WO2020189897A1 - Multi-beam processing method and multi-beam processing apparatus - Google Patents

Multi-beam processing method and multi-beam processing apparatus Download PDF

Info

Publication number
WO2020189897A1
WO2020189897A1 PCT/KR2020/002324 KR2020002324W WO2020189897A1 WO 2020189897 A1 WO2020189897 A1 WO 2020189897A1 KR 2020002324 W KR2020002324 W KR 2020002324W WO 2020189897 A1 WO2020189897 A1 WO 2020189897A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
irradiation
processing
beams
points
Prior art date
Application number
PCT/KR2020/002324
Other languages
French (fr)
Korean (ko)
Inventor
김보람
최지웅
허준규
박종갑
Original Assignee
에이피시스템 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에이피시스템 주식회사 filed Critical 에이피시스템 주식회사
Publication of WO2020189897A1 publication Critical patent/WO2020189897A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • B23K26/0676Dividing the beam into multiple beams, e.g. multifocusing into dependently operating sub-beams, e.g. an array of spots with fixed spatial relationship or for performing simultaneously identical operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/02Carriages for supporting the welding or cutting element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/02Carriages for supporting the welding or cutting element
    • B23K37/0211Carriages for supporting the welding or cutting element travelling on a guide member, e.g. rail, track

