WO2020192509A1 - 显示组件及虚拟现实显示装置 - Google Patents

显示组件及虚拟现实显示装置 Download PDF

Info

Publication number
WO2020192509A1
WO2020192509A1 PCT/CN2020/079844 CN2020079844W WO2020192509A1 WO 2020192509 A1 WO2020192509 A1 WO 2020192509A1 CN 2020079844 W CN2020079844 W CN 2020079844W WO 2020192509 A1 WO2020192509 A1 WO 2020192509A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
lens
concentrating
display assembly
Prior art date
Application number
PCT/CN2020/079844
Other languages
English (en)
French (fr)
Inventor
王灿
张粲
岳晗
杨明
丛宁
赵蛟
玄明花
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP20778514.8A priority Critical patent/EP3951904A4/en
Priority to US16/973,005 priority patent/US20210249634A1/en
Publication of WO2020192509A1 publication Critical patent/WO2020192509A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]

Definitions

  • the present disclosure generally relates to the field of display technology, in particular to the field of silicon-based OLEDs, and more particularly to a display assembly and a virtual reality display device.
  • Silicon-based OLED has the advantages of self-luminous light and thinness, which can meet the needs of AR for easy portability, but the brightness of the device is low, and it cannot meet the needs of AR high brightness. How to improve the brightness of silicon-based OLED so that it can be used in the AR field has become a problem.
  • the present disclosure provides a display assembly and a virtual reality display device capable of improving the brightness of a silicon-based OLED.
  • the display assembly of the present disclosure includes an electroluminescent device, an encapsulation layer, and a light-concentrating layer arranged in sequence.
  • the light-concentrating layer is used to condense the light emitted from the electroluminescent device and transmitted through the encapsulation layer.
  • the device includes a plurality of pixels, the light-concentrating layer is close to the packaging layer, and the orthographic projection of the pixels on the surface of the packaging layer close to the light-concentrating layer is completely covered by the light-concentrating layer.
  • the light-concentrating layer includes a plurality of lenses, the pixels correspond to the lenses one-to-one, and the orthographic projection of the pixels on the surface of the encapsulation layer on which the light-concentrating layer is closely attached corresponds to The orthographic projection of the lens on the surface of the encapsulation layer close to the light-concentrating layer at least partially overlaps.
  • the distance between the center of any pixel and the main optical axis of the lens corresponding to the pixel is ⁇ 0.5 micrometers.
  • the focal length of the lens is greater than or equal to 1.7 times the aperture of the lens.
  • the encapsulation layer is provided with a first protective layer, a color filter substrate and a second protective layer in sequence along a direction from the electroluminescent device to the light-concentrating layer,
  • the display assembly further includes a third protective layer disposed on the side of the second protective layer away from the electroluminescent device, and disposed between the third protective layer and the second protective layer There is the lens.
  • the refractive index of the third protective layer, the refractive index of the lens, and the refractive index of the second protective layer satisfy the following relationship:
  • n 1 is the refractive index of the second protective layer
  • n 2 is the refractive index of the lens
  • n 3 is the refractive index of the third protective layer
  • r is the radius of curvature of the lens
  • f is the refractive index of the lens.
  • the focal length of the lens, D is the aperture of the lens.
  • the color filter substrate is provided with a plurality of color units, the color units correspond to the pixels one-to-one, and the color units are located on the surface of the encapsulation layer on which the light-concentrating layer is closely attached.
  • the projection, the orthographic projection of the corresponding pixel on the surface of the encapsulation layer on which the light-concentrating layer is closely attached, and the lens corresponding to the pixel corresponding to the color unit is closely attached to the encapsulation layer.
  • the orthographic projection on the surface of the layer, at least part of the area is the three overlap
  • the color unit and the lens corresponding to the same pixel satisfy the following relationship: rays emitted from any point on the surface of the pixel facing the encapsulation layer, and the rays pass through the color unit and face the lens At any point on the surface, the ray passes through the lens and is close to the surface of the encapsulation layer.
  • the main optical axis of the lens located outside the center of the light-concentrating layer is deviated toward the center line of the light-concentrating layer.
  • the thickness of the encapsulation layer ⁇ 0.8 times the focal length of the lens, and the thickness of the encapsulation layer ⁇ 1.2 times the focal length of the lens.
  • the virtual reality display device of the present disclosure includes an optical waveguide component and the above-mentioned display component, and light emitted by the display component enters the optical waveguide component.
  • FIG. 1 is a schematic structural diagram of a display assembly according to an embodiment of the disclosure
  • FIG. 2 is a schematic structural diagram of a virtual reality display device according to an embodiment of the disclosure.
  • FIG. 3 is a graph showing the comparison of the brightness before and after the lens of the display assembly of the embodiment of the disclosure.
  • the present disclosure provides a display assembly and a virtual reality display device that can improve the brightness of a silicon-based OLED.
  • a display assembly includes an electroluminescent device 10, an encapsulation layer 20, and a light-concentrating layer 30 arranged in sequence.
  • the light-concentrating layer 30 is used to converge from the electroluminescent device
