10)만큼 늦게 수신할 수 있다.
본 일례에서는 단말이 슬롯 n에서 제1 신호를 수신하였을 경우, 단말은 슬롯 n+4(406)에서 해당 제2 신호를 전송한다. 단말이 신호를 기지국으로 송신할 때에도, 어느 특정 시간에 기지국에 도착하도록 하기 위해, 단말이 수신한 신호 기준의 슬롯 n+4보다 TA(8-12)만큼 앞당긴 타이밍(8-06)에 상향링크 데이터 혹은 하향링크 데이터에 대한 HARQ ACK/NACK을 전송할 수 있다. 따라서 본 일례에서는 단말이 상향링크 스케줄링 승인을 받고 상향링크 데이터 전송을 하거나 혹은 하향링크 데이터를 수신하고 HARQ ACK 또는 NACK을 전달하기 위해 준비할 수 있는 시간은 3개 슬롯에 해당하는 시간에서 TA를 제외한 시간이 된다(8-14).
상기 타이밍의 결정을 위해 기지국은 해당 단말의 TA의 절대값을 계산할 수 있다. 기지국은 단말이 초기 접속하였을 때, random access 단계에서 제일 처음 단말에게 전달한 TA 값에, 그 이후 상위 시그널링으로 전달했던 TA 값의 변화량을 더해가면서 혹은 빼가면서 TA의 절대값을 계산할 수 있다. 본 개시에서 TA의 절대값이라함은 단말이 송신하는 n번째 TTI의 시작시간에서 단말이 수신한 n번째 TTI의 시작시간을 뺀 값이 될 수 있다.
한편 셀룰러 무선통신 시스템 성능의 중요한 기준 중에 하나는 패킷 데이터 지연시간 (latency)이다. 이를 위해 LTE 시스템에서는 1ms의 전송시간구간 (TTI)를 갖는 서브프레임 단위로 신호의 송수신이 이루어진다. 상기와 같이 동작하는 LTE 시스템에서 1ms보다 짧은 전송시간구간을 갖는 단말 (short-TTI UE)을 지원할 수 있다.
한편 5세대 이동통신 시스템인 NR에서는 전송시간 구간이 1ms보다 짧을 수 있다. Short-TTI 단말은 지연시간이 중요한 Voice over LTE (VoLTE) 서비스, 원격조종과 같은 서비스에 적합할 것으로 예상된다. 또한 short-TTI 단말은 셀룰러 기반에서 미션 크리티컬(mission critical)한 사물인터넷 (internet of things: IoT)을 실현할 수 있는 수단으로 기대된다.
NR 시스템에서는 기지국이 하향링크 데이터를 포함하는 PDSCH 전송시, 기지국은 PDSCH를 스케줄링하는 DCI에서 상기 PDSCH의 HARQ-ACK 정보를 단말이 전송하는 타이밍 정보에 해당하는 K1 값을 지시할 수 있다. 상기 HARQ-ACK 정보는 timing advance를 포함하여 심볼 L1보다 먼저 전송되도록 지시되지 않은 경우에 단말이 기지국으로 전송할 수 있다. 즉, timing advance를 포함하여 심볼 L1보다 같거나 이후 시점에 HARQ-ACK 정보가 단말로부터 기지국으로 전송될 수 있다.
만약 HARQ-ACK 정보가 timing advance를 포함하여 심볼 L1보다 먼저 전송되도록 지시된 경우에는, 단말이 기지국으로의 HARQ-ACK 전송에서 유효한 HARQ-ACK 정보가 아닐 수 있다. 상기 심볼 L1은 상기 PDSCH의 마지막 시점으로부터
Figure PCTKR2020004465-appb-I000007
이후에 cyclic prefix (CP)가 시작하는 첫 번째 심볼을 가리킬 수 있다. 상기
Figure PCTKR2020004465-appb-I000008
는 하기의 [수학식 1]과 같이 계산될 수 있다.
[수학식 1]
Figure PCTKR2020004465-appb-I000009
상기 수식에서 N1, d1,1, d1,2, κ, μ, TC는 하기와 같이 정의될 수 있다.
HARQ-ACK 정보가 PUCCH (상향링크 제어채널)를 통해 전송되면 d1,1=0이고, PUSCH (상향링크 공유채널, 데이터 채널)를 통해 전송되면 d1,1=1이다.
단말이 복수개의 활성화된 구성캐리어 혹은 캐리어를 설정 받았다면, 캐리어간 최대 타이밍 차이는 제2신호 전송에 반영되어야 한다.
PDSCH 매핑타입 A의 경우, 즉 첫 번째 DMRS 심볼 위치가 슬롯의 3번째 혹은 4번째 심볼인 경우에 PDSCH의 마지막 심볼의 위치 인덱스 i가 7보다 작으면 d1,2=7-i로 정의된다.
PDSCH 매핑타입 B의 경우, 즉 첫 번째 DMRS 심볼 위치가 PDSCH의 첫 심볼인 경우에 PDSCH의 길이가 4 심볼이면 d1,2=3이고, PDSCH의 길이가 2심볼이면, d1,2=3+d이며, 상기 d는 PDSCH와 해당 PDSCH를 스케줄링하는 제어신호를 포함한 PDCCH가 겹치는 심볼의 수이다.
N1은 μ에 따라 하기의 표와 같이 정의된다. μ=0, 1, 2, 3은 각각 부반송파 간격 15 kHz, 30 kHz, 60 kHz, 120 kHz를 의미한다.
Figure PCTKR2020004465-appb-I000010
상기 표에서 제공하는 N1 값은 UE capability에 따라 다른 값이 사용될 수 있다.
Figure PCTKR2020004465-appb-I000011
,
Figure PCTKR2020004465-appb-I000012
,
Figure PCTKR2020004465-appb-I000013
,
Figure PCTKR2020004465-appb-I000014
,
Figure PCTKR2020004465-appb-I000015
,
Figure PCTKR2020004465-appb-I000016
,
Figure PCTKR2020004465-appb-I000017
로 각각 정의될 수 있다.
또한, NR 시스템에서는 기지국이 상향링크 스케줄링 승인을 포함하는 제어정보 전송 시, 기지국은 상기 제어정보를 이용하여 단말이 상향링크 데이터 혹은 PUSCH를 전송하는 타이밍 정보에 해당하는 K2 값을 지시할 수 있다. 상기 PUSCH는 timing advance를 포함하여 심볼 L2보다 먼저 전송되도록 지시되지 않은 경우 단말이 기지국으로 전송할 수 있다. 즉, timing advance를 포함하여 심볼 L2보다 같거나 이후 시점에 PUSCH가 단말로부터 기지국으로 전송될 수 있다.
만약 PUSCH가 timing advance를 포함하여 심볼 L2보다 먼저 전송되도록 지시된 경우에는, 단말이 기지국으로부터의 상향링크 스케줄링 승인 제어정보를 무시할 수 있다. 상기 심볼 L2은 상기 스케줄링 승인을 포함하는 PDCCH의 마지막 시점으로부터
Figure PCTKR2020004465-appb-I000018
이후에 cyclic prefix (CP)가 시작하는 첫 번째 심볼을 가리킬 수 있다. 상기
Figure PCTKR2020004465-appb-I000019
