WO2020198897A1 - 一种沉墙施工法 - Google Patents

一种沉墙施工法 Download PDF

Info

Publication number
WO2020198897A1
WO2020198897A1 PCT/CN2019/000067 CN2019000067W WO2020198897A1 WO 2020198897 A1 WO2020198897 A1 WO 2020198897A1 CN 2019000067 W CN2019000067 W CN 2019000067W WO 2020198897 A1 WO2020198897 A1 WO 2020198897A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
construction method
sinking
pile
soil
Prior art date
Application number
PCT/CN2019/000067
Other languages
English (en)
French (fr)
Inventor
问延煦
Original Assignee
问延煦
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 问延煦 filed Critical 问延煦
Priority to US17/598,584 priority Critical patent/US11746493B2/en
Priority to AU2019439324A priority patent/AU2019439324B2/en
Priority to JP2021560236A priority patent/JP7177554B2/ja
Publication of WO2020198897A1 publication Critical patent/WO2020198897A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D29/00Independent underground or underwater structures; Retaining walls
    • E02D29/06Constructions, or methods of constructing, in water
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D17/00Excavations; Bordering of excavations; Making embankments
    • E02D17/02Foundation pits
    • E02D17/04Bordering surfacing or stiffening the sides of foundation pits
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D19/00Keeping dry foundation sites or other areas in the ground
    • E02D19/06Restraining of underground water
    • E02D19/12Restraining of underground water by damming or interrupting the passage of underground water
    • E02D19/18Restraining of underground water by damming or interrupting the passage of underground water by making use of sealing aprons, e.g. diaphragms made from bituminous or clay material
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D29/00Independent underground or underwater structures; Retaining walls
    • E02D29/02Retaining or protecting walls
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D29/00Independent underground or underwater structures; Retaining walls
    • E02D29/045Underground structures, e.g. tunnels or galleries, built in the open air or by methods involving disturbance of the ground surface all along the location line; Methods of making them
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D2250/00Production methods
    • E02D2250/0061Production methods for working underwater