Definitions

  • the present invention relates to a multi-beam processing method and a multi-beam processing apparatus, and more particularly, to a multi-beam processing method and a multi-beam processing apparatus for improving the homogeneity of multi-beam processing.
  • an object to be processed is generally processed using a laser beam, and application of a patterning technology using multi-beams is increasing to increase the processing speed.
  • a processing hole can be formed only when a beam is irradiated several hundred times at the same processing point of a processing object such as a metal plate.
  • the homogeneity of the multi-beam is very important in multi-beam processing, and especially in the case of fine patterns, the homogeneity of the multi-beam is more required. Therefore, the micro-beam using a multi-beam that can minimize the deviation of workability between a plurality of processing points The need for micro patterning technology is increasing.
  • Patent Document 1 Korean Laid-Open Patent Publication No. 10-2015-0111349
  • the present invention provides a multi-beam processing method and a multi-beam processing apparatus capable of reducing processing deviation between a plurality of processing points during multi-beam processing.
  • a multi-beam processing method includes: setting a plurality of processing points on an object to be processed; Generating and outputting a laser beam for processing the object to be processed; Dividing the laser beam into a plurality of unit beams less than the number of the plurality of processing points to form a multi-beam; Irradiating the multi-beam to a first irradiation position corresponding to some of the plurality of processing points; Moving the irradiation position of the multi-beam; And irradiating the multi-beam to a second irradiation location partially overlapping with the first irradiation location.
  • the plurality of processing points arranged at the same interval of the first distance are set, and the process of forming the multi-beam is at the same interval of a second distance proportional to the first distance. It may be performed by dividing the laser beam into the arranged plurality of unit beams.
  • the plurality of processing points and the plurality of unit beams are arranged side by side in a first direction, and in a process of moving the irradiation position of the multi-beam, the irradiation position of the multi-beam may be moved in the first direction.
  • It may further include a process of determining the number of times of irradiation of the unit beam according to the energy of the multi-beam.
  • the process of determining the number of unit beams in the first direction of the multi-beam according to the determined number of irradiation; further comprising, the process of forming the multi-beam, the plurality of unit beams according to the distance of the plurality of processing points The process of determining the interval; Providing a pattern plate on which diffraction patterns are formed according to the determined number and spacing of the plurality of unit beams; And injecting the laser beam onto the pattern plate.
  • the irradiation position of the multi-beam may be moved to the second irradiation position overlapping the first irradiation position by the determined number of irradiation points of the overlapping unit beam.
  • the process of additionally irradiating the unit beam may include blocking a path of a unit beam corresponding to a processing point for which compensation is not determined; And irradiating the unit beam whose path is opened to the processing point where the compensation is determined.
  • the process of additionally irradiating the unit beam may be performed stepwise until the number of irradiation times of each of the plurality of processing points reaches the determined number of irradiation.
  • a multi-beam processing apparatus includes a workpiece support for supporting an object to be processed at a plurality of predetermined processing points; A laser beam oscillator for generating and outputting a laser beam for the processing; A multi-beam forming unit configured to form a multi-beam by dividing the output laser beam into a plurality of unit beams less than the number of the plurality of processing points; A multi-beam irradiation unit for irradiating the multi-beam onto the object to be processed a plurality of times; And a support driving unit for moving the workpiece support to change the irradiation position of the multi-beam to a second irradiation position partially overlapping with the first irradiation position to which the multi-beam is irradiated.
  • An irradiation count setting unit for setting the irradiation count of the unit beam at each processing point; And a unit beam number determining unit that determines the number of the plurality of unit beams according to the set number of irradiation of the unit beams.
  • the multi-beam forming unit may include a pattern plate on which diffraction patterns are formed according to the number and interval of the plurality of unit beams, and the laser beam is incident thereon; And a pattern plate changing unit that determines a diffraction pattern according to the determined number of the plurality of unit beams and an interval between the plurality of unit beams, and changes the pattern plate to a pattern plate on which the determined diffraction pattern is formed.
  • the multi-beam irradiation unit may include an angle correction optical system that adjusts the irradiation angle of the plurality of unit beams divided by the pattern plate to a predetermined angle.
  • a beam cutting unit provided on a path between the pattern plate and the object to be processed to block a path of some of the plurality of unit beams, wherein the beam cutting unit has a hollow portion, and the plurality of unit beams A body portion providing a path of; And a blocking plate provided on a side wall of the body portion and having a length adjusted in the inner direction of the hollow portion.
  • An irradiation count detection unit for detecting the irradiation count of the unit beam for each processing point of the object to be processed; And a compensation determination unit that determines whether or not to compensate by determining whether the number of irradiation detected for each processing point has reached a predetermined number of irradiations; wherein the beam cutting unit includes a unit beam corresponding to a processing point for which compensation is not determined. You can block the path.
  • a position measuring unit for measuring the position coordinates and the moving distance of the workpiece support further comprising, the plurality of processing points and the plurality of unit beams are arranged side by side in a first direction, and the support drive unit measures the position measurement unit
  • the irradiation position of the multi-beam may be changed to the second irradiation position in which a predetermined number of irradiation points of the unit beam overlap with the first irradiation position.
  • the multi-beam processing method after irradiating the multi-beam to the first irradiation position, the multi-beam is irradiated to the second irradiation position partially overlapping with the first irradiation position, and units of different positions at the overlapping irradiation point.
  • unit beams having different positions can be mixed. Accordingly, machining deviation between a plurality of machining points due to a difference in beam intensity for each position of a plurality of unit beams may be reduced.
  • the number of unit beams in the first direction of the multi-beam is determined, and the first irradiation according to the determined number of irradiation and the determined number of unit beams in the first direction
  • the number of irradiation points of the unit beam overlapping the location and the second irradiation location may be determined.
  • the overlapping of the unit beams is not achieved only by moving the irradiation position of the multi-beams, or the unit beam is additionally irradiated to a processing point where the number of irradiation of the unit beam is less than the determined number of irradiation. I can.
  • the number of irradiation of the unit beam may be compensated for a processing point where processing is not completed. Through this, the unit beams may be superimposed on all the plurality of processing points to complete processing.
  • FIG. 1 is a flow chart showing a multi-beam processing method according to an embodiment of the present invention.
  • FIG. 2 is a conceptual diagram for explaining the overlapping of the irradiation points of the first irradiation location and the second irradiation location according to an embodiment of the present invention.
  • FIG. 3 is a conceptual diagram illustrating an effect of overlapping unit beams according to an embodiment of the present invention.
  • FIG. 4 is a conceptual diagram illustrating beam cutting according to an embodiment of the present invention.
  • 5 is a conceptual diagram for explaining compensation through beam cutting according to an embodiment of the present eradication.
  • FIG. 6 is a schematic view showing a multi-beam processing apparatus according to another embodiment of the present invention.
  • FIG. 1 is a flow chart showing a multi-beam processing method according to an embodiment of the present invention.
  • a multi-beam processing method includes a process of setting a plurality of processing points 11 on an object 10 (S100); Generating and outputting a laser beam 12 for processing the object 10 (S200); Dividing the laser beam 12 into a plurality of unit beams 13a less than the number of the plurality of processing points 11 to form a multi-beam 13 (S300); Irradiating the multi-beam 13 to a first irradiation position 30a corresponding to some of the processing points 11 among the plurality of processing points 11 (S400); Moving the irradiation position of the multi-beam 13 (S450); And irradiating the multi-beam 13 to the second irradiation location 30b partially overlapping with the first irradiation location 30a (S500).
  • a plurality of processing points 11 are set on the object 10 (S100).
  • a plurality of processing points 11 may be set at a point on the object 10 to be processed, and a plurality of processing points 11 may be set as a first pattern.
  • the first pattern may be an array (or an array of processing points) of processing points 11 arranged along a first direction (or a row (m) direction), and m ⁇ n (m ⁇ 1, n> 2 ) May be in the form of a matrix.
  • the object to be processed 10 may generally be a mask stick (or metal plate) of a fine metal mask (FMM) used in a vacuum deposition process when manufacturing an organic EL (electroluminescence) or organic semiconductor device.
  • FMM fine metal mask
  • any object that can be processed with a laser beam is irrelevant.
  • the printed circuit board The (PCB) or semiconductor substrate may be the object 10 to be processed.
  • a laser beam 12 for processing the object 10 is generated and output (S200).
  • the laser beam 12 may be generated and oscillate toward the object 10.
  • the laser beam 12 may be a pulse laser, a high energy beam may be periodically irradiated for a short time, and heat accumulation may be suppressed or prevented.
  • the laser beam 12 is divided into a plurality of unit beams 13a less than the number of the plurality of processing points 11 to form a multi-beam 13 (S300).
  • the laser beam 12 can be divided into a plurality of unit beams 13a to form a multi-beam 13, and the number of the plurality of unit beams 13a by irradiating the multi-beam 13 onto the object 10
  • the same (or two or more) machining points 11 can be machined simultaneously.
  • the multi-beam 13 may have a second pattern corresponding to (or a subset) of the first pattern, and the number of the plurality of unit beams 13a is the number of the plurality of processing points 11 Can be less.
  • the second pattern may be an array (or unit beam array) of unit beams 13a arranged along a first direction (or row direction), and a matrix of x ⁇ y (x ⁇ 1, y ⁇ 2) It can be a form.
  • FIG. 2 is a conceptual diagram for explaining the overlapping of the irradiation points of a first irradiation location and a second irradiation location according to an embodiment of the present invention.
  • FIG. 2A shows the intensity difference between a plurality of unit beams.
  • 2(b) shows the overlapping of the irradiation points of the first and second irradiation locations, and
  • FIG. 2(c) shows the improvement of the uniformity of the accumulated energy by the overlap of the irradiation points.
  • a difference in beam intensity or intensity between the plurality of unit beams 13a Can occur. This may be generated by diffractive optics, lens aberration, or the like in the process of dividing one laser beam 12 to form the multi-beam 13. Due to this difference (or error), the multi-beam 13 may become non-uniform for each position of the unit beam 13a.
  • FIG. 3 is a conceptual diagram for explaining the effect of overlapping unit beams according to an embodiment of the present invention
  • FIG. 3(a) shows non-overlapping of unit beams
  • FIG. 3(b) is a multi-beam
  • Fig. 3(c) shows the overlap of unit beams corresponding to 1/2
  • Fig. 3(d) shows the overlap of unit beams corresponding to 1/4 of the multi-beam. It represents the overlap of corresponding unit beams.
  • the multi-beam 13 is irradiated to a first irradiation position 30a corresponding to some of the processing points 11 of the plurality of processing points 11 (S400).
  • the first irradiation position 30a may be a position where the processing of the plurality of processing points 11 starts, may be one end (or corner) of the first pattern, and in the case of m ⁇ n matrix form In may be an irradiation location including the processing point 11 corresponding to any one of (1,1), (1,n), (m,1), and (m,n) coordinates.
  • the irradiation position of the multi-beam 13 is moved (S450).
  • the irradiation position of the multi-beam 13 may be moved, and unit beams 13a at different positions may be superimposed on the processing point 11.
  • the irradiation position of the multi-beam 13 may be moved from the first irradiation position 30a to a second irradiation position 30b partially overlapping with the first irradiation position 30a.
  • the multi-beam 13 is irradiated to the second irradiation location 30b partially overlapping the first irradiation location 30a (S500).
  • some irradiation points 31 may overlap, and the overlapping irradiation points 31 have unit beams 13a at different positions. ) Can be mixed. Accordingly, the uniformity of the accumulated energy between the plurality of processing points 11 may be improved, and the processing deviation between the plurality of processing points 11 may be reduced.
  • the plurality of processing points 11 arranged at equal intervals of a first distance may be set, and the process of forming the multi-beam 13 (S300) ) May be performed by dividing the laser beam 12 into the plurality of unit beams 13a arranged at equal intervals of a second distance proportional to the first distance.
  • the plurality of processing points 11 may be arranged at equal intervals of the first distance, and the irradiation position of the multi-beam 13 may be moved according to the position of each of the plurality of processing points 11. If the plurality of processing points 11 are not arranged at equal intervals, a plurality of units in the case of moving the irradiation position of the multi-beam 13 so that the first irradiation position 30a and the second irradiation position 30b partially overlap The beam 13a is positioned at each processing point 11 so that irradiation cannot be performed.
  • a plurality of processing points 11 can be arranged at equal intervals, and when the first irradiation position 30a and the second irradiation position 30b partially overlap only by moving the irradiation position of the multi-beam 13, a plurality of The unit beams 13a of may be respectively positioned in correspondence with each processing point 11. Accordingly, each of the plurality of unit beams 13a may be irradiated only to the respective processing points 11.
  • the laser beam 12 may be divided into a plurality of unit beams 13a arranged at equal intervals of a second distance proportional to the first distance, and the second distance may be determined according to the first distance.
  • the second distance may be proportional to the first distance
  • the laser beam 12 is divided into a plurality of unit beams 13a having a size and spacing greater or less than the size and spacing of the plurality of processing points 11. It can be divided and converted to fit the size and spacing of the plurality of machining points 11 through optics at the rear end of the beam path, and the laser beam 12 is converted to the size and spacing of the plurality of machining points 11 It may be directly divided into a plurality of unit beams 13a having the same size and spacing and transmitted to the processing points 11 of the object 10.
  • the plurality of unit beams 13a must also be arranged at the same interval so that the plurality of unit beams 13a can be irradiated according to the positions of each of the plurality of processing points 11 arranged at the same interval.
  • a plurality of unit beams 13a may correspond to each processing point 11 to be positioned respectively.
  • the plurality of processing points 11 and the plurality of unit beams 13a may be arranged side by side in a first direction, and in the process of moving the irradiation position of the multi-beam 13 (S450), the multi-beam ( The irradiation position of 13) can be moved in the first direction.
  • a plurality of processing points 11 and a plurality of unit beams 13a are arranged side by side in the first direction, and some of the irradiation points 31 are moved while moving the irradiation position of the multi-beam 13 in the first direction. Can be nested.
  • the number of the first direction unit beams 13a of the multi-beam 13 may be less than the number of the first direction processing points 11 of the plurality of processing points 11.
  • the multi-beam 13 When the number of the first direction unit beams 13a of the multi-beam 13 is more than the number of the first direction processing points 11 of the plurality of processing points 11, the multi-beam 13 is irradiated. The position can no longer be moved in the first direction, or some of the unit beams 13a of the multi-beams 13 are out of the processing point 11 of the object 10, so that an efficient processing process cannot be performed. do.
  • the irradiation position of the multi-beam 13 may be moved in the first direction, and the irradiation position of the multi-beam 13 is moved to the first direction.
  • the direction may be moved by a distance smaller than the first width of the multi-beam 13 (or the width of the second pattern in the first direction). That is, the irradiation position of the multi-beam 13 is determined by a distance corresponding to the number of (the first direction) of the processing points 11 less than the number of unit beams 13a in the first direction of the multi-beam 13 It can be moved in the first direction.
  • the irradiation position of the multi-beam 13 When the irradiation position of the multi-beam 13 is moved in the first direction by a distance equal to or greater than the width in the first direction of the multi-beam 13, the irradiation position of the multi-beam 13 becomes the first irradiation position 30a. It does not overlap with the first irradiation position 30a, and it is impossible to mix unit beams 13a having different positions at each processing point 11.
  • the irradiation position of the multi-beam 13 is moved in the first direction, and processing points less than the number of unit beams 13a in the first direction of the multi-beam 13 (You can move as many as 11) (or the number of cells). Through this, the unit beams 13a having different positions may be mixed at each processing point 11.
  • the multi-beam processing method according to the present invention may further include a process of determining the number of times of irradiation of the unit beam 13a according to the energy of the multi-beam 13 (S50).
  • the number of times the unit beam 13a is irradiated may be determined according to the energy of the multi-beam 13 (S50).
  • the process of determining the number of irradiation of the unit beam 13a according to the energy of the multi-beam 13 (S50) may be performed before the process of forming the multi-beam 13 (S300), and
  • the number of times the unit beam 13a is irradiated may be determined according to at least one of the material, thickness, and processing depth of (10) and the energy (or intensity) of the multi-beam 13.
  • the number of times of irradiation of the unit beam 13a may be determined through the energy distribution of the multi-beam 13 (or according to the energy distribution), and the highest portion of the energy distribution of the multi-beam 13 (for example, For example, the number of times of irradiation of the unit beam 13a may be determined based on the central part).
  • the number of times of irradiation of the same unit beam 13a to a plurality of processing points 11 may be determined, and the unit beam 13a for each processing point 11 according to the energy distribution of the multi-beam 13 You can also determine the number of investigations.
  • the number of irradiation times of the unit beam 13a to be processed (or to which processing can be completed) of each processing point 11 is determined. It can be determined by experimentally confirming the number of irradiation of the unit beam (13a) that can be processed. For example, in the case of forming the processing hole of the fine metal mask (FMM), the number of irradiation of the unit beam 13a in which the processing hole is formed can be experimentally confirmed, and the number of irradiation of the unit beam 13a thus confirmed May be determined as the number of irradiation of the unit beam 13a to complete the processing.
  • FMM fine metal mask
  • the multi-beam processing method according to the present invention may further include a process of determining the number of the first direction unit beams 13a of the multi-beam 13 (S60) according to the determined number of irradiations.
  • the number of unit beams 13a in the first direction of the multi-beam 13 may be determined according to the determined number of irradiations (S60).
  • the number of the first direction unit beams 13a of the multi-beam 13 may be less than the number of the first direction processing points 11 of the plurality of processing points 11. Then, the number of the first direction unit beams 13a of the multi-beam 13 is determined according to the determined number of irradiation, and the plurality of processing points 11 are moved in the first direction with the multi-beam 13 (or the first It is possible to complete the machining of most (or the center) of the machining point 11 when scanned (to the end of the direction).
  • the number of the first direction unit beams 13a of the multi-beam 13 may be selected from a product of a factor of the determined number of irradiation or a factor of the determined number of irradiation.
  • the number of columns (n) and/or the number of rows (m) of the matrix of the multi-beam 13 may be determined according to the determined number of irradiations.
  • the process of forming the multi-beams 13 may include determining the spacing of the plurality of unit beams 13a according to the spacing of the plurality of processing points 11 (S310); Providing a pattern plate 131 on which a diffraction pattern is formed according to the determined number and interval of the plurality of unit beams 13a (S320); And a process (S330) of incidence of the laser beam 12 onto the pattern plate 131.
  • the spacing of the plurality of unit beams 13a may be determined according to the spacing of the plurality of processing points 11 (S310).
  • the spacing of the plurality of unit beams 13a may be determined according to the spacing of the plurality of processing points 11 (ie, the first spacing)
  • the The first direction spacing of the plurality of unit beams 13a may be determined according to the first direction spacing of the plurality of processing points 11.
  • a pattern plate 131 on which diffraction patterns according to the determined number and spacing of the plurality of unit beams 13a are formed may be provided (S320).
  • the number of the plurality of unit beams 13a may be determined according to the determined number of the first direction unit beams 13a.
  • a diffraction pattern may be formed on the pattern plate 131 to divide one laser beam 12 into a plurality of unit beams 13a, and the diffraction pattern may be formed according to the number and spacing of the plurality of unit beams 13a. It can be different. That is, one laser beam 12 may be divided into a plurality of unit beams 13a having a predetermined number and intervals according to the diffraction pattern.
  • the laser beam 12 is converted into a pattern plate 131 in which an appropriate diffraction pattern is formed and a plurality of unit beams 13a having a desired (or determined) number and spacing. ) Can be divided.
  • the pattern plate 131 may include a Diffractive Optical Element (DOE).
  • DOE Diffractive Optical Element
  • the laser beam 12 may be incident on the pattern plate 131 (S330).
  • the laser beam 12 may be divided into a plurality of unit beams 13a having a predetermined number and interval according to the diffraction pattern.
  • the multi-beam processing method is an overlapping unit of the first irradiation location (30a) and the second irradiation location (30b) according to the determined number of irradiation and the determined number of the first direction unit beams (13a).
  • the process of determining the number of irradiation points 31 of the beam 13a (S70); may further include, and the overlapping unit beam determined in the process (S450) of moving the irradiation location of the multi-beam 13 As many as the number of irradiation points 31 in (13a), the irradiation points 31 may be moved to the second irradiation position 30b overlapping with the first irradiation position 30a.
  • the irradiation point of the unit beam 13a overlapping the first irradiation position 30a and the second irradiation position 30b according to the determined number of irradiation and the determined number of unit beams 13a in the first direction ( 31) can be determined (S70).
  • the irradiation point 31 of the unit beam 13a overlapping the first irradiation position 30a and the second irradiation position 30b You can decide the number. Through this, it is possible to effectively mix the unit beams 13a having different beam intensity (or energy) at each of the plurality of processing points 11, and it is possible to minimize processing deviation between the plurality of processing points 11.
  • the irradiation position of the multi-beam 13 in the first direction A moving distance (or number of cells) (or the number of processing points at which the multi-beam should move in the first direction) may be calculated.
  • the process of determining the number of irradiation points 31 of the overlapping unit beams 13a is a process of calculating a factor of the determined irradiation number.
  • the number of moving cells of the irradiation position may be selected from an integer value obtained by dividing the determined number of the first direction unit beams 13a by a factor of the calculated number of irradiation, and the selected The number of irradiation points 31 of the overlapping unit beams 13a may be determined according to the number of moving cells of the irradiation location.
  • the process of determining the number of irradiation points 31 of the overlapping unit beams 13a includes a factor of the number of adjustments obtained by adding 1 to the determined number of irradiations.
  • the number of moving cells of the irradiation position is calculated as the number of the determined number of the first direction unit beams 13a (i.e., a value obtained by adding 1 to the determined number of irradiation) It may be selected from an integer value divided by a factor of, and the number of irradiation points 31 of the overlapping unit beam 13a may be determined according to the number of moving cells of the selected irradiation location.
  • the number of the first direction unit beams 13a of the multi-beam 13 at the first irradiation location 30a and the second irradiation location 30b is different (or differently).
  • the number of the first direction of the plurality of processing points 11 is 7 (decimal)
  • the number of the first direction unit beams 13a is 3 at the first irradiation position 30a. (13) can be irradiated, and in the second irradiation position (30b), the multi-beam 13 having the number of the first direction unit beams 13a of four can be irradiated.
  • one space in the first direction i.e., one unit beam can be moved from the irradiation point to an adjacent processing point in the first direction.
  • the irradiation position of the multi-beam 13 may be moved by distance).
  • a value obtained by dividing the determined number of the first direction unit beams 13a by the determined number of irradiation and the calculated number of moving cells of the irradiation position It may be performed after repeating the process (S400) of irradiating the first irradiation location 30a as many times as multiplied.
  • the irradiation point 31 is the first irradiation position (of) as many as the number of irradiation points 31 of the overlapping unit beams 13a (
  • the irradiation position of the multi-beam 13 may be moved to the second irradiation position 30b overlapping with 30a).
  • the irradiation position of the multi-beam 13 can be moved to the second irradiation position 30b overlapping the first irradiation position 30a by the determined number of irradiation points of the overlapping unit beam 13a,
  • the irradiation position of the multi-beam 13 may be moved in the first direction by the determined number of moving cells of the irradiation position.
  • FIG. 4 is a conceptual diagram illustrating beam cutting according to an embodiment of the present invention
  • FIG. 5 is a conceptual diagram illustrating compensation through beam cutting according to an embodiment of the present invention
  • FIG. 5A is The mixed area and the unmixed area of the unit beam are shown
  • FIG. 5B shows the unit beam compensation of the non-mixed area.
  • the multi-beam processing method includes a process of detecting the number of irradiation times of the unit beam 13a for each processing point 11 (S550); Determining whether to compensate by determining whether the number of irradiations detected for each processing point 11 has reached the determined number of irradiations (S560); And a process (S600) of additionally irradiating the unit beam 13a to the processing point 11 where compensation is determined (S600).
  • the number of irradiation times of the unit beam 13a for each processing point 11 may be detected (S550).
  • the number of irradiation of the unit beam 13a for each processing point 11 can be detected, and it is possible to check (or grasp) whether processing is completed for each processing point 11. It is possible to complete (or stop) the unit beam overlapping process in which the first irradiation position 30a and the second irradiation position 30b partially overlap by determining whether processing is completed for each processing point 11.
  • the unit beam overlapping process may be completed after scanning the entire plurality of processing points 11 while partially overlapping the first and second irradiation positions 30a and 30b. Through this, after scanning the entire plurality of processing points 11 by the unit beam overlapping process, most of the processing points except for the processing points 11 located at the edges (or edge regions) of the plurality of processing points 11 ( 11) can be completed to process.
  • the unit beam 13a may be additionally irradiated to the processing point 11 at which compensation is determined (S600).
  • the processing point 11 at which the compensation is determined is less than the determined number of irradiations, and thus processing has not been completed. Therefore, the unit beam 13a is additionally irradiated to determine the compensation of the processing point 11 at which the compensation is determined. Processing can be completed. In this way, the unit beam 13a is compensated for the processing point 11 in which the detected number of irradiation is less than the determined number of irradiation, so that the processing of all the plurality of processing points 11 can be completed.
  • the process of additionally irradiating the unit beam 13a may include blocking a path of the unit beam 13a corresponding to the processing point 11 for which compensation is not determined (S610); And a process (S620) of irradiating the unit beam 13a with an open path to the processing point 11 for which the compensation is determined.
  • the path of the unit beam 13a corresponding to the processing point 11 for which compensation is not determined may be blocked (S610).
  • the path of the unit beam 13a corresponding to the processing point 11 for which compensation is not determined is blocked, so that the unit beam 13a may be additionally irradiated only to the processing point 11 for which the compensation is determined.
  • the unit beam 13a in which the path is opened may be irradiated to the processing point 11 at which the compensation is determined (S620).
  • the unit beam 13a with an open path may be irradiated to the processing point 11 for which the compensation is determined, and the unit beam 13a may be compensated for the processing point 11 for which the compensation is determined (only).
  • the unit beam 13a of the same number of times of irradiation is irradiated to all the plurality of processing points 11, thereby further reducing processing deviation between the plurality of processing points 11.
  • the process of additionally irradiating the unit beam 13a (S600) may be performed in stages until the number of irradiation times of each of the plurality of processing points 11 all reach the determined number of irradiation.
  • the process of additionally irradiating the unit beam 13a (S600) may be performed until the irradiation times of each of the plurality of processing points 11 all reach the determined irradiation number, and the blocked unit beam 13a It can be done step by step while changing the path of.
  • the processing of all the plurality of processing points 11 can be completed, and all the plurality of processing points 11 are irradiated with a unit beam 13a of the same number of times of irradiation, thereby processing deviation between the plurality of processing points 11 May be further reduced.
  • the unit beam 13a to be irradiated (or to be irradiated) among the multi-beams 13 according to the position of the processing point 11 for which the compensation is determined ( Alternatively, it may be performed by determining the position of the unit beam. In this case, the position of the irradiated unit beam 13a may be different according to the position of the processing point 11 at which the compensation is determined.
  • the energy of the unit beam 13a to be irradiated may be determined according to the accumulated energy of the position of the processing point 11 for which the compensation is determined (or the total amount of energy of the irradiated unit beam), and the energy of the determined unit beam 13a Unit beams 13a at different (or appropriate) positions may be selected.
  • a unit beam 13a of a high energy portion (for example, a central portion) of the multi-beam 13 may be additionally irradiated to the processing point 11 where the accumulated energy is low (or small) and the compensation is determined. have.
  • the processing points 11 located at the edge (or edge area) among the plurality of processing points 11 that need to be compensated by additionally irradiating the unit beam 13a because the processing is not completed have low cumulative energy and Since there is a large difference from the accumulated energy of the positioned processing points 11, the unit beam 13a of the high energy portion of the multi-beam 13 can be additionally irradiated.
  • the energy of the processing point 11 for which the compensation is determined may be compensated, and a variation in accumulated energy between a plurality of processing points 11 and/or a processing variation between a plurality of processing points 11 may be minimized.
  • the accumulated energy gradually decreases as the distance from the central portion of the plurality of processing points 11 among the processing points 11 for which the compensation is determined, corresponding (or opposite) to the central portion of the plurality of processing points 11
  • the energy of the irradiated unit beam 13a may increase gradually as the processing point 11 at which the distant compensation is determined increases.
  • the irradiation position of the multi-beam 13 is moved in a second direction crossing the first direction.
  • a process of moving (S455) may be included (more).
  • the irradiation position of the multi-beam 13 may be moved in a second direction crossing the first direction. While moving the irradiation position of the multi-beam 13 in the second direction, scanning in the first direction is performed for each position (or line) moved in the second direction, You can make the processing complete.
  • FIG. 6 is a schematic diagram showing a multi-beam processing apparatus according to another embodiment of the present invention.
  • a multi-beam processing apparatus according to another embodiment of the present invention will be described in more detail with reference to FIG. 6, and details overlapping with those previously described in relation to the multi-beam processing method according to an embodiment of the present invention will be omitted. .
  • a multi-beam processing apparatus 100 includes a workpiece support 110 for supporting an object 10 to be processed at a plurality of predetermined processing points 11; A laser beam oscillator 120 for generating and outputting a laser beam 12 for the processing; A multi-beam forming unit 130 configured to form a multi-beam 13 by dividing the output laser beam 12 into a plurality of unit beams 13a less than the number of the plurality of processing points 11; A multi-beam irradiation unit 160 for irradiating the multi-beam 13 onto the object 10 a plurality of times; And moving the workpiece support 110 so that the irradiation position of the multi-beam 13 is changed to a second irradiation position 30b partially overlapping the irradiated first irradiation position 30a. It may include; support base driving unit 140.
  • the workpiece support 110 may support the object to be processed 10 to be processed at a plurality of predetermined processing points 11.
  • the object to be processed 10 may generally be a mask stick (or metal plate) of a fine metal mask (FMM) used in a vacuum deposition process when manufacturing an organic EL (electroluminescence) or an organic semiconductor device. have.
  • the laser beam oscillation unit 120 may generate and output a laser beam 12 for the processing, and generate a laser beam 12 to process the object 10 to oscillate toward the object 10 to be processed. I can.
  • the laser beam oscillation unit 120 may output the laser beam 12 in the form of a pulse laser, and a high energy beam may be periodically irradiated for a short time. In this case, heat accumulation at the irradiation point 31 can be suppressed or prevented.
  • the laser beam oscillation unit 120 may be a known configuration that generates a laser beam, and excimer lasers such as KrF excimer lasers and ArF excimer lasers, diode pumped solids (Diode) according to the wavelength of the laser beam to be used.
  • DPSS Pumping Solid-State
  • the multi-beam forming unit 130 may form a multi-beam 13 by dividing the output laser beam 12 into a plurality of unit beams 13a less than the number of a plurality of processing points 11. By irradiating (13) to the object 10 to be processed, the same (or two or more) processing points 11 equal to the number of the plurality of unit beams 13a can be simultaneously processed.
  • the multi-beam irradiation unit 160 may irradiate the multi-beam 13 onto the object 10 a plurality of times, and block (or close) the multi-beam 13 by opening and closing the path of the multi-beam 13
  • the multi-beam 13 may be irradiated multiple times to the object 10 by repeating and passing (or opening), or according to the multi-beam 13 periodically provided to the laser beam 12 in the form of a pulsed laser.
  • the beam 13 may be irradiated multiple times on the object 10 to be processed.
  • the support drive unit 140 moves the workpiece support 110 to change the irradiation position of the multi-beam 13 to a second irradiation position 30b partially overlapping the first irradiation position 30a where the multi-beam 13 is irradiated. Can be moved.
  • the irradiation position of the multi-beam 13 may be moved through the support driving part 140, and unit beams 13a at different positions may be overlapped on the processing point 11. In this case, the irradiation position of the multi-beam 13 may be moved from the first irradiation position 30a to a second irradiation position 30b partially overlapping with the first irradiation position 30a.
  • the support drive unit 140 includes a power source 141 that provides a driving force for moving the workpiece support 110; And it may include a connection portion 142 connecting the workpiece support 110 and the power source 141.
  • the power source 141 may provide a driving force for the movement of the workpiece support 110 and may be configured with a servo-motor or the like.
  • connection part 142 may connect the workpiece support 110 and the power source 141, and its length may change, or another configuration may move along (or ride) the connection part 142 to move the workpiece support 110. have.
  • the multi-beam processing apparatus 100 includes: an irradiation frequency setting unit (not shown) for setting the irradiation frequency of the unit beam 13a of each processing point 11; And a unit beam number determination unit (not shown) that determines the number of the plurality of unit beams 13a according to the set number of irradiation of the unit beams 13a.
  • the irradiation frequency setting unit may set (or determine) the number of irradiation of the unit beam 13a of each processing point 11, and the number of irradiation of the unit beam 13a of each processing point 11 It may be determined and set, or the number of irradiation of the unit beam 13a of each processing point 11 may be set as the number of input irradiation.
  • the number of irradiation setting unit (not shown) is the unit of each processing point 11 by the number of irradiation of the unit beam 13a to be processed (or can be processed) of each processing point 11
  • the number of irradiation of the beam 13a can be set, and the number of irradiation of the unit beam 13a of each processing point 11 can be set by experimentally checking the number of irradiation of the unit beam 13a at which processing can be completed. .
  • the number of unit beams determining unit may determine the number of the plurality of unit beams 13a according to the set number of irradiation of the unit beams 13a.
  • the number of unit beams determining unit is the first direction unit beam 13a of the multi-beam 13 which is less than the number of the first direction processing points 11 of the plurality of processing points 11 You can determine the number of.
  • the number of the first direction unit beams 13a of the multi-beams 13 are determined according to the set number of irradiation of the unit beams 13a, and the plurality of processing points 11 are designated as the multi-beams 13
  • most (or the central portion) of the processing point 11 may be processed to be completed.
  • the number of second direction unit beams 13a crossing the first direction in the multi-beam 13 may be determined to be less than or equal to the number of the second direction processing points 11 of the plurality of processing points 11.
  • a line pattern (or shape) in which the unit beams 13a are arranged in a row may facilitate overlapping and compensation of the unit beams 13a.
  • the number of unit beams determining unit (not shown) may determine the number of the plurality of unit beams 13a.
  • the multi-beam forming unit 130 includes a pattern plate 131 on which diffraction patterns are formed according to the number and interval of the plurality of unit beams 13a, and the laser beam 12 is incident thereon; And a pattern plate changing unit (not shown) that determines a diffraction pattern according to the determined number of the plurality of unit beams 13a and the spacing of the plurality of unit beams 13a, and changes to the pattern plate 131 on which the determined diffraction pattern is formed. Poem).
  • the pattern plate 131 may have a diffraction pattern according to the number and interval of the plurality of unit beams 13a, and the laser beam 12 may be incident.
  • the laser beam 12 may be divided into the number and interval of a plurality of unit beams 13a determined according to a diffraction pattern formed on the pattern plate 131.
  • the pattern plate 131 may include a Diffractive Optical Element (DOE).
  • DOE Diffractive Optical Element
  • the pattern plate changing unit may determine a diffraction pattern according to the determined number of the plurality of unit beams 13a and the interval between the plurality of unit beams 13a, and the pattern plate 131 having the determined diffraction pattern formed thereon. Can be changed to A plurality of unit beams having a desired (or determined) number and intervals by determining an appropriate diffraction pattern according to the determined number and interval of the plurality of unit beams 13a and changing to the pattern plate 131 on which the determined diffraction pattern is formed ( The laser beam 12 can be split into 13a).
  • the multi-beam processing apparatus 100 of the present invention determines a diffraction pattern according to the number of the plurality of unit beams 13a determined by the pattern plate changing unit (not shown) and the spacing of the plurality of unit beams 13a, By changing to the pattern plate 131 on which the determined diffraction pattern is formed, multi-beams having a desired number and spacing can be formed.
  • the multi-beam forming unit 130 may further include a focusing lens 132 that adjusts the focus of the multi-beam 13.
  • the focusing lens 132 is provided on a path between the pattern plate 131 and the multi-beam irradiation unit 160, and is irradiated onto the focal point and/or the object to be processed 10 incident on the multi-beam irradiation unit 160 You can adjust the focus.
  • the size of the multi-beam 13 may be adjusted through the focusing lens 132.
  • the multi-beam irradiation unit 160 may include an angle correction optical system 161 that adjusts the irradiation angle of the plurality of unit beams 13a divided by the pattern plate 131 to a predetermined angle.
  • the angle correction optical system 161 may adjust the irradiation angle of the plurality of unit beams 13a divided by the pattern plate 131 to a predetermined angle, and may convert the plurality of unit beams 13a into a parallel light form.
  • the angle correction optical system 161 may include a telecentric optical system (or lens).
  • the multi-beam processing apparatus 100 of the present invention may further include a mirror unit 165 for reflecting a plurality of unit beams 13a.
  • the mirror unit 165 can change the path (or direction) of the plurality of unit beams 13a by reflecting the plurality of unit beams 13a, and the plurality of unit beams 13a through the number of mirror units 165 The length of the path can be adjusted.
  • the mirror unit 165 is not particularly limited as long as it can reflect the plurality of unit beams 13a, and may be configured in various ways.
  • the multi-beam processing apparatus 100 is provided on a path between the pattern plate 131 and the object to be processed 10, and blocks some paths of the plurality of unit beams 13a.
  • the unit 150 may further include.
  • the beam cutting unit 150 may be provided on a path between the pattern plate 131 and the object 10 to be processed to block some paths of the plurality of unit beams 13a. By blocking the path of some of the plurality of unit beams 13a through the beam cutting unit 150, the unit beam 13a can be irradiated only at the processing point 11 where (additional) irradiation of the unit beam 13a is required. have. For example, the path of the unit beam 13a corresponding to the processing point 11 for which compensation is not determined may be blocked, and the unit beam 13a may be additionally irradiated only to the processing point 11 for which the compensation is determined. Meanwhile, the beam cutting unit 150 may block some paths of the plurality of unit beams 13a to adjust the number of the plurality of unit beams 13a and/or the energy distribution of the multi-beams 13.
  • the beam cutting part 150 has a hollow part, and a body part 151 providing a path of the plurality of unit beams 13a; And a blocking plate 152 provided on a side wall of the body portion 151 and having a length adjusted in the inner direction of the hollow portion.
  • the body portion 151 may have a hollow portion, and may provide a path for a plurality of unit beams 13a through the hollow portion.
  • the material and/or shape of the body part 151 is particularly limited if there is no path change and/or energy loss (or strength decrease) due to the material and/or shape while a plurality of unit beams 13a pass through the hollow part. It doesn't work.
  • the blocking plate 152 may be provided on the sidewall of the body part 151 and its length may be adjusted in the inner direction of the hollow part. That is, some paths of the plurality of unit beams 13a may be blocked by adjusting the open area (or diameter) of the hollow part.
  • a plurality of blocking plates 152 may be provided on both side walls of the body part 151, and the gaps are narrowed toward each other at both side walls of the body part 151 to reduce the open area of the hollow part. It can be reduced, and apart from each other, the open area of the hollow portion can be widened.
  • the multi-beam processing apparatus 100 includes: an irradiation count detection unit (not shown) for detecting the irradiation count of the unit beam 13a for each processing point 11 of the object 10; And a compensation determination unit (not shown) that determines whether or not to compensate by determining whether the number of irradiations detected for each processing point 11 has reached a predetermined number of irradiations.
  • the number of irradiation detection unit (not shown) can detect the number of irradiation of the unit beam 13a for each processing point 11 of the object 10, and checks whether processing is completed for each processing point 11 (or Grasp) can. It is possible to complete (or stop) the unit beam overlapping process in which the first irradiation position 30a and the second irradiation position 30b partially overlap by determining whether processing is completed for each processing point 11.
  • the unit beam overlapping process may be completed after scanning the entire plurality of processing points 11 while partially overlapping the first and second irradiation positions 30a and 30b. Through this, after scanning the entire plurality of processing points 11 by the unit beam overlapping process, most of the processing points except for the processing points 11 located at the edges (or edge regions) of the plurality of processing points 11 ( 11) can be completed to process.
  • the compensation determination unit may determine whether or not to compensate by determining whether the number of investigations detected for each processing point 11 has reached a predetermined number of investigations, and the number of detected investigations is less than the determined number of investigations. (11) can determine the compensation. That is, it is possible to grasp (or detect) a processing point 11 (or a compensation area) to compensate for the unit beam 13a by comparing the detected number of irradiation with the determined number of irradiation.
  • the beam cutting unit 150 may block a path of the unit beam 13a corresponding to the processing point 11 for which compensation is not determined.
  • the unit beam 13a may be additionally irradiated only to the processing point 11 where compensation is determined, and the unit beam 13a with an open path may be irradiated to the processing point 11 at which the compensation is determined.
  • the path of the unit beam 13a corresponding to the processing point 11 for which the compensation is not determined can be blocked, and the unit beam 13a whose path is open can be processed. It can only be investigated at point (11).
  • the multi-beam processing apparatus 100 may further include a position measuring unit (not shown) for measuring the position coordinates and the moving distance of the workpiece support 110.
  • the position measuring unit may measure the position coordinates and the moving distance of the workpiece support 110. By measuring the position coordinates and moving distance of the workpiece support 110 through a position measuring unit (not shown), the workpiece support 110 can be moved to an accurate position, and the multi-beam 13 corresponds to the processing point 11, respectively. To be investigated.
  • the position measuring unit may include an encoder.
  • a plurality of processing points 11 and a plurality of unit beams 13a may be arranged side by side in a first direction, and the support base driving unit 110 is in the first direction according to the measurement of the position measuring unit (not shown).
  • the multi-beams (31) of the predetermined number of unit beams (13a) to the second irradiation location (30b) overlapping with the first irradiation location (30a) 13) can be changed.
  • a plurality of processing points 11 and a plurality of unit beams 13a may be arranged side by side along the first direction, and some irradiation points 31 may be overlapped while moving the workpiece support 110 in the first direction. .
  • the support driving unit 110 may move the workpiece support 110 in the first direction according to the measurement of the position measuring unit (not shown), and a plurality of unit beams 13a may be provided at each processing point 11 ), so that it can be accurately positioned. In this way, the support driving unit 110 moves from the first irradiation position 30a to the second irradiation position 30b where the irradiation points 31 of a predetermined number of unit beams 13a overlap the first irradiation position 30a. The irradiation position of the multi-beam 13 may be changed.
  • the multi-beam is irradiated to the first irradiation position
  • the multi-beam is irradiated to the second irradiation position partially overlapping the first irradiation position, so that the unit beams at different positions are overlapped at the overlapping irradiation point.
  • the number of unit beams in the first direction of the multi-beam is determined, and the first irradiation according to the determined number of irradiation and the determined number of unit beams in the first direction
  • the number of irradiation points of the unit beam overlapping the location and the second irradiation location may be determined.
  • the overlapping of the unit beams is not achieved only by moving the irradiation position of the multi-beams, or the unit beam is additionally irradiated to a processing point where the number of irradiation of the unit beam is less than the determined number of irradiation.
  • the number of irradiation of the unit beam may be compensated for a processing point where processing has not been completed. Through this, the unit beams may be superimposed on all the plurality of processing points to complete processing.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Laser Beam Processing (AREA)

Abstract

The present invention relates to a multi-beam processing method and a multi-beam processing apparatus which can improve the uniformity of multi-beam processing by dividing a laser beam into multiple unit beams, the number of which is less than the number of processing points, to form a multi-beam, irradiating a first irradiation position with the formed multi-beam, and irradiating a second irradiation position partially overlapping the first irradiation position with the formed multi-beam.