는 하기의 [수학식 2]와 같이 계산될 수 있다.
[수학식 2]
Figure PCTKR2020004465-appb-I000020
상기 수식에서 N2, d2,1, κ, μ, TC는 하기와 같이 정의될 수 있다.
PUSCH 할당된 심볼 중에서 첫번째 심볼이 DMRS만 포함한다면 d2,1=0이고, 이외에는 d2,1=1이다.
단말이 복수개의 활성화된 구성캐리어 혹은 캐리어를 설정 받았다면, 캐리어간 최대 타이밍 차이는 제2신호 전송에서 반영되어야 한다.
N2는 μ에 따라 하기의 표와 같이 정의된다. μ=0, 1, 2, 3은 각각 부반송파 간격 15 kHz, 30 kHz, 60 kHz, 120 kHz를 의미한다.
Figure PCTKR2020004465-appb-I000021
상기 표에서 제공하는 N2 값은 UE capability에 따라 다른 값이 사용될 수 있다.
Figure PCTKR2020004465-appb-I000022
,
Figure PCTKR2020004465-appb-I000023
,
Figure PCTKR2020004465-appb-I000024
,
Figure PCTKR2020004465-appb-I000025
,
Figure PCTKR2020004465-appb-I000026
,
Figure PCTKR2020004465-appb-I000027
,
Figure PCTKR2020004465-appb-I000028
로 각각 정의될 수 있다.
한편, NR 시스템은 하나의 캐리어 내에서, 대역폭 부분 (BWP)를 설정하여 특정 단말이 상기 설정된 BWP 내에서 신호를 송수신하도록 할 수 있다. 이는 단말의 소모전력 감소를 목적으로 할 수 있다. 기지국은 복수의 BWP를 설정할 수 있으며, 제어정보에서 활성화된 BWP를 변경할 수 있다. BWP가 변경되기 위한 시간은 하기의 [표 2]와 같이 정의될 수 있다.
[표 2]
Figure PCTKR2020004465-appb-I000029
상기 표에서 Frequency Range 1은 6 GHz 이하의 주파수 대역을 의미하고, Frequency Range 1은 6 GHz 이상의 주파수 대역을 의미한다. 상기에서 type 1과 type 2는 UE capability에 따라 결정될 수 있다. 상기에서 시나리오 1,2,3,4는 하기 표와 같이 결정될 수 있다.
Figure PCTKR2020004465-appb-I000030
이하 본 개시에서 제어정보에 BWP 변경 요청이 포함되거나, 혹은 BWP 변경이 트리거된 경우는, 제어정보에 포함되는 대역폭 부분 (BWP) 지시자에서 가리키는 BWP 정보가 현재 활성화된 BWP와 다른 BWP를 가리켜서 BWP가 변경되는 것을 의미할 수 있다. 반대로 현재 활성화된 BWP와 동일한 BWP를 가리키는 경우에는 BWP 변경 요청이 없다고 간주될 수 있다.
이하의 실시예에서는 기지국과 단말 혹은 단말간에 데이터 송수신을 수행하는 방법 및 장치를 제공한다. 이 경우 하나의 단말에서 복수의 단말로 데이터가 전송되는 경우일 수 있으며, 혹은 하나의 단말에서 하나의 단말로 데이터가 전송되는 경우일 수 있다. 혹은 기지국에서 복수의 단말로 데이터가 전송되는 경우일 수 있다. 하지만 이에 한정되지 않고 다양한 경우에 본 개시가 적용될 수 있을 것이다.
도 9는 본 개시에 따라 두 단말간에 일대일 통신, 즉 유니캐스트 (unicast) 통신이 사이드링크를 통해 수행되는 일례를 도시한 도면이다.
도 9에서는 제1 단말(9-01)로부터 제2 단말(9-05)로 신호가 전송되는 일례를 도시하였으며, 신호 전송의 방향은 반대가 될 수 있다. 즉 제2 단말(9-05)에서부터 제1 단말(9-01)로 신호가 전송될 수 있다.
상기 제1 단말 및 제2 단말 (9-01, 9-05)을 제외한 다른 단말(9-07, 9-09)은 제1 단말 및 제2 단말(9-01, 9-05)간의 유니캐스트를 통해 송수신되는 신호를 수신할 수 없다. 상기 제1 단말 및 제2 단말(9-01, 9-05)간에 유니캐스트를 통한 신호의 송수신은 제1 단말 및 제2 단말(9-01, 9-05) 사이에 약속된 자원에서 매핑되거나, 서로 약속된 값을 이용한 스크램블링, 제어정보 매핑, 서로 설정된 값을 이용한 데이터 전송, 서로 고유 ID 값을 확인하는 과정 등으로 이루어질 수 있다. 상기 단말은 차량과 같이 이동하는 단말일 수 있다. 상기 유니캐스트를 통한 신호 송수신을 위해 별도의 제어 정보, 물리 제어 채널, 데이터의 전송이 수행될 수 있다.
도 10은 본 개시에 따라 하나의 단말 이 복수의 단말들에게 공통의 데이터를 사이드링크를 통해 전송하는 그룹캐스트 (groupcast) 통신의 일례를 도시한 도면이다.
도 10에서는 제1 단말 (10-01)이 그룹내의 다른 단말 (10-03, 10-05, 10-07, 10-09)들에게 신호를 전송하는 일례를 도시하며, 그룹에 포함되지 않은 다른 단말들 (10-11, 10-13)은 그룹캐스트를 위해 전송되는 신호들을 수신할 수 없을 수 있다.
상기 그룹캐스트를 위해 신호를 전송하는 단말은 그룹 내의 다른 단말이 될 수 있으며, 신호 전송을 위한 자원 할당은 기지국이 제공하거나, 혹은 그룹내의 리더 역할을 하는 단말이 제공하거나, 혹은 신호를 전송하는 단말이 스스로 선택할 수 있다. 상기 단말은 차량과 같이 이동하는 단말일 수 있다. 상기 그룹캐스트를 통한 신호 송수신을 위해 별도의 제어 정보, 물리 제어 채널, 데이터의 전송이 수행될 수 있다.
도 11은 본 개시에 따라 그룹캐스트 통신을 이용하여 공통의 데이터를 수신한 단말들이 데이터 수신 성공 또는 실패와 관련된 정보를 데이터를 전송한 단말에게 송신하는 과정을 도시한 도면이다.
그룹캐스트를 통해 공통의 데이터를 수신한 단말들은 데이터 수신에 대한 성공 또는 실패와 관련된 정보를 단말 (11-01)에 전송할 수 있다. 상기 정보는 HARQ-ACK 피드백과 같은 정보일 수 있다 (11-11). 또한 상기 단말들은 LTE 기반의 사이드링크 또는 NR 기반의 사이드링크 기능을 가진 단말일 수 있다. 만약 LTE 기반의 사이드링크 기능만 가진 단말은 NR 기반의 사이드링크 신호 및 물리채널의 송수신이 불가능할 수 있다. 본 개시에서는 사이드링크는 PC5 또는 V2X 또는 D2D와 혼용하여 사용될 수 있다.
상기 도 10 및 도 11에서는 그룹캐스팅에 따른 송수신의 일례를 설명하였지만, 이는 단말과 단말 사이의 유니캐스트 신호 송수신에도 적용될 수 있다.
