WO2020198897A1 - 一种沉墙施工法 - Google Patents
一种沉墙施工法 Download PDFInfo
- Publication number
- WO2020198897A1 WO2020198897A1 PCT/CN2019/000067 CN2019000067W WO2020198897A1 WO 2020198897 A1 WO2020198897 A1 WO 2020198897A1 CN 2019000067 W CN2019000067 W CN 2019000067W WO 2020198897 A1 WO2020198897 A1 WO 2020198897A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wall
- construction method
- sinking
- pile
- soil
- Prior art date
Links
- 238000010276 construction Methods 0.000 title claims abstract description 46
- 239000002689 soil Substances 0.000 claims abstract description 46
- 239000011435 rock Substances 0.000 claims abstract description 37
- 238000009412 basement excavation Methods 0.000 claims abstract description 33
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 18
- 239000010959 steel Substances 0.000 claims abstract description 18
- 239000003337 fertilizer Substances 0.000 claims description 6
- 238000011065 in-situ storage Methods 0.000 claims description 6
- 230000005540 biological transmission Effects 0.000 claims description 3
- 238000005259 measurement Methods 0.000 claims description 3
- 238000012546 transfer Methods 0.000 abstract description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 17
- 239000010410 layer Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 238000013461 design Methods 0.000 description 6
- 238000012423 maintenance Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005370 electroosmosis Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D29/00—Independent underground or underwater structures; Retaining walls
- E02D29/06—Constructions, or methods of constructing, in water
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D17/00—Excavations; Bordering of excavations; Making embankments
- E02D17/02—Foundation pits
- E02D17/04—Bordering surfacing or stiffening the sides of foundation pits
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D19/00—Keeping dry foundation sites or other areas in the ground
- E02D19/06—Restraining of underground water
- E02D19/12—Restraining of underground water by damming or interrupting the passage of underground water
- E02D19/18—Restraining of underground water by damming or interrupting the passage of underground water by making use of sealing aprons, e.g. diaphragms made from bituminous or clay material
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D29/00—Independent underground or underwater structures; Retaining walls
- E02D29/02—Retaining or protecting walls
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D29/00—Independent underground or underwater structures; Retaining walls
- E02D29/045—Underground structures, e.g. tunnels or galleries, built in the open air or by methods involving disturbance of the ground surface all along the location line; Methods of making them
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D2250/00—Production methods
- E02D2250/0061—Production methods for working underwater
Definitions
- the invention belongs to the technical field of civil engineering underground engineering, and relates to an underground wall construction method.
- the traditional caisson method is to dig out all the rock and soil surrounding the well.
- a number of patents have provided methods and equipment for wall sinking.
- the Chinese patent (CN1120104A) discloses a construction method for underground walls. The blade foot of the wall is flushed with a water gun to form muddy water. The muddy water is pumped away by a jet pump. The wall sinks under its own weight due to the hollowing out of the blade foot soil; The water ring around the wall reduces drag and prevents the soil wall from collapsing.
- the Chinese patent (CN101338567B) discloses a construction method for the construction of underground buildings by the rotary jetting caisson method combined with the semi-reverse construction method, and the overall rotary jetting sinking method is used to construct the outer wall of the underground structure.
- the Chinese patent (CN105926635B) discloses a vertical square prefabricated component construction equipment, assembly and construction method. It provides two sets of reversible mixing heads. The ground penetrates from the cavity of the wall to the foot of the wall to mix the foot of the wall. The rock and soil masses into mud, causing the wall to sink.
- the Chinese patent (CN106759463A) sets a track at the bottom of the wall, and a chain knife for digging rock and soil is installed on the track. During construction, the chain knife is used to dig the rock and soil at the bottom of the wall and bring it to the ground, causing the wall to sink.
- the difficulty of the wall sinking lies in its controlled sinking, that is, the sinking position of the wall is a design predetermined position, and the sinking process has a controllable impact on the surrounding rock and soil.
- the above technologies have insufficient control over the sinking of the wall.
- the technical problem to be solved by the present invention is to control the sinking of the wall to meet the design requirements for the influence of the wall position and surroundings.
