WO2020186426A1 - 小区搜索的方法、装置和系统 - Google Patents

小区搜索的方法、装置和系统 Download PDF

Info

Publication number
WO2020186426A1
WO2020186426A1 PCT/CN2019/078532 CN2019078532W WO2020186426A1 WO 2020186426 A1 WO2020186426 A1 WO 2020186426A1 CN 2019078532 W CN2019078532 W CN 2019078532W WO 2020186426 A1 WO2020186426 A1 WO 2020186426A1
Authority
WO
WIPO (PCT)
Prior art keywords
serving cell
frequency offset
frequency
cell
timing
Prior art date
Application number
PCT/CN2019/078532
Other languages
English (en)
French (fr)
Inventor
魏璟鑫
吴钊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2019/078532 priority Critical patent/WO2020186426A1/zh
Priority to CN201980081768.7A priority patent/CN113170384B/zh
Publication of WO2020186426A1 publication Critical patent/WO2020186426A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • This application relates to the field of wireless communication, and in particular to a method, device and system for cell search.
  • the terminal device completes the downlink synchronization with the cell through the cell search process after being turned on.
  • Downlink synchronization includes time synchronization and frequency synchronization.
  • synchronization includes two processes: coarse synchronization and fine synchronization.
  • the terminal device first completes the coarse synchronization of time and frequency by detecting the primary synchronization signal (PSS) and the secondary synchronization signal (secondary synchronization signal, SSS), and then performs the coarse synchronization through the cell-specific reference signal (CRS) Fine synchronization of time and frequency.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • CRS cell-specific reference signal
  • the terminal equipment can estimate and track the fine timing and fine frequency offset of the serving cell based on the CRS. And, the terminal device can read system messages. By parsing the system message, the terminal device determines whether this cell meets the conditions for camping. If the conditions for camping are met, the terminal device successfully camps in this cell.
  • the serving cell may have a large timing mutation or frequency offset mutation. If the timing mutation of the serving cell exceeds the precise timing estimation range of the CRS, or the frequency offset mutation exceeds the fine frequency offset estimation range of the CRS, the terminal equipment may not be able to obtain the accurate timing or frequency offset of the serving cell for a long time. , Resulting in not receiving paging messages or service data.
  • the terminal equipment After the above situation occurs, the terminal equipment usually recovers by residing or even searching the network again, so as to regain the accurate timing or accurate frequency offset of the cell. The recovery process is longer and the user experience is poor.
  • This application provides a method and device for cell search. After a terminal device resides in a serving cell, if a large timing mutation occurs in the serving cell, the timing deviation of the serving cell exceeds the precise timing estimation range of the CRS, the terminal device By shortening the period of searching for cells in the same frequency, it is possible to regain the accurate timing of the serving cell without re-camp or re-searching the network, which is beneficial to improve the efficiency of timing recovery in the serving cell, thereby improving user experience.
  • the present application provides a method for cell search.
  • the method includes: after camping on a serving cell, performing an intra-frequency cell search based on the first cycle; determining that the timing deviation of the serving cell exceeds that based on the cell-specific reference signal CRS The obtained precise timing estimation range of the serving cell; the same frequency cell search is performed based on the second cycle, which is smaller than the first cycle.
  • the terminal device when it is determined that the timing deviation of the serving cell exceeds the precise timing estimation range obtained by the serving cell based on the CRS (that is, a timing mutation occurs), the terminal device shortens the period of the same-frequency cell search, and the same frequency is about to be performed.
  • the first period of the cell search becomes the second period (the second period is less than the first period)
  • the accurate timing of the serving cell may be obtained again.
  • the method further includes: in the case that the serving cell is searched within the first period of time, performing the search based on the second period
  • the coarse timing of the serving cell obtained by performing the intra-frequency cell search is reset to the timing of the serving cell; and the method further includes: using the CRS to estimate and track the fine timing of the serving cell based on the timing of the serving cell after resetting.
  • the method further includes: in the case that the serving cell is not searched within the first period of time, based on the first period Perform a same-frequency cell search.
  • the first period of the same-frequency cell search becomes the second period, but the terminal device does not keep searching based on the second period, but exceeds the preset first time period After that, if the serving cell is not found, return to the same frequency cell search in the first cycle before the timing mutation. In this way, the problem of high power consumption due to frequent intra-frequency cell search for terminal equipment can be avoided.
  • the method before performing the same-frequency cell search based on the second period, the method further includes: determining that the frequency offset of the serving cell exceeds that obtained by performing fine frequency offset estimation based on CRS The estimation range of the precise frequency offset of the serving cell.