본 개시에서 사이드링크 제어 채널은 PSCCH (physical sidelink control channel)로 칭할 수 있고, 사이드링크 공유 채널 또는 데이터 채널은 PSSCH (physical sidelink shared channel)로 칭할 수 있다. 또한, 동기화 신호와 함께 방송되는 방송 채널은 PSBCH (physical sidelink broadcast channel)로 칭할 수 있으며, 피드백 전송을 위한 채널은 PSFCH (physical sidelink feedback channel)로 칭할 수 있다. 다만, 피드백 전송을 위해서 PSCCH 또는 PSSCH가 사용되어 전송될 수 있을 것이다. 송신하는 통신 시스템에 따라 LTE-PSCCH, LTE-PSSCH, NR-PSCCH, NR-PSSCH 등으로 언급될 수 있다. 본 개시에서는 사이드링크라 함은 단말간의 링크를 의미하고 Uu 링크라 함은 기지국과 단말 사이의 링크를 의미할 수 있다.
이하 본 개시의 실시 예를 첨부한 도면과 함께 상세히 설명한다. 또한 본 개시를 설명함에 있어서 관련된 기능 혹은 구성에 대한 구체적인 설명이 본 개시의 요지를 불필요하게 흐릴 수 있다고 판단된 경우 그 상세한 설명은 생략한다. 그리고 후술되는 용어들은 본 개시에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 이하, 기지국은 단말의 자원할당을 수행하는 주체로서, gNode B (gNB), eNode B(eNB), Node B, BS (base station), 무선 접속 유닛, 기지국 제어기, 또는 네트워크 상의 노드 중 적어도 하나일 수 있다. 단말은 UE (user equipment), MS (mobile station), 셀룰러폰, 스마트폰, 컴퓨터, 또는 통신기능을 수행할 수 있는 멀티미디어시스템을 포함할 수 있다. 본 개시에서 하향링크 (downlink; DL)는 기지국이 단말에게 전송하는 신호의 무선 전송경로이고, 상향링크는 (uplink; UL)는 단말이 기국에게 전송하는 신호의 무선 전송경로를 의미한다. 또한, 이하에서 NR 시스템을 일례로서 본 개시의 실시예를 설명하지만, 유사한 기술적 배경 또는 채널형태를 갖는 여타의 통신시스템에도 본 개시의 실시예가 적용될 수 있다. 또한, 본 개시의 실시예는 숙련된 기술적 지식을 가진자의 판단으로써 본 개시의 범위를 크게 벗어나지 아니하는 범위에서 일부 변형을 통해 다른 통신시스템에도 적용될 수 있다.
본 개시에서는 종래의 물리채널 (physical channel)과 신호(signal)라는 용어를 데이터 혹은 제어신호와 혼용하여 사용할 수 있다. 예를 들어, PSSCH는 데이터가 사이드링크에서 전송되는 물리채널이지만, 본 개시에서는 PSSCH를 데이터라 할 수 있다.
이하 본 개시에서 상위 시그널링은 기지국에서 물리계층의 하향링크 데이터 채널을 이용하여 단말로, 혹은 단말에서 물리계층의 상향링크 데이터 채널을 이용하여 기지국으로 전달되는 신호 전달 방법이며, RRC signaling 혹은 MAC 제어요소(CE; control element)라고 언급될 수도 있다.
[제1실시예]
제1 실시예는 단말이 사이드링크 통신을 수행하기 위해 설정 받는 BWP, 리소스풀 (resource pool), 그리고 제어정보 전달을 위한 제어자원세트 (control resource set; CORESET)와 탐색영역(search space)를 설정하는 방법을 제공한다. 상기 설정하는 방법은, 단말이 기지국으로부터 설정 정보를 수신하거나 또는 미리 설정이 되거나, 또는 다른 단말로부터 사이드링크를 통해 설정 정보를 수신할 수 있다. 상기 탐색영역과 CORESET은 사이드링크 제어 정보 또는 PSCCH (Physical sidelink control channel)을 매핑하여 전송하기 위한 자원일 수 있다.
먼저 단말은 사이드링크 통신을 위해 송수신 중인 한 캐리어 내에서, 사이드링크 통신을 위한 BWP를 설정 받을 수 있다.
그리고, 단말은 상기 설정 받은 BWP 내에서 리소스풀을 설정 받을 수 있다. 상기 리소스풀은 사이드링크 송신을 위한 리소스풀일 수 있고, 또는 사이드링크 수신을 위한 리소스풀일 수 있으며, 또는 사이드링크 송신과 수신을 위한 리소스풀일 수 있다. 이 때 리소스풀에 대한 설정 정보는 리소스풀의 가장 낮은 PRB 인덱스인 n_PRBstartRP를 포함할 수 있다. 또한, 상기 리소스풀의 가장 낮은 PRB 인덱스는 해당 리소스풀이 속해 있는 BWP 내의 가장 작은 PRB를 기준으로 오프셋값을 이용해 전달 될 수 있다. 즉, 리소스풀의 가장 낮은 PRB 인덱스인 n_PRBstartRP는 해당 BWP의 가장 작은 PRB로부터 n_PRBstartRP번째의 PRB를 의미할 수 있다. 이런 방법을 이용하는 경우, 리소스풀의 주파수 자원을 할당함에 있어서의 기준점은 해당 BWP의 가장 낮은 PRB 번호일 수 있다.
도 12는 본 개시의 일 실시예에 따라 사이드링크 통신을 위해 설정된 BWP와 상기 BWP 내에 설정된 리소스풀의 일례를 도시한 도면이다.
리소소풀에 포함된 RB들은 가장 낮은 주파수 대역에 위치한 RB부터 0, 1, 2, 3,..., NRP-1 로 인덱스가 할당될 수 있다. 상기에서 NRP 는 리소스풀에 해당하는 RB의 수이다. 예를 들어, 리소스풀 2 (RP2)(12-02)내의 0번 RB, 즉 상기 리소스풀 2 내에서 가장 RB 인덱스가 낮은 RB(12-03)는, 상기 BWP내의 가장 낮은 PRB 번호에 해당하는 PRB를 기준으로 결정된 오프셋 정보를 통해 설정될 수 있다.
[제2 실시예]
제2 실시예는 기지국에 접속하여 상향링크 및 하향링크 데이터 송수신을 수행할 수 있는 단말이, 사이드링크를 통해 다른 단말과의 통신을 수행하고자할 때, 기지국과 단말 사이의 링크인 Uu에서의 신호 송수신을 위한 BWP와 사이드링크 송수신을 위한 BWP 설정에 따른 동작을 위한 방법 및 장치를 제공한다.
단말은 기지국으로부터의 하향링크 신호를 수신하기 위해 하향링크에 대한 BWP를 설정 받을 수 있고, 또한 기지국으로 상향링크 신호를 송신하기 위해 상향링크에 대한 BWP를 설정 받을 수 있다. 상기 설정들은 해당 기지국으로부터 단말에게 상위 시그널링을 통해 전송될 수 있다. 또한 단말간 통신을 위해 단말은 사이드링크 BWP에 대한 설정을 수신할 수 있으며, 사이드링크 BWP에 대한 설정은 단말이 미리 저장하고 있거나, 기지국에 접속하였을 때 상위시그널링으로 전송 받거나, 또는 단말간 통신을 통해 단말간 상위시그널링으로 전송 받을 수 있다.