- the present invention uses the retaining structure on both sides and the wall support (including reaction parts, jacks, supporting piles, and rock and soil reinforced under the supporting piles) formed before the grooving construction to provide the operating space required by the excavator and realize the groove
- the orderly excavation of the body, strong adaptability to the ground, provides a basic guarantee for the controlled sinking of the wall; the wall is controlled by the elastic support (with rollers) and the wall jack between the retaining structure and the wall
- the body sinks, and the wall elevation is controllable;
- the elastic support (with rollers and jacks) sandwiched between the retaining structure and the wall is used to realize the controllable wall plane coordinates; the trough is dug and removed in an orderly manner.
- the side retaining structure and elastic support, and the wall sinking can be constructed underwater to realize the controllable influence of the wall sinking on the surroundings.
- the measuring rod (controllable verticality) from the depth of the ground to the excavation surface of the wall can realize the elevation transmission, and then control the excavation elevation;
- the jacks work in coordination to control the wall to sink evenly in sections;
- Elastic supports with rollers are sandwiched between the wall and the retaining structure on both sides of the tank, which can balance the rock and soil pressure while ensuring that the sinking friction of the wall is controllable;
- the wall sinks one section under the control of the jack and connects one section higher on the ground. When needed, the wall can be waterproofed on the ground.
- steps 3-5 you can choose according to actual engineering needs. For example, if you don't need to recover the elastic support rod with rollers, you can cancel the support change.
- Controlled sinking in place, and then large-area excavation of the foundation pit can prevent safety accidents in the foundation pit caused by insufficient support.
- Figure 1 is a schematic elevation view of a construction assembly with retaining structure, jacks, supporting piles and roller support;
- Figure 2 is a schematic side view of the retaining structure, jacks, supporting piles and construction assembly with roller support;
- Figure 3 is a schematic diagram of the side view of changing support
- Figure 4 is a top view of the support change
- retaining structure 1 wall body 2, wall bottom plate 3, jack (press) 4, jack (top) 5, support pile 6, elastic support rod with roller 7, cantilever reaction piece 8, support pile
- the required working space height is determined.
- the weight of the wall 2, the weight of the excavator, and the self-weight of the elastic support rod 7 can be combined to determine the load that the foot support pile 6 needs to share.
- the measures used can include single-axle cement-soil mixing piles and plain concrete piles to ensure that the bearing capacity of a single pile meets the requirements under various working conditions; the stroke of the jack needs to consider the excavation error; the exploration wall
- the body corresponds to the physical and mechanical characteristics of the rock and soil on both sides of the tank, and provides parameters for the design of the retaining structure and the elastic support rod 7 with rollers between the wall and the retaining structure; the retaining structure 1 can use conventional cement-soil mixing piles Walls, steel sheet piles, steel pipe piles, profiled steel piles, underground continuous walls (plain concrete) and plain concrete piles formed by various drilling and digging holes.
- a retaining structure 1 (including excavation openings) is formed on both sides of the wall corresponding to the trough; the excavation openings are not only used for the removal of the rock and soil at the bottom of the wall, but also provide channels for maintenance and recovery of the excavators at the bottom of the wall.
- a tower crane When a tower crane is required for the project, a tower crane can be installed at the excavation site. Therefore, the location and size of the excavation opening need to be planned in advance; since there is no internal support at the excavation opening, it should be rounded, and its retaining structure should be appropriately strengthened.
- the trench is excavated along the wall to construct the guide wall.
- the purpose of the guide wall is to cooperate with the retaining structure to ensure the positioning of the wall when it sinks, and to provide a base for the installation of the measuring pole.
- the bottom plate 3 can be used to transfer the weight of the elastic support rod 7 with rollers, and also serve as the reaction force of the jack 5, and can also improve the foundation force after the wall foundation is backfilled.
- Wall controlled sinking construction In the working space, remotely control the underwater excavator to excavate the rock and soil in the trough in layers along the wall direction, and transport it to the excavation opening, where the excavation is excavated by a grab bucket.
- Excavators can use electricity as power and install underwater monitoring devices to meet the needs of underwater operations. Because the underwater remote control excavation operation is more difficult than the open-air operation, the excavation efficiency is low and the speed is slow, and when the equipment fails to be repaired, most of the equipment needs to be pulled from the excavation port to the ground for maintenance, and the maintenance cycle is long. The production of the wall 2 also requires more processes and takes a long time.
- the production of the wall 2 and the progress of the excavation at the bottom of the wall may be planned as a whole to reduce the adverse effect of the slow excavation speed on the progress.