  • the light emitted by 10 and transmitted through the encapsulation layer 20, the electroluminescent device 10 includes a plurality of pixels 11, the light-concentrating layer 30 is close to the encapsulation layer 20, and the pixels 11 are on the front surface of the encapsulation layer 20 close to the light-concentrating layer 30
  • the projection is completely covered by the light collecting layer 30.
  • the electroluminescent device can use a common structure, and the electroluminescent device is packaged through the packaging layer, thereby prolonging the service life of the electroluminescent device and improving the reliability of the display assembly.
  • a light-concentrating layer is formed on the side of the encapsulation layer facing away from the electroluminescent device, and light is emitted from the electroluminescent device, transmitted through the encapsulation layer, and then injected into the light-concentrating layer.
  • the light-gathering layer can condense the incident light and increase the brightness of the light emitted from the light-gathering layer near the central viewing angle of the light-gathering layer.
  • the light collecting layer includes a lens.
  • the curve without dots is the curve of the brightness of the light emitted by the display component without the light-gathering layer.
  • the dotted curve is the curve for increasing the brightness of the light emitted by the display component of the light-gathering layer.
  • the viewing angle is ⁇
  • the light can be enhanced within 9°.
  • the virtual reality display device using the optical waveguide technology has a lower requirement for the light viewing angle, which is also ⁇ 9°.
  • the light is emitted from the battery light-emitting device and transmitted through the encapsulation layer.
  • the light exits the encapsulation layer and enters the light-gathering layer.
  • the light-gathering layer can converge the light and enhance the brightness within a certain range, thereby satisfying the brightness of the virtual reality display device. Requirements.
  • Light will form a light-emitting area in the encapsulation layer, and the light-concentrating layer can cover the light-emitting area, so that as much light as possible can pass through the light-concentrating layer to condense light, improve the light-concentrating effect of the light-concentrating layer, thereby ensuring the display effect of the display assembly.
  • the light-concentrating layer 30 includes a plurality of lenses 31, and the pixels 11 correspond to the lenses 31 one-to-one.
  • the orthographic projection of the pixels 11 on the surface of the encapsulation layer 20 on which the light-concentrating layer 30 is closely attached corresponds to The orthographic projections of the lens 31 on the surface of the encapsulation layer 20 on which the light-concentrating layer 30 is closely attached at least partially overlap.
  • the light-collecting layer includes a plurality of lenses, each pixel can emit light, and the pixels correspond to the lenses one-to-one, that is, each lens can condense the light emitted by the corresponding pixel to improve the emission of each pixel.
  • the brightness of the light so that the display assembly can meet the requirements of the virtual reality display device for the brightness of the light.
  • the material of the lens can be but not only an organic resin, and a light-concentrating layer can be formed on the electroluminescent device through different processes such as embossing, photolithography, thermal melting, and printing.
  • the distance between the center of any pixel 11 and the main optical axis of the lens 31 corresponding to the pixel 11 is ⁇ 0.5 micrometers.
  • the size of the light-emitting area on the encapsulation layer can be adjusted by controlling the size of the pixel opening on the electroluminescent device, and the size of the pixel opening and the lens aperture can be adjusted according to the resolution requirement of the display assembly.
  • the distance between the center of any pixel and the main optical axis of the lens corresponding to the pixel is ⁇ 0.5 micrometers.
  • the center of any pixel is on the main optical axis of the lens corresponding to the pixel, which can enhance the focus
  • the light-gathering effect of the layer ensures the display effect of the display component.
  • the focal length of the lens 31 is ⁇ 1.7 times the aperture of the lens 31.
  • the focal length of the lens ⁇ 1.7 times the aperture of the lens, which can reduce the processing difficulty of the lens, ensure the condensed light of the lens, increase the effect of light brightness, and facilitate the processing and manufacturing of display components.
  • the encapsulation layer 20 is provided with a first protective layer 22, a color filter substrate 23 and a second protective layer 24 in sequence along the direction from the electroluminescent device 10 to the light-concentrating layer 30, and the display assembly further includes a third protective layer 40, The third protective layer 40 is disposed on a side of the second protective layer 24 away from the electroluminescent device 10, and a lens 31 is disposed between the third protective layer 40 and the second protective layer 24.
  • the first protective layer 22 may be but not only a thin film encapsulation layer
  • the second protective layer 24 may but not only be a silicon oxide thin film layer
  • the third protective layer 40 may but not only be an encapsulation layer or
  • the adhesive layer, the light emitted by the electroluminescent device passes through the color film substrate to obtain three primary colors, and then the three primary colors are combined to realize the color display of the display assembly.
  • the refractive index of the third protective layer 40, the refractive index of the lens 31, and the refractive index of the second protective layer 24 satisfy the following relationship:
  • n 1 is the refractive index of the second protective layer 24
  • n 2 is the refractive index of the lens 31
  • n 3 is the refractive index of the third protective layer 40