본 실시예에서는 기지국과의 하향링크 또는 상향링크와, 단말 간 사이드링크가 동일한 주파수영역 또는 동일한 캐리어에서 수행될 때, 각 BWP 설정에 따른 단말의 동작을 제공한다. 본 실시예에서는 하향링크 또는 상향링크의 BWP는 U-BWP라 하고, 사이드링크의 BWP는 SL-BWP라고 칭할 수 있다. 사이드링크 BWP는 사이드링크 송신 BWP 또는 사이드링크 수신 BWP일 수 있다. 기지국의 실제 운용에서는 하향링크 BWP와 상향링크 BWP는 다를 수 있겠지만, 본 실시예에서는 하향링크 BWP와 상향링크 BWP가 같은 경우를 가정하여 설명한다. 하지만 발명이 이에 국한되지 않고, 하향링크 BWP와 상향링크 BWP는 다른 경우에도 적용될 수 있을 것이다.
경우 1: U-BWP와 SL-BWP가 주파수 영역에서 일부 또는 전부 겹치는 경우의 단말 동작을 제공한다. 단말이 U-BWP와 SL-BWP가 겹치도록 설정 받은 경우, U-BWP와 SL-BWP가 겹친 주파수 영역에서 단말은 U-BWP에 대한 송수신 동작, 즉 기지국과의 송수신을 수행하고, SL-BWP에 대한 동작 즉 단말간 송수신 동작은 수행하지 않고 생략할 수 있다.
한편, SL-BWP의 주파수 영역 중에서 U-BWP와 겹치지 않은 주파수 영역에서 단말은 SL-BWP에 대한 동작, 즉 단말간 송수신 동작을 수행할 수 있다. 상기 SL-BWP에 대한 동작은 사이드링크 제어정보 수신 및 디코딩, 사이드링크 주파수 영역 또는 채널 점유 파악, 사이드링크 데이터 수신 및 디코딩, 그리고 사이드링크 제어정보 및 데이터 송신 등을 포함할 수 있다. 이는, U-BWP의 송신 또는 수신을 위해 SL-BWP의 동작을 하지 않는 것일 수 있다.
경우 1-1: U-BWP와 SL-BWP가 주파수 영역에서 일부 또는 전부 겹치는 경우의 단말 동작의 다른 일례를 제공한다. 단말이 U-BWP와 SL-BWP가 겹치도록 설정 받은 경우, U-BWP와 SL-BWP가 겹친 주파수 영역에서 단말은 U-BWP에 대한 송수신 동작과 SL-BWP에 대한 동작을 함께 수행할 수 있다. 즉, U-BWP와 SL-BWP가 겹친 영역에서는 단말은 기지국으로의 신호 송신과 다른 단말로의 신호 송신을 동시에 수행하거나, 또는 기지국으로부터의 신호 수신과 다른 단말로부터의 신호의 수신을 동시에 수행할 수 있다.
한편, SL-BWP의 주파수 영역 중에서 U-BWP와 겹치지 않은 주파수 영역에서 단말은 SL-BWP에 대한 동작, 즉 단말간 송수신 동작을 수행하지 않는다. 상기 SL-BWP에 대한 동작은 사이드링크 제어정보 수신 및 디코딩, 사이드링크 주파수 영역 또는 채널 점유 파악, 사이드링크 데이터 수신 및 디코딩, 그리고 사이드링크 제어정보 및 데이터 송신 등을 포함할 수 있다. 이는, U-BWP의 송신 또는 수신을 위해, U-BWP가 아닌 다른 주파수 영역에서의 사이드링크 동작을 수행하지 않는 의미일 수 있다.
경우 2: U-BWP와 SL-BWP가 주파수 영역에서 겹치지 않는 경우의 단말 동작을 제공한다. 본 실시예에는, 단말간 송수신 동작을 수행하지 않는다. 상기 SL-BWP에 대한 동작은 사이드링크 제어정보 수신 및 디코딩, 사이드링크 주파수 영역 또는 채널 점유 파악, 사이드링크 데이터 수신 및 디코딩, 그리고 사이드링크 제어정보 및 데이터 송신 등을 포함할 수 있다. 본 실시예에서는 U-BWP를 통해 신호의 송신 또는 수신을 위해, U-BWP가 아닌 다른 주파수 영역에서의 사이드링크 동작을 수행하지 않는 의미일 수 있다.
[제3 실시예]
제3 실시예에서는 사이드링크 슬롯에서의 물리채널들의 구조를 제공하고, 사이드링크 송신을 하기 위한 자원이 비어 있는지 (혹은 점유되어 있는지)를 확인하는 채널 센싱을 수행하는 방법 및 장치를 제공한다.
도 13은 본 개시의 일 실시예에 따라 하나의 슬롯에서 사이드링크 전송을 위한 물리채널을 전송하는 일례를 도시한 도면이다.
슬롯의 앞 심볼들에 제어채널인 PSCCH를 통해 제어 정보가 전송되고, 데이터 채널인 PSSCH (physical sidelink shared channel)를 통해 데이터가 전송되고, 피드백 채널인 PSFCH (physical sidelink feedback channel)를 통해 피트백 정보가 전송될 수 있다. 사이드링크에서 전송하고자 하는 제어신호 또는 데이터 또는 피드백 신호를 전송하기 위한 채널 PSCCH, PSSCH, PSFCH 중 최소 하나 이상을 포함하는 슬롯 전에 일종의 프리앰블(preamble)이 전송될 수 있다. 상기 프리앰블을 전송하는 목적은, 사이드링크에서 송신한 신호를 수신하는 수신단이, 실제 제어채널이나 데이터채널 등을 수신하기 전에 automatic gain control (AGC)를 수행해서 증폭기의 증폭 이득을 조절할 수 있도록 해주는 것에 있을 수 있다.
PSFCH 이후의 GAP은 신호의 송수신이 수행되지 않는 영역일 수 있으며, 상기 GAP 시간은 단말이 송신에서 수신으로 스위칭을 하는데 사용되거나 수신에서 송신으로 스위칭을 위해 사용되는 시간일 수 있다.
상기 프리앰블 전송에 사용되는 심볼 수 또는 시간은 사이드링크 전송에 사용하는 부반송파 간격 (subcarrier spacing: SCS)에 기반하여 결정될 수 있다. 일례로, 사이드링크 전송에 15 kHz의 SCS가 사용된다면 1심볼, 30 kHz의 SCS가 사용된다면 2심볼이 프리앰블 전송에 사용될 수 있다.
μ=0, 1, 2, 3은 각각 부반송파 간격 15 kHz, 30 kHz, 60 kHz, 120 kHz에 상응할 수 있으며, 프리앰블에 사용되는 심볼 수는 2μ개 일 수 있다. 또는 송신단이 전송해야하는 프리앰블의 길이는
Figure PCTKR2020004465-appb-I000031
usec와 같이 μ에 대한 수식으로 제공될 수 있다. 상기 프리앰블은 사이드링크에서의 송신 단말이 PSCCH, PSSCH, PSFCH 중 하나 이상을 송신하고자 하는 슬롯의 이전 슬롯의 마지막 심볼들에서 전송될 수 있지만, 상기 프리앰블이 항상 전송되어야 하는 것은 아닐 수 있다. 예를 들어, 송신 단말은 슬롯 n에서 PSCCH, PSSCH, 또는 PSFCH를 송신하려고 하였을 때, 상기 단말은 상기 프리앰블을 슬롯 n-1의 마지막 심볼들 또는 슬롯 n-1의 마지막 특정 시간 동안에 전송할 수 있다는 의미일 수 있다. 일례로, 특정 단말이 사이드링크에서 연속적인 두 슬롯 동안 상기 PSCCH, PSSCH, PSFCH 중 하나 이상을 송신을 한다고 하였을 때는, 프리앰블의 전송을 생략할 수 있을 것이다.