  • the frequency offset of the serving cell may also exceed the fine frequency offset estimation range obtained by the serving cell based on the CRS, that is, both timing mutations and frequency deviations occur. Partial mutation.
  • the terminal device shortens the period of searching for cells with the same frequency, and changes from the first period to the second period, and may re-obtain accurate timing and accurate frequency offset of the serving cell.
  • the method of re-searching the network or re-camp is used to re-determine the timing and frequency offset of the serving cell, The time for regaining accurate timing and accurate frequency offset of the serving cell is shortened, and user experience is improved.
  • the method further includes: in the case that the serving cell is searched within the second period of time, performing the search based on the second period
  • the coarse frequency offset estimation value obtained by the same-frequency cell search is reset to the frequency offset of the serving cell; based on the frequency offset of the serving cell after the reset, the CRS is used to estimate and track the fine frequency offset of the serving cell.
  • the terminal device performs the same-frequency cell search based on the second cycle, and if the serving cell is found within the second time period, the coarse frequency offset estimation value obtained by the same-frequency cell search using the second cycle is reset to the frequency offset of the serving cell. On this basis, CRS is used to estimate and track the precise frequency offset of the serving cell.
  • the first period of the same-frequency cell search for a terminal device becomes the second period, but the terminal device does not keep searching based on the second period, but exceeds After the preset second time period, if the serving cell is not found, it will return to the first cycle before the frequency offset sudden change to perform the same-frequency cell search, which can avoid the frequent search of the same-frequency cell by the terminal equipment and high power consumption. problem.
  • first duration and the second duration may be equal or not equal.
  • the timing deviation of the serving cell exceeds the precise timing estimation range of the serving cell obtained based on CRS, including: when the service obtained based on the same frequency cell search for N consecutive times When the absolute value of the difference between the coarse timing of the cell and the fine timing of the serving cell obtained based on CRS is greater than the first threshold, or when there are L times of M times the coarse timing of the serving cell obtained based on the same-frequency cell search is compared with the one obtained based on CRS When the absolute value of the difference between the precision timing of the serving cell is greater than the second threshold, it is determined that the timing deviation of the serving cell exceeds the precision timing estimation range of the CRS, N ⁇ 1 and an integer, M ⁇ 1 and an integer, L ⁇ 1 and It is an integer, M ⁇ L.
  • the frequency offset of the serving cell exceeds the estimation range of the fine frequency offset of the serving cell obtained by performing fine frequency offset estimation based on CRS, including: When the absolute value of the difference between the coarse frequency offset estimation value of the serving cell obtained by the frequency cell search and the fine frequency offset estimation value of the serving cell obtained based on the CRS is greater than the third threshold, or when Z times out of W are based on the same frequency cell When the absolute value of the difference between the coarse frequency offset estimation value of the serving cell obtained from the search and the fine frequency offset estimation value of the serving cell obtained based on the CRS is greater than the fourth threshold, it is determined that the frequency offset of the serving cell exceeds that of the serving cell obtained based on the CRS. Fine frequency offset estimation range, Q ⁇ 1 and integer, W ⁇ 1 and integer, Z ⁇ 1 and integer, W ⁇ Z.
  • this application also provides a cell search method, which includes: after camping on a serving cell, performing a cell search based on the first cycle; determining that the frequency offset of the serving cell exceeds the value obtained based on the cell-specific reference signal CRS The estimation range of the fine frequency offset of the serving cell; the same frequency cell search is performed based on the second cycle, which is smaller than the first cycle.
  • the terminal device when it is determined that the frequency offset of the serving cell exceeds the estimation range of the fine frequency offset obtained by the serving cell based on the CRS, that is, when the frequency offset sudden change occurs, the terminal device shortens the period of searching for the same frequency cell, from When the first cycle becomes the second cycle, the accurate frequency offset of the serving cell may be obtained again.
  • the method of re-searching the network or re-staying to re-determine the frequency offset of the serving cell is shortened. Accurate frequency offset time helps to improve the efficiency of frequency offset recovery in the serving cell, thereby improving user experience.
  • the method further includes: in the case that the serving cell is not searched within the second period of time, performing synchronization based on the first period Frequency cell search.
  • the present application provides a device for cell search.
  • the device has the function of implementing the method in the first aspect and any possible implementation of the first aspect, or the device has the ability to implement the second aspect and The function of the method in any possible implementation of the second aspect.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to the above functions.
  • the present application provides a wireless communication device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, so that the wireless communication device executes the method in the first aspect or any possible implementation of the first aspect, or causes the wireless communication device to execute the second aspect. Aspect or any possible implementation of the second aspect.
  • processors there may be one or more processors, and there may be one or more memories.
