WO2020188783A1 - 無方向性電磁鋼板およびその製造方法 - Google Patents

無方向性電磁鋼板およびその製造方法 Download PDF

Info

Publication number
WO2020188783A1
WO2020188783A1 PCT/JP2019/011663 JP2019011663W WO2020188783A1 WO 2020188783 A1 WO2020188783 A1 WO 2020188783A1 JP 2019011663 W JP2019011663 W JP 2019011663W WO 2020188783 A1 WO2020188783 A1 WO 2020188783A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
less
temperature
rolling
hot rolling
Prior art date
Application number
PCT/JP2019/011663
Other languages
English (en)
French (fr)
Inventor
毅 市江
高橋 克
史展 村上
伸一 松井
政広 山本
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to KR1020217029229A priority Critical patent/KR102561512B1/ko
Priority to CN201980094179.2A priority patent/CN113574193B/zh
Priority to US17/437,726 priority patent/US20220145418A1/en
Priority to EP19920490.0A priority patent/EP3943633A4/en
Priority to JP2019544748A priority patent/JP6617857B1/ja
Priority to BR112021016821-4A priority patent/BR112021016821B1/pt
Priority to PCT/JP2019/011663 priority patent/WO2020188783A1/ja
Publication of WO2020188783A1 publication Critical patent/WO2020188783A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1261Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14791Fe-Si-Al based alloys, e.g. Sendust
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/05Grain orientation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • C23G1/081Iron or steel solutions containing H2SO4
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/08Iron or steel
    • C23G1/085Iron or steel solutions containing HNO3
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/14Cleaning or pickling metallic material with solutions or molten salts with alkaline solutions
    • C23G1/19Iron or steel

