WO2020196770A1 - Printing method, and method for manufacturing hole-filled board and circuit board - Google Patents

Printing method, and method for manufacturing hole-filled board and circuit board Download PDF

Info

Publication number
WO2020196770A1
WO2020196770A1 PCT/JP2020/013738 JP2020013738W WO2020196770A1 WO 2020196770 A1 WO2020196770 A1 WO 2020196770A1 JP 2020013738 W JP2020013738 W JP 2020013738W WO 2020196770 A1 WO2020196770 A1 WO 2020196770A1
Authority
WO
WIPO (PCT)
Prior art keywords
squeegee
resin composition
mask
printing
support substrate
Prior art date
Application number
PCT/JP2020/013738
Other languages
French (fr)
Japanese (ja)
Inventor
田中 孝幸
達也 本間
Original Assignee
味の素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 味の素株式会社 filed Critical 味の素株式会社
Priority to JP2021509600A priority Critical patent/JP7435595B2/en
Publication of WO2020196770A1 publication Critical patent/WO2020196770A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F15/00Screen printers
    • B41F15/08Machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F15/00Screen printers
    • B41F15/14Details
    • B41F15/44Squeegees or doctors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M1/00Inking and printing with a printer's forme
    • B41M1/12Stencil printing; Silk-screen printing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M1/00Inking and printing with a printer's forme
    • B41M1/26Printing on other surfaces than ordinary paper
    • B41M1/30Printing on other surfaces than ordinary paper on organic plastics, horn or similar materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N1/00Printing plates or foils; Materials therefor
    • B41N1/24Stencils; Stencil materials; Carriers therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor

Definitions

  • the present invention relates to a printing method for printing a resin composition on a support substrate having through holes formed therein, and a method for manufacturing a hole-filling substrate and a circuit board using the above printing method.
  • a member used for applications such as a core substrate for a circuit board
  • this member may be referred to as a "fill-in-the-blank substrate".
  • the packed bed is usually formed by filling through holes with a curable resin composition and curing the filled resin composition.
  • a method of filling the through hole with the resin composition for example, there is a screen printing method (Patent Document 1).
  • a screen mask having a mask portion that does not allow the resin composition to pass through and a mesh portion that allows the resin composition to pass through is generally used.
  • the mesh portion is a hole provided with a mesh, and since the resin composition can pass through between the wire rods of the mesh, it can function as a passage through which the resin composition can flow.
  • This mesh portion is formed so that, for example, one mesh portion communicates with one through hole of the support substrate. Therefore, by installing the screen mask on the support substrate and printing the resin composition through the screen mask, the through holes can be filled with the resin composition through the mesh portion.
  • inductors have generally been mounted on circuit boards as independent inductor components.
  • a method of providing an inductor inside a circuit board by forming a coil with a conductor pattern of the circuit board has been proposed.
  • a packing layer containing magnetic powder as a packing layer for filling through holes.
  • the present inventor tried to fill the through holes of the support substrate with the resin composition containing the magnetic powder by the screen printing method.
  • a screen mask capable of communicating only one mesh portion of the screen mask with one through hole as in the conventional case is used, the alignment between the through hole and the mesh portion is complicated. Therefore, the present inventor has formed a large mesh portion so that one mesh portion can communicate with two or more through holes from the viewpoint of facilitating alignment and facilitating filling. Then, a screen mask was placed on the support substrate so that one mesh portion covered the plurality of through holes, and each through hole was filled with the resin composition through the mesh portion.
  • the filling property of the resin composition was inferior. Specifically, in some or all of the plurality of through holes, the resin composition could not enter deep into the through holes, and a portion where the resin composition was not filled was likely to remain near the outlet in the through holes. .. In particular, while many resin compositions are filled in the through holes near the outer edge of the mesh portion, the amount of resin composition filled in the through holes tends to be small near the center of the mesh portion far from the outer edge. there were.
  • a dent is likely to be formed on the surface of the layer of the resin composition at the entrance of the through hole.
  • the recess of the resin composition layer means a structure in which a part or all of the surface of the resin composition layer is located inside the through hole with respect to the surface of the support substrate. This recess was usually formed due to poor plate release when the screen mask was removed after printing.
  • the "plate release property” means a property that when the screen mask is removed after printing, the printed resin composition is easily separated from the screen mask and is not removed from the support substrate.
  • the resin composition near the entrance of the through hole adheres to the mesh of the mesh portion and is removed, and as a result, a dent is formed on the surface of the layer of the resin composition filled in the through hole. Been formed.
  • the resin composition tends to adhere to the mesh and be easily removed.
  • the present invention has been devised in view of the above problems, and can easily and easily fill a plurality of through holes of a support substrate with a resin composition with good filling properties, and further, a resin composition filled in the through holes. It is an object of the present invention to provide a printing method capable of suppressing dents in layers; a method for manufacturing a through-hole substrate including the printing method; and a method for manufacturing a circuit board including the printing method.
  • the present inventor has diligently studied to solve the above-mentioned problems. As a result, the present inventor, when using a mask opened across two or more through holes and printing the resin composition twice or more under predetermined conditions, said the above.
  • the present invention has been completed by finding that the following problems can be solved. That is, the present invention includes the following.
  • the first squeegee is moved relatively along the surface of the mask so that a part of the first squeegee is pushed into the opening, and the resin is inserted into the through hole.
  • the first printing step of filling the composition and A second squeegee that is the same as or different from the first squeegee is moved relative to the surface of the mask along the surface, and the resin composition is placed on the resin composition filled in the through holes.
  • a printing method comprising a second printing step of applying an object. [2] According to [1], in the first printing step, the first squeegee is relatively moved on the surface of the mask so that the part of the first squeegee is in contact with the support substrate. Printing method. [3] The printing method according to [1] or [2], wherein the elastic modulus of the second squeegee is larger than the elastic modulus of the first squeegee.
  • the relative moving speed of the second squeegee in the second printing step is faster than the relative moving speed of the first squeegee in the first printing step, [1] to [3].
  • a method for manufacturing a fill-in-the-blank substrate which comprises a step of curing a resin composition.
  • the method for manufacturing a hole-filling substrate according to [10] which comprises a step of polishing the packed bed.
  • a step of manufacturing a hole-filling substrate by the manufacturing method according to [10] or [11] and A method for manufacturing a circuit board, which comprises a step of forming a conductor layer on the hole-filling board.
  • a printing method capable of filling a plurality of through holes of a support substrate with a resin composition easily and with good filling properties, and further suppressing dents in a layer of the resin composition filled in the through holes;
  • a method for manufacturing a through-hole substrate including the printing method; and a method for manufacturing a circuit board including the printing method; can be provided.
  • FIG. 1 is a perspective view schematically showing a support substrate and a mask used in the printing method according to the embodiment of the present invention.
  • FIG. 2 is a perspective view schematically showing a support substrate on which a mask is installed in the installation process of the printing method according to the embodiment of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing a cross section of a support substrate and a mask in the supply process of the printing method according to the embodiment of the present invention.
  • FIG. 4 is a cross-sectional view schematically showing a cross section of a support substrate and a mask in the first printing step of the printing method according to the embodiment of the present invention.
  • FIG. 1 is a perspective view schematically showing a support substrate and a mask used in the printing method according to the embodiment of the present invention.
  • FIG. 2 is a perspective view schematically showing a support substrate on which a mask is installed in the installation process of the printing method according to the embodiment of the present invention.
  • FIG. 3 is a cross-section
  • FIG. 5 shows the support substrate, the mask, and the first squeegee at the time when the first squeegee crosses the opening of the mask in the first printing step of the printing method according to the embodiment of the present invention.
  • FIG. 6 is a cross-sectional view schematically showing a cross section of a support substrate and a mask immediately after the first printing step of the printing method according to the embodiment of the present invention.
  • FIG. 7 is a cross-sectional view schematically showing a cross section of a support substrate and a mask in the second printing step of the printing method according to the embodiment of the present invention.
  • FIG. 8 is a cross-sectional view schematically showing a cross section of a support substrate and a mask immediately after the second printing step of the printing method according to the embodiment of the present invention.
  • FIG. 9 is a cross-sectional view schematically showing a hole-filling substrate obtained immediately after the resin composition is cured in the method for producing a hole-filling substrate according to an embodiment of the present invention.
  • FIG. 10 is a cross-sectional view schematically showing a hole-filling substrate after removing an excess cured product layer by polishing in the method for manufacturing a hole-filling substrate according to an embodiment of the present invention.
  • FIG. 11 is a diagram schematically showing how the resin composition is filled in the through holes of the support substrate by the screen printing method as an example.
  • the method for printing the resin composition according to the embodiment of the present invention is An installation process in which a mask having a hollow opening is installed on a support substrate having a plurality of through holes formed; With the supply process of supplying the resin composition to the surface of the mask opposite to the support substrate; With the first printing step in which the first squeegee is moved relative to the surface of the mask along the surface to fill the through holes with the resin composition; A second printing step of applying the resin composition by moving a second squeegee, which is the same as or different from the first squeegee, relative to the surface of the mask along the surface;
  • the mask is installed on the support substrate so that one opening communicates with two or more through holes. If such an installation is allowed, the accuracy of alignment between the mask opening and the through hole of the support substrate may be low. Therefore, the alignment can be easily performed.
  • the first squeegee is moved relative to the support substrate and the mask so that a part of the first squeegee is pushed into the opening of the mask. As a result, it becomes easy to fill the resin composition up to the outlet of the through hole, and good filling property can be achieved.
  • the resin composition is applied onto the resin composition filled in the through holes by the second squeegee. Since the through holes are filled with the resin composition by the first printing step, a layer of the resin composition is formed in the through holes. However, at the entrance of the through hole, a depression may be formed on the surface of the layer of the resin composition. On the other hand, when the resin composition is applied onto the resin composition filled in the through holes in the second printing step, the dents can be filled with the resin composition. Therefore, the dent can be suppressed.
  • the resin composition can be easily and easily filled in the plurality of through holes of the support substrate with good filling properties, and further, the through holes are filled. It is possible to suppress the depression of the layer of the resin composition.
  • the above-mentioned “entrance of the through hole” means an opening formed on the front surface of the support substrate among the openings of the through hole.
  • the “front surface of the support substrate” refers to the surface of the support substrate on the mask side.
  • the above-mentioned “outlet of the through hole” means an opening formed on the back surface of the support substrate among the openings of the through hole.
  • the “back surface of the support substrate” refers to the surface of the support substrate opposite to the mask.
  • FIG. 1 is a perspective view schematically showing a support substrate 100 and a mask 200 used in the printing method according to the embodiment of the present invention.
  • the printing method according to the present embodiment usually includes a step of preparing the support substrate 100 as shown in FIG.
  • the support substrate 100 is a substrate on which a plurality of through holes 110 are formed.
  • the support substrate 100 can be flat.
  • the support substrate 100 may be provided with a conductor layer (not shown) on one side or both sides of the support substrate 100.
  • the support substrate 100 may be provided with an insulating layer (not shown) as a core layer, or may be provided with a conductor layer on the insulating layer. Examples of the insulating layer include a glass epoxy substrate, a metal substrate, a polyester substrate, a polyimide substrate, a BT resin substrate, a thermosetting polyphenylene ether substrate, and the like.
  • the conductor layer may or may not have a circuit formed.
  • the support substrate 100 may be a so-called single-sided substrate, a two-layer substrate (double-sided substrate), or a multilayer substrate such as a four-layer substrate including a conductor layer in which a circuit is formed. May be good.
  • An insulating layer may be provided on the surface of the support substrate 100, but in a printing method in which a through hole 110 is filled with a resin composition, a conductor layer is generally provided.
  • the conductor layer on the surface of the support substrate 100 may be circuit-formed, but in the printing method of filling the through holes 110 with the resin composition, the conductor layer on the outermost surface of the support substrate 100 is not circuit-formed. Is common.
  • the surface of the support substrate 100 having the conductor layer on which the circuit is not formed on the outermost surface can be a flat flat surface. Therefore, the surface of the support substrate 100 can be a flat surface of the conductor layer in which no circuit is formed.
  • a support substrate 100 having an insulating layer and a conductor layer as an outermost layer provided on the insulating layer, and having a flat front surface 100U and a back surface 100D is used.
  • the thickness T 100 of the support substrate 100 is not particularly limited.
  • the through hole 110 is a hole that penetrates the support substrate 100. Therefore, each through hole 110 has an inlet 110 IN opened on the front surface 100U of the support substrate 100 and an outlet (outlet 110 OUT described later; see FIG. 3) opened on the back surface 100D of the support substrate 100.
  • the through hole 110 is generally formed so as to penetrate the support substrate 100 in the thickness direction thereof. Therefore, the depth of the through hole 110 usually corresponds to the thickness of the support substrate 100.
  • the shape of the through hole 110 is arbitrary, but is generally cylindrical.
  • the diameter W 110 of the through hole 110 is not particularly limited. However, in general, it is difficult for the resin composition to enter the through hole 110 having a small diameter W 110 , and it is possible that the resin composition cannot be filled deep into the through hole 110 by the conventional screen printing method. Therefore, the larger the aspect ratio of the through holes 110, the poorer the filling property of the resin composition in the conventional screen printing method.
  • the aspect ratio of the through hole 110 represents the ratio between the depth of the through hole 110 and the diameter W 110 . Further, since the depth of the through hole 110 usually corresponds to the thickness T 100 of the support substrate 100, the aspect ratio is represented by the ratio T 100 / W 110 .
  • the resin composition can be easily filled deep into the through hole 110. Therefore, from the viewpoint of utilizing the excellent filling property of the printing method according to the present embodiment, the aspect ratio T 100 / W 110 of the through hole 110 is preferably large. Specifically, the aspect ratio T 100 / W 110 of the through hole 110 is preferably 1.0 or more, more preferably 1.5 or more, and particularly preferably 2.0 or more. Although there is no limit to the upper limit of the aspect ratio T 100 / W 110, the viewpoint to easily perform formation of the through hole 110, and, in terms of facilitating the filling of the resin composition into the through-hole 110, the aspect ratio T 100 / W 110 can be 50 or less, 20 or less, 10 or less, and the like. The shape, dimensions, and aspect ratio of the through holes 110 may be the same or different.
  • the printing method according to this embodiment is usually performed by an appropriate printing device (not shown) that can prepare an environment suitable for printing. Therefore, the prepared support substrate 100 can be attached to the printing apparatus. At this time, the support substrate 100 is usually attached so that the front surface 100U faces upward in the gravity direction and the back surface 100D faces downward in the gravity direction. In the present embodiment, the support substrate 100 is attached so that the front surface 100U and the back surface 100D are parallel to each other in the horizontal direction, the front surface 100U faces upward in the gravity direction, and the back surface 100D faces downward in the gravity direction. An example will be described.
  • an installation step of installing the mask 200 on the support substrate 100 is performed. Specifically, the mask 200 is installed on the front surface 100U of the support substrate 100. Normally, the mask 200 is in contact with the front surface 100U of the support substrate 100 so that a gap through which the resin composition can enter is not formed between the support substrate 100 and the mask 200 in the first printing step and the second printing step. It is installed as.
  • the mask 200 is a member made of a material that does not allow the resin composition to pass through, and is usually formed in a plate shape.
  • the mask 200 is preferably made of a material having excellent rigidity.
  • a metal mask made of a metal material is preferable because it has excellent durability and can be applied to a wide variety of resin compositions.
  • the thickness T 200 of the mask 200 is not particularly limited. However, from the viewpoint of easily avoiding contact between the second squeegee 500 (see FIG. 7) and the support substrate 100 in the second printing step described later, the thickness T 200 of the mask 200 is preferably larger than a predetermined value. Specifically, the thickness T 200 of the mask 200 is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and particularly preferably 20 ⁇ m or more. Further, from the viewpoint of easily achieving contact between the first squeegee 400 (see FIG. 4) and the support substrate 100 in the first printing step described later, the thickness T 200 of the mask 200 is preferably as small as a predetermined value or less. Specifically, the thickness T 200 of the mask 200 is preferably 500 ⁇ m or less, more preferably 400 ⁇ m or less, and particularly preferably 300 ⁇ m or less.
  • the mask 200 is formed with an opening 210 as a hollow hole that penetrates the mask 200 in the thickness direction. Since it is hollow, the opening 210 does not have a mesh like the mesh portion of the screen mask. Therefore, since the opening 210 can be passed by any member, the resin composition can be passed through.
  • FIG. 2 is a perspective view schematically showing the support substrate 100 on which the mask 200 is installed in the installation process of the printing method according to the present embodiment.
  • the mask 200 is installed so that one opening 210 communicates with two or more through holes 110. Therefore, when viewed from the thickness direction of the support substrate 100, normally, the opening 210 includes a part of the front surface 100U of the support substrate 100 and two or more through holes 110 formed in this area. appear.
  • the opening 210 of the mask 200 can be formed to be sufficiently large, so that the opening 210 and the through hole 110 can be communicated with each other without precise alignment. Therefore, since the alignment can be easily performed, it is possible to realize simple printing.
  • the planar shape of the opening 210 formed in the mask 200 (that is, the shape seen from the thickness direction of the mask 200) is arbitrary. Further, the number of openings 210 formed in the mask 200 may be one or two or more. In the mask 200 in which the two or more openings 210 are formed, at least one of the openings 210 may communicate with the two or more through holes 110, but all of the openings 210 are individually 2. It is preferable to communicate with one or more through holes 110. In the present embodiment, the mask 200 has one opening 210 having a rectangular planar shape, and the opening 210 is large enough to communicate with all the through holes 110 formed in the support substrate 100. .. Therefore, in the example shown in this embodiment, one opening 210 of the mask 200 installed on the support substrate 100 communicates with all the through holes 110.
  • the thickness direction of the support substrate 100 and the thickness direction of the mask 200 installed on the support substrate 100 coincide with each other. Therefore, in the following description, the thickness direction of the support substrate 100 and the thickness direction of the mask 200 installed on the support substrate 100 may be indicated by a common reference numeral "Z".
  • FIG. 3 is a cross-sectional view schematically showing a cross section of the support substrate 100 and the mask 200 in the supply process of the printing method according to the present embodiment.
  • a supply step of supplying the resin composition is performed on the mask 200 installed on the support substrate 100.
  • the resin composition is supplied to the surface 200U of the mask 200 opposite to the support substrate 100.
  • a liquid pool 300 of the resin composition is formed on the surface 200U of the mask 200.
  • the resin composition is a composition containing an inorganic filler and a thermosetting resin.
  • This resin composition is a composition that can be in the form of a paste in the first printing step and the second printing step, and can usually be cured by undergoing heat treatment.
  • the method of supplying the resin composition is arbitrary.
  • the resin composition may be supplied by discharging the resin composition onto the mask 200 from a syringe (not shown) containing the resin composition.
  • FIG. 4 is a cross-sectional view schematically showing a cross section of the support substrate 100 and the mask 200 in the first printing step of the printing method according to the present embodiment.
  • the first squeegee 400 is relatively moved on the surface 200U of the mask 200 along the surface 200U and through.
  • the first printing step of filling the holes 110 with the resin composition is performed.
  • the first squeegee 400 normally extends in a direction intersecting the moving direction X of the first squeegee 400. Therefore, the first squeegee 400 is usually provided with a shape continuous in a certain direction, and the direction in which the first squeegee 400 is continuous intersects the moving direction X of the first squeegee 400. ing.
  • a rectangular plate-shaped squeegee extending in a direction Y (see FIG. 2) perpendicular to both the moving direction X and the thickness direction Z of the first squeegee 400 will be described.
  • the length of the first squeegee 400 is usually formed to be larger than the dimension of the opening 210 in the direction in which the first squeegee 400 extends so as to reach the entire opening 210 of the mask 200.
  • the first squeegee 400 is arranged near the end of the mask 200 so that the liquid pool 300 of the resin composition is located between the first squeegee 400 and the opening 210.
  • the first squeegee 400 is inclined so as to form a predetermined attack angle ⁇ 400 with the surface 200U of the mask 200. It can be arranged to contact 200U.
  • the attack angle ⁇ 400 represents an angle formed by the first squeegee 400 in front of the moving direction X with the surface 200U of the mask 200.
  • the tip of the first squeegee 400 may bend due to friction between the support substrate 100 or the mask 200.
  • the attack angle ⁇ 400 is other than the bent tip of the first squeegee 400.
  • the first squeegee 400 can be arranged in a state of being pressed against the mask 200 with a predetermined printing pressure.
  • the printing pressure of the first squeegee 400 represents the pressure at which the first squeegee 400 is pressed against the mask 200.
  • the first squeegee 400 is moved relatively on the surface 200U of the mask 200 in the moving direction X along the surface 200U while maintaining the attack angle ⁇ 400 and the printing pressure.
  • the first squeegee 400 may be moved, the support substrate 100 and the mask 200 may be moved, or all of them may be moved. In this embodiment, an example of moving the first squeegee 400 will be described.
  • the movement of the first squeegee 400 is performed so that the first squeegee 400 crosses the opening 210 of the mask 200. Since it is pushed by the moving first squeegee 400, the liquid pool 300 of the resin composition also moves in the moving direction X. Then, when the first squeegee 400 crosses the opening 210, the through hole 110 of the support substrate 100 is filled with the resin composition through the opening 210, and the layer 310 of the resin composition is formed in the through hole 110.
  • FIG. 5 shows the support substrate 100, the mask 200, and the first squeegee 400 at the time when the first squeegee 400 crosses the opening 210 of the mask 200 in the first printing step of the printing method according to the present embodiment. It is sectional drawing which shows typically the cross section cut by the plane perpendicular to the moving direction X of the 1st squeegee 400. As shown in FIG. 5, the movement of the first squeegee 400 in the first printing step is performed so that a part of the first squeegee 400 is pushed into the opening 210 of the mask 200.
  • the through hole 110 can be filled with the resin composition with sufficient pressure, so that good filling property can be achieved.
  • the support substrate 100 in which the part of the first squeegee 400 pushed into the opening 210 of the mask 200 appears in the opening 210 of the mask 200. It is preferable to carry out in contact with.
  • the first squeegee 400 preferably contacts at least a part of the support substrate 100 that appears in the opening 210 of the mask 200, and more preferably contacts the support substrate 100 around the inlet 110 IN of one or more through holes 110. preferable.
  • the first squeegee 400 may come into contact with the support substrate 100 near the center of the opening 210.
  • an example is shown in which the first squeegee 400 is moved so that the first squeegee 400 is in contact with the area around all the through holes 110 in the front surface 100U of the support substrate 100.
  • the first squeegee 400 When the first squeegee 400 moves so as to be in contact with the support substrate 100, the first squeegee 400 can push the resin composition into the through hole 110 while closing the entrance 110 IN of the through hole 110. Therefore, since the pressure escaping to the outside of the through hole 110 along the front surface 100U of the support substrate 100 can be reduced, the pressure applied to the resin composition from the first squeegee 400 is effectively directed toward the back of the through hole 110. I can tell. Therefore, it becomes easy to fill the resin composition up to the outlet 110 OUT of the through hole 110, and particularly good filling property can be achieved.
  • FIG. 11 is a diagram schematically showing how the through holes 110 of the support substrate 100 are filled with the resin composition by a screen printing method as an example.
  • the first printing step shown in FIG. 5 is shown in FIG. 5, except that the screen mask 900 having the mesh portion 910 provided with the mesh 920 is installed on the support substrate 100 instead of the mask 200 having the opening 210.
  • the cross sections of the support substrate 100, the screen mask 900, and the first squeegee 400 when the same operation as in the above are performed are schematically shown.
  • the first squeegee 400 cannot come into contact with the support substrate 100 because the mesh 920 of the mesh portion 910 interferes with it.
  • the resin composition can pass between the wires of the mesh 920. Therefore, a flow path through which the resin composition can flow can be formed between the support substrate 100 and the first squeegee 400 by the thickness of the mesh 920. Then, the resin composition was pressed by the first squeegee 400, as shown by arrow A 11, can flow toward the outer edge of the mesh portion 910 along the front surface 100U of the supporting substrate 100.
  • the resin composition since the pressure applied from the first squeegee 400 escapes to the outer edge portion by the action of the flow of the resin composition, the resin composition is pushed into the through hole 110 in the vicinity of the center far from the outer edge portion of the mesh portion 910. Pressure is likely to be insufficient. As a result, the resin composition may not be filled up to the outlet 110 OUT of the through hole 110. Further, even in the through hole 110 in which the resin composition is sufficiently filled, the amount of the supplied resin composition is non-uniform, so that the layer 320 formed by the resin composition flowing out from the outlet 110 OUT of the through hole 110 The thickness of the was uneven.
  • the pressure applied to the resin composition from the first squeegee 400 can be effectively transmitted toward the back of the through hole 110, so that good filling property can be achieved.
  • the pressure at which the first squeegee 400 pushes the resin composition into the through holes 110 can be made uniform in each through hole 110, so that the layer formed by the resin composition flowing out from the outlet 110 OUT of the through hole 110.
  • the thickness of 320 can be made uniform.
  • a method of causing a part of the first squeegee 400 to be pushed into the opening 210 of the mask 200 for example, a method of using a squeegee having a large flexibility as the first squeegee 400 can be mentioned.
  • the highly flexible squeegee can be deformed when subjected to an appropriate printing pressure, it can be pushed into the opening 210 of the mask 200, and preferably can be in contact with the support substrate 100.
  • a material having high flexibility is usually used as the material of the first squeegee 400.
  • an elastic material having a low elastic modulus is preferable because the contact of the first squeegee 400 with the support substrate 100 can be realized particularly easily. Examples of such an elastic material include rubber, and therefore rubber squeegee is preferable as the first squeegee 400.
  • the rubber hardness of the elastic material can be arbitrarily set within a range in which a part of the first squeegee 400 can be pushed into the opening 210 of the mask 200.
  • the rubber hardness is preferably 50 degrees or more, and preferably 100 degrees or less.
  • the rubber hardness can be measured by a durometer (type A) under the same temperature conditions as in the first printing process.
  • a method of increasing the printing pressure of the first squeegee 400 can be mentioned.
  • the first squeegee 400 can be easily deformed along the shape of the mask 200 and can be pushed into the opening 210 of the mask 200, preferably on the support substrate 100. Can be touched.
  • a method of reducing the attack angle ⁇ 400 of the first squeegee 400 can be mentioned.
  • the attack angle ⁇ 400 of the first squeegee 400 is small, the first squeegee 400 is easily deformed by receiving a large stress in the thickness direction of the first squeegee 400 and may be pushed into the opening 210 of the mask 200. It can be, preferably in contact with the support substrate 100.
  • the attack angle ⁇ 400 of the first squeegee 400 can be arbitrarily set within a range in which a part of the first squeegee 400 can be pushed into the opening 210 of the mask 200.
  • the attack angle ⁇ 400 is preferably 5 ° or more, more preferably 7 ° or more, particularly preferably 10 ° or more, preferably 90 ° or less, more preferably 80 ° or less. , Especially preferably 70 ° or less.
  • Yet another method of allowing a portion of the first squeegee 400 to be pushed into the opening 210 of the mask 200 is, for example, slowing the relative moving speed of the first squeegee 400 with respect to the support substrate 100 and the mask 200. There is a way to do it.
  • the relative moving speed may be hereinafter appropriately referred to as “printing speed”.
  • printing speed of the first squeegee 400 is slow, the resistance of the resin composition can be reduced, so that the first squeegee 400 can be pushed into the opening 210 of the mask 200 without being hindered by the resin composition, which is preferable. Can be in contact with the support substrate 100.
  • the printing speed of the first squeegee 400 can be arbitrarily set within a range in which a part of the first squeegee 400 can be pushed into the opening 210 of the mask 200.
  • the printing speed of the first squeegee 400 is preferably 1 mm / sec or more, more preferably 2 mm / sec or more, particularly preferably 3 mm / sec or more, and preferably 100 mm / sec or less. , More preferably 80 mm / sec or less, and particularly preferably 60 mm / sec or less.
  • the above-mentioned method exemplified as a method for causing a part of the first squeegee 400 to be pushed into the opening 210 of the mask 200 may be carried out in any combination.
  • the first printing step may be performed only once, or may be performed twice or more under the same or different conditions.
  • FIG. 6 is a cross-sectional view schematically showing a cross section of the support substrate 100 and the mask 200 immediately after the first printing step of the printing method according to the present embodiment.
  • the layer 310 of the resin composition is formed in the through hole 110.
  • a part of the filled resin composition flows out through the outlet 110 OUT of the through hole 110, so that the outflowing resin composition also forms the layer 320 of the resin composition on the back surface 100D of the support substrate 100.
  • the layer 320 of the resin composition is formed of the resin composition at a position lower in the drawing than the back surface 100D of the support substrate 100 (that is, a position far from the mask 200) in the thickness direction Z.
  • the pressure at which the first squeegee 400 pushes the resin composition into the through holes 110 can be made uniform in each through hole 110. Therefore, the amount of the resin composition flowing out through the outlet 110 OUT of the through holes 110 can be made uniform in each through hole 110. Therefore, normally, the thickness of the layer 320 of the resin composition formed on the back surface 100D of the support substrate 100 can be made uniform.
  • a recess 330 may be formed in the layer 310 of the resin composition.
  • the recess 330 can be formed, for example, by excessively pushing the resin composition into the through hole 110 by the first squeegee 400, or by scraping a part of the resin composition by the first squeegee 400. Therefore, in the printing method according to the present embodiment, the second printing step is performed after the first printing step.
  • FIG. 7 is a cross-sectional view schematically showing a cross section of the support substrate 100 and the mask 200 in the second printing step of the printing method according to the present embodiment.
  • the second squeegee 500 is relatively moved along the surface 200U of the mask 200 on the surface 200U.
  • a second printing step of applying the resin composition onto the resin composition filled in the through holes 110 is performed.
  • the same squeegee as the first squeegee 400 may be used, or a squeegee different from the first squeegee 400 may be used.
  • the moving direction of the second squeegee 500 may be the same as or different from the moving direction of the first squeegee 400.
  • a rectangular plate-shaped squeegee extending in the direction Y (see FIG. 2) and movably provided in the moving direction X is used as the second squeegee 500 is shown. explain.
  • the second squeegee 500 is arranged near the end of the mask 200 so that the liquid pool 300 of the resin composition is located between the second squeegee 500 and the opening 210.
  • the second squeegee 500 comes into contact with the surface 200U in a state of being inclined so as to form a predetermined attack angle ⁇ 500 with the surface 200U of the mask 200.
  • the attack angle ⁇ 500 represents an angle formed by the second squeegee 500 in front of the moving direction X with the surface 200U of the mask 200.
  • the tip of the second squeegee 500 may bend due to friction between the support substrate 100, the mask 200, or the resin composition.
  • the attack angle ⁇ 500 bends the second squeegee 500. It represents the angle formed between the portion other than the tip portion and the surface 200U of the mask 200.
  • the second squeegee 500 can be arranged in a state of being pressed against the mask 200 with a predetermined printing pressure.
  • the printing pressure of the second squeegee 500 represents the pressure at which the second squeegee 500 is pressed against the mask 200.
  • the second squeegee 500 is moved relatively on the surface 200U of the mask 200 in the moving direction X along the surface 200U while maintaining the attack angle ⁇ 500 and the printing pressure.
  • the second squeegee 500 may be moved, the support substrate 100 and the mask 200 may be moved, or all of them may be moved.
  • an example of moving the second squeegee 500 in the direction parallel to and opposite to the moving direction of the first squeegee 400 will be described.
  • the movement of the second squeegee 500 is performed so that the second squeegee 500 crosses the opening 210 of the mask 200. Since it is pushed by the moving second squeegee 500, the liquid pool 300 of the resin composition also moves in the moving direction X. Then, when the second squeegee 500 crosses the opening 210, the resin composition is further applied onto the resin composition in the through hole 110 of the support substrate 100 through the opening 210. As a result, the resin composition layer 340 is further formed on the resin composition layer 310 in the through hole 110. Therefore, since the dent 330 can be filled, the dent 330 can be made smaller, and preferably the dent can be eliminated.
  • the surface 340U of the layer 340 of the resin composition is at the same position as or higher than the front surface 100U of the support substrate 100 in the thickness direction Z (that is, the support). It is preferable to perform the operation so as to come to a position far from the substrate 100). Further, the application of the resin composition in the second printing step is performed so that the surface 340U of the layer 340 of the resin composition is located at an upper position in the drawing with respect to the front surface 100U of the support substrate 100 in the thickness direction Z. Is preferable. In this case, a part or all of the resin composition applied in the second printing step can be left at the position 350 on the mask 200 side of the through hole 110. Therefore, since the resin composition can be deposited on the entrance 110 IN of the through hole 110, the dent 330 can be effectively filled, and thus the dent can be eliminated.
  • the movement of the second squeegee 500 in the second printing step is performed by maintaining the state in which the support substrate 100 and the second squeegee 500 appearing in the opening 210 of the mask 200 are separated from each other so that the support substrate 100 and the second squeegee 500 are separated from each other. It is preferable to carry out so as not to come into contact with. In this case, there is a gap between the second squeegee 500 and the support substrate 100 so that the resin composition can enter. Therefore, it is possible to prevent the resin composition from being excessively pushed into the through hole 110 by the second squeegee 500, or to prevent a part of the resin composition from being scraped off by the second squeegee 500.
  • the depression 330 can be eliminated more effectively. Further, in this case, since the resin composition can enter the gap, the resin composition is usually placed on the support substrate 100 not only in the area where the through hole 110 is formed but also in the area other than the through hole 110. Layer 340 is formed.
  • the moving second squeegee 500 does not come into contact with the support substrate 100 appearing in the opening 210 of the mask 200.
  • a method of preventing the second squeegee 500 from coming into contact with the support substrate 100 for example, a method of using a squeegee having low flexibility as the second squeegee 500 can be mentioned. Since the squeegee having low flexibility is not easily deformed even when subjected to pressure, it is difficult to enter the opening 210 of the mask 200, and thus the state of being separated from the support substrate 100 can be maintained. Specifically, it is preferable to use a second squeegee 500 having an elastic modulus larger than that of the first squeegee 400. In this case, usually, a material having a large elastic modulus is used as the material of the second squeegee 500.
  • a rigid material having a higher elastic modulus than the elastic material of the material of the first squeegee 400 is preferable, and examples thereof include a metal material. Therefore, as the second squeegee 500, a metal squeegee is preferable.
  • the printing pressure of the second squeegee 500 is preferably smaller than the printing pressure of the first squeegee 400.
  • a method of increasing the attack angle ⁇ 500 of the second squeegee 500 can be mentioned.
  • the attack angle ⁇ 500 of the second squeegee 500 is large, the second squeegee 500 receives only a small stress in the thickness direction of the second squeegee 500, so that the deformation can be reduced. Therefore, it is possible to prevent the second squeegee 500 from entering the opening 210 of the mask 200 so that it does not come into contact with the support substrate 100.
  • the attack angle ⁇ 500 of the second squeegee 500 can be arbitrarily set within a range in which the second squeegee 500 does not come into contact with the support substrate 100.
  • the attack angle ⁇ 500 is preferably 5 ° or more, more preferably 7 ° or more, particularly preferably 10 ° or more, preferably 90 ° or less, more preferably 80 ° or less. , Especially preferably 70 ° or less.
  • the attack angle ⁇ 500 of the second squeegee 500 may be larger than the attack angle ⁇ 400 of the first squeegee 400.
  • a method of increasing the printing speed as a relative moving speed of the second squeegee 500 with respect to the support substrate 100 and the mask 200 is used.
  • the resistance of the resin composition can be increased, so that the second squeegee 500 is prevented from coming into contact with the support substrate 100 by being hindered by the resin composition.
  • the printing speed of the second squeegee 500 can be arbitrarily set as long as the second squeegee 500 does not come into contact with the support substrate 100.
  • the printing speed of the second squeegee 500 is preferably 3 mm / sec or more, more preferably 5 mm / sec or more, and particularly preferably 15 mm / sec or more.
  • the upper limit is not particularly limited and may be, for example, 100 mm / sec or less.
  • the printing speed of the second squeegee 500 in the second printing step is preferably faster than the printing speed of the first squeegee 400 in the first printing step. ..
  • the difference between the printing speed of the first squeegee 400 and the printing speed of the second squeegee 500 is preferably 0 mm / sec or more, more preferably 10 mm / sec or more, and particularly preferably 20 mm / sec or more.
  • the upper limit is not particularly limited and may be, for example, 100 mm / sec or less.
  • the above-mentioned method exemplified as a method for preventing the second squeegee 500 from coming into contact with the support substrate 100 may be carried out in any combination.
  • the second printing step may be performed only once, or may be performed twice or more under the same or different conditions.
  • FIG. 8 is a cross-sectional view schematically showing a cross section of the support substrate 100 and the mask 200 immediately after the second printing step of the printing method according to the present embodiment.
  • the resin composition layer 340 is further formed on the resin composition layer 310 formed in the through holes 110.
  • the depression 330 is filled. Therefore, the depression 330 can be suppressed.
  • the front surface 100U of the support substrate 100 including the position 350 on the mask 200 side of the through hole 110 is wide.
  • a layer 340 of the resin composition is formed in the range.
  • the thickness T 340 of the layer 340 of the resin composition formed on the front surface 100U of the support substrate 100 is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, particularly preferably 30 ⁇ m or more, preferably 500 ⁇ m or less, more preferably. It is 400 ⁇ m or less, particularly preferably 300 ⁇ m or less.
  • the thickness T 340 of the layer 340 of the resin composition means the distance from the front surface 100U of the support substrate 100 to the surface of the layer 340 of the resin composition (the surface farther from the support substrate 100) 340U. Further, if the thickness T 340 of the layer 340 of the resin composition is not uniform, it is preferable that the thickness T 340 at the position 350 of the mask 200 side of at least the through-hole 110 is within the range of the.
  • the filled substrate 600 is obtained as a substrate having the support substrate 100 and the layer 360 of the resin composition that fills the through holes 110 of the support substrate 100.
  • the layer 360 of the resin composition filling the through hole 110 is usually a part of the layer 310 of the resin composition formed in the first printing step and the layer 340 of the resin composition formed in the second printing step, or Including all.
  • the layers 320 and 340 of the resin composition may be formed not only in the through hole 110 but also on one or both of the front surface 100U and the back surface 100D of the support substrate 100. ..
  • the layer 360 of the resin composition is formed up to the outlet 110 OUT of the through hole 110, and good filling property is achieved. Further, in the filling substrate 600, the recess of the resin composition layer 360 at the inlet 110 IN of the through hole 110 (see the recess 330 in FIG. 7) can be reduced, and the recess can be preferably eliminated. Further, in the printing method for obtaining such a filled substrate 600, the accuracy of alignment when the mask 200 is installed on the support substrate 100 can be lowered, so that the labor for precise alignment can be omitted. Easy to operate.
  • the resin composition can be easily and easily filled in the plurality of through holes 110 of the support substrate 100 with good filling property, and further, the layer 360 of the resin composition filled in the through holes 110 can be filled.
  • the dent can be suppressed.
  • the printing method according to the embodiment of the present invention may further include an arbitrary step in combination with the above-mentioned steps.
  • the printing method is a resin on the mask 200 during the first printing process, between the first printing process and the second printing process, and at one or more times during the second printing process. It may include a step of supplying the composition.
  • the printing method may include a step of installing a frame material (not shown) such as a frame material surrounding the mask 200 and a frame material surrounding the opening 210 of the mask 200 on the mask 200. Good.
  • a frame material such as a frame material surrounding the mask 200 and a frame material surrounding the opening 210 of the mask 200 on the mask 200. Good.
  • the printing method may include a step of adjusting the printing environment such as temperature and atmospheric pressure in the first printing step and the second printing step.
  • a step of setting the printing environment in which the first printing step and the second printing step are performed to a vacuum environment may be included.
  • Such adjustment of the printing environment can be performed using, for example, an appropriate printing apparatus.
  • the printing method may include a step of removing the mask 200 from the support substrate 100.
  • the method for manufacturing the hole-filling substrate according to the present embodiment is as follows.
  • a step of printing a resin composition on a support substrate having a plurality of through holes formed by the above-mentioned printing method; Includes a step of curing the resin composition and;
  • the step of printing the resin composition on the support substrate can be carried out by the above-mentioned printing method.
  • a filled substrate 600 having a support substrate 100 and a layer 360 of a resin composition that fills the through holes 110 of the support substrate 100 is obtained.
  • a step of removing the mask 200 may be performed, if necessary, after obtaining the filling substrate 600 by the above-mentioned printing.
  • FIG. 9 is a cross-sectional view schematically showing the hole-filling substrate 700 obtained immediately after the resin composition is cured in the method for manufacturing the hole-filling substrate 700 according to the present embodiment.
  • the resin composition is printed on the support substrate 100, and if necessary, the mask 200 is removed, and then the resin composition is cured. Perform the process.
  • a hole-filling substrate 700 including the support substrate 100 and the filling layer 710 formed of the cured product of the resin composition in the through holes 110 of the support substrate 100 can be obtained.
  • the resin composition is usually heat-treated. Since the resin composition contains a thermosetting resin, the resin composition can be cured by heat treatment to obtain a cured product thereof.
  • the thermosetting conditions vary depending on the composition and type of the resin composition, but the curing temperature is preferably 60 ° C. or higher, more preferably 80 ° C. or higher, further preferably 100 ° C. or higher, preferably 240 ° C. or lower, more preferably. Is 220 ° C. or lower, more preferably 200 ° C. or lower.
  • the curing time is preferably 5 minutes or more, more preferably 10 minutes or more, still more preferably 15 minutes or more, preferably 120 minutes or less, more preferably 100 minutes or less, still more preferably 90 minutes or less.
  • the resin composition is also formed on the front surface 100U and the back surface 100D of the support substrate 100.
  • Layers 320 and 340 can be formed. Therefore, the hole-filling substrate 700 obtained by curing the resin composition supports the cured product layers 720 and 730 formed of the cured product of the resin composition as a surplus filling layer formed outside the through holes 110. It can be prepared for 100 front surface 100U and back surface 100D. It is desirable to remove these cured product layers 720 and 730.
  • the method for manufacturing the hole-filling substrate 700 may include a step of removing the cured product layers 720 and 730 formed on the front surface 100U and the back surface 100D of the support substrate 100 by polishing.
  • the polishing method is arbitrary, and examples thereof include buffing and belt polishing. Further, at the time of polishing, not only the cured product layers 720 and 730 but also a part of the filling layer 710 and the support substrate 100 in the through hole 110 may be polished.
  • FIG. 10 is a cross-sectional view schematically showing the hole-filling substrate 700 after removing the surplus cured product layers 720 and 730 (see FIG. 9) by polishing in the method for manufacturing the hole-filling substrate 700 according to the present embodiment.
  • the surface 710U of the filling layer 710 and the front surface 100U of the support substrate 100 are flush with each other on the front surface 700U of the hole filling substrate 700, or the back surface of the hole filling substrate 700 is made flush with each other.
  • the surface 710D of the packing layer 710 and the back surface 100D of the support substrate 100 can be flush with each other.
  • the term "plane" means that the faces are in the same plane.
  • the method for manufacturing the hole-filling substrate 700 may further include an arbitrary step in combination with the above-mentioned steps.
  • a preheating step of heating the resin composition at a temperature lower than the curing temperature may be performed before the resin composition is cured.
  • the time of the preheating step is preferably 5 minutes or more, more preferably 15 minutes or more, preferably 150 minutes or less, and more preferably 120 minutes or less.
  • circuit board manufacturing method By utilizing the above-described method for manufacturing a hole-filling substrate, it is possible to provide a method for manufacturing a circuit board such as an inductor substrate.
  • the inductor board represents the circuit board in which the inductor is provided inside the circuit board.
  • the method for manufacturing a circuit board according to an embodiment of the present invention is as follows. With the process of manufacturing a hole-filling substrate by the manufacturing method described above; A step of forming a conductor layer on the hole-filling substrate;
  • the process of manufacturing the hole-filling substrate can be carried out by the manufacturing method described above.
  • a hole-filling substrate including a support substrate and a filling layer can be obtained.
  • the conductor layer to be formed is usually formed in a predetermined wiring pattern so as to function as wiring.
  • the conductor layer may be formed so as to have a spiral wiring pattern.
  • the conductor layer may be formed on the support substrate or the packed bed.
  • Examples of the method for forming the conductor layer include a plating method, a sputtering method, and a vapor deposition method. Of these, the plating method is preferable. Preferable embodiments include a semi-additive method, a full-additive method, and the like.
  • Materials for the conductor layer include, for example, single metals such as gold, platinum, palladium, silver, copper, aluminum, cobalt, chromium, zinc, nickel, titanium, tungsten, iron, tin and indium; gold, platinum, palladium and silver. , Alloys of two or more metals selected from the group consisting of copper, aluminum, cobalt, chromium, zinc, nickel, titanium, tungsten, iron, tin and indium; Above all, from the viewpoint of versatility, cost, ease of patterning, etc., use chromium, nickel, titanium, aluminum, zinc, gold, palladium, silver or copper, or nickel-chromium alloy, copper nickel alloy, copper titanium alloy. Is preferable. Further, it is more preferable to use chromium, nickel, titanium, aluminum, zinc, gold, palladium, silver or copper, or a nickel-chromium alloy. In particular, it is more preferable to use copper.
  • single metals such as gold, platinum, palladium, silver,
  • a plating seed layer is formed on the surface of the hole-filling substrate by electroless plating.
  • an electrolytic plating layer is formed by electrolytic plating on the formed plating seed layer.
  • the unnecessary plating seed layer can be removed by a treatment such as etching to form a conductor layer having a desired wiring pattern.
  • annealing treatment may be performed for the purpose of improving the adhesion strength between the conductor layer and the hole filling substrate. The annealing treatment can be performed, for example, by heating the substrate at 150 ° C. to 200 ° C. for 20 minutes to 90 minutes.
  • the thickness of the conductor layer is preferably 70 ⁇ m or less, more preferably 60 ⁇ m or less, still more preferably 50 ⁇ m or less, still more preferably 40 ⁇ m or less, particularly preferably 30 ⁇ m or less, 20 ⁇ m or less, 15 ⁇ m. It is less than or equal to 10 ⁇ m or less.
  • the lower limit is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, still more preferably 5 ⁇ m or more.
  • the circuit board manufacturing method may further include an arbitrary step in combination with the above-mentioned steps.
  • the method for manufacturing a circuit board may further include a step of forming an insulating layer on the conductor layer.
  • a multi-layer printed wiring board may be manufactured as a circuit board by repeating a step of forming a conductor layer and a step of forming an insulating layer.
  • the circuit board obtained by the above-mentioned manufacturing method can be used as a circuit board for mounting electronic components such as semiconductor chips, and can also be used as a printed wiring board using such a circuit board as an inner layer board. Further, the circuit board can be used as an individualized chip inductor component, or the chip inductor component can be used as a surface-mounted circuit board. Above all, the circuit board is preferably an inductor substrate including an inductor element.
  • the circuit board can be applied to various types of semiconductor devices.
  • a semiconductor device including such a circuit board is suitably used for, for example, electrical products (for example, computers, mobile phones, digital cameras, televisions, etc.) and vehicles (for example, motorcycles, automobiles, trains, ships, aircraft, etc.). Can be done.
  • the resin composition that can be used in the printing method described above includes an inorganic filler and a thermosetting resin. This resin composition may be in the form of a paste in the first printing step and the second printing step in the printing method.
  • the inorganic filler preferably contains magnetic powder.
  • the magnetic powder include pure iron powder; Mg-Zn-based ferrite, Fe-Mn-based ferrite, Mn-Zn-based ferrite, Mn-Mg-based ferrite, Cu-Zn-based ferrite, Mg-Mn-Sr-based ferrite, and the like.
  • the magnetic powder preferably contains at least one type selected from the group consisting of iron oxide powder and iron alloy-based metal powder.
  • the iron oxide powder ferrite containing at least one selected from the group consisting of Ni, Cu, Mn, and Zn is preferable.
  • the iron alloy-based metal powder an iron alloy-based metal powder containing at least one selected from the group consisting of Si, Cr, Al, Ni, and Co is preferable.
  • the magnetic powder a commercially available magnetic powder can be used. Specific examples of commercially available magnetic powders that can be used include “M05S” manufactured by Powder Tech Co., Ltd .; “PST-S” manufactured by Sanyo Special Steel Co., Ltd .; “AW2-08” and “AW2-08PF20F” manufactured by Epson Atmix Co., Ltd. "AW2-08PF10F”, “AW2-08PF3F”, “Fe-3.5Si-4.5CrPF20F”, “Fe-50NiPF20F", “Fe-80Ni-4MoPF20F”; “LD-M”, “LD” manufactured by JFE Chemical Co., Ltd.
  • the magnetic powder is not particularly limited, but is preferably spherical.
  • the value (aspect ratio) obtained by dividing the length of the major axis of the magnetic powder by the length of the minor axis is preferably 2 or less, more preferably 1.5 or less, and further preferably 1.2 or less.
  • the average particle size of the magnetic powder is not particularly limited, but is preferably 0.01 ⁇ m or more, more preferably 0.5 ⁇ m or more, still more preferably, from the viewpoint of obtaining a paste having a low magnetic loss and a preferable viscosity. It is 1 ⁇ m or more. Further, it is preferably 10 ⁇ m or less, more preferably 9 ⁇ m or less, and further preferably 8 ⁇ m or less. Further, when a magnetic powder having an average particle size as described above is used, problems of filling property and plate release property have been liable to occur in the past, and therefore, from the viewpoint of effectively utilizing the effect of the present invention, magnetism is also required. It is preferable that the average particle size of the powder falls within the above range.
  • the average particle size of the magnetic powder can be measured by the laser diffraction / scattering method based on the Mie scattering theory. Specifically, it can be measured by creating a particle size distribution of magnetic powder on a volume basis with a laser diffraction / scattering type particle size distribution measuring device and using the median diameter as the average particle size. As the measurement sample, a magnetic powder dispersed in methyl ethyl ketone by ultrasonic waves can be preferably used.
  • the laser diffraction / scattering type particle size distribution measuring device "LA-500” manufactured by HORIBA, Ltd., "SALD-2200” manufactured by Shimadzu Corporation, or the like can be used.
  • the amount (% by volume) of the magnetic powder is preferably 10% by volume or more, more preferably 20% by volume or more, and further, with respect to 100% by volume of the non-volatile component in the resin composition, from the viewpoint of improving the specific magnetic permeability. It is preferably 30% by volume or more, preferably 85% by volume or less, more preferably 80% by volume or less, and further preferably 75% by volume or less.
  • the amount (mass%) of the magnetic powder is preferably 80% by mass or more, more preferably 82% by mass or more, and further, with respect to 100% by mass of the non-volatile component in the resin composition, from the viewpoint of improving the relative magnetic permeability. It is preferably 84% by mass or more, preferably 98% by mass or less, more preferably 96% by mass or less, and further preferably 94% by mass or less.
  • the magnetic powder can be used. It is preferable that the amount falls within the above range.
  • the resin composition may contain an inorganic filler other than the magnetic powder.
  • an inorganic filler include organic layered silicate minerals.
  • the total amount of the inorganic filler containing the magnetic powder or the like is preferably 80% by mass or more, more preferably 82% by mass or more, still more preferably 85% by mass or more, based on 100% by mass of the non-volatile component in the resin composition. Yes, preferably 99% by mass or less, more preferably 97% by mass or less, still more preferably 95% by mass or less.
  • thermosetting resin contained in the resin composition examples include epoxy resin, phenol resin, naphthol resin, benzoxazine resin, active ester resin, cyanate ester resin, carbodiimide resin, amine resin, and acid anhydride.
  • examples include physical resins.
  • One type of thermosetting resin may be used alone, or two or more types may be used in combination.
  • the resin composition preferably contains an epoxy resin as a thermosetting resin.
  • epoxy resins such as phenol-based resins, naphthol-based resins, benzoxazine-based resins, active ester-based resins, cyanate ester-based resins, carbodiimide-based resins, amine-based resins, and acid anhydride-based resins
  • curing agent phenol-based resins, naphthol-based resins, benzoxazine-based resins, active ester-based resins, cyanate ester-based resins, carbodiimide-based resins, amine-based resins, and acid anhydride-based resins
  • epoxy resin examples include glycyrrole type epoxy resin; bisphenol A type epoxy resin; bisphenol F type epoxy resin; bisphenol S type epoxy resin; bisphenol AF type epoxy resin; dicyclopentadiene type epoxy resin; trisphenol type epoxy resin; phenol.
  • One type of epoxy resin may be used alone, or two or more types may be used in combination.
  • the epoxy resin is preferably one or more selected from the group consisting of bisphenol A type epoxy resin and bisphenol F type epoxy resin.
  • the epoxy resin preferably contains an epoxy resin having two or more epoxy groups in one molecule. Further, the epoxy resin preferably has an aromatic structure, and when two or more kinds of epoxy resins are used, it is more preferable that at least one of them has an aromatic structure.
  • the aromatic structure is a chemical structure generally defined as aromatic, and also includes polycyclic aromatics and aromatic heterocycles.
  • the ratio of the epoxy resin having two or more epoxy groups in one molecule to 100% by mass of the non-volatile component of the epoxy resin is preferably 50% by mass or more, more preferably 60% by mass or more, and particularly preferably 70% by mass. % Or more.
  • the epoxy resin may be a liquid epoxy resin at a temperature of 25 ° C. (hereinafter sometimes referred to as “liquid epoxy resin”) or a solid epoxy resin at a temperature of 25 ° C. (hereinafter referred to as “solid epoxy resin”). ).
  • liquid epoxy resin a liquid epoxy resin at a temperature of 25 ° C.
  • solid epoxy resin a solid epoxy resin at a temperature of 25 ° C.
  • the epoxy resin only the liquid epoxy resin may be used, only the solid epoxy resin may be used, or the liquid epoxy resin and the solid epoxy resin may be used in combination. Above all, from the viewpoint of reducing the viscosity of the resin composition, it is preferable to use only the liquid epoxy resin.
  • liquid epoxy resin examples include glycyrrole type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AF type epoxy resin, naphthalene type epoxy resin, glycidyl ester type epoxy resin, glycidylamine type epoxy resin, and phenol novolac type epoxy.
  • a resin, an alicyclic epoxy resin having an ester skeleton, a cyclohexanedimethanol type epoxy resin, and an epoxy resin having a butadiene structure are preferable, and a glycylol type epoxy resin, a bisphenol A type epoxy resin, and a bisphenol F type epoxy resin are more preferable.
  • liquid epoxy resin examples include "HP4032”, “HP4032D”, and “HP4032SS” (naphthalene type epoxy resin) manufactured by DIC; “828US” and “jER828EL” (bisphenol A type epoxy resin) manufactured by Mitsubishi Chemical Co., Ltd. , “JER807” (bisphenol F type epoxy resin), “jER152” (phenol novolac type epoxy resin); “630", “630LSD” manufactured by Mitsubishi Chemical Co., Ltd., “ED-523T” (glycylol type epoxy resin) manufactured by ADEKA.
  • PB-3600 epoxy resin having a butadiene structure
  • ZX1658 epoxy resin having a butadiene structure
  • ZX1658GS liquid 1,4-glycidylcyclohexane manufactured by Nippon Steel Chemical Co., Ltd. and the like can be mentioned. These may be used alone or in combination of two or more.
  • solid epoxy resin examples include naphthalene type tetrafunctional epoxy resin, cresol novolac type epoxy resin, dicyclopentadiene type epoxy resin, trisphenol type epoxy resin, naphthol type epoxy resin, biphenyl type epoxy resin, and naphthylene ether type epoxy resin.
  • Anthracene type epoxy resin, bisphenol A type epoxy resin, and tetraphenylethane type epoxy resin are preferable, and naphthalene type tetrafunctional epoxy resin, naphthol type epoxy resin, and biphenyl type epoxy resin are more preferable.
  • solid epoxy resin examples include "HP4032H” (naphthalene type epoxy resin), “HP-4700”, “HP-4710” (naphthalene type tetrafunctional epoxy resin), and “N-690” manufactured by DIC. Cresol novolac type epoxy resin), “N-695" (cresol novolac type epoxy resin), “HP-7200”, “HP-7200HH”, “HP-7200H” (dicyclopentadiene type epoxy resin), "EXA-7311” , “EXA-7311-G3", “EXA-7311-G4", “EXA-7311-G4S”, "HP6000” (naphthylene ether type epoxy resin); "EPPN-502H” manufactured by Nippon Kayakusha.
  • Trisphenol type epoxy resin Trisphenol type epoxy resin
  • "NC7000L” naphthol novolac type epoxy resin
  • "NC3000H naphthol novolac type epoxy resin
  • "NC3000L” naphthol novolac type epoxy resin
  • ESN475V manufactured by Nippon Steel & Sumitomo Metal Chemical Co., Ltd. Naphthalene type epoxy resin
  • ESN485" naphthol novolac type epoxy resin
  • "YX4000H "YL6121” (biphenyl type epoxy resin), "YX4000HK” (bixilenol type epoxy resin), "YX8800” manufactured by Mitsubishi Chemical Co., Ltd.
  • liquid epoxy resin solid epoxy resin
  • quantity ratio liquid epoxy resin: solid epoxy resin
  • mass ratio 1: 0.3 to 1: 3.5, more preferably 1: 0.6 to 1: 3.
  • the epoxy equivalent of the epoxy resin is preferably 50 to 5000, more preferably 50 to 3000, still more preferably 80 to 2000, and even more preferably 110 to 1000. Within this range, the crosslink density of the cured product becomes sufficient, and a magnetic layer having a small surface roughness can be provided.
  • the epoxy equivalent can be measured according to JIS K7236, and is the mass of the resin containing 1 equivalent of the epoxy group.
  • the weight average molecular weight of the epoxy resin is preferably 100 to 5000, more preferably 250 to 3000, and even more preferably 400 to 1500.
  • the weight average molecular weight of the epoxy resin is a polystyrene-equivalent weight average molecular weight measured by a gel permeation chromatography (GPC) method.
  • the active ester resin a resin having one or more active ester groups in one molecule can be used.
  • the active ester-based resin has two or more ester groups with high reactive activity such as phenol esters, thiophenol esters, N-hydroxyamine esters, and esters of heterocyclic hydroxy compounds in one molecule. Resin is preferred.
  • the active ester resin is preferably obtained by a condensation reaction between a carboxylic acid compound and / or a thiocarboxylic acid compound and a hydroxy compound and / or a thiol compound.
  • an active ester resin obtained from a carboxylic acid compound and a hydroxy compound is preferable, and an active ester resin obtained from a carboxylic acid compound and a phenol compound and / or a naphthol compound is more preferable.
  • carboxylic acid compound examples include benzoic acid, acetic acid, succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid, terephthalic acid, and pyromellitic acid.
  • phenol compound or naphthol compound examples include hydroquinone, resorcin, bisphenol A, bisphenol F, bisphenol S, phenolphthaline, methylated bisphenol A, methylated bisphenol F, methylated bisphenol S, phenol, o-cresol, m-.
  • the "dicyclopentadiene-type diphenol compound” refers to a diphenol compound obtained by condensing two phenol molecules with one dicyclopentadiene molecule.
  • the active ester-based resin examples include an active ester-based resin containing a dicyclopentadiene-type diphenol structure, an active ester-based resin containing a naphthalene structure, an active ester-based resin containing an acetylated product of phenol novolac, and a benzoyl of phenol novolac.
  • active ester-based resins containing compounds examples include active ester-based resins containing compounds. Of these, an active ester resin containing a naphthalene structure and an active ester resin containing a dicyclopentadiene diphenol structure are more preferable.
  • the "dicyclopentadiene-type diphenol structure" represents a divalent structural unit composed of phenylene-dicyclopentylene-phenylene.
  • phenolic resin and the naphthol resin those having a novolak structure are preferable from the viewpoint of heat resistance and water resistance. Further, from the viewpoint of adhesion between the conductor layer and the packing layer, a nitrogen-containing phenol-based curing agent is preferable, and a triazine skeleton-containing phenol-based resin is more preferable.
  • phenolic resin and the naphthol resin examples include “MEH-7700”, “MEH-7810", “MEH-7851” manufactured by Meiwa Kasei Co., Ltd., and “NHN” and “CBN” manufactured by Nippon Kayaku Co., Ltd. , “GPH”, “SN170”, “SN180”, “SN190”, “SN475", “SN485", “SN495", “SN-495V”, “SN375”, “SN395", DIC manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. Examples thereof include “TD-2090”, “LA-7052”, “LA-7054”, “LA-1356”, “LA-3018-50P”, and "EXB-9500” manufactured by the same company.
  • benzoxazine-based resin examples include "JBZ-OD100” (benzoxazine ring equivalent 218), “JBZ-OP100D” (benzoxazine ring equivalent 218), and “ODA-BOZ” (benzoxazine ring) manufactured by JFE Chemical Co., Ltd. Equivalent 218); “Pd” (benzoxazine ring equivalent 217), “Fa” (benzoxazine ring equivalent 217) manufactured by Shikoku Kasei Kogyo Co., Ltd .; “HFB2006M” (benzoxazine ring equivalent) manufactured by Showa Polymer Co., Ltd. 432) and the like.
  • cyanate ester-based resin examples include bisphenol A disicianate, polyphenol cyanate, oligo (3-methylene-1,5-phenylene cyanate), 4,4'-methylenebis (2,6-dimethylphenylcyanate), and 4,4'.
  • cyanate ester resin examples include “PT30” and “PT60” (phenol novolac type polyfunctional cyanate ester resin), “ULL-950S” (polyfunctional cyanate ester resin), and “BA230” manufactured by Ronza Japan. Examples thereof include “BA230S75” (a prepolymer in which part or all of bisphenol A disyanate is triazined to form a trimer).
  • carbodiimide-based resin examples include carbodilite (registered trademark) V-03 (carbodiimide group equivalent: 216, V-05 (carbodiimide group equivalent: 262), V-07 (carbodiimide group equivalent: 200)) manufactured by Nisshinbo Chemical Co., Ltd. V-09 (carbodiimide group equivalent: 200); Stavaxol® P (carbodiimide group equivalent: 302) manufactured by Rheinchemy.
  • amine-based resin examples include resins having one or more amino groups in one molecule. Specific examples thereof include aliphatic amines, polyether amines, alicyclic amines, aromatic amines, and the like, and among them, aromatic amines are preferable.
  • the amine-based resin is preferably a primary amine or a secondary amine, more preferably a primary amine.
  • Specific examples of amine-based curing agents include 4,4'-methylenebis (2,6-dimethylaniline), diphenyldiaminosulfone, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylsulfone, 3,3'.
  • amine resin for example, "KAYABOND C-200S”, “KAYABOND C-100", “Kayahard AA”, “Kayahard AB”, “Kayahard” manufactured by Nippon Kayaku Corporation.
  • examples include “AS” and “Epicure W” manufactured by Mitsubishi Chemical Corporation.
  • the acid anhydride-based resin examples include resins having one or more acid anhydride groups in one molecule.
  • Specific examples of the acid anhydride-based resin include phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylnadic acid anhydride, and methylnadic hydride anhydride.
  • the amount ratio of the epoxy resin to all the curing agents is [total number of epoxy groups in the epoxy resin]: [total number of reactive groups in the curing agent].
  • the ratio is preferably in the range of 1: 0.01 to 1: 5, more preferably 1: 0.5 to 1: 3, and even more preferably 1: 1 to 1: 2.
  • the "number of epoxy groups in the epoxy resin” is a total value obtained by dividing the mass of the non-volatile component of the epoxy resin present in the resin composition by the epoxy equivalent.
  • the "number of active groups of the curing agent” is a total value obtained by dividing the mass of the non-volatile component of the curing agent present in the resin composition by the active group equivalent.
  • the amount of the thermosetting resin is preferably 1% by mass or more, more preferably 3% by mass or more, still more preferably 5% by mass or more, and preferably 30% by mass, based on 100% by mass of the non-volatile component in the resin composition. It is mass% or less, more preferably 25 mass% or less, still more preferably 20 mass% or less.
  • the amount of the thermosetting resin is described above. It is preferable that it falls within the range.
  • the amount of the thermosetting resin with respect to 100% by mass of the inorganic filler is preferably 1% by mass or more, more preferably 3% by mass or more, still more preferably 5% by mass or more, preferably 30% by mass or less, more preferably. It is 25% by mass or less, more preferably 20% by mass or less.
  • the amount of the thermosetting resin is described above. It is preferable that it falls within the range.
  • the resin composition may further contain a curing accelerator as an arbitrary component.
  • a curing accelerator examples include amine-based curing accelerators, imidazole-based curing accelerators, phosphorus-based curing accelerators, guanidine-based curing accelerators, and metal-based curing accelerators.
  • an amine-based curing accelerator and an imidazole-based curing accelerator are preferable from the viewpoint of reducing the viscosity of the resin composition.
  • One type of curing accelerator may be used alone, or two or more types may be used in combination.
  • Examples of the amine-based curing accelerator include trialkylamines such as triethylamine and tributylamine, 4-dimethylaminopyridine, benzyldimethylamine, 2,4,6, -tris (dimethylaminomethyl) phenol, and 1,8-diazabicyclo. Examples thereof include (5,4,0) -undecene, and 4-dimethylaminopyridine and 1,8-diazabicyclo (5,4,5) -undecene are preferable.
  • the amine-based curing accelerator a commercially available product may be used, and examples thereof include "PN-50", “PN-23", and "MY-25" manufactured by Ajinomoto Fine-Techno.
  • imidazole-based curing accelerator examples include 2-methylimidazole, 2-undecyl imidazole, 2-heptadecyl imidazole, 1,2-dimethyl imidazole, 2-ethyl-4-methyl imidazole, 1,2-dimethyl imidazole, and the like.
  • imidazole-based curing accelerator a commercially available product may be used, and examples thereof include “2P4MZ” and “2PHZ-PW” manufactured by Shikoku Chemicals Corporation; “P200-H50” manufactured by Mitsubishi Chemical Corporation.
  • Examples of the phosphorus-based curing accelerator include triphenylphosphine, phosphonium borate compound, tetraphenylphosphonium tetraphenylborate, n-butylphosphonium tetraphenylborate, tetrabutylphosphonium decanoate, and (4-methylphenyl) triphenylphosphonium thiocyanate.
  • Tetraphenylphosphonium thiocyanate, butyltriphenylphosphonium thiocyanate and the like, and triphenylphosphine and tetrabutylphosphonium decanoate are preferable.
  • guanidine-based curing accelerator examples include dicyandiamide, 1-methylguanidine, 1-ethylguanidine, 1-cyclohexylguanidine, 1-phenylguanidine, 1- (o-tolyl) guanidine, dimethylguanidine, diphenylguanidine, and trimethylguanidine.
  • the metal-based curing accelerator examples include organometallic complexes or organometallic salts of metals such as cobalt, copper, zinc, iron, nickel, manganese, and tin.
  • organic metal complex examples include an organic cobalt complex such as cobalt (II) acetylacetonate and cobalt (III) acetylacetonate, an organic copper complex such as copper (II) acetylacetonate, and zinc (II) acetylacetonate.
  • organic zinc complexes such as iron (III) acetylacetonate, organic nickel complexes such as nickel (II) acetylacetonate, and organic manganese complexes such as manganese (II) acetylacetonate.
  • organic metal salt include zinc octylate, tin octylate, zinc naphthenate, cobalt naphthenate, tin stearate, zinc stearate and the like.
  • the amount of the curing accelerator is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, based on 100% by mass of the non-volatile component in the resin composition from the viewpoint of lowering the viscosity of the resin composition. It is more preferably 0.5% by mass or more, preferably 5% by mass or less, more preferably 3% by mass or less, still more preferably 1% by mass or less.
  • the resin composition may contain a dispersant as an arbitrary component.
  • the dispersant include phosphate ester dispersants such as polyoxyethylene alkyl ether phosphoric acid; anionic dispersants such as sodium dodecylbenzel sulfonate, sodium laurate, and ammonium salts of polyoxyethylene alkyl ether sulfate; Non-ions such as organosiloxane dispersants, acetylene glycols, polyoxyethylene alkyl ethers, polyoxyethylene alkyl esters, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene alkyl phenyl ethers, polyoxyethylene alkyl amines, and polyoxyethylene alkyl amides. Examples include sex dispersants. Of these, anionic dispersants are preferred. One type of dispersant may be used alone, or two or more types may be used in combination.
  • a commercially available product can be used as the phosphoric acid ester-based dispersant.
  • Examples of commercially available products include "RS-410", “RS-610", “RS-710” and the like of the "Phosphanol” series manufactured by Toho Chemical Industry Co., Ltd.
  • organosiloxane-based dispersants examples include “BYK347” and “BYK348” manufactured by Big Chemie.
  • polyoxyalkylene dispersants include, for example, "AKM-0531”, “AFB-1521”, “SC-0505K”, “SC-1015F” and “SC-1015F” of the "Marialim” series manufactured by NOF CORPORATION. "SC-0708A”, “HKM-50A” and the like can be mentioned.
  • acetylene glycol as a commercially available product, for example, Air Products and Chemicals Inc. Examples thereof include “82", “104", “440”, “465" and “485", and "Olefin Y" of the "Surfinol" series manufactured by Japan.
  • the amount of the dispersant is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, still more preferably 0.5% by mass or more, based on 100% by mass of the non-volatile component in the resin composition. It is preferably 5% by mass or less, more preferably 3% by mass or less, and further preferably 1% by mass or less.
  • the resin composition may contain, for example, a thermosetting resin; a curing retardant such as triethyl borate for improving pot life; a flame retardant; an organic filler; an organic copper compound, an organic zinc compound and an organic cobalt compound. And the like; an organometallic compound; a thickener; an antifoaming agent; a leveling agent; an adhesion imparting agent; a coloring agent; may be contained.
  • the resin composition may contain a solvent.
  • the amount of the solvent in the resin composition is preferably small. Furthermore, it is particularly preferable that the resin composition does not contain a solvent.
  • the amount of the solvent in the resin composition is preferably less than 1.0% by mass, more preferably 0.8% by mass or less, still more preferably, based on 100% by mass of the total mass of the resin composition. It is 0.5% by mass or less, particularly preferably 0.1% by mass or less.
  • the lower limit is 0.001% by mass or more, or no content, without particular limitation. Since the amount of the solvent in the resin composition is small, it is possible to suppress the generation of voids due to the volatilization of the solvent, and it is also possible to adapt to vacuum printing.
  • the resin composition may be in the form of a paste in the first printing step and the second printing step described above.
  • the viscosity of the paste-like resin composition in the first printing step and the second printing step is preferably 50 Pa ⁇ s or more, more preferably 60 Pa ⁇ s or more, and further preferably 70 Pa ⁇ s or more.
  • the first printing step and the second printing step It is preferable that the viscosity of the resin composition in the above range is within the above range.
  • the upper limit of the viscosity is preferably 200 Pa ⁇ s or less, more preferably 190 Pa ⁇ s or less, still more preferably 180 Pa ⁇ s or less, from the viewpoint of easy removal of air bubbles during printing.
  • the viscosity of the resin composition in the first printing step and the viscosity of the resin composition in the second printing step may be the same or different.
  • the viscosity can also be measured using an E-type viscometer.
  • the resin composition can be produced, for example, by a method of stirring each component of the resin composition using a stirring device such as a three-roll or rotary mixer.
  • the rubber hardness represents a value measured by a durometer (type A).
  • Epoxy resin (“ZX-1059", a mixture of bisphenol A type epoxy resin and bisphenol F type epoxy resin, manufactured by Nippon Steel & Sumitomo Metal Corporation) 10 parts by mass, epoxy resin ("ED-523T”, low viscosity epoxy resin, ADEKA) 5 parts, dispersant ("RS-710", polymer anionic dispersant, manufactured by Toho Kagaku Co., Ltd.), 1 part by mass, curing accelerator ("2P4MZ”, imidazole-based curing accelerator, manufactured by Shikoku Kasei Co., Ltd.) 1 Parts by mass, magnetic powder (“M05S”, Fe-Mn-based ferrite, average particle size 3 ⁇ m, manufactured by Powder Tech) 100 parts by mass, and organicized smectite ("Smecton STN", trioctylmethylammonium-treated epoxy) Wright, manufactured by Kunimine Kogyo Co., Ltd.) 2 parts by mass were mixed and uniform
  • the specific magnetic permeability and magnetic loss of the cured product of the magnetic paste were measured by the following methods.
  • a polyethylene terephthalate (PET) film (“PET501010” manufactured by Lintec Corporation, thickness 50 ⁇ m) treated with a silicon-based release agent was prepared.
  • the magnetic paste was uniformly applied on the release surface of the PET film with a doctor blade so that the thickness of the paste layer after drying was 100 ⁇ m to obtain a resin sheet.
  • the obtained resin sheet was heated at 130 ° C. for 30 minutes to thermally cure the paste layer, and the support was peeled off to obtain a sheet-like cured product.
  • the obtained cured product was cut into test pieces having a width of 5 mm and a length of 18 mm to prepare an evaluation sample.
  • this evaluation sample was measured at a measurement frequency of 100 MHz by a 3-turn coil method, and the specific magnetic permeability ( ⁇ ') and magnetic loss ( ⁇ ') were set at room temperature of 23 ° C. '') Was measured.
  • the relative permeability was 7.5 and the magnetic loss was 0.1.
  • Example 1 (1-1. Preparation of support board) A support substrate (a substrate obtained by impregnating and curing a glass cloth with an epoxy resin, having a thickness of 700 ⁇ m) having a plurality of through holes uniformly formed was prepared.
  • the through holes were cylindrical holes, the diameter thereof (see diameter W 110 in FIG. 1) was 350 ⁇ m, and the distance between the through holes (see distance P 110 in FIG. 1) was 100 ⁇ m.
  • a metal mask in which an opening as a hollow hole was formed on a metal flat plate having a thickness of 50 ⁇ m was prepared.
  • the planar shape of the opening was a 20 mm square.
  • a mask was installed on one side of the support substrate. At this time, the mask was installed so that one opening of the mask communicated with a plurality of through holes of the support substrate.
  • the magnetic paste was attached to the entire support substrate that appeared in the opening of the mask. Therefore, when the second squeegee crosses the opening in the second printing process, the second squeegee does not contact the support substrate, and there is a gap between the second squeegee and the support substrate so that the magnetic paste can enter. Was confirmed.
  • Example 2 The first printing step was repeated three times. Further, the printing speed of the second squeegee in the second printing step was changed to 60 mm / sec. Except for the above items, the same operation as in Example 1 was performed to obtain a hole-filling substrate.
  • Example 3 The printing speed of the first squeegee in the first printing step was changed to 3 mm / sec. Further, the printing speed of the second squeegee in the second printing step was changed to 75 mm / sec. Except for the above items, the same operation as in Example 1 was performed to obtain a hole-filling substrate.
  • Example 4 The second squeegee was changed to a metal squeegee made of metal as a rigid material having a high elastic modulus. Further, the printing speed of the second squeegee in the second printing step was changed to 5 mm / sec. Except for the above items, the same operation as in Example 1 was performed to obtain a hole-filling substrate.
  • Example 1 The same operation as in Example 1 was performed except that the second printing step was not performed, to obtain a hole-filling substrate.
  • a screen mask having a plate thickness (thickness of the mask portion) of 138 ⁇ m and a mesh count of # 120 was prepared.
  • the mesh count represents the number of wire rods per inch (that is, the wire rods forming the mesh).
  • This screen mask had a mask portion provided with an emulsion layer that did not allow the magnetic paste to permeate, and a mesh portion in which the mesh was exposed without the emulsion layer.
  • the magnetic paste was able to pass through the mesh portion through the opening of the mesh, and its planar shape was a square of 20 mm square.
  • the above-mentioned screen mask was used instead of the metal mask.
  • the screen mask was installed so that one mesh portion of the screen mask communicated with a plurality of through holes of the support substrate.
  • the mesh of the mesh portion becomes an obstacle, and the first squeegee and the second squeegee cannot contact the support substrate.
  • the second printing process was not carried out. Except for the above items, the same operation as in Example 1 was performed to obtain a hole-filling substrate.
  • a through hole recessed from the back surface of the hole-filling substrate means a through hole in which the filling layer filled in the through hole is recessed from the back surface of the support substrate. That is, "a through hole recessed from the support substrate on the back surface of the hole-filling substrate” means that the position of the surface of the filling layer filled in the through hole on the opposite side of the mask is larger than the back surface of the support substrate. , Represents a through hole close to the mask in the thickness direction.
  • a through hole recessed from the front surface of the hole-filling substrate means a through hole in which the filling layer filled in the through hole is recessed from the front surface of the support substrate. That is, "through holes recessed from the support substrate on the front surface of the hole-filling substrate” means that the position of the mask-side surface of the filling layer filled in the through holes is in the thickness direction of the front surface of the support substrate. Represents a through hole far from the mask.
  • the second printing step of filling the dent at the entrance of the through hole was performed, so that the dent could be eliminated.
  • the filling property was good as in the comparative example 1.
  • the mask since the mask is installed on the support substrate so that one opening communicates with two or more through holes, precise alignment is not required. Therefore, the operation can be simplified because the precise position adjustment can be omitted. Therefore, from the results of these examples, the printing method of the present invention can easily and easily fill the plurality of through holes of the support substrate with the resin composition with good filling properties, and further, the resin composition filled in the through holes. It was confirmed that the dents in the plastic can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Screen Printers (AREA)
  • Printing Elements For Providing Electric Connections Between Printed Circuits (AREA)

