WO2020191622A1 - 多通信系统中天线的调谐方法、装置和存储介质 - Google Patents

多通信系统中天线的调谐方法、装置和存储介质 Download PDF

Info

Publication number
WO2020191622A1
WO2020191622A1 PCT/CN2019/079716 CN2019079716W WO2020191622A1 WO 2020191622 A1 WO2020191622 A1 WO 2020191622A1 CN 2019079716 W CN2019079716 W CN 2019079716W WO 2020191622 A1 WO2020191622 A1 WO 2020191622A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
difference
communication system
antenna
received power
Prior art date
Application number
PCT/CN2019/079716
Other languages
English (en)
French (fr)
Inventor
徐求良
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/079716 priority Critical patent/WO2020191622A1/zh
Priority to CN201980053495.5A priority patent/CN112567636B/zh
Publication of WO2020191622A1 publication Critical patent/WO2020191622A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas

Definitions

  • the embodiments of the present application relate to communication technologies, and in particular, to a method, device, and storage medium for tuning an antenna in a multi-communication system.
  • a long term evolution (LTE) communication system and a new radio (NR) communication system coexist in the terminal. Therefore, the terminal can simultaneously access the LTE network and the NR network.
  • the coexisting communication system may adopt a shared tuner design, and use the tuner to tune the antenna of the coexisting communication system.
  • Fig. 1 is a schematic structural diagram of a terminal sharing a tuner among multiple communication systems in a terminal in the prior art. In Fig. 1, two communication systems in the terminal (hereinafter referred to as systems) sharing an antenna and a tuner are taken as an example for description.
  • the tuner is connected to the antenna, the processor of the communication system A and the processor of the communication system B, respectively.
  • a fixed tuning value needs to be preset for the tuner, so that the terminal can take into account the performance of the antennas of the system A and the system B.
  • the embodiments of the present application provide a method, device, and storage medium for tuning antennas in multiple communication systems, which realize the tuning of antennas of multiple communication systems sharing a tuner, which can take into account the performance of the antennas of each communication system, and ensure The balance of performance of antennas in multiple communication systems.
  • an embodiment of the present application provides a method for tuning an antenna in a multi-communication system.
  • the method is applied to a terminal including a multi-communication system.
  • the execution subject of the method may be the terminal or the processor in the terminal.
  • the method is described below by taking the execution subject as the processor as an example.
  • the first communication system and the second communication system share a tuner, and the tuner is used to tune the antennas of the first communication system and the second communication system.
  • the processor can obtain the first communication system The first transmission parameter of the second communication system, where the first transmission parameter includes at least one of the first transmission power, the first reception power, the first throughput rate, or the first system power consumption; the processor may also obtain the second communication system A second transmission parameter, where the second transmission parameter includes at least one of a second transmission power, a second reception power, a second throughput rate, or a second system power consumption; according to the first transmission parameter and the second transmission Parameters, use the tuner to tune the antenna.
  • the transmission parameter can directly or indirectly indicate the performance of the antenna in the terminal. Further, using a tuner to tune the antenna according to the comparison result of the transmission parameters can take into account the performance of the antennas of the first communication system and the second communication system.
  • the using the tuner to tune the antenna includes: controlling the tuner through one or more switches to tune the antenna.
  • the first transmission parameter is the first received power
  • the second transmission parameter is the second received power
  • the first power threshold of the first communication system and the second power threshold of the second communication system are stored in the processor. Power threshold. If the first received power is greater than the first power threshold and the second received power is less than the second power threshold, use the tuner to tune the antenna so that the first received power is The second received power is less than the first power threshold. If the first received power and the second received power are both greater than the first power threshold, it is determined that the first priority of the first communication system and the second priority of the second communication system is greater Priority; use the tuner to tune the antenna so that the received power of the communication system with the greater priority is less than the first power threshold.
  • the processor stores a power threshold, a throughput rate threshold, or a system power consumption threshold, if the first transmission parameter includes one of the first transmission power, the first throughput rate, or the first system power consumption, and the When the first transmission parameter also includes one of the first transmit power, the first throughput rate, or the first system power consumption, the tuner can be used to compare the antenna according to the threshold comparison method in the above-mentioned possible design. Perform tuning.
  • the thresholds corresponding to the transmission parameters of the first communication system and the transmission parameters of the first communication system, and the thresholds corresponding to the transmission parameters of the second communication system and the second communication system are used to determine the first communication The performance of the antenna of the system and the second communication system. Further, according to the result of the performance of the antenna, the antenna is tuned by the tuner, which can take into account the performance of the antenna of the first communication system and the second communication system.
  • the tuner According to the first transmission parameter, the second transmission parameter, the first preset power of the first communication system, and the second preset power of the second communication system, Use the tuner to tune the antenna.
  • the first possible implementation in another possible design is: the first transmission parameter includes a first transmission power, the second transmission parameter includes a second transmission power, and the first preset power is A first preset maximum transmit power, where the second preset power is a second preset maximum transmit power; the processor obtains a first transmit power difference between the first transmit power and the first preset maximum transmit power , And the second transmit power difference between the second transmit power and the second preset maximum transmit power; use the tuner according to the first transmit power difference and the second transmit power difference Tuning the antenna.
  • the tuner uses the tuner to tune the antenna so that the The first transmission power difference and the second transmission power difference are both greater than the first difference threshold, and the second difference threshold is greater than the first difference threshold.
  • first transmit power difference and the second transmit power difference are both smaller than the first difference threshold, determine the first priority of the first communication system and the second priority of the second communication system The larger priority among the levels; using the tuner to tune the antenna so that the transmit power difference of the communication system with the larger priority is greater than the first difference threshold.
  • a second possible implementation in another possible design is: the first transmission parameter includes a first received power, the second transmission parameter includes a second received power, and the first preset power is A first preset maximum received power, where the second preset power is a second preset maximum received power; the processor obtains a first received power difference between the first received power and the first preset maximum received power , And the second received power difference between the second received power and the second preset maximum received power; according to the first received power difference and the second received power difference, the tuner is used Tuning the antenna.
  • the tuner is used to tune the antenna so that the Both the first received power difference and the second received power difference are greater than the first difference threshold, and the second difference threshold is greater than the first difference threshold.
  • first received power difference and the second received power difference are both less than the first difference threshold, determine the first priority of the first communication system and the second priority of the second communication system The larger priority among the classes; using the tuner to tune the antenna so that the received power difference of the communication system with the larger priority is greater than the first difference threshold.
  • a second possible implementation in another possible design is: the first transmission parameter includes a first transmission power and a first reception power, and the second transmission parameter includes a second transmission power and a second reception power,
  • the first preset power includes a first preset maximum transmit power and a first preset maximum receive power
  • the second preset power includes a second preset maximum transmit power and a second preset maximum receive power
  • a processor Acquiring a first transmission power difference between the first transmission power and the first preset maximum transmission power, and a second transmission power difference between the second transmission power and the second preset maximum transmission power; If the first transmission difference value and the second transmission power difference value are both greater than the second difference value threshold, then the first received power difference value of the first received power and the first preset maximum received power is acquired , And the second received power difference between the second received power and the second preset maximum received power; use the difference between the first received power difference and the second received power difference as the third received power Difference; according to the third received power difference, use the tuner to tune the antenna.
  • the tuner uses the tuner to tune the antenna so that the third received power difference is smaller than the third difference threshold.
  • the first transmission parameter further includes a first throughput rate and/or first system power consumption
  • the second transmission parameter further includes a second throughput rate and/or second system power consumption; 3.
  • the received power difference is less than the first difference threshold, then the tuner is used according to the first throughput rate and/or the first system power consumption, and the second throughput rate and/or the second system power consumption Tuning the antenna.
  • the comparison of the first transmission power difference, the second transmission power difference and the first difference threshold of the acquired first communication system, and/or the first received power difference, the second received power difference and the second difference determines the performance of the antennas of the first communication system and the second communication system, and can take into account the performance of the antennas of the first communication system and the second communication system.
  • the processor uses the tuner to re-tune the antenna according to the corresponding relationship between the tuning value of the tuner and the antenna state of the antenna, so that the first transmit power difference is , The first received power difference, the second transmit power difference, and the second received power difference are all greater than a first difference threshold.
  • the uplink transmission and downlink transmission performance of the antennas of the first communication system and the second communication system are also adjusted, so that both The performance of uplink transmission and downlink transmission of a communication system and a second communication system.
  • an embodiment of the present application provides a tuning device for antennas in a multiple communication system.
  • the tuning device is applied to a first communication system and a second communication system, and the first communication system and the second communication system share A tuner, the tuner is used to tune the antennas of the first communication system and the second communication system,
  • the device includes: an acquisition module for acquiring the first transmission parameter of the first communication system, the The first transmission parameter includes at least one of a first transmission power, a first reception power, a first throughput rate, or a first system power consumption; the acquisition module is further configured to acquire a second transmission parameter of the second communication system
  • the second transmission parameter includes at least one of a second transmission power, a second reception power, a second throughput rate, or a second system power consumption.
  • the tuning module is configured to use the tuner to tune the antenna according to the first transmission parameter and the second transmission parameter.
  • the transmission parameter can directly or indirectly indicate the performance of the antenna in the terminal. Further, using a tuner to tune the antenna according to the comparison result of the transmission parameters can take into account the performance of the antennas of the first communication system and the second communication system.
  • the using the tuner to tune the antenna includes: controlling the tuner through one or more switches to tune the antenna.
  • the first transmission parameter is the first received power
  • the second transmission parameter is the second received power
  • the first power threshold of the first communication system and the second power threshold of the second communication system are stored in the processor. Power threshold. If the first received power is greater than the first power threshold, and the second received power is less than the second power threshold, the tuning module is configured to use the tuner to tune the antenna so that all Both the first received power and the second received power are less than a first power threshold.
  • the tuning module is configured to determine the first priority of the first communication system and the first priority of the second communication system The larger priority of the two priorities; the tuning module is configured to use the tuner to tune the antenna so that the received power of the communication system with the larger priority is less than the first power threshold .
  • the tuning module stores a power threshold, a throughput rate threshold, or a system power consumption threshold, if the first transmission parameter includes one of the first transmission power, the first throughput rate, or the first system power consumption, and When the first transmission parameter also includes one of the first transmission power, the first throughput rate, or the first system power consumption, the tuning module may use the threshold comparison method in the above-mentioned possible design The tuner tunes the antenna.
  • the thresholds corresponding to the transmission parameters of the first communication system and the transmission parameters of the first communication system, and the thresholds corresponding to the transmission parameters of the second communication system and the second communication system are used to determine the first communication The performance of the antenna of the system and the second communication system. Further, according to the result of the performance of the antenna, the antenna is tuned by the tuner, which can take into account the performance of the antenna of the first communication system and the second communication system.
  • the tuning module is configured to perform according to the first transmission parameter, the second transmission parameter, the first preset power of the first communication system, and the second communication system Using the tuner to tune the antenna.
  • the first possible implementation in another possible design is: the first transmission parameter includes a first transmission power, the second transmission parameter includes a second transmission power, and the first preset power is A first preset maximum transmit power, the second preset power is a second preset maximum transmit power; the tuning module is configured to obtain the first transmit power and the first preset maximum transmit power A transmission power difference, and a second transmission power difference between the second transmission power and the second preset maximum transmission power; according to the first transmission power difference and the second transmission power difference, Use the tuner to tune the antenna.
  • the tuning module is configured to use the tuner to The antenna is tuned so that the first transmission power difference and the second transmission power difference are both greater than the first difference threshold, and the second difference threshold is greater than the first difference threshold.
  • the tuning module is configured to determine the first priority of the first communication system and the first priority 2. The larger priority of the second priority of the communication system; using the tuner to tune the antenna so that the transmission power difference of the communication system with the larger priority is greater than the first difference Value threshold.
  • a second possible implementation in another possible design is: the first transmission parameter includes a first received power, the second transmission parameter includes a second received power, and the first preset power is A first preset maximum received power, the second preset power is a second preset maximum received power; the tuning module is configured to obtain the first received power and the first preset maximum received power A received power difference, and a second received power difference between the second received power and the second preset maximum received power; according to the first received power difference and the second received power difference, Use the tuner to tune the antenna.
  • the tuning module is configured to use the tuner to The antenna is tuned so that the first received power difference and the second received power difference are both greater than the first difference threshold, and the second difference threshold is greater than the first difference threshold.
  • the tuning module is configured to determine the first priority of the first communication system and the first priority 2. The larger priority of the second priority of the communication system; using the tuner to tune the antenna so that the received power difference of the communication system with the larger priority is greater than the first difference Value threshold.
  • a second possible implementation in another possible design is: the first transmission parameter includes a first transmission power and a first reception power, and the second transmission parameter includes a second transmission power and a second reception power,
  • the first preset power includes a first preset maximum transmit power and a first preset maximum receive power
  • the second preset power includes a second preset maximum transmit power and a second preset maximum receive power
  • the tuning module is used to obtain the first transmission power difference between the first transmission power and the first preset maximum transmission power, and the second transmission power between the second transmission power and the second preset maximum transmission power Transmit power difference.
  • the tuning module is configured to obtain the first received power and the first preset maximum received power The first received power difference, and the second received power difference between the second received power and the second preset maximum received power; the first received power difference and the second received power difference The difference is used as a third received power difference; according to the third received power difference, the antenna is tuned using the tuner.
  • the tuning module is configured to use the tuner to tune the antenna so that the third received power difference is less than The third difference threshold.
  • the first transmission parameter further includes a first throughput rate and/or first system power consumption
  • the second transmission parameter further includes a second throughput rate and/or second system power consumption; 3. If the received power difference is less than the first difference threshold, the tuning module is configured to perform according to the first throughput rate and/or first system power consumption, and the second throughput rate and/or second system power Use the tuner to tune the antenna.
  • the comparison of the first transmission power difference, the second transmission power difference and the first difference threshold of the acquired first communication system, and/or the first received power difference, the second received power difference and the second difference determines the performance of the antennas of the first communication system and the second communication system, and can take into account the performance of the antennas of the first communication system and the second communication system.
  • the tuning module is further configured to use the tuner to re-tune the antenna according to the corresponding relationship between the tuning value of the tuner and the antenna state of the antenna, so that The first transmit power difference, the first received power difference, the second transmit power difference, and the second received power difference are all greater than a first difference threshold.
  • the uplink transmission and downlink transmission performance of the antennas of the first communication system and the second communication system are also adjusted, so that both The performance of uplink transmission and downlink transmission of a communication system and a second communication system.
  • an embodiment of the present application provides a tuning device for an antenna in a multiple communication system.
  • the tuning device is applied to a first communication system and a second communication system.
  • the tuning device includes a processor, a memory, and the memory.
  • a computer program is stored, and when the computer program is executed by the antenna tuning device in the multi-communication system, the processor executes various possible design methods in the first aspect.
  • an embodiment of the present application provides an antenna tuning device in a multiple communication system.
  • the tuning device is applied to a first communication system and a second communication system.
  • the tuning device includes a processor and two transceivers.
  • the transceiver is configured to perform transceiving actions, and the processor executes the methods in various possible designs of the first aspect described above.
  • the tuning device further includes a tuner, and the processor is configured to use the tuner to tune the antenna.
  • the tuning device further includes a switch, and the processor is configured to control the switch and change the tuning value of the tuner to tune the antenna.
  • the tuning device further includes one or more antennas, the first communication system and the second communication system may share the one or more antennas, or the first communication system and the The second communication system has independent one or more antennas, or the first communication system and a part of the second communication system share one or more antennas, and each communication system in the other part of the communication system has an independent One or more antennas.
  • the embodiments of the present application provide a computer program product containing instructions, which when run on a computer, enable the computer to execute various possible design methods in the first aspect.
  • an embodiment of the present application provides a computer-readable storage medium, characterized in that it is used to store a computer program or instruction, and when the computer program or instruction runs on a computer, the computer executes the first In terms of various possible design methods.
  • an embodiment of the present application provides a terminal, which includes the antenna tuning device in the multi-communication system in the first to fourth aspects.
  • the tuning method obtains the first transmission parameter of the first communication system and the second transmission parameter of the second communication system, and the transmission parameter is capable of A parameter indicating the performance of the antennas of the first communication system and the second communication system. Furthermore, by comparing the first transmission parameter and the second transmission parameter, the tuner is used to tune the antenna, which not only realizes the tuning of the antenna of the multi-communication system sharing the tuner, but also takes into account the performance of the antenna of each communication system , And to ensure the balance of the performance of the antenna of the multi-communication system.
  • FIG. 1 is a schematic diagram of the structure of a terminal sharing a tuner among multiple communication systems in a terminal in the prior art
  • FIG. 2 is a schematic structural diagram of a terminal sharing a tuner in a multi-communication system provided by an embodiment of the application;
  • FIG. 3 is a schematic structural diagram of a terminal sharing a tuner in another multi-communication system provided by an embodiment of the application;
  • FIG. 4 is a schematic structural diagram of another terminal sharing a tuner in a multi-communication system according to an embodiment of the application;
  • FIG. 5 is a schematic flowchart of a method for tuning an antenna in a multi-communication system according to an embodiment of this application;