Description

멀티 빔 가공방법 및 멀티 빔 가공장치Multi-beam processing method and multi-beam processing device
본 발명은 멀티 빔 가공방법 및 멀티 빔 가공장치에 관한 것으로서, 보다 상세하게는 멀티 빔 가공의 균질도를 향상시키는 멀티 빔 가공방법 및 멀티 빔 가공장치에 관한 것이다.The present invention relates to a multi-beam processing method and a multi-beam processing apparatus, and more particularly, to a multi-beam processing method and a multi-beam processing apparatus for improving the homogeneity of multi-beam processing.
가공(또는 패터닝) 공정은 일반적으로 레이저 빔을 이용하여 가공 대상물을 가공하고 있으며, 공정 속도의 향상을 위해 멀티 빔을 이용한 패터닝(patterning) 기술의 적용이 증가되고 있다.In the processing (or patterning) process, an object to be processed is generally processed using a laser beam, and application of a patterning technology using multi-beams is increasing to increase the processing speed.
멀티 빔을 이용하여 가공 대상물을 가공하는 경우에 한 번의 조사(shot)에 의해 가공되는 경우는 거의 없으며, 여러 번 멀티 빔을 조사하여 가공이 이루어지고 있다. 예를 들어, 미세 금속 마스크(Fine Metal Mask; FMM)를 제조하는 경우에는 금속판 등의 가공 대상물의 동일한 가공 지점에 수백 번 단위 빔이 조사되어야 가공홀이 형성될 수 있다.In the case of processing an object to be processed using a multi-beam, it is hardly processed by a single shot, and processing is performed by irradiating a multi-beam several times. For example, in the case of manufacturing a fine metal mask (FMM), a processing hole can be formed only when a beam is irradiated several hundred times at the same processing point of a processing object such as a metal plate.
그리고 멀티 빔 이용 시에 복수의 가공 지점 간에 가공성의 편차가 발생할 수 있으며, 하나의 레이저 빔을 분할하여 멀티 빔을 형성하는 회절 광학계(diffractive optics), 렌즈(lens) 수차 등에 의해 발생되는 오차로 인해 멀티 빔이 불균질해지고, 복수의 가공 지점 간에 가공 편차가 발생할 수 있다.In addition, when using multi-beams, variations in workability may occur between a plurality of processing points. Due to errors caused by diffractive optics and lens aberrations, which form multi-beams by dividing one laser beam. Multi-beams become heterogeneous, and machining deviation may occur between a plurality of machining points.
이에, 멀티 빔 가공 시 멀티 빔의 균질도는 매우 중요하며, 미세 패턴의 경우에 특히 멀티 빔의 균질도가 더욱 요구되므로, 복수의 가공 지점 간에 가공성의 편차를 최소화할 수 있는 멀티 빔을 이용한 마이크로 패터닝(micro patterning) 기술의 필요성이 증대되고 있다.Therefore, the homogeneity of the multi-beam is very important in multi-beam processing, and especially in the case of fine patterns, the homogeneity of the multi-beam is more required. Therefore, the micro-beam using a multi-beam that can minimize the deviation of workability between a plurality of processing points The need for micro patterning technology is increasing.
(특허문헌 1) 한국공개특허공보 제10-2015-0111349호(Patent Document 1) Korean Laid-Open Patent Publication No. 10-2015-0111349
본 발명은 멀티 빔 가공 시 복수의 가공 지점 간에 가공 편차를 줄일 수 있는 멀티 빔 가공방법 및 멀티 빔 가공장치를 제공한다.The present invention provides a multi-beam processing method and a multi-beam processing apparatus capable of reducing processing deviation between a plurality of processing points during multi-beam processing.
본 발명의 일실시예에 따른 멀티 빔 가공방법은 가공 대상물에 복수의 가공 지점을 설정하는 과정; 상기 가공 대상물을 가공하기 위한 레이저 빔을 발생시켜 출력하는 과정; 상기 레이저 빔을 상기 복수의 가공 지점의 개수보다 적은 복수의 단위 빔으로 분할하여 멀티 빔을 형성하는 과정; 상기 멀티 빔을 상기 복수의 가공 지점 중 일부 가공 지점에 대응되는 제1 조사위치에 조사하는 과정; 상기 멀티 빔의 조사 위치를 이동시키는 과정; 및 상기 제1 조사위치와 일부 중첩되는 제2 조사위치에 상기 멀티 빔을 조사하는 과정;을 포함할 수 있다.A multi-beam processing method according to an embodiment of the present invention includes: setting a plurality of processing points on an object to be processed; Generating and outputting a laser beam for processing the object to be processed; Dividing the laser beam into a plurality of unit beams less than the number of the plurality of processing points to form a multi-beam; Irradiating the multi-beam to a first irradiation position corresponding to some of the plurality of processing points; Moving the irradiation position of the multi-beam; And irradiating the multi-beam to a second irradiation location partially overlapping with the first irradiation location.
상기 복수의 가공 지점을 설정하는 과정에서는 제1 거리의 동일 간격으로 배열되는 상기 복수의 가공 지점을 설정하고, 상기 멀티 빔을 형성하는 과정은 상기 제1 거리와 비례하는 제2 거리의 동일 간격으로 배열된 상기 복수의 단위 빔으로 상기 레이저 빔을 분할하여 수행될 수 있다.In the process of setting the plurality of processing points, the plurality of processing points arranged at the same interval of the first distance are set, and the process of forming the multi-beam is at the same interval of a second distance proportional to the first distance. It may be performed by dividing the laser beam into the arranged plurality of unit beams.
상기 복수의 가공 지점과 상기 복수의 단위 빔은 제1 방향을 따라 나란히 배열되고, 상기 멀티 빔의 조사 위치를 이동시키는 과정에서는 상기 멀티 빔의 조사 위치를 상기 제1 방향으로 이동시킬 수 있다.The plurality of processing points and the plurality of unit beams are arranged side by side in a first direction, and in a process of moving the irradiation position of the multi-beam, the irradiation position of the multi-beam may be moved in the first direction.
상기 멀티 빔의 에너지에 따라 단위 빔의 조사 횟수를 결정하는 과정;을 더 포함할 수 있다.It may further include a process of determining the number of times of irradiation of the unit beam according to the energy of the multi-beam.
결정된 조사 횟수에 따라 상기 멀티 빔의 제1 방향 단위 빔의 개수를 결정하는 과정;을 더 포함하고, 상기 멀티 빔을 형성하는 과정은, 상기 복수의 가공 지점의 간격에 따라 상기 복수의 단위 빔의 간격을 결정하는 과정; 결정된 상기 복수의 단위 빔의 개수 및 간격에 따른 회절패턴이 형성된 패턴판을 제공하는 과정; 및 상기 레이저 빔을 상기 패턴판에 입사시키는 과정을 포함할 수 있다.The process of determining the number of unit beams in the first direction of the multi-beam according to the determined number of irradiation; further comprising, the process of forming the multi-beam, the plurality of unit beams according to the distance of the plurality of processing points The process of determining the interval; Providing a pattern plate on which diffraction patterns are formed according to the determined number and spacing of the plurality of unit beams; And injecting the laser beam onto the pattern plate.
상기 결정된 조사 횟수와 상기 결정된 상기 제1 방향 단위 빔의 개수에 따라 상기 제1 조사위치와 상기 제2 조사위치의 중첩되는 단위 빔의 조사 지점의 개수를 결정하는 과정;을 더 포함하고, 상기 멀티 빔의 조사 위치를 이동시키는 과정에서는 결정된 상기 중첩되는 단위 빔의 조사 지점의 개수만큼 조사 지점이 상기 제1 조사위치와 중첩되는 상기 제2 조사위치로 상기 멀티 빔의 조사 위치를 이동시킬 수 있다.Determining the number of irradiation points of the unit beams overlapping the first irradiation position and the second irradiation position according to the determined number of irradiation and the determined number of unit beams in the first direction; In the process of moving the irradiation position of the beam, the irradiation position of the multi-beam may be moved to the second irradiation position overlapping the first irradiation position by the determined number of irradiation points of the overlapping unit beam.
각 가공 지점별 단위 빔의 조사 횟수를 검출하는 과정; 각 가공 지점별로 검출된 조사 횟수가 상기 결정된 조사 횟수에 도달되었는지를 판단하여 보상 여부를 결정하는 과정; 및 보상이 결정된 가공 지점에 상기 단위 빔을 추가적으로 조사하는 과정;을 더 포함할 수 있다.Detecting the number of times the unit beam is irradiated for each processing point; Determining whether to compensate by determining whether the number of irradiations detected for each processing point reaches the determined number of irradiations; And additionally irradiating the unit beam to the processing point where compensation is determined.
상기 단위 빔을 추가적으로 조사하는 과정은, 보상이 미결정된 가공 지점에 대응되는 단위 빔의 경로를 차단하는 과정; 및 경로가 개방된 단위 빔을 상기 보상이 결정된 가공 지점에 조사하는 과정을 포함할 수 있다.The process of additionally irradiating the unit beam may include blocking a path of a unit beam corresponding to a processing point for which compensation is not determined; And irradiating the unit beam whose path is opened to the processing point where the compensation is determined.
상기 단위 빔을 추가적으로 조사하는 과정은 상기 복수의 가공 지점 각각의 조사 횟수가 모두 상기 결정된 조사 횟수에 도달할 때까지 단계적으로 수행될 수 있다.The process of additionally irradiating the unit beam may be performed stepwise until the number of irradiation times of each of the plurality of processing points reaches the determined number of irradiation.
본 발명의 다른 실시예에 따른 멀티 빔 가공장치는 미리 설정된 복수의 가공 지점에 가공이 이루어지는 가공 대상물을 지지하는 가공물 지지대; 상기 가공을 위한 레이저 빔을 발생시켜 출력하는 레이저빔 발진부; 출력된 레이저 빔을 상기 복수의 가공 지점의 개수보다 적은 복수의 단위 빔으로 분할하여 멀티 빔을 형성하는 멀티빔 형성부; 상기 멀티 빔을 상기 가공 대상물에 복수회 조사하는 멀티빔 조사부; 및 상기 멀티 빔이 조사된 제1 조사위치와 일부 중첩되는 제2 조사위치로 상기 멀티 빔의 조사 위치가 변경되도록 상기 가공물 지지대를 이동시키는 지지대 구동부;를 포함할 수 있다.A multi-beam processing apparatus according to another embodiment of the present invention includes a workpiece support for supporting an object to be processed at a plurality of predetermined processing points; A laser beam oscillator for generating and outputting a laser beam for the processing; A multi-beam forming unit configured to form a multi-beam by dividing the output laser beam into a plurality of unit beams less than the number of the plurality of processing points; A multi-beam irradiation unit for irradiating the multi-beam onto the object to be processed a plurality of times; And a support driving unit for moving the workpiece support to change the irradiation position of the multi-beam to a second irradiation position partially overlapping with the first irradiation position to which the multi-beam is irradiated.
각 가공 지점의 단위 빔의 조사 횟수를 설정하는 조사횟수 설정부; 및 설정된 상기 단위 빔의 조사 횟수에 따라 상기 복수의 단위 빔의 개수를 결정하는 단위빔 개수 결정부;를 더 포함할 수 있다.An irradiation count setting unit for setting the irradiation count of the unit beam at each processing point; And a unit beam number determining unit that determines the number of the plurality of unit beams according to the set number of irradiation of the unit beams.
상기 멀티빔 형성부는, 상기 복수의 단위 빔의 개수 및 간격에 따른 회절패턴이 형성되며, 상기 레이저 빔이 입사되는 패턴판; 및 결정된 상기 복수의 단위 빔의 개수 및 상기 복수의 단위 빔의 간격에 따라 회절패턴을 결정하여, 결정된 회절패턴이 형성된 패턴판으로 변경하는 패턴판 변경부를 포함할 수 있다.The multi-beam forming unit may include a pattern plate on which diffraction patterns are formed according to the number and interval of the plurality of unit beams, and the laser beam is incident thereon; And a pattern plate changing unit that determines a diffraction pattern according to the determined number of the plurality of unit beams and an interval between the plurality of unit beams, and changes the pattern plate to a pattern plate on which the determined diffraction pattern is formed.
상기 멀티빔 조사부는 상기 패턴판에서 분할된 상기 복수의 단위 빔의 조사 각도를 일정 각도로 조정하는 각도 보정 광학계를 포함할 수 있다.The multi-beam irradiation unit may include an angle correction optical system that adjusts the irradiation angle of the plurality of unit beams divided by the pattern plate to a predetermined angle.
상기 패턴판과 상기 가공 대상물 사이의 경로 상에 제공되어, 상기 복수의 단위 빔 중 일부의 경로를 차단하는 빔 커팅부;를 더 포함하고, 상기 빔 커팅부는, 중공부를 가지며, 상기 복수의 단위 빔의 경로를 제공하는 몸체부; 및 상기 몸체부의 측벽에 제공되며, 상기 중공부의 내측방향으로 길이가 조절되는 차단판을 포함할 수 있다.Further comprising a beam cutting unit provided on a path between the pattern plate and the object to be processed to block a path of some of the plurality of unit beams, wherein the beam cutting unit has a hollow portion, and the plurality of unit beams A body portion providing a path of; And a blocking plate provided on a side wall of the body portion and having a length adjusted in the inner direction of the hollow portion.
상기 가공 대상물의 각 가공 지점별 단위 빔의 조사 횟수를 검출하는 조사횟수 검출부; 및 각 가공 지점별로 검출된 조사 횟수가 미리 결정된 조사 횟수에 도달되었는지를 판단하여 보상 여부를 결정하는 보상 결정부;를 더 포함하고, 상기 빔 커팅부는 보상이 미결정된 가공 지점에 대응되는 단위 빔의 경로를 차단할 수 있다.An irradiation count detection unit for detecting the irradiation count of the unit beam for each processing point of the object to be processed; And a compensation determination unit that determines whether or not to compensate by determining whether the number of irradiation detected for each processing point has reached a predetermined number of irradiations; wherein the beam cutting unit includes a unit beam corresponding to a processing point for which compensation is not determined. You can block the path.
상기 가공물 지지대의 위치 좌표와 이동 거리를 계측하는 위치 계측부;를 더 포함하고, 상기 복수의 가공 지점과 상기 복수의 단위 빔은 제1 방향을 따라 나란히 배열되며, 상기 지지대 구동부는 상기 위치 계측부의 계측에 따라 상기 제1 방향으로 상기 가공물 지지대를 이동시켜, 미리 결정된 개수의 단위 빔의 조사 지점이 상기 제1 조사위치와 중첩되는 상기 제2 조사위치로 상기 멀티 빔의 조사 위치를 변경시킬 수 있다.A position measuring unit for measuring the position coordinates and the moving distance of the workpiece support; further comprising, the plurality of processing points and the plurality of unit beams are arranged side by side in a first direction, and the support drive unit measures the position measurement unit As a result, by moving the workpiece support in the first direction, the irradiation position of the multi-beam may be changed to the second irradiation position in which a predetermined number of irradiation points of the unit beam overlap with the first irradiation position.
본 발명의 실시 형태에 따른 멀티 빔 가공방법은 멀티 빔을 제1 조사위치에 조사한 후에 제1 조사위치와 일부 중첩되는 제2 조사위치에 멀티 빔을 조사하여 중첩되는 조사 지점에 서로 다른 위치의 단위 빔들이 중첩되도록 함으로써, 위치가 상이한 단위 빔들을 혼합시킬 수 있다. 이에 따라 복수의 단위 빔의 위치별 빔 강도(intensity) 차이로 인한 복수의 가공 지점 간의 가공 편차를 줄일 수 있다.In the multi-beam processing method according to an embodiment of the present invention, after irradiating the multi-beam to the first irradiation position, the multi-beam is irradiated to the second irradiation position partially overlapping with the first irradiation position, and units of different positions at the overlapping irradiation point. By allowing the beams to overlap, unit beams having different positions can be mixed. Accordingly, machining deviation between a plurality of machining points due to a difference in beam intensity for each position of a plurality of unit beams may be reduced.
또한, 각 가공 지점의 가공을 완료할 단위 빔의 조사 횟수를 결정하여, 멀티 빔의 제1 방향 단위 빔의 개수를 결정하고, 결정된 조사 횟수와 결정된 제1 방향 단위 빔의 개수에 따라 제1 조사위치와 제2 조사위치의 중첩되는 단위 빔의 조사 지점의 개수를 결정할 수 있다. 이를 통해 복수의 가공 지점 각각에 상이한 빔 강도(또는 에너지)를 갖는 단위 빔들을 효과적으로 혼합시킬 수 있고, 복수의 가공 지점 간의 가공 편차를 최소화할 수 있다.In addition, by determining the number of irradiation of unit beams to complete processing of each processing point, the number of unit beams in the first direction of the multi-beam is determined, and the first irradiation according to the determined number of irradiation and the determined number of unit beams in the first direction The number of irradiation points of the unit beam overlapping the location and the second irradiation location may be determined. Through this, it is possible to effectively mix unit beams having different beam intensity (or energy) at each of the plurality of processing points, and it is possible to minimize processing deviation between the plurality of processing points.
그리고 빔 커팅부로 멀티 빔 중 일부의 단위 빔을 차단하여 멀티 빔의 조사 위치의 이동만으로는 단위 빔들의 중첩이 이루어지지 않거나 단위 빔의 조사 횟수가 결정된 조사 횟수보다 적은 가공 지점에 추가적으로 단위 빔을 조사할 수 있다. 또한, 단위 빔의 조사 횟수가 결정된 조사 횟수보다 부족하여 가공이 완료되지 않은 가공 지점에 단위 빔의 조사 횟수를 보상해 줄 수 있다. 이를 통해 모든 복수의 가공 지점에 단위 빔들이 중첩되어 가공이 완료될 수 있다.In addition, by blocking some unit beams of the multi-beams with the beam cutting unit, the overlapping of the unit beams is not achieved only by moving the irradiation position of the multi-beams, or the unit beam is additionally irradiated to a processing point where the number of irradiation of the unit beam is less than the determined number of irradiation. I can. In addition, since the number of irradiation of the unit beam is less than the determined number of irradiation, the number of irradiation of the unit beam may be compensated for a processing point where processing is not completed. Through this, the unit beams may be superimposed on all the plurality of processing points to complete processing.
도 1은 본 발명의 일실시예에 따른 멀티 빔 가공방법을 나타낸 순서도.1 is a flow chart showing a multi-beam processing method according to an embodiment of the present invention.
도 2는 본 발명의 일실시예에 따른 제1 조사위치와 제2 조사위치의 조사 지점의 중첩을 설명하기 위한 개념도.2 is a conceptual diagram for explaining the overlapping of the irradiation points of the first irradiation location and the second irradiation location according to an embodiment of the present invention.
도 3은 본 발명의 일실시예에 따른 단위 빔들의 중첩에 의한 효과를 설명하기 위한 개념도.3 is a conceptual diagram illustrating an effect of overlapping unit beams according to an embodiment of the present invention.
도 4는 본 발명의 일실시예에 따른 빔 커팅을 설명하기 위한 개념도.4 is a conceptual diagram illustrating beam cutting according to an embodiment of the present invention.
도 5는 본 발멸의 일실시예에 따른 빔 커팅을 통한 보상을 설명하기 위한 개념도.5 is a conceptual diagram for explaining compensation through beam cutting according to an embodiment of the present eradication.
도 6은 본 발명의 다른 실시예에 따른 멀티 빔 가공장치를 나타낸 개략도.6 is a schematic view showing a multi-beam processing apparatus according to another embodiment of the present invention.
이하에서는 첨부된 도면을 참조하여 본 발명의 실시예를 더욱 상세히 설명하기로 한다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 설명 중, 동일 구성에 대해서는 동일한 참조부호를 부여하도록 하고, 도면은 본 발명의 실시예를 정확히 설명하기 위하여 크기가 부분적으로 과장될 수 있으며, 도면상에서 동일 부호는 동일한 요소를 지칭한다.Hereinafter, exemplary embodiments of the present invention will be described in more detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in a variety of different forms, only the present embodiments make the disclosure of the present invention complete, and the scope of the invention to those of ordinary skill in the art It is provided to inform you. In the description, the same reference numerals are assigned to the same components, and the drawings may be partially exaggerated in size to accurately describe the embodiments of the present invention, and the same numerals refer to the same elements in the drawings.
도 1은 본 발명의 일실시예에 따른 멀티 빔 가공방법을 나타낸 순서도이다.1 is a flow chart showing a multi-beam processing method according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일실시예에 따른 멀티 빔 가공방법은 가공 대상물(10)에 복수의 가공 지점(11)을 설정하는 과정(S100); 상기 가공 대상물(10)을 가공하기 위한 레이저 빔(12)을 발생시켜 출력하는 과정(S200); 상기 레이저 빔(12)을 상기 복수의 가공 지점(11)의 개수보다 적은 복수의 단위 빔(13a)으로 분할하여 멀티 빔(13)을 형성하는 과정(S300); 상기 멀티 빔(13)을 상기 복수의 가공 지점(11) 중 일부 가공 지점(11)에 대응되는 제1 조사위치(30a)에 조사하는 과정(S400); 상기 멀티 빔(13)의 조사 위치를 이동시키는 과정(S450); 및 상기 제1 조사위치(30a)와 일부 중첩되는 제2 조사위치(30b)에 상기 멀티 빔(13)을 조사하는 과정(S500);을 포함할 수 있다.Referring to FIG. 1, a multi-beam processing method according to an embodiment of the present invention includes a process of setting a plurality of processing points 11 on an object 10 (S100); Generating and outputting a laser beam 12 for processing the object 10 (S200); Dividing the laser beam 12 into a plurality of unit beams 13a less than the number of the plurality of processing points 11 to form a multi-beam 13 (S300); Irradiating the multi-beam 13 to a first irradiation position 30a corresponding to some of the processing points 11 among the plurality of processing points 11 (S400); Moving the irradiation position of the multi-beam 13 (S450); And irradiating the multi-beam 13 to the second irradiation location 30b partially overlapping with the first irradiation location 30a (S500).
먼저, 가공 대상물(10)에 복수의 가공 지점(11)을 설정한다(S100). 가공 대상물(10)에서 가공을 원하는 지점에 복수의 가공 지점(11)을 설정할 수 있으며, 제1 패턴으로 복수의 가공 지점(11)을 설정할 수 있다. 여기서, 상기 제1 패턴은 제1 방향(또는 행(m) 방향)을 따라 배열되는 가공 지점(11)들의 어레이(또는 가공지점 어레이)일 수 있으며, m×n(m ≥ 1, n > 2)의 매트릭스(matrix) 형태일 수 있다.First, a plurality of processing points 11 are set on the object 10 (S100). A plurality of processing points 11 may be set at a point on the object 10 to be processed, and a plurality of processing points 11 may be set as a first pattern. Here, the first pattern may be an array (or an array of processing points) of processing points 11 arranged along a first direction (or a row (m) direction), and m×n (m ≥ 1, n> 2 ) May be in the form of a matrix.
한편, 가공 대상물(10)은 일반적으로 유기 EL(Electro Luminescence)이나 유기 반도체 소자 등의 제조 시에 진공 증착 공정에서 사용되는 미세 금속 마스크(Fine Metal Mask; FMM)의 마스크 스틱(또는 금속판)일 수 있으나, 레이저 빔으로 가공할 수 있는 어떠한 가공 대상물이든 상관없다. 예를 들어, 반도체 소자의 패키징에 있어서, 인쇄 회로 기판(Printed Circuit Board; PCB)에 형성되는 비아홀(via hole)이나 반도체 기판 상의 특정 영역에 가공 패턴(pattern)을 형성하고자 하는 경우에는 인쇄 회로 기판(PCB) 또는 반도체 기판이 가공 대상물(10)일 수도 있다.Meanwhile, the object to be processed 10 may generally be a mask stick (or metal plate) of a fine metal mask (FMM) used in a vacuum deposition process when manufacturing an organic EL (electroluminescence) or organic semiconductor device. However, any object that can be processed with a laser beam is irrelevant. For example, in the packaging of semiconductor devices, in the case of forming a via hole formed in a printed circuit board (PCB) or a processing pattern in a specific area on the semiconductor substrate, the printed circuit board The (PCB) or semiconductor substrate may be the object 10 to be processed.
다음으로, 상기 가공 대상물(10)을 가공하기 위한 레이저 빔(12)을 발생시켜 출력한다(S200). 가공 대상물(10)을 가공하기 위해 레이저 빔(12)을 생성하여 가공 대상물(10)을 향해 발진할 수 있다. 여기서, 레이저 빔(12)은 펄스 레이저(pulse laser)일 수 있으며, 고에너지의 빔이 짧은 시간 동안에 주기적으로 조사될 수 있고, 열 축적이 억제 또는 방지될 수 있다.Next, a laser beam 12 for processing the object 10 is generated and output (S200). In order to process the object 10, the laser beam 12 may be generated and oscillate toward the object 10. Here, the laser beam 12 may be a pulse laser, a high energy beam may be periodically irradiated for a short time, and heat accumulation may be suppressed or prevented.
그 다음 상기 레이저 빔(12)을 상기 복수의 가공 지점(11)의 개수보다 적은 복수의 단위 빔(13a)으로 분할하여 멀티 빔(13)을 형성한다(S300). 레이저 빔(12)을 복수의 단위 빔(13a)으로 분할하여 멀티 빔(13)을 형성할 수 있으며, 멀티 빔(13)을 가공 대상물(10)에 조사하여 복수의 단위 빔(13a)의 수와 같은(또는 둘 이상의) 가공 지점(11)을 동시에 가공할 수 있다. 이때, 멀티 빔(13)은 상기 제1 패턴의 일부와 대응되는(또는 부분집합인) 제2 패턴을 가질 수 있으며, 복수의 단위 빔(13a)의 개수는 복수의 가공 지점(11)의 개수보다 적을 수 있다. 여기서, 상기 제2 패턴은 제1 방향(또는 행 방향)을 따라 배열되는 단위 빔(13a)들의 어레이(또는 단위빔 어레이)일 수 있으며, x×y(x ≥ 1, y ≥ 2)의 매트릭스 형태일 수 있다.Then, the laser beam 12 is divided into a plurality of unit beams 13a less than the number of the plurality of processing points 11 to form a multi-beam 13 (S300). The laser beam 12 can be divided into a plurality of unit beams 13a to form a multi-beam 13, and the number of the plurality of unit beams 13a by irradiating the multi-beam 13 onto the object 10 The same (or two or more) machining points 11 can be machined simultaneously. At this time, the multi-beam 13 may have a second pattern corresponding to (or a subset) of the first pattern, and the number of the plurality of unit beams 13a is the number of the plurality of processing points 11 Can be less. Here, the second pattern may be an array (or unit beam array) of unit beams 13a arranged along a first direction (or row direction), and a matrix of x×y (x ≥ 1, y ≥ 2) It can be a form.
도 2는 본 발명의 일실시예에 따른 제1 조사위치와 제2 조사위치의 조사 지점의 중첩을 설명하기 위한 개념도로, 도 2의 (a)는 복수의 단위 빔 간의 강도 차이를 나타내며, 도 2의 (b)는 제1 조사위치와 제2 조사위치의 조사 지점의 중첩을 나타내고, 도 2의 (c)는 조사 지점의 중첩에 의한 누적 에너지의 균일도 향상을 나타낸다.2 is a conceptual diagram for explaining the overlapping of the irradiation points of a first irradiation location and a second irradiation location according to an embodiment of the present invention. FIG. 2A shows the intensity difference between a plurality of unit beams. 2(b) shows the overlapping of the irradiation points of the first and second irradiation locations, and FIG. 2(c) shows the improvement of the uniformity of the accumulated energy by the overlap of the irradiation points.
도 2를 참조하면, 레이저 빔(12)을 복수의 단위 빔(13a)으로 분할하여 멀티 빔(13)을 형성하게 되면, 복수의 단위 빔(13a) 간에 빔 강도(intensity) 또는 세기의 차이가 발생할 수 있다. 이는 하나의 레이저 빔(12)을 분할하여 멀티 빔(13)을 형성하는 과정에서 회절 광학계(diffractive optics), 렌즈(lens) 수차 등에 의해 발생될 수 있다. 이러한 차이(또는 오차)로 인해 멀티 빔(13)이 단위 빔(13a)의 위치별로 불균질해질 수 있다.Referring to FIG. 2, when the laser beam 12 is divided into a plurality of unit beams 13a to form a multi-beam 13, a difference in beam intensity or intensity between the plurality of unit beams 13a Can occur. This may be generated by diffractive optics, lens aberration, or the like in the process of dividing one laser beam 12 to form the multi-beam 13. Due to this difference (or error), the multi-beam 13 may become non-uniform for each position of the unit beam 13a.
도 3은 본 발명의 일실시예에 따른 단위 빔들의 중첩에 의한 효과를 설명하기 위한 개념도로, 도 3의 (a)는 단위 빔들의 미중첩을 나타내며, 도 3의 (b)는 멀티 빔의 1/2에 해당하는 단위 빔들의 중첩을 나타내고, 도 3의 (c)는 멀티 빔의 1/4에 해당하는 단위 빔들의 중첩을 나타내며, 도 3의 (d)는 멀티 빔의 1/8에 해당하는 단위 빔들의 중첩을 나타낸다.3 is a conceptual diagram for explaining the effect of overlapping unit beams according to an embodiment of the present invention, FIG. 3(a) shows non-overlapping of unit beams, and FIG. 3(b) is a multi-beam Fig. 3(c) shows the overlap of unit beams corresponding to 1/2, and Fig. 3(d) shows the overlap of unit beams corresponding to 1/4 of the multi-beam. It represents the overlap of corresponding unit beams.