Abstract

This printing method includes: a placement step for placing a mask in which a hollow opening section is formed on a support substrate having a plurality of through holes formed therein, such that the single opening section is in communication with two or more of the through holes; a supply step for supplying a resin composition to a surface of the mask on the reverse side from the support substrate; a first printing step for filling the resin composition in the through holes by moving a first squeegee on the surface of the mask and relatively along said surface such that the first squeegee is partially pressed into the opening section; and a second printing step for applying a resin composition upon the resin composition that has been filled in the through holes by moving a second squeegee on the surface of the mask and relatively along said surface.

Description

印刷方法、並びに、穴埋め基板及び回路基板の製造方法Printing method and manufacturing method of fill-in-the-blank board and circuit board
 本発明は、スルーホールを形成された支持基板に樹脂組成物を印刷する印刷方法、並びに、前記の印刷方法を用いた穴埋め基板及び回路基板の製造方法に関する。 The present invention relates to a printing method for printing a resin composition on a support substrate having through holes formed therein, and a method for manufacturing a hole-filling substrate and a circuit board using the above printing method.
 回路基板用のコア基板等の用途で用いられる部材として、表裏を貫通するスルーホールが形成された支持基板と、前記のスルーホールを充填する充填層とを備えるものがある。本願においては、この部材を、「穴埋め基板」と呼ぶことがある。充填層は、通常、硬化性の樹脂組成物をスルーホールに充填し、充填された樹脂組成物を硬化させて、形成される。スルーホールへの樹脂組成物の充填方法としては、例えば、スクリーン印刷法がある(特許文献1)。 As a member used for applications such as a core substrate for a circuit board, there is a member provided with a support substrate having through holes penetrating the front and back surfaces and a filling layer for filling the through holes. In the present application, this member may be referred to as a "fill-in-the-blank substrate". The packed bed is usually formed by filling through holes with a curable resin composition and curing the filled resin composition. As a method of filling the through hole with the resin composition, for example, there is a screen printing method (Patent Document 1).
 スクリーン印刷法では、一般に、樹脂組成物を通過させないマスク部と、樹脂組成物を通過させうるメッシュ部とを有するスクリーンマスクを用いる。メッシュ部は、メッシュが設けられた孔であり、樹脂組成物がメッシュの線材の間を通り抜けられるので、樹脂組成物が流通できる通路として機能できる。このメッシュ部は、例えば、支持基板のスルーホール1つに対してメッシュ部1つが連通するように形成される。よって、スクリーンマスクを支持基板上に設置し、スクリーンマスクを介して樹脂組成物を印刷することにより、メッシュ部を通してスルーホールに樹脂組成物を充填することができる。 In the screen printing method, a screen mask having a mask portion that does not allow the resin composition to pass through and a mesh portion that allows the resin composition to pass through is generally used. The mesh portion is a hole provided with a mesh, and since the resin composition can pass through between the wire rods of the mesh, it can function as a passage through which the resin composition can flow. This mesh portion is formed so that, for example, one mesh portion communicates with one through hole of the support substrate. Therefore, by installing the screen mask on the support substrate and printing the resin composition through the screen mask, the through holes can be filled with the resin composition through the mesh portion.
特開2006-241449号公報Japanese Unexamined Patent Publication No. 2006-241449
 インダクタは、従来、独立したインダクタ部品として回路基板上に実装されることが一般的であった。しかし、近年では、回路基板の導体パターンによりコイルを形成することで、インダクタを回路基板の内部に設ける手法が提案されている。このようにインダクタを内部に備える回路基板を製造する場合、スルーホールを充填する充填層として、磁性粉体を含むものを採用することが考えられる。磁性粉体を含む充填層をインダクタのコアとして機能させることにより、インダクタンスの高いインダクタを実現することができる。 Conventionally, inductors have generally been mounted on circuit boards as independent inductor components. However, in recent years, a method of providing an inductor inside a circuit board by forming a coil with a conductor pattern of the circuit board has been proposed. When manufacturing a circuit board having an inductor inside as described above, it is conceivable to adopt a packing layer containing magnetic powder as a packing layer for filling through holes. By making the packing layer containing the magnetic powder function as the core of the inductor, an inductor with high inductance can be realized.
 そこで、本発明者は、磁性粉体を含む樹脂組成物を、スクリーン印刷法によって支持基板のスルーホールに充填することを試みた。この際、従来のように、スルーホール1つに対してスクリーンマスクのメッシュ部1つのみが連通できるスクリーンマスクを用いると、スルーホールとメッシュ部との位置合わせが煩雑であった。そこで、本発明者は、位置合わせを簡単にして充填を容易に行えるようにする観点から、1つのメッシュ部が2つ以上のスルーホールと連通できるように、メッシュ部を大きく形成した。そして、複数のスルーホールを1つのメッシュ部が覆うように支持基板上にスクリーンマスクを設置し、メッシュ部を通して各スルーホールに樹脂組成物を充填した。 Therefore, the present inventor tried to fill the through holes of the support substrate with the resin composition containing the magnetic powder by the screen printing method. At this time, if a screen mask capable of communicating only one mesh portion of the screen mask with one through hole as in the conventional case is used, the alignment between the through hole and the mesh portion is complicated. Therefore, the present inventor has formed a large mesh portion so that one mesh portion can communicate with two or more through holes from the viewpoint of facilitating alignment and facilitating filling. Then, a screen mask was placed on the support substrate so that one mesh portion covered the plurality of through holes, and each through hole was filled with the resin composition through the mesh portion.
 ところが、前記の方法では、樹脂組成物の充填性が劣っていた。具体的には、複数のスルーホールの一部又は全部において、スルーホールの奥にまで樹脂組成物が進入できず、スルーホール内の出口付近に樹脂組成物が充填されていない部分が残り易かった。特に、メッシュ部の外縁部近傍においてはスルーホールに多くの樹脂組成物が充填される一方で、外縁部から遠いメッシュ部の中央近傍ではスルーホールに充填される樹脂組成物の量が少ない傾向があった。 However, in the above method, the filling property of the resin composition was inferior. Specifically, in some or all of the plurality of through holes, the resin composition could not enter deep into the through holes, and a portion where the resin composition was not filled was likely to remain near the outlet in the through holes. .. In particular, while many resin compositions are filled in the through holes near the outer edge of the mesh portion, the amount of resin composition filled in the through holes tends to be small near the center of the mesh portion far from the outer edge. there were.
 また、前記の方法では、スルーホールの入り口において、樹脂組成物の層の表面に、窪みが形成されやすかった。樹脂組成物の層の窪みとは、樹脂組成物の層の表面の一部又は全部の位置が、支持基板の表面よりも、スルーホールの内側にある構造をいう。この窪みは、通常、印刷後にスクリーンマスクを取り外す際の版離れ性に劣るために形成されていた。「版離れ性」とは、印刷後にスクリーンマスクを取り外す際、印刷された樹脂組成物がスクリーンマスクから容易に離れ、支持基板から除去されない性質をいう。版離れ性に劣る場合には、スルーホールの入り口近傍の樹脂組成物がメッシュ部のメッシュに付着して除去され、その結果、スルーホールに充填された樹脂組成物の層の表面に、窪みが形成された。特に、磁性粉体の含有割合の多い高粘度の樹脂組成物において、樹脂組成物がメッシュに付着して除去され易い傾向があった。 Further, in the above method, a dent is likely to be formed on the surface of the layer of the resin composition at the entrance of the through hole. The recess of the resin composition layer means a structure in which a part or all of the surface of the resin composition layer is located inside the through hole with respect to the surface of the support substrate. This recess was usually formed due to poor plate release when the screen mask was removed after printing. The "plate release property" means a property that when the screen mask is removed after printing, the printed resin composition is easily separated from the screen mask and is not removed from the support substrate. When the plate release property is inferior, the resin composition near the entrance of the through hole adheres to the mesh of the mesh portion and is removed, and as a result, a dent is formed on the surface of the layer of the resin composition filled in the through hole. Been formed. In particular, in a high-viscosity resin composition having a large content of magnetic powder, the resin composition tends to adhere to the mesh and be easily removed.
 前記のような課題は、本発明者の検討によれば、インダクタを含む以外の回路基板を製造する場合においても、生じうるものと考えられる。 According to the study of the present inventor, it is considered that the above-mentioned problems can occur even in the case of manufacturing a circuit board other than the one containing the inductor.
 本発明は、前記の課題に鑑みて創案されたもので、支持基板の複数のスルーホールへ樹脂組成物を容易且つ良好な充填性で充填でき、更にはスルーホールに充填された樹脂組成物の層の窪みを抑制できる、印刷方法;前記印刷方法を含む穴埋め基板の製造方法;並びに、前記印刷方法を含む回路基板の製造方法;を提供することを目的とする。 The present invention has been devised in view of the above problems, and can easily and easily fill a plurality of through holes of a support substrate with a resin composition with good filling properties, and further, a resin composition filled in the through holes. It is an object of the present invention to provide a printing method capable of suppressing dents in layers; a method for manufacturing a through-hole substrate including the printing method; and a method for manufacturing a circuit board including the printing method.
 本発明者は、前記の課題を解決するべく鋭意検討した。その結果、本発明者は、2つ以上のスルーホールにまたがって開口されたマスクを用いること、及び、所定の条件で樹脂組成物の印刷を2回以上行うこと、を組み合わせた場合に、前記の課題を解決できることを見い出し、本発明を完成させた。
 すなわち、本発明は、下記のものを含む。
The present inventor has diligently studied to solve the above-mentioned problems. As a result, the present inventor, when using a mask opened across two or more through holes and printing the resin composition twice or more under predetermined conditions, said the above. The present invention has been completed by finding that the following problems can be solved.
That is, the present invention includes the following.
 〔1〕 複数のスルーホールが形成された支持基板に、中空状の開口部が形成されたマスクを、1つの前記開口部が2つ以上の前記スルーホールと連通するように、設置する設置工程と、
 前記マスクの前記支持基板とは反対側の面に、無機充填材及び熱硬化性樹脂を含む樹脂組成物を供給する供給工程と、
 第一スキージを、当該第一スキージの一部が前記開口部の内部に押し込まれるように、前記マスクの前記面上で、当該面に沿って相対的に移動させて、前記スルーホールに前記樹脂組成物を充填する第一印刷工程と、
 前記第一スキージと同一又は異なる第二スキージを、前記マスクの前記面上で、当該面に沿って相対的に移動させて、前記スルーホールに充填された前記樹脂組成物上に、前記樹脂組成物を塗布する第二印刷工程と、を含む、印刷方法。
 〔2〕 前記第一印刷工程において、前記第一スキージの前記一部が前記支持基板に接するように、当該第一スキージを前記マスクの前記面上で相対的に移動させる、〔1〕に記載の印刷方法。
 〔3〕 前記第一スキージの弾性率よりも、前記第二スキージの弾性率が、大きい、〔1〕又は〔2〕に記載の印刷方法。
 〔4〕 前記第一印刷工程における前記第一スキージの相対的な移動速度よりも、前記第二印刷工程における前記第二スキージの相対的な移動速度が、速い、〔1〕~〔3〕のいずれか一項に記載の印刷方法。
 〔5〕 前記第二印刷工程で塗布された前記樹脂組成物が、前記スルーホールのマスク側の位置に残留する、〔1〕~〔4〕のいずれか一項に記載の印刷方法。
 〔6〕 前記マスクが、メタルマスクである、〔1〕~〔5〕のいずれか一項に記載の印刷方法。
 〔7〕 前記無機充填材が、磁性粉体を含む、〔1〕~〔6〕のいずれか一項に記載の印刷方法。
 〔8〕 前記磁性粉体が、酸化鉄粉及び鉄合金系金属粉からなる群より選ばれる1種類以上を含む、〔7〕に記載の印刷方法。
 〔9〕 前記第一印刷工程及び前記第二印刷工程における前記樹脂組成物の粘度が、50Pa・s以上である、〔1〕~〔8〕のいずれか一項に記載の印刷方法。
 〔10〕 複数のスルーホールを形成された支持基板と、前記スルーホール内に樹脂組成物の硬化物で形成された充填層とを備える穴埋め基板の製造方法であって、
 前記支持基板に、〔1〕~〔9〕のいずれか一項に記載の印刷方法によって樹脂組成物を印刷する工程と、
 樹脂組成物を硬化させる工程と、を含む、穴埋め基板の製造方法。
 〔11〕 前記充填層を研磨する工程を含む、〔10〕に記載の穴埋め基板の製造方法。
 〔12〕 〔10〕又は〔11〕に記載の製造方法によって、穴埋め基板を製造する工程と、
 前記穴埋め基板上に、導体層を形成する工程と、を含む、回路基板の製造方法。
[1] An installation step of installing a mask having hollow openings formed on a support substrate having a plurality of through holes so that one opening communicates with two or more through holes. When,
A supply step of supplying a resin composition containing an inorganic filler and a thermosetting resin to a surface of the mask opposite to the support substrate.
The first squeegee is moved relatively along the surface of the mask so that a part of the first squeegee is pushed into the opening, and the resin is inserted into the through hole. The first printing step of filling the composition and
A second squeegee that is the same as or different from the first squeegee is moved relative to the surface of the mask along the surface, and the resin composition is placed on the resin composition filled in the through holes. A printing method comprising a second printing step of applying an object.
[2] According to [1], in the first printing step, the first squeegee is relatively moved on the surface of the mask so that the part of the first squeegee is in contact with the support substrate. Printing method.
[3] The printing method according to [1] or [2], wherein the elastic modulus of the second squeegee is larger than the elastic modulus of the first squeegee.
[4] The relative moving speed of the second squeegee in the second printing step is faster than the relative moving speed of the first squeegee in the first printing step, [1] to [3]. The printing method according to any one of the items.
[5] The printing method according to any one of [1] to [4], wherein the resin composition applied in the second printing step remains at a position on the mask side of the through hole.
[6] The printing method according to any one of [1] to [5], wherein the mask is a metal mask.
[7] The printing method according to any one of [1] to [6], wherein the inorganic filler contains magnetic powder.
[8] The printing method according to [7], wherein the magnetic powder contains at least one type selected from the group consisting of iron oxide powder and iron alloy-based metal powder.
[9] The printing method according to any one of [1] to [8], wherein the resin composition in the first printing step and the second printing step has a viscosity of 50 Pa · s or more.
[10] A method for manufacturing a hole-filling substrate including a support substrate having a plurality of through holes formed therein and a filling layer formed of a cured product of a resin composition in the through holes.
A step of printing the resin composition on the support substrate by the printing method according to any one of [1] to [9].
A method for manufacturing a fill-in-the-blank substrate, which comprises a step of curing a resin composition.
[11] The method for manufacturing a hole-filling substrate according to [10], which comprises a step of polishing the packed bed.
[12] A step of manufacturing a hole-filling substrate by the manufacturing method according to [10] or [11], and
A method for manufacturing a circuit board, which comprises a step of forming a conductor layer on the hole-filling board.
 本発明によれば、支持基板の複数のスルーホールへ樹脂組成物を容易且つ良好な充填性で充填でき、更にはスルーホールに充填された樹脂組成物の層の窪みを抑制できる、印刷方法;前記印刷方法を含む穴埋め基板の製造方法;並びに、前記印刷方法を含む回路基板の製造方法;を提供できる。 According to the present invention, a printing method capable of filling a plurality of through holes of a support substrate with a resin composition easily and with good filling properties, and further suppressing dents in a layer of the resin composition filled in the through holes; A method for manufacturing a through-hole substrate including the printing method; and a method for manufacturing a circuit board including the printing method; can be provided.
図1は、本発明の一実施形態に係る印刷方法において用いる支持基板及びマスクを模式的に示す斜視図である。FIG. 1 is a perspective view schematically showing a support substrate and a mask used in the printing method according to the embodiment of the present invention. 図2は、本発明の一実施形態に係る印刷方法の設置工程において、マスクを設置された支持基板を模式的に示す斜視図である。FIG. 2 is a perspective view schematically showing a support substrate on which a mask is installed in the installation process of the printing method according to the embodiment of the present invention. 図3は、本発明の一実施形態に係る印刷方法の供給工程における支持基板及びマスクの断面を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing a cross section of a support substrate and a mask in the supply process of the printing method according to the embodiment of the present invention. 図4は、本発明の一実施形態に係る印刷方法の第一印刷工程における支持基板及びマスクの断面を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing a cross section of a support substrate and a mask in the first printing step of the printing method according to the embodiment of the present invention. 図5は、本発明の一実施形態に係る印刷方法の第一印刷工程で、第一スキージがマスクの開口部を横切っている時点での、支持基板、マスク及び第一スキージを、第一スキージの移動方向Xに垂直な面で切った断面を模式に示す断面図である。FIG. 5 shows the support substrate, the mask, and the first squeegee at the time when the first squeegee crosses the opening of the mask in the first printing step of the printing method according to the embodiment of the present invention. It is sectional drawing which shows typically the cross section cut by the plane perpendicular to the moving direction X of. 図6は、本発明の一実施形態に係る印刷方法の第一印刷工程の直後における支持基板及びマスクの断面を模式的に示す断面図である。FIG. 6 is a cross-sectional view schematically showing a cross section of a support substrate and a mask immediately after the first printing step of the printing method according to the embodiment of the present invention. 図7は、本発明の一実施形態に係る印刷方法の第二印刷工程における支持基板及びマスクの断面を模式的に示す断面図である。FIG. 7 is a cross-sectional view schematically showing a cross section of a support substrate and a mask in the second printing step of the printing method according to the embodiment of the present invention. 図8は、本発明の一実施形態に係る印刷方法の第二印刷工程の直後における支持基板及びマスクの断面を模式的に示す断面図である。FIG. 8 is a cross-sectional view schematically showing a cross section of a support substrate and a mask immediately after the second printing step of the printing method according to the embodiment of the present invention. 図9は、本発明の一実施形態に係る穴埋め基板の製造方法において、樹脂組成物を硬化させた直後に得られる穴埋め基板を模式的に示す断面図である。FIG. 9 is a cross-sectional view schematically showing a hole-filling substrate obtained immediately after the resin composition is cured in the method for producing a hole-filling substrate according to an embodiment of the present invention. 図10は、本発明の一実施形態に係る穴埋め基板の製造方法において、余剰の硬化物層を研磨により除去した後の穴埋め基板を模式的に示す断面図である。FIG. 10 is a cross-sectional view schematically showing a hole-filling substrate after removing an excess cured product layer by polishing in the method for manufacturing a hole-filling substrate according to an embodiment of the present invention. 図11は、一例としてのスクリーン印刷法で支持基板のスルーホールに樹脂組成物を充填する様子を模式的に示す図である。FIG. 11 is a diagram schematically showing how the resin composition is filled in the through holes of the support substrate by the screen printing method as an example.
 以下、本発明について、実施形態及び例示物を示して詳細に説明する。ただし、本発明は下記の実施形態及び例示物に限定されるものでは無く、本発明の請求の範囲及びその均等の範囲を逸脱しない範囲において任意に変更して実施しうる。 Hereinafter, the present invention will be described in detail by showing embodiments and examples. However, the present invention is not limited to the following embodiments and examples, and can be arbitrarily modified and implemented without departing from the scope of claims of the present invention and the equivalent scope thereof.
[1.印刷方法の概要]
 本発明の一実施形態に係る樹脂組成物の印刷方法は、
 複数のスルーホールを形成された支持基板に、中空状の開口部が形成されたマスクを設置する設置工程と;
 マスクの支持基板とは反対側の面に、樹脂組成物を供給する供給工程と;
 第一スキージを、マスクの面上で、当該面に沿って相対的に移動させて、スルーホールに樹脂組成物を充填する第一印刷工程と;
 第一スキージと同一又は異なる第二スキージを、マスクの面上で、当該面に沿って相対的に移動させて、樹脂組成物を塗布する第二印刷工程と;を含む。
[1. Overview of printing method]
The method for printing the resin composition according to the embodiment of the present invention is
An installation process in which a mask having a hollow opening is installed on a support substrate having a plurality of through holes formed;
With the supply process of supplying the resin composition to the surface of the mask opposite to the support substrate;
With the first printing step in which the first squeegee is moved relative to the surface of the mask along the surface to fill the through holes with the resin composition;
A second printing step of applying the resin composition by moving a second squeegee, which is the same as or different from the first squeegee, relative to the surface of the mask along the surface;
 設置工程では、1つの開口部が2つ以上のスルーホールと連通するように、マスクを支持基板に設置する。このような設置が許容される場合、マスクの開口部と支持基板のスルーホールとの位置合わせの精度は、低くてもよい。よって、位置合わせを簡単にできる。 In the installation process, the mask is installed on the support substrate so that one opening communicates with two or more through holes. If such an installation is allowed, the accuracy of alignment between the mask opening and the through hole of the support substrate may be low. Therefore, the alignment can be easily performed.
 また、第一印刷工程では、第一スキージの一部がマスクの開口部の内部に押し込まれるように、第一スキージを支持基板及びマスクに対して相対的に移動させる。これにより、スルーホールの出口にまで樹脂組成物を充填することが容易となり、良好な充填性が達成できる。 Further, in the first printing process, the first squeegee is moved relative to the support substrate and the mask so that a part of the first squeegee is pushed into the opening of the mask. As a result, it becomes easy to fill the resin composition up to the outlet of the through hole, and good filling property can be achieved.
 さらに、第二印刷工程では、第二スキージによって、スルーホールに充填された樹脂組成物上に、樹脂組成物を塗布する。第一印刷工程によってスルーホールに樹脂組成物が充填されるので、そのスルーホール内には樹脂組成物の層が形成される。しかし、スルーホールの入り口においては、樹脂組成物の層の表面に、窪みが形成されうる。これに対し、第二印刷工程においてスルーホールに充填された樹脂組成物上に樹脂組成物を塗布すると、前記の窪みを樹脂組成物で埋めることができる。よって、窪みを抑制することができる。 Further, in the second printing process, the resin composition is applied onto the resin composition filled in the through holes by the second squeegee. Since the through holes are filled with the resin composition by the first printing step, a layer of the resin composition is formed in the through holes. However, at the entrance of the through hole, a depression may be formed on the surface of the layer of the resin composition. On the other hand, when the resin composition is applied onto the resin composition filled in the through holes in the second printing step, the dents can be filled with the resin composition. Therefore, the dent can be suppressed.
 したがって、本発明の一実施形態に係る樹脂組成物の印刷方法によれば、支持基板の複数のスルーホールへ樹脂組成物を容易且つ良好な充填性で充填でき、更にはスルーホールに充填された樹脂組成物の層の窪みを抑制できる。 Therefore, according to the method for printing the resin composition according to the embodiment of the present invention, the resin composition can be easily and easily filled in the plurality of through holes of the support substrate with good filling properties, and further, the through holes are filled. It is possible to suppress the depression of the layer of the resin composition.
 ここで、前記の「スルーホールの入り口」とは、スルーホールの開口のうち、支持基板のオモテ面に形成された開口をいう。また、「支持基板のオモテ面」とは、支持基板のマスク側の面をいう。他方、前記の「スルーホールの出口」とは、スルーホールの開口のうち、支持基板のウラ面に形成された開口をいう。また、「支持基板のウラ面」とは、支持基板のマスクとは反対側の面をいう。 Here, the above-mentioned "entrance of the through hole" means an opening formed on the front surface of the support substrate among the openings of the through hole. Further, the “front surface of the support substrate” refers to the surface of the support substrate on the mask side. On the other hand, the above-mentioned "outlet of the through hole" means an opening formed on the back surface of the support substrate among the openings of the through hole. Further, the “back surface of the support substrate” refers to the surface of the support substrate opposite to the mask.
 以下、本実施形態に係る印刷方法を、図面を参照して説明する。ただし、各図面は、発明が理解できる程度に、構成要素の形状、大きさ及び配置が概略的に示されているに過ぎない。 Hereinafter, the printing method according to this embodiment will be described with reference to the drawings. However, each drawing merely outlines the shape, size, and arrangement of the components to the extent that the invention can be understood.
[2.支持基板の用意]
 図1は、本発明の一実施形態に係る印刷方法において用いる支持基板100及びマスク200を模式的に示す斜視図である。本実施形態に係る印刷方法は、通常、図1に示すように、支持基板100を用意する工程を含む。
[2. Preparation of support board]
FIG. 1 is a perspective view schematically showing a support substrate 100 and a mask 200 used in the printing method according to the embodiment of the present invention. The printing method according to the present embodiment usually includes a step of preparing the support substrate 100 as shown in FIG.
 支持基板100は、複数のスルーホール110が形成された基板である。一態様において、支持基板100は、平板状でありうる。また、一態様において、支持基板100は、当該支持基板100の片面または両面に、導体層(図示せず。)を備えうる。さらに、一態様において、支持基板100は、コア層としての絶縁層(図示せず。)を備えていてもよく、この絶縁層上に導体層を備えていてもよい。絶縁層としては、例えば、ガラスエポキシ基板、金属基板、ポリエステル基板、ポリイミド基板、BTレジン基板、熱硬化型ポリフェニレンエーテル基板等が挙げられる。導体層は、回路が形成されていてもよく、回路が形成されていなくてもよい。支持基板100は、いわゆる片面基板であってもよく、2層基板(両面基板)であってもよく、または、回路が形成された導体層を内部に含む4層基板等の多層基板であってもよい。支持基板100の表面には、絶縁層があってもよいが、スルーホール110に樹脂組成物を充填する印刷方法においては、導体層があることが一般的である。支持基板100の表面の導体層は、回路形成されていてよいが、スルーホール110に樹脂組成物を充填する印刷方法においては、支持基板100の最表面の導体層は、回路形成されていないことが一般的である。回路を形成されていない導体層を最表面に有する支持基板100の表面は、平坦な平面でありうる。よって、支持基板100の表面は、回路を形成されていない導体層の平坦な表面でありうる。本実施形態では、絶縁層とこの絶縁層上に設けられた最外層として導体層とを備え、平坦なオモテ面100U及びウラ面100Dを有する支持基板100を用いた例を示して説明する。 The support substrate 100 is a substrate on which a plurality of through holes 110 are formed. In one aspect, the support substrate 100 can be flat. Further, in one embodiment, the support substrate 100 may be provided with a conductor layer (not shown) on one side or both sides of the support substrate 100. Further, in one aspect, the support substrate 100 may be provided with an insulating layer (not shown) as a core layer, or may be provided with a conductor layer on the insulating layer. Examples of the insulating layer include a glass epoxy substrate, a metal substrate, a polyester substrate, a polyimide substrate, a BT resin substrate, a thermosetting polyphenylene ether substrate, and the like. The conductor layer may or may not have a circuit formed. The support substrate 100 may be a so-called single-sided substrate, a two-layer substrate (double-sided substrate), or a multilayer substrate such as a four-layer substrate including a conductor layer in which a circuit is formed. May be good. An insulating layer may be provided on the surface of the support substrate 100, but in a printing method in which a through hole 110 is filled with a resin composition, a conductor layer is generally provided. The conductor layer on the surface of the support substrate 100 may be circuit-formed, but in the printing method of filling the through holes 110 with the resin composition, the conductor layer on the outermost surface of the support substrate 100 is not circuit-formed. Is common. The surface of the support substrate 100 having the conductor layer on which the circuit is not formed on the outermost surface can be a flat flat surface. Therefore, the surface of the support substrate 100 can be a flat surface of the conductor layer in which no circuit is formed. In the present embodiment, an example will be described in which a support substrate 100 having an insulating layer and a conductor layer as an outermost layer provided on the insulating layer, and having a flat front surface 100U and a back surface 100D is used.
 支持基板100の厚みT100は、特段の制限はない。 The thickness T 100 of the support substrate 100 is not particularly limited.
 スルーホール110は、支持基板100を貫通する孔である。よって、各スルーホール110は、支持基板100のオモテ面100Uに開口した入り口110INと、支持基板100のウラ面100Dに開口した出口(後述する出口110OUT;図3参照)とを有する。スルーホール110は、一般に、支持基板100をその厚み方向に貫通するように形成される。そのため、通常、スルーホール110の深さは、支持基板100の厚みに一致する。 The through hole 110 is a hole that penetrates the support substrate 100. Therefore, each through hole 110 has an inlet 110 IN opened on the front surface 100U of the support substrate 100 and an outlet (outlet 110 OUT described later; see FIG. 3) opened on the back surface 100D of the support substrate 100. The through hole 110 is generally formed so as to penetrate the support substrate 100 in the thickness direction thereof. Therefore, the depth of the through hole 110 usually corresponds to the thickness of the support substrate 100.
 スルーホール110の形状は、任意であるが、一般的には円筒形である。スルーホール110の直径W110は、特段の制限はない。しかし、一般に、直径W110の小さいスルーホール110には、樹脂組成物が進入し難く、従来のスクリーン印刷法ではスルーホール110の奥にまで樹脂組成物を充填できないことがありえた。よって、スルーホール110のアスペクト比が大きいほど、従来のスクリーン印刷法では樹脂組成物の充填性に劣る傾向があった。スルーホール110のアスペクト比とは、スルーホール110の深さと直径W110との比を表す。また、スルーホール110の深さは、通常は支持基板100の厚みT100に一致するので、前記のアスペクト比は、比T100/W110で表される。これに対し、本実施形態に係る印刷方法によれば、スルーホール110の奥にまで、樹脂組成物を容易に充填できる。よって、本実施形態に係る印刷方法の優れた充填性を活用する観点では、スルーホール110のアスペクト比T100/W110は、大きいことが好ましい。具体的には、スルーホール110のアスペクト比T100/W110は、好ましくは1.0以上、より好ましくは1.5以上、特に好ましくは2.0以上である。アスペクト比T100/W110の上限に制限はないが、スルーホール110の形成を容易に行う観点、及び、スルーホール110への樹脂組成物の充填を容易にする観点では、アスペクト比T100/W110は、50以下、20以下、10以下などでありうる。スルーホール110の形状、寸法及びアスペクト比は、同じでもよく、異なっていてもよい。 The shape of the through hole 110 is arbitrary, but is generally cylindrical. The diameter W 110 of the through hole 110 is not particularly limited. However, in general, it is difficult for the resin composition to enter the through hole 110 having a small diameter W 110 , and it is possible that the resin composition cannot be filled deep into the through hole 110 by the conventional screen printing method. Therefore, the larger the aspect ratio of the through holes 110, the poorer the filling property of the resin composition in the conventional screen printing method. The aspect ratio of the through hole 110 represents the ratio between the depth of the through hole 110 and the diameter W 110 . Further, since the depth of the through hole 110 usually corresponds to the thickness T 100 of the support substrate 100, the aspect ratio is represented by the ratio T 100 / W 110 . On the other hand, according to the printing method according to the present embodiment, the resin composition can be easily filled deep into the through hole 110. Therefore, from the viewpoint of utilizing the excellent filling property of the printing method according to the present embodiment, the aspect ratio T 100 / W 110 of the through hole 110 is preferably large. Specifically, the aspect ratio T 100 / W 110 of the through hole 110 is preferably 1.0 or more, more preferably 1.5 or more, and particularly preferably 2.0 or more. Although there is no limit to the upper limit of the aspect ratio T 100 / W 110, the viewpoint to easily perform formation of the through hole 110, and, in terms of facilitating the filling of the resin composition into the through-hole 110, the aspect ratio T 100 / W 110 can be 50 or less, 20 or less, 10 or less, and the like. The shape, dimensions, and aspect ratio of the through holes 110 may be the same or different.
 本実施形態に係る印刷方法は、通常、印刷に適した環境を用意できる適切な印刷装置(図示せず。)によって行われる。よって、用意された支持基板100は、前記の印刷装置に取り付けされうる。この際、支持基板100は、通常、オモテ面100Uが重力方向で上向きになり、ウラ面100Dが重力方向で下向きとなるように、取り付けされる。本実施形態では、オモテ面100U及びウラ面100Dが水平方向に平行で、且つ、オモテ面100Uが重力方向で上向き、ウラ面100Dが重力方向で下向きになるように、支持基板100が取り付けされた例を示して説明する。 The printing method according to this embodiment is usually performed by an appropriate printing device (not shown) that can prepare an environment suitable for printing. Therefore, the prepared support substrate 100 can be attached to the printing apparatus. At this time, the support substrate 100 is usually attached so that the front surface 100U faces upward in the gravity direction and the back surface 100D faces downward in the gravity direction. In the present embodiment, the support substrate 100 is attached so that the front surface 100U and the back surface 100D are parallel to each other in the horizontal direction, the front surface 100U faces upward in the gravity direction, and the back surface 100D faces downward in the gravity direction. An example will be described.
[3.設置工程]
 本実施形態に係る印刷方法では、支持基板100を用意した後、この支持基板100にマスク200を設置する設置工程を行う。具体的には、支持基板100のオモテ面100U上にマスク200を設置する。通常は、第一印刷工程及び第二印刷工程において樹脂組成物が進入可能な空隙が支持基板100とマスク200との間に形成されないように、マスク200は、支持基板100のオモテ面100Uに接するように設置される。
[3. Installation process]
In the printing method according to the present embodiment, after the support substrate 100 is prepared, an installation step of installing the mask 200 on the support substrate 100 is performed. Specifically, the mask 200 is installed on the front surface 100U of the support substrate 100. Normally, the mask 200 is in contact with the front surface 100U of the support substrate 100 so that a gap through which the resin composition can enter is not formed between the support substrate 100 and the mask 200 in the first printing step and the second printing step. It is installed as.
 マスク200は、樹脂組成物を通さない材料で形成された部材であり、通常は板状に形成される。マスク200の取扱性を良好にするため、マスク200としては、剛性に優れる材料で形成されたものが好ましい。中でも、耐久性に優れ、また、広い範囲の種類の樹脂組成物に適用できるので、金属材料で形成されたメタルマスクが好ましい。 The mask 200 is a member made of a material that does not allow the resin composition to pass through, and is usually formed in a plate shape. In order to improve the handleability of the mask 200, the mask 200 is preferably made of a material having excellent rigidity. Among them, a metal mask made of a metal material is preferable because it has excellent durability and can be applied to a wide variety of resin compositions.
 マスク200の厚みT200は、特段の制限はない。ただし、後述する第二印刷工程で第二スキージ500(図7参照)と支持基板100との接触を簡単に避ける観点では、マスク200の厚みT200は所定値以上に大きいことが好ましい。具体的には、マスク200の厚みT200は、好ましくは5μm以上、より好ましくは10μm以上、特に好ましくは20μm以上である。また、後述する第一印刷工程で第一スキージ400(図4参照)と支持基板100との接触を簡単に達成する観点では、マスク200の厚みT200は所定値以下と小さいことが好ましい。具体的には、マスク200の厚みT200は、好ましくは500μm以下、より好ましくは400μm以下、特に好ましくは300μm以下である。 The thickness T 200 of the mask 200 is not particularly limited. However, from the viewpoint of easily avoiding contact between the second squeegee 500 (see FIG. 7) and the support substrate 100 in the second printing step described later, the thickness T 200 of the mask 200 is preferably larger than a predetermined value. Specifically, the thickness T 200 of the mask 200 is preferably 5 μm or more, more preferably 10 μm or more, and particularly preferably 20 μm or more. Further, from the viewpoint of easily achieving contact between the first squeegee 400 (see FIG. 4) and the support substrate 100 in the first printing step described later, the thickness T 200 of the mask 200 is preferably as small as a predetermined value or less. Specifically, the thickness T 200 of the mask 200 is preferably 500 μm or less, more preferably 400 μm or less, and particularly preferably 300 μm or less.
 マスク200には、当該マスク200を厚み方向に貫通する中空状の孔としての開口部210が形成されている。中空状であるので、開口部210には、スクリーンマスクのメッシュ部のようなメッシュは、無い。よって、この開口部210は、任意の部材によって通過されることができるので、樹脂組成物が通過することができる。 The mask 200 is formed with an opening 210 as a hollow hole that penetrates the mask 200 in the thickness direction. Since it is hollow, the opening 210 does not have a mesh like the mesh portion of the screen mask. Therefore, since the opening 210 can be passed by any member, the resin composition can be passed through.
 図2は、本実施形態に係る印刷方法の設置工程において、マスク200を設置された支持基板100を模式的に示す斜視図である。図2に示すように、マスク200は、1つの開口部210が2つ以上のスルーホール110と連通するように、設置される。したがって、支持基板100の厚み方向から見ると、通常は、開口部210には、支持基板100のオモテ面100Uの一部のエリアと、このエリアに形成された2つ以上のスルーホール110とが現れる。このように設置を行う場合、マスク200の開口部210は十分に大きく形成できるので、精密な位置合わせをしなくても、開口部210とスルーホール110とを連通させることができる。よって、位置合わせを簡単にできるので、簡単な印刷を実現することが可能である。 FIG. 2 is a perspective view schematically showing the support substrate 100 on which the mask 200 is installed in the installation process of the printing method according to the present embodiment. As shown in FIG. 2, the mask 200 is installed so that one opening 210 communicates with two or more through holes 110. Therefore, when viewed from the thickness direction of the support substrate 100, normally, the opening 210 includes a part of the front surface 100U of the support substrate 100 and two or more through holes 110 formed in this area. appear. When the mask 200 is installed in this way, the opening 210 of the mask 200 can be formed to be sufficiently large, so that the opening 210 and the through hole 110 can be communicated with each other without precise alignment. Therefore, since the alignment can be easily performed, it is possible to realize simple printing.