  • FIG. 6 is a schematic flowchart of another antenna tuning method in a multi-communication system according to an embodiment of the application.
  • FIG. 7 is a schematic structural diagram of an antenna tuning device in a multi-communication system provided by an embodiment of the application.
  • the coexisting multiple communication systems may share the tuner, and then use the tuner to tune the antenna of the multiple communication system.
  • the tuning value of the tuner is set to a fixed value, it will not be well adapted to changes in the external scene where the terminal is located. For example, the external scene where the terminal is located becomes that the coverage of the network corresponding to the communication system A is good, while the coverage of the network corresponding to the communication system B is poor.
  • the signal strength of the network corresponding to communication system A received by the terminal is greater than the strength threshold, and the signal strength of the network corresponding to communication system B is less than the strength threshold.
  • the performance of the antennas of the communication system A and the communication system B cannot be taken into account.
  • the communication system A and the communication system B may share the same antenna or use different antennas. Therefore, the method of using a fixed tuning value in the prior art cannot take into account the performance of the antenna of each communication system of the terminal in each external scene.
  • an embodiment of the present application provides a method for tuning an antenna in a multi-communication system.
  • the tuning method can use a tuner to tune the antennas in the multi-communication system based on the transmission parameters in each communication system that can reflect the performance of the antenna of the communication system.
  • flexible and variable tuning values can be used to tune the antennas in the multi-communication system under different external scenarios, so as to achieve the purpose of taking into account the performance of the antennas of the multi-communication system.
  • the method for tuning antennas in multiple communication systems in this embodiment is applied to a scenario where multiple communication systems share a tuner in a terminal.
  • the communication systems involved in the embodiments of this application include, but are not limited to: the 2nd generation telecommunication (2G) system, the 3rd generation telecommunication (3G) system, and long term evolution (long term evolution). , At least one of an LTE) communication system or a new radio (NR) communication system, and may also include at least one of a Wi-Fi wireless communication system or a satellite communication system.
  • the subsequent two communication systems A and B involved are any two of the above multiple communication systems or may also include other communication systems not listed in this embodiment.
  • the following embodiments take two communication systems as examples, the solution is actually applicable to more communication systems.
  • antennas may be shared among multiple communication systems, or each communication system in the multiple communication systems has its own independent antenna, or part of the multiple communication systems
  • the communication systems share antennas, and each communication system in the other part of the communication system has its own independent antenna.
  • the tuner is realized by an impedance matching circuit, and the impedance matching circuit may include at least one electronic component such as a resistor, a capacitor, or an inductance, so as to realize the tuning of the antenna. Therefore, the process of tuning the antenna can also be referred to as the process of modifying the tuning value of the tuner. It can also be referred to as the process of modifying the resistance value of the resistor, the capacitance value of the capacitor, or the inductance value of the inductor in the impedance matching circuit. The process of setting at least one.
  • the impedance matching circuit determined when taking into account the performance of the antennas of multiple communication systems is used as the impedance matching circuit in the tuner shared by the multiple communication systems, and the tuning value of the tuner is used as the tuning of the tuner shared by the multiple communication systems value.
  • Fig. 2 is a schematic structural diagram of a terminal sharing a tuner in a multi-communication system provided by an embodiment of the application.
  • the terminal may include: antenna, tuner, switch, transceiver of communication system A, transceiver of communication system B, processor of communication system A, processor of communication system B, common logic processor, and Memory.
  • the processor of the communication system A, the processor of the communication system B, and the common logic processor may be included in one processor.
  • the processor includes processors with different functions.
  • the dashed box in FIG. 2 is used to represent this processor.
  • the figure only takes the processor of the communication system A, the processor of the communication system B, and the common logic processor as three independent processors for illustration.
  • the baseband signal processing of the communication system A and the communication system B The baseband signal processing and common logic processing can be executed on the same processor.
  • the tuner is respectively connected with the antenna and the switch, and the switch is respectively connected with the transceiver of the communication system A and the transceiver of the communication system B.
  • the transceiver of each communication system is connected to the processor of each communication system, and the processor of each communication system is connected to a common logical processor. That is, the transceiver of communication system A is connected with the processor of communication system A, the transceiver of communication system B is connected with the processor of communication system B, and the processor of communication system A and the processor of communication system B are both connected to the common logic Processor connection.
  • the memory is connected to the common logical processor.
  • the memory can also be connected to the processor of the communication system A, the processor of the communication system B, and the common logic processor, or can also be connected to the baseband signal processing of the communication system A, the baseband signal processing of the communication system B, and the common logic processing. Processor connection.
  • the transceiver of communication system A and the transceiver of communication system B are both used to generate and receive high frequency or radio frequency signals.
  • the transceiver can convert the baseband signal into a high-frequency or radio frequency signal under the control of the processor of the communication system and transmit the high-frequency or radio frequency signal to the antenna via the tuner, and can also receive the high frequency transmitted by the antenna via the tuner. Or a radio frequency signal and convert the high frequency or radio frequency signal into a baseband signal.
  • Transceiver is also called radio frequency transceiver, radio frequency device or radio frequency unit.
  • Antenna used to convert the high-frequency or radio frequency signal transmitted by the transceiver through the tuner into radio waves and radiate it into the space, and can convert the radio waves received in the space into high-frequency or radio frequency signals and be tuned
  • the transmitter is transmitted to the transceiver.
  • the processor of the communication system A or the processor of the communication system B, has a baseband signal processing function, and is also used to obtain the transmission power and reception power of the corresponding transceiver, and combine the transmission power and reception power of the transceiver
  • the system power consumption and/or system throughput rate are sent to the common logic processor.
  • the common logic processor is used to control the switch according to the received transmit power and receive power of the transceiver, system power consumption and/or system throughput rate, and can control the tuning value of the tuner.
  • the switch in this embodiment may be a single-pole double-throw switch or a double-pole multi-throw switch, and the type of the switch is not limited in this embodiment.
  • the common logic processor controls the tuning value of the tuner through a switch, specifically one or more switches.
  • the tuner may include a plurality of impedance matching circuits that can be selectively enabled, which are used to enable different impedance matching circuits in the tuner according to the control of the switch by the common logic processor, thereby realizing the change of the tuning value.
  • the memory in the embodiment of the present application may include high-speed random access memory (random-access memory, RAM), and may also include non-volatile memory (NVM), such as at least one disk memory, and the memory may Store various instructions to complete various processing functions and implement the method steps of the present application.
  • RAM random-access memory
  • NVM non-volatile memory
  • the terminal of the present application may further include: a power supply, a communication bus, and a communication port.
  • the communication bus is used to realize the communication connection between the components.
  • the aforementioned communication port is used to implement connection and communication between the communication device and other peripherals, such as various peripheral interfaces of the terminal.
  • FIG. 3 is a schematic structural diagram of a terminal sharing a tuner in another multi-communication system provided by an embodiment of the application.
  • FIG. 3 shows that the processor of the communication system A, the processor of the communication system B, and the common logic processor are included in a processor as shown in FIG. 3 for example.
  • FIG. 3 only shows the processor in the terminal,
  • the connection relationship among the memory, power supply, communication bus, and communication port is to further illustrate other parts of FIG. 2, such as an antenna, a tuner, or a transceiver.
  • FIG. 4 is a schematic structural diagram of another terminal sharing a tuner in a multi-communication system according to an embodiment of the application.
  • FIG. 4 shows a scenario where the communication system A and the communication system B share a tuner, and the difference from FIG. 2 is that the communication system A and the communication system B each have independent antennas instead of sharing the same antenna.
  • the antenna tuning method in this scenario is the same as the antenna tuning method in the scenario shown in FIG. 2.
  • each communication system shown in Figure 4 uses its own one or more antennas to receive radio waves instead of sharing the same antenna like the structure of Figure 2, and according to the tuning value of the tuner, Use respective antennas for radio wave radiation.
  • the first communication system and the second communication system coexisting in the terminal, and the first communication system and the second communication system share a tuner are taken as an example, the method for tuning an antenna in a multi-communication system provided by the embodiment of the present application Describe and explain. It should be understood that antennas may be shared between the first communication system and the second communication system, and each communication system may also have its own independent antenna. For details, refer to the previous description. Further, the method for tuning antennas of other communication systems in the terminal may be the same as the method for tuning antennas in the following embodiments.
  • FIG. 5 is a schematic flowchart of a method for tuning antennas in a multi-communication system according to an embodiment of the application, and the execution body of the method is a common logic processor.
  • the method includes: S101. Obtain a first transmission parameter of the first communication system, where the first transmission parameter includes a first transmission power, a first reception power, a first throughput rate, or a first system At least one of the power consumption. S102. Acquire a second transmission parameter of the second communication system, where the second transmission parameter includes at least one of a second transmission power, a second reception power, a second throughput rate, or a second system power consumption.
  • the transmitting power and the receiving power may be the transmitting power and the receiving power of the transceiver of the corresponding communication system, respectively.
  • the throughput rate may include an uplink throughput rate and/or a downlink throughput rate.
  • the premise of this application is to assume that the signal received by the terminal is constant in a short period of time. For example, in a short period of time in an external scene, the signal strength of the network corresponding to the first communication system received by the terminal is within the first preset range, and the signal strength of the network corresponding to the second communication system received by the terminal is within the first preset range. Within the second preset range. In this external scenario, the performance of the antenna is determined by the transmission parameters, and then the tuner is used to tune the antenna.
  • the terminal Since the terminal receives the signal of the network corresponding to the communication system, it is completed by the cooperation of the transceiver and the antenna of the communication system.
  • the signal strength of the network of the communication system received by the terminal is within the preset range, if the transmitting power and receiving power of the transceiver of the communication system are both large, it proves that the ability of the antenna to radiate radio waves is weak. Poor performance; if the transmit power and receive power of the transceiver of the communication system are both small, it proves that the antenna has a strong ability to radiate radio waves, that is, the antenna has good performance.
  • the system power consumption can also prove the performance of the antenna.
  • the performance of the antenna can be determined by the first transmission parameter and the second transmission parameter, so that the tuner can be used to tune the antenna correctly.
  • the common logic processor may receive the first transmission parameter sent by the processor of the first communication system and the second transmission parameter sent by the processor of the second communication system.
  • the method of obtaining the first transmission parameter of the first communication system is the same as that of obtaining the second transmission parameter of the second communication system.
  • the following is to obtain the first transmission parameter of the first communication system (that is, the processing of the first communication system).
  • the device obtains the first transmission parameter) as an example.
  • the processor of the first communication system may obtain the transmit power and the receive power of the transceiver of the first communication system.
  • the transceiver of the first communication system can generate high-frequency or radio frequency signals under the control of the processor of the first communication system, and the transceiver of the first communication system can also receive the radio waves converted by the antenna. High frequency or radio frequency signal.
  • the processor of the first communication system may obtain the first transmission power and the first reception power according to the high frequency or radio frequency signal generated and received by the transceiver of the first communication system according to the power calculation method.
  • the processor of the first communication system may also obtain the first uplink throughput rate and the first downlink throughput rate.
  • the processor of the first communication system may use the amount of data sent by the terminal on the uplink channel of the first communication system in a unit time as the first uplink throughput rate; correspondingly, the processor of the first communication system may also use The amount of data received by the internal terminal on the downlink channel of the first communication system is used as the first downlink throughput rate.
  • the processor of the first communication system may also obtain the power consumption of the first system.
  • the processor of the first communication system may obtain input power according to the current value and voltage value input to the processor of the first communication system, and obtain output power according to the current value and voltage value output from the first communication system, and then according to The difference between the input power and the output power obtains the power consumption of the first system.
  • the power consumption of the first system may be the sum of the power consumption of all devices included in the first communication system; it may also be the thermal design power (TDP) of the first communication system,
  • TDP thermal design power
  • the TDP can be directly acquired by the processor of the first communication system.
  • the processor of the first communication system in this embodiment may also use other methods in the prior art to obtain the first transmission parameter. It is worth noting that S101 and S102 are not distinguished in order, and the two can be executed simultaneously.
  • the tuner uses the tuner to tune the antenna according to the first transmission parameter and the second transmission parameter.
  • the first transmission parameter and the second transmission parameter acquired by the common logic processor are of the same type.
  • the first transmission parameter is the first received power and the second transmission parameter is the second received power; or, the first transmission parameter is the first received power and the first transmission power, and the second transmission parameter is the second received power and the first 2. Transmitting power.
  • different processing methods can be used to achieve tuning of the antenna using a tuner. The following describes the process of tuning the antenna by using the tuner when the first transmission parameter includes one of the first transmission power, the first reception power, the first throughput rate, or the first system power consumption.
  • the first transmission parameter includes a first received power
  • the second transmission parameter includes a second received power.
  • the first power threshold and the second power threshold of each communication system may be preset, where the second power threshold is smaller than the first power threshold.
  • the first received power obtained by the common logic processor is greater than the first power threshold, it means that the network within the preset range can be obtained only when the receiving power of the transceiver of the first communication system is large.
  • the signal strength determines the poor performance of the antenna of the first communication system.
  • the first received power obtained by the common logic processor is less than the second power threshold, it means that the receiving power of the transceiver of the first communication system is very small, and the network signal strength within the preset range can be obtained to determine the first communication system The performance of the antenna is good.
  • the first received power acquired by the common logic processor is less than the first power threshold and greater than the second received power, it is determined that the performance of the antenna of the first communication system is within a normal range.
  • the power thresholds of the first communication system and the second communication system are both set to the first power threshold and the second power threshold. It is understandable that in actual application process, for different communication systems, different first power thresholds and second power thresholds can be set.
  • the purpose of tuning is to make the tuned first receiving Both the power and the second received power are less than the first power threshold.
  • the common logic processor may use the tuner to tune the antenna according to the received first received power, second received power, first power threshold, and second power threshold.
  • a possible implementation is: if the first received power is greater than the first power threshold, and the second received power is less than the second power threshold, it can be determined that the antenna of the first communication system has poor performance , And the performance of the antenna of the second communication system is good; then the tuner is used to tune the antenna so that the first received power and the second received power are both less than the first power threshold.
  • Another possible implementation manner is: if the first received power and the second received power are both greater than the first power threshold, it can be determined that the antennas of the first communication system and the second communication system have poor performance . At this time, if the antennas of the two communication systems are tuned, both the network of the first communication system and the network of the second communication system to which the terminal is connected may be dropped, which cannot guarantee the basic communication requirements of the terminal.
  • the first priority of the first communication system and the second priority of the second communication system may be preset. In this case, determine the larger priority of the first priority and the second priority; use the tuner to tune the antenna so that the communication system with the larger priority can receive The power is less than the first power threshold.
  • the common logic processor sends the common logic processor to the processor of the first communication system and the second communication system.
  • the processor of the communication system sends a control signal so that the processor of the first communication system and the processor of the second communication system control the closing and opening of the switch, so that different impedance matching circuits in the tuner are enabled to change the tuner Tuning value to achieve tuning of the antenna.
  • the switch can be used as a part of the tuner, and the switch and the impedance matching circuit together form the tuner.
  • the processes of acquiring the transmission parameters of the first communication system, acquiring the parameters of the second communication system, and using a tuner to tune the antenna may be executed in the same processor.
  • the multiple impedance matching circuits included in the tuner in the embodiment of the present application can form different working modes by enabling one or more impedance matching circuits.
  • the tuning values corresponding to the multiple working modes may be in the process of antenna debugging. Obtained by changing the external scene. For example, in each external scene, debug the antenna in the terminal (that is, debug the impedance matching circuit in the tuner) to determine the working mode of the multiple impedance matching circuits in the tuner corresponding to each external scene .
  • the one or more impedance matching circuits that are determined to be enabled in each external scene can take into account the performance of the antenna of the multi-communication system in the terminal in the external scene.
  • the working modes of multiple impedance matching circuits in multiple external scenes can be obtained, that is, the tuning values of the tuners in multiple external scenes can be obtained.
  • the external scenarios may include: 1.
  • the performance of the antenna of the LTE communication system is poor, and the performance of the antenna of the NR communication system is good; for example, the first received power of the LTE communication system is greater than the first power threshold, and the performance of the NR communication system The second received power is less than the second power threshold.
  • the performance of the antenna of the LTE communication system and the performance of the antenna of the NR communication system are both poor; for example, the first received power of the LTE communication system and the second received power of the NR communication system are both greater than the first power threshold.
  • the antenna in the terminal is debugged (that is, the impedance matching circuit in the tuner is debugged), so that the tuning value of the tuner determined in the external scenarios 1 and 2 can take into account the LTE in the terminal.
  • the tuning value of the tuner determined in the external scenario 1 may make the first received power of the LTE communication system and the second received power of the NR communication system both smaller than the first power threshold.
  • the tuning value of the tuner determined in the external scenario 2 may make the received power of the communication system (for example, the NR communication system) with the greater priority less than the first power threshold.
  • the external scene in the embodiment of this application is only an example.
  • other transmission parameters in the communication system can also be used to set different external scenes, and the tuner settings in different external scenes can be determined in the same debugging manner. Tuning value.
  • the first transmission parameter includes one of the first transmission power, the first throughput rate, or the first system power consumption
  • the same method as described above can be used, that is, the power threshold, the throughput threshold, or the system
  • the power consumption threshold method uses the tuner to tune the antenna.
  • the first transmission parameter includes multiple of the first transmit power, the first received power, the first throughput rate, or the first system power consumption.
  • the priority of the first transmission power, the first reception power, the first throughput rate, and the first system power consumption can be set according to the actual application, and the relationship between the first transmission parameter and the corresponding threshold can be determined according to the priority.
  • the device tunes the antenna until all types of first transmission parameters are traversed.