Definitions

  • the present invention relates to a non-oriented electrical steel sheet having excellent magnetic properties and punching workability, and a method for manufacturing the same.
  • non-oriented electrical steel sheets are used as the core of a drive motor of a hybrid electric vehicle (HEV: Hybrid Electric Vehicle) or the like.
  • HEV Hybrid Electric Vehicle
  • the drive motors used in HEVs are in increasing demand for miniaturization due to restrictions on installation space and reduction of fuel consumption due to weight reduction.
  • non-oriented electrical steel sheet In order to reduce the size of the drive motor, it is necessary to increase the torque of the motor. Therefore, the non-oriented electrical steel sheet is required to further improve the magnetic flux density. In addition, since the battery capacity mounted on an automobile is limited, it is necessary to reduce the energy loss in the motor. Therefore, non-oriented electrical steel sheets are required to further reduce iron loss.
  • a winding is wound around a core divided into individual teeth, and then the cores are assembled to finish the final form of the stator core.
  • a split core There is something called a "split core".
  • the split core is often applied to cores with complicated shapes, and particularly high accuracy is required for the member shape.
  • the electromagnetic steel sheet whose crystal grains are coarsened by sufficient heat treatment becomes soft, so that the shape accuracy is lowered when the member (steel sheet blank) is punched.
  • Patent Documents 1 to 3 disclose a technique for improving punching accuracy by hardening a steel sheet or making crystal grains finer.
  • these techniques may improve punching accuracy, they cannot be said to sufficiently satisfy recent demands for magnetic characteristics such as magnetic flux density and iron loss.
  • An object of the present invention is to improve the processing accuracy (punching workability) at the time of punching for a split core and to have excellent magnetic characteristics.
  • the present inventors diligently studied a method for solving the above problems. As a result, it was found that both the punching workability and the magnetic characteristics of the base steel sheet can be improved by increasing the degree of integration in the ⁇ 5, 5, 7 ⁇ ⁇ 7, 14,5> orientation in the central region in the plate thickness direction. ..
  • the present inventors examined in detail the conditions for increasing the degree of integration of the ⁇ 5, 5 and 7 ⁇ ⁇ 7, 14.5> orientations in the central region in the plate thickness direction. As a result, if the ratio of the recrystallized structure to the unrecrystallized structure in the steel sheet before cold rolling is controlled by controlling each process, the central region in the plate thickness direction after the subsequent cold rolling and finish annealing. It was found that the degree of integration of ⁇ 5 5 7 ⁇ ⁇ 7 1 4 5> orientation can be increased.
  • the gist of the present invention is as follows.
  • the non-oriented electrical steel sheet according to one aspect of the present invention is a non-oriented electrical steel sheet provided with a silicon steel sheet and an insulating coating, and the silicon steel sheet has a component composition of% by mass and Si: 0. 0.01 to 3.50%, Al: 0.001 to 2.500%, Mn: 0.01 to 3.00%, C: 0.0030% or less, P: 0.180% or less, S: 0.
  • the silicon steel plate has the component composition of Sb: 0.001 to 0.05% and Sn: 0.01 to 0.20 in mass%.
  • the method for producing a non-directional electromagnetic steel sheet according to one aspect of the present invention is the method for producing a non-directional electromagnetic steel sheet according to any one of (1) to (3) above. It includes a casting process, a hot rolling process, a heat insulating process, a pickling process, a cold rolling process, a finish annealing process, and a film forming process.
  • the component composition is based on mass%. , Si: 0.01 to 3.50%, Al: 0.001 to 2.500%, Mn: 0.01 to 3.00%, C: 0.0030% or less, P: 0.180% or less, S: 0.003% or less, N: 0.003% or less, B: 0.002% or less, Sb: 0 to 0.05%, Sn: 0 to 0.20%, Cu: 0 to 1.00% , REM: 0 to 0.0400%, Ca: 0 to 0.0400%, Mg: 0 to 0.0400%, and the balance is Fe and impurities.
  • heat is cast.
  • the slab heating temperature before hot rolling is 1000 to 1300 ° C
  • the final rolling temperature during hot rolling is 800 to 950 ° C
  • the cumulative rolling reduction during hot rolling is 98 to 99.5%
  • the hot rolling end temperature is 80 to 200 ° C./sec
  • the heat retention temperature is 700 to 850 ° C
  • the heat retention time is 10 to 180 minutes
  • the cold rolling step is 80 to 200 ° C./sec
  • the unrecrystallized fraction of the previous steel sheet is controlled to 10 to 20 area%
  • the cumulative rolling reduction during cold rolling is 80 to 95% in the cold rolling process, and from the temperature rise start temperature in the finish annealing process.
  • the average rate of temperature rise from 750 ° C. to the soaking temperature of finish rolling is within the range of 20 to 100 ° C./sec. Change to a temperature rise rate faster than the temperature rate, and set the soaking temperature of finish rolling to the recrystallization temperature or higher.
  • a non-oriented electrical steel sheet having excellent magnetic properties in two directions, a rolling direction and a plate width direction, and a method for manufacturing the same, are provided for the split core in addition to punching workability. can do.
  • the non-oriented electrical steel sheet according to the present embodiment includes a silicon steel sheet and an insulating coating as a base steel sheet.
  • FIG. 1 is a schematic cross-sectional view showing a non-oriented electrical steel sheet according to the present embodiment.
  • the non-oriented electrical steel sheet 1 according to the present embodiment includes a silicon steel sheet 3 and an insulating coating 5 when viewed from a cut surface whose cutting direction is parallel to the plate thickness direction.
  • the degree of integration in the ⁇ 5, 5, 7 ⁇ , ⁇ 7, 14,5> orientation is 12 or more in the central region of the silicon steel plate in the plate thickness direction.
  • the ⁇ 1 1 1 ⁇ ⁇ 1 1 2> orientation and the ⁇ 5 5 7 ⁇ ⁇ 7 14 5> orientation are Miller indexes in the normal direction of the rolled surface (rolled surface direction).
  • the Miller index in the direction parallel to the rolling direction shall be the direction including the direction within ⁇ 5 °.
  • the ⁇ 5 5 7 ⁇ ⁇ 7 1 4 5> orientation is preferable for improving the processing accuracy during punching, and is relatively close to the ⁇ 1 1 1 ⁇ orientation, which is also preferable for improving the magnetic characteristics ⁇ 4 1 1 ⁇ ⁇ 1 4.8>
  • the azimuth is also relatively close to the azimuth. Therefore, if the degree of integration of the ⁇ 5, 5, 7 ⁇ , ⁇ 7, 14,5> orientations is increased in the central region of the silicon steel plate in the plate thickness direction, both the punching workability and the magnetic characteristics can be improved.
  • the degree of integration of orientation is 12 or more, both punching workability and magnetic characteristics can be improved. It is preferably 15 or more, more preferably 18 or more.
  • the higher the degree of integration of the ⁇ 5, 5, 7 ⁇ ⁇ 7, 14.5> orientations the more preferable, so that the upper limit is not particularly limited. However, since it is practically difficult to increase the degree of integration of the ⁇ 5, 5, 7 ⁇ ⁇ 7, 1 4 5> orientations above 35, the upper limit may be set to 35 or less. This upper limit may be 30 or less, or 25 or less.
  • the degree of accumulation of crystal orientation can be measured by the following method.
  • the thickness of the silicon steel sheet is defined as t, and the position 1 / 2t from the surface of the silicon steel sheet in the plate thickness direction is defined as the central region.
  • the plate surface of the test piece of about 30 mm ⁇ 30 mm cut out from the steel plate is thinned by mechanical polishing to expose the central region. This exposed surface is subjected to chemical polishing or electrolytic polishing to remove strain and used as a test piece for measurement.
  • X-ray diffraction is performed on the test piece for measurement, and pole figures of the ⁇ 2.0 ⁇ plane, the ⁇ 1 1.0 ⁇ plane, and the ⁇ 21.1 ⁇ plane are created. From these pole figures, the crystal orientation distribution function ODF (Orientation Determination Function) in the central region is obtained. Based on this crystal orientation distribution function, the degree of integration of ⁇ 5 5 7 ⁇ ⁇ 7 1 4 5> orientation is obtained.
  • ODF Orientation Determination Function
  • the silicon steel sheet contains a basic element as a component composition, and if necessary, a selective element, and the balance is composed of Fe and impurities.
  • % relating to the component composition means “mass%”.
  • Si, Al, and Mn are the basic elements (main alloying elements) in the composition of the silicon steel sheet.
  • Si 0.01-3.50% Si (silicon) is an element that lowers the magnetic flux density, hardens the steel sheet, lowers the workability during steel sheet manufacturing, and lowers the punching workability, but on the other hand, it increases the electrical resistance of the steel sheet. It is an element that reduces eddy current loss and reduces iron loss.
  • Si should be 3.50% or less. It is preferably 3.20% or less, more preferably 3.00% or less. On the other hand, if Si is less than 0.01%, the electrical resistance of the steel sheet does not increase and the iron loss does not decrease, so Si is set to 0.01% or more. It is preferably 0.10% or more, more preferably 0.50% or more, still more preferably more than 2.00%, still more preferably 2.10% or more, still more preferably 2.30% or more.
  • Al 0.001 to 2.500%
  • Al aluminum
  • Si aluminum
  • It is an element of aluminum.
  • Al is set to 0.001% or more. It is preferably 0.010% or more, more preferably 0.050% or more, still more preferably more than 0.50%, still more preferably 0.60% or more.
  • Al when Al exceeds 2.500%, the saturation magnetic flux density decreases and the magnetic flux density decreases, so Al is 2.500% or less. It is preferably 2.000% or less, more preferably 1.600% or less.
  • Mn 0.01 to 3.00%
  • Mn (manganese) is an element that increases electrical resistance, reduces eddy current loss, and suppresses the formation of ⁇ 111 ⁇ ⁇ 112> textures that are undesirable for magnetic properties.
  • Mn is set to 0.01% or more. It is preferably 0.15% or more, more preferably 0.40% or more, still more preferably more than 0.60%, still more preferably 0.70% or more. On the other hand, if Mn exceeds 3.00%, the growth potential of crystal grains during annealing decreases and iron loss increases, so Mn is set to 3.00% or less. It is preferably 2.50% or less, more preferably 2.00% or less.
  • the silicon steel sheet contains impurities as a component composition.
  • impurities refer to those mixed from ore or scrap as a raw material, from the manufacturing environment, etc. when steel is industrially manufactured. For example, it means an element such as C, P, S, N, B. These impurities are preferably limited as follows in order to fully exert the effects of the present embodiment. Further, since the content of impurities is preferably small, it is not necessary to limit the lower limit value, and the lower limit value of impurities may be 0%.
  • C is an element that increases iron loss and is an impurity element that also causes magnetic aging. Since the smaller the amount of C, the more preferable it is, C is set to 0.0030% or less. It is preferably 0.0025% or less, more preferably 0.0020% or less.
  • the lower limit of C is not particularly limited, but in consideration of industrial purification technology, the lower limit is practically 0.0001%, and in consideration of the manufacturing cost, 0.0005% or more is preferable.
  • P 0.180% or less
  • P phosphorus
  • P is an impurity element that embrittles the steel sheet, although it may increase the tensile strength without lowering the magnetic flux density. If P exceeds 0.180%, the toughness is lowered and the steel sheet is liable to break, so P is set to 0.180% or less.
  • the lower limit of P is not particularly limited, but considering the industrial purification technology, 0.0001% is the lower limit, and considering the manufacturing cost, 0.001% is the actual lower limit.
  • S is an impurity element that forms fine sulfides such as MnS and inhibits recrystallization and grain growth in finish annealing and the like. If S exceeds 0.003%, recrystallization and grain growth in finish annealing or the like are significantly inhibited, so S is set to 0.003% or less. The smaller the amount of S, the more preferable it is, so it is preferably 0.002% or less, more preferably 0.001% or less.
  • the lower limit of S is not particularly limited, but considering the industrial purification technology, 0.0001% is the lower limit, and considering the manufacturing cost, 0.0005% is the actual lower limit.
  • N is an impurity element that forms a precipitate and increases iron loss.
  • N is set to 0.003% or less. It is preferably 0.002% or less, more preferably 0.001% or less.
  • the lower limit of N is not particularly limited, but considering the industrial purification technology, 0.0001% is the lower limit, and considering the manufacturing cost, 0.0005% is the actual lower limit.
  • B 0.002% or less
  • B is an impurity element that forms a precipitate and increases iron loss.
  • B is set to 0.002% or less. It is preferably 0.001% or less, more preferably 0.0005% or less.
  • the lower limit of B is not particularly limited, but considering the industrial purification technology, 0.0001% is the lower limit, and considering the manufacturing cost, 0.0005% is the actual lower limit.
  • the silicon steel plate may contain a selective element in addition to the basic elements and impurities described above.
  • Sb, Sn, Cu, REM, Ca, and Mg may be contained as selective elements in place of a part of Fe, which is the balance described above.
  • These selective elements may be contained according to the purpose. Therefore, it is not necessary to limit the lower limit of these selective elements, and the lower limit may be 0%. Further, even if these selective elements are contained as impurities, the above effects are not impaired.
  • Sb 0 to 0.05%
  • Sb antimony
  • Sb is an element that suppresses surface nitriding of steel sheets and contributes to reduction of iron loss. If Sb exceeds 0.05%, the toughness of the steel decreases, so Sb is set to 0.05% or less. It is preferably 0.03% or less, more preferably 0.01% or less.
  • the lower limit of Sb is not particularly limited and may be 0%. In order to obtain the above effect preferably, Sb may be 0.001% or more.
  • Sn 0 to 0.20%
  • Sn (tin) is an element that suppresses surface nitriding of steel sheets and contributes to reduction of iron loss. If Sn exceeds 0.20%, the toughness of the steel is lowered and the insulating film is easily peeled off, so Sn is set to 0.20% or less. It is preferably 0.15% or less, more preferably 0.10% or less.
  • the lower limit of Sn is not particularly limited and may be 0%. In order to obtain the above effect preferably, Sn may be 0.01% or more. It is preferably 0.04% or more, more preferably 0.08% or more.
  • Cu acts to suppress the formation of ⁇ 111 ⁇ ⁇ 112> texture, which is not desirable for magnetic properties, controls the oxidation of the surface of the steel sheet, and regulates the grain growth. It is an element.
  • Cu exceeds 1.00%, the addition effect is saturated, the crystal grain growth during finish annealing is suppressed, the workability of the steel sheet is lowered, and the steel sheet becomes embrittled during cold rolling. Therefore, Cu is 1. It shall be 0.00% or less. It is preferably 0.60% or less, more preferably 0.40% or less.
  • the lower limit of Cu is not particularly limited and may be 0%. In order to obtain the above effect preferably, Cu may be 0.10% or more. It is preferably 0.20% or more, more preferably 0.30% or more.
  • REM 0-0.0400%
  • Ca 0-0.0400%
  • Mg 0 to 0.0400%
  • REM Reare Earth Metal
  • Ca calcium
  • Mg magnesium fixes S as a sulfide or acid sulfide, suppresses fine precipitation of MnS, etc., and prevents recrystallization and grain growth during finish annealing. It is an element that promotes action.