- the thickness of the single-layer excavation needs to be controlled.
- the measuring rod (controllable verticality) from the ground deep into the excavation surface of the wall can realize the elevation transmission, and then control the excavation elevation.
- the pile When digging to a certain supporting pile 6, the pile can be lifted by the jack 5, the rock and soil at the bottom of the pile are excavated and the surface is leveled, and then the pile is put down. When the pile is lifted, the weight of the wall borne by the pile can be transferred to the adjacent supporting pile by the wall itself.
- electroosmosis or vacuum preloading and plastic drainage board can be used to reduce the water content before transportation.
- the jack 4 presses the supporting pile 6 until its settlement is stable, and the jacks 4 and 5 are networked and coordinated by the computer to control the uniform sinking of the wall 2 as a whole.
- Elastic supports 7 with rollers are sandwiched between the wall and the retaining structures on both sides of the trough, which not only transfers the balanced rock and soil pressure, but also ensures that the sinking friction of the wall 2 is controllable.
- the retaining structure 1 can be regarded as an elastic beam plate, and each elastic support rod 7 can be regarded as an elastic support point, and the rigidity of the elastic support rod 7 needs to meet the requirements of peripheral deformation control.
- the elasticity of the support rod 7 can be realized by a spring or a jack. As the wall 2 sinks, the number of elastic support rods 7 continues to increase.
- the elastic support rods 7 on a section can be connected by rods to form a rod group, and the weight of the rod group is transferred from the bottom plate 3 of the wall to the supporting piles. 6.
- the roller is in direct contact with the retaining structure 1 and the wall 2. If the surface of the wall 2 is waterproof, the roller needs to be tire-type to prevent damage to the waterproof.
- the plane position of the wall 2 can be adjusted.
- the wall 2 sinks one section under the control of the jack 4 and connects a section higher on the ground.
- the wall 2 can be waterproofed on the ground. Wall 2 and waterproof production are all completed on the ground, with sufficient construction space, efficiency and quality can be improved compared with underground construction. If you need to sink the steel support, you can also connect the steel support rods into a wall shape. After connecting with the basement wall, it will sink step by step.
- the basement exterior wall and internal steel support are placed in place before large-scale excavation of the soil in the foundation pit to form a spatial support system, which can avoid safety problems caused by over-excavation and failure of support in time; the location of the steel support wall is flexible and supports
- the protection system has strong adaptability to the construction plan and geology.
- Wall foundation construction After wall 2 sinks in place, use wall foot jacks 4 and 5 to adjust the elevation of wall 2, and use support 7 (including jacks) sandwiched between the wall and the retaining structure to adjust the wall 2 plane position. Clean up the dregs and recycle the excavator (in the case of water, it can be completed by a manned submersible with a robot or an underwater robot). Backfill the bottom of the wall to complete the foundation construction. Remove the jacks 4 and 5 at the foot of the recovery wall (can be completed by an underwater robot with a manipulator if there is water) and the measurement and control device.
- Support change (when the support with rollers needs to be recovered): measure the groove wall and wall shape curve at each support change position, and paste the gasket 12 on the prefabricated support sheet pile 10 according to the curve's unevenness; two pieces of prefabricated support sheet pile 10 After the slices are lowered into the groove, they are attached to the groove wall and the wall respectively, and then the two sheet piles 10 are connected by steel plate 11 to form a lattice support (in the absence of water, it can be welded; in the case of water, bolts can be used For connection, the position of the bolt hole on the steel plate 11 is based on the measured distance between the groove wall and the corresponding point on the wall, combined with the thickness of the gasket 12, the compression modulus and the position of the embedded bolt hole of the sheet pile 10); after all supports are replaced , The elastic support rod 7 with rollers is proposed;
- Fertilizer tank backfilling For situations where a waterproof curtain is needed, a continuous space formed by the fertilizer tank can be used to backfill the waterproof material, and the fertilizer tank will be backfilled while forming the waterproof curtain; for the case where sand and gravel needs to be manually backfilled, design At this stage, it is necessary to reserve enough width on one side of the backfill, that is, the width of the fertilizer trough on both sides of the wall can be different.