  • a tuner is used according to the first transmission parameter of the first communication system and the second transmission parameter of the second communication system in the multi-communication system Tuning the antenna can take into account the performance of the antenna in the multi-communication system, and ensure the balance of the performance of the antenna in the multi-communication system.
  • the corresponding power thresholds, throughput thresholds, and system power consumption thresholds may be different.
  • different power thresholds and throughput thresholds need to be set for different communication systems.
  • the system power consumption threshold which will increase the calculation and storage capacity of the common logic processor.
  • the following embodiments reduce the amount of calculation and storage of the common logic processor by setting the same threshold condition for different communication systems.
  • FIG. 6 is a schematic flowchart of another antenna tuning method in a multi-communication system according to an embodiment of the application.
  • the method includes: S201. Obtain a first transmission parameter of the first communication system, where the first transmission parameter includes a first transmission power, a first reception power, a first throughput rate, or a first system At least one of the power consumption.
  • S202. Acquire a second transmission parameter of the second communication system, where the second transmission parameter includes at least one of a second transmission power, a second reception power, a second throughput rate, or a second system power consumption.
  • S201-S202 in the embodiments of the present application, reference may be made to the related descriptions in S101-S102 in the foregoing embodiments, and details are not described herein.
  • the first transmission parameter includes a first transmission power
  • the second transmission parameter includes a second transmission power
  • the first preset power is the first preset maximum transmission power
  • the second preset power is the second preset maximum. Transmit power; if the first transmission parameter includes the first received power and the second transmission parameter includes the second received power, correspondingly, the first preset power is the first preset maximum received power and the second preset power is the second preset Set the maximum received power.
  • the tuning is used according to the first transmission parameter, the second transmission parameter, the first preset power of the first communication system, and the second preset power of the second communication system.
  • the tuning of the antenna by the device may include the following implementation methods:
  • the first transmission parameter includes a first transmission power
  • the second transmission parameter includes a second transmission power.
  • the first preset power is a first preset maximum transmission power
  • the second preset power is a second preset maximum transmission power.
  • the common logic processor obtains the first transmission power difference by calculating the difference between the first transmission power and the first preset maximum transmission power, and calculates the sum of the second transmission power
  • the second preset maximum transmission power difference value obtains the second transmission power difference value.
  • the same difference threshold may be preset, and the difference threshold may be the difference between the maximum transmission power supported by the communication system.
  • the maximum transmission power supported by the first communication system is 10 dB
  • the maximum transmission power supported by the second communication system is 15 dB
  • the difference threshold between the first communication system and the second communication system can be set to 1 dB.
  • first difference threshold and second difference threshold can be set for the first communication system and the second communication system, and the difference between the first transmission power and the second transmission power is different from the first difference.
  • To compare the value threshold and the second difference threshold use the tuner to tune the antenna. Wherein, the second difference threshold is greater than the first difference threshold.
  • the first transmit power difference is less than the first difference threshold
  • the second transmit power difference is greater than the second difference threshold.
  • the first difference threshold is 1dB
  • the second difference threshold is 3dB. It is determined that the difference between the first transmission power of the first communication system and the first preset maximum transmission power is less than 1dB, that is, the network signal within the preset range can be obtained only when the transmission power of the transceiver of the first communication system is high Intensity, it can be determined that the performance of the antenna of the first communication system is poor, and the difference between the second transmission power of the second communication system and the second preset maximum transmission power is greater than 3dB, that is, the transmission power of the transceiver of the first communication system
  • the network signal strength within the preset range can be obtained in a very small hour, and it can be determined that the antenna of the second communication system has good performance.
  • the tuner uses the tuner to tune the antenna so that the first transmission power difference and the second transmission power difference are both greater than the first difference threshold, that is, the tuned first communication system
  • the antenna performance of the second communication system is good, that is, the performance of the antennas of the first communication system and the second communication system is taken into consideration.
  • first transmit power difference and the second transmit power difference are both smaller than the first difference threshold. For example, if the first transmit power difference and the second transmit power difference are both less than 1 dB, it can be determined that the antennas of the first communication system and the second communication system have poor performance. Then determine the larger priority of the first priority of the first communication system and the second priority of the second communication system; use the tuner to tune the antenna so that the higher priority The transmit power difference of a communication system with a large priority is greater than the first difference threshold.
  • first difference threshold and the second difference threshold in this embodiment can be set according to the communication system coexisting in the terminal.
  • the above-mentioned first difference threshold is 1dB
  • the second difference threshold is 3dB is just an example, and other difference thresholds can be set in the actual application process.
  • the first transmission parameter includes the first received power
  • the second transmission parameter includes the second received power
  • the first preset power is the first preset maximum received power
  • the second preset power is a second preset maximum received power.
  • the common logic processor obtains the first received power difference by calculating the difference between the first received power and the first preset maximum received power, and The second received power difference is obtained by calculating the difference between the second received power and the second preset maximum received power.
  • the same first difference threshold and second difference threshold may be set for the first communication system and the second communication system.
  • the antenna is tuned by using the tuner by comparing the first received power difference and the second received power difference with the first difference threshold and the second difference threshold, respectively.
  • the second difference threshold is greater than the first difference threshold.
  • the tuner is used to tune the antenna so that the Both the first received power difference and the second received power difference are greater than the first difference threshold.
  • the first priority of the first communication system and the first priority of the second communication system are determined The larger priority of the two priorities; using the tuner to tune the antenna so that the received power difference of the communication system with the larger priority is greater than the first difference threshold.
  • the first transmission parameter includes a first transmission power and a first reception power
  • the second transmission parameter includes a second transmission power and a second reception power
  • the first preset power includes a first A preset maximum transmission power and a first preset maximum reception power
  • the second preset power includes a second preset maximum transmission power and a second preset maximum reception power.
  • the priority of the transmission power and the priority of the reception power can be determined according to the priority of the preset transmission parameter; Transfer parameters for processing.
  • the antenna tuning method in the multi-system is described.
  • the common logic processor After obtaining the first transmission power and the second transmission power, the common logic processor obtains the first transmission power difference by calculating the difference between the first transmission power and the first preset maximum transmission power, and calculates the sum of the second transmission power The second preset maximum transmission power difference value obtains the second transmission power difference value.
  • the common logic processor obtains the first received power difference between the first received power and the first preset maximum received power, and the difference between the second received power and the second preset maximum received power The second received power difference.
  • the common logic processor judges the performance of the antennas of the first communication system and the second communication system according to the first received power difference and the second received power difference. Specifically, the difference between the first received power difference and the second received power difference may be used as the third received power difference; according to the third received power difference, the tuner is used to The antenna is tuned.
  • the common logic processor may also determine the first received power difference, the second received power difference, the first difference threshold, and the second difference threshold. The size relationship. If the first received power difference and the second received power difference are both greater than the second difference threshold, it can be determined that the downlink transmission performance of the antenna of the first communication system and the downlink transmission performance of the antenna of the second communication system are both good. In this case, the antenna is tuned by using the tuner according to the third received power difference.
  • tuning the antenna according to the third received power difference may include the following two implementation manners:
  • the first implementation manner if the third received power difference is greater than the second difference threshold, it can be determined that the performance gap between the antennas of the first communication system and the second communication system is large, If the performance is unbalanced, the tuner is used to tune the antenna so that the third received power difference is smaller than the third difference threshold, that is, the performance of the antennas of the two communication systems is balanced. Wherein, the third difference threshold is less than the second difference threshold.
  • the first transmission parameter further includes a first throughput rate and/or a first system power consumption
  • the second transmission parameter further includes a second throughput rate and/or a second system power consumption.
  • the first throughput rate threshold and the second throughput rate threshold may be stored in the common logic processor. Wherein, the second throughput rate threshold is greater than the first throughput rate threshold. If the first uplink throughput rate is greater than the second throughput rate threshold, and the second uplink throughput rate is less than the first throughput rate threshold, it can be determined that the performance of the antenna of the first communication system is good, but the performance of the antenna of the second communication system is poor. The antenna is tuned so that the first uplink throughput rate of the first communication system and the second uplink throughput rate of the second communication system are both greater than the first throughput rate threshold.
  • the process of tuning the antenna according to the first downlink throughput rate in the first throughput rate and the second downlink throughput rate in the second throughput rate can be the same as the above-mentioned process of tuning the antenna according to the sum of the first uplink throughput rate.
  • the process of tuning the antenna for the uplink throughput is the same.
  • the first power consumption threshold and the second power consumption threshold can be set in a similar manner.
  • the first power consumption threshold is smaller than the second power consumption threshold, so that the power consumption of the first system and the power consumption of the second system after tuning are both smaller than the first power consumption threshold.
  • the priority of the throughput and system power consumption can be , And then tune the antenna in the same way as above.
  • the priority from high to low is throughput, transmit power, receive power, and system power consumption. Then, according to the method corresponding to the above, the above decision process is executed according to the throughput, the transmission power, the reception power and the system power consumption in turn to obtain the tuning value or tuning mode, and the tuner is used to tune the antenna.
  • the antenna may be further tuned using the tuner according to the correspondence between the tuning value of the tuner and the antenna state of the antenna. Tuning again, so that the first transmit power difference, the first received power difference, the second transmit power difference, and the second received power difference are all greater than the first difference threshold.
  • the corresponding relationship between the tuning value of the tuner and the antenna state of the antenna may be stored in the memory in the form of a list.
  • the antenna state may include the gain of the antenna, the tilt angle of the antenna, etc.
  • the first transmission power, the first reception power, the second transmission power, and the second reception power corresponding to different antenna states are different.
  • the antenna can be tuned again according to the corresponding relationship, so that the first transmit power difference, the first received power difference, the second transmit power difference, and the second received power difference Both are greater than the first difference threshold, which ensures that the uplink transmission performance and downlink transmission performance of the antennas of the first communication system and the second communication system are both optimized.
  • the calculation amount and storage amount of the common logical processor are reduced, and the processing efficiency of the processor is improved; on the other hand, the The processing of the transmission parameters of the first communication system and the second communication system can tune the antennas of coexisting multiple communication systems, so that the performance of the antennas of each communication system can reach the best in different external scenarios.
  • FIG. 7 is a schematic structural diagram of an antenna tuning device in a multi-communication system provided by an embodiment of the application.
  • the antenna tuning device in the multi-communication system involved in the embodiment of the present application may be the processor in the foregoing embodiment, for example, the common logic processor or part of its internal hardware modules or software modules running on it.
  • the antenna tuning device in the communication system is used to perform the actions of the common logic processor in the above method embodiment.
  • the antenna tuning device in the multi-communication system may include: an acquisition module 701 and a tuning module 702.
  • the obtaining module 701 is configured to obtain a first transmission parameter of the first communication system, where the first transmission parameter includes at least one of a first transmission power, a first reception power, a first throughput rate, or a first system power consumption
  • the acquisition module 701 is also used to acquire a second transmission parameter of the second communication system, where the second transmission parameter includes a second transmission power, a second reception power, a second throughput rate or a second system power consumption At least one of them.
  • the tuning module 702 is configured to use the tuner to tune the antenna according to the first transmission parameter and the second transmission parameter.
  • the antenna tuning device in the multi-communication system provided by the embodiment of the present application can execute the actions of the common logic processor in the foregoing method embodiment, and its implementation principles and technical effects are similar, and will not be repeated here.
  • the tuning module 702 is specifically configured to perform according to the first transmission parameter, the second transmission parameter, the first preset power of the first communication system, and the second communication system of the second communication system.
  • the preset power is used to tune the antenna using the tuner.
  • the first transmission parameter includes a first transmission power
  • the second transmission parameter includes a second transmission power
  • the first preset power is a first preset maximum transmission power
  • the second preset The power is the second preset maximum transmission power
  • the tuning module 702 is specifically configured to obtain the first transmission power difference between the first transmission power and the first preset maximum transmission power, and the second transmission A second transmit power difference between the power and the second preset maximum transmit power; according to the first transmit power difference and the second transmit power difference, use the tuner to tune the antenna.
  • the tuning module 702 is specifically configured to use the tuning if the first transmit power difference is less than a first difference threshold, and the second transmit power difference is greater than a second difference threshold.
  • the antenna is tuned by the device so that the first transmission power difference and the second transmission power difference are both greater than the first difference threshold, and the second difference threshold is greater than the first difference Threshold; if the first transmit power difference and the second transmit power difference are both less than the first difference threshold, determine the first priority of the first communication system and the first priority of the second communication system The larger priority of the two priorities; using the tuner to tune the antenna so that the transmit power difference of the communication system with the larger priority is greater than the first difference threshold.
  • the first transmission parameter includes a first received power
  • the second transmission parameter includes a second received power
  • the first preset power is a first preset maximum received power
  • the tuning module 702 Specifically used to obtain the first received power difference between the first received power and the first preset maximum received power, and the second received power between the second received power and the second preset maximum received power Difference; according to the first received power difference and the second received power difference, use the tuner to tune the antenna.
  • the tuning module 702 is specifically configured to use the tuning if the first received power difference is less than a first difference threshold, and the second received power difference is greater than a second difference threshold.
  • the antenna is tuned by the device so that the first received power difference and the second received power difference are both greater than the first difference threshold, and the second difference threshold is greater than the first difference Threshold.
  • the tuning module 702 is specifically configured to determine the first priority and the first priority of the first communication system. The larger priority of the second priority of the second communication system; using the tuner to tune the antenna so that the received power difference of the communication system with the larger priority is greater than the first A difference threshold.
  • the first transmission parameter includes a first transmission power and a first reception power
  • the second transmission parameter includes a second transmission power and a second reception power
  • the first preset power includes a first preset maximum transmission power. Power and a first preset maximum received power
  • the second preset power includes a second preset maximum transmit power and a second preset maximum received power.
  • the tuning module 702 is specifically configured to obtain a first transmit power difference between the first transmit power and the first preset maximum transmit power, and the second transmit power and the second preset maximum transmit The second transmit power difference of the power; if the first transmit difference and the second transmit power difference are both greater than the second difference threshold, then the first received power and the first preset maximum The first received power difference of the received power, and the second received power difference between the second received power and the second preset maximum received power; and the first received power difference and the second received power difference The difference between the values is used as the third received power difference; according to the third received power difference, the antenna is tuned using the tuner.
  • the tuning module 702 is specifically configured to use the tuner to tune the antenna if the third received power difference is greater than the second difference threshold, so that the third received power The power difference is less than the third difference threshold.
  • the first transmission parameter further includes a first throughput rate and/or power consumption of the first system
  • the second transmission parameter further includes a second throughput rate and/or power consumption of the second system.
  • the tuning module 702 is specifically configured to, if the third received power difference value is less than a first difference value threshold, according to the first throughput rate and/or the first system power consumption, and the second throughput rate and / Or the second system power consumption, use the tuner to tune the antenna.
  • the tuning module 702 is further configured to use the tuner to re-tune the antenna according to the corresponding relationship between the tuning value of the tuner and the antenna state of the antenna, so that the first transmission power The difference, the first received power difference, the second transmit power difference, and the second received power difference are all greater than a first difference threshold.
  • the above-mentioned modules can be implemented in the form of software called by processing elements; they can also be implemented in the form of hardware.
  • the module can be a separately established processing element, or it can be integrated in a chip of the above-mentioned device for implementation.
  • it can also be stored in the memory of the above-mentioned device in the form of program code and called by a certain processing element of the above-mentioned device. And perform the functions of the above modules.
  • all or part of these modules can be integrated together or implemented independently.
  • the processing element described here may be an integrated circuit with signal processing capability.
  • each step of the above method or each of the above modules can be completed by hardware integrated logic circuits in the processor element or instructions in the form of software.
  • the above modules may be one or more integrated circuits configured to implement the above methods, for example: one or more application specific integrated circuits (ASIC), or one or more microprocessors (digital signal processor, DSP), or, one or more field programmable gate arrays (FPGA), etc.
  • ASIC application specific integrated circuit
  • DSP digital signal processor
  • FPGA field programmable gate arrays
  • the processing element may be a general-purpose processor, such as a central processing unit (CPU) or other processors that can call program codes.
  • CPU central processing unit
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application are generated in whole or in part.
  • the computer can be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • Computer instructions can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • computer instructions can be transmitted from a website, computer, server, or data center through a cable (such as Coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means to transmit to another website, computer, server or data center.
  • a computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • plural herein refers to two or more.
  • the term “and/or” in this article is only an association relationship describing associated objects, which means that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, exist alone B these three situations.
  • the character "/" in this article generally indicates that the associated objects before and after are in an "or” relationship; in the formula, the character "/" indicates that the associated objects before and after are in a "division" relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请提供一种多通信系统中天线的调谐方法、装置和存储介质,第一通信系统与第二通信系统共享调谐器,调谐器用于调谐第一通信系统和第二通信系统的天线,该方法包括:获取第一通信系统的第一传输参数,第一传输参数包括第一发射功率、第一接收功率、第一吞吐率或第一系统功耗中的至少一个;获取第二通信系统的第二传输参数,第二传输参数包括第二发射功率、第二接收功率、第二吞吐率或第二系统功耗中的至少一个;根据第一传输参数和第二传输参数,使用调谐器对天线进行调谐。本申请中根据多通信系统中的传输参数,实现了对共享调谐器的多通信系统的天线的调谐,兼顾了多通信系统的天线的性能的平衡。