 マスク200に形成される開口部210の平面形状(即ち、マスク200の厚み方向から見た形状)は、任意である。また、マスク200に形成される開口部210の数は、1つでもよく、2つ以上であってもよい。2以上の開口部210が形成されたマスク200では、それらの開口部210の少なくとも1つが2つ以上のスルーホール110と連通していてもよいが、それらの開口部210の全てが個別に2つ以上のスルーホール110と連通することが好ましい。本実施形態では、マスク200が矩形の平面形状を有する開口部210を1つ有し、その開口部210が、支持基板100に形成された全てのスルーホール110と連通できる程度に大きい例を示す。よって、本実施形態に示す例では、支持基板100に設置されたマスク200の1つの開口部210が、全てのスルーホール110に連通している。 The planar shape of the opening 210 formed in the mask 200 (that is, the shape seen from the thickness direction of the mask 200) is arbitrary. Further, the number of openings 210 formed in the mask 200 may be one or two or more. In the mask 200 in which the two or more openings 210 are formed, at least one of the openings 210 may communicate with the two or more through holes 110, but all of the openings 210 are individually 2. It is preferable to communicate with one or more through holes 110. In the present embodiment, the mask 200 has one opening 210 having a rectangular planar shape, and the opening 210 is large enough to communicate with all the through holes 110 formed in the support substrate 100. .. Therefore, in the example shown in this embodiment, one opening 210 of the mask 200 installed on the support substrate 100 communicates with all the through holes 110.
 通常は、支持基板100の厚み方向と、その支持基板100に設置されたマスク200の厚み方向とは、一致する。よって、以下の説明では、支持基板100の厚み方向と、その支持基板100に設置されたマスク200の厚み方向とを、共通の符号「Z」を付して示すことがある。 Normally, the thickness direction of the support substrate 100 and the thickness direction of the mask 200 installed on the support substrate 100 coincide with each other. Therefore, in the following description, the thickness direction of the support substrate 100 and the thickness direction of the mask 200 installed on the support substrate 100 may be indicated by a common reference numeral "Z".
[4.供給工程]
 図3は、本実施形態に係る印刷方法の供給工程における支持基板100及びマスク200の断面を模式的に示す断面図である。図3に示すように、本実施形態に係る印刷方法では、設置工程の後で、支持基板100に設置されたマスク200上に、樹脂組成物を供給する供給工程を行う。具体的には、マスク200の支持基板100とは反対側の面200Uに、樹脂組成物を供給する。これにより、マスク200の面200U上に、樹脂組成物の液溜り300が形成される。
[4. Supply process]
FIG. 3 is a cross-sectional view schematically showing a cross section of the support substrate 100 and the mask 200 in the supply process of the printing method according to the present embodiment. As shown in FIG. 3, in the printing method according to the present embodiment, after the installation step, a supply step of supplying the resin composition is performed on the mask 200 installed on the support substrate 100. Specifically, the resin composition is supplied to the surface 200U of the mask 200 opposite to the support substrate 100. As a result, a liquid pool 300 of the resin composition is formed on the surface 200U of the mask 200.
 樹脂組成物は、無機充填材及び熱硬化性樹脂を含む組成物である。この樹脂組成物は、第一印刷工程及び第二印刷工程においてペースト状でありうる組成物であり、通常、加熱処理を受けて硬化することができる。 The resin composition is a composition containing an inorganic filler and a thermosetting resin. This resin composition is a composition that can be in the form of a paste in the first printing step and the second printing step, and can usually be cured by undergoing heat treatment.
 樹脂組成物の供給方法は、任意である。例えば、樹脂組成物を収納したシリンジ(図示せず)から、樹脂組成物をマスク200上に吐出させることで、供給を行ってもよい。 The method of supplying the resin composition is arbitrary. For example, the resin composition may be supplied by discharging the resin composition onto the mask 200 from a syringe (not shown) containing the resin composition.
[5.第一印刷工程]
 図4は、本実施形態に係る印刷方法の第一印刷工程における支持基板100及びマスク200の断面を模式的に示す断面図である。図4に示すように、本実施形態に係る印刷方法では、供給工程の後で、第一スキージ400を、マスク200の面200U上で、当該面200Uに沿って相対的に移動させて、スルーホール110に樹脂組成物を充填する第一印刷工程を行う。
[5. First printing process]
FIG. 4 is a cross-sectional view schematically showing a cross section of the support substrate 100 and the mask 200 in the first printing step of the printing method according to the present embodiment. As shown in FIG. 4, in the printing method according to the present embodiment, after the supply step, the first squeegee 400 is relatively moved on the surface 200U of the mask 200 along the surface 200U and through. The first printing step of filling the holes 110 with the resin composition is performed.
 第一スキージ400は、通常、当該第一スキージ400の移動方向Xに対して交差する方向に延びる。よって、第一スキージ400は、通常、ある方向に連続する形状を有して設けられ、そのように第一スキージ400が連続する方向は、当該第一スキージ400の移動方向Xに対して交差している。本実施形態では、第一スキージ400の移動方向X及び厚み方向Zの両方に垂直な方向Y(図2参照)に延びる矩形板状のスキージを、第一スキージ400として用いた例を示して説明する。この第一スキージ400の長さは、通常、マスク200の開口部210の全体に届くように、第一スキージ400が延びる方向における開口部210の寸法よりも大きく形成される。 The first squeegee 400 normally extends in a direction intersecting the moving direction X of the first squeegee 400. Therefore, the first squeegee 400 is usually provided with a shape continuous in a certain direction, and the direction in which the first squeegee 400 is continuous intersects the moving direction X of the first squeegee 400. ing. In the present embodiment, an example in which a rectangular plate-shaped squeegee extending in a direction Y (see FIG. 2) perpendicular to both the moving direction X and the thickness direction Z of the first squeegee 400 is used as the first squeegee 400 will be described. To do. The length of the first squeegee 400 is usually formed to be larger than the dimension of the opening 210 in the direction in which the first squeegee 400 extends so as to reach the entire opening 210 of the mask 200.
 第一印刷工程では、第一スキージ400は、当該第一スキージ400と開口部210との間に樹脂組成物の液溜り300が位置するように、マスク200の端部近傍に配置される。このとき、スルーホール110に樹脂組成物を効果的に充填する観点から、第一スキージ400は、マスク200の面200Uとの間に所定のアタック角度θ400をなすように傾斜した状態で、面200Uに接触するように配置されうる。ここで、アタック角θ400とは、第一スキージ400が、移動方向Xの前方において、マスク200の面200Uとの間になす角度を表す。第一スキージ400の先端部は、支持基板100又はマスク200との間の摩擦により撓む場合があり得るが、この場合、アタック角θ400は、第一スキージ400の撓んだ先端部以外の部分とマスク200の面200Uとの間になす角度を表す。また、第一スキージ400は、所定の印圧でマスク200に押し当てた状態で、配置されうる。ここで、第一スキージ400の印圧とは、第一スキージ400がマスク200に押し当てられる圧力を表す。 In the first printing step, the first squeegee 400 is arranged near the end of the mask 200 so that the liquid pool 300 of the resin composition is located between the first squeegee 400 and the opening 210. At this time, from the viewpoint of effectively filling the through hole 110 with the resin composition, the first squeegee 400 is inclined so as to form a predetermined attack angle θ 400 with the surface 200U of the mask 200. It can be arranged to contact 200U. Here, the attack angle θ 400 represents an angle formed by the first squeegee 400 in front of the moving direction X with the surface 200U of the mask 200. The tip of the first squeegee 400 may bend due to friction between the support substrate 100 or the mask 200. In this case, the attack angle θ 400 is other than the bent tip of the first squeegee 400. Represents the angle formed between the portion and the surface 200U of the mask 200. Further, the first squeegee 400 can be arranged in a state of being pressed against the mask 200 with a predetermined printing pressure. Here, the printing pressure of the first squeegee 400 represents the pressure at which the first squeegee 400 is pressed against the mask 200.
 第一スキージ400は、前記のアタック角θ400及び印圧を維持した状態で、マスク200の面200U上を、当該面200Uに沿って移動方向Xに相対的に移動させられる。前記の相対的な移動を実現するために、第一スキージ400を移動させてもよく、支持基板100及びマスク200を移動させてもよく、これら全てを移動させてもよい。本実施形態では、第一スキージ400を移動させる例を示して説明する。 The first squeegee 400 is moved relatively on the surface 200U of the mask 200 in the moving direction X along the surface 200U while maintaining the attack angle θ 400 and the printing pressure. In order to realize the relative movement, the first squeegee 400 may be moved, the support substrate 100 and the mask 200 may be moved, or all of them may be moved. In this embodiment, an example of moving the first squeegee 400 will be described.
 第一スキージ400の移動は、第一スキージ400がマスク200の開口部210を横切るように行われる。移動する第一スキージ400によって押されるので、樹脂組成物の液溜り300も移動方向Xに移動する。そして、第一スキージ400が開口部210を横切るとき、開口部210を通して支持基板100のスルーホール110に樹脂組成物が充填され、この樹脂組成物の層310がスルーホール110内に形成される。 The movement of the first squeegee 400 is performed so that the first squeegee 400 crosses the opening 210 of the mask 200. Since it is pushed by the moving first squeegee 400, the liquid pool 300 of the resin composition also moves in the moving direction X. Then, when the first squeegee 400 crosses the opening 210, the through hole 110 of the support substrate 100 is filled with the resin composition through the opening 210, and the layer 310 of the resin composition is formed in the through hole 110.
 図5は、本実施形態に係る印刷方法の第一印刷工程で、第一スキージ400がマスク200の開口部210を横切っている時点での、支持基板100、マスク200及び第一スキージ400を、第一スキージ400の移動方向Xに垂直な面で切った断面を模式に示す断面図である。図5に示すように、第一印刷工程での第一スキージ400の移動は、第一スキージ400の一部がマスク200の開口部210の内部に押し込まれるように、行われる。第一スキージ400の一部がマスク200の開口部210の内部に押し込まれる場合、当該開口部210の内部に押し込まれた第一スキージ400の一部は、開口部210にめり込んだ状態となる。よって、十分な圧力でスルーホール110に樹脂組成物を充填することができるので、良好な充填性が達成できる。 FIG. 5 shows the support substrate 100, the mask 200, and the first squeegee 400 at the time when the first squeegee 400 crosses the opening 210 of the mask 200 in the first printing step of the printing method according to the present embodiment. It is sectional drawing which shows typically the cross section cut by the plane perpendicular to the moving direction X of the 1st squeegee 400. As shown in FIG. 5, the movement of the first squeegee 400 in the first printing step is performed so that a part of the first squeegee 400 is pushed into the opening 210 of the mask 200. When a part of the first squeegee 400 is pushed into the opening 210 of the mask 200, the part of the first squeegee 400 pushed into the opening 210 is in a state of being sunk into the opening 210. Therefore, the through hole 110 can be filled with the resin composition with sufficient pressure, so that good filling property can be achieved.
 さらに、第一印刷工程での第一スキージ400の移動は、マスク200の開口部210の内部に押し込まれた第一スキージ400の前記一部が、マスク200の開口部210に現れた支持基板100に接するように行うことが好ましい。第一スキージ400は、マスク200の開口部210に現れた支持基板100の少なくとも一部に接することが好ましく、1つ以上のスルーホール110の入り口110INの周囲で支持基板100に接することがより好ましい。中でも、開口部210の中央近傍では樹脂組成物をスルーホール110に押し込む圧力が低くなり易い傾向が従来あったことから、開口部210の中央近傍で第一スキージ400が支持基板100に接することが特に好ましい。本実施形態では、支持基板100のオモテ面100Uのうち、全てのスルーホール110の周囲のエリアに第一スキージ400が接するように、第一スキージ400が移動した例を示す。 Further, in the movement of the first squeegee 400 in the first printing step, the support substrate 100 in which the part of the first squeegee 400 pushed into the opening 210 of the mask 200 appears in the opening 210 of the mask 200. It is preferable to carry out in contact with. The first squeegee 400 preferably contacts at least a part of the support substrate 100 that appears in the opening 210 of the mask 200, and more preferably contacts the support substrate 100 around the inlet 110 IN of one or more through holes 110. preferable. Above all, since the pressure for pushing the resin composition into the through hole 110 tends to be low near the center of the opening 210, the first squeegee 400 may come into contact with the support substrate 100 near the center of the opening 210. Especially preferable. In this embodiment, an example is shown in which the first squeegee 400 is moved so that the first squeegee 400 is in contact with the area around all the through holes 110 in the front surface 100U of the support substrate 100.
 第一スキージ400が支持基板100に接するように移動するとき、第一スキージ400は、スルーホール110の入り口110INを塞ぐようにしながら、そのスルーホール110に樹脂組成物を押し込むことができる。よって、支持基板100のオモテ面100Uに沿ってスルーホール110の外に逃げる圧力を減らせるので、第一スキージ400から樹脂組成物に加えられる圧力を、スルーホール110の奥に向けて効果的に伝えることができる。したがって、スルーホール110の出口110OUTにまで樹脂組成物を充填することが容易となり、特に良好な充填性が達成できる。 When the first squeegee 400 moves so as to be in contact with the support substrate 100, the first squeegee 400 can push the resin composition into the through hole 110 while closing the entrance 110 IN of the through hole 110. Therefore, since the pressure escaping to the outside of the through hole 110 along the front surface 100U of the support substrate 100 can be reduced, the pressure applied to the resin composition from the first squeegee 400 is effectively directed toward the back of the through hole 110. I can tell. Therefore, it becomes easy to fill the resin composition up to the outlet 110 OUT of the through hole 110, and particularly good filling property can be achieved.
 本実施形態の印刷方法による優れた充填性について、スクリーン印刷法と対比して更に詳細に説明する。図11は、一例としてのスクリーン印刷法で支持基板100のスルーホール110に樹脂組成物を充填する様子を模式的に示す図である。図11では、開口部210を有するマスク200の代わりに、メッシュ920を設けられたメッシュ部910を有するスクリーンマスク900が支持基板100に設置されていること以外は、図5に示す第一印刷工程と同じ操作を行った場合の支持基板100、スクリーンマスク900及び第一スキージ400の断面を模式的に示す。 The excellent filling property of the printing method of the present embodiment will be described in more detail in comparison with the screen printing method. FIG. 11 is a diagram schematically showing how the through holes 110 of the support substrate 100 are filled with the resin composition by a screen printing method as an example. In FIG. 11, the first printing step shown in FIG. 5 is shown in FIG. 5, except that the screen mask 900 having the mesh portion 910 provided with the mesh 920 is installed on the support substrate 100 instead of the mask 200 having the opening 210. The cross sections of the support substrate 100, the screen mask 900, and the first squeegee 400 when the same operation as in the above are performed are schematically shown.
 図11に示すように、スクリーンマスク900を用いたスクリーン印刷法では、第一スキージ400は、メッシュ部910のメッシュ920が妨げとなり、支持基板100に接触できない。他方、樹脂組成物は、メッシュ920の線材の間を通り抜けられる。よって、支持基板100と第一スキージ400との間には、メッシュ920の厚みの分だけ、樹脂組成物が流通できる流路が形成されうる。そうすると、第一スキージ400によって押された樹脂組成物は、矢印A11で示すように、支持基板100のオモテ面100Uに沿ってメッシュ部910の外縁部に向けて流動できる。したがって、第一スキージ400から与えられる圧力が前記の樹脂組成物の流動の作用によって外縁部へと逃げるので、メッシュ部910の外縁部から遠い中央付近では、スルーホール110に樹脂組成物を押し込むための圧力が不足しやすい。その結果、樹脂組成物をスルーホール110の出口110OUTにまで充填できないことがあった。さらに、樹脂組成物を十分に充填できたスルーホール110でも、供給される樹脂組成物の量が不均一であるので、スルーホール110の出口110OUTから流出した樹脂組成物によって形成される層320の厚みが不均一となっていた。 As shown in FIG. 11, in the screen printing method using the screen mask 900, the first squeegee 400 cannot come into contact with the support substrate 100 because the mesh 920 of the mesh portion 910 interferes with it. On the other hand, the resin composition can pass between the wires of the mesh 920. Therefore, a flow path through which the resin composition can flow can be formed between the support substrate 100 and the first squeegee 400 by the thickness of the mesh 920. Then, the resin composition was pressed by the first squeegee 400, as shown by arrow A 11, can flow toward the outer edge of the mesh portion 910 along the front surface 100U of the supporting substrate 100. Therefore, since the pressure applied from the first squeegee 400 escapes to the outer edge portion by the action of the flow of the resin composition, the resin composition is pushed into the through hole 110 in the vicinity of the center far from the outer edge portion of the mesh portion 910. Pressure is likely to be insufficient. As a result, the resin composition may not be filled up to the outlet 110 OUT of the through hole 110. Further, even in the through hole 110 in which the resin composition is sufficiently filled, the amount of the supplied resin composition is non-uniform, so that the layer 320 formed by the resin composition flowing out from the outlet 110 OUT of the through hole 110 The thickness of the was uneven.
 これに対し、図5に示すように、マスク200の開口部210の内部に押し込まれた第第一スキージ400の一部が支持基板100に接する場合、支持基板100と第一スキージ400との間に形成されうる流路を小さくでき、好ましくは流路を形成させないことができる。よって、第一スキージ400から樹脂組成物に加えられる圧力を、スルーホール110の奥に向けて効果的に伝えることができるので、良好な充填性が達成できる。さらに、通常は、第一スキージ400が樹脂組成物をスルーホール110に押し込む圧力を、各スルーホール110で均一にできるので、スルーホール110の出口110OUTから流出した樹脂組成物によって形成される層320の厚みを均一にできる。 On the other hand, as shown in FIG. 5, when a part of the first squeegee 400 pushed into the opening 210 of the mask 200 comes into contact with the support substrate 100, it is between the support substrate 100 and the first squeegee 400. The flow path that can be formed can be made small, and preferably the flow path can not be formed. Therefore, the pressure applied to the resin composition from the first squeegee 400 can be effectively transmitted toward the back of the through hole 110, so that good filling property can be achieved. Further, usually, the pressure at which the first squeegee 400 pushes the resin composition into the through holes 110 can be made uniform in each through hole 110, so that the layer formed by the resin composition flowing out from the outlet 110 OUT of the through hole 110. The thickness of 320 can be made uniform.
 相対的に移動する第一スキージ400の一部がマスク200の開口部210の内部に押し込まれるようにすることは、様々な方法によって実現できる。 It can be realized by various methods that a part of the first squeegee 400 that moves relatively is pushed into the opening 210 of the mask 200.
 第一スキージ400の一部がマスク200の開口部210の内部に押し込まれるようにする方法としては、例えば、第一スキージ400として可撓性が大きいスキージを用いる方法が挙げられる。可撓性が大きいスキージは、適切な印圧を受けると変形できるので、マスク200の開口部210の内部に押し込まれることができ、好ましくは支持基板100に接することができる。この場合、通常は、第一スキージ400の材料として、可撓性が大きい材料を用いる。可撓性が大きい材料としては、第一スキージ400の支持基板100への接触を特に容易に実現できるので、弾性率が小さい弾性材料が好ましい。このような弾性材料としては、例えばゴムが挙げられ、よって第一スキージ400としてはゴムスキージが好ましい。 As a method of causing a part of the first squeegee 400 to be pushed into the opening 210 of the mask 200, for example, a method of using a squeegee having a large flexibility as the first squeegee 400 can be mentioned. Since the highly flexible squeegee can be deformed when subjected to an appropriate printing pressure, it can be pushed into the opening 210 of the mask 200, and preferably can be in contact with the support substrate 100. In this case, a material having high flexibility is usually used as the material of the first squeegee 400. As the material having high flexibility, an elastic material having a low elastic modulus is preferable because the contact of the first squeegee 400 with the support substrate 100 can be realized particularly easily. Examples of such an elastic material include rubber, and therefore rubber squeegee is preferable as the first squeegee 400.
 前記の弾性材料のゴム硬度は、第一スキージ400の一部をマスク200の開口部210の内部に押し込むことが可能な範囲で任意に設定できる。具体的な範囲の例を示すと、ゴム硬度は、好ましくは50度以上であり、好ましくは100度以下である。
 ゴム硬度は、第一印刷工程と同じ温度条件において、デュロメータ(タイプA)により測定できる。
The rubber hardness of the elastic material can be arbitrarily set within a range in which a part of the first squeegee 400 can be pushed into the opening 210 of the mask 200. As an example of a specific range, the rubber hardness is preferably 50 degrees or more, and preferably 100 degrees or less.
The rubber hardness can be measured by a durometer (type A) under the same temperature conditions as in the first printing process.
 第一スキージ400の一部がマスク200の開口部210の内部に押し込まれるようにする別の方法としては、例えば、第一スキージ400の印圧を大きくする方法が挙げられる。第一スキージ400の印圧が大きいと、第一スキージ400がマスク200の形状に沿って容易に変形できるので、マスク200の開口部210の内部に押し込まれることができ、好ましくは支持基板100に接することができる。 As another method of allowing a part of the first squeegee 400 to be pushed into the opening 210 of the mask 200, for example, a method of increasing the printing pressure of the first squeegee 400 can be mentioned. When the printing pressure of the first squeegee 400 is large, the first squeegee 400 can be easily deformed along the shape of the mask 200 and can be pushed into the opening 210 of the mask 200, preferably on the support substrate 100. Can be touched.
 第一スキージ400の一部がマスク200の開口部210の内部に押し込まれるようにする更に別の方法としては、例えば、第一スキージ400のアタック角度θ400を小さくする方法が挙げられる。第一スキージ400のアタック角度θ400が小さいと、第一スキージ400は当該第一スキージ400の厚み方向に大きな応力を受けて容易に変形し、マスク200の開口部210の内部に押し込まれることができ、好ましくは支持基板100に接することができる。 As yet another method of causing a part of the first squeegee 400 to be pushed into the opening 210 of the mask 200, for example, a method of reducing the attack angle θ 400 of the first squeegee 400 can be mentioned. When the attack angle θ 400 of the first squeegee 400 is small, the first squeegee 400 is easily deformed by receiving a large stress in the thickness direction of the first squeegee 400 and may be pushed into the opening 210 of the mask 200. It can be, preferably in contact with the support substrate 100.
 第一スキージ400のアタック角度θ400は、第一スキージ400の一部をマスク200の開口部210の内部に押し込むことが可能な範囲で任意に設定できる。具体的な範囲の例を示すと、アタック角度θ400は、好ましくは5°以上、より好ましくは7°以上、特に好ましくは10°以上であり、好ましくは90°以下、より好ましくは80°以下、特に好ましくは70°以下である。 The attack angle θ 400 of the first squeegee 400 can be arbitrarily set within a range in which a part of the first squeegee 400 can be pushed into the opening 210 of the mask 200. As an example of a specific range, the attack angle θ 400 is preferably 5 ° or more, more preferably 7 ° or more, particularly preferably 10 ° or more, preferably 90 ° or less, more preferably 80 ° or less. , Especially preferably 70 ° or less.
 第一スキージ400の一部がマスク200の開口部210の内部に押し込まれるようにする更に別の方法としては、例えば、第一スキージ400の支持基板100及びマスク200に対する相対的な移動速度を遅くする方法が挙げられる。前記の相対的な移動速度を、以下、適宜「印刷速度」ということがある。第一スキージ400の印刷速度が遅いと、樹脂組成物の抵抗を小さくできるので、第一スキージ400が樹脂組成物に妨げられずにマスク200の開口部210の内部に押し込まれることができ、好ましくは支持基板100に接することができる。 Yet another method of allowing a portion of the first squeegee 400 to be pushed into the opening 210 of the mask 200 is, for example, slowing the relative moving speed of the first squeegee 400 with respect to the support substrate 100 and the mask 200. There is a way to do it. The relative moving speed may be hereinafter appropriately referred to as “printing speed”. When the printing speed of the first squeegee 400 is slow, the resistance of the resin composition can be reduced, so that the first squeegee 400 can be pushed into the opening 210 of the mask 200 without being hindered by the resin composition, which is preferable. Can be in contact with the support substrate 100.
 第一スキージ400の印刷速度は、第一スキージ400の一部をマスク200の開口部210の内部に押し込むことが可能な範囲で任意に設定できる。具体的な範囲の例を示すと、第一スキージ400の印刷速度は、好ましくは1mm/sec以上、より好ましくは2mm/sec以上、特に好ましくは3mm/sec以上であり、好ましくは100mm/sec以下、より好ましくは80mm/sec以下、特に好ましくは60mm/sec以下である。 The printing speed of the first squeegee 400 can be arbitrarily set within a range in which a part of the first squeegee 400 can be pushed into the opening 210 of the mask 200. As an example of a specific range, the printing speed of the first squeegee 400 is preferably 1 mm / sec or more, more preferably 2 mm / sec or more, particularly preferably 3 mm / sec or more, and preferably 100 mm / sec or less. , More preferably 80 mm / sec or less, and particularly preferably 60 mm / sec or less.
 第一スキージ400の一部がマスク200の開口部210の内部に押し込まれるようにする方法として例示した前記の方法は、任意に組み合わせて実施してもよい。 The above-mentioned method exemplified as a method for causing a part of the first squeegee 400 to be pushed into the opening 210 of the mask 200 may be carried out in any combination.
 第一印刷工程は、1回のみ行ってもよく、同一又は異なる条件で2回以上行ってもよい。 The first printing step may be performed only once, or may be performed twice or more under the same or different conditions.
 図6は、本実施形態に係る印刷方法の第一印刷工程の直後における支持基板100及びマスク200の断面を模式的に示す断面図である。図6に示すように、第一印刷工程においてスルーホール110に樹脂組成物が充填されると、スルーホール110内に樹脂組成物の層310が形成される。通常は、充填された樹脂組成物の一部がスルーホール110の出口110OUTを通って流出するので、流出した樹脂組成物によって支持基板100のウラ面100Dにも樹脂組成物の層320が形成される。樹脂組成物の層320は、厚み方向Zにおいて、支持基板100のウラ面100Dよりも図中下側の位置(すなわち、マスク200から遠い位置)にある樹脂組成物によって形成されている。 FIG. 6 is a cross-sectional view schematically showing a cross section of the support substrate 100 and the mask 200 immediately after the first printing step of the printing method according to the present embodiment. As shown in FIG. 6, when the through hole 110 is filled with the resin composition in the first printing step, the layer 310 of the resin composition is formed in the through hole 110. Normally, a part of the filled resin composition flows out through the outlet 110 OUT of the through hole 110, so that the outflowing resin composition also forms the layer 320 of the resin composition on the back surface 100D of the support substrate 100. Will be done. The layer 320 of the resin composition is formed of the resin composition at a position lower in the drawing than the back surface 100D of the support substrate 100 (that is, a position far from the mask 200) in the thickness direction Z.
 本実施形態における第一印刷工程では、第一スキージ400が樹脂組成物をスルーホール110に押し込む圧力を、各スルーホール110で均一にできる。よって、スルーホール110の出口110OUTを通って流出する樹脂組成物の量を、各スルーホール110で均一にできる。したがって、通常は、支持基板100のウラ面100Dに形成される樹脂組成物の層320の厚みを、均一にできる。 In the first printing step of the present embodiment, the pressure at which the first squeegee 400 pushes the resin composition into the through holes 110 can be made uniform in each through hole 110. Therefore, the amount of the resin composition flowing out through the outlet 110 OUT of the through holes 110 can be made uniform in each through hole 110. Therefore, normally, the thickness of the layer 320 of the resin composition formed on the back surface 100D of the support substrate 100 can be made uniform.
 他方、スルーホール110の入り口110INでは、樹脂組成物の層310には窪み330が形成されうる。この窪み330は、例えば、第一スキージ400によって樹脂組成物がスルーホール110に過度に押し込まれたり、樹脂組成物の一部が第一スキージ400によって掻き取られたりすることで、形成されうる。そこで、本実施形態に係る印刷方法では、第一印刷工程の後に第二印刷工程を行う。 On the other hand, at the inlet 110 IN of the through hole 110, a recess 330 may be formed in the layer 310 of the resin composition. The recess 330 can be formed, for example, by excessively pushing the resin composition into the through hole 110 by the first squeegee 400, or by scraping a part of the resin composition by the first squeegee 400. Therefore, in the printing method according to the present embodiment, the second printing step is performed after the first printing step.
[6.第二印刷工程]
 図7は、本実施形態に係る印刷方法の第二印刷工程における支持基板100及びマスク200の断面を模式的に示す断面図である。図7に示すように、本実施形態に係る印刷方法では、第一印刷工程の後で、第二スキージ500を、マスク200の面200U上で、当該面200Uに沿って相対的に移動させて、スルーホール110に充填された樹脂組成物上に、樹脂組成物を塗布する第二印刷工程を行う。
[6. Second printing process]
FIG. 7 is a cross-sectional view schematically showing a cross section of the support substrate 100 and the mask 200 in the second printing step of the printing method according to the present embodiment. As shown in FIG. 7, in the printing method according to the present embodiment, after the first printing step, the second squeegee 500 is relatively moved along the surface 200U of the mask 200 on the surface 200U. , A second printing step of applying the resin composition onto the resin composition filled in the through holes 110 is performed.
 第二スキージ500としては、第一スキージ400と同一のスキージを用いてもよく、第一スキージ400とは異なるスキージを用いてもよい。また、第二スキージ500の移動方向は、第一スキージ400の移動方向と、同じでもよく、異なっていてもよい。本実施形態では、第一スキージ400と同じく、方向Y(図2参照)に延びて移動方向Xに移動可能に設けられた矩形板状のスキージを、第二スキージ500として用いた例を示して説明する。 As the second squeegee 500, the same squeegee as the first squeegee 400 may be used, or a squeegee different from the first squeegee 400 may be used. Further, the moving direction of the second squeegee 500 may be the same as or different from the moving direction of the first squeegee 400. In the present embodiment, similarly to the first squeegee 400, an example in which a rectangular plate-shaped squeegee extending in the direction Y (see FIG. 2) and movably provided in the moving direction X is used as the second squeegee 500 is shown. explain.
 第二印刷工程では、第二スキージ500は、当該第二スキージ500と開口部210との間に樹脂組成物の液溜り300が位置するように、マスク200の端部近傍に配置される。このとき、樹脂組成物の適切な塗布を達成する観点から、第二スキージ500は、マスク200の面200Uとの間に所定のアタック角度θ500をなすように傾斜した状態で、面200Uに接触するように配置されうる。ここで、アタック角θ500とは、第二スキージ500が、移動方向Xの前方において、マスク200の面200Uとの間になす角度を表す。第二スキージ500の先端部は、支持基板100、マスク200又は樹脂組成物との間の摩擦により撓む場合があり得るが、この場合、アタック角θ500は、第二スキージ500の撓んだ先端部以外の部分とマスク200の面200Uとの間になす角度を表す。また、第二スキージ500は、所定の印圧でマスク200に押し当てた状態で、配置されうる。ここで、第二スキージ500の印圧とは、第二スキージ500がマスク200に押し当てられる圧力を表す。 In the second printing step, the second squeegee 500 is arranged near the end of the mask 200 so that the liquid pool 300 of the resin composition is located between the second squeegee 500 and the opening 210. At this time, from the viewpoint of achieving proper coating of the resin composition, the second squeegee 500 comes into contact with the surface 200U in a state of being inclined so as to form a predetermined attack angle θ 500 with the surface 200U of the mask 200. Can be arranged to do so. Here, the attack angle θ 500 represents an angle formed by the second squeegee 500 in front of the moving direction X with the surface 200U of the mask 200. The tip of the second squeegee 500 may bend due to friction between the support substrate 100, the mask 200, or the resin composition. In this case, the attack angle θ 500 bends the second squeegee 500. It represents the angle formed between the portion other than the tip portion and the surface 200U of the mask 200. Further, the second squeegee 500 can be arranged in a state of being pressed against the mask 200 with a predetermined printing pressure. Here, the printing pressure of the second squeegee 500 represents the pressure at which the second squeegee 500 is pressed against the mask 200.
 第二スキージ500は、前記のアタック角θ500及び印圧を維持した状態で、マスク200の面200U上を、当該面200Uに沿って移動方向Xに相対的に移動させられる。前記の相対的な移動を実現するために、第二スキージ500を移動させてもよく、支持基板100及びマスク200を移動させてもよく、これら全てを移動させてもよい。本実施形態では、第二スキージ500を、第一スキージ400の移動方向と平行且つ逆向きに移動させる例を示して説明する。 The second squeegee 500 is moved relatively on the surface 200U of the mask 200 in the moving direction X along the surface 200U while maintaining the attack angle θ 500 and the printing pressure. In order to realize the relative movement, the second squeegee 500 may be moved, the support substrate 100 and the mask 200 may be moved, or all of them may be moved. In the present embodiment, an example of moving the second squeegee 500 in the direction parallel to and opposite to the moving direction of the first squeegee 400 will be described.
 第二スキージ500の移動は、第二スキージ500がマスク200の開口部210を横切るように行われる。移動する第二スキージ500によって押されるので、樹脂組成物の液溜り300も移動方向Xに移動する。そして、第二スキージ500が開口部210を横切るとき、開口部210を通して、支持基板100のスルーホール110内の樹脂組成物上に、更に樹脂組成物が塗布される。これにより、スルーホール110内の樹脂組成物の層310上に、更に樹脂組成物の層340が形成される。よって、窪み330を埋めることができるので、窪み330を小さくでき、好ましくは窪みを消失させることができる。 The movement of the second squeegee 500 is performed so that the second squeegee 500 crosses the opening 210 of the mask 200. Since it is pushed by the moving second squeegee 500, the liquid pool 300 of the resin composition also moves in the moving direction X. Then, when the second squeegee 500 crosses the opening 210, the resin composition is further applied onto the resin composition in the through hole 110 of the support substrate 100 through the opening 210. As a result, the resin composition layer 340 is further formed on the resin composition layer 310 in the through hole 110. Therefore, since the dent 330 can be filled, the dent 330 can be made smaller, and preferably the dent can be eliminated.
 第二印刷工程における樹脂組成物の塗布は、樹脂組成物の層340の表面340Uが、厚み方向Zにおいて、支持基板100のオモテ面100Uと同じかそれよりも図中上側の位置(すなわち、支持基板100から遠い位置)にくるように行うことが好ましい。さらには、第二印刷工程における樹脂組成物の塗布は、樹脂組成物の層340の表面340Uが、厚み方向Zにおいて、支持基板100のオモテ面100Uよりも図中上側の位置にくるように行うことが好ましい。この場合、第二印刷工程で塗布された樹脂組成物の一部又は全部を、スルーホール110のマスク200側の位置350に残留させることができる。よって、スルーホール110の入り口110IN上に樹脂組成物を堆積させることができるので、窪み330を効果的に埋めることができ、よって窪みを消失させることができる。 In the application of the resin composition in the second printing step, the surface 340U of the layer 340 of the resin composition is at the same position as or higher than the front surface 100U of the support substrate 100 in the thickness direction Z (that is, the support). It is preferable to perform the operation so as to come to a position far from the substrate 100). Further, the application of the resin composition in the second printing step is performed so that the surface 340U of the layer 340 of the resin composition is located at an upper position in the drawing with respect to the front surface 100U of the support substrate 100 in the thickness direction Z. Is preferable. In this case, a part or all of the resin composition applied in the second printing step can be left at the position 350 on the mask 200 side of the through hole 110. Therefore, since the resin composition can be deposited on the entrance 110 IN of the through hole 110, the dent 330 can be effectively filled, and thus the dent can be eliminated.
 第二印刷工程での第二スキージ500の移動は、マスク200の開口部210に現れた支持基板100と第二スキージ500とが離れた状態を維持することにより、支持基板100と第二スキージ500とが接さないように行うことが好ましい。この場合、第二スキージ500と支持基板100との間には、樹脂組成物が進入できる間隙が空く。よって、第二スキージ500によって樹脂組成物がスルーホール110に過度に押し込まれたり、樹脂組成物の一部が第二スキージ500によって掻き取られたりすることを抑制できる。したがって、より効果的に窪み330を消失させることができる。また、この場合、前記の間隙には樹脂組成物が進入できるので、通常は、スルーホール110が形成されたエリアだけでなく、スルーホール110以外のエリアでも、支持基板100上に樹脂組成物の層340が形成される。 The movement of the second squeegee 500 in the second printing step is performed by maintaining the state in which the support substrate 100 and the second squeegee 500 appearing in the opening 210 of the mask 200 are separated from each other so that the support substrate 100 and the second squeegee 500 are separated from each other. It is preferable to carry out so as not to come into contact with. In this case, there is a gap between the second squeegee 500 and the support substrate 100 so that the resin composition can enter. Therefore, it is possible to prevent the resin composition from being excessively pushed into the through hole 110 by the second squeegee 500, or to prevent a part of the resin composition from being scraped off by the second squeegee 500. Therefore, the depression 330 can be eliminated more effectively. Further, in this case, since the resin composition can enter the gap, the resin composition is usually placed on the support substrate 100 not only in the area where the through hole 110 is formed but also in the area other than the through hole 110. Layer 340 is formed.
 移動する第二スキージ500がマスク200の開口部210に現れた支持基板100に接さないようにすることは、様々な方法によって実現できる。 It can be realized by various methods that the moving second squeegee 500 does not come into contact with the support substrate 100 appearing in the opening 210 of the mask 200.