  • the wireless communication device described in the third aspect above further includes a communication interface.
  • the communication interface may be a transceiver, a transceiver circuit or an input/output interface.
  • this application provides a computer-readable storage medium in which a computer program (code or instruction) is stored, and when the computer program runs on a computer, the computer executes the first aspect Or the method in any possible implementation manner of the first aspect, or make the computer execute the second aspect or the method in any possible implementation manner of the second aspect.
  • a computer program code or instruction
  • this application provides a chip including a processor.
  • the processor is used to read and execute a computer program stored in the memory to execute the method in the first aspect or any possible implementation manner of the first aspect, or execute the method in the second aspect or any possible implementation manner of the second aspect .
  • the chip further includes a memory, and the memory and the processor are connected to the memory through a circuit and/or a wire, and the memory is used to store the computer program.
  • the chip further includes a communication interface.
  • the present application also provides a computer program product.
  • the computer program product includes a computer program.
  • the computer program When the computer program is run on a computer, the computer executes the first aspect or any possible implementation of the first aspect. Or, the computer executes the second aspect or the method in any possible implementation manner of the second aspect.
  • the present application provides a communication system including the wireless communication device as described in the third aspect.
  • the memory and the processor described above may be physically independent units, or the memory and the processor may be integrated.
  • the terminal device after the terminal device camps on the serving cell, if a large timing abrupt change occurs, the timing deviation of the serving cell exceeds the precise timing estimation range of the serving cell obtained based on CRS, and the terminal device shortens The period of the same-frequency cell search (that is, frequent cell search), without the need to re-camp or re-search the network, it is possible to regain the accurate timing of the serving cell, which is beneficial to improve the timing recovery of the serving cell Efficiency, thereby improving user experience.
  • the same-frequency cell search that is, frequent cell search
  • FIG. 2 is a schematic flowchart of a cell search method 200 provided in this application.
  • FIG. 3 is a schematic flowchart of a cell search method 300 provided by the present application.
  • WLAN wireless local area networks
  • LTE long term evolution
  • LTE-A evolved LTE
  • NB-IoT Narrowband Internet of Things
  • NR new radio
  • FIG. 1 is an example of the architecture of a wireless communication system suitable for the embodiment of the present application.
  • the wireless communication system includes at least one network device 101 and one or more terminal devices (for example, the terminal device 102 and the terminal device 103 shown in FIG. 1).
  • the network device 101 may be a base station, or a device integrated between a base station and a base station controller, or other devices with similar communication functions.
  • the network equipment 101 and base station 100 involved in the embodiments of this application include but are not limited to: evolved node B (evolved node base, eNB), radio network controller (RNC), node B (node B, NB), Base station controller (BSC), base transceiver station (base transceiver station, BTS), home base station (home evolved NodeB, or home node B, HNB), evolved (evolved LTE, eLTE) base station, NR base station ( The next generation node B, gNB), etc.
  • eNB evolved node B
  • RNC radio network controller
  • node B node B
  • BSC Base station controller
  • base transceiver station base transceiver station
  • BTS home base station
  • home evolved NodeB home evolved NodeB, or home node B, HNB
  • evolved (evolved LTE, eLTE) base station NR base station ( The next generation node B, gNB), etc.
  • gNB next generation no
  • the terminal equipment mentioned in the embodiments of this application includes but is not limited to: user equipment (UE), mobile station, access terminal, user unit, user station, mobile station, remote station, remote terminal, mobile equipment, terminal , Wireless communication equipment, user agents, stations (ST) in wireless local access network (WLAN), cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop ( wireless local loop (WLL) station, personal digital assistant (PDA), handheld devices with wireless communication functions, computing devices, other processing devices connected to wireless modems, in-vehicle devices, wearable devices, and future 5G networks Any of the mobile stations in the future and terminal equipment in the future evolved public land mobile network (PLMN) network.
  • PLMN public land mobile network
  • a cell search is required during the startup, disconnection, or handover of terminal equipment.
  • Cell search is the first step for the UE to access the system, and it is related to whether the UE can quickly and accurately access the system.
  • the terminal device identifies the physical layer cell through cell search, and completes the downlink synchronization with the network side, and the UE can read the cell broadcast information and complete the camping. After that, you can use the various services provided by the network.
  • PSS periodically appears on the third OFDM symbol of subframe 1 and subframe 6
  • SSS periodically appears on the last symbol of subframe 0 and subframe 5.
  • Coarse synchronization is also coarse synchronization.
  • the UE uses the locally pre-stored PSS sequence (3 in total) to perform synchronization correlation with the received signal to obtain the desired peak value, and determine the synchronization position of the PSS based on the peak value.