Description

多通信系统中天线的调谐方法、装置和存储介质 技术领域
本申请实施例涉及通信技术,尤其涉及一种多通信系统中天线的调谐方法、装置和存储介质。
背景技术
在移动通信中,一些终端中存在多通信系统共存的情况。例如,终端中存在长期演进(long term evolution,LTE)通信系统和新空口(new radio,NR)通信系统共存,因此,终端可以同时接入LTE网络和NR网络中。共存的通信系统可能采用共享调谐器的设计,使用调谐器对共存的通信系统的天线进行调谐。图1为现有技术中终端中多通信系统共享调谐器的终端的结构示意图,图1中以终端中的两个通信系统(以下简称为系统)共享天线和调谐器为例进行说明。如图1所示,调谐器分别与天线、通信系统A的处理器和通信系统B的处理器连接。现有技术中需要为调谐器预先设置固定的调谐值,使得终端可以兼顾系统A和系统B的天线的性能。
但随着终端的移动,其所在的外界场景也会发生变化。现有技术中采用固定调谐值的方法,无法兼顾终端在不同外界场景中的每个系统的天线的性能。
发明内容
本申请实施例提供一种多通信系统中天线的调谐方法、装置和存储介质,实现了对共享调谐器的多通信系统的天线的调谐,可以兼顾每个通信系统的天线的性能,且保证了多通信系统的天线的性能的平衡。
第一方面,本申请实施例提供一种多通信系统中天线的调谐方法,该方法应用于包括多通信系统的终端中,该方法的执行主体可以为终端,也可以为终端中的处理器。下面以执行主体为处理器为例对该方法进行描述。其中,第一通信系统与第二通信系统共享调谐器,所述调谐器用于调谐所述第一通信系统和所述第二通信系统的天线,该方法中处理器可以获取所述第一通信系统的第一传输参数,所述第一传输参数包括第一发射功率、第一接收功率、第一吞吐率或第一系统功耗中的至少一个;处理器还可以获取所述第二通信系统的第二传输参数,所述第二传输参数包括第二发射功率、第二接收功率、第二吞吐率或第二系统功耗中的至少一个;根据所述第一传输参数和所述第二传输参数,使用所述调谐器对所述天线进行调谐。
上述方法中,根据终端中的第一通信系统的第一传输参数和第二通信系统的传输参数的比较,该传输参数能够直接或间接指示终端中的天线的性能。进一步的,根据传输参数的比较结果,使用调谐器对天线进行调谐,能够兼顾第一通信系统和第二通信系统的天线的性能。
可选的,所述使用所述调谐器对所述天线进行调谐包括:通过一个或多个开关控制所 述调谐器对所述天线进行调谐。
在一种可能的设计中,第一传输参数为第一接收功率,第二传输参数为第二接收功率,处理器中存储有第一通信系统的第一功率阈值和第二通信系统的第二功率阈值。若所述第一接收功率大于所述第一功率阈值,且所述第二接收功率小于第二功率阈值,则使用所述调谐器对所述天线进行调谐,使得所述第一接收功率和所述第二接收功率均小于第一功率阈值。若所述第一接收功率和所述第二接收功率均大于所述第一功率阈值,则确定第一通信系统的所述第一优先级和第二通信系统的第二优先级中的较大优先级;使用所述调谐器对所述天线进行调谐,使得具有所述较大优先级的通信系统的接收功率小于所述第一功率阈值。
可选的,处理器中存储有功率阈值、吞吐率阈值或系统功耗阈值,若第一传输参数中包括第一发射功率、第一吞吐率或第一系统功耗中的一个,且所述第的传输参数中也包括第一发射功率、第一吞吐率或第一系统功耗中的一个时,可以根据上述一种可能的设计中的阈值比较方式,使用所述调谐器对所述天线进行调谐。
该可能的设计中,采用第一通信系统的传输参数和第一通信系统的传输参数对应的阈值,以及第二通信系统的传输参数和第二通信系统的传输参数对应的阈值,确定第一通信系统和第二通信系统的天线的性能。进一步的,根据天线的性能的结果,使用调谐器对天线进行调谐,能够兼顾第一通信系统和第二通信系统的天线的性能。
在另一种可能的设计中,根据所述第一传输参数、所述第二传输参数、所述第一通信系统的第一预设功率和所述第二通信系统的第二预设功率,使用所述调谐器对所述天线进行调谐。
在另一种可能的设计中的第一种可能的实现方式为:所述第一传输参数包括第一发射功率,所述第二传输参数包括第二发射功率,所述第一预设功率为第一预设最大发射功率,所述第二预设功率为第二预设最大发射功率;处理器获取所述第一发射功率和所述第一预设最大发射功率的第一发射功率差值,以及所述第二发射功率和所述第二预设最大发射功率的第二发射功率差值;根据所述第一发射功率差值和所述第二发射功率差值,使用所述调谐器对所述天线进行调谐。
其中,若所述第一发射功率差值小于第一差值阈值,且所述第二发射功率差值大于第二差值阈值,则使用所述调谐器对所述天线进行调谐,使得所述第一发射功率差值和所述第二发射功率差值均大于所述第一差值阈值,所述第二差值阈值大于所述第一差值阈值。
若所述第一发射功率差值和所述第二发射功率差值均小于第一差值阈值,则确定所述第一通信系统的第一优先级和所述第二通信系统的第二优先级中的较大优先级;使用所述调谐器对所述天线进行调谐,以使得具有所述较大优先级的通信系统的发射功率差值大于所述第一差值阈值。
在另一种可能的设计中的第二种可能的实现方式为:所述第一传输参数包括第一接收功率,所述第二传输参数包括第二接收功率,所述第一预设功率为第一预设最大接收功率,所述第二预设功率为第二预设最大接收功率;处理器获取所述第一接收功率和所述第一预设最大接收功率的第一接收功率差值,以及所述第二接收功率和所述第二预设最大接收功率的第二接收功率差值;根据所述第一接收功率差值和所述第二接收功率差值,使用所述调谐器对所述天线进行调谐。
其中,若所述第一接收功率差值小于第一差值阈值,且所述第二接收功率差值大于第二差值阈值,则使用所述调谐器对所述天线进行调谐,使得所述第一接收功率差值和所述第二接收功率差值均大于所述第一差值阈值,所述第二差值阈值大于所述第一差值阈值。
若所述第一接收功率差值和所述第二接收功率差值均小于第一差值阈值,则确定所述第一通信系统的第一优先级和所述第二通信系统的第二优先级中的较大优先级;使用所述调谐器对所述天线进行调谐,以使得具有所述较大优先级的通信系统的接收功率差值大于所述第一差值阈值。
在另一种可能的设计中的第二种可能的实现方式为:所述第一传输参数包括第一发射功率和第一接收功率,第二传输参数包括第二发射功率和第二接收功率,所述第一预设功率包括第一预设最大发射功率和第一预设最大接收功率,所述第二预设功率包括第二预设最大发射功率和第二预设最大接收功率;处理器获取所述第一发射功率和所述第一预设最大发射功率的第一发射功率差值,以及所述第二发射功率和所述第二预设最大发射功率的第二发射功率差值;若所述第一发射差值和所述第二发射功率差值均大于第二差值阈值,则获取所述第一接收功率和所述第一预设最大接收功率的第一接收功率差值,以及所述第二接收功率和第二预设最大接收功率的第二接收功率差值;将所述第一接收功率差值和所述第二接收功率差值的差值作为第三接收功率差值;根据所述第三接收功率差值,使用所述调谐器对所述天线进行调谐。
其中,若所述第三接收功率差值大于所述第二差值阈值,则使用所述调谐器对所述天线进行调谐,使得所述第三接收功率差值小于第三差值阈值。
可选的,所述第一传输参数还包括第一吞吐率和/或第一系统功耗,所述第二传输参数还包括第二吞吐率和/或第二系统功耗;若所述第三接收功率差值小于第一差值阈值,则根据所述第一吞吐率和/或第一系统功耗、和所述第二吞吐率和/或第二系统功耗,使用所述调谐器对所述天线进行调谐。
该可能的设计中,通过对第一通信系统和第二通信系统设置相同的第一差值阈值和第二差值阈值,避免了对每个通信系统均设置功率阈值、吞吐率阈值或系统功耗阈值的问题,减少了处理器的计算量和存储量。根据获取第一通信系统的第一发射功率差值、第二发射功率差值与第一差值阈值的比较,和/或,第一接收功率差值、第二接收功率差值与第二差值阈值的比较,确定第一通信系统和第二通信系统的天线的性能,能够兼顾第一通信系统和第二通信系统的天线的性能。
在又一种可能的设计中,处理器根据所述调谐器的调谐值和所述天线的天线状态的对应关系,使用所述调谐器对所述天线进行再次调谐,使得第一发射功率差值、所述第一接收功率差值、所述第二发射功率差值和所述第二接收功率差值均大于第一差值阈值。
该可能的设计中,在兼顾第一通信系统和第二通信系统的天线的性能后,还对第一通信系统和第二通信系统的天线的上行传输和下行传输的性能进行调整,使得兼顾第一通信系统和第二通信系统的上行传输和下行传输的性能。
第二方面,本申请实施例提供一种多通信系统中天线的调谐装置,所述调谐装置应用于第一通信系统与第二通信系统,所述第一通信系统与所述第二通信系统共享调谐器,所述调谐器用于调谐所述第一通信系统和所述第二通信系统的天线,所述装置包括:获取模块,用于获取所述第一通信系统的第一传输参数,所述第一传输参数包括第一发射功率、 第一接收功率、第一吞吐率或第一系统功耗中的至少一个;所述获取模块,还用于获取所述第二通信系统的第二传输参数,所述第二传输参数包括第二发射功率、第二接收功率、第二吞吐率或第二系统功耗中的至少一个。
调谐模块,用于根据所述第一传输参数和所述第二传输参数,使用所述调谐器对所述天线进行调谐。
该装置中,根据终端中的第一通信系统的第一传输参数和第二通信系统的传输参数的比较,该传输参数能够直接或间接指示终端中的天线的性能。进一步的,根据传输参数的比较结果,使用调谐器对天线进行调谐,能够兼顾第一通信系统和第二通信系统的天线的性能。
可选的,所述使用所述调谐器对所述天线进行调谐包括:通过一个或多个开关控制所述调谐器对所述天线进行调谐。
在一种可能的设计中,第一传输参数为第一接收功率,第二传输参数为第二接收功率,处理器中存储有第一通信系统的第一功率阈值和第二通信系统的第二功率阈值。若所述第一接收功率大于所述第一功率阈值,且所述第二接收功率小于第二功率阈值,则所述调谐模块,用于使用所述调谐器对所述天线进行调谐,使得所述第一接收功率和所述第二接收功率均小于第一功率阈值。若所述第一接收功率和所述第二接收功率均大于所述第一功率阈值,则所述调谐模块,用于确定第一通信系统的所述第一优先级和第二通信系统的第二优先级中的较大优先级;所述调谐模块,用于使用所述调谐器对所述天线进行调谐,使得具有所述较大优先级的通信系统的接收功率小于所述第一功率阈值。
可选的,所述调谐模块中存储有功率阈值、吞吐率阈值或系统功耗阈值,若第一传输参数中包括第一发射功率、第一吞吐率或第一系统功耗中的一个,且所述第的传输参数中也包括第一发射功率、第一吞吐率或第一系统功耗中的一个时,所述调谐模块可以根据上述一种可能的设计中的阈值比较方式,使用所述调谐器对所述天线进行调谐。
该可能的设计中,采用第一通信系统的传输参数和第一通信系统的传输参数对应的阈值,以及第二通信系统的传输参数和第二通信系统的传输参数对应的阈值,确定第一通信系统和第二通信系统的天线的性能。进一步的,根据天线的性能的结果,使用调谐器对天线进行调谐,能够兼顾第一通信系统和第二通信系统的天线的性能。
在另一种可能的设计中,所述调谐模块,用于根据所述第一传输参数、所述第二传输参数、所述第一通信系统的第一预设功率和所述第二通信系统的第二预设功率,使用所述调谐器对所述天线进行调谐。
在另一种可能的设计中的第一种可能的实现方式为:所述第一传输参数包括第一发射功率,所述第二传输参数包括第二发射功率,所述第一预设功率为第一预设最大发射功率,所述第二预设功率为第二预设最大发射功率;所述调谐模块,用于获取所述第一发射功率和所述第一预设最大发射功率的第一发射功率差值,以及所述第二发射功率和所述第二预设最大发射功率的第二发射功率差值;根据所述第一发射功率差值和所述第二发射功率差值,使用所述调谐器对所述天线进行调谐。
其中,若所述第一发射功率差值小于第一差值阈值,且所述第二发射功率差值大于第二差值阈值,则所述调谐模块,用于使用所述调谐器对所述天线进行调谐,使得所述第一发射功率差值和所述第二发射功率差值均大于所述第一差值阈值,所述第二差值阈值大于 所述第一差值阈值。
若所述第一发射功率差值和所述第二发射功率差值均小于第一差值阈值,则所述调谐模块,用于确定所述第一通信系统的第一优先级和所述第二通信系统的第二优先级中的较大优先级;使用所述调谐器对所述天线进行调谐,以使得具有所述较大优先级的通信系统的发射功率差值大于所述第一差值阈值。
在另一种可能的设计中的第二种可能的实现方式为:所述第一传输参数包括第一接收功率,所述第二传输参数包括第二接收功率,所述第一预设功率为第一预设最大接收功率,所述第二预设功率为第二预设最大接收功率;所述调谐模块,用于获取所述第一接收功率和所述第一预设最大接收功率的第一接收功率差值,以及所述第二接收功率和所述第二预设最大接收功率的第二接收功率差值;根据所述第一接收功率差值和所述第二接收功率差值,使用所述调谐器对所述天线进行调谐。
其中,若所述第一接收功率差值小于第一差值阈值,且所述第二接收功率差值大于第二差值阈值,则所述调谐模块,用于使用所述调谐器对所述天线进行调谐,使得所述第一接收功率差值和所述第二接收功率差值均大于所述第一差值阈值,所述第二差值阈值大于所述第一差值阈值。
若所述第一接收功率差值和所述第二接收功率差值均小于第一差值阈值,则所述调谐模块,用于确定所述第一通信系统的第一优先级和所述第二通信系统的第二优先级中的较大优先级;使用所述调谐器对所述天线进行调谐,以使得具有所述较大优先级的通信系统的接收功率差值大于所述第一差值阈值。