도 2 및 도 3을 참조하면, 상기 멀티 빔(13)을 상기 복수의 가공 지점(11) 중 일부 가공 지점(11)에 대응되는 제1 조사위치(30a)에 조사한다(S400). 여기서, 제1 조사위치(30a)는 복수의 가공 지점(11)의 가공이 시작되는 위치일 수 있으며, 상기 제1 패턴의 일측 끝단(또는 모서리)일 수 있고, m×n의 매트릭스 형태인 경우에는 (1,1), (1,n), (m,1), (m,n) 좌표 중 어느 하나에 해당하는 가공 지점(11)을 포함하는 조사 위치일 수 있다.2 and 3, the multi-beam 13 is irradiated to a first irradiation position 30a corresponding to some of the processing points 11 of the plurality of processing points 11 (S400). Here, the first irradiation position 30a may be a position where the processing of the plurality of processing points 11 starts, may be one end (or corner) of the first pattern, and in the case of m×n matrix form In may be an irradiation location including the processing point 11 corresponding to any one of (1,1), (1,n), (m,1), and (m,n) coordinates.
그리고 상기 멀티 빔(13)의 조사 위치를 이동시킨다(S450). 상기 멀티 빔(13)의 조사 위치를 이동시킬 수 있으며, 가공 지점(11)에 상이한 위치의 단위 빔(13a)을 중첩시킬 수 있다. 이때, 상기 멀티 빔(13)의 조사 위치를 제1 조사위치(30a)에서 제1 조사위치(30a)와 일부 중첩되는 제2 조사위치(30b)로 이동시킬 수 있다.Then, the irradiation position of the multi-beam 13 is moved (S450). The irradiation position of the multi-beam 13 may be moved, and unit beams 13a at different positions may be superimposed on the processing point 11. In this case, the irradiation position of the multi-beam 13 may be moved from the first irradiation position 30a to a second irradiation position 30b partially overlapping with the first irradiation position 30a.
그 다음 상기 제1 조사위치(30a)와 일부 중첩되는 제2 조사위치(30b)에 상기 멀티 빔(13)을 조사한다(S500). 제1 조사위치(30a)와 제2 조사위치(30b)는 일부 조사 지점(31)이(또는 일부 가공 지점이) 중첩될 수 있고, 중첩되는 조사 지점(31)에는 상이한 위치의 단위 빔(13a)이 혼합될 수 있다. 이에 따라 복수의 가공 지점(11) 간에 누적 에너지의 균일도가 향상될 수 있고, 복수의 가공 지점(11) 간의 가공 편차를 줄일 수 있다.Then, the multi-beam 13 is irradiated to the second irradiation location 30b partially overlapping the first irradiation location 30a (S500). In the first irradiation position 30a and the second irradiation position 30b, some irradiation points 31 (or some processing points) may overlap, and the overlapping irradiation points 31 have unit beams 13a at different positions. ) Can be mixed. Accordingly, the uniformity of the accumulated energy between the plurality of processing points 11 may be improved, and the processing deviation between the plurality of processing points 11 may be reduced.
상기 복수의 가공 지점(11)을 설정하는 과정(S100)에서는 제1 거리의 동일 간격으로 배열되는 상기 복수의 가공 지점(11)을 설정할 수 있고, 상기 멀티 빔(13)을 형성하는 과정(S300)은 상기 제1 거리와 비례하는 제2 거리의 동일 간격으로 배열된 상기 복수의 단위 빔(13a)으로 상기 레이저 빔(12)을 분할하여 수행될 수 있다.In the process of setting the plurality of processing points 11 (S100), the plurality of processing points 11 arranged at equal intervals of a first distance may be set, and the process of forming the multi-beam 13 (S300) ) May be performed by dividing the laser beam 12 into the plurality of unit beams 13a arranged at equal intervals of a second distance proportional to the first distance.
복수의 가공 지점(11)은 제1 거리의 동일 간격으로 배열될 수 있으며, 멀티 빔(13)의 조사 위치를 복수의 가공 지점(11) 각각의 위치에 맞게 이동시킬 수 있다. 복수의 가공 지점(11)이 동일 간격으로 배열되지 않으면, 제1 조사위치(30a)와 제2 조사위치(30b)가 일부 중첩되도록 멀티 빔(13)의 조사 위치를 이동시키는 경우에 복수의 단위 빔(13a)을 각 가공 지점(11)에 각각 위치시켜 조사할 수 없게 된다. 이에, 복수의 가공 지점(11)을 동일 간격으로 배열할 수 있으며, 멀티 빔(13)의 조사 위치의 이동만으로 제1 조사위치(30a)와 제2 조사위치(30b)가 일부 중첩될 때에 복수의 단위 빔(13a)이 각 가공 지점(11)에 대응되어 각각 위치될 수 있다. 이에 따라 복수의 단위 빔(13a) 각각을 각각의 가공 지점(11)들에만 조사할 수 있다.The plurality of processing points 11 may be arranged at equal intervals of the first distance, and the irradiation position of the multi-beam 13 may be moved according to the position of each of the plurality of processing points 11. If the plurality of processing points 11 are not arranged at equal intervals, a plurality of units in the case of moving the irradiation position of the multi-beam 13 so that the first irradiation position 30a and the second irradiation position 30b partially overlap The beam 13a is positioned at each processing point 11 so that irradiation cannot be performed. Accordingly, a plurality of processing points 11 can be arranged at equal intervals, and when the first irradiation position 30a and the second irradiation position 30b partially overlap only by moving the irradiation position of the multi-beam 13, a plurality of The unit beams 13a of may be respectively positioned in correspondence with each processing point 11. Accordingly, each of the plurality of unit beams 13a may be irradiated only to the respective processing points 11.
레이저 빔(12)을 상기 제1 거리와 비례하는 제2 거리의 동일 간격으로 배열된 복수의 단위 빔(13a)으로 분할할 수 있으며, 상기 제2 거리는 상기 제1 거리에 따라 정해질 수 있다. 여기서, 상기 제2 거리는 상기 제1 거리와 비례할 수 있으며, 레이저 빔(12)을 복수의 가공 지점(11)의 크기와 간격보다 크거나 작은 크기와 간격을 갖는 복수의 단위 빔(13a)으로 분할하여 빔 경로 후단의 광학계(optics) 등을 통해 복수의 가공 지점(11)의 크기와 간격에 맞도록 변환시킬 수도 있고, 레이저 빔(12)을 복수의 가공 지점(11)의 크기 및 간격과 동일한 크기와 간격을 갖는 복수의 단위 빔(13a)으로 바로 분할하여 가공 대상물(10)의 가공 지점(11)들로 전달할 수도 있다. 복수의 단위 빔(13a)도 동일 간격으로 배열되어야 동일 간격으로 배열된 복수의 가공 지점(11) 각각의 위치에 맞게 복수의 단위 빔(13a)을 조사할 수 있고, 멀티 빔(13)의 조사 위치의 이동만으로 제1 조사위치(30a)와 제2 조사위치(30b)가 일부 중첩될 때에 복수의 단위 빔(13a)이 각 가공 지점(11)에 대응되어 각각 위치되도록 할 수 있다.The laser beam 12 may be divided into a plurality of unit beams 13a arranged at equal intervals of a second distance proportional to the first distance, and the second distance may be determined according to the first distance. Here, the second distance may be proportional to the first distance, and the laser beam 12 is divided into a plurality of unit beams 13a having a size and spacing greater or less than the size and spacing of the plurality of processing points 11. It can be divided and converted to fit the size and spacing of the plurality of machining points 11 through optics at the rear end of the beam path, and the laser beam 12 is converted to the size and spacing of the plurality of machining points 11 It may be directly divided into a plurality of unit beams 13a having the same size and spacing and transmitted to the processing points 11 of the object 10. The plurality of unit beams 13a must also be arranged at the same interval so that the plurality of unit beams 13a can be irradiated according to the positions of each of the plurality of processing points 11 arranged at the same interval. When the first irradiation position 30a and the second irradiation position 30b partially overlap with only the movement of the position, a plurality of unit beams 13a may correspond to each processing point 11 to be positioned respectively.
상기 복수의 가공 지점(11)과 상기 복수의 단위 빔(13a)은 제1 방향을 따라 나란히 배열될 수 있고, 상기 멀티 빔(13)의 조사 위치를 이동시키는 과정(S450)에서는 상기 멀티 빔(13)의 조사 위치를 상기 제1 방향으로 이동시킬 수 있다. 복수의 가공 지점(11)과 복수의 단위 빔(13a)을 상기 제1 방향을 따라 나란히 배열시키고, 멀티 빔(13)의 조사 위치를 상기 제1 방향으로 이동시키면서 일부의 조사 지점(31)을 중첩시킬 수 있다. 이때, 상기 멀티 빔(13)의 상기 제1 방향 단위 빔(13a)의 개수는 상기 복수의 가공 지점(11)의 상기 제1 방향 가공 지점(11)의 개수보다 적을 수 있다. 상기 멀티 빔(13)의 상기 제1 방향 단위 빔(13a)의 개수가 상기 복수의 가공 지점(11)의 상기 제1 방향 가공 지점(11)의 개수 이상이 되면, 멀티 빔(13)의 조사 위치를 상기 제1 방향으로 더 이상 이동시킬 수 없거나, 멀티 빔(13) 중 일부의 단위 빔(13a)이 가공 대상물(10)의 가공 지점(11)을 벗어나게 되고, 효율적인 가공 공정을 진행할 수 없게 된다.The plurality of processing points 11 and the plurality of unit beams 13a may be arranged side by side in a first direction, and in the process of moving the irradiation position of the multi-beam 13 (S450), the multi-beam ( The irradiation position of 13) can be moved in the first direction. A plurality of processing points 11 and a plurality of unit beams 13a are arranged side by side in the first direction, and some of the irradiation points 31 are moved while moving the irradiation position of the multi-beam 13 in the first direction. Can be nested. In this case, the number of the first direction unit beams 13a of the multi-beam 13 may be less than the number of the first direction processing points 11 of the plurality of processing points 11. When the number of the first direction unit beams 13a of the multi-beam 13 is more than the number of the first direction processing points 11 of the plurality of processing points 11, the multi-beam 13 is irradiated. The position can no longer be moved in the first direction, or some of the unit beams 13a of the multi-beams 13 are out of the processing point 11 of the object 10, so that an efficient processing process cannot be performed. do.
상기 멀티 빔(13)의 조사 위치를 이동시키는 과정(S450)에서는 상기 멀티 빔(13)의 조사 위치를 상기 제1 방향으로 이동시킬 수 있으며, 상기 멀티 빔(13)의 조사 위치를 상기 제1 방향으로 상기 멀티 빔(13)의 제1 방향 폭(또는 상기 제2 패턴의 상기 제1 방향 폭)보다 작은 거리만큼 이동시킬 수 있다. 즉, 상기 멀티 빔(13)의 조사 위치를 상기 멀티 빔(13)의 제1 방향 단위 빔(13a)의 개수보다 적은 가공 지점(11)의 (상기 제1 방향) 개수에 대응되는 거리만큼 상기 제1 방향으로 이동시킬 수 있다. 상기 멀티 빔(13)의 조사 위치를 상기 멀티 빔(13)의 제1 방향 폭 이상의 거리만큼 상기 제1 방향으로 이동시키게 되면, 멀티 빔(13)의 조사 위치가 제1 조사위치(30a)를 벗어나 제1 조사위치(30a)와 중첩되지 않게 되고, 각 가공 지점(11)에서 위치가 상이한 단위 빔(13a)들을 혼합할 수 없게 된다.In the process of moving the irradiation position of the multi-beam 13 (S450), the irradiation position of the multi-beam 13 may be moved in the first direction, and the irradiation position of the multi-beam 13 is moved to the first direction. The direction may be moved by a distance smaller than the first width of the multi-beam 13 (or the width of the second pattern in the first direction). That is, the irradiation position of the multi-beam 13 is determined by a distance corresponding to the number of (the first direction) of the processing points 11 less than the number of unit beams 13a in the first direction of the multi-beam 13 It can be moved in the first direction. When the irradiation position of the multi-beam 13 is moved in the first direction by a distance equal to or greater than the width in the first direction of the multi-beam 13, the irradiation position of the multi-beam 13 becomes the first irradiation position 30a. It does not overlap with the first irradiation position 30a, and it is impossible to mix unit beams 13a having different positions at each processing point 11.
이에, 본 발명의 멀티 빔 가공방법에서는 상기 멀티 빔(13)의 조사 위치를 상기 제1 방향으로 이동시키며, 상기 멀티 빔(13)의 제1 방향 단위 빔(13a)의 개수보다 적은 가공 지점(11)의 개수(또는 칸 수)만큼 이동시킬 수 있다. 이를 통해 위치가 상이한 단위 빔(13a)들이 각 가공 지점(11)에서 혼합되도록 할 수 있다.Accordingly, in the multi-beam processing method of the present invention, the irradiation position of the multi-beam 13 is moved in the first direction, and processing points less than the number of unit beams 13a in the first direction of the multi-beam 13 ( You can move as many as 11) (or the number of cells). Through this, the unit beams 13a having different positions may be mixed at each processing point 11.
본 발명에 따른 멀티 빔 가공방법은 상기 멀티 빔(13)의 에너지에 따라 단위 빔(13a)의 조사 횟수를 결정하는 과정(S50);을 더 포함할 수 있다.The multi-beam processing method according to the present invention may further include a process of determining the number of times of irradiation of the unit beam 13a according to the energy of the multi-beam 13 (S50).
상기 멀티 빔(13)의 에너지에 따라 단위 빔(13a)의 조사 횟수를 결정할 수 있다(S50). 여기서, 상기 멀티 빔(13)의 에너지에 따라 단위 빔(13a)의 조사 횟수를 결정하는 과정(S50)은 상기 멀티 빔(13)을 형성하는 과정(S300) 이전에 수행될 수 있고, 가공 대상물(10)의 재료, 두께, 가공 깊이 중 적어도 어느 하나와 멀티 빔(13)의 에너지(또는 세기)에 따라 단위 빔(13a)의 조사 횟수를 결정할 수 있다. 이때, 상기 멀티 빔(13)의 에너지 분포를 통해(또는 에너지 분포에 따라) 상기 단위 빔(13a)의 조사 횟수를 결정할 수 있으며, 상기 멀티 빔(13)의 에너지 분포 중 가장 높은 부분(예를 들어, 중앙부)을 기준으로 상기 단위 빔(13a)의 조사 횟수를 결정할 수 있다. 또한, 복수의 가공 지점(11)에 동일한 상기 단위 빔(13a)의 조사 횟수를 결정할 수도 있고, 상기 멀티 빔(13)의 에너지 분포에 따라 각 가공 지점(11)별로 각각 상기 단위 빔(13a)의 조사 횟수를 결정할 수도 있다. 여기서, 가공 대상물(10)의 재료, 두께, 가공 깊이 중 적어도 어느 하나에 따라 각 가공 지점(11)의 가공을 완료할(또는 가공이 완료될 수 있는) 단위 빔(13a)의 조사 횟수를 결정할 수 있으며, 가공이 완료될 수 있는 단위 빔(13a)의 조사 횟수를 실험적으로 확인하여 결정할 수 있다. 예를 들어, 미세 금속 마스크(FMM)의 가공홀을 형성하는 경우에는 상기 가공홀이 형성되는 단위 빔(13a)의 조사 횟수를 실험적으로 확인할 수 있고, 이렇게 확인된 단위 빔(13a)의 조사 횟수를 상기 가공을 완료할 단위 빔(13a)의 조사 횟수로 결정할 수 있다.The number of times the unit beam 13a is irradiated may be determined according to the energy of the multi-beam 13 (S50). Here, the process of determining the number of irradiation of the unit beam 13a according to the energy of the multi-beam 13 (S50) may be performed before the process of forming the multi-beam 13 (S300), and The number of times the unit beam 13a is irradiated may be determined according to at least one of the material, thickness, and processing depth of (10) and the energy (or intensity) of the multi-beam 13. In this case, the number of times of irradiation of the unit beam 13a may be determined through the energy distribution of the multi-beam 13 (or according to the energy distribution), and the highest portion of the energy distribution of the multi-beam 13 (for example, For example, the number of times of irradiation of the unit beam 13a may be determined based on the central part). In addition, the number of times of irradiation of the same unit beam 13a to a plurality of processing points 11 may be determined, and the unit beam 13a for each processing point 11 according to the energy distribution of the multi-beam 13 You can also determine the number of investigations. Here, according to at least one of the material, thickness, and processing depth of the object 10, the number of irradiation times of the unit beam 13a to be processed (or to which processing can be completed) of each processing point 11 is determined. It can be determined by experimentally confirming the number of irradiation of the unit beam (13a) that can be processed. For example, in the case of forming the processing hole of the fine metal mask (FMM), the number of irradiation of the unit beam 13a in which the processing hole is formed can be experimentally confirmed, and the number of irradiation of the unit beam 13a thus confirmed May be determined as the number of irradiation of the unit beam 13a to complete the processing.
본 발명에 따른 멀티 빔 가공방법은 결정된 조사 횟수에 따라 상기 멀티 빔(13)의 제1 방향 단위 빔(13a)의 개수를 결정하는 과정(S60);을 더 포함할 수 있다.The multi-beam processing method according to the present invention may further include a process of determining the number of the first direction unit beams 13a of the multi-beam 13 (S60) according to the determined number of irradiations.
그리고 결정된 조사 횟수에 따라 상기 멀티 빔(13)의 제1 방향 단위 빔(13a)의 개수를 결정할 수 있다(S60). 상기 복수의 가공 지점(11)의 상기 제1 방향 가공 지점(11)의 개수보다 적은 상기 멀티 빔(13)의 제1 방향 단위 빔(13a)의 개수를 결정할 수 있다. 그리고 결정된 조사 횟수에 따라 상기 멀티 빔(13)의 제1 방향 단위 빔(13a)의 개수를 결정하여 멀티 빔(13)으로 복수의 가공 지점(11)을 상기 제1 방향으로(또는 상기 제1 방향 끝까지) 스캔하였을 때에 대부분(또는 중앙부)의 가공 지점(11)에 대한 가공이 완료되도록 할 수 있다.In addition, the number of unit beams 13a in the first direction of the multi-beam 13 may be determined according to the determined number of irradiations (S60). The number of the first direction unit beams 13a of the multi-beam 13 may be less than the number of the first direction processing points 11 of the plurality of processing points 11. Then, the number of the first direction unit beams 13a of the multi-beam 13 is determined according to the determined number of irradiation, and the plurality of processing points 11 are moved in the first direction with the multi-beam 13 (or the first It is possible to complete the machining of most (or the center) of the machining point 11 when scanned (to the end of the direction).
이때, 상기 멀티 빔(13)의 제1 방향 단위 빔(13a)의 개수는 상기 결정된 조사 횟수의 약수 또는 상기 결정된 조사 횟수의 약수 간의 곱에서 선택할 수 있다. 여기서, 상기 결정된 조사 횟수에 따라 멀티 빔(13) 매트릭스의 열(column)의 개수(n) 및/또는 행(row)의 개수(m)를 결정할 수 있다.In this case, the number of the first direction unit beams 13a of the multi-beam 13 may be selected from a product of a factor of the determined number of irradiation or a factor of the determined number of irradiation. Here, the number of columns (n) and/or the number of rows (m) of the matrix of the multi-beam 13 may be determined according to the determined number of irradiations.
상기 멀티 빔(13)을 형성하는 과정(S300)은, 상기 복수의 가공 지점(11)의 간격에 따라 상기 복수의 단위 빔(13a)의 간격을 결정하는 과정(S310); 결정된 상기 복수의 단위 빔(13a)의 개수 및 간격에 따른 회절패턴이 형성된 패턴판(131)을 제공하는 과정(S320); 및 상기 레이저 빔(12)을 상기 패턴판(131)에 입사시키는 과정(S330)을 포함할 수 있다.The process of forming the multi-beams 13 (S300) may include determining the spacing of the plurality of unit beams 13a according to the spacing of the plurality of processing points 11 (S310); Providing a pattern plate 131 on which a diffraction pattern is formed according to the determined number and interval of the plurality of unit beams 13a (S320); And a process (S330) of incidence of the laser beam 12 onto the pattern plate 131.
복수의 가공 지점(11)의 간격에 따라 상기 복수의 단위 빔(13a)의 간격을 결정할 수 있다(S310). 상기 제1 방향 단위 빔(13a)의 개수가 결정되면, 복수의 가공 지점(11)의 간격(즉, 상기 제1 간격)에 따라 상기 복수의 단위 빔(13a)의 간격을 결정할 수 있으며, 상기 복수의 가공 지점(11)의 상기 제1 방향 간격에 맞게 상기 복수의 단위 빔(13a)의 상기 제1 방향 간격을 결정할 수 있다.The spacing of the plurality of unit beams 13a may be determined according to the spacing of the plurality of processing points 11 (S310). When the number of the first direction unit beams 13a is determined, the spacing of the plurality of unit beams 13a may be determined according to the spacing of the plurality of processing points 11 (ie, the first spacing), and the The first direction spacing of the plurality of unit beams 13a may be determined according to the first direction spacing of the plurality of processing points 11.
그리고 결정된 상기 복수의 단위 빔(13a)의 개수 및 간격에 따른 회절패턴이 형성된 패턴판(131)을 제공할 수 있다(S320). 여기서, 상기 복수의 단위 빔(13a)의 개수는 결정된 상기 제1 방향 단위 빔(13a)의 개수에 따라 결정될 수 있다. 하나의 레이저 빔(12)을 복수의 단위 빔(13a)으로 분할하기 위해 패턴판(131)에 회절패턴이 형성될 수 있으며, 상기 회절패턴은 복수의 단위 빔(13a)의 개수 및 간격에 따라 달라질 수 있다. 즉, 하나의 레이저 빔(12)을 상기 회절패턴에 따라 정해진 개수와 간격을 갖는 복수의 단위 빔(13a)으로 분할할 수 있다. 결정된 상기 복수의 단위 빔(13a)의 개수 및 간격에 따라 알맞은 회절패턴이 형성된 패턴판(131)으로 변경하면서 원하는(또는 결정된) 개수와 간격을 갖는 복수의 단위 빔(13a)으로 레이저 빔(12)을 분할할 수 있다. 여기서, 패턴판(131)은 회절광학소자(Diffractive Optical Element; DOE)를 포함할 수 있다.In addition, a pattern plate 131 on which diffraction patterns according to the determined number and spacing of the plurality of unit beams 13a are formed may be provided (S320). Here, the number of the plurality of unit beams 13a may be determined according to the determined number of the first direction unit beams 13a. A diffraction pattern may be formed on the pattern plate 131 to divide one laser beam 12 into a plurality of unit beams 13a, and the diffraction pattern may be formed according to the number and spacing of the plurality of unit beams 13a. It can be different. That is, one laser beam 12 may be divided into a plurality of unit beams 13a having a predetermined number and intervals according to the diffraction pattern. According to the determined number and spacing of the plurality of unit beams 13a, the laser beam 12 is converted into a pattern plate 131 in which an appropriate diffraction pattern is formed and a plurality of unit beams 13a having a desired (or determined) number and spacing. ) Can be divided. Here, the pattern plate 131 may include a Diffractive Optical Element (DOE).
그 다음 상기 레이저 빔(12)을 상기 패턴판(131)에 입사시킬 수 있다(S330). 레이저 빔(12)이 패턴판(131)에 입사되면, 상기 회절패턴에 따라 레이저 빔(12)이 정해진 개수와 간격을 갖는 복수의 단위 빔(13a)으로 분할될 수 있다.Then, the laser beam 12 may be incident on the pattern plate 131 (S330). When the laser beam 12 is incident on the pattern plate 131, the laser beam 12 may be divided into a plurality of unit beams 13a having a predetermined number and interval according to the diffraction pattern.
본 발명에 따른 멀티 빔 가공방법은 상기 결정된 조사 횟수와 상기 결정된 상기 제1 방향 단위 빔(13a)의 개수에 따라 상기 제1 조사위치(30a)와 상기 제2 조사위치(30b)의 중첩되는 단위 빔(13a)의 조사 지점(31)의 개수를 결정하는 과정(S70);을 더 포함할 수 있고, 상기 멀티 빔(13)의 조사 위치를 이동시키는 과정(S450)에서는 결정된 상기 중첩되는 단위 빔(13a)의 조사 지점(31)의 개수만큼 조사 지점(31)이 상기 제1 조사위치(30a)와 중첩되는 상기 제2 조사위치(30b)로 이동시킬 수 있다.The multi-beam processing method according to the present invention is an overlapping unit of the first irradiation location (30a) and the second irradiation location (30b) according to the determined number of irradiation and the determined number of the first direction unit beams (13a). The process of determining the number of irradiation points 31 of the beam 13a (S70); may further include, and the overlapping unit beam determined in the process (S450) of moving the irradiation location of the multi-beam 13 As many as the number of irradiation points 31 in (13a), the irradiation points 31 may be moved to the second irradiation position 30b overlapping with the first irradiation position 30a.
그리고 상기 결정된 조사 횟수와 상기 결정된 상기 제1 방향 단위 빔(13a)의 개수에 따라 상기 제1 조사위치(30a)와 상기 제2 조사위치(30b)의 중첩되는 단위 빔(13a)의 조사 지점(31)의 개수를 결정할 수 있다(S70). 상기 결정된 조사 횟수와 상기 결정된 상기 제1 방향 단위 빔(13a)의 개수에 따라 제1 조사위치(30a)와 제2 조사위치(30b)의 중첩되는 단위 빔(13a)의 조사 지점(31)의 개수를 결정할 수 있다. 이를 통해 복수의 가공 지점(11) 각각에 상이한 빔 강도(또는 에너지)를 갖는 단위 빔(13a)들을 효과적으로 혼합시킬 수 있고, 복수의 가공 지점(11) 간의 가공 편차를 최소화할 수 있다. 제1 조사위치(30a)와 제2 조사위치(30b)의 중첩되는 단위 빔(13a)의 조사 지점(31)의 개수가 결정되면, 상기 제1 방향으로의 멀티 빔(13)의 조사 위치의 이동 거리(또는 칸 수)가(또는 상기 멀티 빔이 상기 제1 방향으로 이동해야 하는 상기 가공 지점의 개수가) 산출될 수 있다.And the irradiation point of the unit beam 13a overlapping the first irradiation position 30a and the second irradiation position 30b according to the determined number of irradiation and the determined number of unit beams 13a in the first direction ( 31) can be determined (S70). According to the determined number of irradiation and the determined number of unit beams 13a in the first direction, the irradiation point 31 of the unit beam 13a overlapping the first irradiation position 30a and the second irradiation position 30b You can decide the number. Through this, it is possible to effectively mix the unit beams 13a having different beam intensity (or energy) at each of the plurality of processing points 11, and it is possible to minimize processing deviation between the plurality of processing points 11. When the number of irradiation points 31 of the unit beam 13a overlapping the first irradiation position 30a and the second irradiation position 30b is determined, the irradiation position of the multi-beam 13 in the first direction A moving distance (or number of cells) (or the number of processing points at which the multi-beam should move in the first direction) may be calculated.
예를 들어, 상기 결정된 조사 횟수가 합성수인 경우에, 상기 중첩되는 단위 빔(13a)의 조사 지점(31)의 개수를 결정하는 과정(S70)은, 상기 결정된 조사 횟수의 약수를 산출하는 과정(S71); 상기 결정된 상기 제1 방향 단위 빔(13a)의 개수를 산출된 조사 횟수의 약수로 나눈 정수값에서 상기 조사 위치의 이동 칸 수(또는 상기 제1 방향으로 이동해야 하는 상기 가공 지점의 개수)를 결정하는 과정(S72); 및 상기 결정된 상기 제1 방향 단위 빔(13a)의 개수와 결정된 상기 조사 위치의 이동 칸 수의 차로 상기 중첩되는 단위 빔(13a)의 조사 지점(31)의 개수를 산출하는 과정(S73)을 포함할 수 있다. 즉, 상기 결정된 조사 횟수가 합성수인 경우에는 상기 조사 위치의 이동 칸 수를 상기 결정된 상기 제1 방향 단위 빔(13a)의 개수를 산출된 조사 횟수의 약수로 나눈 정수값에서 선택할 수 있고, 선택된 상기 조사 위치의 이동 칸 수에 따라 상기 중첩되는 단위 빔(13a)의 조사 지점(31)의 개수가 결정될 수 있다.For example, when the determined number of irradiations is a composite number, the process of determining the number of irradiation points 31 of the overlapping unit beams 13a (S70) is a process of calculating a factor of the determined irradiation number. (S71); Determine the number of moving cells (or the number of processing points to be moved in the first direction) of the irradiation position from an integer value obtained by dividing the determined number of the first direction unit beams 13a by a factor of the calculated number of irradiation The process (S72); And calculating the number of irradiation points 31 of the overlapping unit beams 13a by a difference between the determined number of the first direction unit beams 13a and the determined number of moving cells of the irradiation position (S73). can do. That is, when the determined number of irradiation is a composite number, the number of moving cells of the irradiation position may be selected from an integer value obtained by dividing the determined number of the first direction unit beams 13a by a factor of the calculated number of irradiation, and the selected The number of irradiation points 31 of the overlapping unit beams 13a may be determined according to the number of moving cells of the irradiation location.