  • REM, Ca, and Mg exceed 0.0400%, sulfide or acid sulfide is excessively generated, and recrystallization and grain growth during finish annealing are inhibited. Therefore, all of REM, Ca, and Mg are used. , 0.0400% or less. Preferably, each element is 0.0300% or less, more preferably 0.0200% or less.
  • the lower limit of REM, Ca, and Mg is not particularly limited and may be 0%. In order to obtain the above effect preferably, all of REM, Ca and Mg may be 0.0005% or more. Preferably, each element is 0.0010% or more, more preferably 0.0050% or more.
  • REM refers to a total of 17 elements of Sc, Y and lanthanoid, and is at least one of them.
  • the content of REM means the total content of at least one of these elements.
  • lanthanoids they are industrially added in the form of misch metal.
  • the silicon steel plate has a component composition of Sb: 0.001 to 0.05%, Sn: 0.01 to 0.20%, Cu: 0.10 to 1.00% in mass%. It is preferable to contain at least one of REM: 0.0005 to 0.0400%, Ca: 0.0005 to 0.0400%, or Mg: 0.0005 to 0.0400%.
  • the above steel composition may be measured by a general analysis method for steel.
  • the steel component may be measured using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry).
  • C and S may be measured using the combustion-infrared absorption method
  • N may be measured using the inert gas melting-thermal conductivity method
  • O may be measured using the inert gas melting-non-dispersion infrared absorption method.
  • the above-mentioned component composition is the component composition of the silicon steel sheet, and when the silicon steel sheet as the measurement sample has an insulating film or the like on the surface, the component composition obtained by removing the insulating film or the like is used. is there.
  • the non-directional electromagnetic steel plate having the insulating coating or the like is immersed in the order of sodium hydroxide aqueous solution, sulfuric acid aqueous solution, and nitric acid aqueous solution, washed, and warm air is used. There is a way to dry with. By this series of treatments, a silicon steel plate from which the insulating film has been removed can be obtained.
  • the non-directional electromagnetic steel plate In the non-directional electromagnetic steel plate according to the present embodiment, it is preferable to secure excellent magnetic characteristics in two directions, a rolling direction and a plate width direction (direction perpendicular to the rolling direction), for the split core. Therefore, magnetizing force an average of the rolling direction of the magnetic flux density and the plate width direction of the magnetic flux density when excited at 5000A / m and the magnetic flux density B 50, in the rolling direction of the saturation magnetic flux density of the saturation magnetic flux density and the plate width direction When the average is the saturated magnetic flux density Bs, it is preferable that B 50 / Bs, which is the ratio of the magnetic flux density B 50 and the saturated magnetic flux density Bs, is 0.82 or more.
  • the above B 50 / Bs is preferably 0.84 or more, more preferably 0.86 or more, still more preferably 0.90 or more.
  • the saturation magnetic flux density Bs is the maximum magnetic flux density obtained when the maximum magnetic field is applied, so the maximum value of B 50 / Bs is 1.
  • the upper limit of B 50 / Bs is not particularly limited, but may be 1.00. Preferably, it is 0.98 or less.
  • the ⁇ 5 5 7 ⁇ ⁇ 7 145> azimuth controlled in the present embodiment is a azimuth close to the ⁇ 4 1 1 ⁇ ⁇ 1 4 8> azimuth, and this ⁇ 4 1 1 ⁇ ⁇ 1 4 8> azimuth is It is an orientation close to the ⁇ 100 ⁇ ⁇ 0 1 2> orientation that improves the magnetic flux density B 50 in the rolling direction and the plate width direction. Therefore, in the present embodiment, it is considered that the magnetic characteristics are improved in two directions, the rolling direction and the plate width direction.
  • the magnetic flux density in the rolling direction and the plate width direction when the steel plate is magnetized with a magnetization force of 5000 A / m by Single Sheet Tester (SST) is measured in units of T (tesla).
  • the density B 50 may be obtained, and similarly, the saturation magnetic flux density Bs may be obtained by measuring the magnetic flux density in the rolling direction and the plate width direction when the maximum magnetic field is applied to the steel plate in the unit: T (tesla).
  • the non-oriented electrical steel sheet according to the present embodiment has an increased degree of integration in the ⁇ 5 5 7 ⁇ ⁇ 7 145> orientation, the processing accuracy during punching is improved. For example, when circular punching is performed, the roundness of the processed product becomes small.
  • the roundness may be evaluated by the difference between the maximum radius and the minimum radius of the circular punched product. For example, when a circular product having a radius of 200 mm is punched, the maximum radius and the minimum radius of the punched product may be measured and the difference may be obtained.
  • the roundness is preferably 45 ⁇ m or less, and more preferably 40 ⁇ m or less.
  • the lower limit of roundness is not particularly limited. However, since it is practically difficult to control the roundness to be smaller than 5 ⁇ m, the lower limit may be set to 5 ⁇ m.
  • the degree of integration of the ⁇ 5, 5 and 7 ⁇ ⁇ 7, 14.5> directions in the central region in the plate thickness direction is higher than that of a normal steel sheet, so that the punching workability is improved. ..
  • the mechanism for improving punching workability is considered as follows.
  • the ⁇ 5 5 7 ⁇ ⁇ 7 1 4 5> azimuth controlled in this embodiment is a azimuth close to the ⁇ 111 ⁇ ⁇ 112> azimuth. Since the hardness anisotropy in the entire circumferential direction is small in this ⁇ 111 ⁇ orientation, the regions in which the steel sheet is stretched and deformed during punching are substantially equal over the entire circumferential direction. Therefore, if the degree of integration of the ⁇ 5 5 7 ⁇ ⁇ 7 1 4 5> orientation is increased, it is considered that the punching workability is also improved.
  • the thickness of the silicon steel sheet may be appropriately adjusted according to the intended use and is not particularly limited.
  • the thickness of the silicon steel plate is preferably 0.10 mm or more, more preferably 0.15 mm or more from the viewpoint of manufacturing.
  • the thickness of the silicon steel plate is preferably 0.50 mm or less, more preferably 0.35 mm or less.
  • the non-oriented electrical steel sheet according to the present embodiment may have an insulating film on the surface of the silicon steel sheet.
  • the type of the insulating coating is not particularly limited, and may be appropriately selected from known insulating coatings according to the intended use.
  • the insulating coating may be either an organic coating or an inorganic coating.
  • the organic coating include polyamine resins, acrylic resins, acrylic styrene resins, alkyd resins, polyester resins, silicone resins, fluororesins, polyolefin resins, styrene resins, vinyl acetate resins, epoxy resins, phenol resins, and urethane resins.
  • a film such as a melamine resin.
  • the inorganic coating examples include a phosphate-based coating and an aluminum phosphate-based coating. Further, an organic-inorganic composite coating containing the above resin can be mentioned.
  • the film thickness of the insulating film is not particularly limited, but the film thickness per side is preferably 0.05 to 2 ⁇ m.
  • FIG. 2 is a flow chart illustrating a method for manufacturing a non-oriented electrical steel sheet according to the present embodiment.
  • molten steel having an adjusted composition is cast, hot-rolled, heat-treated at the time of cooling after hot-rolling, pickled, cold-rolled, and then finish-annealed to make a silicon steel sheet.
  • a non-oriented electrical steel sheet is manufactured by providing an insulating film on the upper layer of the silicon steel sheet.
  • each process is controlled to control the ratio of the recrystallized structure to the unrecrystallized structure (unrecrystallized fraction) in the steel sheet before cold rolling, and then cold rolling and finish annealing are performed.
  • the degree of integration of the ⁇ 5, 5, 7 ⁇ ⁇ 7, 14,5> orientation is increased in the central region of the silicon steel sheet in the plate thickness direction.
  • the unrecrystallized fraction before cold rolling depends on only one condition of one step, such as steel composition, temperature during hot rolling, rolling reduction during hot rolling, and cooling conditions after hot rolling. It is not a technical feature that can be controlled, but a technical feature that is controlled by the complex influence of each condition of each process.
  • the Si content of the steel composition is a factor that affects whether the constituent phases of the steel structure become ⁇ phase and / or ⁇ phase at the hot rolling temperature, and the Si content is 0.01 to 3.50%. The higher the value within the range, the larger the unrecrystallized fraction before cold rolling.
  • the Al content of the steel composition is a factor that affects whether the constituent phase of the steel structure becomes the ⁇ phase and / or the ⁇ phase at the hot rolling temperature, and the Al content is 0.001 to 2.500%. The higher the value within the range, the larger the unrecrystallized fraction before cold rolling.
  • the Mn content of the steel composition is a factor that affects the amount of MnS produced, which affects the recrystallization driving force.
  • the unrecrystallized fraction increases.
  • the temperature during hot rolling specifically the slab heating temperature before hot rolling, is a factor that affects whether the constituent phases of the steel structure are ⁇ -phase and / or ⁇ -phase, and the hot-rolled structure.
  • the temperature during hot rolling, specifically the final rolling temperature during finish hot rolling is a factor that affects whether the constituent phases of the steel structure are ⁇ -phase and / or ⁇ -phase, and also of the hot-rolled structure.
  • the reduction rate during hot rolling is a factor that affects the formation of hot-rolled microstructures, and the larger the cumulative reduction rate during hot rolling within the range of 98 to 99.5%, the more unresolved before cold rolling.
  • the recrystallization fraction becomes small.
  • the cooling conditions after hot rolling specifically the cooling rate from the hot rolling end temperature to the heat treatment temperature, are factors that affect the recovery and recrystallization of the hot-rolled structure, and are averaged in this temperature range.
  • the unrecrystallized fraction before cold rolling increases.
  • the cooling conditions after hot rolling specifically the heat retention temperature during heat treatment, are also factors that affect the recovery and recrystallization of the hot-rolled structure, and the heat retention temperature during heat treatment is 700 to 850 ° C. The higher the value within the range of, the smaller the unrecrystallized fraction before cold rolling.
  • the cooling conditions after hot rolling specifically the heat retention time during heat treatment, are also factors that affect the recovery and recrystallization of the hot-rolled structure, and the heat retention time during heat treatment is 10 to 180 minutes. The longer the value is within the range of, the smaller the unrecrystallized fraction before cold rolling.
  • each of the above conditions is intentionally, complexly and indivisiblely controlled so that the unrecrystallized surface integral before cold rolling is 1/10 or more and 1/5 or less in the structure. That is, the steel structure is created so that the area fraction is 10 to 20%.
  • the steel sheet in which the unrecrystallized fraction before cold rolling is controlled is subjected to cold rolling and finish annealing so that the ⁇ 5 5 7 ⁇ ⁇ 7 1 4 5> orientation grains are preferentially recrystallized. Control.
  • the degree of integration in the ⁇ 5, 5, 7 ⁇ ⁇ 7, 14.5> orientation is simply one step, such as the unrecrystallized fraction before cold rolling, the reduction rate of cold rolling, and the rate of temperature rise during finish annealing. It is not a technical feature that can be controlled by one condition, but a technical feature that is controlled by the complex influence of each condition of each process.
  • the reduction rate during cold rolling is a factor that affects the formation of the cold-rolled structure that is the base on which the ⁇ 5 5 7 ⁇ ⁇ 7 145> orientation grains recrystallize, and the cumulative reduction rate during cold rolling.
  • the rate of temperature rise during finish annealing specifically, the rate of temperature rise from the temperature rise start temperature to 750 ° C. is a factor that affects the recrystallization nucleation of ⁇ 5 5 7 ⁇ ⁇ 7 145> orientation grains.
  • the rate of temperature rise during finish annealing specifically, the rate of temperature rise from 750 ° C. to the soaking temperature of finish annealing is a factor that affects the grain growth of ⁇ 5 57 ⁇ ⁇ 7 145> orientation grains.
  • the average heating rate in this temperature range increases within the range of 20 to 100 ° C./sec, the degree of integration of the ⁇ 5 5 7 ⁇ ⁇ 7 145> orientation increases.
  • each of the above conditions is intentionally, compoundly, and inseparably controlled in the central region of the silicon steel plate in the plate thickness direction in the ⁇ 5, 5, 7 ⁇ , ⁇ 7, 14,5> orientation.
  • the steel structure is created so that the degree of integration is 12 or more and 35 or less.
  • the degree of integration of ⁇ 5, 5, 7 ⁇ ⁇ 7, 1 4 5> orientations is not a technical feature obtained by simply controlling one condition of one process.
  • the degree of integration of the ⁇ 5 5 7 ⁇ ⁇ 7 1 4 5> orientation can be created for the first time by controlling the unrecrystallized fraction before cold rolling and then controlling the conditions of cold rolling and finish annealing. It is a possible technical feature.
  • the method for producing the non-directional electromagnetic steel sheet according to the present embodiment includes a casting step, a hot rolling step, a heat treatment holding step, a pickling step, a cold rolling step, and a finish annealing step.
  • the component composition is Si: 0.01 to 3.50%, Al: 0.001 to 2.500%, Mn: 0.01 to 3.00%, C: 0.0030 in mass%. % Or less, P: 0.180% or less, S: 0.003% or less, N: 0.003% or less, B: 0.002% or less, Sb: 0 to 0.05%, Sn: 0 to 0.
  • the slab heating temperature before hot rolling is 1000 to 1300 ° C
  • the final rolling temperature during finish hot rolling is 800 to 950 ° C
  • the cumulative reduction rate during hot rolling is 98 to 99.5%.
  • the average cooling rate from the hot rolling end temperature to the heat retention temperature of the heat treatment is set to 80 to 200 ° C./sec.
  • the heat-retaining temperature is 700 to 850 ° C. and the heat-retaining time is 10 to 180 minutes.
  • the unrecrystallized fraction of the steel sheet before the cold rolling process is controlled to 10 to 20 area%.
  • the cumulative rolling reduction during cold rolling is set to 80 to 95%.
  • the average temperature rise rate from the temperature rise start temperature to 750 ° C. is 5 to 50 ° C./sec, and the average temperature rise rate from 750 ° C. to the soaking temperature of finish annealing is 20 to 100 ° C./sec.
  • the temperature rise rate is changed to be faster than the average temperature rise rate up to 750 ° C., and the soaking temperature of finish annealing is set to be equal to or higher than the recrystallization temperature.
  • steel having the above-mentioned composition may be melted in a converter, an electric furnace, or the like, and a slab may be manufactured using the molten steel.
  • a slab may be produced by a continuous casting method, or an ingot may be produced using molten steel, and the ingot may be block-rolled to produce a slab. Further, the slab may be manufactured by another method.
  • the thickness of the slab is not particularly limited, but is, for example, 150 to 350 mm.
  • the thickness of the slab is preferably 220 to 280 mm.