在另一种可能的设计中的第二种可能的实现方式为:所述第一传输参数包括第一发射功率和第一接收功率,第二传输参数包括第二发射功率和第二接收功率,所述第一预设功率包括第一预设最大发射功率和第一预设最大接收功率,所述第二预设功率包括第二预设最大发射功率和第二预设最大接收功率;所述调谐模块,用于获取所述第一发射功率和所述第一预设最大发射功率的第一发射功率差值,以及所述第二发射功率和所述第二预设最大发射功率的第二发射功率差值。
若所述第一发射差值和所述第二发射功率差值均大于第二差值阈值,则所述调谐模块,用于获取所述第一接收功率和所述第一预设最大接收功率的第一接收功率差值,以及所述第二接收功率和第二预设最大接收功率的第二接收功率差值;将所述第一接收功率差值和所述第二接收功率差值的差值作为第三接收功率差值;根据所述第三接收功率差值,使用所述调谐器对所述天线进行调谐。
其中,若所述第三接收功率差值大于所述第二差值阈值,则所述调谐模块,用于使用所述调谐器对所述天线进行调谐,使得所述第三接收功率差值小于第三差值阈值。
可选的,所述第一传输参数还包括第一吞吐率和/或第一系统功耗,所述第二传输参数还包括第二吞吐率和/或第二系统功耗;若所述第三接收功率差值小于第一差值阈值,则所述调谐模块,用于根据所述第一吞吐率和/或第一系统功耗、和所述第二吞吐率和/或第二系统功耗,使用所述调谐器对所述天线进行调谐。
该可能的设计中,通过对第一通信系统和第二通信系统设置相同的第一差值阈值和第二差值阈值,避免了对每个通信系统均设置功率阈值、吞吐率阈值或系统功耗阈值的问题,减少了处理器的计算量和存储量。根据获取第一通信系统的第一发射功率差值、第二发射 功率差值与第一差值阈值的比较,和/或,第一接收功率差值、第二接收功率差值与第二差值阈值的比较,确定第一通信系统和第二通信系统的天线的性能,能够兼顾第一通信系统和第二通信系统的天线的性能。
在又一种可能的设计中,所述调谐模块,还用于根据所述调谐器的调谐值和所述天线的天线状态的对应关系,使用所述调谐器对所述天线进行再次调谐,使得第一发射功率差值、所述第一接收功率差值、所述第二发射功率差值和所述第二接收功率差值均大于第一差值阈值。
该可能的设计中,在兼顾第一通信系统和第二通信系统的天线的性能后,还对第一通信系统和第二通信系统的天线的上行传输和下行传输的性能进行调整,使得兼顾第一通信系统和第二通信系统的上行传输和下行传输的性能。
第三方面,本申请实施例提供一种多通信系统中天线的调谐装置,所述调谐装置应用于第一通信系统与第二通信系统,所述调谐装置包括:处理器、存储器;所述存储器存储有计算机程序,在所述计算机程序被所述多通信系统中天线的调谐装置执行时,处理器执行上述第一方面各种可能的设计中的方法。
第四方面,本申请实施例提供一种多通信系统中天线的调谐装置,所述调谐装置应用于第一通信系统与第二通信系统,所述调谐装置包括:处理器,两个收发机。所述收发机用于执行收发动作,所述处理器执行上述第一方面各种可能的设计中的方法。可选的,所述调谐装置还包括调谐器,所述处理器用于使用所述调谐器对天线进行调谐。进一步,可选的,所述调谐装置还包括开关,所述处理器用于控制所述开关,改变所述调谐器的调谐值对天线进行调谐。进一步,可选的,所述调谐装置还包括一个或多个天线,所述第一通信系统与所述第二通信系统可以共享所述一个或多个天线,或者所述第一通信系统与所述第二通信系统分别具有独立的一个或多个天线,或者第一通信系统与第二通信系统中的一部分通信系统共享一个或多个天线,另一部分通信系统中的每个通信系统具有独立的一个或多个天线。
第五方面,本申请实施例提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面各种可能的设计中的方法。
第六方面,本申请实施例提供一种计算机可读存储介质,其特征在于,用于存储计算机程序或者指令,当所述计算机程序或者指令在计算机上运行时,使得所述计算机执行上述第一方面各种可能的设计中的方法。
第七方面,本申请实施例提供一种终端,该终端中包括上述第一方面至第四方面中的多通信系统中天线的调谐装置。
本申请实施例提供的多通信系统中天线的调谐方法、装置和存储介质,该调谐方法通过获取第一通信系统的第一传输参数和第二通信系统的第二传输参数,该传输参数为能够指示第一通信系统和第二通信系统的天线的性能的参数。进一步通过对第一传输参数和第二传输参数的比较,使用调谐器对天线进行调谐,不仅实现了对共享调谐器的多通信系统的天线的调谐,还可以兼顾每个通信系统的天线的性能,且保证了多通信系统的天线的性能的平衡。
附图说明
图1为现有技术中终端中多通信系统共享调谐器的终端的结构示意图;
图2为本申请实施例提供的一种多通信系统中共享调谐器的终端的结构示意图;
图3为本申请实施例提供的另一种多通信系统中共享调谐器的终端的结构示意图;
图4为本申请实施例提供的又一种多通信系统中共享调谐器的终端的结构示意图;
图5为本申请实施例提供的一种多通信系统中天线的调谐方法的流程示意图;
图6为本申请实施例提供的另一种多通信系统中天线的调谐方法的流程示意图;
图7为本申请实施例提供的多通信系统中天线的调谐装置的结构示意图。
具体实施方式
终端中存在多通信系统共存的情况,共存的多通信系统可能共享调谐器,进而使用该调谐器对多通信系统的天线进行调谐。如调谐器的调谐值设置为固定值,将不能很好适应终端所处的外界场景发生变化。例如,终端所处的外界场景变为通信系统A对应的网络覆盖良好,而通信系统B对应的网络的覆盖很差。对应的,终端接收到的通信系统A对应的网络的信号强度大于强度阈值,而通信系统B对应的网络的信号强度小于该强度阈值。应用上述固定的调谐值对天线进行调谐,则无法兼顾通信系统A和通信系统B的天线的性能。可选的,通信系统A和通信系统B可以共享同一天线或使用不同天线。因此,现有技术中采用固定调谐值的方法无法兼顾终端在每个外界场景下的每个通信系统的天线的性能。
为了解决上述问题,本申请实施例提供了一种多通信系统中天线的调谐方法。该调谐方法可以基于每个通信系统中能够反映该通信系统的天线的性能的传输参数,使用调谐器对多通信系统中天线进行调谐。从而可以在不同的外界场景下,使用灵活可变的调谐值对多通信系统中天线进行调谐,达到兼顾多通信系统的天线的性能的目的。
本实施例中的多通信系统中天线的调谐方法应用于终端中多通信系统共享调谐器的场景中。本申请实施例中涉及的通信系统包括但不限于:第二代移动通信(the 2nd generation telecommunication,2G)系统、第三代移动通信(the 3rd generation telecommunication,3G)系统、长期演进(long term evolution,LTE)通信系统或新空口(new radio,NR)通信系统中至少一个,还可包括Wi-Fi无线通信系统、或卫星通信系统中至少一个。后续涉及的两个通信系统A和B是以上多个通信系统中的任两个或者还可以包括本实施例未列举的其他通信系统。另外,尽管后续实施例以两个通信系统举例,实际该方案可适用于更多的通信系统。
应理解,在终端中多通信系统共享调谐器的场景中,多通信系统之间可以共享天线,或者,多通信系统中的每个通信系统具有各自独立的天线,或者,多通信系统中的一部分通信系统共享天线,另一部分通信系统中的每个通信系统具有各自独立的天线等。本实施例中对多通信系统的天线的设置方式不做限制。
调谐器是以阻抗匹配电路实现的,阻抗匹配电路可包括电阻、电容、或电感等至少一个电子元器件,以实现所述天线的调谐。因此,对天线进行调试的过程,也可以称为对调谐器的调谐值进行修改的过程,也可以称为对阻抗匹配电路中电阻的电阻值、电容的电容值、或电感的电感值等的至少一个的设置的过程。现有技术中将同时兼顾多通信系统的天线的性能时确定的阻抗匹配电路作为多通信系统共享的调谐器中的阻抗匹配电路,将调谐器的调谐值作为多通信系统共享的调谐器的调谐值。
图2为本申请实施例提供的一种多通信系统中共享调谐器的终端的结构示意图。图2 中以终端中存在两个通信系统(分别为通信系统A和通信系统B)为例,且通信系统A和通信系统B既共享调谐器,又共享同样的一个或多个天线时的终端的结构。其中,该终端中可以包括:天线、调谐器、开关、通信系统A的收发信机、通信系统B的收发信机、通信系统A的处理器、通信系统B的处理器、公共逻辑处理器和存储器。通信系统A的处理器、通信系统B的处理器以及公共逻辑处理器可以包括在一个处理器中,该处理器内部包括不同功能的处理器,图2中的虚线框用于表示这个处理器。需理解,图中仅以通信系统A的处理器、通信系统B的处理器以及公共逻辑处理器是三个独立处理器为例做说明,实际上,通信系统A的基带信号处理、通信系统B的基带信号处理以及公共逻辑处理可以在同一个处理器上执行。
其中,调谐器分别与天线和开关连接,开关分别与通信系统A的收发信机、通信系统B的收发信机连接。每个通信系统的收发信机与每个通信系统的处理器连接,且每个通信系统的处理器均与公共逻辑处理器连接。即通信系统A的收发信机与通信系统A的处理器连接,通信系统B的收发信机与通信系统B的处理器连接,通信系统A的处理器和通信系统B的处理器均与公共逻辑处理器连接。图2中作为一种示例将存储器与公共逻辑处理器连接。存储器还可以分别与通信系统A的处理器、通信系统B的处理器、公共逻辑处理器连接,或者还可以与执行通信系统A的基带信号处理、通信系统B的基带信号处理以及公共逻辑处理的处理器连接。
通信系统A的收发信机和通信系统B的收发信机,均用于产生和接收高频或射频信号。其中,收发信机可以在通信系统的处理器的控制下将基带信号转换为高频或射频信号并将高频或射频信号经调谐器传输给天线,也可以接收天线经调谐器传输的高频或射频信号并将该高频或射频信号转换为基带信号。收发信机也叫射频收发信机、射频装置或射频单元。
天线,用于将收发信机经调谐器传输的高频或射频信号转化为无线电波并辐射至空间中,且可以将在空间中接收到的无线电波转化为高频或射频信号,并经调谐器传输给收发信机。
通信系统A的处理器、或通信系统B的处理器,具有基带信号处理功能,且还用于获取对应的收发信机的发射功率和接收功率,且将收发信机的发射功率和接收功率、系统功耗和/或系统吞吐率发送给公共逻辑处理器。
公共逻辑处理器,用于根据接收到的收发信机的发射功率和接收功率、系统功耗和/或系统吞吐率,对开关进行控制,并能够实现对调谐器的调谐值的控制。本实施例中的开关可以为单刀双掷开关或双刀多掷开关,本实施例中对开关的类型不做限制。在本实施例中,具体的,公共逻辑处理器通过开关,具体可以是一个或多个开关来控制调谐器的调谐值。调谐器中可以包括多个可选择性被使能的阻抗匹配电路,用于根据公共逻辑处理器对开关的控制,实现调谐器中不同阻抗匹配电路的使能,进而实现对调谐值的改变。
本申请实施例中的存储器可能包含高速随机存取存储器(random-access memory,RAM),也可能还包括非易失性存储器(non-volatile memory,NVM),例如至少一个磁盘存储器,存储器中可以存储各种指令,以用于完成各种处理功能以及实现本申请的方法步骤。
可选的,本申请的终端还可以包括:电源、通信总线以及通信端口。通信总线用于实现元件之间的通信连接。上述通信端口用于实现通信装置与其他外设之间进行连接通信, 例如终端的各类外设接口。图3为本申请实施例提供的另一种多通信系统中共享调谐器的终端的结构示意图。图3示以通信系统A的处理器、通信系统B的处理器以及公共逻辑处理器包括在一个如图3所示的处理器中进行示例说明,图3仅示出了终端中的处理器、存储器、电源、通信总线以及通信端口之间的连接关系,为进一步示出图2的其他部分,例如天线、调谐器或收发机等。
图4为本申请实施例提供的又一种多通信系统中共享调谐器的终端的结构示意图。图4所示的为通信系统A和通信系统B共享调谐器,且与图2不同之处在于,通信系统A和通信系统B分别具有独立的天线的场景,而非共享同样的天线。该场景中天线调谐的方式与图2所示的场景中天线的调谐方法相同。不同的是,图4中所示的每个通信系统,使用各自的一个或多个天线进行无线电波的接收,而不是像图2的结构那样共享同样的天线,以及根据调谐器的调谐值,使用各自的天线进行无线电波的辐射。
下述实施例中以终端中共存的第一通信系统和第二通信系统、且第一通信系统与第二通信系统共享调谐器为例,对本申请实施例提供的多通信系统中天线的调谐方法进行说明和解释。应理解,第一通信系统与第二通信系统之间可以共享天线,每个通信系统也可以具有各自独立的天线,具体参见之前的描述。进一步的,终端中的其他通信系统的天线的调谐方法,可以与下述实施例中的天线的调谐方法相同。
下面结合具体地实施例对本申请实施例的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图5为本申请实施例提供的一种多通信系统中天线的调谐方法的流程示意图,该方法的执行主体为公共逻辑处理器。如图5所示,该方法包括:S101、获取所述第一通信系统的第一传输参数,所述第一传输参数包括第一发射功率、第一接收功率、第一吞吐率或第一系统功耗中的至少一个。S102、获取所述第二通信系统的第二传输参数,所述第二传输参数包括第二发射功率、第二接收功率、第二吞吐率或第二系统功耗中的至少一个。发射功率和接收功率分别可以为对应的通信系统的收发信机的发射功率和接收功率。吞吐率可以包括上行吞吐率和/或下行吞吐率。
需要说明的是,本申请的前提在于假定在很短的时间内,终端接收到的信号是恒定的。例如,在一外界场景中的很短时间内,终端接收到的第一通信系统对应的网络的信号强度处于第一预设范围内,以及接收到的第二通信系统对应的网络的信号强度处于第二预设范围内。在该外界场景下,通过传输参数确定天线的性能,进而使用调谐器对天线进行调谐。