  • r is the radius of curvature of the lens 31
  • f is the focal length of the lens 31
  • D is the diameter of the lens 31.
  • the light-concentrating effect of the light-concentrating layer can be guaranteed, and the display effect of the display assembly can be guaranteed.
  • the color filter substrate 23 is provided with a plurality of color units 231, the color units 231 correspond to the pixels 11 one-to-one, and the color units 231 are located on the surface of the encapsulation layer 20 on which the light-concentrating layer 30 is closely attached.
  • the projection, the orthographic projection of the corresponding pixel 11 on the surface of the encapsulation layer 20 close to the light-concentrating layer 30, and the lens 31 corresponding to the pixel 11 corresponding to the color unit 231 are on the encapsulation layer 20 For the orthographic projection on the surface close to the light-concentrating layer 30, at least part of the area overlaps the three.
  • the color unit 231 and the lens 31 corresponding to the same pixel 11 satisfy the following relationship: rays emitted from any point on the surface of the pixel 11 facing the encapsulation layer 20, and the rays pass through any point on the surface of the color unit 231 facing the lens 31, and the rays pass through the lens 31 Close to the surface of the encapsulation layer 20.
  • the color filter substrate further includes a black matrix 232.
  • the color units 231 are arranged in an array, and the black matrix 232 and the color units 231 are arranged at intervals.
  • the lens 31 can completely cover the light emitted by the pixel corresponding to the lens 31 and transmitted through the color unit 231, so that all the light can be collected through the lens, and the light collecting effect of the light collecting layer is improved, thereby ensuring the display effect of the display assembly.
  • the main optical axis of the lens 31 located outside the center of the light-concentrating layer 30 is deviated to the center line of the light-concentrating layer 30.
  • the main optical axis of the lens located outside the center of the light-concentrating layer is deflected toward the center line of the light-concentrating layer, so that the light passing through the light-concentrating layer can be deflected to the center line of the light-concentrating layer, thereby improving the light-concentrating layer.
  • the light-gathering effect can enhance the brightness of the light emitted by the display component and ensure the display effect of the display component.
  • the thickness of the encapsulation layer 20 is ⁇ 0.8 times the focal length of the lens 31, and the thickness of the encapsulation layer 20 is ⁇ 1.2 times the focal length of the lens 31.
  • the thickness of the encapsulation layer 20 is ⁇ 0.8 times the focal length of the lens 31, and the thickness of the encapsulation layer ⁇ 1.2 times the focal length of the lens.
  • the thickness of the encapsulation layer is equal to the focal length of the lens, which can ensure the convergence
  • the light-gathering effect of the optical layer can ensure the display effect of the display component.
  • a virtual reality display device includes an optical waveguide assembly 100 and a display assembly 200, and light emitted by the display assembly 200 enters the optical waveguide assembly 100.
  • the electroluminescent device can use a common structure, and the electroluminescent device is packaged through the packaging layer, thereby prolonging the service life of the electroluminescent device and improving the reliability of the display assembly.
  • a light-concentrating layer is formed on the side of the encapsulation layer facing away from the electroluminescent device, and light is emitted from the electroluminescent device, transmitted through the encapsulation layer, and then injected into the light-concentrating layer.
  • the light-gathering layer can condense the incident light and increase the brightness of the light emitted from the light-gathering layer near the central viewing angle of the light-gathering layer.
  • the viewing angle of the center of the light-gathering layer is within ⁇ 9°, which can enhance the light.
  • the virtual reality display device using the optical waveguide technology has a lower requirement for the light viewing angle, which is also ⁇ 9°.
  • the silicon-based OLED can be applied to the virtual reality display device to make the display assembly more Thin and light, more portable.
  • the light is emitted from the electroluminescent device and transmitted through the encapsulation layer.
  • the light exits the encapsulation layer and enters the light-gathering layer.
  • the light-gathering layer can converge the light and enhance the brightness within a certain range, thus meeting the requirements of the virtual reality display device. Brightness requirements.
  • Light will form a light-emitting area on the encapsulation layer.
  • the light-gathering layer can cover the light-emitting area, so that as much light as possible can pass through the light-gathering layer to condense light, improve the light-gathering effect of the light-gathering layer, and ensure the display effect of the display assembly .
  • the light emitted by the display component enters the optical waveguide component, passes through the optical waveguide component, and enters the human eye to present a pattern.
  • the light-concentrating layer by placing the light-concentrating layer close to the encapsulation layer, the light-concentrating layer can condense the light emitted from the electroluminescent device and increase the brightness of the light emitted from the light-concentrating layer, thereby satisfying the high brightness of AR It is required to solve the problem of low brightness of silicon-based OLEDs, which cannot meet the high brightness requirements of AR.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示组件及虚拟现实显示装置,所述显示组件包括依次设置的电致发光器件(10)、封装层(20)以及聚光层(30),聚光层(30)用于会聚从电致发光器件(10)发射的、经过封装层(20)传输的光线,电致发光器件(10)包括多个像素(11),聚光层(30)紧贴封装层(20),像素(11)在封装层(20)紧贴有聚光层(30)的面的正投影被聚光层(30)完全覆盖。