  • As the slab a so-called thin slab having a thickness of 10 to 70 mm may be used.
  • the Si content of the steel composition is controlled within the range of 0.01 to 3.50% so that the unrecrystallized fraction of the steel sheet before cold rolling is 10 to 20 area%, and Al.
  • the content is controlled in the range of 0.001 to 2.500%, and the Mn content is controlled in the range of 0.01 to 3.00%.
  • the Si content is preferably 0.10% or more, more preferably 0.50% or more, still more preferably more than 2.00%, still more preferably 2.10% or more, still more preferably 2.30% or more. ..
  • the Si content is preferably 3.20% or less, more preferably 3.00% or less.
  • the Al content is preferably 0.010% or more, more preferably 0.050% or more, still more preferably more than 0.50%, still more preferably 0.60% or more.
  • the Al content is preferably 2.000% or less, more preferably 1.600% or less.
  • the Mn content is preferably 0.15% or more, more preferably 0.40% or more, still more preferably more than 0.60%, still more preferably 0.70% or more.
  • the Mn content is preferably 2.50% or less, more preferably 2.00% or less.
  • the slab may be hot rolled using a hot rolling machine.
  • the hot rolling mill includes, for example, a rough rolling mill and a finishing rolling mill located downstream of the rough rolling mill.
  • the heated steel material is rolled by a rough rolling mill and then further rolled by a finishing rolling mill to produce a hot-rolled steel sheet.
  • the slab heating temperature before hot rolling is controlled within the range of 1000 to 1300 ° C. so that the unrecrystallized fraction of the steel sheet before cold rolling is 10 to 20 area%, and finishing is performed.
  • the final rolling temperature during hot rolling is controlled in the range of 800 to 950 ° C.
  • the cumulative rolling reduction rate during hot rolling is controlled in the range of 98 to 99.5%
  • the temperature from the hot rolling end temperature to the heat treatment holding temperature is controlled.
  • the average cooling rate of is controlled in the range of 80 to 200 ° C./sec.
  • the slab heating temperature is preferably 1100 ° C. or higher, more preferably 1150 ° C. or higher.
  • the slab heating temperature is preferably 1250 ° C. or lower, more preferably 1200 ° C. or lower.
  • the final rolling temperature is preferably 850 ° C. or higher.
  • the final rolling temperature is preferably 900 ° C. or lower.
  • the average cooling rate is preferably 100 ° C./sec or higher, more preferably 120 ° C./sec or higher.
  • the average cooling rate is preferably 180 ° C./sec or less, more preferably 150 ° C./sec or less.
  • the thickness of the steel sheet is preferably 20 to 100 mm at the time when the finish hot spreading is started.
  • the hot-rolled steel sheet is heat-retained during cooling after hot rolling.
  • the heat retention temperature is controlled within the range of 700 to 850 ° C. and the heat retention time is 10 to 180 so that the unrecrystallized fraction of the steel sheet before cold rolling is 10 to 20 area%. Control within minutes.
  • the heat retention temperature is preferably 750 ° C. or higher, more preferably 780 ° C. or higher.
  • the heat retention temperature is preferably 830 ° C. or lower, more preferably 800 ° C. or lower.
  • the heat retention time is preferably 20 minutes or longer, more preferably 30 minutes or longer, and even more preferably 40 minutes or longer.
  • the heat retention time is preferably 150 minutes or less, more preferably 120 minutes or less, and further preferably 100 minutes or less.
  • pickling In the pickling step, pickling may be performed in order to remove the scale generated on the surface of the hot-rolled steel sheet.
  • the pickling conditions at the time of hot-rolled plate pickling are not particularly limited, and may be performed under known conditions.
  • the unrecrystallized fraction in the structure of the steel sheet that has undergone the above-mentioned casting step, hot rolling step, heat treatment holding step, and pickling step and before the cold rolling step is set to 10 to 20. Control to area%.
  • One of the main orientations of the conventional non-oriented electrical steel sheet is the ⁇ 1 1 1 ⁇ ⁇ 1 1 2> orientation.
  • crystal grains in this orientation recrystallize all the steel sheet structure before cold rolling, introduce strain into the structure by cold rolling, and recrystallize nuclei are generated and grow from the grain boundaries during finish annealing. It is formed.
  • a predetermined amount of unrecrystallized structure remains in the structure of the steel sheet before cold rolling, and the cold rolling conditions and finish annealing conditions are preferably controlled to ⁇ 5, 5, 7 ⁇ ⁇ 7, 14 5> Orientation crystal grains are intentionally formed.
  • the degree of integration of the ⁇ 5, 5, 7 ⁇ ⁇ 7, 14.5> orientation cannot be finally controlled.
  • the structure of the steel sheet before cold rolling contains an unrecrystallized structure in excess of a predetermined amount, the structure after finish annealing is effective for improving magnetic properties ⁇ 4 1 1 ⁇ ⁇ 1 4 8> Orientation crystal grains are less likely to be formed. Therefore, in order to achieve both excellent magnetic properties and punching workability, it is optimal to control the unrecrystallized fraction of the steel sheet before the cold rolling process to 10 to 20 area%.
  • the hot-rolled steel sheet was cooled to near room temperature after the hot rolling process, then heated again, and annealed at a soaking temperature of 800 to 1050 ° C. with a soaking time of 1 minute or less.
  • a soaking temperature 800 to 1050 ° C. with a soaking time of 1 minute or less.
  • the steel sheet in order to control the unrecrystallized fraction of the steel sheet before cold rolling, the steel sheet is subjected to the above-mentioned heat treatment during cooling after hot rolling. Then, after the heat-retained steel sheet is cooled to near room temperature, the heat-rolled sheet is not annealed.
  • the unrecrystallized fraction of the steel sheet before cold rolling is preferably controlled, and finally, the degree of integration in the ⁇ 5, 5, 7 ⁇ ⁇ 7, 1 4> orientation in the central region of the steel sheet in the plate thickness direction. Can be enhanced.
  • the unrecrystallized fraction of the steel sheet before the cold rolling process can be measured by the following method.
  • the plate surface of the test piece of about 25 mm ⁇ 25 mm cut out from the steel plate before the cold rolling process is mechanically polished to reduce the thickness to 1/2 of the plate thickness of the steel plate. This polished surface is subjected to chemical polishing or electrolytic polishing to remove strain and used as a test piece for measurement.
  • EBSD Electro Backscattering Diffraction
  • the unrecrystallized fraction in the observation field may be determined from the KAM (Kernel Average Misorition) value.
  • KAM Kernel Average Misorition
  • a crystal grain having a KAM value of 2.0 or more in the observation field of view is determined to be an unrecrystallized grain.
  • the EBSD measurement may be carried out at 10 or more places by changing the observation field of view so that the total area of the observation field of view is 1,000,000 ⁇ m 2 or more.
  • the hot rolling step, the heat treatment holding step, the pickling step, and the cold rolling step are continuous steps.
  • the steel sheet after the hot rolling step is subjected to heat treatment, the steel sheet after the heat treatment step is pickled, and the steel sheet after the pickling step is cold rolled.
  • Cold rolling process In the cold rolling step, cold rolling is performed on a steel sheet whose unrecrystallized fraction is controlled to 10 to 20 area%. In the cold rolling process, the cumulative rolling reduction during cold rolling is controlled within the range of 80 to 95% so that the degree of integration in the ⁇ 5 5 7 ⁇ ⁇ 7 145> orientation becomes 12 to 35 after finish annealing. To do. This cumulative reduction rate is preferably 83% or more, more preferably 85% or more.
  • the cold-rolled steel sheet is finish-annealed.
  • the average temperature rise rate in the temperature range from the temperature rise start temperature to 750 ° C. is set to 5 so that the degree of integration in the ⁇ 5 5 7 ⁇ ⁇ 7 145> orientation becomes 12 to 35 after finish annealing.
  • the average temperature rise rate in the temperature range from 750 ° C to the soaking temperature of finish annealing is the average rise to the above 750 ° C within the range of 20 to 100 ° C / sec.
  • the temperature rise rate is controlled to be faster than the temperature rate, and the soaking temperature of finish annealing is controlled to be equal to or higher than the recrystallization temperature.
  • the average rate of temperature rise up to 750 ° C. is preferably 10 ° C./sec or higher, more preferably 20 ° C./sec or higher.
  • the average heating rate up to 750 ° C. is preferably 40 ° C./sec or less, more preferably 30 ° C./sec or less.
  • the average rate of temperature rise from 750 ° C. is preferably 30 ° C./sec or higher, more preferably 40 ° C./sec or higher.
  • the average rate of temperature rise from 750 ° C. is preferably 80 ° C./sec or less, more preferably 60 ° C./sec or less.
  • the soaking temperature at the time of finish annealing is preferably 800 to 1200 ° C.
  • the soaking temperature is preferably 850 ° C. or higher.
  • the soaking time is preferably 5 to 120 seconds.
  • the soaking time is preferably 10 seconds or longer, more preferably 20 seconds or longer.
  • the degree of integration in the ⁇ 5, 5, 7 ⁇ ⁇ 7, 14.5> orientation is controlled to 12 to 35.
  • an insulating film is formed on the silicon steel sheet after finish annealing.
  • the insulating coating may be, for example, either an organic coating or an inorganic coating.
  • the forming condition of the insulating film the same forming condition as the insulating film of the conventional non-oriented electrical steel sheet may be adopted.
  • the non-oriented electrical steel sheet in which the degree of integration of ⁇ 5, 5, 7 ⁇ , ⁇ 7, 14,5> orientations is preferably controlled by the above steps, is used as a magnetic material for rotating machines, small and medium-sized transformers, electrical components, etc. It is suitable as a magnetic material for cores.
  • FIG. 3 shows one aspect of the split core of the motor.
  • the motor core 100 is composed of a punching member 11 and a laminated body 13 in which the punching member 11 is laminated and integrated.
  • the punching member 11 is manufactured by punching a non-oriented electrical steel sheet.
  • the punching member 11 includes a yoke portion 17 on an arc and a teeth portion 15 projecting inward in the radial direction from the inner peripheral surface of the yoke portion 17.
  • the motor core 100 is configured by connecting the punching members 11 in an annular shape.
  • the shape of the punched member 11, the number of pieces connected in an annular shape, the number of layers, and the like may be designed according to the purpose.
  • the conditions in the examples are one condition example adopted for confirming the feasibility and effect of the present invention.
  • the present invention is not limited to this one-condition example.
  • various conditions can be adopted as long as the gist of the present invention is not deviated and the object of the present invention is achieved.
  • a silicon steel sheet was manufactured by controlling the manufacturing conditions in each step.
  • the chemical composition of the silicon steel sheet is shown in Tables 1 and 2, and the manufacturing conditions are shown in Tables 3 to 8.
  • hot rolling and heat treatment were performed under the conditions shown in Tables 3 to 5, and the mixture was cooled to room temperature and then pickled.
  • the sample described as "hot-rolled sheet annealing" in the "heat treatment process” column in the table is cooled to room temperature without heat retention during cooling after hot rolling, and then in an atmosphere of 100% nitrogen. Then, the hot-rolled sheet was annealed at 800 ° C. for 60 seconds, cooled to room temperature, and then pickled.
  • Tables 3 to 5 show the results of measuring the unrecrystallized fraction in the structure of the steel sheet that has undergone the casting process, hot rolling process, heat treatment process, and pickling process and before the cold rolling process. Is shown. The unrecrystallized fraction was measured based on the above method.
  • the steel sheet whose unrecrystallized fraction was measured was cold-rolled and finish-annealed under the conditions shown in Tables 6 to 8.
  • the finish annealing the soaking temperature was 800 to 1100 ° C., which is equal to or higher than the recrystallization temperature, and the soaking time was 30 seconds.
  • a phosphoric acid-based insulating film having an average thickness of 1 ⁇ m was formed on the silicon steel sheet after finish annealing.
  • “finish annealing process” column in the table “heating rate A” represents the average heating rate from the temperature rising start temperature to 750 ° C.
  • “heating rate B” is the average finishing annealing from 750 ° C.
  • the average heating rate up to the heat temperature is represented, and the "heating rate control" represents the magnitude relationship between the heating rate A and the heating rate B.
  • Tables 6 to 8 show the results of measuring the degree of integration of the ⁇ 5, 5 and 7 ⁇ ⁇ 7, 14,5> orientations of the manufactured non-oriented electrical steel sheets in the central region in the plate thickness direction of the silicon steel sheets. Is shown as. The degree of integration of the ⁇ 5 5 7 ⁇ ⁇ 7 1 4 5> orientation was measured based on the above method.
  • the chemical composition of the silicon steel sheet is shown in Tables 1 and 2, and the manufacturing conditions and manufacturing results are shown in Tables 3 to 8.
  • the chemical composition of the slab and the chemical composition of the silicon steel plate were substantially the same.
  • "-" of the chemical component of the silicon steel sheet indicates that the alloying element is not intentionally added or the content is below the measurement detection lower limit.
  • underlined values indicate that they are outside the scope of the present invention.
  • the magnetic flux density was evaluated as the magnetic characteristics, and the roundness of the circular punched product was evaluated as the punching workability.
  • the magnetic flux density and roundness were evaluated based on the above method. When B 50 / Bs was 0.82 or more, it was judged that the magnetic characteristics were good. Further, when the roundness of the circular punched product is 45 ⁇ m or less, it is judged that the punching workability is good.
  • Tables 6 to 8 show the evaluation results of magnetic properties and punching workability. Test No.
  • the silicon steel sheet is excellent in magnetic properties and punching workability as a non-directional electromagnetic steel sheet.
  • test No. In the comparative examples of b1 to b44, at least one of the component composition and the texture of the silicon steel sheet is not preferably controlled, so that either the magnetic property or the punching workability can be satisfied as the non-oriented electrical steel sheet. There wasn't.
  • FIG. 4 shows the relationship between the degree of integration of ⁇ 5 5 7 ⁇ ⁇ 7 1 4 5> orientation and the degree of roundness.
  • FIG. 4 is a graph illustrating the relationship between the degree of integration of ⁇ 5, 5 and 7 ⁇ ⁇ 7, 14.5> orientations and roundness, based on Examples B1 to B22 of the present invention and Comparative Examples b1 to b44.
  • ⁇ 5 5 7 ⁇ ⁇ 7 1 4 5> It is shown in FIG. 4 that the value of roundness decreases as the orientations accumulate.
  • a non-oriented electrical steel sheet having excellent magnetic properties in two directions, a rolling direction and a plate width direction, in addition to punching workability, and a method for manufacturing the same are provided for the split core. be able to. Therefore, it has high industrial applicability.
  • Non-oriented electrical steel sheet 3 Silicon steel sheet (base steel sheet) 5 Insulation film (tension film) 11 Punching member 13 Laminated body 15 Teeth part 17 York part 100 Motor core