또한, 상기 결정된 조사 횟수가 소수인 경우에, 상기 중첩되는 단위 빔(13a)의 조사 지점(31)의 개수를 결정하는 과정(S70)은, 상기 결정된 조사 횟수에 1을 더한 조정 횟수의 약수를 산출하는 과정(S75); 상기 결정된 상기 제1 방향 단위 빔(13a)의 개수를 산출된 조정 횟수의 약수로 나눈 정수값에서 상기 조사 위치의 이동 칸 수를 결정하는 과정(S76); 및 상기 결정된 상기 제1 방향 단위 빔(13a)의 개수와 결정된 상기 조사 위치의 이동 칸 수의 차로 상기 중첩되는 단위 빔(13a)의 조사 지점(31)의 개수를 산출하는 과정(S73)을 포함할 수 있다. 즉, 상기 결정된 조사 횟수가 소수인 경우에는 상기 조사 위치의 이동 칸 수를 상기 결정된 상기 제1 방향 단위 빔(13a)의 개수를 산출된 조정 횟수(즉, 상기 결정된 조사 횟수에 1을 더한 값)의 약수로 나눈 정수값에서 선택할 수 있고, 선택된 상기 조사 위치의 이동 칸 수에 따라 상기 중첩되는 단위 빔(13a)의 조사 지점(31)의 개수가 결정될 수 있다.In addition, when the determined number of irradiations is a small number, the process of determining the number of irradiation points 31 of the overlapping unit beams 13a (S70) includes a factor of the number of adjustments obtained by adding 1 to the determined number of irradiations. The process of calculating (S75); Determining the number of moving cells of the irradiation position from an integer value obtained by dividing the determined number of the first direction unit beams 13a by a factor of the calculated number of adjustments (S76); And calculating the number of irradiation points 31 of the overlapping unit beams 13a by a difference between the determined number of the first direction unit beams 13a and the determined number of moving cells of the irradiation position (S73). can do. That is, when the determined number of irradiation is a small number, the number of moving cells of the irradiation position is calculated as the number of the determined number of the first direction unit beams 13a (i.e., a value obtained by adding 1 to the determined number of irradiation) It may be selected from an integer value divided by a factor of, and the number of irradiation points 31 of the overlapping unit beam 13a may be determined according to the number of moving cells of the selected irradiation location.
한편, 상기 결정된 조사 횟수가 소수인 경우에는 제1 조사위치(30a)와 제2 조사위치(30b)에서 멀티 빔(13)의 상기 제1 방향 단위 빔(13a)의 개수를 달리(또는 상이하게) 할 수도 있다. 예를 들어, 복수의 가공 지점(11)의 상기 제1 방향 개수가 7개(소수)인 경우, 제1 조사위치(30a)에서는 상기 제1 방향 단위 빔(13a)의 개수가 3개인 멀티 빔(13)을 조사할 수 있고, 제2 조사위치(30b)에서는 상기 제1 방향 단위 빔(13a)의 개수가 4개인 멀티 빔(13)을 조사할 수 있다. 그리고 상기 멀티 빔(13)의 조사 위치를 이동시키는 과정(S450)에서는 상기 제1 방향으로 한 칸(즉, 어느 하나의 단위 빔이 조사 지점에서 상기 제1 방향의 인접한 가공 지점으로 옮켜질 수 있는 거리)씩 상기 멀티 빔(13)의 조사 위치를 이동시킬 수 있다.On the other hand, if the determined number of irradiation is a small number, the number of the first direction unit beams 13a of the multi-beam 13 at the first irradiation location 30a and the second irradiation location 30b is different (or differently). ) You may. For example, when the number of the first direction of the plurality of processing points 11 is 7 (decimal), the number of the first direction unit beams 13a is 3 at the first irradiation position 30a. (13) can be irradiated, and in the second irradiation position (30b), the multi-beam 13 having the number of the first direction unit beams 13a of four can be irradiated. And in the process of moving the irradiation position of the multi-beam 13 (S450), one space in the first direction (i.e., one unit beam can be moved from the irradiation point to an adjacent processing point in the first direction). The irradiation position of the multi-beam 13 may be moved by distance).
그리고 상기 멀티 빔(13)의 조사 위치를 이동시키는 과정(S450)은 상기 결정된 상기 제1 방향 단위 빔(13a)의 개수를 상기 결정된 조사 횟수로 나눈 값과 산출된 상기 조사 위치의 이동 칸 수를 곱한 횟수만큼 상기 제1 조사위치(30a)에 조사하는 과정(S400)을 반복한 후에 수행될 수 있다.In the process of moving the irradiation position of the multi-beam 13 (S450), a value obtained by dividing the determined number of the first direction unit beams 13a by the determined number of irradiation and the calculated number of moving cells of the irradiation position It may be performed after repeating the process (S400) of irradiating the first irradiation location 30a as many times as multiplied.
상기 멀티 빔(13)의 조사 위치를 이동시키는 과정(S450)에서는 결정된 상기 중첩되는 단위 빔(13a)의 조사 지점(31)의 개수만큼(의) 조사 지점(31)이 상기 제1 조사위치(30a)와 중첩되는 상기 제2 조사위치(30b)로 상기 멀티 빔(13)의 조사 위치를 이동시킬 수 있다. 즉, 상기 멀티 빔(13)의 조사 위치를 결정된 상기 중첩되는 단위 빔(13a)의 조사 지점의 개수만큼 제1 조사위치(30a)와 중첩되는 제2 조사위치(30b)로 이동시킬 수 있으며, 상기 결정된 상기 조사 위치의 이동 칸 수만큼 상기 멀티 빔(13)의 조사 위치를 상기 제1 방향으로 이동시킬 수 있다.In the process (S450) of moving the irradiation position of the multi-beam 13 (S450), the irradiation point 31 is the first irradiation position (of) as many as the number of irradiation points 31 of the overlapping unit beams 13a ( The irradiation position of the multi-beam 13 may be moved to the second irradiation position 30b overlapping with 30a). That is, the irradiation position of the multi-beam 13 can be moved to the second irradiation position 30b overlapping the first irradiation position 30a by the determined number of irradiation points of the overlapping unit beam 13a, The irradiation position of the multi-beam 13 may be moved in the first direction by the determined number of moving cells of the irradiation position.
도 4는 본 발명의 일실시예에 따른 빔 커팅을 설명하기 위한 개념도이고, 도 5는 본 발멸의 일실시예에 따른 빔 커팅을 통한 보상을 설명하기 위한 개념도로, 도 5의 (a)는 단위 빔의 혼합 영역과 미혼합 영역을 나타내며, 도 5의 (b)는 미혼합 영역의 단위 빔 보상을 나타낸다.4 is a conceptual diagram illustrating beam cutting according to an embodiment of the present invention, FIG. 5 is a conceptual diagram illustrating compensation through beam cutting according to an embodiment of the present invention, and FIG. 5A is The mixed area and the unmixed area of the unit beam are shown, and FIG. 5B shows the unit beam compensation of the non-mixed area.
도 4 및 도 5를 참조하면, 본 발명에 따른 멀티 빔 가공방법은 각 가공 지점(11)별 단위 빔(13a)의 조사 횟수를 검출하는 과정(S550); 각 가공 지점(11)별로 검출된 조사 횟수가 상기 결정된 조사 횟수에 도달되었는지를 판단하여 보상 여부를 결정하는 과정(S560); 및 보상이 결정된 가공 지점(11)에 상기 단위 빔(13a)을 추가적으로 조사하는 과정(S600);을 더 포함할 수 있다.4 and 5, the multi-beam processing method according to the present invention includes a process of detecting the number of irradiation times of the unit beam 13a for each processing point 11 (S550); Determining whether to compensate by determining whether the number of irradiations detected for each processing point 11 has reached the determined number of irradiations (S560); And a process (S600) of additionally irradiating the unit beam 13a to the processing point 11 where compensation is determined (S600).
그리고 각 가공 지점(11)별 단위 빔(13a)의 조사 횟수를 검출할 수 있다(S550). 각 가공 지점(11)별 단위 빔(13a)의 조사 횟수를 검출할 수 있으며, 각 가공 지점(11)별로 가공이 완료되었는지를 확인(또는 파악)할 수 있다. 각 가공 지점(11)별 가공 완료 여부를 파악하여 제1 조사위치(30a)와 제2 조사위치(30b)가 일부 중첩되는 단위빔 중첩공정을 완료(또는 중단)할 수 있다. 이때, 제1 조사위치(30a)와 제2 조사위치(30b)가 일부 중첩시키면서 복수의 가공 지점(11) 전체를 스캔한 후에 단위빔 중첩공정을 완료할 수 있다. 이를 통해 상기 단위빔 중첩공정으로 복수의 가공 지점(11) 전체를 스캔한 후에 복수의 가공 지점(11)의 가장자리부(또는 가장자리 영역)에 위치하는 가공 지점(11)들을 제외한 대부분의 가공 지점(11)에 가공이 완료되도록 할 수 있다.In addition, the number of irradiation times of the unit beam 13a for each processing point 11 may be detected (S550). The number of irradiation of the unit beam 13a for each processing point 11 can be detected, and it is possible to check (or grasp) whether processing is completed for each processing point 11. It is possible to complete (or stop) the unit beam overlapping process in which the first irradiation position 30a and the second irradiation position 30b partially overlap by determining whether processing is completed for each processing point 11. In this case, the unit beam overlapping process may be completed after scanning the entire plurality of processing points 11 while partially overlapping the first and second irradiation positions 30a and 30b. Through this, after scanning the entire plurality of processing points 11 by the unit beam overlapping process, most of the processing points except for the processing points 11 located at the edges (or edge regions) of the plurality of processing points 11 ( 11) can be completed to process.
그 다음 각 가공 지점(11)별로 검출된 조사 횟수가 상기 결정된 조사 횟수에 도달되었는지를 판단하여 보상 여부를 결정할 수 있다(S560). 각 가공 지점(11)별로 검출된 조사 횟수가 상기 결정된 조사 횟수에 도달되었는지를 판단하여 보상 여부를 결정할 수 있으며, 상기 검출된 조사 횟수가 상기 결정된 조사 횟수 미만인 가공 지점(11)에 보상을 결정할 수 있다. 즉, 상기 검출된 조사 횟수와 상기 결정된 조사 횟수의 비교를 통해 단위 빔(13a)을 보상해줄 가공 지점(11)을(또는 보상 영역을) 파악(또는 검출)할 수 있다.Then, it is possible to determine whether to compensate by determining whether the number of irradiations detected for each processing point 11 has reached the determined number of irradiations (S560). It is possible to determine whether or not to compensate by determining whether the number of investigations detected for each processing point 11 has reached the determined number of investigations, and to determine compensation for the processing point 11 whose number of detected investigations is less than the determined number of investigations. have. That is, it is possible to grasp (or detect) a processing point 11 (or a compensation area) to compensate for the unit beam 13a by comparing the detected number of irradiation with the determined number of irradiation.
그리고 보상이 결정된 가공 지점(11)에 상기 단위 빔(13a)을 추가적으로 조사할 수 있다(S600). 상기 보상이 결정된 가공 지점(11)은 상기 검출된 조사 횟수가 상기 결정된 조사 횟수 미만이어서, 가공이 완료되지 않았으므로, 상기 단위 빔(13a)을 추가적으로 조사하여 상기 보상이 결정된 가공 지점(11)의 가공을 완료할 수 있다. 이렇게 상기 검출된 조사 횟수가 상기 결정된 조사 횟수 미만인 가공 지점(11)에 단위 빔(13a)이 보상되어 모든 복수의 가공 지점(11)의 가공이 완료될 수 있다.In addition, the unit beam 13a may be additionally irradiated to the processing point 11 at which compensation is determined (S600). The processing point 11 at which the compensation is determined is less than the determined number of irradiations, and thus processing has not been completed. Therefore, the unit beam 13a is additionally irradiated to determine the compensation of the processing point 11 at which the compensation is determined. Processing can be completed. In this way, the unit beam 13a is compensated for the processing point 11 in which the detected number of irradiation is less than the determined number of irradiation, so that the processing of all the plurality of processing points 11 can be completed.
상기 단위 빔(13a)을 추가적으로 조사하는 과정(S600)은, 보상이 미결정된 가공 지점(11)에 대응되는 단위 빔(13a)의 경로를 차단하는 과정(S610); 및 경로가 개방된 단위 빔(13a)을 상기 보상이 결정된 가공 지점(11)에 조사하는 과정(S620)을 포함할 수 있다.The process of additionally irradiating the unit beam 13a (S600) may include blocking a path of the unit beam 13a corresponding to the processing point 11 for which compensation is not determined (S610); And a process (S620) of irradiating the unit beam 13a with an open path to the processing point 11 for which the compensation is determined.
보상이 미결정된 가공 지점(11)에 대응되는 단위 빔(13a)의 경로를 차단할 수 있다(S610). 보상이 미결정된 가공 지점(11)에 대응되는 단위 빔(13a)의 경로는 차단하여 상기 보상이 결정된 가공 지점(11)에만 단위 빔(13a)을 추가적으로 조사할 수 있다.The path of the unit beam 13a corresponding to the processing point 11 for which compensation is not determined may be blocked (S610). The path of the unit beam 13a corresponding to the processing point 11 for which compensation is not determined is blocked, so that the unit beam 13a may be additionally irradiated only to the processing point 11 for which the compensation is determined.
그리고 경로가 개방된 단위 빔(13a)을 상기 보상이 결정된 가공 지점(11)에 조사할 수 있다(S620). 경로가 개방된 단위 빔(13a)을 상기 보상이 결정된 가공 지점(11)에 조사할 수 있으며, 상기 보상이 결정된 가공 지점(11)에(만) 단위 빔(13a)을 보상해줄 수 있다. 이를 통해 모든 복수의 가공 지점(11)에 동일한 조사 횟수의 단위 빔(13a)이 조사되도록 하여 복수의 가공 지점(11) 간의 가공 편차를 보다 감소시킬 수 있다.In addition, the unit beam 13a in which the path is opened may be irradiated to the processing point 11 at which the compensation is determined (S620). The unit beam 13a with an open path may be irradiated to the processing point 11 for which the compensation is determined, and the unit beam 13a may be compensated for the processing point 11 for which the compensation is determined (only). Through this, the unit beam 13a of the same number of times of irradiation is irradiated to all the plurality of processing points 11, thereby further reducing processing deviation between the plurality of processing points 11.
상기 단위 빔(13a)을 추가적으로 조사하는 과정(S600)은 상기 복수의 가공 지점(11) 각각의 조사 횟수가 모두 상기 결정된 조사 횟수에 도달할 때까지 단계적으로 수행될 수 있다. 상기 복수의 가공 지점(11) 각각의 조사 횟수가 모두 상기 결정된 조사 횟수에 도달할 때까지 상기 단위 빔(13a)을 추가적으로 조사하는 과정(S600)을 수행할 수 있으며, 차단되는 단위 빔(13a)의 경로를 변경하면서 단계적으로 수행할 수 있다. 이에 따라 모든 복수의 가공 지점(11)의 가공이 완료되도록 할 수 있으며, 모든 복수의 가공 지점(11)에 동일한 조사 횟수의 단위 빔(13a)이 조사되어 복수의 가공 지점(11) 간의 가공 편차가 보다 감소될 수 있다.The process of additionally irradiating the unit beam 13a (S600) may be performed in stages until the number of irradiation times of each of the plurality of processing points 11 all reach the determined number of irradiation. The process of additionally irradiating the unit beam 13a (S600) may be performed until the irradiation times of each of the plurality of processing points 11 all reach the determined irradiation number, and the blocked unit beam 13a It can be done step by step while changing the path of. Accordingly, the processing of all the plurality of processing points 11 can be completed, and all the plurality of processing points 11 are irradiated with a unit beam 13a of the same number of times of irradiation, thereby processing deviation between the plurality of processing points 11 May be further reduced.
여기서, 상기 단위 빔(13a)을 추가적으로 조사하는 과정(S600)은 상기 보상이 결정된 가공 지점(11)의 위치에 따라 멀티 빔(13) 중 조사되는(또는 조사될) 단위 빔(13a)을(또는 단위 빔의 위치를) 결정하여 수행될 수 있다. 이때, 상기 보상이 결정된 가공 지점(11)의 위치에 따라 조사되는 단위 빔(13a)의 위치가 상이할 수 있다. 조사될 단위 빔(13a)의 에너지는 상기 보상이 결정된 가공 지점(11)의 위치의 누적 에너지(또는 조사된 단위 빔의 에너지 총량)에 따라 결정될 수 있고, 결정된 단위 빔(13a)의 에너지에 따라 상이한(또는 알맞은) 위치의 단위 빔(13a)이 선택될 수 있다.Here, in the process of additionally irradiating the unit beam 13a (S600), the unit beam 13a to be irradiated (or to be irradiated) among the multi-beams 13 according to the position of the processing point 11 for which the compensation is determined ( Alternatively, it may be performed by determining the position of the unit beam. In this case, the position of the irradiated unit beam 13a may be different according to the position of the processing point 11 at which the compensation is determined. The energy of the unit beam 13a to be irradiated may be determined according to the accumulated energy of the position of the processing point 11 for which the compensation is determined (or the total amount of energy of the irradiated unit beam), and the energy of the determined unit beam 13a Unit beams 13a at different (or appropriate) positions may be selected.
예를 들어, 누적 에너지가 낮은(또는 작은) 상기 보상이 결정된 가공 지점(11)에는 멀티 빔(13) 중 에너지가 높은 부분(예를 들어, 중앙부)의 단위 빔(13a)을 추가적으로 조사할 수 있다. 일반적으로, 가공이 완료되지 않아 단위 빔(13a)을 추가적으로 조사하여 보상해주어야 하는 복수의 가공 지점(11) 중 가장자리부(또는 가장자리 영역)에 위치하는 가공 지점(11)들은 누적 에너지가 낮고 중앙부에 위치하는 가공 지점(11)들의 누적 에너지와 차이가 많이 나므로, 멀티 빔(13) 중 에너지가 높은 부분의 단위 빔(13a)을 추가적으로 조사할 수 있다. 이에 따라 상기 보상이 결정된 가공 지점(11)의 에너지도 보상해줄 수 있으며, 복수의 가공 지점(11) 간의 누적 에너지의 편차 및/또는 복수의 가공 지점(11) 간의 가공 편차를 최소화할 수 있다. 이때, 상기 보상이 결정된 가공 지점(11)들 중 복수의 가공 지점(11)의 중앙부에서 멀어질수록 누적 에너지가 점점 작아지므로, 이에 대응(또는 상반)되어 복수의 가공 지점(11)의 중앙부에서 먼 상기 보상이 결정된 가공 지점(11)일수록 조사되는 단위 빔(13a)의 에너지가 점점 커지도록 할 수 있다.For example, a unit beam 13a of a high energy portion (for example, a central portion) of the multi-beam 13 may be additionally irradiated to the processing point 11 where the accumulated energy is low (or small) and the compensation is determined. have. In general, the processing points 11 located at the edge (or edge area) among the plurality of processing points 11 that need to be compensated by additionally irradiating the unit beam 13a because the processing is not completed have low cumulative energy and Since there is a large difference from the accumulated energy of the positioned processing points 11, the unit beam 13a of the high energy portion of the multi-beam 13 can be additionally irradiated. Accordingly, the energy of the processing point 11 for which the compensation is determined may be compensated, and a variation in accumulated energy between a plurality of processing points 11 and/or a processing variation between a plurality of processing points 11 may be minimized. At this time, since the accumulated energy gradually decreases as the distance from the central portion of the plurality of processing points 11 among the processing points 11 for which the compensation is determined, corresponding (or opposite) to the central portion of the plurality of processing points 11 The energy of the irradiated unit beam 13a may increase gradually as the processing point 11 at which the distant compensation is determined increases.
한편, 상기 멀티 빔(13)의 조사 위치를 이동시키는 과정(S450)은 상기 제1 방향으로의 스캔이 완료된 후에 상기 제1 방향과 교차하는 제2 방향으로 상기 멀티 빔(13)의 조사 위치를 이동시키는 과정(S455)을 (더) 포함할 수 있다.Meanwhile, in the process of moving the irradiation position of the multi-beam 13 (S450), after the scan in the first direction is completed, the irradiation position of the multi-beam 13 is moved in a second direction crossing the first direction. A process of moving (S455) may be included (more).
상기 제1 방향으로의 스캔이 완료된 후에 상기 제1 방향과 교차하는 제2 방향으로 상기 멀티 빔(13)의 조사 위치를 이동시킬 수 있다. 상기 제2 방향으로 상기 멀티 빔(13)의 조사 위치를 이동시키면서 상기 제2 방향으로 이동되는 각 위치(또는 라인)별로 상기 제1 방향으로의 스캔을 진행하여 모든 복수의 가공 지점(11)의 가공이 완료되도록 할 수 있다.After the scan in the first direction is completed, the irradiation position of the multi-beam 13 may be moved in a second direction crossing the first direction. While moving the irradiation position of the multi-beam 13 in the second direction, scanning in the first direction is performed for each position (or line) moved in the second direction, You can make the processing complete.
도 6은 본 발명의 다른 실시예에 따른 멀티 빔 가공장치를 나타낸 개략도이다.6 is a schematic diagram showing a multi-beam processing apparatus according to another embodiment of the present invention.
도 6을 참조하여 본 발명의 다른 실시예에 따른 멀티 빔 가공장치를 보다 상세히 살펴보는데, 본 발명의 일실시예에 따른 멀티 빔 가공방법과 관련하여 앞서 설명된 부분과 중복되는 사항들은 생략하도록 한다.A multi-beam processing apparatus according to another embodiment of the present invention will be described in more detail with reference to FIG. 6, and details overlapping with those previously described in relation to the multi-beam processing method according to an embodiment of the present invention will be omitted. .
본 발명의 다른 실시예에 따른 멀티 빔 가공장치(100)는 미리 설정된 복수의 가공 지점(11)에 가공이 이루어지는 가공 대상물(10)을 지지하는 가공물 지지대(110); 상기 가공을 위한 레이저 빔(12)을 발생시켜 출력하는 레이저빔 발진부(120); 출력된 레이저 빔(12)을 상기 복수의 가공 지점(11)의 개수보다 적은 복수의 단위 빔(13a)으로 분할하여 멀티 빔(13)을 형성하는 멀티빔 형성부(130); 상기 멀티 빔(13)을 상기 가공 대상물(10)에 복수회 조사하는 멀티빔 조사부(160); 및 상기 멀티 빔(13)이 조사된 제1 조사위치(30a)와 일부 중첩되는 제2 조사위치(30b)로 상기 멀티 빔(13)의 조사 위치가 변경되도록 상기 가공물 지지대(110)를 이동시키는 지지대 구동부(140);를 포함할 수 있다.A multi-beam processing apparatus 100 according to another embodiment of the present invention includes a workpiece support 110 for supporting an object 10 to be processed at a plurality of predetermined processing points 11; A laser beam oscillator 120 for generating and outputting a laser beam 12 for the processing; A multi-beam forming unit 130 configured to form a multi-beam 13 by dividing the output laser beam 12 into a plurality of unit beams 13a less than the number of the plurality of processing points 11; A multi-beam irradiation unit 160 for irradiating the multi-beam 13 onto the object 10 a plurality of times; And moving the workpiece support 110 so that the irradiation position of the multi-beam 13 is changed to a second irradiation position 30b partially overlapping the irradiated first irradiation position 30a. It may include; support base driving unit 140.
가공물 지지대(110)는 미리 설정된 복수의 가공 지점(11)에 가공이 이루어지는 가공 대상물(10)을 지지할 수 있다. 여기서, 가공 대상물(10)은 일반적으로 유기 EL(Electro Luminescence)이나 유기 반도체 소자 등의 제조 시에 진공 증착 공정에서 사용되는 미세 금속 마스크(Fine Metal Mask; FMM)의 마스크 스틱(또는 금속판)일 수 있다.The workpiece support 110 may support the object to be processed 10 to be processed at a plurality of predetermined processing points 11. Here, the object to be processed 10 may generally be a mask stick (or metal plate) of a fine metal mask (FMM) used in a vacuum deposition process when manufacturing an organic EL (electroluminescence) or an organic semiconductor device. have.
레이저빔 발진부(120)는 상기 가공을 위한 레이저 빔(12)을 발생시켜 출력할 수 있으며, 가공 대상물(10)을 가공하기 위해 레이저 빔(12)을 생성하여 가공 대상물(10)을 향해 발진할 수 있다. 이때, 레이저빔 발진부(120)는 펄스 레이저(pulse laser) 형태의 레이저 빔(12)을 출력할 수 있으며, 고에너지의 빔이 짧은 시간 동안에 주기적으로 조사될 수 있다. 이러한 경우, 조사 지점(31)의 열 축적이 억제 또는 방지될 수 있다. 여기서, 레이저빔 발진부(120)는 레이저 빔을 발생시키는 공지의 구성일 수 있으며, 이용하고자 하는 레이저 빔의 파장에 따라 KrF 엑시머(excimer) 레이저, ArF 엑시머 레이저 등의 엑시머 레이저, 다이오드 펌핑 고체(Diode Pumping Solid-State; DPSS) 레이저 등 다양한 종류의 것이 채용될 수 있다.The laser beam oscillation unit 120 may generate and output a laser beam 12 for the processing, and generate a laser beam 12 to process the object 10 to oscillate toward the object 10 to be processed. I can. In this case, the laser beam oscillation unit 120 may output the laser beam 12 in the form of a pulse laser, and a high energy beam may be periodically irradiated for a short time. In this case, heat accumulation at the irradiation point 31 can be suppressed or prevented. Here, the laser beam oscillation unit 120 may be a known configuration that generates a laser beam, and excimer lasers such as KrF excimer lasers and ArF excimer lasers, diode pumped solids (Diode) according to the wavelength of the laser beam to be used. Various types of lasers such as Pumping Solid-State (DPSS) lasers may be employed.
멀티빔 형성부(130)는 출력된 레이저 빔(12)을 복수의 가공 지점(11)의 개수보다 적은 복수의 단위 빔(13a)으로 분할하여 멀티 빔(13)을 형성할 수 있으며, 멀티 빔(13)을 가공 대상물(10)에 조사하여 복수의 단위 빔(13a)의 수와 같은(또는 둘 이상의) 가공 지점(11)을 동시에 가공할 수 있다.The multi-beam forming unit 130 may form a multi-beam 13 by dividing the output laser beam 12 into a plurality of unit beams 13a less than the number of a plurality of processing points 11. By irradiating (13) to the object 10 to be processed, the same (or two or more) processing points 11 equal to the number of the plurality of unit beams 13a can be simultaneously processed.
멀티빔 조사부(160)는 멀티 빔(13)을 가공 대상물(10)에 복수회 조사할 수 있으며, 멀티 빔(13)의 경로를 개폐하는 구성을 통해 멀티 빔(13)의 차단(또는 폐쇄)과 통과(또는 개방)를 반복하여 멀티 빔(13)을 가공 대상물(10)에 복수회 조사할 수도 있고, 펄스 레이저 형태의 레이저 빔(12)에 주기적으로 제공되는 멀티 빔(13)에 따라 멀티 빔(13)을 가공 대상물(10)에 복수회 조사할 수도 있다.The multi-beam irradiation unit 160 may irradiate the multi-beam 13 onto the object 10 a plurality of times, and block (or close) the multi-beam 13 by opening and closing the path of the multi-beam 13 The multi-beam 13 may be irradiated multiple times to the object 10 by repeating and passing (or opening), or according to the multi-beam 13 periodically provided to the laser beam 12 in the form of a pulsed laser. The beam 13 may be irradiated multiple times on the object 10 to be processed.
지지대 구동부(140)는 멀티 빔(13)이 조사된 제1 조사위치(30a)와 일부 중첩되는 제2 조사위치(30b)로 멀티 빔(13)의 조사 위치가 변경되도록 가공물 지지대(110)를 이동시킬 수 있다. 지지대 구동부(140)를 통해 상기 멀티 빔(13)의 조사 위치를 이동시킬 수 있으며, 가공 지점(11)에 상이한 위치의 단위 빔(13a)을 중첩시킬 수 있다. 이때, 상기 멀티 빔(13)의 조사 위치를 제1 조사위치(30a)에서 제1 조사위치(30a)와 일부 중첩되는 제2 조사위치(30b)로 이동시킬 수 있다.The support drive unit 140 moves the workpiece support 110 to change the irradiation position of the multi-beam 13 to a second irradiation position 30b partially overlapping the first irradiation position 30a where the multi-beam 13 is irradiated. Can be moved. The irradiation position of the multi-beam 13 may be moved through the support driving part 140, and unit beams 13a at different positions may be overlapped on the processing point 11. In this case, the irradiation position of the multi-beam 13 may be moved from the first irradiation position 30a to a second irradiation position 30b partially overlapping with the first irradiation position 30a.
여기서, 지지대 구동부(140)는 가공물 지지대(110)의 이동을 위한 구동력을 제공하는 동력원(141); 및 가공물 지지대(110)와 동력원(141)을 연결하는 연결부(142)를 포함할 수 있다.Here, the support drive unit 140 includes a power source 141 that provides a driving force for moving the workpiece support 110; And it may include a connection portion 142 connecting the workpiece support 110 and the power source 141.
동력원(141)은 가공물 지지대(110)의 이동을 위한 구동력을 제공할 수 있으며, 서보모터(servo-motor) 등으로 구성될 수 있다.The power source 141 may provide a driving force for the movement of the workpiece support 110 and may be configured with a servo-motor or the like.