Definitions

  • the invention belongs to the technical field of civil engineering underground engineering, and relates to an underground wall construction method.
  • the traditional caisson method is to dig out all the rock and soil surrounding the well.
  • a number of patents have provided methods and equipment for wall sinking.
  • the Chinese patent (CN1120104A) discloses a construction method for underground walls. The blade foot of the wall is flushed with a water gun to form muddy water. The muddy water is pumped away by a jet pump. The wall sinks under its own weight due to the hollowing out of the blade foot soil; The water ring around the wall reduces drag and prevents the soil wall from collapsing.
  • the Chinese patent (CN101338567B) discloses a construction method for the construction of underground buildings by the rotary jetting caisson method combined with the semi-reverse construction method, and the overall rotary jetting sinking method is used to construct the outer wall of the underground structure.
  • the Chinese patent (CN105926635B) discloses a vertical square prefabricated component construction equipment, assembly and construction method. It provides two sets of reversible mixing heads. The ground penetrates from the cavity of the wall to the foot of the wall to mix the foot of the wall. The rock and soil masses into mud, causing the wall to sink.
  • the Chinese patent (CN106759463A) sets a track at the bottom of the wall, and a chain knife for digging rock and soil is installed on the track. During construction, the chain knife is used to dig the rock and soil at the bottom of the wall and bring it to the ground, causing the wall to sink.
  • the difficulty of the wall sinking lies in its controlled sinking, that is, the sinking position of the wall is a design predetermined position, and the sinking process has a controllable impact on the surrounding rock and soil.
  • the above technologies have insufficient control over the sinking of the wall.
  • the technical problem to be solved by the present invention is to control the sinking of the wall to meet the design requirements for the influence of the wall position and surroundings.
  • the present invention uses the retaining structure on both sides and the wall support (including reaction parts, jacks, supporting piles, and rock and soil reinforced under the supporting piles) formed before the grooving construction to provide the operating space required by the excavator and realize the groove
  • the orderly excavation of the body, strong adaptability to the ground, provides a basic guarantee for the controlled sinking of the wall; the wall is controlled by the elastic support (with rollers) and the wall jack between the retaining structure and the wall
  • the body sinks, and the wall elevation is controllable;
  • the elastic support (with rollers and jacks) sandwiched between the retaining structure and the wall is used to realize the controllable wall plane coordinates; the trough is dug and removed in an orderly manner.
  • the side retaining structure and elastic support, and the wall sinking can be constructed underwater to realize the controllable influence of the wall sinking on the surroundings.
  • the measuring rod (controllable verticality) from the depth of the ground to the excavation surface of the wall can realize the elevation transmission, and then control the excavation elevation;
  • the jacks work in coordination to control the wall to sink evenly in sections;
  • Elastic supports with rollers are sandwiched between the wall and the retaining structure on both sides of the tank, which can balance the rock and soil pressure while ensuring that the sinking friction of the wall is controllable;
  • the wall sinks one section under the control of the jack and connects one section higher on the ground. When needed, the wall can be waterproofed on the ground.
  • steps 3-5 you can choose according to actual engineering needs. For example, if you don't need to recover the elastic support rod with rollers, you can cancel the support change.
  • Controlled sinking in place, and then large-area excavation of the foundation pit can prevent safety accidents in the foundation pit caused by insufficient support.
  • Figure 1 is a schematic elevation view of a construction assembly with retaining structure, jacks, supporting piles and roller support;
  • Figure 2 is a schematic side view of the retaining structure, jacks, supporting piles and construction assembly with roller support;
  • Figure 3 is a schematic diagram of the side view of changing support
  • Figure 4 is a top view of the support change
  • retaining structure 1 wall body 2, wall bottom plate 3, jack (press) 4, jack (top) 5, support pile 6, elastic support rod with roller 7, cantilever reaction piece 8, support pile
  • the required working space height is determined.
  • the weight of the wall 2, the weight of the excavator, and the self-weight of the elastic support rod 7 can be combined to determine the load that the foot support pile 6 needs to share.
  • the measures used can include single-axle cement-soil mixing piles and plain concrete piles to ensure that the bearing capacity of a single pile meets the requirements under various working conditions; the stroke of the jack needs to consider the excavation error; the exploration wall
  • the body corresponds to the physical and mechanical characteristics of the rock and soil on both sides of the tank, and provides parameters for the design of the retaining structure and the elastic support rod 7 with rollers between the wall and the retaining structure; the retaining structure 1 can use conventional cement-soil mixing piles Walls, steel sheet piles, steel pipe piles, profiled steel piles, underground continuous walls (plain concrete) and plain concrete piles formed by various drilling and digging holes.
  • a retaining structure 1 (including excavation openings) is formed on both sides of the wall corresponding to the trough; the excavation openings are not only used for the removal of the rock and soil at the bottom of the wall, but also provide channels for maintenance and recovery of the excavators at the bottom of the wall.
  • a tower crane When a tower crane is required for the project, a tower crane can be installed at the excavation site. Therefore, the location and size of the excavation opening need to be planned in advance; since there is no internal support at the excavation opening, it should be rounded, and its retaining structure should be appropriately strengthened.
  • the trench is excavated along the wall to construct the guide wall.