Landscapes
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Paleontology (AREA)
- Civil Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Hydrology & Water Resources (AREA)
- Bulkheads Adapted To Foundation Construction (AREA)
- Underground Structures, Protecting, Testing And Restoring Foundations (AREA)
Abstract
Description
Claims (10)
- 一种将在地面筑成的墙体,从地上受控下沉到地下去成为地下墙的沉墙施工法,其特征在于,包括以下步骤:(a)在墙体(2)对应槽体两侧形成挡土结构(1);(b)用千斤顶(4)支撑墙体(2)使墙底部悬空;(c)远程遥控水下挖掘机在墙底逐层挖除槽体内岩土;(d)墙体(2)与槽体两侧挡土结构(1)之间夹入有带滚轮的弹性支撑杆(7);(e)用千斤顶控制墙体(2)下沉;(f)墙体基础施工;(g)需回收带滚轮的弹性支撑杆(7)时的换撑施工;(h)肥槽回填。
- 根据权利要求1所述的沉墙施工法,其特征在于,所述墙体(2)具有底板(3)。
- 根据权利要求1所述的沉墙施工法,其特征在于,所述的步骤(b)中,包括如下步骤:开挖沟槽形成导墙,在地面制作墙体底板(3)及一段高度的墙体(2);在墙脚附近的墙体(2)上安装或现浇悬臂反力件(8);安装支撑桩(6),在支撑桩顶安装或现浇悬臂反力件(8);安装千斤顶(4)和(5),使墙底部悬空,形成墙底挖掘作业空间。
- 根据权利要求3所述的沉墙施工法,其特征在于,墙脚部支撑桩(6)底部岩土体局部加固(9)。
- 根据权利要求1所述的沉墙施工法,其特征在于,所述的步骤(c)中,当挖至某支撑桩(6)处时,由千斤顶(5)先将该桩抬起,待挖掘完一层该桩底部岩土后,再将该桩放下。
- 根据权利要求1所述的沉墙施工法,其特征在于,由从地面深至墙底挖掘面的测杆实现高程传递,控制开挖标高。
- 根据权利要求1所述的沉墙施工法,其特征在于,所述的步骤(d)中,用连杆把同一剖面的各弹性支撑杆连接起来。
- 根据权利要求1所述的沉墙施工法,其特征在于,所述的步骤(e)中,包括如下步骤:当岩土体被分层挖走,千斤顶(4)顶压支撑桩(6)至其沉降稳定;各千斤顶协调工作,控制墙体整体均匀分段下沉;墙体在千斤顶的控制下下沉一段,在地面上接高一段。
- 根据权利要求1所述的沉墙施工法,其特征在于,所述的步骤(f)中,包括如下步骤:墙体下沉就位后,用千斤顶(4)和(5)调整墙体标高,用夹在墙体和挡土结构之间的弹性支撑(7)调整墙体平面位置;清理渣土,回收挖掘机;回填墙体底部完成基础施工;拆除回收墙脚处的千斤顶(4)和(5)及测控装置。
- 根据权利要求1所述的沉墙施工法,其特征在于,所述的步骤(g)中,包括如下步 骤:测定各换撑位置处槽壁及墙壁形状曲线;根据曲线凹凸,粘贴垫片(12)在预制支撑板桩(10)上;两片预制支撑板桩(10)分片下至槽内后,分别贴在槽壁上和墙壁上,再用钢板(11)把两片板桩连接起来形成格构式支撑;所有支撑换撑好后,提出带滚轮的弹性支撑杆(7)。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/598,584 US11746493B2 (en) | 2019-04-04 | 2019-04-16 | Wall sinking construction method |
AU2019439324A AU2019439324B2 (en) | 2019-04-04 | 2019-04-16 | Wall sinking construction method |
JP2021560236A JP7177554B2 (ja) | 2019-04-04 | 2019-04-16 | 壁沈下施工方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910274122.2A CN109898520B (zh) | 2019-04-04 | 2019-04-04 | 一种沉墙施工法 |
CN201910274122.2 | 2019-04-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020198897A1 true WO2020198897A1 (zh) | 2020-10-08 |
Family
ID=66954422
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/000067 WO2020198897A1 (zh) | 2019-04-04 | 2019-04-16 | 一种沉墙施工法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11746493B2 (zh) |
JP (1) | JP7177554B2 (zh) |
CN (1) | CN109898520B (zh) |
AU (1) | AU2019439324B2 (zh) |
WO (1) | WO2020198897A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112962667A (zh) * | 2021-02-08 | 2021-06-15 | 中国建筑第八工程局有限公司 | 下沉庭院的外墙结构及其施工方法 |