Description

显示组件及虚拟现实显示装置
相关申请的交叉引用
本申请主张在2019年3月28日在中国提交的中国专利申请No.201910243939.3的优先权,其全部内容通过引用包含于此。
技术领域
本公开一般涉及显示技术领域,具体涉及硅基OLED领域,尤其涉及一种显示组件及虚拟现实显示装置。
背景技术
AR近年来发展迅速,高端产品使用光波导技术进行轻薄化处理,但光波导光损失较大,需要器件亮度较高。硅基OLED具有自发光轻薄化的优点,可以满足AR易携带的需求,但器件亮度较低,无法对应AR高亮度的需求。如何提高硅基OLED的亮度,使其能够应用在AR领域成为了一个难题。
发明内容
本公开提供一种能够提高硅基OLED亮度的显示组件及虚拟现实显示装置。
第一方面,本公开的显示组件,包括依次设置的电致发光器件、封装层以及聚光层,聚光层用于会聚从电致发光器件发射的、经过封装层传输的光线,电致发光器件包括多个像素,聚光层紧贴封装层,像素在封装层紧贴有聚光层的面的正投影被聚光层完全覆盖。
可选地,所述聚光层包括多个透镜,所述像素与所述透镜一一对应,所述像素在所述封装层紧贴有所述聚光层的面上的正投影与所对应的透镜在所述封装层紧贴有所述聚光层的面上的正投影至少部分重合。
可选地,任一所述像素的中心和与该所述像素对应的所述透镜的主光轴之间的距离≤0.5微米。
可选地,所述透镜的焦距≥所述透镜的口径的1.7倍。
可选地,所述封装层沿着从所述电致发光器件到所述聚光层的方向依次设置第一保护层、彩膜基板和第二保护层,
所述显示组件还包括第三保护层,所述第三保护层设置在第二保护层远离所述电致发光器件的一侧,所述第三保护层与所述第二保护层之间设置有所述透镜。
可选地,所述第三保护层的折射率、所述透镜的折射率和所述第二保护层的折射率满足以下关系式:
Figure PCTCN2020079844-appb-000001
其中,n 1为所述第二保护层的折射率,n 2为所述透镜的折射率,n 3为所述第三保护层的折射率,r为所述透镜的曲率半径,f为所述透镜的焦距,D为所述透镜的口径。
可选地,所述彩膜基板设置有多个颜色单元,所述颜色单元与所述像素一一对应,所述颜色单元在所述封装层紧贴有所述聚光层的面上的正投影、所对应的像素在所述封装层紧贴有所述聚光层的面上的正投影以及与所述颜色单元对应的像素所对应的透镜在所述封装层紧贴有所述聚光层的面上的正投影,至少有部分区域是三者重合的,
与同一所述像素对应的所述颜色单元以及所述透镜满足以下关系:从所述像素面向所述封装层的面上任一点射出的射线,并且所述射线经过所述颜色单元面向所述透镜的面上任一点,所述射线穿过所述透镜紧贴所述封装层的面。
可选地,位于所述聚光层中心之外的所述透镜的主光轴偏向所述聚光层的中心线。
可选地,所述封装层的厚度≥所述透镜的焦距的0.8倍,所述封装层的厚度≤所述透镜的焦距的1.2倍。
第二方面,本公开的虚拟现实显示装置,包括光波导组件和上述显示组件,显示组件发射的光线射入光波导组件。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显:
图1为本公开的实施例的显示组件的结构示意图;
图2为本公开的实施例的虚拟现实显示装置的结构示意图;
图3为本公开的实施例的显示组件的透镜前后光亮度对比曲线图。
具体实施方式
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释相关发明,而非对该发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与发明相关的部分。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