  • the UE can obtain the intra-group ID of the cell according to the detected PSS, and at the same time determine the time slot boundary of 5 ms to achieve time slot synchronization.
  • the UE After obtaining the 5ms time slot synchronization, the UE searches forward for the SSS based on the PSS. Since the SSS mapped in the front and rear half frames is different, the frame boundary of 10 ms can be determined to achieve frame synchronization. At the same time, since the SSS carries the cell group ID, the cell group ID can also be obtained by detecting the SSS.
  • the UE combines the group ID of the cell carried by the SSS and the group ID carried by the PSS to obtain PCI.
  • the timing estimation range and frequency offset estimation range are related to the estimation algorithm adopted by the receiving end.
  • FIG. 2 is a schematic flowchart of a cell search method 200 provided in the present application.
  • the method 200 may be executed by a terminal device, or executed by a chip configured in the terminal device, which is not limited in this application.
  • terminal equipment is taken as an example.
  • the coarse timing of the serving cell refers to the frame header position (or the frame header time scale) of the serving cell determined by the terminal device in the same frequency cell search in the first cycle.
  • the precise timing of the serving cell refers to the frame head position of the serving cell tracked by the terminal device using the CRS.
  • whether the timing deviation of the serving cell exceeds the precise timing estimation range of the CRS can be determined by various methods.
  • the second period is smaller than the first period.
  • the second period of the same-frequency cell search is smaller than the first period of the same-frequency cell search before the serving cell has a timing mutation. In other words, if the serving cell undergoes a sudden change in timing, the terminal device reduces the period of searching for cells on the same frequency.
  • the terminal device After the terminal device camps on the serving cell, if a large timing mutation occurs, which causes the timing deviation of the serving cell to exceed the precise timing estimation range of the CRS, the terminal device shortens the period of performing the same-frequency cell search (that is, frequent Cell search), without the need to re-camp or re-search the network, it is possible to regain the accurate timing of the serving cell, which can improve the efficiency of timing recovery in the serving cell, thereby improving user experience.
  • the same-frequency cell search that is, frequent Cell search
  • 301-302 can refer to the descriptions of 201-202 in the method 200 shown in FIG. 2, and details are not repeated here.
  • the frequency offset of the serving cell exceeds the estimation range of the fine frequency offset obtained by performing the fine frequency offset estimation based on the CRS, that is, a sudden frequency offset has occurred.
  • the frequency offset of the serving cell refers to the coarse frequency offset estimation value of the serving cell determined by the terminal equipment in the first cycle of the same frequency cell search and the fine frequency offset estimation of the serving cell obtained by the terminal equipment based on the CRS estimation of the fine frequency offset of the serving cell The difference between the values.
  • whether the frequency offset of the serving cell exceeds the estimation range of the fine frequency offset of the CRS may also be determined by multiple methods.
  • the terminal device obtains the coarse frequency offset estimation value of the serving cell based on the same frequency cell search in multiple radio frames, and uses the CRS of the serving cell to obtain the fine frequency offset estimation value of the serving cell.
  • the terminal device compares the estimated value of the coarse frequency offset with the estimated value of the fine frequency offset. If the absolute value of the difference between the two consecutive Q times is greater than the second threshold, it is determined that the frequency offset of the serving cell has exceeded the estimation range of the CRS fine frequency offset.
  • the value of Q can be preset by the terminal device.
  • the terminal device performs coarse frequency offset estimation and fine frequency offset estimation on the serving cell in multiple radio frames, and compares the obtained coarse frequency offset estimation value with the fine frequency offset estimation value. If in W comparisons, the absolute value of the difference between Z times is greater than the second threshold, it is determined that the frequency offset of the serving cell has exceeded the estimation range of the CRS fine frequency offset.
  • W and Z are both integers, and satisfy W ⁇ Z. The values of W and Z can be preset by the terminal device.
  • the second threshold can be preset. In one implementation, the second threshold may be set to zero.
  • the second threshold and the first threshold may be equal or unequal, which is not limited in this application.
  • 303 may also use other methods to determine whether the frequency offset of the serving cell exceeds the estimation range of the CRS fine frequency offset, which is not limited in this application.
  • the second period is smaller than the first period.
  • the terminal device uses a smaller period to search for the same frequency cell.
  • the second duration can also be preset.
  • the duration of the same-frequency cell search in the second cycle can be set to be the same (that is, the first duration and the second duration are set to be equal), or can also be The setting is different, this application is not limited.
  • the cell search method 300 provided by the present application has been described in detail above.