단말은 신호를 수신함에 있어서 수신 신호를 증폭(amplify)하는 단계를 수행할 수 있다. 상기 증폭하는 단계에서 수신 신호를 얼만큼 증폭하는지는 신호의 세기와 단말 증폭기(amplifier)의 dynamic range에 기반하여 결정될 수 있다. 상기 dynamic range는 증폭기의 입력과 출력이 선형적인 관계를 갖는 신호 세기의 범위를 의미할 수 있다. 만약 증폭기의 입력과 출력에 선형적인 관계가 없고 phase가 임의로 변한다면 해당 신호는 데이터 수신에 사용할 수 없을 수 있다.
그런데 증폭의 정도가 너무 클 경우, 신호는 어느 이상의 세기로 증폭되지 않을 뿐아니라, phase가 임의로 변하기 때문에, 단말은 수신 신호를 임의로 크게 증폭할 수 없다. 또한 증폭의 세기가 너무 작을 경우 데이터 수신 성능의 열화가 있을 수 있다. 따라서 단말은 적절한 세기로 수신신호를 증폭할 필요가 있다. 따라서 단말은 증폭을 수행할 때 수신 신호의 세기를 먼저 알아내는 것이 중요할 수 있다. 예를 들어, 수신신호의 세기가 너무 크면 증폭 정도를 줄이고, 수신신호가 너무 작으면 증폭 정도를 늘리는 동작을 수행하기 위해서이다. 이렇게 단말은 수신신호의 세기에 따라 증폭 정도를 변화시킬 필요가 있는데 이러한 동작을 수행하게 하는 것이 automatic gain control (AGC)이라고 한다.
단말의 수신 신호(input signal)는 먼저 variable gain amplifier (VGA)을 통과하여 증폭되고, 이는 증폭 세기를 추정하는 detector로 전달된다. 단말의 error amp에서는 이렇게 추정된 신호의 세기를 단말의 dynamic range에 의해 결정되는 기준 값 (set point)과 비교하여 차이 값을 확인하고, 이러한 값은 VGA의 파라미터로 전달된다. 상기 추정된 신호의 세기와 기준 값의 차이에 따라 VGA에서 증폭 정도가 결정되며, 상기 증폭 정도는 증폭된 신호가 단말 증폭기의 dynamic range에 포함되도록 하는 역할을 한다. 결국 상기 AGC 동작은 수신신호를 얼만큼 증폭할 것인지를 결정하는 단계일 수 있다.
도 14는 본 개시의 일 실시예에 따라 사이드링크에서 물리채널들이 한 슬롯에서 전송되는 일례를 도시한 도면이다.
특정 슬롯을 통해 데이터를 전송하기 전에 단말은 채널이 비어있는지를 판단하는 채널 엑세스 과정 또는 LBT (listen-before-talk)을 수행할 수 있다. 본 개시에서는 채널이 비어있어서 송신할 수 있다고 판단하는 단계를 채널 엑세스, LBT, 또는 에너지디텍션 등으로 칭할 수 있다. 본 채널 엑세스 단계에서는 단말이 수신 신호의 전력 또는 에너지를 측정하고, 측정된 파워 혹은 에너지를 미리 고정된 또는 설정된 값과 비교할 수 있다. 따라서, 측정값이 미리 고정된 또는 설정된 값보다 크면 채널이 점유되어 다른 단말이 상기 채널을 통해 신호를 전송하고 있는 상태로 가정하고, 측정값이 미리 고정된 또는 설정 값보다 작으면 채널이 비어 있어서 단말이 상기 채널을 통해 신호를 송신할 수 있다고 판단할 수 있다.
단말의 채널 엑세스는 단말이 사이드링크 신호를 전송하려고 하는 슬롯(14-03) 이전의 적어도 하나의 심볼(14-02)에서 수행될 수 있다. 상기 적어도 하나의 심볼 (14-02)은 다음 슬롯(14-03)에서 사이드링크 신호를 전송하기 위해 먼저 프리앰블이 전송되어야하는 심볼일 수 있다.
따라서 채널 엑세스를 수행하여 상기 적어도 하나의 심볼 (14-02)에서 다른 단말이 신호를 송신하고 있다고 판단하는 것은, 해당 심볼에서 프리앰블을 송신한 단말이 다음 슬롯(14-03)에서 PSCCH, PSSCH, PSFCH 중 하나 이상을 전송해서 해당 슬롯(14-03)이 이미 점유되어 있다는 것을 의미하는 것일 수 있다.
단말이 채널 엑세스를 수행하는 시작 시점은 단말이 사이드링크 신호를 전송하려는 슬롯(14-03)의 이전 슬롯에 포함되는 심볼들(14-02)들의 처음 심볼에서부터 임의값 또는 랜덤값으로 결정될 수 있고, 또는 전송하려고 하는 신호에 대해 상위에서 전송되는 priority, latency 등의 QoS값에 기반하여 결정될 수 있다.
예를 들어, 프리앰블을 전송할 수 있는 슬롯 n-1 (즉, 사이드링크 신호를 전송하기 위한 슬롯의 이전 슬롯)의 마지막 심볼들이 정해져서 주어져 있을 때, 단말은 그 심볼들의 처음 구간에서 채널 엑세스를 수행한다는 의미일 수 있다. 이는 더 구체적으로, 프리앰블을 슬롯 n-1의 12번째, 13번째 심볼들에서 전송하기로 설정 혹은 미리 결정된 경우, 12번째 심볼의 처음에서부터 특정 시간 동안 채널 엑세스를 수행한다는 것일 수 있다. 상기 특정 시간은 미리 고정되어 있을 수 있지만, 임의로 선택된 시간 구간일 수 있다. 본 개시에서는 사이드링크 신호라고 한다면, PSCCH, PSSCH, PSFCH 중 하나 이상을 의미하는 것일 수 있다.
도 15는 본 개시의 일 실시예에 따라 단말이 채널 엑세스를 수행하고 그에 따라 신호를 송신하는 일례를 도시한 도면이다.
본 실시예에서는 단말이 사이드링크 신호를 전송하고자 하는 슬롯 이전에 프리앰블을 전송할 수 있는 구간이 2심볼로 정의되거나 설정되어 있다고 가정한다. 다만 본 개시의 실시예가 이에 한정되는 것은 아니며, 프리앰블을 전송할 수 있는 구간의 심볼 수는 변경될 수 있다.
단말은 QoS 파라미터에 기반하거나 혹은 임의의 값을 선택하여 채널 엑세스를 수행하는 시간인 tsensing(15-01)을 결정하고, 프리앰블을 전송해야하는 구간 시작 시점부터 tsensing(15-01)동안 채널 엑세스를 수행할 수 있다. 상기 채널 엑세스를 수행하는 것은 해당 구간동안 수신신호의 세기 등을 측정하는 과정을 포함할 수 있다. (15-01) 구간에서 채널 엑세스를 수행하여 채널을 이용할 수 있다고 판단하면, 단말은 나머지 프리앰블 전송구간인 tTx (15-02)동안 이미 정의된 혹은 단말 임의로 결정한 프리앰블 신호를 송신할 수 있다. 이 후, 사이드링크 신호를 전송하고자 하는 슬롯 시간이 시작하면, 단말은 전송하고자 했던 물리채널 혹은 신호를 전송한다.
도 16은 본 개시의 일 실시예에 따라 적어도 두 개의 단말이 존재할 때 상기 적어도 두 개의 단말이 채널 엑세스와 프리앰블을 전송하는 일례를 도시한 도면이다.