CN113250241A (zh) * | 2021-06-11 | 2021-08-13 | 厦门理工学院 | 一种智能建造挡土墙的方法和装置 |
CN113529739A (zh) * | 2021-07-28 | 2021-10-22 | 王冰璇 | 一种同轴扩体装配式支撑、无轴旋喷器及相应的施工方法 |
CN113818464A (zh) * | 2021-08-26 | 2021-12-21 | 宁波市政工程建设集团股份有限公司 | 一种摩阻力可调式沉井及阻力控制方法 |
CN114197531A (zh) * | 2022-01-12 | 2022-03-18 | 中国建筑土木建设有限公司 | 基于地连墙支护的减载式地铁车站结构及其施工方法 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112267557B (zh) * | 2020-10-20 | 2022-08-09 | 中国十九冶集团有限公司 | 地下挡板支撑结构的施工方法 |
CN113006087B (zh) * | 2021-03-15 | 2022-08-12 | 浙江省建筑科学设计研究院有限公司 | 一种基于逆作法的基坑支护方法 |
CN114045863B (zh) * | 2021-10-13 | 2022-12-13 | 河海大学 | 一种建筑物整体下沉的装置及方法 |
CN114164929A (zh) * | 2021-10-21 | 2022-03-11 | 王树生 | 一种沉墙基础及其施工装置 |
CN113818466B (zh) * | 2021-11-22 | 2022-02-18 | 中铁四局集团第三建设有限公司 | 一种软弱地基防沉井突沉的方法 |
CN115613548A (zh) * | 2022-09-30 | 2023-01-17 | 中交路桥建设有限公司 | 预制地连墙施工装置及其施工方法 |
CN115787659B (zh) * | 2022-11-09 | 2025-04-01 | 山东大学 | 一种适应基坑永久支护的防水板与施工方法 |
WO2024155484A1 (en) * | 2023-01-16 | 2024-07-25 | Commscope Technologies Llc | Base station antennas having an external access port for receiving interchangeable frequency selective surfaces |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1120104A (zh) * | 1994-09-16 | 1996-04-10 | 阎林森 | 膜水沉墙法 |
JPH10131202A (ja) * | 1996-11-01 | 1998-05-19 | Daiho Constr Co Ltd | ニューマチックケーソンの沈下方法 |
JP2000192481A (ja) * | 1998-12-28 | 2000-07-11 | Nikko Kensetsu Kk | 地盤掘下げ装置および筒状地下構造体の形成法 |
JP2003138584A (ja) * | 2001-11-06 | 2003-05-14 | Shimizu Corp | 地下躯体の施工方法 |
CN101338567A (zh) * | 2008-08-15 | 2009-01-07 | 万勇 | 旋喷沉井法配合半逆作法施工地下建筑物的施工方法 |
CN202144598U (zh) * | 2011-06-21 | 2012-02-15 | 邹宗煊 | 一种下沉式地下构筑物 |
CN105926635A (zh) * | 2016-05-09 | 2016-09-07 | 江苏鸿基节能新技术股份有限公司 | 一种竖向方形预制构件施工设备、组合体和施工方法 |
CN106013052A (zh) * | 2016-05-23 | 2016-10-12 | 江苏东合南岩土科技股份有限公司 | 钢板桩与沉井组合式地下停车库及其施工方法 |
CN108086302A (zh) * | 2017-12-29 | 2018-05-29 | 章胜南 | 一种基于地下墙体施工的横向整浇墙幅下沉工艺 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3779322A (en) * | 1972-03-24 | 1973-12-18 | Milwaukee Boiler Manuf Co | Machine for sinking vertical shafts |
JPS62288218A (ja) * | 1986-06-06 | 1987-12-15 | Daiho Constr Co Ltd | ケ−ソンの沈設方法 |
JP2750442B2 (ja) * | 1989-03-28 | 1998-05-13 | 大成建設株式会社 | ケーソンとその施工方法 |
JP2536249B2 (ja) * | 1990-07-10 | 1996-09-18 | 鹿島建設株式会社 | リフトダウン地下躯体構築工法 |
JPH0754488A (ja) * | 1993-08-20 | 1995-02-28 | Shimizu Corp | 構真柱の建入れ方法および構真柱建入れ用架台 |
JPH0762667A (ja) * | 1993-08-27 | 1995-03-07 | Hazama Gumi Ltd | 締切り方式ケーソン据付け工法 |