연결부(142)는 가공물 지지대(110)와 동력원(141)을 연결할 수 있으며, 그 길이가 변화하거나, 다른 구성이 연결부(142)를 따라(또는 타고) 이동하여 가공물 지지대(110)를 이동시킬 수 있다.The connection part 142 may connect the workpiece support 110 and the power source 141, and its length may change, or another configuration may move along (or ride) the connection part 142 to move the workpiece support 110. have.
본 발명에 따른 멀티 빔 가공장치(100)는 각 가공 지점(11)의 단위 빔(13a)의 조사 횟수를 설정하는 조사횟수 설정부(미도시); 및 설정된 상기 단위 빔(13a)의 조사 횟수에 따라 상기 복수의 단위 빔(13a)의 개수를 결정하는 단위빔 개수 결정부(미도시);를 더 포함할 수 있다.The multi-beam processing apparatus 100 according to the present invention includes: an irradiation frequency setting unit (not shown) for setting the irradiation frequency of the unit beam 13a of each processing point 11; And a unit beam number determination unit (not shown) that determines the number of the plurality of unit beams 13a according to the set number of irradiation of the unit beams 13a.
조사횟수 설정부(미도시)는 각 가공 지점(11)의 단위 빔(13a)의 조사 횟수를 설정(또는 결정)할 수 있으며, 각 가공 지점(11)의 단위 빔(13a)의 조사 횟수를 결정하여 설정할 수도 있고, 입력되는 조사 횟수로 각 가공 지점(11)의 단위 빔(13a)의 조사 횟수를 설정할 수도 있다. 예를 들어, 조사횟수 설정부(미도시)는 각 가공 지점(11)의 가공을 완료할(또는 가공이 완료될 수 있는) 단위 빔(13a)의 조사 횟수로 각 가공 지점(11)의 단위 빔(13a)의 조사 횟수를 설정할 수 있으며, 가공이 완료될 수 있는 단위 빔(13a)의 조사 횟수를 실험적으로 확인하여 각 가공 지점(11)의 단위 빔(13a)의 조사 횟수를 설정할 수 있다.The irradiation frequency setting unit (not shown) may set (or determine) the number of irradiation of the unit beam 13a of each processing point 11, and the number of irradiation of the unit beam 13a of each processing point 11 It may be determined and set, or the number of irradiation of the unit beam 13a of each processing point 11 may be set as the number of input irradiation. For example, the number of irradiation setting unit (not shown) is the unit of each processing point 11 by the number of irradiation of the unit beam 13a to be processed (or can be processed) of each processing point 11 The number of irradiation of the beam 13a can be set, and the number of irradiation of the unit beam 13a of each processing point 11 can be set by experimentally checking the number of irradiation of the unit beam 13a at which processing can be completed. .
단위빔 개수 결정부(미도시)는 설정된 상기 단위 빔(13a)의 조사 횟수에 따라 복수의 단위 빔(13a)의 개수를 결정할 수 있다. 여기서, 단위빔 개수 결정부(미도시)는 상기 복수의 가공 지점(11)의 상기 제1 방향 가공 지점(11)의 개수보다 적은 상기 멀티 빔(13)의 상기 제1 방향 단위 빔(13a)의 개수를 결정할 수 있다. 그리고 상기 설정된 상기 단위 빔(13a)의 조사 횟수에 따라 상기 멀티 빔(13)의 상기 제1 방향 단위 빔(13a)의 개수를 결정하여 멀티 빔(13)으로 복수의 가공 지점(11)을 상기 제1 방향으로(또는 상기 제1 방향 끝까지) 스캔하였을 때에 대부분(또는 중앙부)의 가공 지점(11)에 대한 가공이 완료되도록 할 수 있다.The number of unit beams determining unit (not shown) may determine the number of the plurality of unit beams 13a according to the set number of irradiation of the unit beams 13a. Here, the number of unit beams determining unit (not shown) is the first direction unit beam 13a of the multi-beam 13 which is less than the number of the first direction processing points 11 of the plurality of processing points 11 You can determine the number of. Then, the number of the first direction unit beams 13a of the multi-beams 13 are determined according to the set number of irradiation of the unit beams 13a, and the plurality of processing points 11 are designated as the multi-beams 13 When scanning in the first direction (or to the end of the first direction), most (or the central portion) of the processing point 11 may be processed to be completed.
한편, 멀티 빔(13)에서 상기 제1 방향과 교차하는 제2 방향 단위 빔(13a)의 개수는 상기 복수의 가공 지점(11)의 상기 제2 방향 가공 지점(11)의 개수 이하로 결정될 수 있으며, 상기 제2 방향으로의 중첩 및/또는 보상에 어려움이 있을 수 있으므로, 단위 빔(13a)이 일렬로 배열되는 라인 패턴(또는 형태)이 단위 빔(13a)의 중첩 및 보상에 용이할 수 있다. 이를 통해 단위빔 개수 결정부(미도시)는 복수의 단위 빔(13a)의 개수를 결정할 수 있다.Meanwhile, the number of second direction unit beams 13a crossing the first direction in the multi-beam 13 may be determined to be less than or equal to the number of the second direction processing points 11 of the plurality of processing points 11. In addition, since there may be difficulty in overlapping and/or compensating in the second direction, a line pattern (or shape) in which the unit beams 13a are arranged in a row may facilitate overlapping and compensation of the unit beams 13a. have. Through this, the number of unit beams determining unit (not shown) may determine the number of the plurality of unit beams 13a.
그리고 멀티빔 형성부(130)는 상기 복수의 단위 빔(13a)의 개수 및 간격에 따른 회절패턴이 형성되며, 상기 레이저 빔(12)이 입사되는 패턴판(131); 및 결정된 상기 복수의 단위 빔(13a)의 개수 및 상기 복수의 단위 빔(13a)의 간격에 따라 회절패턴을 결정하여, 결정된 회절패턴이 형성된 패턴판(131)으로 변경하는 패턴판 변경부(미도시)를 포함할 수 있다.In addition, the multi-beam forming unit 130 includes a pattern plate 131 on which diffraction patterns are formed according to the number and interval of the plurality of unit beams 13a, and the laser beam 12 is incident thereon; And a pattern plate changing unit (not shown) that determines a diffraction pattern according to the determined number of the plurality of unit beams 13a and the spacing of the plurality of unit beams 13a, and changes to the pattern plate 131 on which the determined diffraction pattern is formed. Poem).
패턴판(131)은 복수의 단위 빔(13a)의 개수 및 간격에 따른 회절패턴이 형성될 수 있고, 레이저 빔(12)이 입사될 수 있다. 패턴판(131)에 레이저 빔(12)이 입사되면, 패턴판(131)에 형성된 회절패턴에 따라 정해진 복수의 단위 빔(13a)의 개수 및 간격으로 레이저 빔(12)이 분할될 수 있다. 여기서, 패턴판(131)은 회절광학소자(Diffractive Optical Element; DOE)를 포함할 수 있다.The pattern plate 131 may have a diffraction pattern according to the number and interval of the plurality of unit beams 13a, and the laser beam 12 may be incident. When the laser beam 12 is incident on the pattern plate 131, the laser beam 12 may be divided into the number and interval of a plurality of unit beams 13a determined according to a diffraction pattern formed on the pattern plate 131. Here, the pattern plate 131 may include a Diffractive Optical Element (DOE).
패턴판 변경부(미도시)는 결정된 상기 복수의 단위 빔(13a)의 개수 및 상기 복수의 단위 빔(13a)의 간격에 따라 회절패턴을 결정할 수 있고, 결정된 회절패턴이 형성된 패턴판(131)으로 변경할 수 있다. 결정된 상기 복수의 단위 빔(13a)의 개수 및 간격에 따라 알맞은 회절패턴을 결정하여 결정된 회절패턴이 형성된 패턴판(131)으로 변경함으로써, 원하는(또는 결정된) 개수와 간격을 갖는 복수의 단위 빔(13a)으로 레이저 빔(12)을 분할할 수 있다. 본 발명의 멀티 빔 가공장치(100)는 패턴판 변경부(미도시)에서 결정된 상기 복수의 단위 빔(13a)의 개수 및 상기 복수의 단위 빔(13a)의 간격에 따라 회절패턴을 결정하고 상기 결정된 회절패턴이 형성된 패턴판(131)으로 변경함으로써, 원하는 개수와 간격을 갖는 멀티 빔을 형성할 수 있다.The pattern plate changing unit (not shown) may determine a diffraction pattern according to the determined number of the plurality of unit beams 13a and the interval between the plurality of unit beams 13a, and the pattern plate 131 having the determined diffraction pattern formed thereon. Can be changed to A plurality of unit beams having a desired (or determined) number and intervals by determining an appropriate diffraction pattern according to the determined number and interval of the plurality of unit beams 13a and changing to the pattern plate 131 on which the determined diffraction pattern is formed ( The laser beam 12 can be split into 13a). The multi-beam processing apparatus 100 of the present invention determines a diffraction pattern according to the number of the plurality of unit beams 13a determined by the pattern plate changing unit (not shown) and the spacing of the plurality of unit beams 13a, By changing to the pattern plate 131 on which the determined diffraction pattern is formed, multi-beams having a desired number and spacing can be formed.
한편, 멀티빔 형성부(130)는 멀티 빔(13)의 초점을 조정하는 포커싱 렌즈(132)를 더 포함할 수 있다. 포커싱 렌즈(focusing lens, 132)는 패턴판(131)과 멀티빔 조사부(160) 사이의 경로 상에 제공되어, 멀티빔 조사부(160)에 입사되는 초점 및/또는 가공 대상물(10) 상에 조사되는 초점을 조정할 수 있다. 그리고 포커싱 렌즈(132)를 통해 멀티 빔(13)의 크기를 조정할 수도 있다.Meanwhile, the multi-beam forming unit 130 may further include a focusing lens 132 that adjusts the focus of the multi-beam 13. The focusing lens 132 is provided on a path between the pattern plate 131 and the multi-beam irradiation unit 160, and is irradiated onto the focal point and/or the object to be processed 10 incident on the multi-beam irradiation unit 160 You can adjust the focus. In addition, the size of the multi-beam 13 may be adjusted through the focusing lens 132.
멀티빔 조사부(160)는 상기 패턴판(131)에서 분할된 상기 복수의 단위 빔(13a)의 조사 각도를 일정 각도로 조정하는 각도 보정 광학계(161)를 포함할 수 있다.The multi-beam irradiation unit 160 may include an angle correction optical system 161 that adjusts the irradiation angle of the plurality of unit beams 13a divided by the pattern plate 131 to a predetermined angle.
각도 보정 광학계(161)는 패턴판(131)에서 분할된 복수의 단위 빔(13a)의 조사 각도를 일정 각도로 조정할 수 있으며, 복수의 단위 빔(13a)을 평행광 형태로 변환할 수 있다. 여기서, 각도 보정 광학계(161)는 텔레센트릭(telecentric) 광학계(또는 렌즈)를 포함할 수 있다.The angle correction optical system 161 may adjust the irradiation angle of the plurality of unit beams 13a divided by the pattern plate 131 to a predetermined angle, and may convert the plurality of unit beams 13a into a parallel light form. Here, the angle correction optical system 161 may include a telecentric optical system (or lens).
한편, 본 발명의 멀티 빔 가공장치(100)는 복수의 단위 빔(13a)을 반사시키는 미러부(165);를 더 포함할 수 있다. 미러부(165)는 복수의 단위 빔(13a)을 반사시켜 복수의 단위 빔(13a)의 경로(또는 방향)를 변경할 수 있으며, 미러부(165)의 개수를 통해 복수의 단위 빔(13a)의 경로 길이를 조절할 수 있다. 여기서, 미러부(165)는 복수의 단위 빔(13a)을 반사시킬 수 있다면, 특별히 제한되지 않고, 다양하게 구성될 수 있다.Meanwhile, the multi-beam processing apparatus 100 of the present invention may further include a mirror unit 165 for reflecting a plurality of unit beams 13a. The mirror unit 165 can change the path (or direction) of the plurality of unit beams 13a by reflecting the plurality of unit beams 13a, and the plurality of unit beams 13a through the number of mirror units 165 The length of the path can be adjusted. Here, the mirror unit 165 is not particularly limited as long as it can reflect the plurality of unit beams 13a, and may be configured in various ways.
본 발명에 따른 멀티 빔 가공장치(100)는 상기 패턴판(131)과 상기 가공 대상물(10) 사이의 경로 상에 제공되어, 상기 복수의 단위 빔(13a) 중 일부의 경로를 차단하는 빔 커팅부(150);를 더 포함할 수 있다.The multi-beam processing apparatus 100 according to the present invention is provided on a path between the pattern plate 131 and the object to be processed 10, and blocks some paths of the plurality of unit beams 13a. The unit 150; may further include.
빔 커팅부(150)는 패턴판(131)과 가공 대상물(10) 사이의 경로 상에 제공되어 복수의 단위 빔(13a) 중 일부의 경로를 차단할 수 있다. 빔 커팅부(150)를 통해 복수의 단위 빔(13a) 중 일부의 경로를 차단함으로써, 단위 빔(13a)의 (추가적인) 조사가 필요한 가공 지점(11)에만 단위 빔(13a)을 조사할 수 있다. 예를 들어, 보상이 미결정된 가공 지점(11)에 대응되는 단위 빔(13a)의 경로를 차단할 수 있고, 상기 보상이 결정된 가공 지점(11)에만 단위 빔(13a)을 추가적으로 조사할 수 있다. 한편, 빔 커팅부(150)는 복수의 단위 빔(13a) 중 일부의 경로를 차단하여 복수의 단위 빔(13a)의 개수 및/또는 멀티 빔(13)의 에너지 분포를 조절할 수도 있다.The beam cutting unit 150 may be provided on a path between the pattern plate 131 and the object 10 to be processed to block some paths of the plurality of unit beams 13a. By blocking the path of some of the plurality of unit beams 13a through the beam cutting unit 150, the unit beam 13a can be irradiated only at the processing point 11 where (additional) irradiation of the unit beam 13a is required. have. For example, the path of the unit beam 13a corresponding to the processing point 11 for which compensation is not determined may be blocked, and the unit beam 13a may be additionally irradiated only to the processing point 11 for which the compensation is determined. Meanwhile, the beam cutting unit 150 may block some paths of the plurality of unit beams 13a to adjust the number of the plurality of unit beams 13a and/or the energy distribution of the multi-beams 13.
그리고 빔 커팅부(150)는 중공부를 가지며, 상기 복수의 단위 빔(13a)의 경로를 제공하는 몸체부(151); 및 상기 몸체부(151)의 측벽에 제공되며, 상기 중공부의 내측방향으로 길이가 조절되는 차단판(152)을 포함할 수 있다.Further, the beam cutting part 150 has a hollow part, and a body part 151 providing a path of the plurality of unit beams 13a; And a blocking plate 152 provided on a side wall of the body portion 151 and having a length adjusted in the inner direction of the hollow portion.
몸체부(151)는 중공부를 가질 수 있고, 상기 중공부를 통해 복수의 단위 빔(13a)의 경로를 제공할 수 있다. 몸체부(151)의 소재 및/또는 형태는 복수의 단위 빔(13a)이 상기 중공부를 통과하면서 소재 및/또는 형태에 의한 경로 변화 및/또는 에너지 손실(또는 강도 저하)이 없을 수 있다면 특별히 제한되지 않는다.The body portion 151 may have a hollow portion, and may provide a path for a plurality of unit beams 13a through the hollow portion. The material and/or shape of the body part 151 is particularly limited if there is no path change and/or energy loss (or strength decrease) due to the material and/or shape while a plurality of unit beams 13a pass through the hollow part. It doesn't work.
차단판(152)은 몸체부(151)의 측벽에 제공될 수 있고, 상기 중공부의 내측방향으로 그 길이가 조절될 수 있다. 즉, 상기 중공부의 개방 면적(또는 직경)을 조절하여 복수의 단위 빔(13a) 중 일부의 경로를 차단할 수 있다.The blocking plate 152 may be provided on the sidewall of the body part 151 and its length may be adjusted in the inner direction of the hollow part. That is, some paths of the plurality of unit beams 13a may be blocked by adjusting the open area (or diameter) of the hollow part.
예를 들어, 차단판(152)은 복수개로 구성되어 몸체부(151)의 양측벽에 각각 제공될 수 있으며, 몸체부(151)의 양측벽에서 서로를 향해 간격이 좁혀져 상기 중공부의 개방 면적을 줄일 수 있고, 서로 멀어져 상기 중공부의 개방 면적을 넓힐 수 있다.For example, a plurality of blocking plates 152 may be provided on both side walls of the body part 151, and the gaps are narrowed toward each other at both side walls of the body part 151 to reduce the open area of the hollow part. It can be reduced, and apart from each other, the open area of the hollow portion can be widened.
본 발명에 따른 멀티 빔 가공장치(100)는 상기 가공 대상물(10)의 각 가공 지점(11)별 단위 빔(13a)의 조사 횟수를 검출하는 조사횟수 검출부(미도시); 및 각 가공 지점(11)별로 검출된 조사 횟수가 미리 결정된 조사 횟수에 도달되었는지를 판단하여 보상 여부를 결정하는 보상 결정부(미도시);를 더 포함할 수 있다.The multi-beam processing apparatus 100 according to the present invention includes: an irradiation count detection unit (not shown) for detecting the irradiation count of the unit beam 13a for each processing point 11 of the object 10; And a compensation determination unit (not shown) that determines whether or not to compensate by determining whether the number of irradiations detected for each processing point 11 has reached a predetermined number of irradiations.
조사횟수 검출부(미도시)는 가공 대상물(10)의 각 가공 지점(11)별 단위 빔(13a)의 조사 횟수를 검출할 수 있으며, 각 가공 지점(11)별로 가공이 완료되었는지를 확인(또는 파악)할 수 있다. 각 가공 지점(11)별 가공 완료 여부를 파악하여 제1 조사위치(30a)와 제2 조사위치(30b)가 일부 중첩되는 단위빔 중첩공정을 완료(또는 중단)할 수 있다. 이때, 제1 조사위치(30a)와 제2 조사위치(30b)가 일부 중첩시키면서 복수의 가공 지점(11) 전체를 스캔한 후에 단위빔 중첩공정을 완료할 수 있다. 이를 통해 상기 단위빔 중첩공정으로 복수의 가공 지점(11) 전체를 스캔한 후에 복수의 가공 지점(11)의 가장자리부(또는 가장자리 영역)에 위치하는 가공 지점(11)들을 제외한 대부분의 가공 지점(11)에 가공이 완료되도록 할 수 있다.The number of irradiation detection unit (not shown) can detect the number of irradiation of the unit beam 13a for each processing point 11 of the object 10, and checks whether processing is completed for each processing point 11 (or Grasp) can. It is possible to complete (or stop) the unit beam overlapping process in which the first irradiation position 30a and the second irradiation position 30b partially overlap by determining whether processing is completed for each processing point 11. In this case, the unit beam overlapping process may be completed after scanning the entire plurality of processing points 11 while partially overlapping the first and second irradiation positions 30a and 30b. Through this, after scanning the entire plurality of processing points 11 by the unit beam overlapping process, most of the processing points except for the processing points 11 located at the edges (or edge regions) of the plurality of processing points 11 ( 11) can be completed to process.
보상 결정부(미도시)는 각 가공 지점(11)별로 검출된 조사 횟수가 미리 결정된 조사 횟수에 도달되었는지를 판단하여 보상 여부를 결정할 수 있으며, 상기 검출된 조사 횟수가 상기 결정된 조사 횟수 미만인 가공 지점(11)에 보상을 결정할 수 있다. 즉, 상기 검출된 조사 횟수와 상기 결정된 조사 횟수의 비교를 통해 단위 빔(13a)을 보상해줄 가공 지점(11)을(또는 보상 영역을) 파악(또는 검출)할 수 있다.The compensation determination unit (not shown) may determine whether or not to compensate by determining whether the number of investigations detected for each processing point 11 has reached a predetermined number of investigations, and the number of detected investigations is less than the determined number of investigations. (11) can determine the compensation. That is, it is possible to grasp (or detect) a processing point 11 (or a compensation area) to compensate for the unit beam 13a by comparing the detected number of irradiation with the determined number of irradiation.
그리고 빔 커팅부(150)는 보상이 미결정된 가공 지점(11)에 대응되는 단위 빔(13a)의 경로를 차단할 수 있다. 보상이 결정된 가공 지점(11)에만 상기 단위 빔(13a)을 추가적으로 조사할 수 있으며, 경로가 개방된 단위 빔(13a)을 상기 보상이 결정된 가공 지점(11)에 조사할 수 있다. 이때, 빔 커팅부(150)를 통해 상기 보상이 미결정된 가공 지점(11)에 대응되는 단위 빔(13a)의 경로를 차단할 수 있고, 경로가 개방된 단위 빔(13a)을 상기 보상이 결정된 가공 지점(11)에만 조사할 수 있다. 이를 통해 상기 보상이 결정된 가공 지점(11)에(만) 단위 빔(13a)을 보상해줄 수 있고, 모든 복수의 가공 지점(11)에 동일한 조사 횟수의 단위 빔(13a)이 조사되도록 하여 복수의 가공 지점(11) 간의 가공 편차를 보다 감소시킬 수 있다.In addition, the beam cutting unit 150 may block a path of the unit beam 13a corresponding to the processing point 11 for which compensation is not determined. The unit beam 13a may be additionally irradiated only to the processing point 11 where compensation is determined, and the unit beam 13a with an open path may be irradiated to the processing point 11 at which the compensation is determined. At this time, through the beam cutting unit 150, the path of the unit beam 13a corresponding to the processing point 11 for which the compensation is not determined can be blocked, and the unit beam 13a whose path is open can be processed. It can only be investigated at point (11). Through this, it is possible to compensate the unit beam 13a to the processing point 11 for which the compensation is determined (only), and the unit beam 13a of the same number of irradiation to all the plurality of processing points 11 The machining deviation between the machining points 11 can be further reduced.
본 발명에 따른 멀티 빔 가공장치(100)는 상기 가공물 지지대(110)의 위치 좌표와 이동 거리를 계측하는 위치 계측부(미도시);를 더 포함할 수 있다.The multi-beam processing apparatus 100 according to the present invention may further include a position measuring unit (not shown) for measuring the position coordinates and the moving distance of the workpiece support 110.
위치 계측부(미도시)는 가공물 지지대(110)의 위치 좌표와 이동 거리를 계측할 수 있다. 위치 계측부(미도시)를 통해 가공물 지지대(110)의 위치 좌표와 이동 거리를 계측하여 가공물 지지대(110)를 정확한 위치로 이동시킬 수 있고, 멀티 빔(13)이 가공 지점(11)에 각각 대응되어 조사되도록 할 수 있다. 여기서, 위치 계측부(미도시)는 엔코더(encoder)를 포함할 수 있다.The position measuring unit (not shown) may measure the position coordinates and the moving distance of the workpiece support 110. By measuring the position coordinates and moving distance of the workpiece support 110 through a position measuring unit (not shown), the workpiece support 110 can be moved to an accurate position, and the multi-beam 13 corresponds to the processing point 11, respectively. To be investigated. Here, the position measuring unit (not shown) may include an encoder.
그리고 복수의 가공 지점(11)과 복수의 단위 빔(13a)은 제1 방향을 따라 나란히 배열될 수 있고, 지지대 구동부(110)는 상기 위치 계측부(미도시)의 계측에 따라 상기 제1 방향으로 상기 가공물 지지대(110)를 이동시켜, 미리 결정된 개수의 단위 빔(13a)의 조사 지점(31)이 상기 제1 조사위치(30a)와 중첩되는 상기 제2 조사위치(30b)로 상기 멀티 빔(13)의 조사 위치를 변경시킬 수 있다.In addition, a plurality of processing points 11 and a plurality of unit beams 13a may be arranged side by side in a first direction, and the support base driving unit 110 is in the first direction according to the measurement of the position measuring unit (not shown). By moving the workpiece support 110, the multi-beams (31) of the predetermined number of unit beams (13a) to the second irradiation location (30b) overlapping with the first irradiation location (30a) 13) can be changed.
복수의 가공 지점(11)과 복수의 단위 빔(13a)을 상기 제1 방향을 따라 나란히 배열하고 상기 제1 방향으로 상기 가공물 지지대(110)를 이동시키면서 일부 조사 지점(31)을 중첩시킬 수 있다.A plurality of processing points 11 and a plurality of unit beams 13a may be arranged side by side along the first direction, and some irradiation points 31 may be overlapped while moving the workpiece support 110 in the first direction. .
이때, 지지대 구동부(110)는 상기 위치 계측부(미도시)의 계측에 따라 상기 제1 방향으로 상기 가공물 지지대(110)를 이동시킬 수 있으며, 복수의 단위 빔(13a)이 각각의 가공 지점(11)에 각각 대응되어 정확하게 위치되도록 할 수 있다. 이렇게 지지대 구동부(110)는 제1 조사위치(30a)에서 미리 결정된 개수의 단위 빔(13a)의 조사 지점(31)이 제1 조사위치(30a)와 중첩되는 상기 제2 조사위치(30b)로 상기 멀티 빔(13)의 조사 위치를 변경시킬 수 있다.At this time, the support driving unit 110 may move the workpiece support 110 in the first direction according to the measurement of the position measuring unit (not shown), and a plurality of unit beams 13a may be provided at each processing point 11 ), so that it can be accurately positioned. In this way, the support driving unit 110 moves from the first irradiation position 30a to the second irradiation position 30b where the irradiation points 31 of a predetermined number of unit beams 13a overlap the first irradiation position 30a. The irradiation position of the multi-beam 13 may be changed.
이처럼, 본 발명에서는 멀티 빔을 제1 조사위치에 조사한 후에 제1 조사위치와 일부 중첩되는 제2 조사위치에 멀티 빔을 조사하여 중첩되는 조사 지점에 서로 다른 위치의 단위 빔들이 중첩되도록 함으로써, 위치가 상이한 단위 빔들을 혼합시킬 수 있다. 이에 따라 복수의 단위 빔의 위치별 빔 강도 차이로 인한 복수의 가공 지점 간의 가공 편차를 줄일 수 있다. 또한, 각 가공 지점의 가공을 완료할 단위 빔의 조사 횟수를 결정하여, 멀티 빔의 제1 방향 단위 빔의 개수를 결정하고, 결정된 조사 횟수와 결정된 제1 방향 단위 빔의 개수에 따라 제1 조사위치와 제2 조사위치의 중첩되는 단위 빔의 조사 지점의 개수를 결정할 수 있다. 이를 통해 복수의 가공 지점 각각에 상이한 빔 강도(또는 에너지)를 갖는 단위 빔들을 효과적으로 혼합시킬 수 있고, 복수의 가공 지점 간의 가공 편차를 최소화할 수 있다. 그리고 빔 커팅부로 멀티 빔 중 일부의 단위 빔을 차단하여 멀티 빔의 조사 위치의 이동만으로는 단위 빔들의 중첩이 이루어지지 않거나 단위 빔의 조사 횟수가 결정된 조사 횟수보다 적은 가공 지점에 추가적으로 단위 빔을 조사할 수 있다. 예를 들어, 단위 빔의 조사 횟수가 결정된 조사 횟수보다 부족하여 가공이 완료되지 않은 가공 지점에 단위 빔의 조사 횟수를 보상해 줄 수 있다. 이를 통해 모든 복수의 가공 지점에 단위 빔들이 중첩되어 가공이 완료될 수 있다.As described above, in the present invention, after the multi-beam is irradiated to the first irradiation position, the multi-beam is irradiated to the second irradiation position partially overlapping the first irradiation position, so that the unit beams at different positions are overlapped at the overlapping irradiation point. Can mix different unit beams. Accordingly, machining deviation between a plurality of processing points due to a difference in beam intensity for each position of the plurality of unit beams may be reduced. In addition, by determining the number of irradiation of unit beams to complete processing of each processing point, the number of unit beams in the first direction of the multi-beam is determined, and the first irradiation according to the determined number of irradiation and the determined number of unit beams in the first direction The number of irradiation points of the unit beam overlapping the location and the second irradiation location may be determined. Through this, it is possible to effectively mix unit beams having different beam intensity (or energy) at each of the plurality of processing points, and it is possible to minimize processing deviation between the plurality of processing points. In addition, by blocking some unit beams of the multi-beams with the beam cutting unit, the overlapping of the unit beams is not achieved only by moving the irradiation position of the multi-beams, or the unit beam is additionally irradiated to a processing point where the number of irradiation of the unit beam is less than the determined number of irradiation. I can. For example, since the number of irradiation of the unit beam is less than the determined number of irradiation, the number of irradiation of the unit beam may be compensated for a processing point where processing has not been completed. Through this, the unit beams may be superimposed on all the plurality of processing points to complete processing.
이상에서 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였으나, 본 발명은 상기한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 기술적 보호범위는 아래의 특허청구범위에 의해서 정하여져야 할 것이다.Although the preferred embodiments of the present invention have been illustrated and described above, the present invention is not limited to the above-described embodiments, and common knowledge in the field to which the present invention belongs without departing from the gist of the present invention claimed in the claims. Those who have a will understand that various modifications and equivalent other embodiments are possible from this. Therefore, the technical protection scope of the present invention should be determined by the following claims.