  • the purpose of the guide wall is to cooperate with the retaining structure to ensure the positioning of the wall when it sinks, and to provide a base for the installation of the measuring pole.
  • the bottom plate 3 can be used to transfer the weight of the elastic support rod 7 with rollers, and also serve as the reaction force of the jack 5, and can also improve the foundation force after the wall foundation is backfilled.
  • Wall controlled sinking construction In the working space, remotely control the underwater excavator to excavate the rock and soil in the trough in layers along the wall direction, and transport it to the excavation opening, where the excavation is excavated by a grab bucket.
  • Excavators can use electricity as power and install underwater monitoring devices to meet the needs of underwater operations. Because the underwater remote control excavation operation is more difficult than the open-air operation, the excavation efficiency is low and the speed is slow, and when the equipment fails to be repaired, most of the equipment needs to be pulled from the excavation port to the ground for maintenance, and the maintenance cycle is long. The production of the wall 2 also requires more processes and takes a long time.
  • the production of the wall 2 and the progress of the excavation at the bottom of the wall may be planned as a whole to reduce the adverse effect of the slow excavation speed on the progress.
  • the thickness of the single-layer excavation needs to be controlled.
  • the measuring rod (controllable verticality) from the ground deep into the excavation surface of the wall can realize the elevation transmission, and then control the excavation elevation.
  • the pile When digging to a certain supporting pile 6, the pile can be lifted by the jack 5, the rock and soil at the bottom of the pile are excavated and the surface is leveled, and then the pile is put down. When the pile is lifted, the weight of the wall borne by the pile can be transferred to the adjacent supporting pile by the wall itself.
  • electroosmosis or vacuum preloading and plastic drainage board can be used to reduce the water content before transportation.
  • the jack 4 presses the supporting pile 6 until its settlement is stable, and the jacks 4 and 5 are networked and coordinated by the computer to control the uniform sinking of the wall 2 as a whole.
  • Elastic supports 7 with rollers are sandwiched between the wall and the retaining structures on both sides of the trough, which not only transfers the balanced rock and soil pressure, but also ensures that the sinking friction of the wall 2 is controllable.
  • the retaining structure 1 can be regarded as an elastic beam plate, and each elastic support rod 7 can be regarded as an elastic support point, and the rigidity of the elastic support rod 7 needs to meet the requirements of peripheral deformation control.
  • the elasticity of the support rod 7 can be realized by a spring or a jack. As the wall 2 sinks, the number of elastic support rods 7 continues to increase.
  • the elastic support rods 7 on a section can be connected by rods to form a rod group, and the weight of the rod group is transferred from the bottom plate 3 of the wall to the supporting piles. 6.
  • the roller is in direct contact with the retaining structure 1 and the wall 2. If the surface of the wall 2 is waterproof, the roller needs to be tire-type to prevent damage to the waterproof.
  • the plane position of the wall 2 can be adjusted.
  • the wall 2 sinks one section under the control of the jack 4 and connects a section higher on the ground.
  • the wall 2 can be waterproofed on the ground. Wall 2 and waterproof production are all completed on the ground, with sufficient construction space, efficiency and quality can be improved compared with underground construction. If you need to sink the steel support, you can also connect the steel support rods into a wall shape. After connecting with the basement wall, it will sink step by step.
  • the basement exterior wall and internal steel support are placed in place before large-scale excavation of the soil in the foundation pit to form a spatial support system, which can avoid safety problems caused by over-excavation and failure of support in time; the location of the steel support wall is flexible and supports
  • the protection system has strong adaptability to the construction plan and geology.
  • Wall foundation construction After wall 2 sinks in place, use wall foot jacks 4 and 5 to adjust the elevation of wall 2, and use support 7 (including jacks) sandwiched between the wall and the retaining structure to adjust the wall 2 plane position. Clean up the dregs and recycle the excavator (in the case of water, it can be completed by a manned submersible with a robot or an underwater robot). Backfill the bottom of the wall to complete the foundation construction. Remove the jacks 4 and 5 at the foot of the recovery wall (can be completed by an underwater robot with a manipulator if there is water) and the measurement and control device.
  • Support change (when the support with rollers needs to be recovered): measure the groove wall and wall shape curve at each support change position, and paste the gasket 12 on the prefabricated support sheet pile 10 according to the curve's unevenness; two pieces of prefabricated support sheet pile 10 After the slices are lowered into the groove, they are attached to the groove wall and the wall respectively, and then the two sheet piles 10 are connected by steel plate 11 to form a lattice support (in the absence of water, it can be welded; in the case of water, bolts can be used For connection, the position of the bolt hole on the steel plate 11 is based on the measured distance between the groove wall and the corresponding point on the wall, combined with the thickness of the gasket 12, the compression modulus and the position of the embedded bolt hole of the sheet pile 10); after all supports are replaced , The elastic support rod 7 with rollers is proposed;
  • Fertilizer tank backfilling For situations where a waterproof curtain is needed, a continuous space formed by the fertilizer tank can be used to backfill the waterproof material, and the fertilizer tank will be backfilled while forming the waterproof curtain; for the case where sand and gravel needs to be manually backfilled, design At this stage, it is necessary to reserve enough width on one side of the backfill, that is, the width of the fertilizer trough on both sides of the wall can be different.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Bulkheads Adapted To Foundation Construction (AREA)
  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)