JP3453664B2 (ja) * | 1994-10-06 | 2003-10-06 | 大成建設株式会社 | 縦坑の構築工法 |
JP4049306B2 (ja) * | 2002-08-27 | 2008-02-20 | ライト工業株式会社 | 地中構造物の沈埋工法 |
US7921573B1 (en) * | 2009-03-23 | 2011-04-12 | Ric-Man Construction, Inc. | Monitoring verticality of a sinking caisson |
DE102009020517B3 (de) * | 2009-05-08 | 2010-10-21 | Herrenknecht Ag | Verfahren zum Errichten eines unterirdischen Bauwerks |
CN101851930B (zh) * | 2010-01-15 | 2012-10-03 | 丁慈鑫 | 沉井的下沉装置及具有该装置的沉井的下沉方法 |
CN204112351U (zh) * | 2014-07-22 | 2015-01-21 | 中国市政工程华北设计研究总院有限公司 | 沉井的下沉辅助装置 |
JP6386829B2 (ja) * | 2014-08-08 | 2018-09-05 | 大成建設株式会社 | ニューマチックケーソンの傾斜修正方法 |
CN204356782U (zh) * | 2014-11-27 | 2015-05-27 | 中建一局集团第五建筑有限公司 | 一种用于地下室基坑换撑的面式支撑结构 |
US10081925B2 (en) * | 2016-12-30 | 2018-09-25 | Edvard Amirian | Method for constructing building through gravity and weight of the building structure |
CN109252533B (zh) * | 2018-09-17 | 2022-01-25 | 中国一冶集团有限公司 | 沉井下沉控制系统及其施工方法 |
CN109139017B (zh) * | 2018-10-26 | 2024-03-15 | 中铁工程装备集团有限公司 | 一种沉井法竖井掘进机及其施工方法 |
US11078788B1 (en) * | 2020-07-08 | 2021-08-03 | Ician Engineering Contractors Co., Ltd. | Apparatus and method for sinking concrete shaft |
US10988907B1 (en) * | 2020-08-26 | 2021-04-27 | Ician Engineering Contractors Co., Ltd. | Sinking apparatus for sinking concrete shaft |
-
2019
- 2019-04-04 CN CN201910274122.2A patent/CN109898520B/zh active Active
- 2019-04-16 JP JP2021560236A patent/JP7177554B2/ja active Active
- 2019-04-16 US US17/598,584 patent/US11746493B2/en active Active
- 2019-04-16 AU AU2019439324A patent/AU2019439324B2/en active Active
- 2019-04-16 WO PCT/CN2019/000067 patent/WO2020198897A1/zh active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1120104A (zh) * | 1994-09-16 | 1996-04-10 | 阎林森 | 膜水沉墙法 |
JPH10131202A (ja) * | 1996-11-01 | 1998-05-19 | Daiho Constr Co Ltd | ニューマチックケーソンの沈下方法 |
JP2000192481A (ja) * | 1998-12-28 | 2000-07-11 | Nikko Kensetsu Kk | 地盤掘下げ装置および筒状地下構造体の形成法 |
JP2003138584A (ja) * | 2001-11-06 | 2003-05-14 | Shimizu Corp | 地下躯体の施工方法 |
CN101338567A (zh) * | 2008-08-15 | 2009-01-07 | 万勇 | 旋喷沉井法配合半逆作法施工地下建筑物的施工方法 |
CN202144598U (zh) * | 2011-06-21 | 2012-02-15 | 邹宗煊 | 一种下沉式地下构筑物 |
CN105926635A (zh) * | 2016-05-09 | 2016-09-07 | 江苏鸿基节能新技术股份有限公司 | 一种竖向方形预制构件施工设备、组合体和施工方法 |
CN106013052A (zh) * | 2016-05-23 | 2016-10-12 | 江苏东合南岩土科技股份有限公司 | 钢板桩与沉井组合式地下停车库及其施工方法 |