鉴于相关技术中的缺陷或不足,期望本公开提供一种能够提高硅基OLED亮度的显示组件及虚拟现实显示装置。
本公开的其中一个实施例为,请参考图1,一种显示组件,包括依次设置的电致发光器件10、封装层20以及聚光层30,聚光层30用于会聚从电致发光器件10发射的、经过封装层20传输的光线,电致发光器件10包括多个像素11,聚光层30紧贴封装层20,像素11在封装层20紧贴有聚光层30的面的正投影被聚光层30完全覆盖。
在本公开的实施例中,电致发光器件可以使用常用的结构,通过封装层对电致发光器件进行封装,从而延长电致发光器件的使用寿命,提高显示组件的可靠性。在封装层背向电致发光器件的一侧形成聚光层,光线从电致发光器件发射,经过封装层传输后射入聚光层中。聚光层能够会聚射入的光线,提高聚光层中心视角附近从聚光层射出光线的亮度。所述聚光层包括透镜。参考图3,其中,无圆点曲线未加聚光层的显示组件射出的光线亮度的曲线,圆点曲线为增加聚光层的显示组件射出的光线亮度的曲线,在聚光层中心视角±9°以内能够对光有增强效果。而使用光波导技术的虚拟现实显示装置对光视角要求较低,也为±9°。通过使用聚光层来增强电致发光器件发射光的亮度,能够满足使用光波导技术的虚拟现实显示装置对光视角的要求,能够将硅基OLED应用到虚拟现实显示装置中, 使得显示组件更加轻薄,更加便于携带。
光线从电池发光器件发出,经过封装层的传输,光线从封装层射出并进入聚光层,聚光层能够对光线进行会聚,在一定范围内增强光亮度,从而满足虚拟现实显示装置对光亮度的要求。光会在封装层形成发光区域,聚光层能够覆盖发光区域,使得尽可能多的光线能够经过聚光层进行聚光,提高聚光层的聚光效果,从而保证了显示组件的显示效果。
进一步地,聚光层30包括多个透镜31,像素11与透镜31一一对应,所述像素11在所述封装层20紧贴有所述聚光层30的面上的正投影与所对应的透镜31在所述封装层20紧贴有所述聚光层30的面上的正投影至少部分重合。
在本公开的实施例中,聚光层包括多个透镜,每个像素均能够自发光,像素与透镜一一对应,也就是每个透镜均能够会聚对应像素发射的光线,提高每个像素发射光的亮度,从而使得显示组件能够满足虚拟现实显示装置对光亮度的要求。
透镜的材料可以但不仅仅为有机树脂,可以通过压印、光刻热熔、打印等不同工艺在电致发光器件上形成聚光层。
进一步地,任一像素11的中心和与该像素11对应的透镜31的主光轴之间的距离≤0.5微米。
在本公开的实施例中,封装层上发光区域的大小可以通过控制电致发光器件上像素开口大小来调整,根据显示组件的分辨率要求来调整像素开口大小以及透镜口径。任一像素的中心和与该像素对应的透镜的主光轴之间的距离≤0.5微米,可选地,任一像素的中心在与该像素对应的透镜的主光轴上,能够增强聚光层的聚光效果,保证显示组件的显示效果。
进一步地,透镜31的焦距≥透镜31的口径的1.7倍。
在本公开的实施例中,透镜的焦距≥透镜的口径的1.7倍,能够降低透镜的加工难度,保证透镜的会聚光线,增加光线亮度的效果,便于加工制造显示组件。
进一步地,封装层20沿着从电致发光器件10到聚光层30的方向依次设置第一保护层22、彩膜基板23和第二保护层24,显示组件还包括第三保护层40,,所述第三保护层40设置在第二保护层24远离所述电致发 光器件10的一侧,第三保护层40与第二保护层24之间设置有透镜31。
在本公开的实施例中,第一保护层22可以但不仅仅为薄膜封装层,第二保护层24可以但不仅仅为氧化硅薄膜层,第三保护层40可以但不仅仅为封装层或者粘接层,电致发光器件发射的光经过彩膜基板得到三基色,再将三基色进行组合实现显示组件的彩色显示。
进一步地,第三保护层40的折射率、透镜31的折射率和第二保护层24的折射率满足以下关系式:
Figure PCTCN2020079844-appb-000002
其中,n 1为第二保护层24的折射率,n 2为透镜31的折射率,n 3为第三保护层40的折射率,r为透镜31的曲率半径,f为透镜31的焦距,D为透镜31的口径。
在本公开的实施例中,通过限制第三保护层的折射率、透镜的折射率以及第二保护层的折射率,能够保证聚光层的聚光效果,能够保证显示组件的显示效果。
进一步地,彩膜基板23设置有多个颜色单元231,颜色单元231与像素11一一对应,所述颜色单元231在所述封装层20紧贴有所述聚光层30的面上的正投影、所对应的像素11在所述封装层20紧贴有所述聚光层30的面上的正投影以及与所述颜色单元231对应的像素11所对应的透镜31在所述封装层20紧贴有所述聚光层30的面上的正投影,至少有部分区域是三者重合的。
与同一像素11对应的颜色单元231以及透镜31满足以下关系:从像素11面向封装层20的面上任一点射出的射线,并且射线经过颜色单元231面向透镜31的面上任一点,射线穿过透镜31紧贴封装层20的面。
在本公开的实施例中,彩膜基板还包括黑矩阵232。颜色单元231呈阵列状排布,所述黑矩阵232与颜色单元231间隔设置。透镜31能够完全覆盖与透镜31对应的像素发射的并且经过颜色单元231传输的光,使得光线能够都经过透镜进行聚光,提高聚光层的聚光效果,从而保证了显示组件的显示效果。
进一步地,位于聚光层30中心之外的透镜31的主光轴偏向聚光层30的中心线。
在本公开的实施例中,位于聚光层中心之外的透镜的主光轴偏向聚光层的中心线,使得经过聚光层的光线能够偏向聚光层的中心线,从而提高聚光层的聚光效果,增强显示组件射出光线的亮度,保证显示组件的显示效果。
进一步地,封装层20的厚度≥透镜31的焦距的0.8倍,封装层20的厚度≤透镜31的焦距的1.2倍。
在本公开的实施例中,封装层20的厚度≥透镜31的焦距的0.8倍,封装层的厚度≤透镜的焦距的1.2倍,可选地,封装层的厚度等于透镜的焦距,能够保证聚光层的聚光效果,能够保证显示组件的显示效果。
本公开的另一个实施例为,参考图2,一种虚拟现实显示装置,包括光波导组件100和显示组件200,显示组件200发射的光线射入光波导组件100。
在本公开的实施例中,电致发光器件可以使用常用的结构,通过封装层对电致发光器件进行封装,从而延长电致发光器件的使用寿命,提高显示组件的可靠性。在封装层背向电致发光器件的一侧形成聚光层,光线从电致发光器件发射,经过封装层传输后射入聚光层中。聚光层能够会聚射入的光线,提高聚光层中心视角附近从聚光层射出光线的亮度。在聚光层中心视角±9°以内能够对光有增强效果。而使用光波导技术的虚拟现实显示装置对光视角要求较低,也为±9°。通过使用聚光层来增强电致发光器件发射光的亮度,能够满足使用光波导技术的虚拟现实显示装置对光视角的要求,能够将硅基OLED应用到虚拟现实显示装置中,使得显示组件更加轻薄,更加便于携带。
光线从电致发光器件发出,经过封装层的传输,光线从封装层射出并进入聚光层,聚光层能够对光线进行会聚,在一定范围内增强光亮度,从而满足虚拟现实显示装置对光亮度的要求。光会在封装层上形成发光区域,聚光层能够覆盖发光区域,使得尽可能多的光线能够经过聚光层进行聚光,提高聚光层的聚光效果,从而保证了显示组件的显示效果。
显示组件发射的光线射入光波导组件内,经过光波导组件的传输,进入人眼,从而呈现图形。
根据本申请实施例提供的技术方案,通过将聚光层紧贴封装层,聚光 层能够会聚从电致发光器件发射的光线,提高从聚光层射出光线的亮度,从而满足AR高亮度的要求,能够解决硅基OLED亮度低、无法满足AR高亮度要求的问题。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (10)