Claims (16)

  1. 가공 대상물에 복수의 가공 지점을 설정하는 과정;Setting a plurality of processing points on the object to be processed;
    상기 가공 대상물을 가공하기 위한 레이저 빔을 발생시켜 출력하는 과정;Generating and outputting a laser beam for processing the object to be processed;
    상기 레이저 빔을 상기 복수의 가공 지점의 개수보다 적은 복수의 단위 빔으로 분할하여 멀티 빔을 형성하는 과정;Dividing the laser beam into a plurality of unit beams less than the number of the plurality of processing points to form a multi-beam;
    상기 멀티 빔을 상기 복수의 가공 지점 중 일부 가공 지점에 대응되는 제1 조사위치에 조사하는 과정;Irradiating the multi-beam to a first irradiation position corresponding to some of the plurality of processing points;
    상기 멀티 빔의 조사 위치를 이동시키는 과정; 및Moving the irradiation position of the multi-beam; And
    상기 제1 조사위치와 일부 중첩되는 제2 조사위치에 상기 멀티 빔을 조사하는 과정;을 포함하는 멀티 빔 가공방법.A process of irradiating the multi-beam to a second irradiation location partially overlapping with the first irradiation location.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 복수의 가공 지점을 설정하는 과정에서는 제1 거리의 동일 간격으로 배열되는 상기 복수의 가공 지점을 설정하고,In the process of setting the plurality of processing points, the plurality of processing points arranged at equal intervals of the first distance are set,
    상기 멀티 빔을 형성하는 과정은 상기 제1 거리와 비례하는 제2 거리의 동일 간격으로 배열된 상기 복수의 단위 빔으로 상기 레이저 빔을 분할하여 수행되는 멀티 빔 가공방법.The process of forming the multi-beam is performed by dividing the laser beam into the plurality of unit beams arranged at equal intervals of a second distance proportional to the first distance.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 복수의 가공 지점과 상기 복수의 단위 빔은 제1 방향을 따라 나란히 배열되고,The plurality of processing points and the plurality of unit beams are arranged side by side along a first direction,
    상기 멀티 빔의 조사 위치를 이동시키는 과정에서는 상기 멀티 빔의 조사 위치를 상기 제1 방향으로 이동시키는 멀티 빔 가공방법.In the process of moving the irradiation position of the multi-beams, the multi-beam processing method of moving the irradiation position of the multi-beams in the first direction.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 멀티 빔의 에너지에 따라 단위 빔의 조사 횟수를 결정하는 과정;을 더 포함하는 멀티 빔 가공방법.The process of determining the number of times of irradiation of the unit beam according to the energy of the multi-beams.
  5. 청구항 4에 있어서,The method of claim 4,
    결정된 조사 횟수에 따라 상기 멀티 빔의 제1 방향 단위 빔의 개수를 결정하는 과정;을 더 포함하고,The process of determining the number of unit beams in the first direction of the multi-beam according to the determined number of irradiation; further comprising,
    상기 멀티 빔을 형성하는 과정은,The process of forming the multi-beam,
    상기 복수의 가공 지점의 간격에 따라 상기 복수의 단위 빔의 간격을 결정하는 과정;Determining the spacing of the plurality of unit beams according to the spacing of the plurality of processing points;
    결정된 상기 복수의 단위 빔의 개수 및 간격에 따른 회절패턴이 형성된 패턴판을 제공하는 과정; 및Providing a pattern plate on which diffraction patterns are formed according to the determined number and spacing of the plurality of unit beams; And
    상기 레이저 빔을 상기 패턴판에 입사시키는 과정을 포함하는 멀티 빔 가공방법.A multi-beam processing method comprising the step of injecting the laser beam onto the pattern plate.
  6. 청구항 5에 있어서,The method of claim 5,
    상기 결정된 조사 횟수와 상기 결정된 상기 제1 방향 단위 빔의 개수에 따라 상기 제1 조사위치와 상기 제2 조사위치의 중첩되는 단위 빔의 조사 지점의 개수를 결정하는 과정;을 더 포함하고,Determining the number of irradiation points of the unit beams overlapping the first irradiation location and the second irradiation location according to the determined number of irradiation and the determined number of unit beams in the first direction; and
    상기 멀티 빔의 조사 위치를 이동시키는 과정에서는 결정된 상기 중첩되는 단위 빔의 조사 지점의 개수만큼 조사 지점이 상기 제1 조사위치와 중첩되는 상기 제2 조사위치로 상기 멀티 빔의 조사 위치를 이동시키는 멀티 빔 가공방법.In the process of moving the irradiation position of the multi-beam, a multi-beam in which the irradiation point is moved to the second irradiation position overlapping the first irradiation position by the determined number of irradiation points of the overlapping unit beam. Beam processing method.
  7. 청구항 4에 있어서,The method of claim 4,
    각 가공 지점별 단위 빔의 조사 횟수를 검출하는 과정;Detecting the number of times the unit beam is irradiated for each processing point;
    각 가공 지점별로 검출된 조사 횟수가 상기 결정된 조사 횟수에 도달되었는지를 판단하여 보상 여부를 결정하는 과정; 및Determining whether to compensate by determining whether the number of irradiations detected for each processing point reaches the determined number of irradiations; And
    보상이 결정된 가공 지점에 상기 단위 빔을 추가적으로 조사하는 과정;을 더 포함하는 멀티 빔 가공방법.The process of additionally irradiating the unit beam to the processing point for which compensation is determined; the multi-beam processing method further comprising.
  8. 청구항 7에 있어서,The method of claim 7,
    상기 단위 빔을 추가적으로 조사하는 과정은,The process of additionally irradiating the unit beam,
    보상이 미결정된 가공 지점에 대응되는 단위 빔의 경로를 차단하는 과정; 및Blocking a path of a unit beam corresponding to a processing point for which compensation is not determined; And
    경로가 개방된 단위 빔을 상기 보상이 결정된 가공 지점에 조사하는 과정을 포함하는 멀티 빔 가공방법.A multi-beam processing method comprising the step of irradiating a unit beam with an open path to a processing point at which the compensation is determined.
  9. 청구항 7에 있어서,The method of claim 7,
    상기 단위 빔을 추가적으로 조사하는 과정은 상기 복수의 가공 지점 각각의 조사 횟수가 모두 상기 결정된 조사 횟수에 도달할 때까지 단계적으로 수행되는 멀티 빔 가공방법.The process of additionally irradiating the unit beam is performed in stages until the number of irradiation times of each of the plurality of processing points reaches the determined number of irradiation.
  10. 미리 설정된 복수의 가공 지점에 가공이 이루어지는 가공 대상물을 지지하는 가공물 지지대;A workpiece support for supporting an object to be processed at a plurality of preset processing points;
    상기 가공을 위한 레이저 빔을 발생시켜 출력하는 레이저빔 발진부;A laser beam oscillator for generating and outputting a laser beam for the processing;
    출력된 레이저 빔을 상기 복수의 가공 지점의 개수보다 적은 복수의 단위 빔으로 분할하여 멀티 빔을 형성하는 멀티빔 형성부;A multi-beam forming unit configured to form a multi-beam by dividing the output laser beam into a plurality of unit beams less than the number of the plurality of processing points;
    상기 멀티 빔을 상기 가공 대상물에 복수회 조사하는 멀티빔 조사부; 및A multi-beam irradiation unit for irradiating the multi-beam onto the object to be processed a plurality of times; And
    상기 멀티 빔이 조사된 제1 조사위치와 일부 중첩되는 제2 조사위치로 상기 멀티 빔의 조사 위치가 변경되도록 상기 가공물 지지대를 이동시키는 지지대 구동부;를 포함하는 멀티 빔 가공장치.And a support driving unit for moving the workpiece support to change the irradiation position of the multi-beam to a second irradiation position partially overlapping with the first irradiation position to which the multi-beam is irradiated.
  11. 청구항 10에 있어서,The method of claim 10,
    각 가공 지점의 단위 빔의 조사 횟수를 설정하는 조사횟수 설정부; 및An irradiation count setting unit for setting the irradiation count of the unit beam at each processing point; And
    설정된 상기 단위 빔의 조사 횟수에 따라 상기 복수의 단위 빔의 개수를 결정하는 단위빔 개수 결정부;를 더 포함하는 멀티 빔 가공장치.The multi-beam processing apparatus further comprising a; unit beam number determining unit determining the number of the plurality of unit beams according to the set number of irradiation of the unit beam.
  12. 청구항 11에 있어서,The method of claim 11,
    상기 멀티빔 형성부는,The multi-beam forming unit,
    상기 복수의 단위 빔의 개수 및 간격에 따른 회절패턴이 형성되며, 상기 레이저 빔이 입사되는 패턴판; 및A pattern plate on which diffraction patterns according to the number and interval of the plurality of unit beams are formed, and on which the laser beam is incident; And
    결정된 상기 복수의 단위 빔의 개수 및 상기 복수의 단위 빔의 간격에 따라 회절패턴을 결정하여, 결정된 회절패턴이 형성된 패턴판으로 변경하는 패턴판 변경부를 포함하는 멀티 빔 가공장치.A multi-beam processing apparatus comprising a pattern plate changing unit that determines a diffraction pattern according to the determined number of the plurality of unit beams and an interval between the plurality of unit beams, and converts the determined diffraction pattern into a pattern plate.
  13. 청구항 12에 있어서,The method of claim 12,
    상기 멀티빔 조사부는 상기 패턴판에서 분할된 상기 복수의 단위 빔의 조사 각도를 일정 각도로 조정하는 각도 보정 광학계를 포함하는 멀티 빔 가공장치.The multi-beam processing apparatus including an angle correction optical system for adjusting the irradiation angle of the plurality of unit beams divided by the pattern plate to a predetermined angle.
  14. 청구항 12에 있어서,The method of claim 12,
    상기 패턴판과 상기 가공 대상물 사이의 경로 상에 제공되어, 상기 복수의 단위 빔 중 일부의 경로를 차단하는 빔 커팅부;를 더 포함하고,A beam cutting unit provided on a path between the pattern plate and the object to be processed to block a path of some of the plurality of unit beams; further comprising,
    상기 빔 커팅부는,The beam cutting part,
    중공부를 가지며, 상기 복수의 단위 빔의 경로를 제공하는 몸체부; 및A body portion having a hollow portion and providing a path of the plurality of unit beams; And
    상기 몸체부의 측벽에 제공되며, 상기 중공부의 내측방향으로 길이가 조절되는 차단판을 포함하는 멀티 빔 가공장치.A multi-beam processing apparatus including a blocking plate provided on a side wall of the body portion and having a length adjusted in the inner direction of the hollow portion.
  15. 청구항 14에 있어서,The method of claim 14,
    상기 가공 대상물의 각 가공 지점별 단위 빔의 조사 횟수를 검출하는 조사횟수 검출부; 및An irradiation count detection unit for detecting the irradiation count of the unit beam for each processing point of the object to be processed; And
    각 가공 지점별로 검출된 조사 횟수가 미리 결정된 조사 횟수에 도달되었는지를 판단하여 보상 여부를 결정하는 보상 결정부;를 더 포함하고,Compensation determination unit determining whether to compensate by determining whether the number of irradiation detected for each processing point reaches a predetermined number of irradiation; further comprises,
    상기 빔 커팅부는 보상이 미결정된 가공 지점에 대응되는 단위 빔의 경로를 차단하는 멀티 빔 가공장치.The beam cutting unit is a multi-beam processing apparatus for blocking a path of a unit beam corresponding to a processing point for which compensation is not determined.
  16. 청구항 10에 있어서,The method of claim 10,
    상기 가공물 지지대의 위치 좌표와 이동 거리를 계측하는 위치 계측부;를 더 포함하고,Further comprising; a position measuring unit for measuring the position coordinates and the moving distance of the workpiece support,
    상기 복수의 가공 지점과 상기 복수의 단위 빔은 제1 방향을 따라 나란히 배열되며,The plurality of processing points and the plurality of unit beams are arranged side by side along a first direction,
    상기 지지대 구동부는 상기 위치 계측부의 계측에 따라 상기 제1 방향으로 상기 가공물 지지대를 이동시켜, 미리 결정된 개수의 단위 빔의 조사 지점이 상기 제1 조사위치와 중첩되는 상기 제2 조사위치로 상기 멀티 빔의 조사 위치를 변경시키는 멀티 빔 가공장치.The support drive unit moves the workpiece support in the first direction according to the measurement of the position measuring unit, so that the multi-beams to the second irradiation position where a predetermined number of irradiation points of the unit beam overlap with the first irradiation position. Multi-beam processing device that changes the irradiation position
PCT/KR2020/002324 2019-03-15 2020-02-18 Multi-beam processing method and multi-beam processing apparatus WO2020189897A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0030120 2019-03-15
KR1020190030120A KR102390023B1 (en) 2019-03-15 2019-03-15 Multi-beam machining method and multi-beam machining apparatus