  • the terminal device after the terminal device resides in the serving cell, if a large frequency deviation sudden change occurs, so that the frequency offset of the serving cell exceeds the estimation range of the CRS fine frequency offset, the terminal device performs the same frequency cell search by shortening In the case of no need to re-camp or re-search the network, it is possible to regain the accurate frequency offset of the serving cell, which can improve the efficiency of frequency offset recovery of the serving cell, thereby improving user experience.
  • the accurate frequency offset of the serving cell may be obtained again.
  • both timing mutation and frequency offset mutation occur.
  • FIG. 4 is a schematic block diagram of a communication device 500 provided in the present application.
  • the communication device 500 includes a transceiving unit 510 and a processing unit 520.
  • the units of the communication device 500 are used to perform corresponding operations and/or steps of the method embodiments.
  • each unit of the apparatus 500 is used to perform corresponding operations and/or processing of the method 200.
  • the transceiver unit 510 is configured to perform a same-frequency cell search in the first cycle after the communication device 500 camps on the serving cell;
  • the processing unit 520 is configured to determine whether the timing deviation of the serving cell exceeds the precise timing estimation range of the serving cell obtained based on the CRS;
  • the transceiving unit 510 is configured to perform a same-frequency cell search in a second cycle when the processing unit 520 determines that the timing deviation of the serving cell exceeds the precise timing estimation range of the serving cell obtained based on the CRS. One cycle.
  • the processing unit 520 is further configured to reset the coarse timing of the serving cell obtained by performing intra-frequency cell search based on the second cycle to the serving cell's coarse timing when the transceiving unit 510 has searched for the serving cell within the first period of time. timing;
  • the transceiver unit 510 is also configured to use CRS to perform precise timing estimation and tracking on the serving cell based on the timing of the serving cell after resetting.
  • the transceiving unit 510 is further configured to perform an intra-frequency cell search based on the first period when the serving cell is not searched within the first time period.
  • the processing unit 520 is further configured to determine that the frequency offset of the serving cell exceeds the estimation range of the serving cell's fine frequency offset obtained by performing fine frequency offset estimation based on the CRS before the transceiving unit 510 performs the same-frequency cell search based on the second cycle.
  • processing unit 520 is specifically configured to:
  • the absolute value of the difference between the coarse timing of the serving cell obtained based on the same frequency cell search and the fine timing of the serving cell obtained based on the CRS is greater than the first threshold for N consecutive times, or when there are L times based on the same frequency cell
  • the absolute value of the difference between the coarse timing of the serving cell obtained by the search and the fine timing of the serving cell obtained based on the CRS is greater than the second threshold, it is determined that the timing deviation of the serving cell exceeds the estimated range of the fine timing of the serving cell obtained based on the CRS, N ⁇ 1 and an integer, M ⁇ 1 and an integer, L ⁇ 1 and an integer, M ⁇ L.
  • processing unit 520 is specifically configured to:
  • the units of the communication device 500 are used to perform corresponding operations and/or processing of the method 300.
  • the transceiver unit 510 is configured to perform a same-frequency cell search in the first cycle after the communication device 500 camps on the serving cell;
  • the processing unit 520 is configured to determine whether the frequency offset of the serving cell exceeds the fine frequency offset estimation range of the serving cell obtained based on the CRS;
  • the transceiver unit 510 is configured to perform a same-frequency cell search in a second cycle when the processing unit 520 determines that the frequency offset of the serving cell exceeds the estimation range of the CRS fine frequency offset, where the second cycle is smaller than the first cycle.
  • the processing unit 520 is further configured to reset the coarse frequency offset estimation value obtained by performing the same-frequency cell search based on the second cycle to the serving cell when the transceiving unit 510 has not searched for the serving cell within the first time period.
  • the transceiver unit 510 is further configured to use CRS to estimate and track the precise frequency offset of the serving cell based on the frequency offset of the serving cell after resetting.
  • the transceiving unit 510 is further configured to perform an intra-frequency cell search based on the first period when the serving cell is not searched within the first time period.
  • the communication device 500 may be a chip.
  • the chip may be a field-programmable gate array (FPGA), an application specific integrated circuit (ASIC), a system on chip (SoC), a central processing unit ( central processor unit, CPU), digital signal processing circuit (digital signal processor, DSP), microcontroller (microcontroller unit, MCU), programmable logic device (PLD) or other integrated chips, etc.
  • FPGA field-programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • CPU central processing unit
  • DSP digital signal processing circuit
  • microcontroller microcontroller unit, MCU
  • PLD programmable logic device
  • the structure of the communication device 500 can be referred to as shown in FIG. 5, which is an example of the structure of the communication device 500 provided in the present application.
  • the transceiver unit 510 shown in FIG. 4 may be implemented by the communication interface 510 shown in FIG. 5, and the processing unit 520 may be implemented by the processor 520 shown in FIG.