由于终端接收通信系统对应的网络的信号的过程,是由通信系统的收发信机和天线配合完成的。当终端接收到的通信系统的网络的信号强度处于预设范围内时,若通信系统的收发信机的发射功率和接收功率都很大,则证明天线辐射无线电波的能力较弱,即天线的性能差;若通信系统的收发信机的发射功率和接收功率都很小,则证明天线辐射无线电波的能力较强,即天线的性能好。另外,系统功耗也可以证明天线的性能。当终端接收到的通信系统的网络的信号强度处于预设范围内时,若系统功耗很大,则可以确定收发信机的功率很大,则证明天线的性能差;反之,天线的性能好。进一步的,系统的吞吐率可以间接证明天线的性能。当终端接收到的通信系统的网络的信号强度处于预设范围内时,若上行吞吐率和/或下行吞吐率都很大,则证明天线辐射能力较强,即天线的性能好;反之,天线的性能差。据此,本实施例中通过第一传输参数和第二传输参数可以确定天线的性能, 进而能够正确使用调谐器对天线进行调谐。
公共逻辑处理器可以接收到第一通信系统的处理器发送的第一传输参数,以及第二通信系统的处理器发送的第二传输参数。本实施例中,获取第一通信系统的第一传输参数和获取第二通信系统的第二传输参数的方式相同,下面以获取第一通信系统的第一传输参数(即第一通信系统的处理器获取第一传输参数)为例进行说明。
可选的,第一通信系统的处理器可以获取第一通信系统的收发信机的发射功率和接收功率。其中,由于第一通信系统的收发信机可以在第一通信系统的处理器的控制下产生高频或射频信号,且第一通信系统的收发信机还可以接收到天线将无线电波转化后的高频或射频信号。第一通信系统的处理器可以根据第一通信系统的收发信机产生和接收到的高频或射频信号,按照功率计算方式,分别获取第一发射功率和第一接收功率。
可选的,第一通信系统的处理器还可以获取第一上行吞吐率和第一下行吞吐率。其中,第一通信系统的处理器可以将单位时间内终端在第一通信系统的上行信道上发送的数据量作为第一上行吞吐率;对应的,第一通信系统的处理器还可以将单位时间内终端在第一通信系统的下行信道上接收的数据量作为第一下行吞吐率。
可选的,第一通信系统的处理器还可以获取第一系统功耗。可选的,第一通信系统的处理器可以根据输入第一通信系统的处理器的电流值和电压值获取输入功率,以及从第一通信系统输出的电流值和电压值获取输出功率,进而根据输入功率和输出功率的差值获取第一系统功耗。
可选的,第一系统功耗可以为第一通信系统中包括的所有器件的功耗的总和;也可以为第一通信系统的热功耗(thermal design power,TDP),第一通信系统的TDP可以由第一通信系统的处理器直接获取。可以理解的是,本实施例中第一通信系统的处理器也可以采用其他现有技术中的方法获取第一传输参数。值得注意的是,S101和S102不具有先后顺序的区分,二者可以同时执行。
S103、根据所述第一传输参数和所述第二传输参数,使用所述调谐器对所述天线进行调谐。公共逻辑处理器获取的第一传输参数和第二传输参数的类型相同。例如,第一传输参数为第一接收功率,第二传输参数为第二接收功率;或者,第一传输参数为第一接收功率和第一发射功率,第二传输参数为第二接收功率和第二发射功率。对于不同类型的第一传输参数、第二传输参数,可以通过不同的处理方式,以达到使用调谐器对所述天线进行调谐。下面以第一传输参数中包括第一发射功率、第一接收功率、第一吞吐率或第一系统功耗中的一个时,使用所述调谐器对所述天线进行调谐的过程进行说明。
例如,第一传输参数包括第一接收功率,第二传输参数包括第二接收功率。可以预先设置每个通信系统的第一功率阈值和第二功率阈值,其中,第二功率阈值小于第一功率阈值。以第一通信系统为例,当公共逻辑处理器获取的第一接收功率大于第一功率阈值时,说明第一通信系统的收发信机的接收功率很大时才能获取处于预设范围内的网络信号强度,确定第一通信系统的天线的性能差。当公共逻辑处理器获取的第一接收功率小于第二功率阈值时,说明第一通信系统的收发信机的接收功率很小时就能获取处于预设范围内的网络信号强度,确定第一通信系统的天线的性能好。当公共逻辑处理器获取的第一接收功率小于第一功率阈值,且大于第二接收功率时,确定第一通信系统的天线的性能处于正常范围内。
为了便于说明,将第一通信系统和第二通信系统的功率阈值均设置为第一功率阈值和第二功率阈值。可以理解的是,在实际应用过程中,对于不同的通信系统,可以设置不同的第一功率阈值和第二功率阈值。本实施例中,为了保证第一通信系统和第二通信系统的天线的性能的平衡,即兼顾第一通信系统和第二通信系统的天线的性能,调谐的目的是使得调谐后的第一接收功率和第二接收功率均小于第一功率阈值。
公共逻辑处理器可以根据接收到的第一接收功率、第二接收功率、第一功率阈值和第二功率阈值,使用所述调谐器对所述天线进行调谐。其中,一种可能的实现的方式为:若所述第一接收功率大于所述第一功率阈值,且所述第二接收功率小于第二功率阈值,可以确定第一通信系统的天线的性能差,而第二通信系统的天线的性能好;则使用所述调谐器对所述天线进行调谐,使得所述第一接收功率和所述第二接收功率均小于第一功率阈值。
另一种可能实现的方式为:若所述第一接收功率和所述第二接收功率均大于所述第一功率阈值,则可以确定第一通信系统和第二通信系统的天线的性能都差。此时若对两个通信系统的天线都进行调谐,则可能使得终端连接的第一通信系统的网络和第二通信系统的网络均掉话,不能保证终端基本的通信需求。本实施例中,可以预先设置第一通信系统的第一优先级和第二通信系统的第二优先级。在该种情况下,确定所述第一优先级和第二优先级中的较大优先级;使用所述调谐器对所述天线进行调谐,使得具有所述较大优先级的通信系统的接收功率小于所述第一功率阈值。
可以理解的是,本实施例中使用所述调谐器对所述天线进行调谐的具体过程可以为:在上述两种实现的方式中,公共逻辑处理器向第一通信系统的处理器和第二通信系统的处理器发送控制信号,使得第一通信系统的处理器和第二通信系统的处理器控制开关的闭合和打开,使得调谐器中不同的阻抗匹配电路被使能,以改变调谐器的调谐值,进而实现对天线的调谐。可选的,开关可以作为调谐器的一部分,开关和阻抗阻抗匹配电路共同组成调谐器。
可选的,获取第一通信系统的传输参数、获取第二通信系统的参数以及使用调谐器对所述天线进行调谐的过程可以在同一个处理器中执行。
本申请实施例中调谐器中包括的多个阻抗匹配电路,通过使能一个或多个阻抗匹配电路能够形成不同的工作方式,多个工作方式对应的调谐值可以是在天线调试的过程中,通过改变外界场景获取的。例如,在每个外界场景中,对终端中的天线进行调试(即对调谐器中的阻抗匹配电路进行调试),以确定每个外界场景对应的调谐器中的多个阻抗匹配电路的工作方式。每个外界场景中确定的被使能的一个或多个阻抗匹配电路可以在该外界场景中兼顾终端中的多通信系统的天线的性能。通过相同的天线调试过程,可以获取多个外界场景中的多个阻抗匹配电路的工作方式,即获取多个外界场景中的调谐器的调谐值。
例如,终端中具有共存的LTE通信系统或NR通信系统。其中,外界场景可以包括:1、LTE通信系统的天线的性能差,且NR通信系统的天线的性能好;如LTE通信系统的第一接收功率大于所述第一功率阈值,且NR通信系统的第二接收功率小于第二功率阈值。2、LTE通信系统的天线的性能和NR通信系统的天线的性能都差;如LTE通信系统的第一接收功率和NR通信系统的第二接收功率均大于所述第一功率阈值。
在上述外界场景1和2中,对终端中的天线进行调试(即对调谐器中的阻抗匹配电路进行调试),以使得外界场景1和2确定的调谐器的调谐值可以兼顾终端中的LTE通信系统 或NR通信系统的天线的性能。例如,外界场景1确定的调谐器的调谐值可以使得LTE通信系统的第一接收功率和NR通信系统的第二接收功率均小于第一功率阈值。外界场景2确定的调谐器的调谐值可以使得具有所述较大优先级的通信系统(例如NR通信系统)的接收功率小于所述第一功率阈值。
本申请实施例中的外界场景仅为一种示例,本申请实施例中也可以采用通信系统中的其他传输参数设置不同的外界场景,以相同的调试方式确定在不同外界场景下的调谐器的调谐值。可以理解的是,对于第一传输参数中包括第一发射功率、第一吞吐率或第一系统功耗中的一个时,可以通过上述相同的方式,即预先设置功率阈值、吞吐率阈值或系统功耗阈值的方式,使用所述调谐器对所述天线进行调谐。
可选的,若第一传输参数中包括第一发射功率、第一接收功率、第一吞吐率或第一系统功耗中的多个时。可以根据实际应用情况,设置第一发射功率、第一接收功率、第一吞吐率和第一系统功耗的优先级,根据优先级依次判断第一传输参数和对应的阈值的大小关系,使用调谐器对所述天线进行调谐,直至遍历所有类型的第一传输参数。
本实施例提供的多通信系统中天线的调谐方法,在不同的外界场景下,根据多通信系统中的第一通信系统的第一传输参数和第二通信系统的第二传输参数,使用调谐器对所述天线进行调谐,可以兼顾多通信系统中天线的性能,保证了多通信系统的天线的性能的平衡。
由于不同的通信系统,其对应的功率阈值、吞吐率阈值和系统功耗阈值可能不同,根据上述实施例中的方式对天线进行调谐,需要对不同的通信系统设置不同的功率阈值、吞吐率阈值和系统功耗阈值,这会增加公共逻辑处理器的计算量和存储量。下面实施例通过对不同的通信系统设置相同的阈值条件,减少了公共逻辑处理器的计算量和存储量。
图6为本申请实施例提供的另一种多通信系统中天线的调谐方法的流程示意图。如图6所示,该方法包括:S201、获取所述第一通信系统的第一传输参数,所述第一传输参数包括第一发射功率、第一接收功率、第一吞吐率或第一系统功耗中的至少一个。S202、获取所述第二通信系统的第二传输参数,所述第二传输参数包括第二发射功率、第二接收功率、第二吞吐率或第二系统功耗中的至少一个。本申请实施例中的S201-S202中的实施方式可以参照上述实施例中S101-S102中的相关描述,在此不做赘述。
S203、根据所述第一传输参数、所述第二传输参数、所述第一通信系统的第一预设功率和所述第二通信系统的第二预设功率,使用所述调谐器对所述天线进行调谐。第一预设功率和第二预设功率分别与第一传输参数和第二传输参数相对应。例如,第一传输参数包括第一发射功率,第二传输参数包括第二发射功率,对应的,第一预设功率为第一预设最大发射功率、第二预设功率为第二预设最大发射功率;若第一传输参数包括第一接收功率,第二传输参数包括第二接收功率,对应的,第一预设功率为第一预设最大接收功率和第二预设功率为第二预设最大接收功率。
本实施例中,根据所述第一传输参数、所述第二传输参数、所述第一通信系统的第一预设功率和所述第二通信系统的第二预设功率,使用所述调谐器对所述天线进行调谐,可以包括如下几种实现方式:
第一种实现方式:第一传输参数包括第一发射功率,所述第二传输参数包括第二发射 功率。对应的,所述第一预设功率为第一预设最大发射功率,所述第二预设功率为第二预设最大发射功率。公共逻辑处理器在获取第一发射功率和第二发射功率后,通过计算第一发射功率和第一预设最大发射功率的差值获取第一发射功率差值,以及通过计算第二发射功率和第二预设最大发射功率的差值获取第二发射功率差值。
本实施例中对于第一通信系统和第二通信系统,可以预先设置相同的差值阈值,该差值阈值可以为与通信系统支持的最大发射功率的差值。例如,第一通信系统支持的最大发射功率为10dB,第二通信系统支持的最大发射功率为15dB,可以设置第一通信系统和第二通信系统的差值阈值均为1dB。
可以理解的是,可以为第一通信系统和第二通信系统设置相同的第一差值阈值和第二差值阈值,通过第一发射功率差值和第二发射功率差值分别与第一差值阈值和第二差值阈值的对比,使用调谐器对天线进行调谐。其中,第二差值阈值大于所述第一差值阈值。
其中,若所述第一发射功率差值小于第一差值阈值,且所述第二发射功率差值大于第二差值阈值。例如,第一差值阈值为1dB,第二差值阈值为3dB。确定第一通信系统的第一发射功率与第一预设最大发射功率的差值小于1dB,即第一通信系统的收发信机的发射功率在很大时才能获取处于预设范围内的网络信号强度,可以确定第一通信系统的天线的性能差,而第二通信系统的第二发射功率与第二预设最大发射功率的差值大于3dB,即第一通信系统的收发信机的发射功率在很小时就能获取处于预设范围内的网络信号强度,可以确定第二通信系统的天线的性能好。则使用所述调谐器对所述天线进行调谐,使得所述第一发射功率差值和所述第二发射功率差值均大于所述第一差值阈值,即使得调谐后的第一通信系统和第二通信系统的天线性都好,即兼顾了所述第一通信系统和第二通信系统的天线的性能。
其中,若所述第一发射功率差值和所述第二发射功率差值均小于第一差值阈值。例如,第一发射功率差值和所述第二发射功率差值均小于1dB,可以确定第一通信系统和第二通信系统的天线的性能都差。则确定所述第一通信系统的第一优先级和所述第二通信系统的第二优先级中的较大优先级;使用所述调谐器对所述天线进行调谐,以使得具有所述较大优先级的通信系统的发射功率差值大于所述第一差值阈值。
需要说明的是,本实施例中的第一差值阈值和第二差值阈值可以根据终端中共存的通信系统进行设置。上述所述的第一差值阈值为1dB,第二差值阈值为3dB仅为示例,在实际应用的过程中可以设置其他的差值阈值。
第二种实现方式:所述第一传输参数包括第一接收功率,所述第二传输参数包括第二接收功率,对应的,所述第一预设功率为第一预设最大接收功率,所述第二预设功率为第二预设最大接收功率。