Abstract

この無方向性電磁鋼板は、珪素鋼板と絶縁被膜とを備える。この珪素鋼板は、成分組成として、Si、Al、Mnを含有し、珪素鋼板の板厚方向の中心領域における{5 5 7}<7 14 5>方位の集積度が12以上35以下である。

Description

無方向性電磁鋼板およびその製造方法
 本発明は、磁気特性と打抜加工性とに優れる無方向性電磁鋼板およびその製造方法に関する。
 近年、特に、回転機、中小型変圧器、電装品等の電気機器の分野では、世界的な電力削減、エネルギー節減、CO排出量削減等に代表される地球環境の保全の動きの中で、モータの高効率化及び小型化の要請が、ますます強まりつつある。このような社会環境下では、モータのコア材料として使用される無方向性電磁鋼板に対して、その性能向上が要求されている。
 例えば、自動車分野では、ハイブリッド駆動自動車(HEV:Hybrid Electric Vehicle)等の駆動モータのコアとして、無方向性電磁鋼板が使用されている。そして、HEVで使用される駆動モータは、設置スペースの制約及び重量減による燃費低減のため、小型化の需要が高まっている。
 駆動モータを小型化するには、モータを高トルク化する必要がある。そのため、無方向性電磁鋼板には、磁束密度のさらなる向上が要求されている。また、自動車に搭載する電池容量には制限があることから、モータにおけるエネルギー損失を低くする必要がある。そのため、無方向性電磁鋼板には、さらなる低鉄損化が求められている。
 加えて、無方向性電磁鋼板が適用されるモータコアの中には、例えば、一つずつのティースに分割したコアに巻線を巻き、その後、コア同士を組み立てて、ステータコアの最終形態に仕上げる「分割コア」と呼ばれるものがある。
 分割コアは、複雑な形状のコアに適用されることが多く、部材形状には、特に高い精度が求められる。ところが、鉄損を小さくするため、十分に熱処理して結晶粒を粗大化した電磁鋼板は、軟質にもなるため、部材(鋼板ブランク)を打抜加工する際に、形状精度が低下してしまうことがある。
 形状精度の低下に対し、例えば、特許文献1~3には、鋼板を、硬質化する又は結晶粒を微細化することで、打抜き精度を改善する技術が開示されている。しかし、これらの技術では、打抜き精度が改善するかもしれないが、磁束密度や鉄損などの磁気特性に対しては、近年の要求を十分に満足しているとは言えない。
国際公開第2003/002777号 日本国特開2003-197414号公報 日本国特開2004-152791号公報
 従来技術では、打抜き精度と磁気特性とを両立させる技術が確立されていない。分割コア用の無方向性電磁鋼板として、打抜き精度および磁気特性を両立させることができれば、分割コアを用いるモータの高効率化及び小型化の要求に答えることができる。
 本発明は、分割コア向けに、打抜加工時の加工精度(打抜加工性)を高めて、且つ磁気特性にも優れることを課題とする。特に、本発明は、打抜加工性に優れると同時に、モータコア用として、圧延方向及び板幅方向の二つの方向の磁気特性にも優れることを課題とする。すなわち、本発明は、打抜加工性と磁気特性とに優れる無方向性電磁鋼板およびその製造方法を提供することを目的とする。
 本発明者らは、上記課題を解決する方法について鋭意検討した。その結果、母材鋼板に関して、板厚方向の中心領域で{5 5 7}<7 14 5>方位の集積度を高めれば、打抜加工性および磁気特性の両方を高めることができることを見出した。
 そして、本発明者らは、板厚方向の中心領域で{5 5 7}<7 14 5>方位の集積度を高めるための条件について詳細に検討した。その結果、各工程を制御して冷間圧延前の鋼板中の再結晶組織と未再結晶組織との比率を制御すれば、その後の冷間圧延および仕上げ焼鈍を経た後に板厚方向の中心領域で{5 5 7}<7 14 5>方位の集積度を高めることができることを見出した。
 本発明の要旨は次のとおりである。
 (1)本発明の一態様にかかる無方向性電磁鋼板は、珪素鋼板と、絶縁被膜とを備える無方向性電磁鋼板であって、珪素鋼板が、成分組成として、質量%で、Si:0.01~3.50%、Al:0.001~2.500%、Mn:0.01~3.00%、C:0.0030%以下、P:0.180%以下、S:0.003%以下、N:0.003%以下、B:0.002%以下、Sb:0~0.05%、Sn:0~0.20%、Cu:0~1.00%、REM:0~0.0400%、Ca:0~0.0400%、Mg:0~0.0400%を含有し、残部がFe及び不純物からなり、珪素鋼板の板厚方向の中心領域における{5 5 7}<7 14 5>方位の集積度が12以上35以下である。
 (2)上記(1)に記載の無方向性電磁鋼板では、珪素鋼板が、前記成分組成として、質量%で、Sb:0.001~0.05%、Sn:0.01~0.20%、Cu:0.10~1.00%、REM:0.0005~0.0400%、Ca:0.0005~0.0400%、Mg:0.0005~0.0400%の少なくとも1種を含有してもよい。
 (3)上記(1)または(2)に記載の無方向性電磁鋼板では、{5 5 7}<7 14 5>方位の前記集積度が、18以上35以下であってもよい。
 (4)本発明の一態様に係る無方向性電磁鋼板の製造方法は、上記(1)~(3)の何れか1つに記載の無方向性電磁鋼板を製造する製造方法であって、鋳造工程と、熱間圧延工程と、保熱処理工程と、酸洗工程と、冷間圧延工程と、仕上げ焼鈍工程と、被膜形成工程と、を備え、鋳造工程では、成分組成として、質量%で、Si:0.01~3.50%、Al:0.001~2.500%、Mn:0.01~3.00%、C:0.0030%以下、P:0.180%以下、S:0.003%以下、N:0.003%以下、B:0.002%以下、Sb:0~0.05%、Sn:0~0.20%、Cu:0~1.00%、REM:0~0.0400%、Ca:0~0.0400%、Mg:0~0.0400%を含有し、残部がFe及び不純物からなるスラブを鋳造し、熱間圧延工程では、熱間圧延前のスラブ加熱温度を1000~1300℃とし、仕上げ熱延時の最終圧延温度を800~950℃とし、熱間圧延時の累積圧下率を98~99.5%とし、熱間圧延終了温度から保熱処理の保熱温度までの平均冷却速度を80~200℃/秒とし、保熱処理工程では、保熱温度を700~850℃とし、保熱時間を10~180分とし、冷間圧延工程前の鋼板の未再結晶分率を10~20面積%に制御し、冷間圧延工程では、冷間圧延時の累積圧下率を80~95%とし、仕上げ焼鈍工程では、昇温開始温度から750℃までの平均昇温速度を5~50℃/秒とし、750℃から仕上げ焼鈍の均熱温度までの平均昇温速度を20~100℃/秒の範囲内で750℃までの上記平均昇温速度よりも速い昇温速度に変更し、仕上げ焼鈍の均熱温度を再結晶温度以上とする。
 本発明の上記態様によれば、分割コア向けに、打抜加工性に加えて、圧延方向および板幅方向の二つの方向の磁気特性にも優れた無方向性電磁鋼板およびその製造方法を提供することができる。
本発明の一実施形態に係る無方向性電磁鋼板を示す断面模式図である。 本実施形態に係る無方向性電磁鋼板の製造方法を示す流れ図である。 モータコアの一態様を示す模式図である。 {5 5 7}<7 14 5>方位の集積度と真円度との関係を示す図である。
 以下に、本発明の好適な実施形態について詳細に説明する。ただ、本発明は本実施形態に開示の構成のみに制限されることなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。また、下記する数値限定範囲には、下限値及び上限値がその範囲に含まれる。「超」または「未満」と示す数値は、その値が数値範囲に含まれない。各元素の含有量に関する「%」は、「質量%」を意味する。
 本実施形態に係る無方向性電磁鋼板は、母材鋼板として珪素鋼板と、絶縁被膜とを備える。図1は、本実施形態に係る無方向性電磁鋼板を示す断面模式図である。本実施形態に係る無方向性電磁鋼板1は、切断方向が板厚方向と平行な切断面で見たとき、珪素鋼板3と絶縁被膜5とを備える。そして、本実施形態では、珪素鋼板の板厚方向の中心領域にて、{5 5 7}<7 14 5>方位の集積度が12以上である。
 (珪素鋼板の集合組織)
 本実施形態では、珪素鋼板の板厚方向の中心領域にて、{5 5 7}<7 14 5>方位の集積度を12以上に制御することが必須である。
 なお、本実施形態では、例えば、{1 1 1}<1 1 2>方位や、{5 5 7}<7 14 5>方位などは、圧延面の法線方向(圧延面方向)のミラー指数、及び、圧延方向と平行な方向(圧延面内方向)のミラー指数について、それぞれ±5°以内の方位を含む方位とする。
 {5 5 7}<7 14 5>方位は、打抜加工時の加工精度の向上に好ましい{1 1 1}方位に比較的近い方位であり、さらに、磁気特性の向上に好ましい{4 1 1}<1 4 8>方位に比較的近い方位でもある。したがって、珪素鋼板の板厚方向の中心領域にて{5 5 7}<7 14 5>方位の集積度が高まれば、打抜加工性および磁気特性の両方を高めることができる。
 {5 5 7}<7 14 5>方位の集積度が12以上であるとき、打抜加工性および磁気特性の両方を高めることができる。好ましくは15以上、より好ましくは18以上である。一方、{5 5 7}<7 14 5>方位の集積度は高いほど好ましいので、上限は特に制限されない。ただ、{5 5 7}<7 14 5>方位の集積度を35よりも高めることは実質的に困難なので、上限を35以下とすればよい。この上限は、30以下であってもよく、25以下であってもよい。
 珪素鋼板の板厚方向の中心領域にて{5 5 7}<7 14 5>方位の集積度を高める方法は後述する。
 結晶方位の集積度は、次の方法で測定できる。珪素鋼板の板厚をtとして、珪素鋼板の表面から板厚方向に向かって1/2tの位置を中心領域と定義する。鋼板から切り出した30mm×30mm程度の試験片の板面を機械研磨によって減厚して中心領域を露出させる。この露出面に化学研磨や電解研磨を施して歪みを除去して測定用試験片とする。
 測定用試験片について、X線回折を行い、{2 0 0}面、{1 1 0}面、{2 1 1}面の極点図を作成する。これらの極点図から中心領域における結晶方位分布関数ODF(Orientation Determination Function)を得る。この結晶方位分布関数に基づいて、{5 5 7}<7 14 5>方位の集積度を得る。
 (珪素鋼板の成分組成)
 本実施形態では、珪素鋼板が、成分組成として、基本元素を含み、必要に応じて選択元素を含み、残部がFe及び不純物からなる。以下、成分組成に係る「%」は「質量%」を意味する。
 本実施形態では、珪素鋼板の成分組成のうち、Si、Al、Mnが基本元素(主要な合金化元素)である。
 Si:0.01~3.50%
 Si(シリコン)は、磁束密度を低下させ、鋼板を硬化させて鋼板製造時の作業性を低下させ、打抜加工性を低下させる元素であるが、一方で、鋼板の電気抵抗を増大して渦電流損を低減し、鉄損を低減する作用をなす元素である。
 Siが3.50%を超えると、磁束密度や、打抜加工性が著しく低下するとともに、製造コストが上昇するので、Siは3.50%以下とする。好ましくは3.20%以下、より好ましくは3.00%以下である。一方、Siが0.01%未満であると、鋼板の電気抵抗が増大せず、鉄損が低減しないので、Siは0.01%以上とする。好ましくは0.10%以上、より好ましくは0.50%以上、さらに好ましくは2.00%超、さらに好ましくは2.10%以上、さらに好ましくは2.30%以上である。
 Al:0.001~2.500%
 Al(アルミニウム)は、鉱石や耐火物から不可避的に混入するが、脱酸に寄与するとともに、Siと同様に、電気抵抗を増大して渦電流損を低減し、鉄損を低減する作用をなす元素である。
 Alが0.001%未満であると、脱酸が十分に進行しないとともに、鋼板の電気抵抗が増大せず、鉄損が低減しないので、Alは0.001%以上とする。好ましくは0.010%以上、より好ましくは0.050%以上、さらに好ましくは0.50%超、さらに好ましくは0.60%以上である。
 一方、Alが2.500%を超えると、飽和磁束密度が低下して、磁束密度が低下するので、Alは2.500%以下とする。好ましくは2.000%以下、より好ましくは1.600%以下である。
 Mn:0.01~3.00%
 Mn(マンガン)は、電気抵抗を増大し、渦電流損を低減するとともに、磁気特性に対して望ましくない{111}<112>集合組織の生成を抑制する作用をなす元素である。
 Mnが0.01%未満であると、添加効果が十分に得られないので、Mnは0.01%以上とする。好ましくは0.15%以上、より好ましくは0.40%以上、さらに好ましくは0.60%超、さらに好ましくは0.70%以上である。一方、Mnが3.00%を超えると、焼鈍時の結晶粒の成長性が低下し、鉄損が増大するので、Mnは3.00%以下とする。好ましくは2.50%以下、より好ましくは2.00%以下である。
 本実施形態では、珪素鋼板が、成分組成として、不純物を含有する。なお、「不純物」とは、鋼を工業的に製造する際に、原料としての鉱石やスクラップから、または製造環境等から混入するものを指す。例えば、C、P、S、N、B等の元素を意味する。これらの不純物は、本実施形態の効果を十分に発揮させるために、以下のように制限することが好ましい。また、不純物の含有量は少ないことが好ましいので、下限値を制限する必要がなく、不純物の下限値が0%でもよい。
 C:0.0030%以下
 C(炭素)は、鉄損を大きくする元素であり、磁気時効の原因ともなる不純物元素である。Cは少ないほど好ましいので、Cは0.0030%以下とする。好ましくは0.0025%以下、より好ましくは0.0020%以下である。Cの下限は特に限定しないが、工業的な純化技術を考慮すると、実用的には0.0001%が下限であり、製造コストを考慮すると0.0005%以上が好ましい。
 P:0.180%以下
 P(燐)は、磁束密度を低下させることなく、引張強度を高めることもあるが、鋼板を脆化させる不純物元素である。Pが0.180%を超えると、靱性が低下し、鋼板に破断が生じ易くなるので、Pは0.180%以下とする。
 鋼板の破断を抑制する点で、Pは少ないほど好ましいので、好ましくは0.150%以下、より好ましくは0.120%以下である。Pの下限は特に限定しないが、工業的な純化技術を考慮すると、0.0001%が下限であり、製造コストを考慮すると、0.001%が実質的な下限である。
 S:0.003%以下
 S(硫黄)は、MnS等の微細な硫化物を形成し、仕上げ焼鈍等における再結晶及び結晶粒成長を阻害する不純物元素である。Sが0.003%を超えると、仕上げ焼鈍等における再結晶及び結晶粒成長が著しく阻害されるので、Sは0.003%以下とする。Sは少ないほど好ましいので、好ましくは0.002%以下、より好ましくは0.001%以下である。
 Sの下限は特に限定しないが、工業的な純化技術を考慮すると、0.0001%が下限であり、製造コストを考慮すると0.0005%が実質的な下限である。
 N:0.003%以下
 N(窒素)は、析出物を形成して、鉄損を増大させる不純物元素である。Nが0.003%を超えると、鉄損の増大が著しいので、Nは0.003%以下とする。好ましくは0.002%以下、より好ましくは0.001%以下である。Nの下限は特に限定しないが、工業的な純化技術を考慮すると、0.0001%が下限であり、製造コストを考慮すると0.0005%が実質的な下限である。