Abstract

一种沉墙施工法,使墙体受控下沉,属于土木建筑地下工程技术领域,其特点为:在墙体(2)对应槽体两侧先形成挡土结构(1),然后在地面制作一段高度墙体,在墙体(2)底部两侧安装千斤顶(4)及支撑桩体(6),可加固支撑桩体(6)下岩土体,墙体(2)由千斤顶(4)和支撑桩体(6)支撑,墙体底部悬空,形成具有一定高度的挖掘作业空间,在该空间内远程遥控水下挖掘机逐层挖除槽体内岩土;墙体(2)与槽体两侧挡土结构(1)间夹入带滚轮的弹性支撑杆(7),传递平衡岩土压力,使墙体下沉摩阻力可控;墙体在千斤顶控制下下沉一段,在地面接高一段。该施工法用于基坑支护时,可将地下室外墙和空间钢支撑同时下沉就位,形成安全经济的基坑支护体系;该施工法也可用于边坡挡墙和地下防渗墙的修筑。

Description

一种沉墙施工法 技术领域
本发明属于土木建筑地下工程技术领域,涉及一种地下墙施工方法。
背景技术
先在地面上筑墙,再将墙体对应槽体的岩土体挖除,使墙从地面下沉到地下,可以称之为沉墙法。传统的沉井法则是将井内所围的岩土体全部挖除。已有多项专利提供了墙体下沉的方法和设备。中国专利(CN1120104A)公开了一种地下墙施工方法,用水枪冲掘墙体刃脚形成泥水,由射流泵抽走泥水,墙体因刃脚土体掏空而靠自重下沉;借助薄膜和墙体周围的水环减阻和防止土壁坍塌。中国专利(CN101338567B)公开了一种旋喷沉井法配合半逆作法施工地下建筑物的施工方法,采用整体旋喷下沉法施工地下结构外墙。中国专利(CN105926635B)公开了一种竖向方形预制构件施工设备、组合体和施工方法,提供了可翻转回收的两组搅拌头,在地面从墙体的空腔内穿至墙脚处,搅拌墙脚的岩土体成泥浆,使墙体下沉。中国专利(CN106759463A)在墙体底部设置轨道,轨道上安装有挖掘岩土的链刀,施工时开动链刀挖掘墙底的岩土,并带至地面,使得墙体下沉。
墙体下沉的难点在于使其受控下沉,即墙体下沉的位置为设计预定位置,且下沉过程对周边的岩土体影响可控。以上技术,对墙体下沉的控制能力尚有不足。
发明内容
本发明所要解决的技术问题是将墙体受控下沉,以满足设计对墙体位置及周边影响的要求。
本发明用开槽施工前形成的两侧挡土结构和墙体支撑(包括反力件、千斤顶、支撑桩、支撑桩下加固的岩土体)提供了挖掘机所需的操作空间,实现槽体的有序挖除,对地层的适应性强,为墙体受控下沉提供基础性保障;用夹在挡土结构和墙体之间的弹性支撑(带滚轮)和墙底千斤顶控制墙体下沉,墙体标高可控;用夹在挡土结构和墙体之间的弹性支撑(带滚轮和千斤顶),实现墙体平面坐标可控;由槽体有序挖除、槽体两侧挡土结构及弹性支撑、墙体下沉可在水下施工,实现墙体下沉对周边影响可控。
本发明的施工法步骤如下:
1.槽体开挖前的准备工作:
1)勘探墙体对应槽体中岩土体的物理力学特征,为墙底挖掘机的选择提供依据,为墙脚部支撑桩的长度、端部尺寸及间距布置提供依据,为墙脚部支撑桩底部岩土体局部加固措施选择及设计提供依据,为千斤顶的行程确定提供依据;
2)勘探墙体对应槽体两侧岩土体的物理力学特征,为挡土结构和墙体挡土结构之间带滚轮的支撑设计提供参数;
3)在墙体对应槽体两侧(包括出土口)形成挡土结构;墙脚部支撑桩底部岩土体局部加固;开挖沟槽,形成导墙;
4)在地面制作墙体的底板及一段高度的墙体,在墙脚附近的墙体上对称间隔安装或现浇悬臂反力件,在支撑桩顶也对称安装或现浇悬臂反力件,墙身自重由反力件经千斤顶传至支撑桩再传至槽体未开挖的岩土体,这样在两侧挡土结构和支撑桩的围护下,墙体底部与未开挖岩土体之间形成具有一定高度的作业空间。
2.墙体受控下沉施工:
1)在作业空间内,安装水下远程遥控挖掘机,沿墙体走向分层挖掘槽体内的岩土体,并运至出土口,由抓斗出土;当挖至某支撑桩处时,可由千斤顶先将该桩抬起,待挖掘完一层该桩底岩土后,再将该桩放下。该桩抬起时,由该桩承担的墙体自重,由墙自身传递至临近的支撑桩体;
2)为防止两侧挡土结构破坏,需控制单层开挖厚度,可由从地面深至墙底挖掘面的测杆(垂直度可控)实现高程传递,进而控制开挖标高;
3)随着岩土体被分层挖走,千斤顶顶压各支撑桩至其沉降稳定;
4)各千斤顶协调工作,控制墙体整体均匀分段下沉;
5)墙体与槽体两侧挡土结构之间夹有带滚轮的弹性支撑,在传递平衡岩土压力的同时,也保证墙体下沉摩阻力可控;
6)墙体在千斤顶的控制下下沉一段,在地面上接高一段。需要时,可在地面施做墙体的防水。
3.墙体基础施工:
1)墙体下沉就位后,用千斤顶调整墙体标高,用夹在墙体和挡土结构之间的支撑调整墙体平面位置。清理渣土,拆除回收挖掘机(有水情况下可由带机械手的载人潜水器或水下机器人完成)。回填墙体底部完成基础施工;
2)拆除回收墙脚处的千斤顶(有水情况下可由带机械手的水下机器人完成)及测控装置。
4.换撑施工
1)测定各换撑位置处槽壁及墙壁形状曲线,根据曲线凹凸,粘贴垫片在预制支撑板桩上;
2)两片预制支撑板桩分片下至槽内后,分别贴在槽壁上和墙壁上,再用钢板把两片板桩连接起来形成格构式支撑(无水情况下,可焊接;有水情况下可用螺栓连接,钢板上的螺栓孔位置,是根据实测槽壁及墙壁对应点距离,结合垫片厚度、压缩模量及板桩预埋螺栓孔位置 综合得到的);
3)所有支撑换撑好后,提出带滚轮的弹性支撑杆;
5.肥槽回填。
对于第3-5步,可根据实际工程需要进行取舍,例如无需回收带滚轮的弹性支撑杆,则可取消换撑。
该施工法用于基坑支护时,有以下特点:
1)可将地下室外墙(永久性结构)和钢支撑(可拆卸的临时结构)在地面连接后,同时
受控下沉就位,再进行基坑的大面积开挖,可防止因支撑不到位而引发的基坑安全事故,
形成安全经济的基坑支护体系;
2)地下室外墙和防水都在地上制作,作业空间充分,施工便捷,质量有保证;
3)钢支撑墙的位置灵活,支护体系对建筑方案、地质适应性较强。
该施工法用于边坡挡墙时,有以下特点:
1)较排桩而言,墙体整体性好,可形成双向受力;
2)较排桩而言,墙后可回填砂石,有利于减少水压力;
3)较传统的坡脚开挖后再修筑挡墙而言,边坡先修挡墙后开挖,有利于安全。
该施工法用于防渗墙时,有以下特点:
1)墙体整体性比地连墙好,防渗能力强。
附图说明