 第二スキージ500が支持基板100に接さないようにする方法としては、例えば、第二スキージ500として可撓性が小さいスキージを用いる方法が挙げられる。可撓性が小さいスキージは、圧力を受けても変形しにくいので、マスク200の開口部210に進入しにくく、よって支持基板100から離れた状態を維持できる。具体的には、第二スキージ500として、第一スキージ400の弾性率よりも大きい弾性率を有するものを用いることが好ましい。この場合、通常は、第二スキージ500の材料として、弾性率が大きい材料を用いる。弾性率が大きい材料としては、第一スキージ400の材料の弾性材料よりも大きい弾性率を有する剛性材料が好ましく、例えば、金属材料などが挙げられる。よって、第二スキージ500としては、メタルスキージが好ましい。 As a method of preventing the second squeegee 500 from coming into contact with the support substrate 100, for example, a method of using a squeegee having low flexibility as the second squeegee 500 can be mentioned. Since the squeegee having low flexibility is not easily deformed even when subjected to pressure, it is difficult to enter the opening 210 of the mask 200, and thus the state of being separated from the support substrate 100 can be maintained. Specifically, it is preferable to use a second squeegee 500 having an elastic modulus larger than that of the first squeegee 400. In this case, usually, a material having a large elastic modulus is used as the material of the second squeegee 500. As the material having a large elastic modulus, a rigid material having a higher elastic modulus than the elastic material of the material of the first squeegee 400 is preferable, and examples thereof include a metal material. Therefore, as the second squeegee 500, a metal squeegee is preferable.
 第二スキージ500が支持基板100に接さないようにする別の方法としては、例えば、第二スキージ500の印圧を小さくする方法が挙げられる。第二スキージ500の印圧が小さいと、第二スキージ500の変形を小さくできるので、マスク200の開口部210への進入を抑制して、支持基板100に接さないようにできる。よって、第二スキージ500を支持基板100から離し易くする観点では、第二スキージ500の印圧は、第一スキージ400の印圧よりも、小さいことが好ましい。 As another method of preventing the second squeegee 500 from coming into contact with the support substrate 100, for example, a method of reducing the printing pressure of the second squeegee 500 can be mentioned. When the printing pressure of the second squeegee 500 is small, the deformation of the second squeegee 500 can be reduced, so that the mask 200 can be suppressed from entering the opening 210 so as not to come into contact with the support substrate 100. Therefore, from the viewpoint of facilitating the separation of the second squeegee 500 from the support substrate 100, the printing pressure of the second squeegee 500 is preferably smaller than the printing pressure of the first squeegee 400.
 第二スキージ500が支持基板100に接さないようにする更に別の方法としては、例えば、第二スキージ500のアタック角度θ500を大きくする方法が挙げられる。第二スキージ500のアタック角度θ500が大きいと、第二スキージ500は当該第二スキージ500の厚み方向に小さな応力しか受けないので、変形を小さくできる。よって、第二スキージ500がマスク200の開口部210へ進入することを抑制して、支持基板100に接さないようにできる。 As yet another method of preventing the second squeegee 500 from coming into contact with the support substrate 100, for example, a method of increasing the attack angle θ 500 of the second squeegee 500 can be mentioned. When the attack angle θ 500 of the second squeegee 500 is large, the second squeegee 500 receives only a small stress in the thickness direction of the second squeegee 500, so that the deformation can be reduced. Therefore, it is possible to prevent the second squeegee 500 from entering the opening 210 of the mask 200 so that it does not come into contact with the support substrate 100.
 第二スキージ500のアタック角度θ500は、第二スキージ500が支持基板100に接さない範囲で任意に設定できる。具体的な範囲の例を示すと、アタック角度θ500は、好ましくは5°以上、より好ましくは7°以上、特に好ましくは10°以上であり、好ましくは90°以下、より好ましくは80°以下、特に好ましくは70°以下である。 The attack angle θ 500 of the second squeegee 500 can be arbitrarily set within a range in which the second squeegee 500 does not come into contact with the support substrate 100. As an example of a specific range, the attack angle θ 500 is preferably 5 ° or more, more preferably 7 ° or more, particularly preferably 10 ° or more, preferably 90 ° or less, more preferably 80 ° or less. , Especially preferably 70 ° or less.
 また、第二スキージ500を支持基板100から離し易くする観点では、第二スキージ500のアタック角度θ500は、第一スキージ400のアタック角度θ400よりも、大きくてもよい。 Further, from the viewpoint of facilitating the separation of the second squeegee 500 from the support substrate 100, the attack angle θ 500 of the second squeegee 500 may be larger than the attack angle θ 400 of the first squeegee 400.
 第二スキージ500が支持基板100に接さないようにする更に別の方法としては、例えば、第二スキージ500の支持基板100及びマスク200に対する相対的な移動速度としての印刷速度を速くする方法が挙げられる。第二スキージ500の印刷速度が速いと、樹脂組成物の抵抗を大きくできるので、第二スキージ500が樹脂組成物に妨げられて支持基板100に接さないようにできる。 As yet another method for preventing the second squeegee 500 from contacting the support substrate 100, for example, a method of increasing the printing speed as a relative moving speed of the second squeegee 500 with respect to the support substrate 100 and the mask 200 is used. Can be mentioned. When the printing speed of the second squeegee 500 is high, the resistance of the resin composition can be increased, so that the second squeegee 500 is prevented from coming into contact with the support substrate 100 by being hindered by the resin composition.
 第二スキージ500の印刷速度は、第二スキージ500が支持基板100に接さない範囲で任意に設定できる。具体的な範囲の例を示すと、第二スキージ500の印刷速度は、好ましくは3mm/sec以上、より好ましくは5mm/sec以上、特に好ましくは15mm/sec以上である。上限は、特段の制限は無く、例えば100mm/sec以下でありうる。 The printing speed of the second squeegee 500 can be arbitrarily set as long as the second squeegee 500 does not come into contact with the support substrate 100. As an example of a specific range, the printing speed of the second squeegee 500 is preferably 3 mm / sec or more, more preferably 5 mm / sec or more, and particularly preferably 15 mm / sec or more. The upper limit is not particularly limited and may be, for example, 100 mm / sec or less.
 また、第二スキージ500を支持基板100から離し易くする観点では、第二印刷工程における第二スキージ500の印刷速度は、第一印刷工程における第一スキージ400の印刷速度よりも、速いことが好ましい。この場合、第一スキージ400の印刷速度と第二スキージ500の印刷速度との差は、好ましくは0mm/sec以上、より好ましくは10mm/sec以上、特に好ましくは20mm/sec以上である。上限は、特段の制限は無く、例えば100mm/sec以下でありうる。 Further, from the viewpoint of facilitating the separation of the second squeegee 500 from the support substrate 100, the printing speed of the second squeegee 500 in the second printing step is preferably faster than the printing speed of the first squeegee 400 in the first printing step. .. In this case, the difference between the printing speed of the first squeegee 400 and the printing speed of the second squeegee 500 is preferably 0 mm / sec or more, more preferably 10 mm / sec or more, and particularly preferably 20 mm / sec or more. The upper limit is not particularly limited and may be, for example, 100 mm / sec or less.
 第二スキージ500が支持基板100に接さないようにする方法として例示した前記の方法は、任意に組み合わせて実施してもよい。 The above-mentioned method exemplified as a method for preventing the second squeegee 500 from coming into contact with the support substrate 100 may be carried out in any combination.
 第二印刷工程は、1回のみ行ってもよく、同一又は異なる条件で2回以上行ってもよい。 The second printing step may be performed only once, or may be performed twice or more under the same or different conditions.
 図8は、本実施形態に係る印刷方法の第二印刷工程の直後における支持基板100及びマスク200の断面を模式的に示す断面図である。図8に示すように、第二印刷工程において樹脂組成物の塗布が行われると、スルーホール110に形成されていた樹脂組成物の層310上に更に樹脂組成物の層340が形成されるので、窪み330が埋められる。よって、窪み330を抑制できる。 FIG. 8 is a cross-sectional view schematically showing a cross section of the support substrate 100 and the mask 200 immediately after the second printing step of the printing method according to the present embodiment. As shown in FIG. 8, when the resin composition is applied in the second printing step, the resin composition layer 340 is further formed on the resin composition layer 310 formed in the through holes 110. , The depression 330 is filled. Therefore, the depression 330 can be suppressed.
 好ましい態様では、マスク200の開口部210に現れた支持基板100のエリア全体に樹脂組成物が塗布されるので、スルーホール110のマスク200側の位置350を含む支持基板100のオモテ面100Uの広い範囲に樹脂組成物の層340が形成される。支持基板100のオモテ面100Uに形成される樹脂組成物の層340の厚みT340は、好ましくは10μm以上、より好ましくは20μm以上、特に好ましくは30μm以上であり、好ましくは500μm以下、より好ましくは400μm以下、特に好ましくは300μm以下である。樹脂組成物の層340の厚みT340が前記範囲にある場合に、窪み330を特に高い確実性で消失させることができる。ここで、樹脂組成物の層340の厚みT340とは、支持基板100のオモテ面100Uから、樹脂組成物の層340の表面(支持基板100から遠い方の表面)340Uまでの距離を言う。また、樹脂組成物の層340の厚みT340が均一でない場合、少なくともスルーホール110のマスク200側の位置350における厚みT340が前記の範囲に収まることが好ましい。 In a preferred embodiment, since the resin composition is applied to the entire area of the support substrate 100 appearing in the opening 210 of the mask 200, the front surface 100U of the support substrate 100 including the position 350 on the mask 200 side of the through hole 110 is wide. A layer 340 of the resin composition is formed in the range. The thickness T 340 of the layer 340 of the resin composition formed on the front surface 100U of the support substrate 100 is preferably 10 μm or more, more preferably 20 μm or more, particularly preferably 30 μm or more, preferably 500 μm or less, more preferably. It is 400 μm or less, particularly preferably 300 μm or less. When the thickness T 340 of the layer 340 of the resin composition is in the above range, the depression 330 can be eliminated with particularly high certainty. Here, the thickness T 340 of the layer 340 of the resin composition means the distance from the front surface 100U of the support substrate 100 to the surface of the layer 340 of the resin composition (the surface farther from the support substrate 100) 340U. Further, if the thickness T 340 of the layer 340 of the resin composition is not uniform, it is preferable that the thickness T 340 at the position 350 of the mask 200 side of at least the through-hole 110 is within the range of the.
 本実施形態に係る印刷方法によれば、支持基板100と、この支持基板100のスルーホール110を充填する樹脂組成物の層360とを有する基板として、充填基板600が得られる。スルーホール110を充填する樹脂組成物の層360は、通常、第一印刷工程において形成された樹脂組成物の層310と、第二印刷工程において形成された樹脂組成物の層340の一部又は全部と、を含む。また、この充填基板600においては、スルーホール110内だけでなく、支持基板100のオモテ面100U及びウラ面100Dの一方及び両方にも、樹脂組成物の層320及び340が形成されていてもよい。この充填基板600では、樹脂組成物の層360はスルーホール110の出口110OUTにまで形成されており、良好な充填性が達成される。また、この充填基板600では、スルーホール110の入り口110INにおける樹脂組成物の層360の窪み(図7の窪み330を参照)を小さくでき、好ましくは窪みを無くすことができる。さらに、このような充填基板600が得られる前記の印刷方法は、マスク200を支持基板100に設置する際の位置合わせの精度を低くできるので、精密な位置合わせのための手間を省略でき、よって操作を簡単にできる。したがって、上述した印刷方法によれば、支持基板100の複数のスルーホール110へ樹脂組成物を容易且つ良好な充填性で充填でき、更にはスルーホール110に充填された樹脂組成物の層360の窪みを抑制できる。 According to the printing method according to the present embodiment, the filled substrate 600 is obtained as a substrate having the support substrate 100 and the layer 360 of the resin composition that fills the through holes 110 of the support substrate 100. The layer 360 of the resin composition filling the through hole 110 is usually a part of the layer 310 of the resin composition formed in the first printing step and the layer 340 of the resin composition formed in the second printing step, or Including all. Further, in the filled substrate 600, the layers 320 and 340 of the resin composition may be formed not only in the through hole 110 but also on one or both of the front surface 100U and the back surface 100D of the support substrate 100. .. In the filling substrate 600, the layer 360 of the resin composition is formed up to the outlet 110 OUT of the through hole 110, and good filling property is achieved. Further, in the filling substrate 600, the recess of the resin composition layer 360 at the inlet 110 IN of the through hole 110 (see the recess 330 in FIG. 7) can be reduced, and the recess can be preferably eliminated. Further, in the printing method for obtaining such a filled substrate 600, the accuracy of alignment when the mask 200 is installed on the support substrate 100 can be lowered, so that the labor for precise alignment can be omitted. Easy to operate. Therefore, according to the printing method described above, the resin composition can be easily and easily filled in the plurality of through holes 110 of the support substrate 100 with good filling property, and further, the layer 360 of the resin composition filled in the through holes 110 can be filled. The dent can be suppressed.
[7.印刷方法に含まれていてもよい任意の工程]
 本発明の一実施形態に係る印刷方法は、上述した工程に組み合わせて、更に任意の工程を含んでいてもよい。
 例えば、印刷方法は、第一印刷工程の最中、第一印刷工程と第二印刷工程との間、及び、第二印刷工程の最中のうちの1以上の時期に、マスク200上に樹脂組成物を供給する工程を含んでいてもよい。
[7. Any step that may be included in the printing method]
The printing method according to the embodiment of the present invention may further include an arbitrary step in combination with the above-mentioned steps.
For example, the printing method is a resin on the mask 200 during the first printing process, between the first printing process and the second printing process, and at one or more times during the second printing process. It may include a step of supplying the composition.
 また、例えば、印刷方法は、マスク200に、当該マスク200の周囲を囲む枠材、マスク200の開口部210を囲む枠材等の枠材(図示せず)を設置する工程を含んでいてもよい。このような枠材を設けることにより、供給工程、第一印刷工程及び第二印刷工程において、マスク200の外に樹脂組成物が流出することを抑制できる。 Further, for example, the printing method may include a step of installing a frame material (not shown) such as a frame material surrounding the mask 200 and a frame material surrounding the opening 210 of the mask 200 on the mask 200. Good. By providing such a frame material, it is possible to prevent the resin composition from flowing out of the mask 200 in the supply step, the first printing step, and the second printing step.
 また、例えば、印刷方法は、第一印刷工程及び第二印刷工程における温度、気圧等の印刷環境を調整する工程を含んでいてもよい。具体例を挙げると、第一印刷工程及び第二印刷工程が行われる印刷環境を真空環境にする工程を含んでいてもよい。このような印刷環境の調整は、例えば、適切な印刷装置を用いて実施できる。 Further, for example, the printing method may include a step of adjusting the printing environment such as temperature and atmospheric pressure in the first printing step and the second printing step. To give a specific example, a step of setting the printing environment in which the first printing step and the second printing step are performed to a vacuum environment may be included. Such adjustment of the printing environment can be performed using, for example, an appropriate printing apparatus.
 また、例えば、印刷方法は、支持基板100からマスク200を取り外す工程を含んでいてもよい。 Further, for example, the printing method may include a step of removing the mask 200 from the support substrate 100.
[8.穴埋め基板の製造方法]
 上述した印刷方法によれば、スルーホールが形成された支持基板と、スルーホールを充填する樹脂組成物の層と、を有する充填基板が得られる。よって、上述した印刷方法を用いれば、スルーホールを形成された支持基板と、スルーホール内に樹脂組成物の硬化物で形成された充填層と、を備える穴埋め基板の製造方法を提供できる。以下、一実施形態に係る穴埋め基板の製造方法を説明する。
[8. How to manufacture a hole-filling board]
According to the printing method described above, a filled substrate having a support substrate on which through holes are formed and a layer of a resin composition that fills the through holes can be obtained. Therefore, by using the above-mentioned printing method, it is possible to provide a method for manufacturing a hole-filling substrate including a support substrate having through holes formed therein and a packed layer formed of a cured product of a resin composition in the through holes. Hereinafter, a method for manufacturing a hole-filling substrate according to an embodiment will be described.
 本実施形態に係る穴埋め基板の製造方法は、
 複数のスルーホールが形成された支持基板に、上述した印刷方法によって樹脂組成物を印刷する工程と;
 樹脂組成物を硬化させる工程と;を含む。
The method for manufacturing the hole-filling substrate according to the present embodiment is as follows.
A step of printing a resin composition on a support substrate having a plurality of through holes formed by the above-mentioned printing method;
Includes a step of curing the resin composition and;
 支持基板に樹脂組成物を印刷する工程は、上述した印刷方法により実施できる。この印刷により、図8に示すように、支持基板100と、この支持基板100のスルーホール110を充填する樹脂組成物の層360とを有する充填基板600が得られる。 The step of printing the resin composition on the support substrate can be carried out by the above-mentioned printing method. By this printing, as shown in FIG. 8, a filled substrate 600 having a support substrate 100 and a layer 360 of a resin composition that fills the through holes 110 of the support substrate 100 is obtained.
 穴埋め基板の製造方法は、上述した印刷によって充填基板600を得た後で、必要に応じて、マスク200を取り除く工程を行ってもよい。 As a method for manufacturing a hole-filling substrate, a step of removing the mask 200 may be performed, if necessary, after obtaining the filling substrate 600 by the above-mentioned printing.
 図9は、本実施形態に係る穴埋め基板700の製造方法において、樹脂組成物を硬化させた直後に得られる穴埋め基板700を模式的に示す断面図である。図9に示すように、本実施形態に係る穴埋め基板700の製造方法では、支持基板100に樹脂組成物を印刷し、更に必要に応じてマスク200を取り除いた後で、樹脂組成物を硬化させる工程を行う。樹脂組成物を硬化させることにより、支持基板100と、この支持基板100のスルーホール110内に樹脂組成物の硬化物で形成された充填層710と、を備える穴埋め基板700が得られる。 FIG. 9 is a cross-sectional view schematically showing the hole-filling substrate 700 obtained immediately after the resin composition is cured in the method for manufacturing the hole-filling substrate 700 according to the present embodiment. As shown in FIG. 9, in the method for manufacturing the hole-filling substrate 700 according to the present embodiment, the resin composition is printed on the support substrate 100, and if necessary, the mask 200 is removed, and then the resin composition is cured. Perform the process. By curing the resin composition, a hole-filling substrate 700 including the support substrate 100 and the filling layer 710 formed of the cured product of the resin composition in the through holes 110 of the support substrate 100 can be obtained.
 樹脂組成物を硬化させる工程では、通常、樹脂組成物を熱処理を行う。樹脂組成物が熱硬化性樹脂を含むので、熱処理により、樹脂組成物を硬化させて、その硬化物を得ることができる。熱硬化条件は、樹脂組成物の組成及び種類によっても異なるが、硬化温度は好ましくは60℃以上、より好ましくは80℃以上、さらに好ましくは100℃以上であり、好ましくは240℃以下、より好ましくは220℃以下、さらに好ましくは200℃以下である。硬化時間は、好ましくは5分以上、より好ましくは10分以上、さらに好ましくは15分以上であり、好ましくは120分以下、より好ましくは100分以下、さらに好ましくは90分以下である。 In the step of curing the resin composition, the resin composition is usually heat-treated. Since the resin composition contains a thermosetting resin, the resin composition can be cured by heat treatment to obtain a cured product thereof. The thermosetting conditions vary depending on the composition and type of the resin composition, but the curing temperature is preferably 60 ° C. or higher, more preferably 80 ° C. or higher, further preferably 100 ° C. or higher, preferably 240 ° C. or lower, more preferably. Is 220 ° C. or lower, more preferably 200 ° C. or lower. The curing time is preferably 5 minutes or more, more preferably 10 minutes or more, still more preferably 15 minutes or more, preferably 120 minutes or less, more preferably 100 minutes or less, still more preferably 90 minutes or less.
 ただし、図8に示したように、上述した印刷方法で支持基板100に樹脂組成物を印刷して得られる充填基板600では、支持基板100のオモテ面100U及びウラ面100Dにも、樹脂組成物の層320及び340が形成されうる。よって、樹脂組成物を硬化させて得られる穴埋め基板700は、スルーホール110の外部に形成された余剰の充填層として、樹脂組成物の硬化物で形成された硬化物層720及び730を支持基板100のオモテ面100U及びウラ面100Dに備えうる。これらの硬化物層720及び730は、除去することが望ましい。そこで、穴埋め基板700の製造方法は、支持基板100のオモテ面100U及びウラ面100Dに形成された硬化物層720及び730を研磨により除去する工程を含んでいてもよい。研磨方法は任意であり、例えば、バフ研磨、ベルト研磨等が挙げられる。また、研磨の際には、硬化物層720及び730だけでなく、スルーホール110内の充填層710及び支持基板100の一部も研磨してもよい。 However, as shown in FIG. 8, in the filling substrate 600 obtained by printing the resin composition on the support substrate 100 by the above-mentioned printing method, the resin composition is also formed on the front surface 100U and the back surface 100D of the support substrate 100. Layers 320 and 340 can be formed. Therefore, the hole-filling substrate 700 obtained by curing the resin composition supports the cured product layers 720 and 730 formed of the cured product of the resin composition as a surplus filling layer formed outside the through holes 110. It can be prepared for 100 front surface 100U and back surface 100D. It is desirable to remove these cured product layers 720 and 730. Therefore, the method for manufacturing the hole-filling substrate 700 may include a step of removing the cured product layers 720 and 730 formed on the front surface 100U and the back surface 100D of the support substrate 100 by polishing. The polishing method is arbitrary, and examples thereof include buffing and belt polishing. Further, at the time of polishing, not only the cured product layers 720 and 730 but also a part of the filling layer 710 and the support substrate 100 in the through hole 110 may be polished.
 図10は、本実施形態に係る穴埋め基板700の製造方法において、余剰の硬化物層720及び730(図9参照)を研磨により除去した後の穴埋め基板700を模式的に示す断面図である。図10に示すように、研磨によれば、穴埋め基板700のオモテ面700Uにおいて充填層710の表面710Uと支持基板100のオモテ面100Uとを面一(ツライチ)にしたり、穴埋め基板700のウラ面700Dにおいて充填層710の表面710Dと支持基板100のウラ面100Dとを面一にしたりすることが可能である。ここで、面が「面一」であるとは、当該面が同一平面にあることをいう。 FIG. 10 is a cross-sectional view schematically showing the hole-filling substrate 700 after removing the surplus cured product layers 720 and 730 (see FIG. 9) by polishing in the method for manufacturing the hole-filling substrate 700 according to the present embodiment. As shown in FIG. 10, according to polishing, the surface 710U of the filling layer 710 and the front surface 100U of the support substrate 100 are flush with each other on the front surface 700U of the hole filling substrate 700, or the back surface of the hole filling substrate 700 is made flush with each other. At 700D, the surface 710D of the packing layer 710 and the back surface 100D of the support substrate 100 can be flush with each other. Here, the term "plane" means that the faces are in the same plane.
 また、本実施形態に係る穴埋め基板700の製造方法は、上述した工程に組み合わせて、更に任意の工程を含んでいてもよい。例えば、穴埋め基板700の製造方法は、樹脂組成物を硬化させる前に、樹脂組成物に対して、硬化温度よりも低い温度で加熱する予備加熱工程を行ってもよい。予備加熱工程の時間は、好ましくは5分以上、より好ましくは15分以上であり、好ましくは150分以下、より好ましくは120分以下である。 Further, the method for manufacturing the hole-filling substrate 700 according to the present embodiment may further include an arbitrary step in combination with the above-mentioned steps. For example, in the method for manufacturing the hole-filling substrate 700, a preheating step of heating the resin composition at a temperature lower than the curing temperature may be performed before the resin composition is cured. The time of the preheating step is preferably 5 minutes or more, more preferably 15 minutes or more, preferably 150 minutes or less, and more preferably 120 minutes or less.
[9.回路基板の製造方法]
 上述した穴埋め基板の製造方法を利用することにより、インダクタ基板等の回路基板の製造方法を提供することができる。ここで、インダクタ基板とは、回路基板の内部にインダクタが設けられた当該回路基板を表す。例えば、本発明の一実施形態に係る回路基板の製造方法は、
 上述した製造方法によって穴埋め基板を製造する工程と;
 この穴埋め基板上に、導体層を形成する工程と;を含む。
[9. Circuit board manufacturing method]
By utilizing the above-described method for manufacturing a hole-filling substrate, it is possible to provide a method for manufacturing a circuit board such as an inductor substrate. Here, the inductor board represents the circuit board in which the inductor is provided inside the circuit board. For example, the method for manufacturing a circuit board according to an embodiment of the present invention is as follows.
With the process of manufacturing a hole-filling substrate by the manufacturing method described above;
A step of forming a conductor layer on the hole-filling substrate;
 穴埋め基板を製造する工程は、上述した製造方法によって実施できる。この製造方法により、支持基板及び充填層を含む穴埋め基板が得られる。特に、回路基板としてインダクタ基板を製造したい場合には、磁性粉体を含む充填層が得られるように、磁性粉体を含む磁性ペーストを樹脂組成物として用いて穴埋め基板を製造することが望ましい。 The process of manufacturing the hole-filling substrate can be carried out by the manufacturing method described above. By this manufacturing method, a hole-filling substrate including a support substrate and a filling layer can be obtained. In particular, when it is desired to manufacture an inductor substrate as a circuit board, it is desirable to manufacture a hole-filling substrate using a magnetic paste containing the magnetic powder as a resin composition so that a packed layer containing the magnetic powder can be obtained.
 穴埋め基板を製造する工程の後で、この穴埋め基板上に導体層を形成する工程を行う。形成される導体層は、通常、配線として機能するように、所定の配線パターンで形成される。例えば、回路基板としてインダクタ基板を製造したい場合には、導体層は、渦巻き状の配線パターンを有するように形成してもよい。導体層は、支持基板上に形成してもよく、充填層上に形成してもよい。 After the process of manufacturing the hole-filling substrate, the process of forming a conductor layer on the hole-filling substrate is performed. The conductor layer to be formed is usually formed in a predetermined wiring pattern so as to function as wiring. For example, when it is desired to manufacture an inductor substrate as a circuit board, the conductor layer may be formed so as to have a spiral wiring pattern. The conductor layer may be formed on the support substrate or the packed bed.
 導体層の形成方法は、例えば、めっき法、スパッタ法、蒸着法などが挙げられる。中でもめっき法が好ましい。好適な実施形態では、セミアディティブ法、フルアディティブ法などが挙げられる。 Examples of the method for forming the conductor layer include a plating method, a sputtering method, and a vapor deposition method. Of these, the plating method is preferable. Preferable embodiments include a semi-additive method, a full-additive method, and the like.
 導体層の材料としては、例えば、金、白金、パラジウム、銀、銅、アルミニウム、コバルト、クロム、亜鉛、ニッケル、チタン、タングステン、鉄、スズ、インジウム等の単金属;金、白金、パラジウム、銀、銅、アルミニウム、コバルト、クロム、亜鉛、ニッケル、チタン、タングステン、鉄、スズ及びインジウムからなる群より選択される2種類以上の金属の合金;が挙げられる。中でも、汎用性、コスト、パターニングの容易性等の観点から、クロム、ニッケル、チタン、アルミニウム、亜鉛、金、パラジウム、銀若しくは銅、又は、ニッケルクロム合金、銅ニッケル合金、銅チタン合金を用いることが好ましい。更には、クロム、ニッケル、チタン、アルミニウム、亜鉛、金、パラジウム、銀若しくは銅、又は、ニッケルクロム合金を用いることがより好ましい。特には、銅を用いることがさらに好ましい。 Materials for the conductor layer include, for example, single metals such as gold, platinum, palladium, silver, copper, aluminum, cobalt, chromium, zinc, nickel, titanium, tungsten, iron, tin and indium; gold, platinum, palladium and silver. , Alloys of two or more metals selected from the group consisting of copper, aluminum, cobalt, chromium, zinc, nickel, titanium, tungsten, iron, tin and indium; Above all, from the viewpoint of versatility, cost, ease of patterning, etc., use chromium, nickel, titanium, aluminum, zinc, gold, palladium, silver or copper, or nickel-chromium alloy, copper nickel alloy, copper titanium alloy. Is preferable. Further, it is more preferable to use chromium, nickel, titanium, aluminum, zinc, gold, palladium, silver or copper, or a nickel-chromium alloy. In particular, it is more preferable to use copper.
 以下、導体層の形成方法の具体例を説明する。穴埋め基板の面に、無電解めっきにより、めっきシード層を形成する。次いで、形成されためっきシード層上に、電解めっきにより電解めっき層を形成する。その後、必要に応じて、不要なめっきシード層をエッチング等の処理により除去して、所望の配線パターンを有する導体層を形成できる。また、導体層を形成した後、導体層と穴埋め基板との密着強度を向上させるの目的で、必要により、アニール処理を行ってもよい。アニール処理は、例えば、基板を150℃~200℃で20分~90分間加熱することにより行うことができる。 Hereinafter, a specific example of the method for forming the conductor layer will be described. A plating seed layer is formed on the surface of the hole-filling substrate by electroless plating. Next, an electrolytic plating layer is formed by electrolytic plating on the formed plating seed layer. Then, if necessary, the unnecessary plating seed layer can be removed by a treatment such as etching to form a conductor layer having a desired wiring pattern. Further, after forming the conductor layer, if necessary, annealing treatment may be performed for the purpose of improving the adhesion strength between the conductor layer and the hole filling substrate. The annealing treatment can be performed, for example, by heating the substrate at 150 ° C. to 200 ° C. for 20 minutes to 90 minutes.
 導体層の厚みは、薄型化の観点から、好ましくは70μm以下であり、より好ましくは60μm以下であり、さらに好ましくは50μm以下、さらにより好ましくは40μm以下、特に好ましくは30μm以下、20μm以下、15μm以下又は10μm以下である。下限は好ましくは1μm以上、より好ましくは3μm以上、さらに好ましくは5μm以上である。 From the viewpoint of thinning, the thickness of the conductor layer is preferably 70 μm or less, more preferably 60 μm or less, still more preferably 50 μm or less, still more preferably 40 μm or less, particularly preferably 30 μm or less, 20 μm or less, 15 μm. It is less than or equal to 10 μm or less. The lower limit is preferably 1 μm or more, more preferably 3 μm or more, still more preferably 5 μm or more.
 回路基板の製造方法は、上述した工程に組み合わせて、更に任意の工程を含んでいてもよい。例えば、回路基板の製造方法は、更に導体層上に絶縁層を形成する工程を含んでいてもよい。また、例えば、回路基板の製造方法は、導体層を形成する工程及び絶縁層を形成する工程を繰り返し行って、回路基板として多層プリント配線板を製造してもよい。 The circuit board manufacturing method may further include an arbitrary step in combination with the above-mentioned steps. For example, the method for manufacturing a circuit board may further include a step of forming an insulating layer on the conductor layer. Further, for example, in the method of manufacturing a circuit board, a multi-layer printed wiring board may be manufactured as a circuit board by repeating a step of forming a conductor layer and a step of forming an insulating layer.
 上述した製造方法によって得られる回路基板は、半導体チップ等の電子部品を搭載するための回路基板として用いることができ、かかる回路基板を内層基板として使用したプリント配線板として用いることもできる。また、かかる回路基板を個片化したチップインダクタ部品として用いることもでき、該チップインダクタ部品を表面実装した回路基板として用いることもできる。中でも、前記の回路基板は、インダクタ素子を含むインダクタ基板であることが好ましい。 The circuit board obtained by the above-mentioned manufacturing method can be used as a circuit board for mounting electronic components such as semiconductor chips, and can also be used as a printed wiring board using such a circuit board as an inner layer board. Further, the circuit board can be used as an individualized chip inductor component, or the chip inductor component can be used as a surface-mounted circuit board. Above all, the circuit board is preferably an inductor substrate including an inductor element.
 前記の回路基板は、種々の態様の半導体装置に適用できる。かかる回路基板を含む半導体装置は、例えば、電気製品(例えば、コンピューター、携帯電話、デジタルカメラおよびテレビ等)および乗物(例えば、自動二輪車、自動車、電車、船舶および航空機等)等に好適に用いることができる。 The circuit board can be applied to various types of semiconductor devices. A semiconductor device including such a circuit board is suitably used for, for example, electrical products (for example, computers, mobile phones, digital cameras, televisions, etc.) and vehicles (for example, motorcycles, automobiles, trains, ships, aircraft, etc.). Can be done.
[10.樹脂組成物]
 上述した印刷方法で用いられうる樹脂組成物は、無機充填材及び熱硬化性樹脂を含む。この樹脂組成物は、印刷方法における第一印刷工程及び第二印刷工程においてペースト状でありうる。
[10. Resin composition]
The resin composition that can be used in the printing method described above includes an inorganic filler and a thermosetting resin. This resin composition may be in the form of a paste in the first printing step and the second printing step in the printing method.
 無機充填材は、磁性粉体を含むことが好ましい。磁性粉体としては、例えば、純鉄粉末;Mg-Zn系フェライト、Fe-Mn系フェライト、Mn-Zn系フェライト、Mn-Mg系フェライト、Cu-Zn系フェライト、Mg-Mn-Sr系フェライト、Ni-Zn系フェライト、Ba-Zn系フェライト、Ba-Mg系フェライト、Ba-Ni系フェライト、Ba-Co系フェライト、Ba-Ni-Co系フェライト、Y系フェライト、酸化鉄粉(III)、四酸化三鉄などの酸化鉄粉;Fe-Si系合金粉末、Fe-Si-Al系合金粉末、Fe-Cr系合金粉末、Fe-Cr-Si系合金粉末、Fe-Ni-Cr系合金粉末、Fe-Cr-Al系合金粉末、Fe-Ni系合金粉末、Fe-Ni-Mo系合金粉末、Fe-Ni-Mo-Cu系合金粉末、Fe-Co系合金粉末、あるいはFe-Ni-Co系合金粉末などの鉄合金系金属粉;Co基アモルファスなどのアモルファス合金類;が挙げられる。 The inorganic filler preferably contains magnetic powder. Examples of the magnetic powder include pure iron powder; Mg-Zn-based ferrite, Fe-Mn-based ferrite, Mn-Zn-based ferrite, Mn-Mg-based ferrite, Cu-Zn-based ferrite, Mg-Mn-Sr-based ferrite, and the like. Ni-Zn-based ferrite, Ba-Zn-based ferrite, Ba-Mg-based ferrite, Ba-Ni-based ferrite, Ba-Co-based ferrite, Ba-Ni-Co-based ferrite, Y-based ferrite, iron oxide powder (III), 4 Iron oxide powder such as triiron oxide; Fe—Si alloy powder, Fe—Si—Al alloy powder, Fe—Cr alloy powder, Fe—Cr—Si alloy powder, Fe—Ni—Cr alloy powder, Fe—Cr—Al alloy powder, Fe—Ni alloy powder, Fe—Ni—Mo alloy powder, Fe—Ni—Mo—Cu alloy powder, Fe—Co alloy powder, or Fe—Ni—Co system Iron alloy-based metal powders such as alloy powders; amorphous alloys such as Co-based amorphous materials; can be mentioned.
 中でも、磁性粉体は、酸化鉄粉及び鉄合金系金属粉からなる群より選ばれる1種類以上を含むことが好ましい。また、酸化鉄粉としては、Ni、Cu、Mn、及びZnからなる群より選ばれる1種類以上を含むフェライトが好ましい。さらに、鉄合金系金属粉としては、Si、Cr、Al、Ni、及びCoからなる群より選ばれる1種類以上を含む鉄合金系金属粉が好ましい。 Among them, the magnetic powder preferably contains at least one type selected from the group consisting of iron oxide powder and iron alloy-based metal powder. Further, as the iron oxide powder, ferrite containing at least one selected from the group consisting of Ni, Cu, Mn, and Zn is preferable. Further, as the iron alloy-based metal powder, an iron alloy-based metal powder containing at least one selected from the group consisting of Si, Cr, Al, Ni, and Co is preferable.
 磁性粉体としては、市販の磁性粉体を用いることができる。用いられ得る市販の磁性粉体の具体例としては、パウダーテック社製「M05S」;山陽特殊製鋼社製「PST-S」;エプソンアトミックス社製「AW2-08」、「AW2-08PF20F」、「AW2-08PF10F」、「AW2-08PF3F」、「Fe-3.5Si-4.5CrPF20F」、「Fe-50NiPF20F」、「Fe-80Ni-4MoPF20F」;JFEケミカル社製「LD-M」、「LD-MH」、「KNI-106」、「KNI-106GSM」、「KNI-106GS」、「KNI-109」、「KNI-109GSM」、「KNI-109GS」;戸田工業社製「KNS-415」、「BSF-547」、「BSF-029」、「BSN-125」、「BSN-125」、「BSN-714」、「BSN-828」、「S-1281」、「S-1641」、「S-1651」、「S-1470」、「S-1511」、「S-2430」;日本重化学工業社製「JR09P2」;CIKナノテック社製「Nanotek」;キンセイマテック社製「JEMK-S」、「JEMK-H」:ALDRICH社製「Yttrium iron oxide」等が挙げられる。磁性粉体は、1種類を単独で用いてもよく、又は2種以上を組み合わせて用いてもよい。 As the magnetic powder, a commercially available magnetic powder can be used. Specific examples of commercially available magnetic powders that can be used include "M05S" manufactured by Powder Tech Co., Ltd .; "PST-S" manufactured by Sanyo Special Steel Co., Ltd .; "AW2-08" and "AW2-08PF20F" manufactured by Epson Atmix Co., Ltd. "AW2-08PF10F", "AW2-08PF3F", "Fe-3.5Si-4.5CrPF20F", "Fe-50NiPF20F", "Fe-80Ni-4MoPF20F"; "LD-M", "LD" manufactured by JFE Chemical Co., Ltd. -MH "," KNI-106 "," KNI-106GSM "," KNI-106GS "," KNI-109 "," KNI-109GSM "," KNI-109GS ";" KNS-415 "manufactured by Toda Kogyo Co., Ltd., "BSF-547", "BSF-029", "BSN-125", "BSN-125", "BSN-714", "BSN-828", "S-1281", "S-1641", "S" -1651 "," S-1470 "," S-1511 "," S-2430 ";" JR09P2 "manufactured by Nippon Heavy Chemical Industries, Ltd .;" Nanotek "manufactured by CIK Nanotech Co., Ltd .;" JEMK-S "," JEMK-S "manufactured by Kinsei Matec Co., Ltd. "JEMK-H": "Ytrium iron oxide" manufactured by ALDRICH and the like can be mentioned. One type of magnetic powder may be used alone, or two or more types may be used in combination.
 磁性粉体は、特に制限はないが、球状であることが好ましい。磁性粉体の長軸の長さを短軸の長さで除した値(アスペクト比)としては、好ましくは2以下、より好ましくは1.5以下、さらに好ましくは1.2以下である。一般に、磁性粉体は球状ではない扁平な形状であるほうが、比透磁率を向上させやすい。しかし、特に球状の磁性粉体を用いる方が、通常、磁気損失を低くでき、また好ましい粘度を有するペーストを得ることができる。 The magnetic powder is not particularly limited, but is preferably spherical. The value (aspect ratio) obtained by dividing the length of the major axis of the magnetic powder by the length of the minor axis is preferably 2 or less, more preferably 1.5 or less, and further preferably 1.2 or less. In general, it is easier to improve the relative magnetic permeability when the magnetic powder has a flat shape that is not spherical. However, it is usually possible to reduce the magnetic loss and obtain a paste having a preferable viscosity by using a spherical magnetic powder in particular.