 B:0.002%以下
 B(ホウ素)は、析出物を形成して、鉄損を増大させる不純物元素である。Bが0.002%を超えると、鉄損の増大が著しいので、Bは0.002%以下とする。好ましくは0.001%以下、より好ましくは0.0005%以下である。Bの下限は特に限定しないが、工業的な純化技術を考慮すると、0.0001%が下限であり、製造コストを考慮すると0.0005%が実質的な下限である。
 本実施形態では、珪素鋼板が、上記で説明した基本元素および不純物に加えて、選択元素を含有してもよい。例えば、上記した残部であるFeの一部に代えて、選択元素として、Sb、Sn、Cu、REM、Ca、Mgを含有してもよい。これらの選択元素は、その目的に応じて含有させればよい。よって、これらの選択元素の下限値を制限する必要がなく、下限値が0%でもよい。また、これらの選択元素が不純物として含有されても、上記効果は損なわれない。
 Sb:0~0.05%
 Sb(アンチモン)は、鋼板の表面窒化を抑制し、鉄損の低減に寄与する元素である。Sbが0.05%を超えると、鋼の靭性が低下するので、Sbは0.05%以下とする。好ましくは0.03%以下、より好ましくは0.01%以下である。Sbの下限は、特に制限されず、0%でもよい。上記効果を好ましく得るためには、Sbは0.001%以上であってもよい。
 Sn:0~0.20%
 Sn(スズ)は、鋼板の表面窒化を抑制し、鉄損の低減に寄与する元素である。Snが0.20%を超えると、鋼の靭性が低下したり、絶縁被膜が剥離し易くなるので、Snは0.20%以下とする。好ましくは0.15%以下、より好ましくは0.10%以下である。Snの下限は、特に制限されず、0%でもよい。上記効果を好ましく得るためには、Snは0.01%以上であってもよい。好ましくは0.04%以上、より好ましくは0.08%以上である。
 Cu:0~1.00%
 Cu(銅)は、磁気特性に望ましくない{111}<112>集合組織の生成を抑制する作用をなすとともに、鋼板表面の酸化を制御し、かつ、結晶粒成長を整粒化する作用をなす元素である。Cuが1.00%を超えると、添加効果が飽和するとともに、仕上げ焼鈍時の結晶粒成長性が抑制され、また、鋼板の加工性が低下し、冷延時に脆化するので、Cuは1.00%以下とする。好ましくは0.60%以下、より好ましくは0.40%以下である。Cuの下限は、特に制限されず、0%でもよい。上記効果を好ましく得るためには、Cuは0.10%以上とすればよい。好ましくは0.20%以上、より好ましくは0.30%以上である。
 REM:0~0.0400%、
 Ca:0~0.0400%、
 Mg:0~0.0400%
 REM(Rare Earth Metal)、Ca(カルシウム)、Mg(マグネシウム)は、Sを硫化物又は酸硫化物として固定し、MnS等の微細析出を抑制し、仕上げ焼鈍時の再結晶及び結晶粒成長を促進する作用をなす元素である。
 REM、Ca、Mgが0.0400%を超えると、硫化物又は酸硫化物が過剰に生成し、仕上げ焼鈍時の再結晶及び結晶粒成長が阻害されるので、REM、Ca、Mgのいずれも、0.0400%以下とする。好ましくは、いずれの元素も0.0300%以下、より好ましくは0.0200%以下である。
 REM、Ca、Mgの下限は、特に制限されず、0%でもよい。上記効果を好ましく得るためには、REM、Ca、Mgのいずれも、0.0005%以上とすればよい。好ましくは、いずれの元素も0.0010%以上、より好ましくは0.0050%以上である。
 ここで、REMは、Sc、Yおよびランタノイドの合計17元素を指し、その少なくとも1種である。上記REMの含有量はこれらの元素の少なくとも1種の合計含有量を意味する。ランタノイドの場合、工業的にはミッシュメタルの形で添加される。
 本実施形態では、珪素鋼板が、成分組成として、質量%で、Sb:0.001~0.05%、Sn:0.01~0.20%、Cu:0.10~1.00%、REM:0.0005~0.0400%、Ca:0.0005~0.0400%、またはMg:0.0005~0.0400%の少なくとも1種を含有することが好ましい。
 上記した鋼成分は、鋼の一般的な分析方法によって測定すればよい。例えば、鋼成分は、ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)を用いて測定すればよい。なお、CおよびSは燃焼-赤外線吸収法を用い、Nは不活性ガス融解-熱伝導度法を用い、Oは不活性ガス融解-非分散型赤外線吸収法を用いて測定すればよい。
 なお、上記の成分組成は、珪素鋼板の成分組成であり、測定試料となる珪素鋼板が、表面に絶縁被膜等を有している場合は、これを除去して測定して得られる成分組成である。
 無方向性電磁鋼板の絶縁被膜等を除去する方法として、例えば、絶縁被膜等を有する無方向性電磁鋼板を、水酸化ナトリウム水溶液、硫酸水溶液、硝酸水溶液の順に浸漬して、洗浄し、温風で乾燥する方法がある。この一連の処理で、絶縁被膜を除去した珪素鋼板を得ることができる。
 (電磁鋼板の磁気特性)
 本実施形態に係る無方向性電磁鋼板では、分割コア用として、圧延方向、及び板幅方向(圧延方向に直角な方向)の二つの方向にて優れた磁気特性を確保することが好ましい。そのため、磁化力5000A/mで励磁した時の圧延方向の磁束密度と板幅方向の磁束密度との平均を磁束密度B50とし、圧延方向の飽和磁束密度と板幅方向の飽和磁束密度との平均を飽和磁束密度Bsとしたとき、磁束密度B50と飽和磁束密度Bsとの比であるB50/Bsが、0.82以上であることが好ましい。
 上記のB50/Bsは、好ましくは0.84以上、より好ましくは0.86以上、さらに好ましくは0.90以上である。一方、飽和磁束密度Bsは、最大磁場を負荷したときに得られる最大の磁束密度であるので、B50/Bsの値の最大値は1である。B50/Bsの上限は、特に限定しないが、1.00であればよい。好ましくは、0.98以下である。
 本実施形態で制御する{5 5 7}<7 14 5>方位は、{4 1 1}<1 4 8>方位に近い方位であり、この{4 1 1}<1 4 8>方位は、圧延方向および板幅方向の磁束密度B50を改善する{1 0 0}<0 1 2>方位に近い方位である。そのため、本実施形態では、圧延方向および板幅方向の二つの方向で、磁気特性が改善されると考えられる。
 電磁鋼板の磁気特性は、例えば、Single Sheet Tester(SST)により、鋼板を磁化力5000A/mで磁化した場合の圧延方向および板幅方向に関する磁束密度を単位:T(テスラ)で測定して磁束密度B50を求め、同様に、鋼板に最大磁場を負荷した場合の圧延方向および板幅方向に関する磁束密度を単位:T(テスラ)で測定して飽和磁束密度Bsを求めればよい。
 (電磁鋼板の打抜加工性)
 本実施形態に係る無方向性電磁鋼板は、{5 5 7}<7 14 5>方位の集積度を高めているため、打抜加工時の加工精度が向上する。例えば、円形打抜き加工したとき、加工品の真円度が小さくなる。
 なお、真円度は、円形打抜き加工品の最大半径と最小半径との差で評価すればよい。例えば、半径200mmの円形品を打ち抜き加工したとき、その打抜き加工品の最大半径と最小半径とを測定し、その差を求めればよい。
 本実施形態では、真円度が45μm以下であることが好ましく、40μm以下であることがより好ましい。一方、真円度の下限は、特に制限されない。ただ、真円度を5μmより小さく制御することは実質的に困難なので、下限を5μmとすればよい。
 上述のように、本実施形態では、板厚方向の中心領域における{5 5 7}<7 14 5>方位の集積度を通常の鋼板よりも高くしているので、打抜加工性が向上する。打抜加工性が向上するメカニズムは、以下のように考えている。
 本実施形態で制御する{5 5 7}<7 14 5>方位は、{111}<112>方位に近い方位である。この{111}方位は、全周方向の硬度異方性が小さいので、打抜加工の際、鋼板が引き伸ばされて変形する領域が、全周方向に渡ってほぼ等しい。このため、{5 5 7}<7 14 5>方位の集積度が高まれば、打抜加工性も向上すると考えられる。
(電磁鋼板としての他の特徴)
 珪素鋼板の板厚は、用途等に応じて適宜調整すればよく、特に限定されない。ただ珪素鋼板の板厚は、製造上の観点から、0.10mm以上が好ましく、0.15mm以上がより好ましい。一方、珪素鋼板の板厚は、0.50mm以下が好ましく、0.35mm以下がより好ましい。
 本実施形態に係る無方向性電磁鋼板は、珪素鋼板の表面に絶縁被膜を有していてもよい。この絶縁被膜の種類は、特に限定されず、公知の絶縁被膜から、用途等に応じて適宜選択すればよい。
 例えば、絶縁被膜は、有機系被膜または無機系被膜のいずれでもよい。有機系被膜としては、例えば、ポリアミン系樹脂、アクリル樹脂、アクリルスチレン樹脂、アルキッド樹脂、ポリエステル樹脂、シリコーン樹脂、フッ素樹脂、ポリオレフィン樹脂、スチレン樹脂、酢酸ビニル樹脂、エポキシ樹脂、フェノール樹脂、ウレタン樹脂、メラミン樹脂等の被膜が挙げられる。
 無機系被膜としては、例えば、リン酸塩系被膜や、リン酸アルミニウム系被膜等が挙げられる。さらに、上記の樹脂を含む有機-無機複合系被膜等が挙げられる。絶縁被膜の膜厚は、特に限定されないが、片面当たりの膜厚として、0.05~2μmであることが好ましい。
 次に、本実施形態に係る無方向性電磁鋼板の製造方法について説明する。
 図2は、本実施形態に係る無方向性電磁鋼板の製造方法を例示する流れ図である。本実施形態では、成分組成を調整した溶鋼を、鋳造し、熱間圧延し、熱間圧延後の冷却時に保熱処理し、酸洗し、冷間圧延し、次いで、仕上げ焼鈍を施して珪素鋼板を製造する。さらに、珪素鋼板の上層に、絶縁被膜を設けて無方向性電磁鋼板を製造する。
 本実施形態では、各工程を制御して冷間圧延前の鋼板中の再結晶組織と未再結晶組織との比率(未再結晶分率)を制御し、その上で冷間圧延および仕上げ焼鈍を制御することで、珪素鋼板の板厚方向の中心領域にて{5 5 7}<7 14 5>方位の集積度を高める。
 例えば、冷間圧延前の未再結晶分率は、鋼組成、熱間圧延時の温度、熱間圧延時の圧下率、熱間圧延後の冷却条件など、単に1つの工程の1つの条件によって制御できる技術特徴ではなく、各工程の各条件が複合的に影響しあって制御される技術特徴である。
 具体的には、
 鋼組成のSi含有量は、熱間圧延温度で鋼組織の構成相がα相および/またはγ相になるかに影響を与える因子であり、Si含有量が0.01~3.50%の範囲内で高くなるほど冷間圧延前の未再結晶分率が大きくなる。
 鋼組成のAl含有量は、熱間圧延温度で鋼組織の構成相がα相および/またはγ相になるかに影響を与える因子であり、Al含有量が0.001~2.500%の範囲内で高くなるほど冷間圧延前の未再結晶分率が大きくなる。
 鋼組成のMn含有量は、再結晶駆動力に影響を与えるMnS生成量に影響を与える因子であり、Mn含有量が0.01~3.00%の範囲内で高くなるほど冷間圧延前の未再結晶分率が大きくなる。
 熱間圧延時の温度、具体的には熱間圧延前のスラブ加熱温度は、鋼組織の構成相がα相および/またはγ相になるかに影響を与える因子であり、また熱延加工組織の形成に影響を与える因子であり、熱間圧延前のスラブ加熱温度が1000~1300℃の範囲内で高くなるほど冷間圧延前の未再結晶分率が大きくなる。
 熱間圧延時の温度、具体的には仕上げ熱延時の最終圧延温度は、鋼組織の構成相がα相および/またはγ相になるかに影響を与える因子であり、また熱延加工組織の形成に影響を与える因子であり、仕上げ熱延時の最終圧延温度が800~950℃の範囲内で高くなるほど冷間圧延前の未再結晶分率が小さくなる。
 熱間圧延時の圧下率は、熱延加工組織の形成に影響を与える因子であり、熱間圧延時の累積圧下率が98~99.5%の範囲内で大きくなるほど冷間圧延前の未再結晶分率が小さくなる。
 熱間圧延後の冷却条件、具体的には熱間圧延終了温度から保熱処理温度までの冷却速度は、熱延加工組織の回復および再結晶に影響を与える因子であり、この温度範囲での平均冷却速度が80~200℃/秒の範囲内で速くなるほど冷間圧延前の未再結晶分率が大きくなる。
 熱間圧延後の冷却条件、具体的には保熱処理時の保熱温度も、熱延加工組織の回復および再結晶に影響を与える因子であり、保熱処理時の保熱温度が700~850℃の範囲内で高くなるほど冷間圧延前の未再結晶分率が小さくなる。
 熱間圧延後の冷却条件、具体的には保熱処理時の保熱時間も、熱延加工組織の回復および再結晶に影響を与える因子であり、保熱処理時の保熱時間が10~180分の範囲内で長くなるほど冷間圧延前の未再結晶分率が小さくなる。
 本実施形態では、上記のそれぞれの条件を、意図的に、複合的に、且つ不可分に制御して、冷間圧延前の未再結晶分率が、組織中で1/10以上1/5以下となるように、すなわち面積分率10~20%となるように鋼組織を作り込む。
 次に、冷間圧延前の未再結晶分率を制御した鋼板を、冷間圧延および仕上げ焼鈍に供して、{5 5 7}<7 14 5>方位粒が優先的に再結晶するように制御する。
 例えば、{5 5 7}<7 14 5>方位の集積度は、冷間圧延前の未再結晶分率、冷間圧延の圧下率、仕上げ焼鈍時の昇温速度など、単に1つの工程の1つの条件によって制御できる技術特徴ではなく、各工程の各条件が複合的に影響しあって制御される技術特徴である。
 具体的には、
 冷間圧延時の圧下率は、{5 5 7}<7 14 5>方位粒が再結晶する下地となる冷延加工組織の形成に影響を与える因子であり、冷間圧延時の累積圧下率が80~95%の範囲内で大きくなるほど{5 5 7}<7 14 5>方位の集積度が小さくなる。
 仕上げ焼鈍時の昇温速度、具体的には昇温開始温度から750℃までの昇温速度は、{5 5 7}<7 14 5>方位粒の再結晶核生成に影響を与える因子であり、この温度範囲での平均昇温速度が5~50℃/秒の範囲内で中央値に近いほど{5 5 7}<7 14 5>方位の集積度が大きくなる。
 仕上げ焼鈍時の昇温速度、具体的には750℃から仕上げ焼鈍の均熱温度までの昇温速度は、{5 5 7}<7 14 5>方位粒の粒成長に影響を与える因子であり、この温度範囲での平均昇温速度が20~100℃/秒の範囲内で速くなるほど{5 5 7}<7 14 5>方位の集積度が大きくなる。
 本実施形態では、上記のそれぞれの条件を、意図的に、複合的に、且つ不可分に制御して、珪素鋼板の板厚方向の中心領域にて{5 5 7}<7 14 5>方位の集積度が12以上35以下となるように鋼組織を作り込む。
 上述のように、{5 5 7}<7 14 5>方位の集積度は、単に1つの工程の1つの条件を制御することによって得られる技術特徴ではない。{5 5 7}<7 14 5>方位の集積度は、冷間圧延前の未再結晶分率を制御した上で、冷間圧延および仕上げ焼鈍の条件を制御することで初めて作り込むことが可能な技術特徴である。
 具体的には、本実施形態に係る無方向性電磁鋼板の製造方法は、鋳造工程と、熱間圧延工程と、保熱処理工程と、酸洗工程と、冷間圧延工程と、仕上げ焼鈍工程と、被膜形成工程と、を備え、
 鋳造工程では、成分組成として、質量%で、Si:0.01~3.50%、Al:0.001~2.500%、Mn:0.01~3.00%、C:0.0030%以下、P:0.180%以下、S:0.003%以下、N:0.003%以下、B:0.002%以下、Sb:0~0.05%、Sn:0~0.20%、Cu:0~1.00%、REM:0~0.0400%、Ca:0~0.0400%、Mg:0~0.0400%を含有し、残部がFe及び不純物からなるスラブを鋳造し、