도 15에서와와 같이 두 단말 (단말 1, 단말 2)은 각각 채널 엑세스를 수행하는 시간인 t1 (16-01)과 t2 (16-02)를 결정하고 채널 엑세스를 수행할 수 있다. 본 실시예에서는 단말 2가 결정한 채널 엑세스 시간인 t2가 단말 1이 결정한 채널 엑세스 시간인 t1보다 큰 경우, 즉 단말 2가 채널 엑세스 절차를 더 오래 수행하는 경우를 예를 들어 설명한다. 다만 본 개시의 실시예가 이에 한정되는 것은 아니다.
단말 1이 채널 엑세스를 성공하여 시간 t1이후부터 프리앰블을 전송하기 시작하면, 단말 2는 단말 1이 송신한 프리앰블로 인해 채널 엑세스를 실패할 수 있다. 즉, 단말 1이 먼저 채널을 점유하여 사용하기 때문에, 단말 2는 채널을 점유하지 못하도록 판단될 수 있는 것이다. 이러한 방법은 단말이 채널 엑세스 시간을 임의로 결정하거나 QoS 파라미터에 의해 결정하여 두 단말이 동시에 사이드링크 채널 (또는 슬롯)을 사용하는 것을 최소화 할 수 있도록 한다.
단말이 채널 엑세스를 수행하고 채널이 비어있다고 판단한다면, 즉 에너지디텍션을 통과한다면, 또는 측정된 에너지나 전력 값이 고정된 또는 설정된 값보다 작다면, 해당 단말은 일정 시간 동안 사용 가능한 슬롯들에서 사이드링크 신호를 송신할 수 있다. 상기 채널 엑세스를 수행하고 채널이 비어있다고 판단한 단말은 상기 채널이 비어있다고 판단한 시점부터 다음 슬롯 경계 시간까지 임의의 신호를 전송할 수 있다. 상기 임의의 신호는 다음 슬롯에서 전송할 심볼을 이용하여 반복 등을 이용해 생성한 신호거나 또는 고정된 또는 미리 설정된 수열을 이용한 것일 수 있다.
단말이 채널 엑세스를 수행하고 채널이 비어있다고 판단한다면, 즉 에너지디텍션을 통과한다면, 또는 측정된 에너지나 전력 값이 고정된 또는 설정된 값보다 작다면, 해당 단말은 일정 시간 동안 사용 가능한 슬롯들에서 사이드링크 신호를 송신할 수 있다. 상기에서 일정 시간 값은 MCOT (maximum channel occupancy time)으로 칭할 수 있으며, 이 MCOT 값은 미리 고정된 값을 이용하거나, 기지국으로부터 단말에게 설정된 값이거나, 이미 단말에게 내장되어 고정된 값이거나, 또는 단말이 채널 엑세스를 수행하는 BWP나 리소스풀의 설정에 포함된 값일 수 있다. 예를 들어, 해당 리소스풀 설정에 MCOT = 4로 설정이 되어 있으면, 단말은 채널 엑세스를 통해 신호를 전송할 수 있을 때, 최대 4 슬롯을 통해 신호를 전송할 수 있다. 만약 MCOT = 0으로 설정되었다면, 단말은 LBT나 채널 엑세스를 통해 채널을 점유하여 전송하는 방법을 사용할 수 없는 리소스풀이라고 간주할 수 있다.
본 개시의 상기 실시예들을 수행하기 위해 단말과 기지국의 송신부, 수신부, 처리부가 각각 도 17와 도 18에 도시되어 있다. 본 개시의 실시예에서 제안한 동작을 수행하기 위해 기지국과 단말의 수신부, 처리부, 송신부가 각각 실시 예에 따라 동작하여야 한다.
구체적으로 도 17은 본 개시의 실시예에 따른 단말의 내부 구조를 도시하는 블록도이다.
도 17에서 도시되는 바와 같이, 본 개시의 단말은 단말기 수신부(17-00), 단말기 송신부(17-04), 단말기 처리부(17-02)를 포함할 수 있다. 단말기 수신부(17-00)와 단말이 송신부(17-04)를 통칭하여 본 개시의 실시 예에서는 송수신부라 칭할 수 있다. 송수신부는 기지국과 신호를 송수신할 수 있다.
상기 신호는 제어 정보와, 데이터를 포함할 수 있다. 이를 위해, 송수신부는 송신되는 신호의 주파수를 상승 변환 및 증폭하는 RF 송신기와, 수신되는 신호를 저 잡음 증폭하고 주파수를 하강 변환하는 RF 수신기 등으로 구성될 수 있다.
또한, 송수신부는 무선 채널을 통해 신호를 수신하여 단말기 처리부(17-02)로 출력하고, 단말기 처리부(17-02)로부터 출력된 신호를 무선 채널을 통해 전송할 수 있다. 단말기 처리부(17-02)는 상술한 본 개시의 실시예에 따라 단말이 동작할 수 있도록 일련의 과정을 제어할 수 있다. 예를 들어, 단말 수신부(17-00)에서 기지국으로부터 스케줄링 정보를 포함한 제어정보를 수신하고, 단말 처리부(17-02)는 BWP 스위칭 여부에 따라 최소 프로세싱 시간 결정하고 이에 따라 신호처리를 수행할 수 있다. 이후, 단말 송신부(17-04)에서 제어정보에 해당하는 상향링크 전송을 수행할 수 있다.
도 18은 본 개시의 실시예에 따른 기지국의 내부 구조를 도시하는 블록도이다.
도 18에서 도시되는 바와 같이, 본 개시의 기지국은 기지국 수신부(18-01), 기지국 송신부(18-05), 기지국 처리부(18-03)를 포함할 수 있다. 기지국 수신부(18-01)와 기지국 송신부(18-05)를 통칭하여 본 개시의 실시 예에서는 송수신부라 칭할 수 있다. 송수신부는 단말과 신호를 송수신할 수 있다.
상기 신호는 제어 정보와, 데이터를 포함할 수 있다. 이를 위해, 송수신부는 송신되는 신호의 주파수를 상승 변환 및 증폭하는 RF 송신기와, 수신되는 신호를 저 잡음 증폭하고 주파수를 하강 변환하는 RF 수신기 등으로 구성될 수 있다. 또한, 송수신부는 무선 채널을 통해 신호를 수신하여 기지국 처리부(18-03)로 출력하고, 단말기 처리부(18-03)로부터 출력된 신호를 무선 채널을 통해 전송할 수 있다. 기지국 처리부(18-03)는 상술한 본 개시의 실시예에 따라 기지국이 동작할 수 있도록 일련의 과정을 제어할 수 있다. 예를 들어, 기지국 처리부(18-03)는 BWP 스위칭 여부에 따라 최소 프로세싱 시간을 결정하고 이에 따라 제2신호 전송 타이밍을 결정하도록 제어할 수 있다. 이후, 기지국 송신부(18-05)에서 상기에서 결정된 타이밍 정보를 수반하는 제어정보를 송신하고, 기지국 수신부(18-01)는 상기 타이밍에서 제2신호를 단말로부터 수신한다.
한편, 본 명세서와 도면에 개시된 본 개시의 실시예들은 본 개시의 기술 내용을 쉽게 설명하고 본 개시의 이해를 돕기 위해 특정 예를 제시한 것일 뿐이며, 본 개시의 범위를 한정하고자 하는 것은 아니다. 즉 본 개시의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능하다는 것은 본 개시의 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다. 또한 상기 각각의 실시 예는 필요에 따라 서로 조합되어 운용할 수 있다. 예를 들어 제1실시예와 제2실시예가 결합되어 적용되거나 각 실시예의 일부분이 결합되어 적용되는 것이 가능할 것이다. 또한 상기 실시예들은 LTE 시스템, 5G 시스템 등에 상기 실시예의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능할 것이다.