  • FIG. 6 is a structural example of the terminal device 1000 provided in this application.
  • the terminal device 1000 is used to implement corresponding operations and/or processing in the method embodiments.
  • the terminal device 1000 includes an antenna 1101, a radio frequency device 1102, and a baseband device 1103.
  • the antenna 1101 is connected to the radio frequency device 1102.
  • the radio frequency device 1102 obtains the signal generated by the terminal device from the baseband device 1103, and transmits the signal through the antenna 1101.
  • the radio frequency device 1102 receives signals from the network side through the antenna 1101, and sends the received signals to the baseband device 1103 for processing.
  • FIG. 7 is a structural example of the terminal device 7000 provided by this application. As shown in FIG. 7, the terminal device 7000 includes a processor 7001 and a transceiver 7002.
  • the processor 7001 may be used to perform operations and/or processing performed by the processing unit 520 described in the apparatus embodiment (for example, FIG. 4), and the transceiver 7002 may be used to perform operations and/or processing performed by the transceiver unit 510. .
  • the transceiver 7002 receives primary and secondary synchronization signals, CRS, etc. from the network side.
  • the processor 7001 performs coarse timing synchronization and coarse frequency synchronization based on the primary and secondary synchronization signals received by the transceiver 7002, and performs fine timing estimation and tracking, fine frequency offset estimation and tracking based on the CRS received by the transceiver 7002.
  • the processor 7001 determines whether the timing deviation of the serving cell exceeds the precise timing estimation range of the serving cell obtained based on CRS, and determines whether the frequency offset of the serving cell exceeds the fine frequency offset estimation range of the serving cell obtained based on CRS, etc. .
  • the chip further includes a communication interface, and the processor is connected to the communication interface.
  • the communication interface is used to receive the signal to be processed, and the processor obtains the signal from the communication interface and processes it.
  • the memory can be read-only memory (ROM), other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions
  • Dynamic storage devices can also be electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory (CD-ROM), or other optical disk storage, optical disc storage ( Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can Any other medium accessed by the computer, etc.