  1. 一种显示组件,包括依次设置的电致发光器件、封装层以及聚光层,所述聚光层用于会聚从所述电致发光器件发射的、经过所述封装层传输并射出的光线,所述电致发光器件包括多个像素,所述聚光层紧贴所述封装层,所述像素在所述封装层紧贴有所述聚光层的面的正投影被所述聚光层完全覆盖。
  2. 根据权利要求1所述的显示组件,其中,所述聚光层包括多个透镜,所述像素与所述透镜一一对应,所述像素在所述封装层紧贴有所述聚光层的面上的正投影与所对应的透镜在所述封装层紧贴有所述聚光层的面上的正投影至少部分重合。
  3. 根据权利要求2所述的显示组件,其中,任一所述像素的中心和与该所述像素对应的所述透镜的主光轴之间的距离≤0.5微米。
  4. 根据权利要求2所述的显示组件,其中,所述透镜的焦距≥所述透镜的口径的1.7倍。
  5. 根据权利要求2所述的显示组件,其中,所述封装层沿着从所述电致发光器件到所述聚光层的方向依次设置第一保护层、彩膜基板和第二保护层,
    所述显示组件还包括第三保护层,所述第三保护层设置在第二保护层远离所述电致发光器件的一侧,所述第三保护层与所述第二保护层之间设置有所述透镜。
  6. 根据权利要求5所述的显示组件,其中,所述第三保护层的折射率、所述透镜的折射率和所述第二保护层的折射率满足以下关系式:
    Figure PCTCN2020079844-appb-100001
    其中,n 1为所述第二保护层的折射率,n 2为所述透镜的折射率,n 3为所述第三保护层的折射率,r为所述透镜的曲率半径,f为所述透镜的焦距,D为所述透镜的口径。
  7. 根据权利要求5所述的显示组件,其中,所述彩膜基板设置有多个颜色单元,所述颜色单元与所述像素一一对应,所述颜色单元在所述封装层紧贴有所述聚光层的面上的正投影、所对应的像素在所述封装层紧贴有所述聚光层的面上的正投影以及与所述颜色单元对应的像素所对应的透镜在所述封装层紧贴有所述聚光层的面上的正投影,至少有部分区域是三者重合的,
    与同一所述像素对应的所述颜色单元以及所述透镜满足以下关系:从所述像素面向所述封装层的面上任一点射出的射线,并且所述射线经过所述颜色单元面向所述透镜的面上任一点,所述射线穿过所述透镜紧贴所述封装层的面。
  8. 根据权利要求2所述的显示组件,其中,位于所述聚光层中心之外的所述透镜的主光轴偏向所述聚光层的中心线。
  9. 根据权利要求2所述的显示组件,其中,所述封装层的厚度≥所述透镜的焦距的0.8倍,所述封装层的厚度≤所述透镜的焦距的1.2倍。
  10. 一种虚拟现实显示装置,包括光波导组件和权利要求1-9任一项所述的显示组件,所述显示组件发射的光线射入所述光波导组件。
PCT/CN2020/079844 2019-03-28 2020-03-18 显示组件及虚拟现实显示装置 WO2020192509A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20778514.8A EP3951904A4 (en) 2019-03-28 2020-03-18 DISPLAY ARRANGEMENT AND DISPLAY DEVICE FOR VIRTUAL REALITY
US16/973,005 US20210249634A1 (en) 2019-03-28 2020-03-18 Display assembly and virtual reality display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910243939.3 2019-03-28
CN201910243939.3A CN109841757A (zh) 2019-03-28 2019-03-28 显示组件及虚拟现实显示装置