Claims (10)

  1. 무선 통신 시스템에서 단말의 방법에 있어서,
    기지국으로부터 사이드링크에 대한 제1 대역폭 부분 (bandwidthpart: BWP) 설정 정보 및 리소스풀에 대한 정보를 포함하는 설정 정보를 수신하는 단계;
    상기 설정 정보에 기반하여 사이드링크를 위한 리소스풀을 확인하는 단계; 및
    상기 리소스풀에 기반하여 다른 단말과 통신을 수행하는 단계를 포함하며,
    상기 리소스풀에 대한 정보는 상기 리소스풀의 가장 낮은 물리적 자원 블록 (physical resource block: PRB) 인덱스를 포함하는 것을 특징으로 하는 방법.
  2. 제1항에 있어서,
    상기 리소스풀의 가장 낮은 PRB 인덱스는,
    상기 제1 BWP 내의 가장 낮은 PRB 인덱스로부터의 오프셋 값으로 지시되는 것을 특징으로 하는 방법.
  3. 제1항에 있어서,
    상기 리소스풀에 대한 정보는,
    상기 리소스풀에 포함된 RB의 수에 대한 정보를 포함하는 것을 특징으로 하는 방법.
  4. 제1항에 있어서,
    상기 설정 정보는,
    상기 기지국에 대한 제2 BWP 설정 정보를 포함하며,
    상기 제1 BWP와 상기 제2 BWP의 일부가 중첩되는 경우,
    제2 BWP와 중첩되지 않는 제1 BWP의 주파수 영역에서 사이드링크 통신을 수행하는 것을 특징으로 하는 방법.
  5. 제4항에 있어서,
    상기 제1 BWP와 상기 제2 BWP의 일부가 중첩되지 않는 경우,
    상기 사이드링크 통신을 수행하지 않는 것을 특징으로 하는 방법.
  6. 무선 통신 시스템에서 단말에 있어서,
    송수신부; 및
    상기 송수신부를 통해 기지국으로부터 사이드링크에 대한 제1 대역폭 부분 (bandwidthpart: BWP) 설정 정보 및 리소스풀에 대한 정보를 포함하는 설정 정보를 수신하고,
    상기 설정 정보에 기반하여 사이드링크를 위한 리소스풀을 확인하고,
    상기 리소스풀에 기반하여 다른 단말과 통신을 수행하는 제어부를 포함하며,
    상기 리소스풀에 대한 정보는 상기 리소스풀의 가장 낮은 물리적 자원 블록 (physical resource block: PRB) 인덱스를 포함하는 것을 특징으로 하는 단말.
  7. 제6항에 있어서,
    상기 리소스풀의 가장 낮은 PRB 인덱스는,
    상기 제1 BWP 내의 가장 낮은 PRB 인덱스로부터의 오프셋 값으로 지시되는 것을 특징으로 하는 단말.
  8. 제6항에 있어서,
    상기 리소스풀에 대한 정보는,
    상기 리소스풀에 포함된 RB의 수에 대한 정보를 포함하는 것을 특징으로 하는 단말.
  9. 제6항에 있어서,
    상기 설정 정보는,
    상기 기지국에 대한 제2 BWP 설정 정보를 포함하며,
    상기 제1 BWP와 상기 제2 BWP의 일부가 중첩되는 경우,
    제2 BWP와 중첩되지 않는 제1 BWP의 주파수 영역에서 사이드링크 통신이 수행되는 것을 특징으로 하는 단말.
  10. 제9항에 있어서,
    상기 제1 BWP와 상기 제2 BWP의 일부가 중첩되지 않는 경우,
    상기 사이드링크 통신이 수행되지 않는 것을 특징으로 하는 단말.
PCT/KR2020/004465 2019-04-01 2020-04-01 통신 시스템에서 신호 송수신 방법 및 장치 WO2020204603A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/599,129 US12069618B2 (en) 2019-04-01 2020-04-01 Method and device for transmitting/receiving signals in communication system
EP20781752.9A EP3934350A4 (en) 2019-04-01 2020-04-01 METHOD AND DEVICE FOR TRANSMITTING/RECEIVING SIGNALS IN A COMMUNICATION SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0037932 2019-04-01
KR1020190037932A KR20200116303A (ko) 2019-04-01 2019-04-01 통신 시스템에서 신호 송수신 방법 및 장치