  • EEPROM electrically erasable programmable read-only memory
  • CD-ROM compact disc read-only memory
  • optical disc storage Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.
  • magnetic disk storage media or other magnetic storage devices or can be used to carry or store desired program codes in the form of instructions or data structures and can Any other medium

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种进行小区搜索的方法,在服务小区出现较大的定时突变的情况下,可能会快速重新获得服务小区的准确定时。该方法包括:驻留到服务小区之后,以第一周期进行同频小区搜索;确定服务小区的定时偏差超出了服务小区的CRS的精定时估计范围;以第二周期进行同频小区搜索,第二周期小于第一周期。

Description

小区搜索的方法、装置和系统 技术领域
本申请涉及无线通信领域,尤其涉及一种进行小区搜索的方法、装置和系统。
背景技术
在长期演进(long term evolution,LTE)中,终端设备开机之后通过小区搜索过程完成和小区的下行同步。下行同步包括时间同步和频率同步。通常所说的同步包括粗同步和精同步两个过程。终端设备先是通过检测主同步信号(primary synchronization signal,PSS)和辅同步信号(secondary synchronization signal,SSS)完成时间和频率的粗同步,再通过小区特定参考信号(cell-specific reference signal,CRS)进行时间和频率的精同步。
同步成功之后,终端设备可以基于CRS对服务小区进行精定时和精频偏的估计与跟踪。并且,终端设备就可以读取系统消息。通过解析系统消息,终端设备判断这个小区是否满足驻留的条件。如果满足驻留的条件,终端设备则成功驻留这个小区。
终端设备在对服务小区进行精定时和精频偏的估计与跟踪的过程中,由于一些因素的变化,服务小区可能会出现较大的定时突变或频偏突变。如果服务小区的定时突变超出了CRS的精定时估计范围,或者是频偏突变超出了CRS的精频偏估计范围,终端设备可能在较长的时间内将无法获得服务小区的准确定时或频偏,导致接收不到寻呼消息或业务数据。
在发生上述情况后,终端设备通常都是采用重新驻留甚至重新搜网的方式来进行恢复,以重新获得小区的准确定时或准确频偏,恢复过程较长,用户体验较差。
发明内容
本申请提供一种进行小区搜索的方法和装置,终端设备驻留到服务小区之后,如果服务小区发生了较大的定时突变,使得服务小区的定时偏差超出了CRS的精定时估计范围,终端设备通过缩短进行同频小区搜索的周期,在不需要重新驻留或重新搜网的情况下,就可能重新获得服务小区的准确定时,有利于提高服务小区进行定时恢复的效率,从而提高用户体验。
第一方面,本申请提供一种进行小区搜索的方法,该方法包括:驻留到服务小区后,基于第一周期进行同频小区搜索;确定服务小区的定时偏差超出了基于小区特定参考信号CRS获得的服务小区的精定时估计范围;基于第二周期进行同频小区搜索,第二周期小于所述第一周期。
本申请的技术方案,在确定服务小区的定时偏差超出了服务小区基于CRS获得的精定时估计范围(也即发生了定时突变)时,终端设备缩短同频小区搜索的周期,也即将进行同频小区搜索的第一周期变为第二周期(第二周期小于第一周期),就可能会重新获得服务小区的准确定时。和现有的终端设备在服务小区的定时偏差超出了CRS的精定时估 计范围时重新搜网或者重新驻留的方式相比,缩短了重新获得服务小区的准确定时的时间,有利于提高服务小区进行定时恢复的效率。
结合第一方面,在第一方面的某些实现方式中,基于第二周期进行同频小区搜索之后,该方法还包括:在第一时长内搜索到服务小区的情况下,将基于第二周期进行同频小区搜索获得的服务小区的粗定时重置为服务小区的定时;以及,该方法还包括:基于重置之后的服务小区的定时,使用CRS对服务小区进行精定时估计与跟踪。
在基于第二周期进行同频小区搜索,搜索到服务小区的情况下,将采用第二周期进行同频小区搜索获得的粗定时重置为服务小区的定时,并在此基础上使用CRS进行服务小区的精定时估计与跟踪。
结合第一方面,在第一方面的某些实现方式中,基于第二周期进行同频小区搜索之后,该方法还包括:在第一时长内未搜索到服务小区的情况下,基于第一周期进行同频小区搜索。
终端设备在发生定时突变的情况下,进行同频小区搜索的第一周期变为第二周期,但是终端设备并不会基于第二周期一直搜索下去,而是在超过了预先设置的第一时长后,如果未搜索到服务小区,则返回采用定时突变之前的第一周期进行同频小区搜索。这样,可以避免终端设备频繁进行同频小区搜索而功耗较大的问题。
结合第一方面,在第一方面的某些实现方式中,在基于第二周期进行同频小区搜索之前,该方法还包括:确定服务小区的频偏超出了基于CRS进行精频偏估计获得的服务小区的精频偏估计范围。
在服务小区的定时超出了基于CRS获得的精定时估计范围时,服务小区的频偏可能也同时超出了服务小区基于CRS获得的精频偏估计范围,也即既发生了定时突变又发生了频偏突变。此时,终端设备缩短进行同频小区搜索的周期,从第一周期变为第二周期,就可能会重新获得服务小区的准确定时和准确频偏。和现有的终端设备在服务小区的定时和频偏超出了CRS的精定时和精频偏估计范围时采用重新搜网或者重新驻留的方式来重新确定服务小区的定时和频偏相比,缩短了重新获得服务小区的准确定时和准确频偏的时间,提高了用户体验。