 熱間圧延工程では、熱間圧延前のスラブ加熱温度を1000~1300℃とし、仕上げ熱延時の最終圧延温度を800~950℃とし、熱間圧延時の累積圧下率を98~99.5%とし、熱間圧延終了温度から保熱処理の保熱温度までの平均冷却速度を80~200℃/秒とし、
 保熱処理工程では、保熱温度を700~850℃とし、保熱時間を10~180分とし、
 冷間圧延工程前の鋼板の未再結晶分率を10~20面積%に制御し、
 冷間圧延工程では、冷間圧延時の累積圧下率を80~95%とし、
 仕上げ焼鈍工程では、昇温開始温度から750℃までの平均昇温速度を5~50℃/秒とし、750℃から仕上げ焼鈍の均熱温度までの平均昇温速度を20~100℃/秒の範囲内で上記の750℃までの平均昇温速度よりも速い昇温速度に変更し、仕上げ焼鈍の均熱温度を再結晶温度以上とする。
 以下、好ましい製造方法として、鋳造工程から順に説明する。
 (鋳造工程)
 鋳造工程では、上記した成分組成の鋼を転炉又は電気炉等で溶製し、その溶鋼を用いてスラブを製造すればよい。連続鋳造法によりスラブを製造してもよく、溶鋼を用いてインゴットを製造し、インゴットを分塊圧延してスラブを製造してもよい。また、他の方法によりスラブを製造してもよい。スラブの厚さは、特に限定されないが、たとえば、150~350mmである。スラブの厚さは好ましくは、220~280mmである。スラブとして、厚さが10~70mmの、いわゆる薄スラブを用いてもよい。
 鋳造工程では、冷間圧延前の鋼板の未再結晶分率が10~20面積%となるように、鋼組成のSi含有量を0.01~3.50%の範囲内で制御し、Al含有量を0.001~2.500%の範囲内で制御し、Mn含有量を0.01~3.00%の範囲内で制御する。
 Si含有量は、好ましくは0.10%以上、より好ましくは0.50%以上、さらに好ましくは2.00%超、さらに好ましくは2.10%以上、さらに好ましくは2.30%以上である。また、Si含有量は、好ましくは3.20%以下、より好ましくは3.00%以下である。Al含有量は、好ましくは0.010%以上、より好ましくは0.050%以上、さらに好ましくは0.50%超、さらに好ましくは0.60%以上である。また、Al含有量は、好ましくは2.000%以下、より好ましくは1.600%以下である。Mn含有量は、好ましくは0.15%以上、より好ましくは0.40%以上、さらに好ましくは0.60%超、さらに好ましくは0.70%以上である。また、Mn含有量は、好ましくは2.50%以下、より好ましくは2.00%以下である。
 (熱間圧延工程)
 熱間圧延工程では、熱間圧延機を用いてスラブを熱間圧延すればよい。熱間圧延機はたとえば、粗圧延機と、粗圧延機の下流に配置された仕上げ圧延機とを備える。加熱された鋼材を粗圧延機により圧延した後、さらに、仕上げ圧延機により圧延して、熱延鋼板を製造する。
 熱間圧延工程では、冷間圧延前の鋼板の未再結晶分率が10~20面積%となるように、熱間圧延前のスラブ加熱温度を1000~1300℃の範囲内で制御し、仕上げ熱延時の最終圧延温度を800~950℃の範囲内で制御し、熱間圧延時の累積圧下率を98~99.5%の範囲内で制御し、熱間圧延終了温度から保熱処理温度までの平均冷却速度を80~200℃/秒の範囲内で制御する。
 スラブ加熱温度は、好ましくは1100℃以上、より好ましくは1150℃以上である。また、スラブ加熱温度は、好ましくは1250℃以下、より好ましくは1200℃以下である。最終圧延温度は、好ましくは850℃以上である。また、最終圧延温度は、好ましくは900℃以下である。平均冷却速度は、好ましくは100℃/秒以上、より好ましくは120℃/秒以上である。また、平均冷却速度は、好ましくは180℃/秒以下、より好ましくは150℃/秒以下である。
 なお、仕上げ熱延を開始する時点で、鋼板の厚さは20~100mmが好ましい。また、熱間圧延の累積圧下率は、次のとおり定義される。
 累積圧下率(%)=(1-熱間圧延後の鋼板の板厚/熱間圧延前の鋼板の板厚)×100
 (保熱処理工程)
 保熱処理工程では、熱間圧延後の冷却途中で熱延鋼板を保熱する。保熱処理工程では、冷間圧延前の鋼板の未再結晶分率が10~20面積%となるように、保熱温度を700~850℃の範囲内で制御し、保熱時間を10~180分の範囲内で制御する。
 保熱温度は、好ましくは750℃以上、より好ましくは780℃以上である。また、保熱温度は、好ましくは830℃以下、より好ましくは800℃以下である。保熱時間は、好ましくは20分以上、より好ましくは30分以上、さらに好ましくは40分以上である。また、保熱時間は、好ましくは150分以下、より好ましくは120分以下、さらに好ましくは100分以下である。
 (酸洗工程)
 酸洗工程では、熱延鋼板の表面に生成したスケールを除去するために酸洗すればよい。熱延板酸洗時の酸洗条件は特に限定されず、公知の条件で行えばよい。
 (冷間圧延工程前の鋼板)
 本実施形態では、上記した鋳造工程、熱間圧延工程、保熱処理工程、酸洗工程を経た鋼板であって、冷間圧延工程前の鋼板について、組織中の未再結晶分率を10~20面積%に制御する。
 従来の無方向性電磁鋼板の主方位の1つは、{1 1 1}<1 1 2>方位である。通常、この方位の結晶粒は、冷延前の鋼板組織を全て再結晶させ、冷間圧延によって組織内に歪を導入し、仕上げ焼鈍時に結晶粒界から再結晶核が生成かつ成長することで形成される。一方、本実施形態では、冷間圧延前の鋼板の組織に未再結晶組織を所定量だけ残存させ、冷間圧延条件および仕上げ焼鈍条件を好ましく制御することで、{5 5 7}<7 14 5>方位の結晶粒を意図的に形成する。
 なお、上記の未再結晶分率が10~20面積%を満たさないと、最終的に{5 5 7}<7 14 5>方位の集積度を制御できなくなる。また、上記の冷間圧延前の鋼板の組織に未再結晶組織が所定量を超えて含まれると、仕上げ焼鈍後の組織中に、磁気特性の改善に有効な{4 1 1}<1 4 8>方位の結晶粒が形成されにくくなる。そのため、優れた磁気特性と打抜加工性とを両立させるのには、冷間圧延工程前の鋼板の未再結晶分率を10~20面積%に制御することが最適である。
 従来技術では、熱間圧延工程後に熱延鋼板を室温近くまで冷却した後に、再び加熱して、均熱温度800~1050℃で均熱時間1分以内の熱延板焼鈍を施していた。ただ、この熱延板焼鈍では、冷間圧延前の鋼板の組織に、再結晶組織と未再結晶組織とを上記割合で安定して造りこむことが困難である。
 本実施形態では、冷間圧延前の鋼板の未再結晶分率を制御するために、熱間圧延後の冷却途中で鋼板に上記した保熱処理を施す。そして、保熱後の鋼板を室温近くまで冷却した後に、熱延板焼鈍を施さない。その結果、冷間圧延前の鋼板の未再結晶分率が好ましく制御されているので、最終的に、鋼板の板厚方向の中心領域で{5 5 7}<7 14 5>方位の集積度を高めることができる。
 なお、冷間圧延工程前の鋼板の未再結晶分率は、次の方法で測定できる。冷間圧延工程前の鋼板から切り出した25mm×25mm程度の試験片の板面を機械研磨し、鋼板の板厚の1/2まで減厚する。この研磨面に化学研磨や電解研磨を施して歪みを除去して測定用試験片とする。
 測定用試験片について、EBSD(Electron Back Scattering Diffraction)を行い、KAM(Kernel Average Misorientation)値によって、観察視野中の未再結晶分率を求めればよい。例えば、観察視野中でKAM値が2.0以上となる結晶粒を未再結晶粒であると判断する。EBSD測定は、観察視野を変えて10カ所以上で実施し、観察視野の総面積が1000000μm以上となるように行えばよい。
 上記のように、本実施形態では、熱間圧延工程から冷間圧延工程までの間に熱延板焼鈍を施さないことが好ましい。すなわち、本実施形態では、熱間圧延工程、保熱処理工程、酸洗工程、冷間圧延工程が連続した工程であることが好ましい。具体的には、熱間圧延工程後の鋼板に保熱処理を施し、保熱処理工程後の鋼板に酸洗を施し、酸洗工程後の鋼板に冷間圧延を施すことが好ましい。
 (冷間圧延工程)
 冷間圧延工程では、未再結晶分率が10~20面積%に制御された鋼板に冷間圧延を施す。冷間圧延工程では、仕上げ焼鈍後に{5 5 7}<7 14 5>方位の集積度が12~35となるように、冷間圧延時の累積圧下率を80~95%の範囲内で制御する。この累積圧下率は、好ましくは83%以上、より好ましくは85%以上である。
 なお、冷間圧延の累積圧下率は、次のとおり定義される。
 累積圧下率(%)=(1-冷間圧延後の鋼板の板厚/冷間圧延前の鋼板の板厚)×100
 (仕上げ焼鈍工程)
 仕上げ焼鈍工程では、冷延鋼板に仕上げ焼鈍を施す。仕上げ焼鈍工程では、仕上げ焼鈍後に{5 5 7}<7 14 5>方位の集積度が12~35となるように、昇温開始温度から750℃までの温度範囲での平均昇温速度を5~50℃/秒の範囲内で制御し、750℃から仕上げ焼鈍の均熱温度までの温度範囲での平均昇温速度を20~100℃/秒の範囲内で上記の750℃までの平均昇温速度よりも速い昇温速度に制御し、仕上げ焼鈍の均熱温度を再結晶温度以上に制御する。
 750℃までの平均昇温速度は、好ましくは10℃/秒以上、より好ましくは20℃/秒以上である。また、750℃までの平均昇温速度は、好ましくは40℃/秒以下、より好ましくは30℃/秒以下である。750℃からの平均昇温速度は、好ましくは30℃/秒以上、より好ましくは40℃/秒以上である。また、750℃からの平均昇温速度は、好ましくは80℃/秒以下、より好ましくは60℃/秒以下である。
 仕上げ焼鈍時の均熱温度は、800~1200℃が好ましい。均熱温度は、好ましくは850℃以上である。均熱時間は、5~120秒が好ましい。均熱時間は、好ましくは10秒以上、より好ましくは20秒以上である。
 上記の仕上げ焼鈍後に、鋼板(珪素鋼板)の板厚方向の中心領域では、{5 5 7}<7 14 5>方位の集積度が12~35に制御される。
 (被膜形成工程)
 被膜形成工程では、仕上げ焼鈍後の珪素鋼板に絶縁被膜を形成する。絶縁被膜は、例えば、有機系被膜または無機系被膜のいずれでもよい。絶縁被膜の形成条件は、従来の無方向性電磁鋼板の絶縁被膜と同様の形成条件を採用してもよい。
 以上の工程によって{5 5 7}<7 14 5>方位の集積度が好ましく制御された無方向性電磁鋼板は、回転機、中小型変圧器、電装品等の磁性材料として、特にモータの分割コア用の磁性材料として好適である。
 以下、本実施形態に係る無方向性電磁鋼板を、モータの分割コアとして適用した場合について説明する。
 図3に、モータの分割コアの一態様を示す。図3に示すように、モータコア100は、打抜き部材11と、打抜き部材11を積層して一体化した積層体13とで構成されている。この打抜き部材11は、無方向性電磁鋼板を打抜加工して作製される。打抜き部材11は、円弧上のヨーク部17と、ヨーク部17の内周面から径方向内側に向かって突出するティース部15を備えている。打抜き部材11が円環状に連結されることで、モータコア100が構成される。
 なお、打抜き部材11の形状、円環状に連結する個数、積層数などは、目的に応じて設計すればよい。
 次に、実施例により本発明の一態様の効果を更に具体的に詳細に説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りでは、種々の条件を採用し得るものである。
 <実施例1>
 成分組成を調整したスラブを鋳造後、各工程での製造条件を制御して珪素鋼板を製造した。珪素鋼板の化学組成を表1および表2に示し、製造条件を表3~表8に示す。なお、上記の製造時、表3~表5に示す条件で、熱間圧延および保熱処理を行い、室温まで冷却後に酸洗した。なお、表中の「保熱処理工程」欄に「熱延板焼鈍」と記載した試料は、熱間圧延後の冷却途中で保熱することなく室温まで冷却し、その後、窒素100%の雰囲気中で、800℃で60秒間の熱延板焼鈍を施し、室温まで冷却後に酸洗した。
 表3~表5に、鋳造工程、熱間圧延工程、保熱処理工程、酸洗工程を経た鋼板であって、冷間圧延工程前の鋼板について、組織中の未再結晶分率を測定した結果を示す。なお、未再結晶分率は、上記の方法に基づいて測定した。
 未再結晶分率を測定した鋼板に対して、表6~表8に示す条件で、冷間圧延および仕上げ焼鈍を行った。仕上げ焼鈍では、均熱温度を再結晶温度以上である800~1100℃とし、均熱時間を30秒とした。また、仕上げ焼鈍後の珪素鋼板に、平均厚さが1μmのりん酸系の絶縁被膜を形成した。なお、表中の「仕上焼鈍工程」欄について、「昇温速度A」は昇温開始温度から750℃までの平均昇温速度を表し、「昇温速度B」は750℃から仕上げ焼鈍の均熱温度までの平均昇温速度を表し、「昇温速度制御」は昇温速度Aおよび昇温速度Bの大小関係を表す。
 表6~表8に、製造した無方向性電磁鋼板について、珪素鋼板の板厚方向の中心領域における{5 5 7}<7 14 5>方位の集積度を測定した結果を「集合組織集積度」として示す。なお、{5 5 7}<7 14 5>方位の集積度は、上記の方法に基づいて測定した。
 珪素鋼板の化学組成を表1および表2に示し、製造条件および製造結果を表3~表8に示す。なお、スラブの化学組成および珪素鋼板の化学組成は実質的に同じであった。表中で、珪素鋼板の化学成分の「-」は、合金化元素を意図的に添加していないか、または含有量が測定検出下限以下であることを示す。表中で、下線を付した値は、本発明の範囲外であることを示す。
 製造した無方向性電磁鋼板を用いて、磁気特性として磁束密度、および打抜加工性として円形打抜品の真円度を評価した。磁束密度および真円度は、上記の方法に基づいて評価した。B50/Bsが0.82以上である場合を、磁気特性が良好であると判断した。また、円形打抜品の真円度が45μm以下である場合を、打抜加工性が良好であると判断した。
 磁気特性および打抜加工性の評価結果を表6~表8に示す。試験No.B1~B22である本発明例は、珪素鋼板について、成分組成および集合組織が好ましく制御されているので、無方向性電磁鋼板として磁気特性および打抜加工性に優れていた。
 一方、試験No.b1~b44である比較例は、珪素鋼板について、成分組成または集合組織のうちの少なくとも1つが好ましく制御されていないので、無方向性電磁鋼板として磁気特性または打抜加工性の何れかが満足できなかった。
 図4に、{5 5 7}<7 14 5>方位の集積度と真円度との関係を示す。この図4は、本発明例B1~B22および比較例b1~b44に基づいて、{5 5 7}<7 14 5>方位の集積度と真円度との関係を図示したグラフである。{5 5 7}<7 14 5>方位が集積するに伴って、真円度の値が小さくなることが図4に示される。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 本発明の上記態様によれば、分割コア向けに、打抜加工性に加えて、圧延方向および板幅方向の二つの方向の磁気特性に優れた無方向性電磁鋼板およびその製造方法を提供することができる。よって、産業上の利用可能性が高い。
 1          無方向性電磁鋼板
 3          珪素鋼板(母材鋼板)
 5          絶縁被膜(張力被膜)
 11        打抜き部材
 13        積層体
 15        ティース部
 17        ヨーク部
 100      モータコア