Publications (1)

Publication Number Publication Date
WO2020189897A1 true WO2020189897A1 (en) 2020-09-24

Family

ID=72520344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/002324 WO2020189897A1 (en) 2019-03-15 2020-02-18 Multi-beam processing method and multi-beam processing apparatus

Country Status (2)

Country Link
KR (1) KR102390023B1 (en)
WO (1) WO2020189897A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202319163A (en) * 2021-09-15 2023-05-16 南韓商Eo科技股份有限公司 Apparatus of forming groove

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200386628Y1 (en) * 2005-03-11 2005-06-16 주식회사 맥스엔지니어링 A laser apparatus output able to multi laser beam
JP2008264854A (en) * 2007-04-24 2008-11-06 Sumitomo Heavy Ind Ltd Laser beam irradiation apparatus and laser beam irradiation method
KR20090012733A (en) * 2007-07-31 2009-02-04 한국기계연구원 Laser ablation for micro mold fabric manufacture of spherical or wide area cone
KR101250629B1 (en) * 2005-08-16 2013-04-03 더 트러스티이스 오브 콜롬비아 유니버시티 인 더 시티 오브 뉴욕 Systems and methods for uniform sequential lateral solidification of thin films using high frequency lasers
KR20170009608A (en) * 2015-07-17 2017-01-25 아이엠에스 나노패브릭케이션 아게 Compensation of dose inhomogeneity using overlapping exposure spots

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5300544B2 (en) * 2009-03-17 2013-09-25 株式会社ディスコ Optical system and laser processing apparatus
JP6078747B2 (en) 2013-01-28 2017-02-15 株式会社ブイ・テクノロジー Vapor deposition mask manufacturing method and laser processing apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200386628Y1 (en) * 2005-03-11 2005-06-16 주식회사 맥스엔지니어링 A laser apparatus output able to multi laser beam
KR101250629B1 (en) * 2005-08-16 2013-04-03 더 트러스티이스 오브 콜롬비아 유니버시티 인 더 시티 오브 뉴욕 Systems and methods for uniform sequential lateral solidification of thin films using high frequency lasers
JP2008264854A (en) * 2007-04-24 2008-11-06 Sumitomo Heavy Ind Ltd Laser beam irradiation apparatus and laser beam irradiation method
KR20090012733A (en) * 2007-07-31 2009-02-04 한국기계연구원 Laser ablation for micro mold fabric manufacture of spherical or wide area cone
KR20170009608A (en) * 2015-07-17 2017-01-25 아이엠에스 나노패브릭케이션 아게 Compensation of dose inhomogeneity using overlapping exposure spots

Also Published As

Publication number Publication date
KR20200110053A (en) 2020-09-23
KR102390023B1 (en) 2022-04-26

Similar Documents

Publication Publication Date Title
US6888096B1 (en) Laser drilling method and laser drilling device
WO2016098966A1 (en) 3d patterning method using laser
JP7094162B2 (en) Lift device and usage
WO2020189897A1 (en) Multi-beam processing method and multi-beam processing apparatus
CN114007803B (en) Laser processing device and method, chip transfer device and method
CN112996652A (en) Automatic calibration of laser processing systems using integrated telecentric optical detectors with limited degrees of freedom
WO2016199971A1 (en) Line beam forming device
CN112272966B (en) Transfer device, method of use and adjustment method
WO2012148117A2 (en) Selective thin film removal apparatus using divided laser beams
WO2020040339A1 (en) Apparatus for producing metal mask
JP7382453B2 (en) How to remove defective parts
WO2021112618A1 (en) Laser light source module and manufacturing jig for manufacturing same
JPH11104863A (en) Laser beam machining apparatus
CN109075185B (en) Micro LED array as illumination source
WO2013065947A1 (en) Laser machining apparatus capable of two-beam machining and method thereof
JP2003112278A (en) Machining device and method
US20090310108A1 (en) Exposure apparatus and method of manufacturing device
TWI818242B (en) Control device of laser processing device, laser processing device and laser processing method
TWI796315B (en) Exposure device and exposure method
KR102406914B1 (en) Projection exposure apparatus and projection exposure method thereof
TWI852843B (en) Transfer method, mask and display manufacturing method
JPH09199386A (en) Scanning type exposure equipment, its method, and manufacture of semiconductor device
KR100584838B1 (en) Method of calibrating of via hole laser drilling system
CN111992893B (en) Laser processing device
JPH11129081A (en) Laser processing device and its adjustment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20773370

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20773370

Country of ref document: EP

Kind code of ref document: A1