CN108086302A (zh) * | 2017-12-29 | 2018-05-29 | 章胜南 | 一种基于地下墙体施工的横向整浇墙幅下沉工艺 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112962667A (zh) * | 2021-02-08 | 2021-06-15 | 中国建筑第八工程局有限公司 | 下沉庭院的外墙结构及其施工方法 |
CN112962667B (zh) * | 2021-02-08 | 2022-08-30 | 中国建筑第八工程局有限公司 | 下沉庭院的外墙结构及其施工方法 |
CN113250241A (zh) * | 2021-06-11 | 2021-08-13 | 厦门理工学院 | 一种智能建造挡土墙的方法和装置 |
CN113529739A (zh) * | 2021-07-28 | 2021-10-22 | 王冰璇 | 一种同轴扩体装配式支撑、无轴旋喷器及相应的施工方法 |
CN113529739B (zh) * | 2021-07-28 | 2023-07-28 | 王冰璇 | 一种同轴扩体装配式支撑、无轴旋喷器及相应的施工方法 |
CN113818464A (zh) * | 2021-08-26 | 2021-12-21 | 宁波市政工程建设集团股份有限公司 | 一种摩阻力可调式沉井及阻力控制方法 |
CN114197531A (zh) * | 2022-01-12 | 2022-03-18 | 中国建筑土木建设有限公司 | 基于地连墙支护的减载式地铁车站结构及其施工方法 |
Also Published As
Publication number | Publication date |
---|---|
AU2019439324B2 (en) | 2023-04-06 |
CN109898520B (zh) | 2022-03-01 |
JP7177554B2 (ja) | 2022-11-24 |
AU2019439324A1 (en) | 2021-11-25 |
US11746493B2 (en) | 2023-09-05 |
JP2022528743A (ja) | 2022-06-15 |
CN109898520A (zh) | 2019-06-18 |
US20220195687A1 (en) | 2022-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020198897A1 (zh) | 一种沉墙施工法 | |
CN108914931B (zh) | 一种装配式竖向盾构环型基桩与施工方法 | |
CN102434717B (zh) | 工字钢顶管工作坑的施工方法 | |
CN204491626U (zh) | 拉森钢板桩与预应力锚杆组合的基坑围护结构 | |
CN108457282A (zh) | 深水硬岩无封底钢板桩围堰施工方法 | |
CN110258582B (zh) | 基于钢管桩与拉森钢板的斜支撑基坑支护结构及施工方法 | |
CN105672450A (zh) | 平行于既有地铁隧道结构上方大口径排水管道的敷设方法 | |
CN104480929B (zh) | 一种将咬合桩应用于永久地下室外墙的桩墙合一施工方法 | |
CN114892690A (zh) | 一种双壁钢套箱围堰施工方法 | |
CN114482099A (zh) | 钢板桩围堰施工方法 | |
CN204311456U (zh) | 基坑加固结构 | |
CN109577322A (zh) | 一种用于土体内部既有桩基接桩的施工装置 | |
CN101532586A (zh) | 一种地下管道安装施工装置及其方法 | |
CN114809134B (zh) | 一种筏板基础的多层混凝土建筑顶升纠偏施工方法 | |
CN215715515U (zh) | 不良地质条件下市政管网施工支护一体化结构 | |
CN212336065U (zh) | 适用于地下井筒群施工的导沉系统 | |
CN105274984A (zh) | 一种双重套管全回转施工立柱桩方法 | |
CN115977102A (zh) | 饱和软黄土地层中上基坑-下隧道联合施工结构及施工方法 | |
CN118563745A (zh) | 一种基坑被动区水平基床系数施工勘察方法 | |
CN114718116A (zh) | 不良地质条件下市政管网施工支护一体化结构及施工方法 | |
CN111877315A (zh) | 一种地下设施下局部预制地连墙导墙及施工方法 | |
CN113914328B (zh) | 一种复合式多层拉森钢板桩组合支护结构及其施工方法 | |
CN115094946B (zh) | 一种顶管施工用后背墙施工方法 | |
CN111719576B (zh) | 适用于地下井筒群施工的导沉系统及地下井筒群施工方法 | |
CN216865180U (zh) | 一种临岸垃圾填埋场整治基坑支护的布置结构 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19922313 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021560236 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019439324 Country of ref document: AU Date of ref document: 20190416 Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19922313 Country of ref document: EP Kind code of ref document: A1 |