 磁性粉体の平均粒径は、特に制限はないが、磁気損失を低くでき、また好ましい粘度を有するペーストを得る観点から、好ましくは0.01μm以上、より好ましくは0.5μm以上、さらに好ましくは1μm以上である。また、好ましくは10μm以下、より好ましくは9μm以下、さらに好ましくは8μm以下である。さらに、前記のような平均粒径を有する磁性粉体を用いた場合に、従来は充填性及び版離れ性の課題が生じ易かったので、本発明の効果を有効に活用する観点からも、磁性粉体の平均粒径が前記の範囲に収まることが好ましい。 The average particle size of the magnetic powder is not particularly limited, but is preferably 0.01 μm or more, more preferably 0.5 μm or more, still more preferably, from the viewpoint of obtaining a paste having a low magnetic loss and a preferable viscosity. It is 1 μm or more. Further, it is preferably 10 μm or less, more preferably 9 μm or less, and further preferably 8 μm or less. Further, when a magnetic powder having an average particle size as described above is used, problems of filling property and plate release property have been liable to occur in the past, and therefore, from the viewpoint of effectively utilizing the effect of the present invention, magnetism is also required. It is preferable that the average particle size of the powder falls within the above range.
 磁性粉体の平均粒径は、ミー(Mie)散乱理論に基づくレーザー回折・散乱法により測定できる。具体的には、レーザー回折散乱式粒径分布測定装置により、磁性粉体の粒径分布を体積基準で作成し、そのメディアン径を平均粒径とすることで測定することができる。測定サンプルは、磁性粉体を超音波によりメチルエチルケトン中に分散させたものを好ましく使用することができる。レーザー回折散乱式粒径分布測定装置としては、堀場製作所社製「LA-500」、島津製作所社製「SALD-2200」等を使用することができる。 The average particle size of the magnetic powder can be measured by the laser diffraction / scattering method based on the Mie scattering theory. Specifically, it can be measured by creating a particle size distribution of magnetic powder on a volume basis with a laser diffraction / scattering type particle size distribution measuring device and using the median diameter as the average particle size. As the measurement sample, a magnetic powder dispersed in methyl ethyl ketone by ultrasonic waves can be preferably used. As the laser diffraction / scattering type particle size distribution measuring device, "LA-500" manufactured by HORIBA, Ltd., "SALD-2200" manufactured by Shimadzu Corporation, or the like can be used.
 磁性粉体の量(体積%)は、比透磁率を向上させる観点から、樹脂組成物中の不揮発成分100体積%に対して、好ましくは10体積%以上、より好ましくは20体積%以上、さらに好ましくは30体積%以上であり、好ましくは85体積%以下、より好ましくは80体積%以下、さらに好ましくは75体積%以下である。 The amount (% by volume) of the magnetic powder is preferably 10% by volume or more, more preferably 20% by volume or more, and further, with respect to 100% by volume of the non-volatile component in the resin composition, from the viewpoint of improving the specific magnetic permeability. It is preferably 30% by volume or more, preferably 85% by volume or less, more preferably 80% by volume or less, and further preferably 75% by volume or less.
 磁性粉体の量(質量%)は、比透磁率を向上させる観点から、樹脂組成物中の不揮発成分100質量%に対して、好ましくは80質量%以上、より好ましくは82質量%以上、さらに好ましくは84質量%以上であり、好ましくは98質量%以下、より好ましくは96質量%以下、さらに好ましくは94質量%以下である。 The amount (mass%) of the magnetic powder is preferably 80% by mass or more, more preferably 82% by mass or more, and further, with respect to 100% by mass of the non-volatile component in the resin composition, from the viewpoint of improving the relative magnetic permeability. It is preferably 84% by mass or more, preferably 98% by mass or less, more preferably 96% by mass or less, and further preferably 94% by mass or less.
 また、前記のような量の磁性粉体を用いた場合に、従来は充填性及び版離れ性の課題が生じ易かったので、本発明の効果を有効に活用する観点からも、磁性粉体の量が前記の範囲に収まることが好ましい。 Further, when the above-mentioned amount of magnetic powder is used, problems of filling property and plate release property are liable to occur in the past. Therefore, from the viewpoint of effectively utilizing the effect of the present invention, the magnetic powder can be used. It is preferable that the amount falls within the above range.
 樹脂組成物は、磁性粉体以外の無機充填材を含んでいてもよい。このような無機充填材としては、例えば、有機化された層状ケイ酸塩鉱物が挙げられる。 The resin composition may contain an inorganic filler other than the magnetic powder. Examples of such an inorganic filler include organic layered silicate minerals.
 磁性粉体等を含む無機充填材の総量は、樹脂組成物中の不揮発成分100質量%に対して、好ましくは80質量%以上、より好ましくは82質量%以上、さらに好ましくは85質量%以上であり、好ましくは99質量%以下、より好ましくは97質量%以下、さらに好ましくは95質量%以下である。 The total amount of the inorganic filler containing the magnetic powder or the like is preferably 80% by mass or more, more preferably 82% by mass or more, still more preferably 85% by mass or more, based on 100% by mass of the non-volatile component in the resin composition. Yes, preferably 99% by mass or less, more preferably 97% by mass or less, still more preferably 95% by mass or less.
 樹脂組成物が含む熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール系樹脂、ナフトール系樹脂、ベンゾオキサジン系樹脂、活性エステル系樹脂、シアネートエステル系樹脂、カルボジイミド系樹脂、アミン系樹脂、酸無水物系樹脂等が挙げられる。熱硬化性樹脂は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。中でも、樹脂組成物は、熱硬化性樹脂としてエポキシ樹脂を含むことが好ましい。また、以下の説明において、フェノール系樹脂、ナフトール系樹脂、ベンゾオキサジン系樹脂、活性エステル系樹脂、シアネートエステル系樹脂、カルボジイミド系樹脂、アミン系樹脂、及び酸無水物系樹脂のように、エポキシ樹脂と反応して樹脂組成物を硬化させられる成分をまとめて「硬化剤」ということがある。 Examples of the thermosetting resin contained in the resin composition include epoxy resin, phenol resin, naphthol resin, benzoxazine resin, active ester resin, cyanate ester resin, carbodiimide resin, amine resin, and acid anhydride. Examples include physical resins. One type of thermosetting resin may be used alone, or two or more types may be used in combination. Above all, the resin composition preferably contains an epoxy resin as a thermosetting resin. Further, in the following description, epoxy resins such as phenol-based resins, naphthol-based resins, benzoxazine-based resins, active ester-based resins, cyanate ester-based resins, carbodiimide-based resins, amine-based resins, and acid anhydride-based resins The components that can cure the resin composition by reacting with the above may be collectively referred to as a "curing agent".
 エポキシ樹脂としては、例えば、グリシロール型エポキシ樹脂;ビスフェノールA型エポキシ樹脂;ビスフェノールF型エポキシ樹脂;ビスフェノールS型エポキシ樹脂;ビスフェノールAF型エポキシ樹脂;ジシクロペンタジエン型エポキシ樹脂;トリスフェノール型エポキシ樹脂;フェノールノボラック型エポキシ樹脂;tert-ブチル-カテコール型エポキシ樹脂;ナフトールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフトール型エポキシ樹脂、アントラセン型エポキシ樹脂等の縮合環構造を有するエポキシ樹脂;グリシジルアミン型エポキシ樹脂;グリシジルエステル型エポキシ樹脂;クレゾールノボラック型エポキシ樹脂;ビフェニル型エポキシ樹脂;線状脂肪族エポキシ樹脂;ブタジエン構造を有するエポキシ樹脂;脂環式エポキシ樹脂;複素環式エポキシ樹脂;スピロ環含有エポキシ樹脂;シクロヘキサンジメタノール型エポキシ樹脂;トリメチロール型エポキシ樹脂;テトラフェニルエタン型エポキシ樹脂等が挙げられる。エポキシ樹脂は1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。エポキシ樹脂は、ビスフェノールA型エポキシ樹脂、及びビスフェノールF型エポキシ樹脂からなる群より選ばれる1種類以上であることが好ましい。 Examples of the epoxy resin include glycyrrole type epoxy resin; bisphenol A type epoxy resin; bisphenol F type epoxy resin; bisphenol S type epoxy resin; bisphenol AF type epoxy resin; dicyclopentadiene type epoxy resin; trisphenol type epoxy resin; phenol. Novolak type epoxy resin; tert-butyl-catechol type epoxy resin; naphthol novolac type epoxy resin, naphthalene type epoxy resin, naphthol type epoxy resin, anthracene type epoxy resin and other epoxy resins having a fused ring structure; glycidylamine type epoxy resin; Glycidyl ester type epoxy resin; Cresol novolac type epoxy resin; Biphenyl type epoxy resin; Linear aliphatic epoxy resin; Epoxy resin having a butadiene structure; Oil ring type epoxy resin; Heterocyclic epoxy resin; Spiro ring-containing epoxy resin; Cyclohexane Dimethanol type epoxy resin; trimethylol type epoxy resin; tetraphenylethane type epoxy resin and the like can be mentioned. One type of epoxy resin may be used alone, or two or more types may be used in combination. The epoxy resin is preferably one or more selected from the group consisting of bisphenol A type epoxy resin and bisphenol F type epoxy resin.
 エポキシ樹脂は、1分子中に2個以上のエポキシ基を有するエポキシ樹脂を含むことが好ましい。また、エポキシ樹脂は、芳香族構造を有することが好ましく、2種以上のエポキシ樹脂を用いる場合は少なくとも1種が芳香族構造を有することがより好ましい。芳香族構造とは、一般に芳香族と定義される化学構造であり、多環芳香族及び芳香族複素環をも含む。エポキシ樹脂の不揮発成分100質量%に対して、1分子中に2個以上のエポキシ基を有するエポキシ樹脂の割合は、好ましくは50質量%以上、より好ましくは60質量%以上、特に好ましくは70質量%以上である。 The epoxy resin preferably contains an epoxy resin having two or more epoxy groups in one molecule. Further, the epoxy resin preferably has an aromatic structure, and when two or more kinds of epoxy resins are used, it is more preferable that at least one of them has an aromatic structure. The aromatic structure is a chemical structure generally defined as aromatic, and also includes polycyclic aromatics and aromatic heterocycles. The ratio of the epoxy resin having two or more epoxy groups in one molecule to 100% by mass of the non-volatile component of the epoxy resin is preferably 50% by mass or more, more preferably 60% by mass or more, and particularly preferably 70% by mass. % Or more.
 エポキシ樹脂には、温度25℃で液状のエポキシ樹脂(以下「液状エポキシ樹脂」ということがある。)と、温度25℃で固体状のエポキシ樹脂(以下「固体状エポキシ樹脂」ということがある。)とがある。エポキシ樹脂としては、液状エポキシ樹脂のみを用いてもよく、固体状エポキシ樹脂のみを用いてもよく、液状エポキシ樹脂及び固体状エポキシ樹脂を組み合わせて用いてもよい。中でも、樹脂組成物の粘度を低下させる観点から、液状エポキシ樹脂のみを用いることが好ましい。 The epoxy resin may be a liquid epoxy resin at a temperature of 25 ° C. (hereinafter sometimes referred to as “liquid epoxy resin”) or a solid epoxy resin at a temperature of 25 ° C. (hereinafter referred to as “solid epoxy resin”). ). As the epoxy resin, only the liquid epoxy resin may be used, only the solid epoxy resin may be used, or the liquid epoxy resin and the solid epoxy resin may be used in combination. Above all, from the viewpoint of reducing the viscosity of the resin composition, it is preferable to use only the liquid epoxy resin.
 液状エポキシ樹脂としては、グリシロール型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、ナフタレン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、エステル骨格を有する脂環式エポキシ樹脂、シクロヘキサンジメタノール型エポキシ樹脂、及びブタジエン構造を有するエポキシ樹脂が好ましく、グリシロール型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、及びビスフェノールF型エポキシ樹脂がより好ましい。 Examples of the liquid epoxy resin include glycyrrole type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AF type epoxy resin, naphthalene type epoxy resin, glycidyl ester type epoxy resin, glycidylamine type epoxy resin, and phenol novolac type epoxy. A resin, an alicyclic epoxy resin having an ester skeleton, a cyclohexanedimethanol type epoxy resin, and an epoxy resin having a butadiene structure are preferable, and a glycylol type epoxy resin, a bisphenol A type epoxy resin, and a bisphenol F type epoxy resin are more preferable.
 液状エポキシ樹脂の具体例としては、DIC社製の「HP4032」、「HP4032D」、「HP4032SS」(ナフタレン型エポキシ樹脂);三菱ケミカル社製の「828US」、「jER828EL」(ビスフェノールA型エポキシ樹脂)、「jER807」(ビスフェノールF型エポキシ樹脂)、「jER152」(フェノールノボラック型エポキシ樹脂);三菱ケミカル社製の「630」、「630LSD」、ADEKA社製の「ED-523T」(グリシロール型エポキシ樹脂(アデカグリシロール))、「EP-3980S」(グリシジルアミン型エポキシ樹脂)、「EP-4088S」(ジシクロペンタジエン型エポキシ樹脂);新日鉄住金化学社製の「ZX1059」(ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂の混合品);ナガセケムテックス社製の「EX-721」(グリシジルエステル型エポキシ樹脂);ダイセル社製の「セロキサイド2021P」(エステル骨格を有する脂環式エポキシ樹脂)、「PB-3600」(ブタジエン構造を有するエポキシ樹脂);新日鉄化学社製の「ZX1658」、「ZX1658GS」(液状1,4-グリシジルシクロヘキサン)等が挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 Specific examples of the liquid epoxy resin include "HP4032", "HP4032D", and "HP4032SS" (naphthalene type epoxy resin) manufactured by DIC; "828US" and "jER828EL" (bisphenol A type epoxy resin) manufactured by Mitsubishi Chemical Co., Ltd. , "JER807" (bisphenol F type epoxy resin), "jER152" (phenol novolac type epoxy resin); "630", "630LSD" manufactured by Mitsubishi Chemical Co., Ltd., "ED-523T" (glycylol type epoxy resin) manufactured by ADEKA. (Adecaglycyrol)), "EP-3980S" (glycidylamine type epoxy resin), "EP-4088S" (dicyclopentadiene type epoxy resin); "ZX1059" (bisphenol A type epoxy resin) manufactured by Nippon Steel & Sumitomo Metal Corporation (Mixed product of bisphenol F type epoxy resin); "EX-721" (glycidyl ester type epoxy resin) manufactured by Nagase ChemteX Co., Ltd .; "Selokiside 2021P" (alicyclic epoxy resin having an ester skeleton) manufactured by Daicel Co. "PB-3600" (epoxy resin having a butadiene structure); "ZX1658", "ZX1658GS" (liquid 1,4-glycidylcyclohexane) manufactured by Nippon Steel Chemical Co., Ltd. and the like can be mentioned. These may be used alone or in combination of two or more.
 固体状エポキシ樹脂としては、ナフタレン型4官能エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリスフェノール型エポキシ樹脂、ナフトール型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、アントラセン型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂が好ましく、ナフタレン型4官能エポキシ樹脂、ナフトール型エポキシ樹脂、及びビフェニル型エポキシ樹脂がより好ましい。 Examples of the solid epoxy resin include naphthalene type tetrafunctional epoxy resin, cresol novolac type epoxy resin, dicyclopentadiene type epoxy resin, trisphenol type epoxy resin, naphthol type epoxy resin, biphenyl type epoxy resin, and naphthylene ether type epoxy resin. Anthracene type epoxy resin, bisphenol A type epoxy resin, and tetraphenylethane type epoxy resin are preferable, and naphthalene type tetrafunctional epoxy resin, naphthol type epoxy resin, and biphenyl type epoxy resin are more preferable.
 固体状エポキシ樹脂の具体例としては、DIC社製の「HP4032H」(ナフタレン型エポキシ樹脂)、「HP-4700」、「HP-4710」(ナフタレン型4官能エポキシ樹脂)、「N-690」(クレゾールノボラック型エポキシ樹脂)、「N-695」(クレゾールノボラック型エポキシ樹脂)、「HP-7200」、「HP-7200HH」、「HP-7200H」(ジシクロペンタジエン型エポキシ樹脂)、「EXA-7311」、「EXA-7311-G3」、「EXA-7311-G4」、「EXA-7311-G4S」、「HP6000」(ナフチレンエーテル型エポキシ樹脂);日本化薬社製の「EPPN-502H」(トリスフェノール型エポキシ樹脂)、「NC7000L」(ナフトールノボラック型エポキシ樹脂)、「NC3000H」、「NC3000」、「NC3000L」、「NC3100」(ビフェニル型エポキシ樹脂);新日鉄住金化学社製の「ESN475V」(ナフタレン型エポキシ樹脂)、「ESN485」(ナフトールノボラック型エポキシ樹脂);三菱ケミカル社製の「YX4000H」、「YL6121」(ビフェニル型エポキシ樹脂)、「YX4000HK」(ビキシレノール型エポキシ樹脂)、「YX8800」(アントラセン型エポキシ樹脂);大阪ガスケミカル社製の「PG-100」、「CG-500」、三菱ケミカル社製の「YL7760」(ビスフェノールAF型エポキシ樹脂)、「YL7800」(フルオレン型エポキシ樹脂)、「jER1010」(固体状ビスフェノールA型エポキシ樹脂)、「jER1031S」(テトラフェニルエタン型エポキシ樹脂)等が挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 Specific examples of the solid epoxy resin include "HP4032H" (naphthalene type epoxy resin), "HP-4700", "HP-4710" (naphthalene type tetrafunctional epoxy resin), and "N-690" manufactured by DIC. Cresol novolac type epoxy resin), "N-695" (cresol novolac type epoxy resin), "HP-7200", "HP-7200HH", "HP-7200H" (dicyclopentadiene type epoxy resin), "EXA-7311" , "EXA-7311-G3", "EXA-7311-G4", "EXA-7311-G4S", "HP6000" (naphthylene ether type epoxy resin); "EPPN-502H" manufactured by Nippon Kayakusha. Trisphenol type epoxy resin), "NC7000L" (naphthol novolac type epoxy resin), "NC3000H", "NC3000", "NC3000L", "NC3100" (biphenyl type epoxy resin); "ESN475V" manufactured by Nippon Steel & Sumitomo Metal Chemical Co., Ltd. Naphthalene type epoxy resin), "ESN485" (naphthol novolac type epoxy resin); "YX4000H", "YL6121" (biphenyl type epoxy resin), "YX4000HK" (bixilenol type epoxy resin), "YX8800" manufactured by Mitsubishi Chemical Co., Ltd. (Anthracene type epoxy resin); "PG-100" and "CG-500" manufactured by Osaka Gas Chemical Co., Ltd., "YL7760" (bisphenol AF type epoxy resin) manufactured by Mitsubishi Chemical Co., Ltd., "YL7800" (fluorene type epoxy resin) , "JER1010" (solid bisphenol A type epoxy resin), "jER1031S" (tetraphenylethane type epoxy resin) and the like. One of these may be used alone, or two or more thereof may be used in combination.
 液状エポキシ樹脂と固体状エポキシ樹脂とを組み合わせて用いる場合、それらの量比(液状エポキシ樹脂:固体状エポキシ樹脂)は、質量比で、好ましくは1:0.1~1:4、より好ましくは1:0.3~1:3.5、さらに好ましくは1:0.6~1:3である。 When a liquid epoxy resin and a solid epoxy resin are used in combination, their quantity ratio (liquid epoxy resin: solid epoxy resin) is preferably 1: 0.1 to 1: 4, more preferably 1: 0.1 to 1: 4, in terms of mass ratio. It is 1: 0.3 to 1: 3.5, more preferably 1: 0.6 to 1: 3.
 エポキシ樹脂のエポキシ当量は、好ましくは50~5000、より好ましくは50~3000、さらに好ましくは80~2000、さらにより好ましくは110~1000である。この範囲となることで、硬化物の架橋密度が十分となり表面粗さの小さい磁性層をもたらすことができる。なお、エポキシ当量は、JIS K7236に従って測定することができ、1当量のエポキシ基を含む樹脂の質量である。 The epoxy equivalent of the epoxy resin is preferably 50 to 5000, more preferably 50 to 3000, still more preferably 80 to 2000, and even more preferably 110 to 1000. Within this range, the crosslink density of the cured product becomes sufficient, and a magnetic layer having a small surface roughness can be provided. The epoxy equivalent can be measured according to JIS K7236, and is the mass of the resin containing 1 equivalent of the epoxy group.
 エポキシ樹脂の重量平均分子量は、好ましくは100~5000、より好ましくは250~3000、さらに好ましくは400~1500である。ここで、エポキシ樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により測定されるポリスチレン換算の重量平均分子量である。 The weight average molecular weight of the epoxy resin is preferably 100 to 5000, more preferably 250 to 3000, and even more preferably 400 to 1500. Here, the weight average molecular weight of the epoxy resin is a polystyrene-equivalent weight average molecular weight measured by a gel permeation chromatography (GPC) method.
 活性エステル系樹脂としては、1分子中に1個以上の活性エステル基を有する樹脂を用いることができる。中でも、活性エステル系樹脂としては、フェノールエステル類、チオフェノールエステル類、N-ヒドロキシアミンエステル類、複素環ヒドロキシ化合物のエステル類等の、反応活性の高いエステル基を1分子中に2個以上有する樹脂が好ましい。当該活性エステル系樹脂は、カルボン酸化合物及び/又はチオカルボン酸化合物とヒドロキシ化合物及び/又はチオール化合物との縮合反応によって得られるものが好ましい。特に、耐熱性向上の観点から、カルボン酸化合物とヒドロキシ化合物とから得られる活性エステル系樹脂が好ましく、カルボン酸化合物とフェノール化合物及び/又はナフトール化合物とから得られる活性エステル系樹脂がより好ましい。 As the active ester resin, a resin having one or more active ester groups in one molecule can be used. Among them, the active ester-based resin has two or more ester groups with high reactive activity such as phenol esters, thiophenol esters, N-hydroxyamine esters, and esters of heterocyclic hydroxy compounds in one molecule. Resin is preferred. The active ester resin is preferably obtained by a condensation reaction between a carboxylic acid compound and / or a thiocarboxylic acid compound and a hydroxy compound and / or a thiol compound. In particular, from the viewpoint of improving heat resistance, an active ester resin obtained from a carboxylic acid compound and a hydroxy compound is preferable, and an active ester resin obtained from a carboxylic acid compound and a phenol compound and / or a naphthol compound is more preferable.
 カルボン酸化合物としては、例えば、安息香酸、酢酸、コハク酸、マレイン酸、イタコン酸、フタル酸、イソフタル酸、テレフタル酸、ピロメリット酸等が挙げられる。 Examples of the carboxylic acid compound include benzoic acid, acetic acid, succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid, terephthalic acid, and pyromellitic acid.
 フェノール化合物又はナフトール化合物としては、例えば、ハイドロキノン、レゾルシン、ビスフェノールA、ビスフェノールF、ビスフェノールS、フェノールフタリン、メチル化ビスフェノールA、メチル化ビスフェノールF、メチル化ビスフェノールS、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、カテコール、α-ナフトール、β-ナフトール、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、フロログルシン、ベンゼントリオール、ジシクロペンタジエン型ジフェノール化合物、フェノールノボラック等が挙げられる。ここで、「ジシクロペンタジエン型ジフェノール化合物」とは、ジシクロペンタジエン1分子にフェノール2分子が縮合して得られるジフェノール化合物をいう。 Examples of the phenol compound or naphthol compound include hydroquinone, resorcin, bisphenol A, bisphenol F, bisphenol S, phenolphthaline, methylated bisphenol A, methylated bisphenol F, methylated bisphenol S, phenol, o-cresol, m-. Cresol, p-cresol, catechol, α-naphthol, β-naphthol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenol, trihydroxybenzophenol, tetrahydroxybenzophenone, fluoroglusin, Examples thereof include benzenetriol, dicyclopentadiene-type diphenol compounds, and phenol novolac. Here, the "dicyclopentadiene-type diphenol compound" refers to a diphenol compound obtained by condensing two phenol molecules with one dicyclopentadiene molecule.
 活性エステル系樹脂の好ましい具体例としては、ジシクロペンタジエン型ジフェノール構造を含む活性エステル系樹脂、ナフタレン構造を含む活性エステル系樹脂、フェノールノボラックのアセチル化物を含む活性エステル系樹脂、フェノールノボラックのベンゾイル化物を含む活性エステル系樹脂が挙げられる。中でも、ナフタレン構造を含む活性エステル系樹脂、ジシクロペンタジエン型ジフェノール構造を含む活性エステル系樹脂がより好ましい。「ジシクロペンタジエン型ジフェノール構造」とは、フェニレン-ジシクロペンチレン-フェニレンからなる2価の構造単位を表す。 Preferred specific examples of the active ester-based resin include an active ester-based resin containing a dicyclopentadiene-type diphenol structure, an active ester-based resin containing a naphthalene structure, an active ester-based resin containing an acetylated product of phenol novolac, and a benzoyl of phenol novolac. Examples thereof include active ester-based resins containing compounds. Of these, an active ester resin containing a naphthalene structure and an active ester resin containing a dicyclopentadiene diphenol structure are more preferable. The "dicyclopentadiene-type diphenol structure" represents a divalent structural unit composed of phenylene-dicyclopentylene-phenylene.
 活性エステル系樹脂の市販品としては、ジシクロペンタジエン型ジフェノール構造を含む活性エステル系樹脂として、「EXB9451」、「EXB9460」、「EXB9460S」、「HPC-8000-65T」、「HPC-8000H-65TM」、「EXB-8000L-65TM」(DIC社製);ナフタレン構造を含む活性エステル系樹脂として「EXB9416-70BK」、「EXB-8150-65T」(DIC社製);フェノールノボラックのアセチル化物を含む活性エステル系樹脂として「DC808」(三菱ケミカル社製);フェノールノボラックのベンゾイル化物を含む活性エステル系樹脂として「YLH1026」(三菱ケミカル社製);フェノールノボラックのアセチル化物である活性エステル系樹脂として「DC808」(三菱ケミカル社製);フェノールノボラックのベンゾイル化物である活性エステル系樹脂として「YLH1026」(三菱ケミカル社製)、「YLH1030」(三菱ケミカル社製)、「YLH1048」(三菱ケミカル社製);等が挙げられる。 Commercially available products of the active ester resin include "EXB9451", "EXB9460", "EXB9460S", "HPC-8000-65T", and "HPC-8000H-" as active ester resins containing a dicyclopentadiene type diphenol structure. "65TM", "EXB-8000L-65TM" (manufactured by DIC); "EXB9416-70BK", "EXB-8150-65T" (manufactured by DIC) as an active ester resin containing a naphthalene structure; acetylated phenol novolac As an active ester resin containing "DC808" (manufactured by Mitsubishi Chemical Co., Ltd.); "YLH1026" (manufactured by Mitsubishi Chemical Co., Ltd.) as an active ester resin containing a benzoylate of phenol novolac; as an active ester resin which is an acetylated product of phenol novolac. "DC808" (manufactured by Mitsubishi Chemical); "YLH1026" (manufactured by Mitsubishi Chemical), "YLH1030" (manufactured by Mitsubishi Chemical), "YLH1048" (manufactured by Mitsubishi Chemical) as active ester-based resins that are benzoylates of phenol novolac. ); Etc. can be mentioned.
 フェノール系樹脂及びナフトール系樹脂としては、耐熱性及び耐水性の観点から、ノボラック構造を有するものが好ましい。また、導体層と充填層の密着性の観点から、含窒素フェノール系硬化剤が好ましく、トリアジン骨格含有フェノール系樹脂がより好ましい。 As the phenolic resin and the naphthol resin, those having a novolak structure are preferable from the viewpoint of heat resistance and water resistance. Further, from the viewpoint of adhesion between the conductor layer and the packing layer, a nitrogen-containing phenol-based curing agent is preferable, and a triazine skeleton-containing phenol-based resin is more preferable.
 フェノール系樹脂及びナフトール系樹脂の具体例としては、例えば、明和化成社製の「MEH-7700」、「MEH-7810」、「MEH-7851」、日本化薬社製の「NHN」、「CBN」、「GPH」、新日鉄住金化学社製の「SN170」、「SN180」、「SN190」、「SN475」、「SN485」、「SN495」、「SN-495V」「SN375」、「SN395」、DIC社製の「TD-2090」、「LA-7052」、「LA-7054」、「LA-1356」、「LA-3018-50P」、「EXB-9500」等が挙げられる。 Specific examples of the phenolic resin and the naphthol resin include "MEH-7700", "MEH-7810", "MEH-7851" manufactured by Meiwa Kasei Co., Ltd., and "NHN" and "CBN" manufactured by Nippon Kayaku Co., Ltd. , "GPH", "SN170", "SN180", "SN190", "SN475", "SN485", "SN495", "SN-495V", "SN375", "SN395", DIC manufactured by Nippon Steel & Sumikin Chemical Co., Ltd. Examples thereof include "TD-2090", "LA-7052", "LA-7054", "LA-1356", "LA-3018-50P", and "EXB-9500" manufactured by the same company.
 ベンゾオキサジン系樹脂の具体例としては、JFEケミカル社製の「JBZ-OD100」(ベンゾオキサジン環当量218)、「JBZ-OP100D」(ベンゾオキサジン環当量218)、「ODA-BOZ」(ベンゾオキサジン環当量218);四国化成工業社製の「P-d」(ベンゾオキサジン環当量217)、「F-a」(ベンゾオキサジン環当量217);昭和高分子社製の「HFB2006M」(ベンゾオキサジン環当量432)等が挙げられる。 Specific examples of the benzoxazine-based resin include "JBZ-OD100" (benzoxazine ring equivalent 218), "JBZ-OP100D" (benzoxazine ring equivalent 218), and "ODA-BOZ" (benzoxazine ring) manufactured by JFE Chemical Co., Ltd. Equivalent 218); "Pd" (benzoxazine ring equivalent 217), "Fa" (benzoxazine ring equivalent 217) manufactured by Shikoku Kasei Kogyo Co., Ltd .; "HFB2006M" (benzoxazine ring equivalent) manufactured by Showa Polymer Co., Ltd. 432) and the like.
 シアネートエステル系樹脂としては、例えば、ビスフェノールAジシアネート、ポリフェノールシアネート、オリゴ(3-メチレン-1,5-フェニレンシアネート)、4,4’-メチレンビス(2,6-ジメチルフェニルシアネート)、4,4’-エチリデンジフェニルジシアネート、ヘキサフルオロビスフェノールAジシアネート、2,2-ビス(4-シアネート)フェニルプロパン、1,1-ビス(4-シアネートフェニルメタン)、ビス(4-シアネート-3,5-ジメチルフェニル)メタン、1,3-ビス(4-シアネートフェニル-1-(メチルエチリデン))ベンゼン、ビス(4-シアネートフェニル)チオエーテル、及びビス(4-シアネートフェニル)エーテル、等の2官能シアネート樹脂;フェノールノボラック及びクレゾールノボラック等から誘導される多官能シアネート樹脂;これらシアネート樹脂が一部トリアジン化したプレポリマー;などが挙げられる。シアネートエステル系樹脂の具体例としては、ロンザジャパン社製の「PT30」及び「PT60」(フェノールノボラック型多官能シアネートエステル樹脂)、「ULL-950S」(多官能シアネートエステル樹脂)、「BA230」、「BA230S75」(ビスフェノールAジシアネートの一部又は全部がトリアジン化され三量体となったプレポリマー)等が挙げられる。 Examples of the cyanate ester-based resin include bisphenol A disicianate, polyphenol cyanate, oligo (3-methylene-1,5-phenylene cyanate), 4,4'-methylenebis (2,6-dimethylphenylcyanate), and 4,4'. -Etilidendiphenyl disianate, hexafluorobisphenol A disyanate, 2,2-bis (4-cyanate) phenylpropane, 1,1-bis (4-cyanate phenylmethane), bis (4-cyanate-3,5-dimethylphenyl) ) Bifunctional cyanate resins such as methane, 1,3-bis (4-cyanatephenyl-1- (methylethylidene)) benzene, bis (4-cyanatephenyl) thioether, and bis (4-cyanatephenyl) ether; phenol Examples thereof include polyfunctional cyanate resins derived from novolak and cresol novolak; prepolymers in which these cyanate resins are partially triazined. Specific examples of the cyanate ester resin include "PT30" and "PT60" (phenol novolac type polyfunctional cyanate ester resin), "ULL-950S" (polyfunctional cyanate ester resin), and "BA230" manufactured by Ronza Japan. Examples thereof include "BA230S75" (a prepolymer in which part or all of bisphenol A disyanate is triazined to form a trimer).
 カルボジイミド系樹脂の具体例としては、日清紡ケミカル社製のカルボジライト(登録商標)V-03(カルボジイミド基当量:216、V-05(カルボジイミド基当量:262)、V-07(カルボジイミド基当量:200);V-09(カルボジイミド基当量:200);ラインケミー社製のスタバクゾール(登録商標)P(カルボジイミド基当量:302)が挙げられる。 Specific examples of the carbodiimide-based resin include carbodilite (registered trademark) V-03 (carbodiimide group equivalent: 216, V-05 (carbodiimide group equivalent: 262), V-07 (carbodiimide group equivalent: 200)) manufactured by Nisshinbo Chemical Co., Ltd. V-09 (carbodiimide group equivalent: 200); Stavaxol® P (carbodiimide group equivalent: 302) manufactured by Rheinchemy.
 アミン系樹脂としては、例えば、1分子内中に1個以上のアミノ基を有する樹脂が挙げられる。その具体例としては、脂肪族アミン類、ポリエーテルアミン類、脂環式アミン類、芳香族アミン類等が挙げられ、中でも、芳香族アミン類が好ましい。アミン系樹脂は、第1級アミン又は第2級アミンが好ましく、第1級アミンがより好ましい。アミン系硬化剤の具体例としては、4,4’-メチレンビス(2,6-ジメチルアニリン)、ジフェニルジアミノスルホン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、m-フェニレンジアミン、m-キシリレンジアミン、ジエチルトルエンジアミン、4,4’-ジアミノジフェニルエーテル、3,3’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシベンジジン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、3,3-ジメチル-5,5-ジエチル-4,4-ジフェニルメタンジアミン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、ビス(4-(4-アミノフェノキシ)フェニル)スルホン、ビス(4-(3-アミノフェノキシ)フェニル)スルホン、等が挙げられる。アミン系樹脂は市販品を用いてもよく、例えば、日本化薬社製の「KAYABOND C-200S」、「KAYABOND C-100」、「カヤハードA-A」、「カヤハードA-B」、「カヤハードA-S」、三菱ケミカル社製の「エピキュアW」等が挙げられる。 Examples of the amine-based resin include resins having one or more amino groups in one molecule. Specific examples thereof include aliphatic amines, polyether amines, alicyclic amines, aromatic amines, and the like, and among them, aromatic amines are preferable. The amine-based resin is preferably a primary amine or a secondary amine, more preferably a primary amine. Specific examples of amine-based curing agents include 4,4'-methylenebis (2,6-dimethylaniline), diphenyldiaminosulfone, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylsulfone, 3,3'. -Diaminodiphenylsulfone, m-phenylenediamine, m-xylylenediamine, diethyltoluenediamine, 4,4'-diaminodiphenyl ether, 3,3'-dimethyl-4,4'-diaminobiphenyl, 2,2'-dimethyl- 4,4'-Diaminobiphenyl, 3,3'-dihydroxybenzidine, 2,2-bis (3-amino-4-hydroxyphenyl) propane, 3,3-dimethyl-5,5-diethyl-4,4-diphenylmethane Diamine, 2,2-bis (4-aminophenyl) propane, 2,2-bis (4- (4-aminophenoxy) phenyl) propane, 1,3-bis (3-aminophenoxy) benzene, 1,3- Bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 4,4'-bis (4-aminophenoxy) biphenyl, bis (4- (4-aminophenoxy) phenyl) sulfone, Examples thereof include bis (4- (3-aminophenoxy) phenyl) sulfone. Commercially available products may be used as the amine resin, for example, "KAYABOND C-200S", "KAYABOND C-100", "Kayahard AA", "Kayahard AB", "Kayahard" manufactured by Nippon Kayaku Corporation. Examples include "AS" and "Epicure W" manufactured by Mitsubishi Chemical Corporation.
 酸無水物系樹脂としては、例えば、1分子内中に1個以上の酸無水物基を有する樹脂が挙げられる。酸無水物系樹脂の具体例としては、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、メチルナジック酸無水物、水素化メチルナジック酸無水物、トリアルキルテトラヒドロ無水フタル酸、ドデセニル無水コハク酸、5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、無水トリメリット酸、無水ピロメリット酸、ベンソフェノンテトラカルボン酸二無水物、ビフェニルテトラカルボン酸二無水物、ナフタレンテトラカルボン酸二無水物、オキシジフタル酸二無水物、3,3’-4,4’-ジフェニルスルホンテトラカルボン酸二無水物、1,3,3a,4,5,9b-ヘキサヒドロ-5-(テトラヒドロ-2,5-ジオキソ-3-フラニル)-ナフト[1,2-C]フラン-1,3-ジオン、エチレングリコールビス(アンヒドロトリメリテート)、スチレンとマレイン酸とが共重合したスチレン・マレイン酸樹脂などのポリマー型の酸無水物などが挙げられる。 Examples of the acid anhydride-based resin include resins having one or more acid anhydride groups in one molecule. Specific examples of the acid anhydride-based resin include phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, methylnadic acid anhydride, and methylnadic hydride anhydride. Trialkyltetrahydrophthalic anhydride, succinic anhydride, 5- (2,5-dioxotetrahydro-3-furanyl) -3-methyl-3-cyclohexene-1,2-dicarboxylic acid anhydride, trimerit anhydride Acid, pyromellitic anhydride, benzophenone tetracarboxylic acid dianhydride, biphenyltetracarboxylic acid dianhydride, naphthalenetetracarboxylic acid dianhydride, oxydiphthalic acid dianhydride, 3,3'-4,4'-diphenyl Sulphontetracarboxylic dianhydride, 1,3,3a,4,5,9b-hexahydro-5- (tetrahydro-2,5-dioxo-3-furanyl) -naphtho [1,2-C] furan-1, Examples thereof include 3-dione, ethylene glycol bis (anhydrotrimeritate), and polymer-type acid anhydrides such as styrene / maleic acid resin in which styrene and maleic acid are copolymerized.
 熱硬化性樹脂としてエポキシ樹脂及び硬化剤を組み合わせて用いる場合、エポキシ樹脂と全ての硬化剤との量比は、[エポキシ樹脂のエポキシ基の合計数]:[硬化剤の反応基の合計数]の比率で、1:0.01~1:5の範囲が好ましく、1:0.5~1:3がより好ましく、1:1~1:2がさらに好ましい。ここで、「エポキシ樹脂のエポキシ基数」とは、樹脂組成物中に存在するエポキシ樹脂の不揮発成分の質量をエポキシ当量で除した値を全て合計した値である。また、「硬化剤の活性基数」とは、樹脂組成物中に存在する硬化剤の不揮発成分の質量を活性基当量で除した値を全て合計した値である。 When an epoxy resin and a curing agent are used in combination as a thermosetting resin, the amount ratio of the epoxy resin to all the curing agents is [total number of epoxy groups in the epoxy resin]: [total number of reactive groups in the curing agent]. The ratio is preferably in the range of 1: 0.01 to 1: 5, more preferably 1: 0.5 to 1: 3, and even more preferably 1: 1 to 1: 2. Here, the "number of epoxy groups in the epoxy resin" is a total value obtained by dividing the mass of the non-volatile component of the epoxy resin present in the resin composition by the epoxy equivalent. The "number of active groups of the curing agent" is a total value obtained by dividing the mass of the non-volatile component of the curing agent present in the resin composition by the active group equivalent.
 熱硬化性樹脂の量は、樹脂組成物中の不揮発成分100質量%に対して、好ましくは1質量%以上、より好ましくは3質量%以上、さらに好ましくは5質量%以上であり、好ましくは30質量%以下、より好ましくは25質量%以下、更に好ましくは20質量%以下である。熱硬化性樹脂の量が前記範囲にある場合、従来は充填性及び版離れ性の課題が生じ易かったので、本発明の効果を有効に活用する観点から、熱硬化性樹脂の量が前記の範囲に収まることが好ましい。 The amount of the thermosetting resin is preferably 1% by mass or more, more preferably 3% by mass or more, still more preferably 5% by mass or more, and preferably 30% by mass, based on 100% by mass of the non-volatile component in the resin composition. It is mass% or less, more preferably 25 mass% or less, still more preferably 20 mass% or less. When the amount of the thermosetting resin is within the above range, problems of filling property and plate release property have been liable to occur in the past. Therefore, from the viewpoint of effectively utilizing the effect of the present invention, the amount of the thermosetting resin is described above. It is preferable that it falls within the range.
 無機充填材100質量%に対する熱硬化性樹脂の量は、好ましくは1質量%以上、より好ましくは3質量%以上、更に好ましくは5質量%以上であり、好ましくは30質量%以下、より好ましくは25質量%以下、更に好ましくは20質量%以下である。熱硬化性樹脂の量が前記範囲にある場合、従来は充填性及び版離れ性の課題が生じ易かったので、本発明の効果を有効に活用する観点から、熱硬化性樹脂の量が前記の範囲に収まることが好ましい。 The amount of the thermosetting resin with respect to 100% by mass of the inorganic filler is preferably 1% by mass or more, more preferably 3% by mass or more, still more preferably 5% by mass or more, preferably 30% by mass or less, more preferably. It is 25% by mass or less, more preferably 20% by mass or less. When the amount of the thermosetting resin is within the above range, problems of filling property and plate release property have been liable to occur in the past. Therefore, from the viewpoint of effectively utilizing the effect of the present invention, the amount of the thermosetting resin is described above. It is preferable that it falls within the range.
 樹脂組成物は、更に、任意の成分として、硬化促進剤を含んでいてもよい。硬化促進剤としては、例えば、アミン系硬化促進剤、イミダゾール系硬化促進剤、リン系硬化促進剤、グアニジン系硬化促進剤、金属系硬化促進剤等が挙げられる。硬化促進剤は、樹脂組成物の粘度を低下させる観点から、アミン系硬化促進剤、イミダゾール系硬化促進剤が好ましい。硬化促進剤は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 The resin composition may further contain a curing accelerator as an arbitrary component. Examples of the curing accelerator include amine-based curing accelerators, imidazole-based curing accelerators, phosphorus-based curing accelerators, guanidine-based curing accelerators, and metal-based curing accelerators. As the curing accelerator, an amine-based curing accelerator and an imidazole-based curing accelerator are preferable from the viewpoint of reducing the viscosity of the resin composition. One type of curing accelerator may be used alone, or two or more types may be used in combination.
 アミン系硬化促進剤としては、例えば、トリエチルアミン、トリブチルアミン等のトリアルキルアミン、4-ジメチルアミノピリジン、ベンジルジメチルアミン、2,4,6,-トリス(ジメチルアミノメチル)フェノール、1,8-ジアザビシクロ(5,4,0)-ウンデセン等が挙げられ、4-ジメチルアミノピリジン、1,8-ジアザビシクロ(5,4,0)-ウンデセンが好ましい。アミン系硬化促進剤としては、市販品を用いてもよく、例えば、味の素ファインテクノ社製の「PN-50」、「PN-23」、「MY-25」等が挙げられる。 Examples of the amine-based curing accelerator include trialkylamines such as triethylamine and tributylamine, 4-dimethylaminopyridine, benzyldimethylamine, 2,4,6, -tris (dimethylaminomethyl) phenol, and 1,8-diazabicyclo. Examples thereof include (5,4,0) -undecene, and 4-dimethylaminopyridine and 1,8-diazabicyclo (5,4,5) -undecene are preferable. As the amine-based curing accelerator, a commercially available product may be used, and examples thereof include "PN-50", "PN-23", and "MY-25" manufactured by Ajinomoto Fine-Techno.