与上述的实现方式相同,公共逻辑处理器在获取第一接收功率和第二接收功率后,通过计算第一接收功率和第一预设最大接收功率的差值获取第一接收功率差值,以及通过计算第二接收功率和第二预设最大接收功率的差值获取第二接收功率差值。
对应的,本实施例中可以为第一通信系统和第二通信系统设置相同的第一差值阈值和第二差值阈值。通过第一接收功率差值、第二接收功率差值分别与第一差值阈值、第二差值阈值的对比,使用调谐器对天线进行调谐。其中,第二差值阈值大于所述第一差值阈值。
其中,若所述第一接收功率差值小于第一差值阈值,且所述第二接收功率差值大于第 二差值阈值,则使用所述调谐器对所述天线进行调谐,使得所述第一接收功率差值和所述第二接收功率差值均大于所述第一差值阈值。
其中,若所述第一接收功率差值和所述第二接收功率差值均小于第一差值阈值,则确定所述第一通信系统的第一优先级和所述第二通信系统的第二优先级中的较大优先级;使用所述调谐器对所述天线进行调谐,以使得具有所述较大优先级的通信系统的接收功率差值大于所述第一差值阈值。
第三种实现方式:所述第一传输参数包括第一发射功率和第一接收功率,第二传输参数包括第二发射功率和第二接收功率;对应的,所述第一预设功率包括第一预设最大发射功率和第一预设最大接收功率,所述第二预设功率包括第二预设最大发射功率和第二预设最大接收功率。
可选的,若传输参数中包括发射功率和接收功率时,可以根据预先设置的传输参数的优先级,确定发射功率的优先级和接收功率的优先级;进一步的,确定先对优先级高的传输参数进行处理。本实施例中以接收功率的优先级高于发射功率的优先级为例,对多系统中天线的调谐方法进行说明。
公共逻辑处理器在获取第一发射功率和第二发射功率后,通过计算第一发射功率和第一预设最大发射功率的差值获取第一发射功率差值,以及通过计算第二发射功率和第二预设最大发射功率的差值获取第二发射功率差值。
本实施例中,若所述第一发射差值和所述第二发射功率差值均大于第二差值阈值,可以确定第一通信系统和第二通信系统的天线的性能都好,具体的,可以确定第一通信系统的天线的上行传输性能和第二通信系统的天线的上行传输性能都好。在此前提下,公共逻辑处理器获取所述第一接收功率和所述第一预设最大接收功率的第一接收功率差值,以及所述第二接收功率和第二预设最大接收功率的第二接收功率差值。公共逻辑处理器根据第一接收功率差值和第二接收功率差值,再对第一通信系统和第二通信系统的天线的性能进行判断。具体的,可以将所述第一接收功率差值和所述第二接收功率差值的差值作为第三接收功率差值;根据所述第三接收功率差值,使用所述调谐器对所述天线进行调谐。
可选的,本实施例中在获取第三接收功率差值之前,公共逻辑处理器还可以判断第一接收功率差值、第二接收功率差值、第一差值阈值和第二差值阈值的大小关系。若第一接收功率差值和第二接收功率差值均大于第二差值阈值,可以确定第一通信系统的天线的下行传输性能和第二通信系统的天线的下行传输性能都好。在该种情况下,再根据第三接收功率差值,使用所述调谐器对所述天线进行调谐。
其中,根据所述第三接收功率差值对所述天线进行调谐可以包括如下两种实现方式:
第一种实现方式:若所述第三接收功率差值大于所述第二差值阈值,可以确定第一通信系统和第二通信系统的天线的性能差距较大,两个通信系统的天线的性能不平衡,则使用所述调谐器对所述天线进行调谐,使得所述第三接收功率差值小于第三差值阈值,即使得两个通信系统的天线的性能平衡。其中,第三差值阈值小于第二差值阈值。
第二种实现方式:所述第一传输参数还包括第一吞吐率和/或第一系统功耗,所述第二传输参数还包括第二吞吐率和/或第二系统功耗。若所述第三接收功率差值小于第一差值阈值,可以确定根据接收功率和发射功率确定的第一通信系统和第二通信系统的天线的性能差距较小,两个通信系统的天线的性能平衡。在该种情况下,还可以根据所述第一吞吐率 和/或第一系统功耗、和所述第二吞吐率和/或第二系统功耗,使用所述调谐器对所述天线进行调谐。
下面以根据第一吞吐率中的第一上行吞吐率,以及第二吞吐率中的第二上行吞吐率对天线进行调谐的过程为例进行说明。
公共逻辑处理器中可以存储有第一吞吐率阈值和第二吞吐率阈值。其中,第二吞吐率阈值大于第一吞吐率阈值。若第一上行吞吐率大于第二吞吐率阈值,且第二上行吞吐率小于第一吞吐率阈值,可以确定第一通信系统的天线的性能好,而第二通信系统的天线的性能差,据此对天线进行调谐,使得第一通信系统的第一上行吞吐率和第二通信系统的第二上行吞吐率均大于第一吞吐率阈值。
可以理解的是,根据第一吞吐率中的第一下行吞吐率,以及第二吞吐率中的第二下行吞吐率对天线进行调谐的过程可以与上述根据第一上行吞吐率和的第二上行吞吐率对天线进行调谐的过程相同。当根据第一系统功耗和第二系统功耗,使用所述调谐器对所述天线进行调谐时,可以采用类似的方式设置第一功耗阈值和第二功耗阈值。第一功耗阈值小于第二功耗阈值,使得调谐后的第一系统功耗和第二系统功耗均小于第一功耗阈值。当根据所述第一吞吐率、第一系统功耗、第二吞吐率和第二系统功耗,使用所述调谐器对所述天线进行调谐时,可以根据吞吐率和系统功耗的优先级,依次按照与上述相同的方法对天线进行调谐。
可选的,本实施例中还可以根据传输参数预设的优先级,确定对哪个传输参数先处理。例如,优先级从高到低的依次为吞吐率、发射功率、接收功率和系统功耗。则按照与上述对应的方法,依次根据吞吐率、发射功率、接收功率和系统功耗,执行以上判决过程,以得到调谐值或调谐方式,并使用调谐器对所述天线进行调谐。
可选的,按照上述三种可能的实现方式对天线进行调谐之后,还可以进一步根据所述调谐器的调谐值和所述天线的天线状态的对应关系,使用所述调谐器对所述天线进行再次调谐,使得第一发射功率差值、所述第一接收功率差值、所述第二发射功率差值和所述第二接收功率差值均大于第一差值阈值。调谐器的调谐值和所述天线的天线状态的对应关系可以以列表的形式进行存储在存储器中。其中,天线状态可以包括天线的增益,天线的倾角等,不同的天线状态对应的第一发射功率、所述第一接收功率、所述第二发射功率和所述第二接收功率不同。本实施例中,可以根据该对应关系对天线进行再次调谐,使得第一发射功率差值、所述第一接收功率差值、所述第二发射功率差值和所述第二接收功率差值均大于第一差值阈值,即保证了第一通信系统和第二通信系统的天线的上行传输性能和下行传输性能都达到最佳。
本实施例中,通过对不同的通信系统可以设置相同的功率阈值条件,一方面减少了公共逻辑处理器的计算量和存储量,提高了处理器的处理效率;另一方面,通过对终端中第一通信系统和第二通信系统的传输参数的处理,可以对共存的多通信系统的天线进行调谐,使得在不同的外界场景中,各通信系统的天线的性能都达到最佳。
图7为本申请实施例提供的多通信系统中天线的调谐装置的结构示意图。本申请实施例所涉及的多通信系统中天线的调谐装置可以为前述实施例中处理器,例如具体是所述的公共逻辑处理器或其内部的部分硬件模块或其运行的软件模块,该多通信系统中天线的调谐装置用于执行上述方法实施例中公共逻辑处理器的动作。如图7所示,该多通信系统中 天线的调谐装置可以包括:获取模块701和调谐模块702。获取模块701,用于获取所述第一通信系统的第一传输参数,所述第一传输参数包括第一发射功率、第一接收功率、第一吞吐率或第一系统功耗中的至少一个;所述获取模块701,还用于获取所述第二通信系统的第二传输参数,所述第二传输参数包括第二发射功率、第二接收功率、第二吞吐率或第二系统功耗中的至少一个。调谐模块702,用于根据所述第一传输参数和所述第二传输参数,使用所述调谐器对所述天线进行调谐。本申请实施例提供的多通信系统中天线的调谐装置,可以执行上述方法实施例中公共逻辑处理器的动作,其实现原理和技术效果类似,在此不再赘述。
可选的,所述调谐模块702,具体用于根据所述第一传输参数、所述第二传输参数、所述第一通信系统的第一预设功率和所述第二通信系统的第二预设功率,使用所述调谐器对所述天线进行调谐。
可选的,所述第一传输参数包括第一发射功率,所述第二传输参数包括第二发射功率,所述第一预设功率为第一预设最大发射功率,所述第二预设功率为第二预设最大发射功率;所述调谐模块702,具体用于获取所述第一发射功率和所述第一预设最大发射功率的第一发射功率差值,以及所述第二发射功率和所述第二预设最大发射功率的第二发射功率差值;根据所述第一发射功率差值和所述第二发射功率差值,使用所述调谐器对所述天线进行调谐。
可选的,所述调谐模块702,具体用于若所述第一发射功率差值小于第一差值阈值,且所述第二发射功率差值大于第二差值阈值,则使用所述调谐器对所述天线进行调谐,使得所述第一发射功率差值和所述第二发射功率差值均大于所述第一差值阈值,所述第二差值阈值大于所述第一差值阈值;若所述第一发射功率差值和所述第二发射功率差值均小于第一差值阈值,则确定所述第一通信系统的第一优先级和所述第二通信系统的第二优先级中的较大优先级;使用所述调谐器对所述天线进行调谐,以使得具有所述较大优先级的通信系统的发射功率差值大于所述第一差值阈值。
可选的,所述第一传输参数包括第一接收功率,所述第二传输参数包括第二接收功率,所述第一预设功率为第一预设最大接收功率;所述调谐模块702,具体用于获取所述第一接收功率和所述第一预设最大接收功率的第一接收功率差值,以及所述第二接收功率和所述第二预设最大接收功率的第二接收功率差值;根据所述第一接收功率差值和所述第二接收功率差值,使用所述调谐器对所述天线进行调谐。
可选的,所述调谐模块702,具体用于若所述第一接收功率差值小于第一差值阈值,且所述第二接收功率差值大于第二差值阈值,则使用所述调谐器对所述天线进行调谐,使得所述第一接收功率差值和所述第二接收功率差值均大于所述第一差值阈值,所述第二差值阈值大于所述第一差值阈值。
若所述第一接收功率差值和所述第二接收功率差值均小于第一差值阈值,则所述调谐模块702,具体用于确定所述第一通信系统的第一优先级和所述第二通信系统的第二优先级中的较大优先级;使用所述调谐器对所述天线进行调谐,以使得具有所述较大优先级的通信系统的接收功率差值大于所述第一差值阈值。
可选的,所述第一传输参数包括第一发射功率和第一接收功率,第二传输参数包括第二发射功率和第二接收功率,所述第一预设功率包括第一预设最大发射功率和第一预设最 大接收功率,所述第二预设功率包括第二预设最大发射功率和第二预设最大接收功率。
所述调谐模块702,具体用于获取所述第一发射功率和所述第一预设最大发射功率的第一发射功率差值,以及所述第二发射功率和所述第二预设最大发射功率的第二发射功率差值;若所述第一发射差值和所述第二发射功率差值均大于第二差值阈值,则获取所述第一接收功率和所述第一预设最大接收功率的第一接收功率差值,以及所述第二接收功率和第二预设最大接收功率的第二接收功率差值;将所述第一接收功率差值和所述第二接收功率差值的差值作为第三接收功率差值;根据所述第三接收功率差值,使用所述调谐器对所述天线进行调谐。
可选的,所述调谐模块702,具体用于若所述第三接收功率差值大于所述第二差值阈值,则使用所述调谐器对所述天线进行调谐,使得所述第三接收功率差值小于第三差值阈值。可选的,所述第一传输参数还包括第一吞吐率和/或第一系统功耗,所述第二传输参数还包括第二吞吐率和/或第二系统功耗。
所述调谐模块702,具体用于若所述第三接收功率差值小于第一差值阈值,则根据所述第一吞吐率和/或第一系统功耗、和所述第二吞吐率和/或第二系统功耗,使用所述调谐器对所述天线进行调谐。
可选的,所述调谐模块702,还用于根据所述调谐器的调谐值和所述天线的天线状态的对应关系,使用所述调谐器对所述天线进行再次调谐,使得第一发射功率差值、所述第一接收功率差值、所述第二发射功率差值和所述第二接收功率差值均大于第一差值阈值。
上述模块可以以软件通过处理元件调用的形式实现;也可以以硬件的形式实现。例如,模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上模块的功能。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个专用集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(central processing unit,CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无 线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
本文中的术语“多个”是指两个或两个以上。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系;在公式中,字符“/”,表示前后关联对象是一种“相除”的关系。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。可以理解的是,在本申请的实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请的实施例的实施过程构成任何限定。可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。可以理解的是,在本申请的实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请的实施例的实施过程构成任何限定。