图1为挡土结构、千斤顶、支撑桩及带滚轮支撑的施工组合体立面示意图;
图2为挡土结构、千斤顶、支撑桩及带滚轮支撑的施工组合体侧面示意图;
图3为换撑侧面示意图;
图4为换撑俯视图;
图中有:挡土结构1、墙身2、墙体底板3、千斤顶(压)4、千斤顶(顶)5、支撑桩6、带滚轮的弹性支撑杆7、悬臂反力件8、支撑桩下加固的岩土体9、板桩10、钢板11、垫片12。
具体实施方式
以下结合附图与具体实施例说明本发明:
1.槽体开挖前的准备工作:勘探墙体对应槽体中岩土体的物理力学特征,为墙底挖掘机的选择提供依据。当开挖土层以粘性土层为主时,墙底宜预埋轨道梁,墙底挖掘机宜采用悬吊的方式行走在轨道梁上,机械重量由墙传至临近的支撑桩6,选择自重较轻的设备;当开挖土层以砂性土或岩石为主,则可考虑采用履带式挖掘机,挖掘机的自重由未开挖的岩土体 承担。挖掘机选定后,其所需的作业空间高度就确定了,同时可以结合墙体2重量、挖掘机重量、弹性支撑杆7的自重确定墙脚支撑桩6所需分担的荷载。根据勘探得到的岩土物理力学参数,推算校验支撑桩6底部岩土体能否满足承载力要求。否则需要对支撑桩底部进行局部加固9,采用的措施可以包括单轴水泥土搅拌桩、素砼桩,保证各种工况下单桩承载力满足要求;千斤顶的行程需考虑挖掘误差;勘探墙体对应槽体两侧岩土体的物理力学特征,为挡土结构和墙体与挡土结构之间带滚轮的弹性支撑杆7设计提供参数;挡土结构1可选用常规的水泥土搅拌桩墙、钢板桩、钢管桩、型钢桩、地下连续墙(素砼)及各种钻挖孔形成的素砼桩,用于边坡挡墙时,如需墙后排水,则宜用可插拔的钢桩,避免水压力在墙后聚集,钢桩如遇下沉困难,可钻孔辅助;墙脚作业空间处及在带滚轮的支撑7和换撑条件下,挡土结构1自身的承载力均需要满足要求。在本工法中墙底的挖掘可在有水情况下进行,故挡土结构并不要求挡水。在墙体对应槽体两侧形成挡土结构1(含出土口);出土口不仅用于墙底岩土体的运出,而且为维修、回收墙底挖掘机提供通道。当工程需要采用塔吊时候,出土口处还可以安装塔吊。因此,出土口的位置、大小需提前规划;由于出土口处无内支撑,因此宜做成圆形,其挡土结构也宜适当加强。沿墙体走向开挖沟槽,施工导墙,导墙的目的是配合挡土结构保证墙体下沉时的定位,同时也为测杆的安装提供基座。在地面制作墙体底板3及一段高度的墙体,可现浇可预制,底板上需开洞,用于穿过支撑桩,如墙体下沉就位后需要与其他构件再相连,则需在墙体对应的部位上预留埋件。底板3可用于传递带滚轮的弹性支撑杆7自重,并兼作千斤顶5的反力,还可改善墙基础回填后基础受力。在墙脚附近对称间隔安装或现浇悬臂反力件8,在支撑桩顶也对称安装或现浇悬臂反力件8,墙身自重由反力件8经千斤顶4传至支撑桩6再传至槽体未开挖的岩土体或支撑桩下加固的岩土体9,这样在两侧挡土结构1和支撑桩6的围护下,墙体底部形成了满足墙底挖掘机作业高度的作业空间。
2.墙体受控下沉施工:在作业空间内,远程遥控水下挖掘机,沿墙体走向分层挖掘槽体内的岩土体,并运至出土口,由抓斗出土。挖掘机可采用电力作为动力,并安装水下监控装置,以适应水下作业的需求。由于水下遥控挖掘作业较露天作业难度大,因此,其挖掘效率低,速度慢,而且当出现设备故障需要维修时,多半需要将设备从出土口拉至地面维修,维修周期长。而墙体2的制作需要工序也较多,耗时较长,为此,可考虑将墙体2的制作和墙底挖掘的进度统筹安排,以减少挖掘速度慢对进度的不利影响。为防止两侧挡土结构破坏,需控制单层开挖厚度,可由从地面深入墙底挖掘面的测杆(垂直度可控)实现高程传递,进而控制开挖标高。将当挖至某支撑桩6处时,可由千斤顶5将该桩抬起,挖掘该桩底岩土并平整表而后,再将桩放下。抬起该桩时,由该桩承担的墙体自重,可由墙自身传递至临近的 支撑桩体。如挖掘出的岩土含水量较大,则可用电渗法或真空预压加塑料排水板降低含水量后再外运。随着岩土体被分层挖走,千斤顶4顶压支撑桩6至其沉降稳定后,各千斤顶4和5联网由电子计算机统一协调工作,控制墙体2整体均匀下沉。墙体与槽体两侧挡土结构之间夹有带滚轮的弹性支撑7,在传递平衡岩土压力的同时,也保证墙体2下沉摩阻力可控。挡土结构1可视为弹性梁板,而各弹性支撑杆7可视为弹性支撑点,弹性支撑杆7的刚度需要满足周边变形控制的要求。支撑杆7的弹性,可由弹簧或千斤顶实现。随着墙体2下沉,弹性支撑杆7数量不断增加,一个剖面上的各个弹性支撑杆7可用杆件连接起来形成一个杆件组,杆件组的自重由墙的底板3传递给支撑桩6。滚轮与挡土结构1和墙体2直接接触,如墙体2表面有防水,滚轮需要用轮胎式,以防止破坏防水。弹性支撑杆7如含千斤顶,则可以调控墙体2的平面位置。墙体2在千斤顶4的控制下下沉一段,在地面上接高一段。需要时,可在地面施做墙体2的防水。墙体2和防水制作,均在地面完成,施工空间充分,效率和质量均可较地下施工有提高。如需下沉钢支撑,也可将钢支撑杆件连接成墙体状,与地下室外墙连接后,逐段下沉。地下室外墙和内部钢支撑一起,在基坑内土体大面积开挖前到位,构成空间支护体系,可避免因超挖和支撑未及时到位而引起安全问题;钢支撑墙的位置灵活,支护体系对建筑方案、地质适应性较强。
3.墙体基础施工:墙体2下沉就位后,用墙脚部千斤顶4和5调整墙体2标高,用夹在墙体和挡土结构之间的支撑7(含千斤顶)调整墙体2平面位置。清理渣土,回收挖掘机(有水情况下可由带机械手的载人潜水器或水下机器人配合完成)。回填墙体底部完成基础施工。拆除回收墙脚处的千斤顶4和5(有水情况下可由带机械手的水下机器人完成)及测控装置。
4.换撑(需要回收带滚轮的支撑时):测定各换撑位置处槽壁及墙壁形状曲线,根据曲线凹凸,粘贴垫片12在预制支撑板桩10上;两片预制支撑板桩10分片下至槽内后,分别贴在槽壁上和墙壁上,再用钢板11把两片板桩10连接起来形成格构式支撑(无水情况下,可焊接;有水情况下可用螺栓连接,钢板11上的螺栓孔位置,是根据实测槽壁及墙壁对应点距离,结合垫片12厚度、压缩模量及板桩10预埋螺栓孔位置综合得到的);所有支撑换撑好后,提出带滚轮的弹性支撑杆7;
5.肥槽回填:对于需要防水帷幕的情况,可考虑利用肥槽形成的一个连续的空间体回填防水材料,在形成防水帷幕同时也将肥槽回填;对于需人工回填砂石的情况,设计阶段就需将回填一侧的宽度预留足够,即墙体两侧肥槽宽度可不同。