 イミダゾール系硬化促進剤としては、例えば、2-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2,3-ジヒドロ-1H-ピロロ[1,2-a]ベンズイミダゾール、1-ドデシル-2-メチル-3-ベンジルイミダゾリウムクロライド、2-メチルイミダゾリン、2-フェニルイミダゾリン等のイミダゾール化合物及びイミダゾール化合物とエポキシ樹脂とのアダクト体が挙げられ、2-フェニル-4-メチルイミダゾールが好ましい。イミダゾール系硬化促進剤としては、市販品を用いてもよく、例えば、四国化成工業社製の「2P4MZ」、「2PHZ-PW」;三菱ケミカル社製の「P200-H50」等が挙げられる。 Examples of the imidazole-based curing accelerator include 2-methylimidazole, 2-undecyl imidazole, 2-heptadecyl imidazole, 1,2-dimethyl imidazole, 2-ethyl-4-methyl imidazole, 1,2-dimethyl imidazole, and the like. 2-Ethyl-4-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole, 1-Cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl- 2-Phenylimidazolium trimerite, 2,4-diamino-6- [2'-methylimidazolyl- (1')]-ethyl-s-triazine, 2,4-diamino-6- [2'-undecyl Imidazolyl- (1')]-ethyl-s-triazine, 2,4-diamino-6- [2'-ethyl-4'-methylimidazolyl- (1')]-ethyl-s-triazine, 2,4- Diamino-6- [2'-methylimidazolyl- (1')]-ethyl-s-triazine isocyanuric acid adduct, 2-phenylimidazole isocyanuric acid adduct, 2-phenyl-4,5-dihydroxymethylimidazole, 2- Phenyl-4-methyl-5-hydroxymethylimidazole, 2,3-dihydro-1H-pyrrolo [1,2-a] benzimidazole, 1-dodecyl-2-methyl-3-benzylimidazolium chloride, 2-methylimidazoline , 2-Phenylimidazoline and other imidazole compounds and adducts of the imidazole compound and an epoxy resin are mentioned, with 2-phenyl-4-methylimidazole being preferred. As the imidazole-based curing accelerator, a commercially available product may be used, and examples thereof include "2P4MZ" and "2PHZ-PW" manufactured by Shikoku Chemicals Corporation; "P200-H50" manufactured by Mitsubishi Chemical Corporation.
 リン系硬化促進剤としては、例えば、トリフェニルホスフィン、ホスホニウムボレート化合物、テトラフェニルホスホニウムテトラフェニルボレート、n-ブチルホスホニウムテトラフェニルボレート、テトラブチルホスホニウムデカン酸塩、(4-メチルフェニル)トリフェニルホスホニウムチオシアネート、テトラフェニルホスホニウムチオシアネート、ブチルトリフェニルホスホニウムチオシアネート等が挙げられ、トリフェニルホスフィン、テトラブチルホスホニウムデカン酸塩が好ましい。 Examples of the phosphorus-based curing accelerator include triphenylphosphine, phosphonium borate compound, tetraphenylphosphonium tetraphenylborate, n-butylphosphonium tetraphenylborate, tetrabutylphosphonium decanoate, and (4-methylphenyl) triphenylphosphonium thiocyanate. , Tetraphenylphosphonium thiocyanate, butyltriphenylphosphonium thiocyanate and the like, and triphenylphosphine and tetrabutylphosphonium decanoate are preferable.
 グアニジン系硬化促進剤としては、例えば、ジシアンジアミド、1-メチルグアニジン、1-エチルグアニジン、1-シクロヘキシルグアニジン、1-フェニルグアニジン、1-(o-トリル)グアニジン、ジメチルグアニジン、ジフェニルグアニジン、トリメチルグアニジン、テトラメチルグアニジン、ペンタメチルグアニジン、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン、1-メチルビグアニド、1-エチルビグアニド、1-n-ブチルビグアニド、1-n-オクタデシルビグアニド、1,1-ジメチルビグアニド、1,1-ジエチルビグアニド、1-シクロヘキシルビグアニド、1-アリルビグアニド、1-フェニルビグアニド、1-(o-トリル)ビグアニド等が挙げられ、ジシアンジアミド、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エンが好ましい。 Examples of the guanidine-based curing accelerator include dicyandiamide, 1-methylguanidine, 1-ethylguanidine, 1-cyclohexylguanidine, 1-phenylguanidine, 1- (o-tolyl) guanidine, dimethylguanidine, diphenylguanidine, and trimethylguanidine. Tetramethylguanidine, pentamethylguanidine, 1,5,7-triazabicyclo [4.4.0] deca-5-ene, 7-methyl-1,5,7-triazabicyclo [4.4.0] Deca-5-ene, 1-methylbiguanide, 1-ethylbiguanide, 1-n-butylbiguanide, 1-n-octadesylbiguanide, 1,1-dimethylbiguanide, 1,1-diethylbiguanide, 1-cyclohexylbiguanide, 1 Examples thereof include allylbiguanide, 1-phenylbiguanide, 1- (o-tolyl) biganide, and dicyandiamide, 1,5,7-triazabicyclo [4.4.0] deca-5-ene is preferable.
 金属系硬化促進剤としては、例えば、コバルト、銅、亜鉛、鉄、ニッケル、マンガン、スズ等の金属の、有機金属錯体又は有機金属塩が挙げられる。有機金属錯体の具体例としては、コバルト(II)アセチルアセトナート、コバルト(III)アセチルアセトナート等の有機コバルト錯体、銅(II)アセチルアセトナート等の有機銅錯体、亜鉛(II)アセチルアセトナート等の有機亜鉛錯体、鉄(III)アセチルアセトナート等の有機鉄錯体、ニッケル(II)アセチルアセトナート等の有機ニッケル錯体、マンガン(II)アセチルアセトナート等の有機マンガン錯体等が挙げられる。有機金属塩としては、例えば、オクチル酸亜鉛、オクチル酸錫、ナフテン酸亜鉛、ナフテン酸コバルト、ステアリン酸スズ、ステアリン酸亜鉛等が挙げられる。 Examples of the metal-based curing accelerator include organometallic complexes or organometallic salts of metals such as cobalt, copper, zinc, iron, nickel, manganese, and tin. Specific examples of the organic metal complex include an organic cobalt complex such as cobalt (II) acetylacetonate and cobalt (III) acetylacetonate, an organic copper complex such as copper (II) acetylacetonate, and zinc (II) acetylacetonate. Examples thereof include organic zinc complexes such as iron (III) acetylacetonate, organic nickel complexes such as nickel (II) acetylacetonate, and organic manganese complexes such as manganese (II) acetylacetonate. Examples of the organic metal salt include zinc octylate, tin octylate, zinc naphthenate, cobalt naphthenate, tin stearate, zinc stearate and the like.
 硬化促進剤の量は、樹脂組成物の粘度を下げる観点から、樹脂組成物中の不揮発成分100質量%に対して、好ましくは0.1質量%以上、より好ましくは0.3質量%以上、さらに好ましくは0.5質量%以上であり、好ましくは5質量%以下、より好ましくは3質量%以下、さらに好ましくは1質量%以下である。 The amount of the curing accelerator is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, based on 100% by mass of the non-volatile component in the resin composition from the viewpoint of lowering the viscosity of the resin composition. It is more preferably 0.5% by mass or more, preferably 5% by mass or less, more preferably 3% by mass or less, still more preferably 1% by mass or less.
 樹脂組成物は、任意の成分として、分散剤を含んでいてもよい。分散剤としては、例えば、ポリオキシエチレンアルキルエーテルリン酸等のリン酸エステル系分散剤;ドデシルベンゼルスルホン酸ナトリウム、ラウリル酸ナトリウム、ポリオキシエチレンアルキルエーテルサルフェートのアンモニウム塩等のアニオン系分散剤;オルガノシロキサン系分散剤、アセチレングリコール、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルエステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンアルキルアミン、ポリオキシエチレンアルキルアミド等の非イオン性分散剤等が挙げられる。これらの中でも、アニオン性分散剤が好ましい。分散剤は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。 The resin composition may contain a dispersant as an arbitrary component. Examples of the dispersant include phosphate ester dispersants such as polyoxyethylene alkyl ether phosphoric acid; anionic dispersants such as sodium dodecylbenzel sulfonate, sodium laurate, and ammonium salts of polyoxyethylene alkyl ether sulfate; Non-ions such as organosiloxane dispersants, acetylene glycols, polyoxyethylene alkyl ethers, polyoxyethylene alkyl esters, polyoxyethylene sorbitan fatty acid esters, polyoxyethylene alkyl phenyl ethers, polyoxyethylene alkyl amines, and polyoxyethylene alkyl amides. Examples include sex dispersants. Of these, anionic dispersants are preferred. One type of dispersant may be used alone, or two or more types may be used in combination.
 リン酸エステル系分散剤は、市販品を用いることができる。市販品として、例えば東邦化学工業社製「フォスファノール」シリーズの「RS-410」、「RS-610」、「RS-710」等が挙げられる。 A commercially available product can be used as the phosphoric acid ester-based dispersant. Examples of commercially available products include "RS-410", "RS-610", "RS-710" and the like of the "Phosphanol" series manufactured by Toho Chemical Industry Co., Ltd.
 オルガノシロキサン系分散剤としては、市販品として、例えば、ビックケミー社製「BYK347」、「BYK348」等が挙げられる。 Examples of commercially available organosiloxane-based dispersants include "BYK347" and "BYK348" manufactured by Big Chemie.
 ポリオキシアルキレン系分散剤としては、市販品として、例えば、日油株式会社製「マリアリム」シリーズの「AKM-0531」、「AFB-1521」、「SC-0505K」、「SC-1015F」及び「SC-0708A」、並びに「HKM-50A」等が挙げられる。 Commercially available polyoxyalkylene dispersants include, for example, "AKM-0531", "AFB-1521", "SC-0505K", "SC-1015F" and "SC-1015F" of the "Marialim" series manufactured by NOF CORPORATION. "SC-0708A", "HKM-50A" and the like can be mentioned.
 アセチレングリコールとしては、市販品として、例えば、Air Products and Chemicals Inc.製「サーフィノール」シリーズの「82」、「104」、「440」、「465」及び「485」、並びに「オレフィンY」等が挙げられる。 As the acetylene glycol, as a commercially available product, for example, Air Products and Chemicals Inc. Examples thereof include "82", "104", "440", "465" and "485", and "Olefin Y" of the "Surfinol" series manufactured by Japan.
 分散剤の量は、樹脂組成物中の不揮発成分100質量%に対して、好ましくは0.1質量%以上、より好ましくは0.3質量%以上、さらに好ましくは0.5質量%以上であり、好ましくは5質量%以下、より好ましくは3質量%以下、さらに好ましくは1質量%以下である。 The amount of the dispersant is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, still more preferably 0.5% by mass or more, based on 100% by mass of the non-volatile component in the resin composition. It is preferably 5% by mass or less, more preferably 3% by mass or less, and further preferably 1% by mass or less.
 樹脂組成物は、任意の成分として、例えば、熱硬化性樹脂;ポットライフ向上のためのホウ酸トリエチル等の硬化遅延剤;難燃剤;有機充填材;有機銅化合物、有機亜鉛化合物及び有機コバルト化合物等の有機金属化合物;増粘剤;消泡剤;レベリング剤;密着性付与剤;着色剤;を含んでいてもよい。 The resin composition may contain, for example, a thermosetting resin; a curing retardant such as triethyl borate for improving pot life; a flame retardant; an organic filler; an organic copper compound, an organic zinc compound and an organic cobalt compound. And the like; an organometallic compound; a thickener; an antifoaming agent; a leveling agent; an adhesion imparting agent; a coloring agent; may be contained.
 樹脂組成物は、溶剤を含んでいてもよい。ただし、樹脂組成物中の溶剤の量は、少ないことが好ましい。さらには、樹脂組成物は、溶剤を含まないことが特に好ましい。具体的には、樹脂組成物中の溶剤の量は、樹脂組成物の全質量100質量%に対して、好ましくは1.0質量%未満、より好ましくは0.8質量%以下、さらに好ましくは0.5質量%以下、特に好ましくは0.1質量%以下である。下限は、特に制限はないが0.001質量%以上、又は含有しないことである。樹脂組成物中の溶剤の量が少ないことにより、溶剤の揮発によるボイドの発生を抑制することができるうえに、真空印刷への適応も可能となる。 The resin composition may contain a solvent. However, the amount of the solvent in the resin composition is preferably small. Furthermore, it is particularly preferable that the resin composition does not contain a solvent. Specifically, the amount of the solvent in the resin composition is preferably less than 1.0% by mass, more preferably 0.8% by mass or less, still more preferably, based on 100% by mass of the total mass of the resin composition. It is 0.5% by mass or less, particularly preferably 0.1% by mass or less. The lower limit is 0.001% by mass or more, or no content, without particular limitation. Since the amount of the solvent in the resin composition is small, it is possible to suppress the generation of voids due to the volatilization of the solvent, and it is also possible to adapt to vacuum printing.
 樹脂組成物は、上述した第一印刷工程及び第二印刷工程において、ペースト状でありうる。第一印刷工程及び第二印刷工程におけるペースト状の樹脂組成物の粘度は、好ましくは50Pa・s以上、より好ましくは60Pa・s以上、更に好ましくは70Pa・s以上である。樹脂組成物の粘度が前記のように大きい場合、従来は充填性及び版離れ性の課題が生じ易かったので、本発明の効果を有効に活用する観点から、第一印刷工程及び第二印刷工程における樹脂組成物の粘度が前記の範囲に収まることが好ましい。粘度の上限は、印刷時の気泡の抜けやすさの観点から、好ましくは200Pa・s以下、より好ましくは190Pa・s以下、更に好ましくは180Pa・s以下である。第一印刷工程における樹脂組成物の粘度と、第二印刷工程における樹脂組成物の粘度とは、同じでもよく、異なっていてもよい。また、粘度は、E型粘度計を用いて測定することができる。 The resin composition may be in the form of a paste in the first printing step and the second printing step described above. The viscosity of the paste-like resin composition in the first printing step and the second printing step is preferably 50 Pa · s or more, more preferably 60 Pa · s or more, and further preferably 70 Pa · s or more. When the viscosity of the resin composition is high as described above, problems of filling property and plate release property have been liable to occur in the past. Therefore, from the viewpoint of effectively utilizing the effects of the present invention, the first printing step and the second printing step It is preferable that the viscosity of the resin composition in the above range is within the above range. The upper limit of the viscosity is preferably 200 Pa · s or less, more preferably 190 Pa · s or less, still more preferably 180 Pa · s or less, from the viewpoint of easy removal of air bubbles during printing. The viscosity of the resin composition in the first printing step and the viscosity of the resin composition in the second printing step may be the same or different. The viscosity can also be measured using an E-type viscometer.
 前記の樹脂組成物は、例えば、当該樹脂組成物の各成分を、3本ロール、回転ミキサーなどの撹拌装置を用いて撹拌する方法によって、製造できる。 The resin composition can be produced, for example, by a method of stirring each component of the resin composition using a stirring device such as a three-roll or rotary mixer.
 以下、実施例を示して本発明についてより具体的に説明する。ただし、本発明は、下記の実施例に限定されるものではない。なお、以下の記載において、「部」及び「%」は、別途明示のない限り、それぞれ「質量部」及び「質量%」を意味する。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples. In the following description, "parts" and "%" mean "parts by mass" and "% by mass", respectively, unless otherwise specified.
 また、以下の説明において、ゴム硬度は、デュロメータ(タイプA)によって測定した値を表す。 Further, in the following description, the rubber hardness represents a value measured by a durometer (type A).
[製造例1:穴埋め充填用の磁性ペーストの製造]
 エポキシ樹脂(「ZX-1059」、ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂の混合品、新日鉄住金化学社製)10質量部、エポキシ樹脂(「ED-523T」、低粘度エポキシ樹脂、ADEKA社製)5部、分散剤(「RS-710」、高分子アニオン系分散剤、東邦化学社製)1質量部、硬化促進剤(「2P4MZ」、イミダゾール系硬化促進剤、四国化成社製)1質量部、磁性粉体(「M05S」、Fe-Mn系フェライト、平均粒径3μm、パウダーテック社製)100質量部、及び、有機化されたスメクタイト(「スメクトンSTN」、トリオクチルメチルアンモニウム処理ヘクトライト、クニミネ工業社製)2質量部を混合し、3本ロールで均一に分散して、樹脂組成物としての磁性ペーストを調製した。
[Manufacturing Example 1: Production of magnetic paste for filling holes]
Epoxy resin ("ZX-1059", a mixture of bisphenol A type epoxy resin and bisphenol F type epoxy resin, manufactured by Nippon Steel & Sumitomo Metal Corporation) 10 parts by mass, epoxy resin ("ED-523T", low viscosity epoxy resin, ADEKA) 5 parts, dispersant ("RS-710", polymer anionic dispersant, manufactured by Toho Kagaku Co., Ltd.), 1 part by mass, curing accelerator ("2P4MZ", imidazole-based curing accelerator, manufactured by Shikoku Kasei Co., Ltd.) 1 Parts by mass, magnetic powder ("M05S", Fe-Mn-based ferrite, average particle size 3 μm, manufactured by Powder Tech) 100 parts by mass, and organicized smectite ("Smecton STN", trioctylmethylammonium-treated epoxy) Wright, manufactured by Kunimine Kogyo Co., Ltd.) 2 parts by mass were mixed and uniformly dispersed by 3 rolls to prepare a magnetic paste as a resin composition.
 前記の磁性ペーストの温度を、後述する実施例及び比較例における第一印刷工程及び第二印刷工程と同じ25℃に保ち、E型粘度計(東機産業社製「RE-80U」、3°×R9.7コーン、回転数は5rpm)を用いて、粘度を測定した。測定の結果、粘度は170Pa・sであった。 Keep the temperature of the magnetic paste at 25 ° C, which is the same as the first printing step and the second printing step in Examples and Comparative Examples described later, and use an E-type viscometer (“RE-80U” manufactured by Toki Sangyo Co., Ltd., 3 ° C. The viscosity was measured using a × R9.7 cone (rotation speed is 5 rpm). As a result of the measurement, the viscosity was 170 Pa · s.
 また、下記の方法により、磁性ペーストの硬化物の比透磁率及び磁性損失を測定した。
 支持体として、シリコン系離型剤処理を施したポリエチレンテレフタレート(PET)フィルム(リンテック社製「PET501010」、厚さ50μm)を用意した。磁性ペーストを上記PETフィルムの離型面上に、乾燥後のペースト層の厚みが100μmとなるよう、ドクターブレードにて均一に塗布し、樹脂シートを得た。得られた樹脂シートを130℃で30分間加熱することによりペースト層を熱硬化し、支持体を剥離して、シート状の硬化物を得た。得られた硬化物を、幅5mm、長さ18mmの試験片に切断し、評価サンプルとした。この評価サンプルを、アジレントテクノロジーズ(Agilent Technologies社製、「HP8362B」)を用いて、3ターンコイル法にて測定周波数を100MHzとし、室温23℃にて比透磁率(μ’)及び磁性損失(μ’’)を測定した。測定の結果、比透磁率は7.5、磁性損失は0.1であった。
In addition, the specific magnetic permeability and magnetic loss of the cured product of the magnetic paste were measured by the following methods.
As a support, a polyethylene terephthalate (PET) film (“PET501010” manufactured by Lintec Corporation, thickness 50 μm) treated with a silicon-based release agent was prepared. The magnetic paste was uniformly applied on the release surface of the PET film with a doctor blade so that the thickness of the paste layer after drying was 100 μm to obtain a resin sheet. The obtained resin sheet was heated at 130 ° C. for 30 minutes to thermally cure the paste layer, and the support was peeled off to obtain a sheet-like cured product. The obtained cured product was cut into test pieces having a width of 5 mm and a length of 18 mm to prepare an evaluation sample. Using Agilent Technologies (manufactured by Agilent Technologies, "HP8362B"), this evaluation sample was measured at a measurement frequency of 100 MHz by a 3-turn coil method, and the specific magnetic permeability (μ') and magnetic loss (μ') were set at room temperature of 23 ° C. '') Was measured. As a result of the measurement, the relative permeability was 7.5 and the magnetic loss was 0.1.
[実施例1]
(1-1.支持基板の用意)
 複数のスルーホールが均一に形成された支持基板(ガラス布にエポキシ樹脂を含浸及び硬化させた基板。厚み700μm。)を用意した。スルーホールは円筒形の孔であり、その直径(図1の直径W110参照)は350μm、スルーホール間の間隔(図1の間隔P110参照)は100μmであった。
[Example 1]
(1-1. Preparation of support board)
A support substrate (a substrate obtained by impregnating and curing a glass cloth with an epoxy resin, having a thickness of 700 μm) having a plurality of through holes uniformly formed was prepared. The through holes were cylindrical holes, the diameter thereof (see diameter W 110 in FIG. 1) was 350 μm, and the distance between the through holes (see distance P 110 in FIG. 1) was 100 μm.
(1-2.マスクの用意)
 マスクとして、厚み50μmの金属製の平板に、中空状の孔としての開口部が形成されたメタルマスクを用意した。開口部の平面形状は、20mm角の正方形であった。
(1-2. Preparation of mask)
As a mask, a metal mask in which an opening as a hollow hole was formed on a metal flat plate having a thickness of 50 μm was prepared. The planar shape of the opening was a 20 mm square.
(1-3.磁性ペーストの印刷)
 前記のマスクを用いて、支持基板に、下記の要領で磁性ペーストを印刷した。なお、印刷は、真空高精度スクリーン印刷機(ニューロング精密工業社製「LS-100VC」)を用いて行った。
(1-3. Printing of magnetic paste)
Using the above mask, the magnetic paste was printed on the support substrate in the following manner. The printing was performed using a vacuum high-precision screen printing machine (“LS-100VC” manufactured by Neurongue Precision Industry Co., Ltd.).
 (1-3-1.設置工程)
 支持基板の一側に、マスクを設置した。このとき、マスクは、マスクの開口部1つが、支持基板の複数のスルーホールに連通するように設置した。
(1-3-1. Installation process)
A mask was installed on one side of the support substrate. At this time, the mask was installed so that one opening of the mask communicated with a plurality of through holes of the support substrate.
 (1-3-2.供給工程)
 その後、マスクの支持基板とは反対側の面に、磁性ペーストを供給した。
(1-3-2. Supply process)
Then, the magnetic paste was supplied to the surface of the mask opposite to the support substrate.
 (1-3-3.第一印刷工程)
 その後、弾性材料としてのゴムで形成された第一スキージとしてのゴムスキージ(ニューロング精密工業製「SVFSQ」、厚み9mm、ゴム硬度90度)を、マスクの面上で、当該面に沿って移動させて、樹脂組成物の印刷を行った。第一スキージのアタック角度は20°、印圧は4.4MPa、印刷速度は5mm/secであった。第一スキージは、当該第一スキージの移動方向の前方に磁性ペーストのペースト溜りを維持しながら、マスクの開口部を横切るように移動した。この操作により、磁性ペーストが第一スキージで掃引され、スルーホールへの磁性ペーストの充填が行われた。
(1-3-3. First printing process)
After that, a rubber squeegee (“SVFSQ” manufactured by Neurongue Precision Industries, thickness 9 mm, rubber hardness 90 degrees) formed of rubber as an elastic material is moved along the surface of the mask. The resin composition was printed. The attack angle of the first squeegee was 20 °, the printing pressure was 4.4 MPa, and the printing speed was 5 mm / sec. The first squeegee moved across the opening of the mask while maintaining a paste pool of magnetic paste in front of the first squeegee in the direction of movement. By this operation, the magnetic paste was swept by the first squeegee, and the through holes were filled with the magnetic paste.
 第一印刷工程後の支持基板を観察したところ、マスクの開口部に現れた支持基板表面のスルーホール周辺を含むエリアには、磁性ペーストが付着していない箇所があった。よって、第一印刷工程で第一スキージが開口部を横切るとき、第一スキージの一部が開口部の内部に押し込まれて支持基板に接していたことが確認された。 When observing the support substrate after the first printing process, there was a place where the magnetic paste did not adhere to the area including the through hole on the surface of the support substrate that appeared in the opening of the mask. Therefore, it was confirmed that when the first squeegee crossed the opening in the first printing step, a part of the first squeegee was pushed into the opening and was in contact with the support substrate.
 (1-3-4.第二印刷工程)
 その後、第一スキージと同一のゴムスキージを第二スキージとして用いて、第一印刷工程でスルーホールに充填されなかった残りの磁性ペーストの印刷を行った。具体的には、印刷速度を100mm/secへと変更したこと以外は、第一印刷工程と同じ操作を行った。第二スキージは、当該第二スキージの移動方向の前方に磁性ペーストのペースト溜りを維持しながら、マスクの開口部を横切るように移動した。この操作により、磁性ペーストが第二スキージで掃引され、スルーホールに充填された樹脂組成物上に、更に樹脂組成物が塗布された。
(1-3-4. Second printing process)
Then, the same rubber squeegee as the first squeegee was used as the second squeegee to print the remaining magnetic paste that was not filled in the through holes in the first printing step. Specifically, the same operation as in the first printing step was performed except that the printing speed was changed to 100 mm / sec. The second squeegee moved across the opening of the mask while maintaining a paste pool of magnetic paste in front of the second squeegee in the direction of movement. By this operation, the magnetic paste was swept by the second squeegee, and the resin composition was further applied onto the resin composition filled in the through holes.
 第二印刷工程後の支持基板を観察したところ、マスクの開口部に現れた支持基板の全体に磁性ペーストが付着していた。よって、第二印刷工程で第二スキージが開口部を横切るとき、第二スキージが支持基板に接さず、第二スキージと支持基板との間には磁性ペーストが進入できる間隙が空いていたことが確認された。 When observing the support substrate after the second printing process, the magnetic paste was attached to the entire support substrate that appeared in the opening of the mask. Therefore, when the second squeegee crosses the opening in the second printing process, the second squeegee does not contact the support substrate, and there is a gap between the second squeegee and the support substrate so that the magnetic paste can enter. Was confirmed.
(1-4.磁性ペーストの硬化)
 前記の印刷により、支持基板及び樹脂組成物層を備える充填基板を得た。この充填基板を130℃で30分加熱した。この加熱により、樹脂組成物層が熱硬化されて充填層が形成されることにより、穴埋め基板を得た。
(1-4. Curing of magnetic paste)
By the above printing, a filled substrate provided with a support substrate and a resin composition layer was obtained. The filled substrate was heated at 130 ° C. for 30 minutes. By this heating, the resin composition layer was thermoset to form a packed layer, thereby obtaining a hole-filling substrate.
[実施例2]
 第一印刷工程を、3回繰り返して行った。また、第二印刷工程における第二スキージの印刷速度を、60mm/secへと変更した。
 以上の事項以外は、実施例1と同じ操作を行って、穴埋め基板を得た。
[Example 2]
The first printing step was repeated three times. Further, the printing speed of the second squeegee in the second printing step was changed to 60 mm / sec.
Except for the above items, the same operation as in Example 1 was performed to obtain a hole-filling substrate.
 この実施例2でも、実施例1と同様に、第一印刷工程で第一スキージが開口部を横切るときに第一スキージの一部が開口部の内部に押し込まれて支持基板に接していたこと、及び、第二印刷工程で第二スキージが開口部を横切るときに第二スキージが支持基板に接さないように移動していたことが確認された。 In the second embodiment as well, similarly to the first embodiment, when the first squeegee crosses the opening in the first printing process, a part of the first squeegee is pushed into the opening and is in contact with the support substrate. In the second printing process, it was confirmed that the second squeegee moved so as not to touch the support substrate when the second squeegee crossed the opening.
[実施例3]
 第一印刷工程における第一スキージの印刷速度を、3mm/secへと変更した。また、第二印刷工程における第二スキージの印刷速度を、75mm/secへと変更した。
 以上の事項以外は、実施例1と同じ操作を行って、穴埋め基板を得た。
[Example 3]
The printing speed of the first squeegee in the first printing step was changed to 3 mm / sec. Further, the printing speed of the second squeegee in the second printing step was changed to 75 mm / sec.
Except for the above items, the same operation as in Example 1 was performed to obtain a hole-filling substrate.
 この実施例3でも、実施例1と同様に、第一印刷工程で第一スキージが開口部を横切るときに第一スキージの一部が開口部の内部に押し込まれて支持基板に接していたこと、及び、第二印刷工程で第二スキージが開口部を横切るときに第二スキージが支持基板に接さないように移動していたことが確認された。 In the third embodiment as well, similarly to the first embodiment, when the first squeegee crosses the opening in the first printing process, a part of the first squeegee is pushed into the opening and is in contact with the support substrate. In the second printing process, it was confirmed that the second squeegee moved so as not to touch the support substrate when the second squeegee crossed the opening.
[実施例4]
 第二スキージを、弾性率が大きい剛性材料としての金属で形成されたメタルスキージに変更した。また、第二印刷工程における第二スキージの印刷速度を、5mm/secへと変更した。
 以上の事項以外は、実施例1と同じ操作を行って、穴埋め基板を得た。
[Example 4]
The second squeegee was changed to a metal squeegee made of metal as a rigid material having a high elastic modulus. Further, the printing speed of the second squeegee in the second printing step was changed to 5 mm / sec.
Except for the above items, the same operation as in Example 1 was performed to obtain a hole-filling substrate.
 この実施例4でも、実施例1と同様に、第一印刷工程で第一スキージが開口部を横切るときに第一スキージの一部が開口部の内部に押し込まれて支持基板に接していたこと、及び、第二印刷工程で第二スキージが開口部を横切るときに第二スキージが支持基板に接さないように移動していたことが確認された。 In the fourth embodiment as well, similarly to the first embodiment, when the first squeegee crosses the opening in the first printing process, a part of the first squeegee is pushed into the opening and is in contact with the support substrate. In the second printing process, it was confirmed that the second squeegee moved so as not to touch the support substrate when the second squeegee crossed the opening.
[比較例1]
 第二印刷工程を実施しなかったこと以外は、実施例1と同じ操作を行って、穴埋め基板を得た。
[Comparative Example 1]
The same operation as in Example 1 was performed except that the second printing step was not performed, to obtain a hole-filling substrate.
[比較例2]
 版厚(マスク部の厚み)138μm、メッシュカウント#120のスクリーンマスクを用意した。ここで、メッシュカウントとは、1インチ当たりの線材(即ち、メッシュを形成する線材)の数を表す。このスクリーンマスクは、磁性ペーストを透過させない乳剤層が設けられたマスク部と、乳剤層が無くメッシュが露出したメッシュ部を有していた。メッシュ部は、メッシュの開口を通して磁性ペーストが通過可能であり、その平面形状は20mm角の正方形であった。
[Comparative Example 2]
A screen mask having a plate thickness (thickness of the mask portion) of 138 μm and a mesh count of # 120 was prepared. Here, the mesh count represents the number of wire rods per inch (that is, the wire rods forming the mesh). This screen mask had a mask portion provided with an emulsion layer that did not allow the magnetic paste to permeate, and a mesh portion in which the mesh was exposed without the emulsion layer. The magnetic paste was able to pass through the mesh portion through the opening of the mesh, and its planar shape was a square of 20 mm square.
 支持基板の一側に設置するマスクとして、メタルマスクの代わりに、前記のスクリーンマスクを用いた。スクリーンマスクは、スクリーンマスクのメッシュ部1つが、支持基板の複数のスルーホールに連通するように設置した。このようなスクリーンマスクを用いた場合、メッシュ部のメッシュが妨げとなり、第一スキージ及び第二スキージは支持基板に接触できない。
 また、第二印刷工程を実施しなかった。
 以上の事項以外は、実施例1と同じ操作を行って、穴埋め基板を得た。
As a mask to be installed on one side of the support substrate, the above-mentioned screen mask was used instead of the metal mask. The screen mask was installed so that one mesh portion of the screen mask communicated with a plurality of through holes of the support substrate. When such a screen mask is used, the mesh of the mesh portion becomes an obstacle, and the first squeegee and the second squeegee cannot contact the support substrate.
Moreover, the second printing process was not carried out.
Except for the above items, the same operation as in Example 1 was performed to obtain a hole-filling substrate.
[比較例3]
 第一スキージ及び第二スキージを、弾性率が大きい剛性材料としての金属で形成されたメタルスキージに変更した。このメタルスキージは、弾性変形が小さいので、第一印刷工程で第一スキージが開口部を横切るときに第一スキージの一部が開口部の内部に押し込まれることができない。また、第二印刷工程における第二スキージの印刷速度を、5mm/secへと変更した。
 以上の事項以外は、実施例1と同じ操作を行って、穴埋め基板を得た。
[Comparative Example 3]
The first squeegee and the second squeegee were changed to metal squeegees made of metal as a rigid material having a high elastic modulus. Since this metal squeegee has a small elastic deformation, a part of the first squeegee cannot be pushed into the opening when the first squeegee crosses the opening in the first printing process. Further, the printing speed of the second squeegee in the second printing step was changed to 5 mm / sec.
Except for the above items, the same operation as in Example 1 was performed to obtain a hole-filling substrate.
[評価]
 上述した実施例及び比較例で得られた穴埋め基板の形状測定を、レーザー顕微鏡を用いて行った。測定結果から、下記の基準により、樹脂組成物の充填性、及び、樹脂組成物の層の窪みを評価した。
[Evaluation]
The shape of the hole-filling substrate obtained in the above-mentioned Examples and Comparative Examples was measured using a laser microscope. From the measurement results, the filling property of the resin composition and the depression of the layer of the resin composition were evaluated according to the following criteria.
 充填性の評価基準:
 「良」:穴埋め基板のウラ面において、支持基板よりも凹んだスルーホールが、無い。
 「不良」:穴埋め基板のウラ面において、支持基板よりも凹んだスルーホールが、1つ以上ある。
 ここで、「穴埋め基板のウラ面において、支持基板よりも凹んだスルーホール」とは、そのスルーホールに充填された充填層が、支持基板のウラ面よりも凹んでいるスルーホールを表す。すなわち、「穴埋め基板のウラ面において、支持基板よりも凹んだスルーホール」とは、そのスルーホールに充填された充填層のマスクとは反対側の面の位置が、支持基板のウラ面よりも、厚み方向において、マスクに近いスルーホールを表す。
Evaluation criteria for filling property:
"Good": There are no through holes recessed from the support substrate on the back surface of the hole-filling substrate.
"Defective": On the back surface of the hole-filling substrate, there is one or more through holes recessed from the support substrate.
Here, "a through hole recessed from the back surface of the hole-filling substrate" means a through hole in which the filling layer filled in the through hole is recessed from the back surface of the support substrate. That is, "a through hole recessed from the support substrate on the back surface of the hole-filling substrate" means that the position of the surface of the filling layer filled in the through hole on the opposite side of the mask is larger than the back surface of the support substrate. , Represents a through hole close to the mask in the thickness direction.
 窪みの評価基準:
 「良」:穴埋め基板のオモテ面において、支持基板よりも凹んだスルーホールが、無い。
 「不良」:穴埋め基板のオモテ面において、支持基板よりも凹んだスルーホールが、1つ以上ある。
 ここで、「穴埋め基板のオモテ面において、支持基板よりも凹んだスルーホール」とは、そのスルーホールに充填された充填層が、支持基板のオモテ面よりも凹んでいるスルーホールを表す。すなわち、「穴埋め基板のオモテ面において、支持基板よりも凹んだスルーホール」とは、そのスルーホールに充填された充填層のマスク側の面の位置が、支持基板のオモテ面よりも、厚み方向において、マスクから遠いスルーホールを表す。
Evaluation criteria for dents:
"Good": There are no through holes recessed from the support substrate on the front surface of the hole-filling substrate.
"Defective": There is one or more through holes recessed from the support substrate on the front surface of the hole-filling substrate.
Here, "a through hole recessed from the front surface of the hole-filling substrate" means a through hole in which the filling layer filled in the through hole is recessed from the front surface of the support substrate. That is, "through holes recessed from the support substrate on the front surface of the hole-filling substrate" means that the position of the mask-side surface of the filling layer filled in the through holes is in the thickness direction of the front surface of the support substrate. Represents a through hole far from the mask.
[結果]
 上述した実施例及び比較例の結果を、下記の表に示す。
[result]
The results of the above-mentioned Examples and Comparative Examples are shown in the table below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[検討]
 比較例2に示すように、スクリーンマスクを用いた場合、窪みの評価が不良であった。具体的には、スクリーンマスクの剥離時に、メッシュ部に磁性ペーストの一部が付着し、その付着した磁性ペーストの分だけスルーホールの入り口に磁性ペーストの無い部分が生じ、この部分が窪みとなっていた。また、比較例2では、磁性ペーストがメッシュ部内で支持基板のオモテ面に沿って移動し、メッシュ部の中央部では磁性ペーストに加わる圧力が弱くなったため、スルーホールの充填が不十分な部分があった。具体的には、メッシュ部の中央付近において充填が不十分であった。
[Consideration]
As shown in Comparative Example 2, when the screen mask was used, the evaluation of the dent was poor. Specifically, when the screen mask is peeled off, a part of the magnetic paste adheres to the mesh portion, and a portion without the magnetic paste is generated at the entrance of the through hole by the amount of the adhered magnetic paste, and this portion becomes a dent. Was there. Further, in Comparative Example 2, the magnetic paste moved along the front surface of the support substrate in the mesh portion, and the pressure applied to the magnetic paste became weaker in the central portion of the mesh portion, so that the through holes were not sufficiently filled. there were. Specifically, the filling was insufficient near the center of the mesh portion.
 比較例3に示すように、第一スキージとしてメタルスキージを用いると、このメタルスキージがマスクの開口部を横切るように移動する際、マスクの開口部の内部に押し込まれることができなかった。そのため、十分な圧力で磁性ペーストをスルーホールに押し込むことができなかったので、開口部の中央付近において磁性ペーストを奥まで充填できないスルーホールが生じ、充填性が不良となった。 As shown in Comparative Example 3, when a metal squeegee was used as the first squeegee, when the metal squeegee moved across the opening of the mask, it could not be pushed into the opening of the mask. Therefore, since the magnetic paste could not be pushed into the through hole with sufficient pressure, a through hole in which the magnetic paste could not be filled to the back was generated near the center of the opening, resulting in poor filling property.
 比較例1では、第一スキージとしてのゴムスキージが、マスクの開口部を横切るように移動する際、開口部の内部に押し込まれて支持基板に接触できる。よって、第一スキージがスルーホールを塞ぐようにして移動できるので、磁性ペーストは面内方向に移動せず、その結果、十分な圧力で磁性ペーストをスルーホールに押し込むことができた。よって、いずれのスルーホールでも磁性ペーストを奥まで充填でき、充填性を良好にできた。
 しかし、ゴムスキージとしての第一スキージは、弾性変形して部分的にスルーホールに侵入する。そして、第一スキージが進入した分だけスルーホールの入り口に磁性ペーストの無い部分が生じ、この部分が窪みとなった。
In Comparative Example 1, when the rubber squeegee as the first squeegee moves across the opening of the mask, it can be pushed into the inside of the opening and come into contact with the support substrate. Therefore, since the first squeegee can move so as to close the through hole, the magnetic paste does not move in the in-plane direction, and as a result, the magnetic paste can be pushed into the through hole with sufficient pressure. Therefore, the magnetic paste can be filled deeply in any of the through holes, and the filling property can be improved.
However, the first squeegee as a rubber squeegee is elastically deformed and partially invades the through hole. Then, as much as the first squeegee entered, a portion without magnetic paste was generated at the entrance of the through hole, and this portion became a dent.
 これに対し、実施例では、スルーホールの入り口の窪みを埋める第二印刷工程を行ったので、窪みを無くすことができた。また、実施例では、比較例1と同じく、充填性が良好であった。さらに、前記の実施例では、マスクを、1つの開口部が2つ以上のスルーホールと連通するように、支持基板上に設置したので、精密な位置合わせが不要であった。よって、精密な位置の調整を省略できる分、操作を簡単にできた。したがって、これらの実施例の結果から、本発明の印刷方法が、支持基板の複数のスルーホールへ樹脂組成物を容易且つ良好な充填性で充填でき、更にはスルーホールに充填された樹脂組成物の窪みを抑制できることが確認された。 On the other hand, in the embodiment, the second printing step of filling the dent at the entrance of the through hole was performed, so that the dent could be eliminated. Further, in the example, the filling property was good as in the comparative example 1. Further, in the above embodiment, since the mask is installed on the support substrate so that one opening communicates with two or more through holes, precise alignment is not required. Therefore, the operation can be simplified because the precise position adjustment can be omitted. Therefore, from the results of these examples, the printing method of the present invention can easily and easily fill the plurality of through holes of the support substrate with the resin composition with good filling properties, and further, the resin composition filled in the through holes. It was confirmed that the dents in the plastic can be suppressed.
 100 支持基板
 100U オモテ面
 110D ウラ面
 110 スルーホール
 110IN スルーホールの入り口
 110OUT スルーホールの出口
 200 マスク
 200U マスクの面
 210 開口部
 300 樹脂組成物の液溜り
 310 樹脂組成物の層
 320 樹脂組成物の層
 330 窪み
 340 樹脂組成物の層
 340U 樹脂組成物の層の表面
 350 スルーホールのマスク側の位置
 360 樹脂組成物の層
 400 第一スキージ
 500 第二スキージ
 600 充填基板
 700 穴埋め基板
 700U 穴埋め基板のオモテ面
 700D 穴埋め基板のウラ面
 710 充填層
 710U 充填層の表面
 710D 充填層の表面
 720 硬化物層
 730 硬化物層
 900 スクリーンマスク
 910 メッシュ部
 920 メッシュ
 