Publications (1)

Publication Number Publication Date
WO2020192509A1 true WO2020192509A1 (zh) 2020-10-01

Family

ID=66886333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079844 WO2020192509A1 (zh) 2019-03-28 2020-03-18 显示组件及虚拟现实显示装置

Country Status (4)

Country Link
US (1) US20210249634A1 (zh)
EP (1) EP3951904A4 (zh)
CN (2) CN115776825A (zh)
WO (1) WO2020192509A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113394351A (zh) * 2021-06-11 2021-09-14 武汉天马微电子有限公司 一种显示面板及显示装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115776825A (zh) * 2019-03-28 2023-03-10 京东方科技集团股份有限公司 一种硅基oled显示组件和虚拟现实显示装置
KR20230051568A (ko) * 2020-08-20 2023-04-18 어플라이드 머티어리얼스, 인코포레이티드 Oled 광 필드 아키텍쳐들
CN112054131B (zh) * 2020-09-14 2022-09-20 京东方科技集团股份有限公司 显示面板、显示装置及显示设备
CN112382648A (zh) * 2020-11-13 2021-02-19 京东方科技集团股份有限公司 一种显示面板、显示装置以及制作方法
CN112652728B (zh) 2020-12-29 2022-11-25 视涯科技股份有限公司 一种显示面板及显示装置
CN113363403A (zh) * 2021-06-09 2021-09-07 京东方科技集团股份有限公司 一种显示面板及显示装置
US12014030B2 (en) 2021-08-18 2024-06-18 Bank Of America Corporation System for predictive virtual scenario presentation
CN115798345A (zh) * 2022-12-21 2023-03-14 武汉华星光电技术有限公司 灯板、背光模组及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004039500A (ja) * 2002-07-04 2004-02-05 Seiko Epson Corp 有機エレクトロルミネッセンス装置、有機エレクトロルミネッセンス装置の製造方法及び電子機器
CN102629622A (zh) * 2011-02-04 2012-08-08 佳能株式会社 电致发光显示装置
CN106019599A (zh) * 2016-07-29 2016-10-12 京东方科技集团股份有限公司 虚拟现实显示模组、驱动方法及装置、虚拟现实显示装置
CN106129260A (zh) * 2016-06-30 2016-11-16 京东方科技集团股份有限公司 一种显示面板及显示装置
CN108919493A (zh) * 2018-07-27 2018-11-30 京东方科技集团股份有限公司 一种ar显示装置及其控制方法、可穿戴设备
CN109841757A (zh) * 2019-03-28 2019-06-04 京东方科技集团股份有限公司 显示组件及虚拟现实显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011121668A1 (ja) * 2010-03-31 2011-10-06 パナソニック株式会社 表示パネル装置及び表示パネル装置の製造方法
JP5373054B2 (ja) * 2010-03-31 2013-12-18 パナソニック株式会社 表示パネル装置及び表示パネル装置の製造方法
KR102048924B1 (ko) * 2013-05-16 2019-11-27 삼성디스플레이 주식회사 유기발광표시장치
CN104678641A (zh) * 2015-03-17 2015-06-03 京东方科技集团股份有限公司 彩膜基板及其制作方法、显示装置
KR20180076597A (ko) * 2016-12-28 2018-07-06 엘지디스플레이 주식회사 표시 모듈과 이를 포함한 헤드 장착형 표시장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004039500A (ja) * 2002-07-04 2004-02-05 Seiko Epson Corp 有機エレクトロルミネッセンス装置、有機エレクトロルミネッセンス装置の製造方法及び電子機器
CN102629622A (zh) * 2011-02-04 2012-08-08 佳能株式会社 电致发光显示装置
CN106129260A (zh) * 2016-06-30 2016-11-16 京东方科技集团股份有限公司 一种显示面板及显示装置
CN106019599A (zh) * 2016-07-29 2016-10-12 京东方科技集团股份有限公司 虚拟现实显示模组、驱动方法及装置、虚拟现实显示装置
CN108919493A (zh) * 2018-07-27 2018-11-30 京东方科技集团股份有限公司 一种ar显示装置及其控制方法、可穿戴设备
CN109841757A (zh) * 2019-03-28 2019-06-04 京东方科技集团股份有限公司 显示组件及虚拟现实显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3951904A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113394351A (zh) * 2021-06-11 2021-09-14 武汉天马微电子有限公司 一种显示面板及显示装置

Also Published As

Publication number Publication date
EP3951904A1 (en) 2022-02-09
CN115776825A (zh) 2023-03-10
EP3951904A4 (en) 2022-12-21
CN109841757A (zh) 2019-06-04
US20210249634A1 (en) 2021-08-12

Similar Documents

Publication Publication Date Title
WO2020192509A1 (zh) 显示组件及虚拟现实显示装置
CN209785979U (zh) 一种oled显示装置及电子设备
CN107844767B (zh) 一种准直器、光学指纹识别器以及全面屏
US11362150B2 (en) Display device having lens corresponding to pixel, and electronic apparatus
JP4642823B2 (ja) 照明装置及び液晶表示装置
WO2018223726A1 (zh) 显示面板及显示装置
US20140339509A1 (en) Organic light-emitting display apparatus
WO2015084018A1 (ko) 광학 부재 및 이를 구비하는 표시 장치
US11394013B2 (en) Display panel with light-emitting layer, display device and manufacturing method of display panel
TWI748580B (zh) 近眼光場顯示裝置
US11895866B2 (en) Light emitting element, projection type display device, and planar light emitting device
CN110828517A (zh) 显示基板及其制作方法、显示装置
WO2015188595A1 (zh) 显示面板及其制作方法、显示装置
TW200939868A (en) Organic light-emitting diode display device
US20240280738A1 (en) Display apparatus and imaging apparatus
US20180045860A1 (en) Optical sheet, display device, and electronic apparatus
CN108647558B (zh) 一种指纹识别显示设备
CN114335382A (zh) 显示模组及其制备方法
CN115497983A (zh) 显示装置及电子设备
JP2022046696A (ja) 表示装置、および電子機器
CN111816789A (zh) 显示基板及其制作方法
WO2021100406A1 (ja) 発光素子、表示装置及び面発光装置
US11616213B2 (en) Display panel and display device having light extraction structure
KR20200105578A (ko) 증강 현실 제공 장치
KR20210127286A (ko) 광학 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20778514

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020778514

Country of ref document: EP

Effective date: 20211028