Claims (10)

  1. 一种将在地面筑成的墙体,从地上受控下沉到地下去成为地下墙的沉墙施工法,其特征在于,包括以下步骤:
    (a)在墙体(2)对应槽体两侧形成挡土结构(1);
    (b)用千斤顶(4)支撑墙体(2)使墙底部悬空;
    (c)远程遥控水下挖掘机在墙底逐层挖除槽体内岩土;
    (d)墙体(2)与槽体两侧挡土结构(1)之间夹入有带滚轮的弹性支撑杆(7);
    (e)用千斤顶控制墙体(2)下沉;
    (f)墙体基础施工;
    (g)需回收带滚轮的弹性支撑杆(7)时的换撑施工;
    (h)肥槽回填。
  2. 根据权利要求1所述的沉墙施工法,其特征在于,所述墙体(2)具有底板(3)。
  3. 根据权利要求1所述的沉墙施工法,其特征在于,所述的步骤(b)中,包括如下步骤:开挖沟槽形成导墙,在地面制作墙体底板(3)及一段高度的墙体(2);在墙脚附近的墙体(2)上安装或现浇悬臂反力件(8);安装支撑桩(6),在支撑桩顶安装或现浇悬臂反力件(8);安装千斤顶(4)和(5),使墙底部悬空,形成墙底挖掘作业空间。
  4. 根据权利要求3所述的沉墙施工法,其特征在于,墙脚部支撑桩(6)底部岩土体局部加固(9)。
  5. 根据权利要求1所述的沉墙施工法,其特征在于,所述的步骤(c)中,当挖至某支撑桩(6)处时,由千斤顶(5)先将该桩抬起,待挖掘完一层该桩底部岩土后,再将该桩放下。
  6. 根据权利要求1所述的沉墙施工法,其特征在于,由从地面深至墙底挖掘面的测杆实现高程传递,控制开挖标高。
  7. 根据权利要求1所述的沉墙施工法,其特征在于,所述的步骤(d)中,用连杆把同一剖面的各弹性支撑杆连接起来。
  8. 根据权利要求1所述的沉墙施工法,其特征在于,所述的步骤(e)中,包括如下步骤:当岩土体被分层挖走,千斤顶(4)顶压支撑桩(6)至其沉降稳定;各千斤顶协调工作,控制墙体整体均匀分段下沉;墙体在千斤顶的控制下下沉一段,在地面上接高一段。
  9. 根据权利要求1所述的沉墙施工法,其特征在于,所述的步骤(f)中,包括如下步骤:墙体下沉就位后,用千斤顶(4)和(5)调整墙体标高,用夹在墙体和挡土结构之间的弹性支撑(7)调整墙体平面位置;清理渣土,回收挖掘机;回填墙体底部完成基础施工;拆除回收墙脚处的千斤顶(4)和(5)及测控装置。
  10. 根据权利要求1所述的沉墙施工法,其特征在于,所述的步骤(g)中,包括如下步 骤:测定各换撑位置处槽壁及墙壁形状曲线;根据曲线凹凸,粘贴垫片(12)在预制支撑板桩(10)上;两片预制支撑板桩(10)分片下至槽内后,分别贴在槽壁上和墙壁上,再用钢板(11)把两片板桩连接起来形成格构式支撑;所有支撑换撑好后,提出带滚轮的弹性支撑杆(7)。
PCT/CN2019/000067 2019-04-04 2019-04-16 一种沉墙施工法 WO2020198897A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/598,584 US11746493B2 (en) 2019-04-04 2019-04-16 Wall sinking construction method
AU2019439324A AU2019439324B2 (en) 2019-04-04 2019-04-16 Wall sinking construction method
JP2021560236A JP7177554B2 (ja) 2019-04-04 2019-04-16 壁沈下施工方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910274122.2A CN109898520B (zh) 2019-04-04 2019-04-04 一种沉墙施工法
CN201910274122.2 2019-04-04

Publications (1)

Publication Number Publication Date
WO2020198897A1 true WO2020198897A1 (zh) 2020-10-08

Family

ID=66954422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/000067 WO2020198897A1 (zh) 2019-04-04 2019-04-16 一种沉墙施工法

Country Status (5)