100 Support substrate 100U Front surface 110D Back surface 110 Through hole 110 IN Through hole entrance 110 OUT Through hole exit 200 Mask 200U Mask surface 210 Opening 300 Resin composition liquid pool 310 Resin composition layer 320 Resin composition Layer 330 Depression 340 Resin composition layer 340U Resin composition layer surface 350 Through-hole mask side position 360 Resin composition layer 400 First squeegee 500 Second squeegee 600 Filling substrate 700 Filling substrate 700U Filling substrate Front surface 700D Back surface of hole-filling substrate 710 Filling layer 710U Filling layer surface 710D Filling layer surface 720 Hardened layer 730 Hardened layer 900 Screen mask 910 Mesh part 920 Mesh

Claims (12)

  1.  複数のスルーホールが形成された支持基板に、中空状の開口部が形成されたマスクを、1つの前記開口部が2つ以上の前記スルーホールと連通するように、設置する設置工程と、
     前記マスクの前記支持基板とは反対側の面に、無機充填材及び熱硬化性樹脂を含む樹脂組成物を供給する供給工程と、
     第一スキージを、当該第一スキージの一部が前記開口部の内部に押し込まれるように、前記マスクの前記面上で、当該面に沿って相対的に移動させて、前記スルーホールに前記樹脂組成物を充填する第一印刷工程と、
     前記第一スキージと同一又は異なる第二スキージを、前記マスクの前記面上で、当該面に沿って相対的に移動させて、前記スルーホールに充填された前記樹脂組成物上に、前記樹脂組成物を塗布する第二印刷工程と、を含む、印刷方法。
    An installation step of installing a mask having hollow openings formed on a support substrate having a plurality of through holes so that one opening communicates with two or more through holes.
    A supply step of supplying a resin composition containing an inorganic filler and a thermosetting resin to a surface of the mask opposite to the support substrate.
    The first squeegee is moved relatively along the surface of the mask so that a part of the first squeegee is pushed into the opening, and the resin is inserted into the through hole. The first printing step of filling the composition and
    A second squeegee that is the same as or different from the first squeegee is moved relative to the surface of the mask along the surface, and the resin composition is placed on the resin composition filled in the through holes. A printing method comprising a second printing step of applying an object.
  2.  前記第一印刷工程において、前記第一スキージの前記一部が前記支持基板に接するように、当該第一スキージを、前記マスクの前記面上で相対的に移動させる、請求項1に記載の印刷方法。 The printing according to claim 1, wherein in the first printing step, the first squeegee is relatively moved on the surface of the mask so that the part of the first squeegee is in contact with the support substrate. Method.
  3.  前記第一スキージの弾性率よりも、前記第二スキージの弾性率が、大きい、請求項1又は2に記載の印刷方法。 The printing method according to claim 1 or 2, wherein the elastic modulus of the second squeegee is larger than the elastic modulus of the first squeegee.
  4.  前記第一印刷工程における前記第一スキージの相対的な移動速度よりも、前記第二印刷工程における前記第二スキージの相対的な移動速度が、速い、請求項1~3のいずれか一項に記載の印刷方法。 The relative moving speed of the second squeegee in the second printing step is faster than the relative moving speed of the first squeegee in the first printing step, according to any one of claims 1 to 3. The printing method described.
  5.  前記第二印刷工程で塗布された前記樹脂組成物が、前記スルーホールのマスク側の位置に残留する、請求項1~4のいずれか一項に記載の印刷方法。 The printing method according to any one of claims 1 to 4, wherein the resin composition applied in the second printing step remains at a position on the mask side of the through hole.
  6.  前記マスクが、メタルマスクである、請求項1~5のいずれか一項に記載の印刷方法。 The printing method according to any one of claims 1 to 5, wherein the mask is a metal mask.
  7.  前記無機充填材が、磁性粉体を含む、請求項1~6のいずれか一項に記載の印刷方法。 The printing method according to any one of claims 1 to 6, wherein the inorganic filler contains magnetic powder.
  8.  前記磁性粉体が、酸化鉄粉及び鉄合金系金属粉からなる群より選ばれる1種類以上を含む、請求項7に記載の印刷方法。 The printing method according to claim 7, wherein the magnetic powder contains at least one type selected from the group consisting of iron oxide powder and iron alloy-based metal powder.
  9.  前記第一印刷工程及び前記第二印刷工程における前記樹脂組成物の粘度が、50Pa・s以上である、請求項1~8のいずれか一項に記載の印刷方法。 The printing method according to any one of claims 1 to 8, wherein the viscosity of the resin composition in the first printing step and the second printing step is 50 Pa · s or more.
  10.  複数のスルーホールを形成された支持基板と、前記スルーホール内に樹脂組成物の硬化物で形成された充填層とを備える穴埋め基板の製造方法であって、
     前記支持基板に、請求項1~9のいずれか一項に記載の印刷方法によって樹脂組成物を印刷する工程と、
     樹脂組成物を硬化させる工程と、を含む、穴埋め基板の製造方法。
    A method for manufacturing a hole-filling substrate including a support substrate having a plurality of through holes formed therein and a filling layer formed of a cured product of a resin composition in the through holes.
    A step of printing the resin composition on the support substrate by the printing method according to any one of claims 1 to 9.
    A method for manufacturing a fill-in-the-blank substrate, which comprises a step of curing a resin composition.
  11.  前記充填層を研磨する工程を含む、請求項10に記載の穴埋め基板の製造方法。 The method for manufacturing a hole-filling substrate according to claim 10, which includes a step of polishing the packed bed.
  12.  請求項10又は11に記載の製造方法によって、穴埋め基板を製造する工程と、
     前記穴埋め基板上に、導体層を形成する工程と、を含む、回路基板の製造方法。
    A step of manufacturing a hole-filling substrate by the manufacturing method according to claim 10 or 11.
    A method for manufacturing a circuit board, which comprises a step of forming a conductor layer on the hole-filling board.
PCT/JP2020/013738 2019-03-27 2020-03-26 Printing method, and method for manufacturing hole-filled board and circuit board WO2020196770A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021509600A JP7435595B2 (en) 2019-03-27 2020-03-26 Printing method and method for manufacturing hole filling board and circuit board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-061603 2019-03-27
JP2019061603 2019-03-27

Publications (1)

Publication Number Publication Date
WO2020196770A1 true WO2020196770A1 (en) 2020-10-01

Family

ID=72611505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013738 WO2020196770A1 (en) 2019-03-27 2020-03-26 Printing method, and method for manufacturing hole-filled board and circuit board

Country Status (3)

Country Link
JP (1) JP7435595B2 (en)
TW (1) TW202106128A (en)
WO (1) WO2020196770A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023162511A1 (en) * 2022-02-24 2023-08-31 味の素株式会社 Resin composition

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158441A (en) * 2000-09-06 2002-05-31 Ngk Spark Plug Co Ltd Method of manufacturing wiring board
JP2002164649A (en) * 2000-11-28 2002-06-07 Ngk Spark Plug Co Ltd Method for manufacturing printed wiring board
JP2002368390A (en) * 2001-06-07 2002-12-20 Lg Electronics Inc Hole filling apparatus for printed wiring board and method therefor, and method for manufacturing printed wiring board
US20100315191A1 (en) * 2005-10-13 2010-12-16 Xiao T Danny Patterned magnetic inductors
JP2012023373A (en) * 2010-07-13 2012-02-02 Samsung Electro-Mechanics Co Ltd Method for manufacturing semiconductor package substrate
JP2017171974A (en) * 2016-03-23 2017-09-28 株式会社豊田中央研究所 Polymer coated iron nickel alloy fine particle, manufacturing method therefor, composition for printing and magnetic body film using the same
JP2017183327A (en) * 2016-03-28 2017-10-05 三菱電機株式会社 Method of manufacturing solar battery and printing device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158441A (en) * 2000-09-06 2002-05-31 Ngk Spark Plug Co Ltd Method of manufacturing wiring board
JP2002164649A (en) * 2000-11-28 2002-06-07 Ngk Spark Plug Co Ltd Method for manufacturing printed wiring board
JP2002368390A (en) * 2001-06-07 2002-12-20 Lg Electronics Inc Hole filling apparatus for printed wiring board and method therefor, and method for manufacturing printed wiring board
US20100315191A1 (en) * 2005-10-13 2010-12-16 Xiao T Danny Patterned magnetic inductors
JP2012023373A (en) * 2010-07-13 2012-02-02 Samsung Electro-Mechanics Co Ltd Method for manufacturing semiconductor package substrate
JP2017171974A (en) * 2016-03-23 2017-09-28 株式会社豊田中央研究所 Polymer coated iron nickel alloy fine particle, manufacturing method therefor, composition for printing and magnetic body film using the same
JP2017183327A (en) * 2016-03-28 2017-10-05 三菱電機株式会社 Method of manufacturing solar battery and printing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023162511A1 (en) * 2022-02-24 2023-08-31 味の素株式会社 Resin composition

Also Published As

Publication number Publication date
TW202106128A (en) 2021-02-01
JP7435595B2 (en) 2024-02-21
JPWO2020196770A1 (en) 2020-10-01

Similar Documents

Publication Publication Date Title
US11259412B2 (en) Through hole filling paste
JP7392743B2 (en) magnetic paste
JP6969692B2 (en) Magnetic paste
JP6962480B2 (en) Magnetic paste
JP2023164858A (en) magnetic composition
JP2022126796A (en) Method for circuit board
JP7230447B2 (en) magnetic paste
WO2020196770A1 (en) Printing method, and method for manufacturing hole-filled board and circuit board
JP2024010200A (en) resin composition
TW202400678A (en) resin composition
EP3839986A1 (en) Magnetic paste
JP2022142747A (en) resin composition
EP3859757A1 (en) Resin composition
TW202219167A (en) resin composition
WO2020021968A1 (en) Magnetic paste
WO2023149155A1 (en) Magnetic paste
JP6984755B2 (en) Magnetic paste
JP2022120452A (en) resin composition
TW202330780A (en) resin composition
JP2023077268A (en) resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20776550

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021509600

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20776550

Country of ref document: EP

Kind code of ref document: A1