Claims (22)

  1. 一种多通信系统中天线的调谐方法,其特征在于,第一通信系统与第二通信系统共享调谐器,所述调谐器用于调谐所述第一通信系统和所述第二通信系统的天线,所述方法包括:
    获取所述第一通信系统的第一传输参数,所述第一传输参数包括第一发射功率、第一接收功率、第一吞吐率或第一系统功耗中的至少一个;
    获取所述第二通信系统的第二传输参数,所述第二传输参数包括第二发射功率、第二接收功率、第二吞吐率或第二系统功耗中的至少一个;
    根据所述第一传输参数和所述第二传输参数,使用所述调谐器对所述天线进行调谐。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述第一传输参数和所述第二传输参数,使用所述调谐器对所述天线进行调谐,包括:
    根据所述第一传输参数、所述第二传输参数、所述第一通信系统的第一预设功率和所述第二通信系统的第二预设功率,使用所述调谐器对所述天线进行调谐。
  3. 根据权利要求2所述的方法,其特征在于,所述第一传输参数包括第一发射功率,所述第二传输参数包括第二发射功率,所述第一预设功率为第一预设最大发射功率,所述第二预设功率为第二预设最大发射功率,所述使用所述调谐器对所述天线进行调谐,包括:
    获取所述第一发射功率和所述第一预设最大发射功率的第一发射功率差值,以及所述第二发射功率和所述第二预设最大发射功率的第二发射功率差值;
    根据所述第一发射功率差值和所述第二发射功率差值,使用所述调谐器对所述天线进行调谐。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述第一发射功率差值和所述第二发射功率差值,使用所述调谐器对所述天线进行调谐,包括:
    若所述第一发射功率差值小于第一差值阈值,且所述第二发射功率差值大于第二差值阈值,则使用所述调谐器对所述天线进行调谐,使得所述第一发射功率差值和所述第二发射功率差值均大于所述第一差值阈值,所述第二差值阈值大于所述第一差值阈值;
    若所述第一发射功率差值和所述第二发射功率差值均小于第一差值阈值,则确定所述第一通信系统的第一优先级和所述第二通信系统的第二优先级中的较大优先级;
    使用所述调谐器对所述天线进行调谐,以使得具有所述较大优先级的通信系统的发射功率差值大于所述第一差值阈值。
  5. 根据权利要求2所述的方法,其特征在于,所述第一传输参数包括第一接收功率,所述第二传输参数包括第二接收功率,所述第一预设功率为第一预设最大接收功率,所述第二预设功率为第二预设最大接收功率,所述使用所述调谐器对所述天线进行调谐,包括:
    获取所述第一接收功率和所述第一预设最大接收功率的第一接收功率差值,以及所述第二接收功率和所述第二预设最大接收功率的第二接收功率差值;
    根据所述第一接收功率差值和所述第二接收功率差值,使用所述调谐器对所述天线进行调谐。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述第一接收功率差值和所述第二接收功率差值,使用所述调谐器对所述天线进行调谐,包括:
    若所述第一接收功率差值小于第一差值阈值,且所述第二接收功率差值大于第二差值阈值,则使用所述调谐器对所述天线进行调谐,使得所述第一接收功率差值和所述第二接收功率差值均大于所述第一差值阈值,所述第二差值阈值大于所述第一差值阈值;
    若所述第一接收功率差值和所述第二接收功率差值均小于第一差值阈值,则确定所述第一通信系统的第一优先级和所述第二通信系统的第二优先级中的较大优先级;
    使用所述调谐器对所述天线进行调谐,以使得具有所述较大优先级的通信系统的接收功率差值大于所述第一差值阈值。
  7. 根据权利要求2所述的方法,其特征在于,所述第一传输参数包括第一发射功率和第一接收功率,第二传输参数包括第二发射功率和第二接收功率,所述第一预设功率包括第一预设最大发射功率和第一预设最大接收功率,所述第二预设功率包括第二预设最大发射功率和第二预设最大接收功率,所述根据所述第一传输参数和所述第二传输参数,使用所述调谐器对所述天线进行调谐,包括:
    获取所述第一发射功率和所述第一预设最大发射功率的第一发射功率差值,以及所述第二发射功率和所述第二预设最大发射功率的第二发射功率差值;
    若所述第一发射差值和所述第二发射功率差值均大于第二差值阈值,则获取所述第一接收功率和所述第一预设最大接收功率的第一接收功率差值,以及所述第二接收功率和第二预设最大接收功率的第二接收功率差值;
    将所述第一接收功率差值和所述第二接收功率差值的差值作为第三接收功率差值;
    根据所述第三接收功率差值,使用所述调谐器对所述天线进行调谐。
  8. 根据权利要求7所述的方法,其特征在于,所述根据所述第三接收功率差值,使用所述调谐器对所述天线进行调谐,包括:
    若所述第三接收功率差值大于所述第二差值阈值,则使用所述调谐器对所述天线进行调谐,使得所述第三接收功率差值小于第三差值阈值。
  9. 根据权利要求7所述的方法,其特征在于,所述第一传输参数还包括第一吞吐率和/或第一系统功耗,所述第二传输参数还包括第二吞吐率和/或第二系统功耗,所述根据所述第三接收功率差值,使用所述调谐器对所述天线进行调谐,包括:
    若所述第三接收功率差值小于第一差值阈值,则根据所述第一吞吐率和/或第一系统功耗、和所述第二吞吐率和/或第二系统功耗,使用所述调谐器对所述天线进行调谐。
  10. 根据权利要求7-9任一项所述的方法,其特征在于,所述使用所述调谐器对所述天线进行调谐之后,还包括:
    根据所述调谐器的调谐值和所述天线的天线状态的对应关系,使用所述调谐器对所述天线进行再次调谐,使得第一发射功率差值、所述第一接收功率差值、所述第二发射功率差值和所述第二接收功率差值均大于第一差值阈值。
  11. 一种多通信系统中天线的调谐装置,其特征在于,所述多通信系统中天线的调谐装置应用于第一通信系统与第二通信系统,所述第一通信系统与所述第二通信系统共享调谐器,所述调谐器用于调谐所述第一通信系统和所述第二通信系统的天线,所述装置包括:
    获取模块,用于获取所述第一通信系统的第一传输参数,所述第一传输参数包括第一发射功率、第一接收功率、第一吞吐率或第一系统功耗中的至少一个;
    所述获取模块,还用于获取所述第二通信系统的第二传输参数,所述第二传输参数包 括第二发射功率、第二接收功率、第二吞吐率或第二系统功耗中的至少一个;
    调谐模块,用于根据所述第一传输参数和所述第二传输参数,使用所述调谐器对所述天线进行调谐。
  12. 根据权利要求11所述的装置,其特征在于,所述调谐模块,具体用于根据所述第一传输参数、所述第二传输参数、所述第一通信系统的第一预设功率和所述第二通信系统的第二预设功率,使用所述调谐器对所述天线进行调谐。
  13. 根据权利要求12所述的装置,其特征在于,所述第一传输参数包括第一发射功率,所述第二传输参数包括第二发射功率,所述第一预设功率为第一预设最大发射功率,所述第二预设功率为第二预设最大发射功率;
    所述调谐模块,具体用于获取所述第一发射功率和所述第一预设最大发射功率的第一发射功率差值,以及所述第二发射功率和所述第二预设最大发射功率的第二发射功率差值;
    根据所述第一发射功率差值和所述第二发射功率差值,使用所述调谐器对所述天线进行调谐。
  14. 根据权利要求13所述的装置,其特征在于,所述调谐模块,具体用于若所述第一发射功率差值小于第一差值阈值,且所述第二发射功率差值大于第二差值阈值,则使用所述调谐器对所述天线进行调谐,使得所述第一发射功率差值和所述第二发射功率差值均大于所述第一差值阈值,所述第二差值阈值大于所述第一差值阈值;
    若所述第一发射功率差值和所述第二发射功率差值均小于第一差值阈值,则确定所述第一通信系统的第一优先级和所述第二通信系统的第二优先级中的较大优先级;
    使用所述调谐器对所述天线进行调谐,以使得具有所述较大优先级的通信系统的发射功率差值大于所述第一差值阈值。
  15. 根据权利要求12所述的装置,其特征在于,所述第一传输参数包括第一接收功率,所述第二传输参数包括第二接收功率,所述第一预设功率为第一预设最大接收功率;
    所述调谐模块,具体用于获取所述第一接收功率和所述第一预设最大接收功率的第一接收功率差值,以及所述第二接收功率和所述第二预设最大接收功率的第二接收功率差值;
    根据所述第一接收功率差值和所述第二接收功率差值,使用所述调谐器对所述天线进行调谐。
  16. 根据权利要求15所述的装置,其特征在于,所述调谐模块,具体用于若所述第一接收功率差值小于第一差值阈值,且所述第二接收功率差值大于第二差值阈值,则使用所述调谐器对所述天线进行调谐,使得所述第一接收功率差值和所述第二接收功率差值均大于所述第一差值阈值,所述第二差值阈值大于所述第一差值阈值;
    若所述第一接收功率差值和所述第二接收功率差值均小于第一差值阈值,则确定所述第一通信系统的第一优先级和所述第二通信系统的第二优先级中的较大优先级;
    使用所述调谐器对所述天线进行调谐,以使得具有所述较大优先级的通信系统的接收功率差值大于所述第一差值阈值。
  17. 根据权利要求12所述的装置,其特征在于,所述第一传输参数包括第一发射功率和第一接收功率,第二传输参数包括第二发射功率和第二接收功率,所述第一预设功率包括第一预设最大发射功率和第一预设最大接收功率,所述第二预设功率包括第二预设最大发射功率和第二预设最大接收功率;
    所述调谐模块,具体用于获取所述第一发射功率和所述第一预设最大发射功率的第一发射功率差值,以及所述第二发射功率和所述第二预设最大发射功率的第二发射功率差值;
    若所述第一发射差值和所述第二发射功率差值均大于第二差值阈值,则获取所述第一接收功率和所述第一预设最大接收功率的第一接收功率差值,以及所述第二接收功率和第二预设最大接收功率的第二接收功率差值;
    将所述第一接收功率差值和所述第二接收功率差值的差值作为第三接收功率差值;
    根据所述第三接收功率差值,使用所述调谐器对所述天线进行调谐。
  18. 根据权利要求17所述的装置,其特征在于,所述调谐模块,具体用于若所述第三接收功率差值大于所述第二差值阈值,则使用所述调谐器对所述天线进行调谐,使得所述第三接收功率差值小于第三差值阈值。
  19. 根据权利要求17所述的装置,其特征在于,所述第一传输参数还包括第一吞吐率和/或第一系统功耗,所述第二传输参数还包括第二吞吐率和/或第二系统功耗;
    所述调谐模块,具体用于若所述第三接收功率差值小于第一差值阈值,则根据所述第一吞吐率和/或第一系统功耗、和所述第二吞吐率和/或第二系统功耗,使用所述调谐器对所述天线进行调谐。
  20. 根据权利要求17-19任一项所述的装置,其特征在于,所述调谐模块,还用于根据所述调谐器的调谐值和所述天线的天线状态的对应关系,使用所述调谐器对所述天线进行再次调谐,使得第一发射功率差值、所述第一接收功率差值、所述第二发射功率差值和所述第二接收功率差值均大于第一差值阈值。
  21. 一种多通信系统中天线的调谐装置,其特征在于,所述多通信系统中天线的调谐装置上存储有计算机程序,在所述计算机程序被所述多通信系统中天线的调谐装置执行时,实现如权利要求1-10中任一项所述的方法。
  22. 一种计算机可读存储介质,其特征在于,用于存储计算机程序或者指令,当所述计算机程序或者指令在计算机上运行时,使得所述计算机执行权利要求1-10任一项所述的方法。
PCT/CN2019/079716 2019-03-26 2019-03-26 多通信系统中天线的调谐方法、装置和存储介质 WO2020191622A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/079716 WO2020191622A1 (zh) 2019-03-26 2019-03-26 多通信系统中天线的调谐方法、装置和存储介质
CN201980053495.5A CN112567636B (zh) 2019-03-26 2019-03-26 多通信系统中天线的调谐方法、装置和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/079716 WO2020191622A1 (zh) 2019-03-26 2019-03-26 多通信系统中天线的调谐方法、装置和存储介质

Publications (1)

Publication Number Publication Date
WO2020191622A1 true WO2020191622A1 (zh) 2020-10-01

Family

ID=72610823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/079716 WO2020191622A1 (zh) 2019-03-26 2019-03-26 多通信系统中天线的调谐方法、装置和存储介质

Country Status (2)

Country Link
CN (1) CN112567636B (zh)
WO (1) WO2020191622A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113690619A (zh) * 2021-09-15 2021-11-23 宇龙计算机通信科技(深圳)有限公司 一种天线及终端

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1698352A (zh) * 2003-02-06 2005-11-16 松下电器产业株式会社 天线切换装置及其方法
CN1738381A (zh) * 2004-08-19 2006-02-22 夏普株式会社 用于接收数字广播的调谐器
CN1795629A (zh) * 2003-03-25 2006-06-28 松下电器产业株式会社 无线终端设备
US20130052967A1 (en) * 2011-08-30 2013-02-28 Motorola Mobility, Inc. Antenna tuning on an impedance trajectory

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100576941C (zh) * 2005-10-06 2009-12-30 美国博通公司 多模通信设备及其内处理多个通信信号的方法
US9143172B2 (en) * 2009-06-03 2015-09-22 Qualcomm Incorporated Tunable matching circuits for power amplifiers
CN105637770B (zh) * 2013-10-16 2018-07-10 株式会社村田制作所 收发装置
CN106299598B (zh) * 2015-05-27 2020-08-21 富泰华工业(深圳)有限公司 电子装置及其多馈入天线

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1698352A (zh) * 2003-02-06 2005-11-16 松下电器产业株式会社 天线切换装置及其方法
CN1795629A (zh) * 2003-03-25 2006-06-28 松下电器产业株式会社 无线终端设备
CN1738381A (zh) * 2004-08-19 2006-02-22 夏普株式会社 用于接收数字广播的调谐器
US20130052967A1 (en) * 2011-08-30 2013-02-28 Motorola Mobility, Inc. Antenna tuning on an impedance trajectory

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113690619A (zh) * 2021-09-15 2021-11-23 宇龙计算机通信科技(深圳)有限公司 一种天线及终端
CN113690619B (zh) * 2021-09-15 2024-01-05 宇龙计算机通信科技(深圳)有限公司 一种天线及终端

Also Published As

Publication number Publication date
CN112567636B (zh) 2022-06-07
CN112567636A (zh) 2021-03-26

Similar Documents

Publication Publication Date Title
US9531418B2 (en) Tunable inter-antenna isolation
US10819033B2 (en) Transmitting and receiving radio signals with tunable antennas tuned based on throughput performance
CN107395247B (zh) 一种终端中可调谐天线的调谐方法及装置
WO2020057292A1 (zh) 一种天线调整方法、装置以及计算机存储介质
TWI540788B (zh) 無線通訊裝置及調整天線匹配的方法
US10727958B2 (en) Method and device for measuring antenna reflection coefficient
US11677685B2 (en) Methods and apparatuses for processing multiple communications signals with a single integrated circuit chip
US11664864B2 (en) System and method for antenna reduction and usage for a multi-radio information handling system
WO2022160306A1 (zh) 一种无线通信装置及其天线切换方法
WO2022141635A1 (en) Methods and apparatus of network controlled small gap configuration in nr
JP2016510565A (ja) チャネル状態に基づいてゼロ中間周波数と直接サンプリングとの間で再構成する受信機
US10742314B2 (en) System and methods for enabling simultaneous transmit and receive in the same wifi band within a device
CN113841341B (zh) 一种无线通信装置及其天线切换方法
WO2022127250A1 (zh) 毫米波抗干扰方法、装置、终端及存储介质
WO2020191622A1 (zh) 多通信系统中天线的调谐方法、装置和存储介质
US11509052B2 (en) Smart antenna controller system
WO2020038412A1 (zh) 一种天线调谐方法及无线终端
US11757191B2 (en) Dynamic antenna structure tuning mechanism
TWI499228B (zh) 射頻電路以及信號傳輸方法
WO2022067591A1 (zh) 一种射频接收机和无线通信装置
WO2015176762A1 (en) Radio communication device and method therein for handling operation of an algorithm
US20230318164A1 (en) Integrated Switch for Improved Closed Mode Wireless Performance
US11356138B1 (en) Delay state-switching RF module
JP7380899B2 (ja) 無線通信システム、電界強度制御方法、ソフトウェア無線機、および電界強度制御用プログラム
WO2020030006A1 (zh) 确定目标小区的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921238

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19921238

Country of ref document: EP

Kind code of ref document: A1