Country Link
US (1) US11746493B2 (zh)
JP (1) JP7177554B2 (zh)
CN (1) CN109898520B (zh)
AU (1) AU2019439324B2 (zh)
WO (1) WO2020198897A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112962667A (zh) * 2021-02-08 2021-06-15 中国建筑第八工程局有限公司 下沉庭院的外墙结构及其施工方法
CN113250241A (zh) * 2021-06-11 2021-08-13 厦门理工学院 一种智能建造挡土墙的方法和装置
CN113529739A (zh) * 2021-07-28 2021-10-22 王冰璇 一种同轴扩体装配式支撑、无轴旋喷器及相应的施工方法
CN113818464A (zh) * 2021-08-26 2021-12-21 宁波市政工程建设集团股份有限公司 一种摩阻力可调式沉井及阻力控制方法
CN114197531A (zh) * 2022-01-12 2022-03-18 中国建筑土木建设有限公司 基于地连墙支护的减载式地铁车站结构及其施工方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112267557B (zh) * 2020-10-20 2022-08-09 中国十九冶集团有限公司 地下挡板支撑结构的施工方法
CN113006087B (zh) * 2021-03-15 2022-08-12 浙江省建筑科学设计研究院有限公司 一种基于逆作法的基坑支护方法
CN114045863B (zh) * 2021-10-13 2022-12-13 河海大学 一种建筑物整体下沉的装置及方法
CN114164929A (zh) * 2021-10-21 2022-03-11 王树生 一种沉墙基础及其施工装置
CN113818466B (zh) * 2021-11-22 2022-02-18 中铁四局集团第三建设有限公司 一种软弱地基防沉井突沉的方法
CN115613548A (zh) * 2022-09-30 2023-01-17 中交路桥建设有限公司 预制地连墙施工装置及其施工方法
CN115787659B (zh) * 2022-11-09 2025-04-01 山东大学 一种适应基坑永久支护的防水板与施工方法
WO2024155484A1 (en) * 2023-01-16 2024-07-25 Commscope Technologies Llc Base station antennas having an external access port for receiving interchangeable frequency selective surfaces

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1120104A (zh) * 1994-09-16 1996-04-10 阎林森 膜水沉墙法
JPH10131202A (ja) * 1996-11-01 1998-05-19 Daiho Constr Co Ltd ニューマチックケーソンの沈下方法
JP2000192481A (ja) * 1998-12-28 2000-07-11 Nikko Kensetsu Kk 地盤掘下げ装置および筒状地下構造体の形成法
JP2003138584A (ja) * 2001-11-06 2003-05-14 Shimizu Corp 地下躯体の施工方法
CN101338567A (zh) * 2008-08-15 2009-01-07 万勇 旋喷沉井法配合半逆作法施工地下建筑物的施工方法
CN202144598U (zh) * 2011-06-21 2012-02-15 邹宗煊 一种下沉式地下构筑物
CN105926635A (zh) * 2016-05-09 2016-09-07 江苏鸿基节能新技术股份有限公司 一种竖向方形预制构件施工设备、组合体和施工方法
CN106013052A (zh) * 2016-05-23 2016-10-12 江苏东合南岩土科技股份有限公司 钢板桩与沉井组合式地下停车库及其施工方法
CN108086302A (zh) * 2017-12-29 2018-05-29 章胜南 一种基于地下墙体施工的横向整浇墙幅下沉工艺

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3779322A (en) * 1972-03-24 1973-12-18 Milwaukee Boiler Manuf Co Machine for sinking vertical shafts
JPS62288218A (ja) * 1986-06-06 1987-12-15 Daiho Constr Co Ltd ケ−ソンの沈設方法
JP2750442B2 (ja) * 1989-03-28 1998-05-13 大成建設株式会社 ケーソンとその施工方法
JP2536249B2 (ja) * 1990-07-10 1996-09-18 鹿島建設株式会社 リフトダウン地下躯体構築工法
JPH0754488A (ja) * 1993-08-20 1995-02-28 Shimizu Corp 構真柱の建入れ方法および構真柱建入れ用架台
JPH0762667A (ja) * 1993-08-27 1995-03-07 Hazama Gumi Ltd 締切り方式ケーソン据付け工法
JP3453664B2 (ja) * 1994-10-06 2003-10-06 大成建設株式会社 縦坑の構築工法
JP4049306B2 (ja) * 2002-08-27 2008-02-20 ライト工業株式会社 地中構造物の沈埋工法
US7921573B1 (en) * 2009-03-23 2011-04-12 Ric-Man Construction, Inc. Monitoring verticality of a sinking caisson
DE102009020517B3 (de) * 2009-05-08 2010-10-21 Herrenknecht Ag Verfahren zum Errichten eines unterirdischen Bauwerks
CN101851930B (zh) * 2010-01-15 2012-10-03 丁慈鑫 沉井的下沉装置及具有该装置的沉井的下沉方法
CN204112351U (zh) * 2014-07-22 2015-01-21 中国市政工程华北设计研究总院有限公司 沉井的下沉辅助装置
JP6386829B2 (ja) * 2014-08-08 2018-09-05 大成建設株式会社 ニューマチックケーソンの傾斜修正方法
CN204356782U (zh) * 2014-11-27 2015-05-27 中建一局集团第五建筑有限公司 一种用于地下室基坑换撑的面式支撑结构
US10081925B2 (en) * 2016-12-30 2018-09-25 Edvard Amirian Method for constructing building through gravity and weight of the building structure
CN109252533B (zh) * 2018-09-17 2022-01-25 中国一冶集团有限公司 沉井下沉控制系统及其施工方法
CN109139017B (zh) * 2018-10-26 2024-03-15 中铁工程装备集团有限公司 一种沉井法竖井掘进机及其施工方法
US11078788B1 (en) * 2020-07-08 2021-08-03 Ician Engineering Contractors Co., Ltd. Apparatus and method for sinking concrete shaft
US10988907B1 (en) * 2020-08-26 2021-04-27 Ician Engineering Contractors Co., Ltd. Sinking apparatus for sinking concrete shaft