Publications (1)

Publication Number Publication Date
WO2020204603A1 true WO2020204603A1 (ko) 2020-10-08

Family

ID=72667194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/004465 WO2020204603A1 (ko) 2019-04-01 2020-04-01 통신 시스템에서 신호 송수신 방법 및 장치

Country Status (4)

Country Link
US (1) US12069618B2 (ko)
EP (1) EP3934350A4 (ko)
KR (1) KR20200116303A (ko)
WO (1) WO2020204603A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220039078A1 (en) * 2020-07-29 2022-02-03 Qualcomm Incorporated Resource management and dynamic sidelink search space for new radio sidelink
US11838230B2 (en) * 2021-01-07 2023-12-05 Qualcomm Incorporated Access point assisted sidelink communications
US20230262702A1 (en) * 2022-02-16 2023-08-17 Qualcomm Incorporated Slot structure for automatic gain control for high subcarrier spacing

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017176099A1 (ko) * 2016-04-07 2017-10-12 엘지전자 주식회사 무선 통신 시스템에서 특정 서브프레임을 제외한 나머지 서브프레임에 대해 v2x 자원 풀을 할당하는 방법 및 상기 방법을 이용하는 단말

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10757550B2 (en) 2016-04-07 2020-08-25 Lg Electronics Inc. Method for performing sensing during terminal-specific sensing period in wireless communication system, and terminal using same
WO2018117775A1 (ko) * 2016-12-23 2018-06-28 엘지전자(주) 무선 통신 시스템에서 v2x 통신을 수행하기 방법 및 이를 위한 장치
US10979190B2 (en) * 2017-05-26 2021-04-13 Kt Corporation Method for configuring frequency resource about component carrier for new radio and apparatuses thereof
EP3679756B1 (en) 2017-09-08 2022-04-13 Samsung Electronics Co., Ltd. Method and apparatus for resource determination, resource configuration, transmitting random access preamble and random access
WO2019083277A1 (en) * 2017-10-24 2019-05-02 Lg Electronics Inc. METHOD AND APPARATUS FOR PERFORMING A RANDOM ACCESS PROCEDURE IN A WIRELESS COMMUNICATION SYSTEM
KR20190127193A (ko) 2018-05-03 2019-11-13 삼성전자주식회사 무선통신 시스템에서 그룹캐스트를 위한 동기화 방법 및 장치
KR20190129647A (ko) 2018-05-11 2019-11-20 삼성전자주식회사 무선 통신 시스템에서 전송 시간 결정 방법 및 장치
EP3827629B1 (en) * 2018-08-07 2022-09-28 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method and apparatus for performing resource scheduling and delivering control information in vehicle-to-everything communication system
CN112567837A (zh) * 2018-08-09 2021-03-26 康维达无线有限责任公司 5G eV2X的资源管理
US11723046B2 (en) * 2018-09-25 2023-08-08 Asustek Computer Inc. Method and apparatus of deriving feedback resource for sidelink transmission in a wireless communication system
KR102267185B1 (ko) * 2018-10-04 2021-06-21 아서스테크 컴퓨터 인코포레이션 무선 통신 시스템에서 사이드 링크 재전송을 위한 리소스 요청 방법 및 장치
WO2020145781A1 (ko) * 2019-01-11 2020-07-16 엘지전자 주식회사 Nr v2x에서 bwp 기반의 사이드링크 통신을 수행하는 방법 및 장치

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017176099A1 (ko) * 2016-04-07 2017-10-12 엘지전자 주식회사 무선 통신 시스템에서 특정 서브프레임을 제외한 나머지 서브프레임에 대해 v2x 자원 풀을 할당하는 방법 및 상기 방법을 이용하는 단말

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
A. GOTSIS, K. MALIATSOS, P. VASILEIOU, S.STEFANATOS , M. POULAKIS, A. ALEXIOU: "Experimenting with Flexible D2D Communications in Current and Future LTE networks: A D2D Radio Technology Primer & Software Modem Implementation", pages 38 - 61, XP055744979, Retrieved from the Internet <URL:https://www.wirelessinnovation.org/assets/Proceedings/2017Europe/winncomm%20europe%202017%20proceedings.pdf> [retrieved on 20170518] *
ERICSSON: "Details on physical layer structure for SL V2X", 3GPP DRAFT; R1-1901211, 25 January 2019 (2019-01-25), Taipei, Taiwan, pages 1 - 13, XP051576740 *
HUAWEI; HISILICON: "Sidelink physical layer structure for NR V2X", 3GPP DRAFT; R1-1901536, 1 March 2019 (2019-03-01), Athens, Greece, pages 1 - 12, XP051599233 *
See also references of EP3934350A4 *
SPREADTRUM COMMUNICATIONS: "Discussion on NR sidetink physical layer structure", 3GPP DRAFT; R1-1900713, 25 January 2019 (2019-01-25), Taipei, pages 1 - 10, XP051576253 *

Also Published As

Publication number Publication date
US20220159626A1 (en) 2022-05-19
US12069618B2 (en) 2024-08-20
EP3934350A4 (en) 2022-05-04
KR20200116303A (ko) 2020-10-12
EP3934350A1 (en) 2022-01-05

Similar Documents

Publication Publication Date Title
WO2021020954A1 (ko) 무선 통신 시스템에서 사이드링크 자원결정 및 사이드링크 신호 송수신 방법 및 장치
WO2020189997A1 (en) Method and device for priority-based control and data information transmission in wireless communication system
WO2020197220A1 (en) Scheduling in communication systems with multiple service types
WO2020032734A1 (ko) 무선 통신 시스템에서 채널 접속 방법 및 장치
WO2020022650A1 (ko) 무선 통신 시스템에서 자원을 할당하는 방법, 장치 및 시스템
WO2018203657A1 (ko) 무선 통신 시스템에서 상향 제어 채널 전송 방법 및 장치
WO2021025502A1 (en) Method and apparatus for determining uplink control channel and signal resource in wireless communication system
WO2020145614A1 (en) Method and apparatus for feedback transmission and reception in wireless communication system
WO2018021768A1 (en) Method and apparatus for managing hybrid automatic repeat request process in mobile communication system
WO2019013606A1 (ko) 무선 통신 시스템에서 하향링크 제어 채널 수신 시간 설정 방법 및 장치
WO2019203568A1 (en) Method and apparatus for transmitting or receiving synchronization signal in wireless communication system
WO2019216588A1 (ko) 무선 셀룰라 통신 시스템에서 제어 정보 송수신 방법 및 장치
AU2018262995B2 (en) Method and apparatus for identifying uplink signal transmission timing in wireless communication system
WO2020204603A1 (ko) 통신 시스템에서 신호 송수신 방법 및 장치
WO2019216704A1 (ko) 무선 통신 시스템에서 채널 접속 방법 및 장치
WO2021145640A1 (en) Method and apparatus for transmitting and receiving downlink control information in wireless communication system
WO2021066449A1 (ko) 무선 통신 시스템에서 반복적인 송수신을 위한 방법 및 장치
WO2020067855A1 (en) Method and apparatus for monitoring radio link in wireless communication system
WO2021107631A1 (ko) 무선 셀룰라 통신 시스템에서 상향링크 제어 채널의 반복 전송 방법 및 장치
WO2021071223A1 (ko) 무선 통신 시스템에서 신호를 송신 또는 수신하기 위한 장치 및 방법
WO2020067697A1 (ko) 무선 통신 시스템에서 사용자 구분을 위한 제어정보 전송 방법 및 장치
WO2020050631A1 (ko) 무선 통신 시스템에서 다중 mcs를 이용한 데이터 통신 방법 및 장치
WO2020101430A1 (en) Method and apparatus for performing communication in wireless communication system
WO2019216725A1 (ko) 무선통신시스템에서 신호를 송수신하는 방법 및 장치
WO2019212181A1 (ko) 무선통신 시스템에서 그룹캐스트를 위한 동기화 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20781752

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020781752

Country of ref document: EP

Effective date: 20210929