Claims (4)

  1.  珪素鋼板と、絶縁被膜とを備える無方向性電磁鋼板において、
     前記珪素鋼板が、成分組成として、質量%で、
      Si:0.01~3.50%、
      Al:0.001~2.500%、
      Mn:0.01~3.00%、
      C :0.0030%以下、
      P :0.180%以下、
      S :0.003%以下、
      N :0.003%以下、
      B :0.002%以下、
      Sb:0~0.05%、
      Sn:0~0.20%、
      Cu:0~1.00%、
      REM:0~0.0400%、
      Ca:0~0.0400%、
      Mg:0~0.0400%
     を含有し、残部がFe及び不純物からなり、
     前記珪素鋼板の板厚方向の中心領域における{5 5 7}<7 14 5>方位の集積度が12以上35以下である
    ことを特徴とする無方向性電磁鋼板。
  2.  前記珪素鋼板が、前記成分組成として、質量%で、
      Sb:0.001~0.05%、
      Sn:0.01~0.20%、
      Cu:0.10~1.00%、
      REM:0.0005~0.0400%、
      Ca:0.0005~0.0400%、
      Mg:0.0005~0.0400%
     の少なくとも1種を含有する
    ことを特徴とする請求項1に記載の無方向性電磁鋼板。
  3.  {5 5 7}<7 14 5>方位の前記集積度が、18以上35以下であることを特徴とする請求項1又は2に記載の無方向性電磁鋼板。
  4.  請求項1~3のいずれか1項に記載の無方向性電磁鋼板の製造方法であって、鋳造工程と、熱間圧延工程と、保熱処理工程と、酸洗工程と、冷間圧延工程と、仕上げ焼鈍工程と、被膜形成工程と、を備え、
     前記鋳造工程では、成分組成として、質量%で、
      Si:0.01~3.50%、
      Al:0.001~2.500%、
      Mn:0.01~3.00%、
      C :0.0030%以下、
      P :0.180%以下、
      S :0.003%以下、
      N :0.003%以下、
      B :0.002%以下、
      Sb:0~0.05%、
      Sn:0~0.20%、
      Cu:0~1.00%、
      REM:0~0.0400%、
      Ca:0~0.0400%、
      Mg:0~0.0400%
     を含有し、残部がFe及び不純物からなるスラブを鋳造し、
     前記熱間圧延工程では、熱間圧延前のスラブ加熱温度を1000~1300℃とし、仕上げ熱延時の最終圧延温度を800~950℃とし、熱間圧延時の累積圧下率を98~99.5%とし、熱間圧延終了温度から保熱処理の保熱温度までの平均冷却速度を80~200℃/秒とし、
     前記保熱処理工程では、保熱温度を700~850℃とし、保熱時間を10~180分とし、
     前記冷間圧延工程前の鋼板の未再結晶分率を10~20面積%に制御し、
     前記冷間圧延工程では、冷間圧延時の累積圧下率を80~95%とし、
     前記仕上げ焼鈍工程では、昇温開始温度から750℃までの平均昇温速度を5~50℃/秒とし、750℃から仕上げ焼鈍の均熱温度までの平均昇温速度を20~100℃/秒の範囲内で750℃までの前記平均昇温速度よりも速い昇温速度に変更し、仕上げ焼鈍の均熱温度を再結晶温度以上とする
    ことを特徴とする無方向性電磁鋼板の製造方法。
     
PCT/JP2019/011663 2019-03-20 2019-03-20 無方向性電磁鋼板およびその製造方法 WO2020188783A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020217029229A KR102561512B1 (ko) 2019-03-20 2019-03-20 무방향성 전자 강판 및 그 제조 방법
CN201980094179.2A CN113574193B (zh) 2019-03-20 2019-03-20 无方向性电磁钢板及其制造方法
US17/437,726 US20220145418A1 (en) 2019-03-20 2019-03-20 Non oriented electrical steel sheet and method for producing thereof
EP19920490.0A EP3943633A4 (en) 2019-03-20 2019-03-20 NON-ORIENTED ELECTROMAGNETIC STEEL SHEET AND METHOD OF MANUFACTURING THEREOF
JP2019544748A JP6617857B1 (ja) 2019-03-20 2019-03-20 無方向性電磁鋼板およびその製造方法
BR112021016821-4A BR112021016821B1 (pt) 2019-03-20 2019-03-20 Chapa de aço elétrica não orientada, e, método para produzir uma chapa de aço elétrica não orientada
PCT/JP2019/011663 WO2020188783A1 (ja) 2019-03-20 2019-03-20 無方向性電磁鋼板およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/011663 WO2020188783A1 (ja) 2019-03-20 2019-03-20 無方向性電磁鋼板およびその製造方法

Publications (1)

Publication Number Publication Date
WO2020188783A1 true WO2020188783A1 (ja) 2020-09-24

Family

ID=68836089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/011663 WO2020188783A1 (ja) 2019-03-20 2019-03-20 無方向性電磁鋼板およびその製造方法

Country Status (7)

Country Link
US (1) US20220145418A1 (ja)
EP (1) EP3943633A4 (ja)
JP (1) JP6617857B1 (ja)
KR (1) KR102561512B1 (ja)
CN (1) CN113574193B (ja)
BR (1) BR112021016821B1 (ja)
WO (1) WO2020188783A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003002777A1 (fr) 2001-06-28 2003-01-09 Jfe Steel Corporation Feuille en acier electromagnetique non orientee
JP2003197414A (ja) 2001-12-27 2003-07-11 Jfe Steel Kk 打ち抜き寸法精度および高周波磁気特性に優れる薄手電磁鋼板
JP2004152791A (ja) 2002-10-28 2004-05-27 Jfe Steel Kk 打ち抜き寸法精度および高周波磁気特性に優れる高効率モータ用薄手電磁鋼板
JP2006219692A (ja) * 2005-02-08 2006-08-24 Nippon Steel Corp 無方向性電磁鋼板およびその製造方法
WO2016136095A1 (ja) * 2015-02-24 2016-09-01 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
JP2018168413A (ja) * 2017-03-29 2018-11-01 新日鐵住金株式会社 無方向性電磁鋼板およびその製造方法、並びにモータコアおよびその製造方法
JP2018178196A (ja) * 2017-04-14 2018-11-15 新日鐵住金株式会社 無方向性電磁鋼板及びその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07300655A (ja) * 1994-04-28 1995-11-14 Nippon Steel Corp 磁気特性、及びカシメ性が優れている無方向性電磁鋼板及びその製造方法
JP2001192733A (ja) * 2000-01-13 2001-07-17 Nippon Steel Corp ゴス方位集積度が高い一方向性電磁鋼板の製造方法
EP1897963A1 (fr) * 2006-09-06 2008-03-12 ARCELOR France Tole d'acier pour la fabrication de structures allegées et procédé de fabrication de cette tole
JP4669565B2 (ja) * 2007-12-12 2011-04-13 新日本製鐵株式会社 レーザ光の照射により磁区が制御された方向性電磁鋼板の製造方法
US8366836B2 (en) * 2009-07-13 2013-02-05 Nippon Steel Corporation Manufacturing method of grain-oriented electrical steel sheet
CN102453837B (zh) * 2010-10-25 2013-07-17 宝山钢铁股份有限公司 一种高磁感无取向硅钢的制造方法
PL3196325T3 (pl) * 2014-09-01 2020-08-24 Nippon Steel Corporation Blacha cienka ze stali elektrotechnicznej o ziarnach zorientowanych
KR102062184B1 (ko) * 2015-08-04 2020-01-03 제이에프이 스틸 가부시키가이샤 자기 특성이 우수한 무방향성 전자 강판의 제조 방법
US11225699B2 (en) * 2015-11-20 2022-01-18 Jfe Steel Corporation Method for producing non-oriented electrical steel sheet
KR101728028B1 (ko) * 2015-12-23 2017-04-18 주식회사 포스코 무방향성 전기강판 및 그 제조방법
JP6451730B2 (ja) * 2016-01-15 2019-01-16 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
JP6658338B2 (ja) 2016-06-28 2020-03-04 日本製鉄株式会社 占積率に優れる電磁鋼板およびその製造方法
JP6848597B2 (ja) * 2017-03-29 2021-03-24 日本製鉄株式会社 無方向性電磁鋼板およびその製造方法、並びにモータコアおよびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003002777A1 (fr) 2001-06-28 2003-01-09 Jfe Steel Corporation Feuille en acier electromagnetique non orientee
JP2003197414A (ja) 2001-12-27 2003-07-11 Jfe Steel Kk 打ち抜き寸法精度および高周波磁気特性に優れる薄手電磁鋼板
JP2004152791A (ja) 2002-10-28 2004-05-27 Jfe Steel Kk 打ち抜き寸法精度および高周波磁気特性に優れる高効率モータ用薄手電磁鋼板
JP2006219692A (ja) * 2005-02-08 2006-08-24 Nippon Steel Corp 無方向性電磁鋼板およびその製造方法
WO2016136095A1 (ja) * 2015-02-24 2016-09-01 Jfeスチール株式会社 無方向性電磁鋼板の製造方法
JP2018168413A (ja) * 2017-03-29 2018-11-01 新日鐵住金株式会社 無方向性電磁鋼板およびその製造方法、並びにモータコアおよびその製造方法
JP2018178196A (ja) * 2017-04-14 2018-11-15 新日鐵住金株式会社 無方向性電磁鋼板及びその製造方法

Also Published As

Publication number Publication date
EP3943633A4 (en) 2022-09-07
CN113574193B (zh) 2022-09-23
US20220145418A1 (en) 2022-05-12
BR112021016821B1 (pt) 2024-01-30
EP3943633A1 (en) 2022-01-26
CN113574193A (zh) 2021-10-29
JP6617857B1 (ja) 2019-12-11
KR102561512B1 (ko) 2023-08-01
JPWO2020188783A1 (ja) 2021-04-08
KR20210125074A (ko) 2021-10-15
BR112021016821A2 (ja) 2021-11-16

Similar Documents

Publication Publication Date Title
US11124854B2 (en) Non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet
JP6891682B2 (ja) 電磁鋼板及びその製造方法、ロータ用モータコア及びその製造方法、ステータ用モータコア及びその製造方法、並びに、モータコアの製造方法
US11279985B2 (en) Non-oriented electrical steel sheet
JP6866696B2 (ja) 無方向性電磁鋼板およびその製造方法、並びにモータコアおよびその製造方法
KR102501748B1 (ko) 무방향성 전자 강판
KR101628193B1 (ko) 고강도 전자 강판 및 그의 제조 방법
TWI717201B (zh) 無方向性電磁鋼板及其製造方法
TWI682039B (zh) 無方向性電磁鋼板及其製造方法
JP6848597B2 (ja) 無方向性電磁鋼板およびその製造方法、並びにモータコアおよびその製造方法
JP7173286B2 (ja) 無方向性電磁鋼板
JP2005120403A (ja) 高周波域の鉄損が低い無方向性電磁鋼板
JP7256361B2 (ja) 無方向性電磁鋼板およびその製造方法、ipmモータのロータコア鉄心
WO2020188783A1 (ja) 無方向性電磁鋼板およびその製造方法
TWI688658B (zh) 無方向性電磁鋼板
JP7159592B2 (ja) 無方向性電磁鋼板およびその製造方法、並びにモータコアおよびその製造方法
EP4273279A1 (en) Non-oriented electromagnetic steel sheet, motor core, production method for non-oriented electromagnetic steel sheet, and production method for motor core
WO2022210890A1 (ja) 無方向性電磁鋼板及びその製造方法
TW202330956A (zh) 旋轉電機、無方向性電磁鋼板及積層鐵芯、以及旋轉電機之製造方法及積層鐵芯之製造方法
JP2020094254A (ja) かしめ性に優れた高強度無方向性電磁鋼板

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019544748

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19920490

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021016821

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20217029229

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019920490

Country of ref document: EP

Effective date: 20211020

ENP Entry into the national phase

Ref document number: 112021016821

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210825