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1120104A (zh) * 1994-09-16 1996-04-10 阎林森 膜水沉墙法
JPH10131202A (ja) * 1996-11-01 1998-05-19 Daiho Constr Co Ltd ニューマチックケーソンの沈下方法
JP2000192481A (ja) * 1998-12-28 2000-07-11 Nikko Kensetsu Kk 地盤掘下げ装置および筒状地下構造体の形成法
JP2003138584A (ja) * 2001-11-06 2003-05-14 Shimizu Corp 地下躯体の施工方法
CN101338567A (zh) * 2008-08-15 2009-01-07 万勇 旋喷沉井法配合半逆作法施工地下建筑物的施工方法
CN202144598U (zh) * 2011-06-21 2012-02-15 邹宗煊 一种下沉式地下构筑物
CN105926635A (zh) * 2016-05-09 2016-09-07 江苏鸿基节能新技术股份有限公司 一种竖向方形预制构件施工设备、组合体和施工方法
CN106013052A (zh) * 2016-05-23 2016-10-12 江苏东合南岩土科技股份有限公司 钢板桩与沉井组合式地下停车库及其施工方法
CN108086302A (zh) * 2017-12-29 2018-05-29 章胜南 一种基于地下墙体施工的横向整浇墙幅下沉工艺

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112962667A (zh) * 2021-02-08 2021-06-15 中国建筑第八工程局有限公司 下沉庭院的外墙结构及其施工方法
CN112962667B (zh) * 2021-02-08 2022-08-30 中国建筑第八工程局有限公司 下沉庭院的外墙结构及其施工方法
CN113250241A (zh) * 2021-06-11 2021-08-13 厦门理工学院 一种智能建造挡土墙的方法和装置
CN113529739A (zh) * 2021-07-28 2021-10-22 王冰璇 一种同轴扩体装配式支撑、无轴旋喷器及相应的施工方法
CN113529739B (zh) * 2021-07-28 2023-07-28 王冰璇 一种同轴扩体装配式支撑、无轴旋喷器及相应的施工方法
CN113818464A (zh) * 2021-08-26 2021-12-21 宁波市政工程建设集团股份有限公司 一种摩阻力可调式沉井及阻力控制方法
CN114197531A (zh) * 2022-01-12 2022-03-18 中国建筑土木建设有限公司 基于地连墙支护的减载式地铁车站结构及其施工方法

Also Published As

Publication number Publication date
AU2019439324B2 (en) 2023-04-06
CN109898520B (zh) 2022-03-01
JP7177554B2 (ja) 2022-11-24
AU2019439324A1 (en) 2021-11-25
US11746493B2 (en) 2023-09-05
JP2022528743A (ja) 2022-06-15
CN109898520A (zh) 2019-06-18
US20220195687A1 (en) 2022-06-23

Similar Documents

Publication Publication Date Title
WO2020198897A1 (zh) 一种沉墙施工法
CN108914931B (zh) 一种装配式竖向盾构环型基桩与施工方法
CN102434717B (zh) 工字钢顶管工作坑的施工方法
CN204491626U (zh) 拉森钢板桩与预应力锚杆组合的基坑围护结构
CN108457282A (zh) 深水硬岩无封底钢板桩围堰施工方法
CN110258582B (zh) 基于钢管桩与拉森钢板的斜支撑基坑支护结构及施工方法
CN105672450A (zh) 平行于既有地铁隧道结构上方大口径排水管道的敷设方法
CN104480929B (zh) 一种将咬合桩应用于永久地下室外墙的桩墙合一施工方法
CN114892690A (zh) 一种双壁钢套箱围堰施工方法
CN114482099A (zh) 钢板桩围堰施工方法
CN204311456U (zh) 基坑加固结构
CN109577322A (zh) 一种用于土体内部既有桩基接桩的施工装置
CN101532586A (zh) 一种地下管道安装施工装置及其方法
CN114809134B (zh) 一种筏板基础的多层混凝土建筑顶升纠偏施工方法
CN215715515U (zh) 不良地质条件下市政管网施工支护一体化结构
CN212336065U (zh) 适用于地下井筒群施工的导沉系统
CN105274984A (zh) 一种双重套管全回转施工立柱桩方法
CN115977102A (zh) 饱和软黄土地层中上基坑-下隧道联合施工结构及施工方法
CN118563745A (zh) 一种基坑被动区水平基床系数施工勘察方法
CN114718116A (zh) 不良地质条件下市政管网施工支护一体化结构及施工方法
CN111877315A (zh) 一种地下设施下局部预制地连墙导墙及施工方法
CN113914328B (zh) 一种复合式多层拉森钢板桩组合支护结构及其施工方法
CN115094946B (zh) 一种顶管施工用后背墙施工方法
CN111719576B (zh) 适用于地下井筒群施工的导沉系统及地下井筒群施工方法
CN216865180U (zh) 一种临岸垃圾填埋场整治基坑支护的布置结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19922313

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021560236

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019439324

Country of ref document: AU

Date of ref document: 20190416

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19922313

Country of ref document: EP

Kind code of ref document: A1