结合第一方面,在第一方面的某些实现方式中,基于第二周期进行同频小区搜索之后,该方法还包括:在第二时长内搜索到服务小区的情况下,将基于第二周期进行同频小区搜索获得的粗频偏估计值重置为服务小区的频偏;基于重置之后的服务小区的频偏,使用CRS对服务小区进行精频偏估计与跟踪。
终端设备基于第二周期进行同频小区搜索,如果在第二时长内搜索到服务小区,则将采用第二周期进行同频小区搜索获得的粗频偏估计值重置为服务小区的频偏,并在此基础上使用CRS进行服务小区的精频偏估计与跟踪。
结合第一方面,在第一方面的某些实现方式中,基于第二周期进行同频小区搜索之后,该方法还包括:在第二时长内未搜索到服务小区的情况下,基于第一周期进行同频小区搜索。
和发生定时突变类似,终端设备在发生频偏突变的情况下,进行同频小区搜索的第一周期变为第二周期,但是终端设备并不会基于第二周期一直搜索下去,而是在超过了预先设置的第二时长后,如果未搜索到服务小区,则返回到频偏突变之前的第一周期进行同频 小区搜索,从而可以避免终端设备频繁进行同频小区搜索而功耗较大的问题。
本申请中不限定第一时长和第二时长的大小关系。例如,第一时长和第二时长可以相等或者也可以不相等。
结合第一方面,在第一方面的某些实现方式中,确定服务小区的定时偏差超出了基于CRS获得的服务小区的精定时估计范围,包括:当连续N次基于同频小区搜索获得的服务小区的粗定时与基于CRS获得的服务小区的精定时之差的绝对值大于第一门限时,或者,当M次中有L次基于同频小区搜索获得的服务小区的粗定时与基于CRS获得的服务小区的精定时之差的绝对值大于第二门限时,确定服务小区的定时偏差超出了CRS的精定时估计范围,N≥1且为整数,M≥1且为整数,L≥1且为整数,M≥L。
结合第一方面,在第一方面的某些实现方式中,确定服务小区的频偏超出了基于CRS进行精频偏估计获得的服务小区的精频偏估计范围,包括:当连续Q次基于同频小区搜索获得的服务小区的粗频偏估计值与基于CRS获得的服务小区的精频偏估计值之差的绝对值大于第三门限时,或者,当W次中有Z次基于同频小区搜索获得的服务小区的粗频偏估计值与基于CRS获得的服务小区的精频偏估计值之差的绝对值大于第四门限时,确定服务小区的频偏超出了基于CRS获得的服务小区的精频偏估计范围,Q≥1且为整数,W≥1且为整数,Z≥1且为整数,W≥Z。
第二方面,本申请还提供一种小区搜索的方法,该方法包括:驻留到服务小区后,基于第一周期进行小区搜索;确定服务小区的频偏超出了基于小区特定参考信号CRS获得的服务小区的精频偏估计范围;基于第二周期进行同频小区搜索,第二周期小于第一周期。
在本申请的技术方案中,在确定服务小区的频偏超出了服务小区基于CRS获得的精频偏估计范围时,也即发生了频偏突变时,终端设备缩短同频小区搜索的周期,从第一周期变为第二周期,就可能会重新获得服务小区的准确频偏。和现有的终端设备在服务小区的频偏超出了CRS的精频偏估计范围时采用重新搜网或者重新驻留的方式来重新确定服务小区的频偏相比,缩短了重新获得服务小区的准确频偏的时间,有利于提高服务小区进行频偏恢复的效率,从而提高用户体验。
结合第二方面,在第二方面的某些实现方式中,基于第二周期进行同频小区搜索之后,该方法还包括:在第二时长内搜索到服务小区的情况下,将基于第二周期进行同频小区搜索获得的粗频偏估计值重置为服务小区的频偏;以及,该方法还包括:基于重置之后的服务小区的频偏,使用CRS对服务小区进行精频偏估计与跟踪。
结合第二方面,在第二方面的某些实现方式中,基于第二周期进行小区搜索之后,该方法还包括:在第二时长内未搜索到服务小区的情况下,基于第一周期进行同频小区搜索。
第三方面,本申请提供一种用于小区搜索的装置,所述装置具有实现第一方面以及第一方面任意可能的实现方式中的方法的功能,或者,所述装置具有实现第二方面以及第二方面任意可能的实现方式中的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元。
第四方面,本申请提供一种无线通信装置,包括处理器和存储器。存储器用于存储计算机程序,处理器用于调用并运行存储器中存储的计算机程序,使得无线通信装置执行第一方面或第一方面任意可能的实现方式中的方法,或者,使得无线通信装置执行第二方面或第二方面任意可能的实现方式中的方法。
可选地,所述存储器可以集成在处理器中,也可以位于所述处理器之外,独立存在。
可选地,所述处理器可以为一个或多个,所述存储器可以为一个或多个。
可选地,上述第三方面所述的无线通信装置还包括通信接口。进一步可选地,所述通信接口可以为收发器、收发电路或者输入输出接口。
第五方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序(代码或指令),当所述计算机程序在计算机上运行时,使得计算机执行第一方面或第一方面的任意可能的实现方式中的方法,或者,使得计算机执行第二方面或第二方面的任意可能的实现方式中的方法。
第六方面,本申请提供一种芯片,包括处理器。处理器用于读取并执行存储器中存储的计算机程序,以执行第一方面或第一方面任意可能的实现方式中的方法,或者,执行第二方面或第二方面任意可能的实现方式中的方法。
可选地,所述芯片还包括存储器,存储器与处理器通过电路和/或电线与存储器连接,存储器用于存储所述计算机程序。
进一步可选地,所述芯片还包括通信接口。
第七方面,本申请还提供一种计算机程序产品,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上被运行时,使得计算机执行上述第一方面或第一方面任意可能的实现方式中的方法,或者,计算机执行第二方面或第二方面任意可能的实现方式中的方法。
第八方面,本申请提供一种通信系统,包括如第三方面中所述的无线通信装置。
可选的,以上所述的存储器与处理器可以是物理上相互独立的单元,或者,存储器也可以和处理器集成在一起。
本申请实施例的技术方案,终端设备驻留到服务小区之后,如果发生了较大的定时突变,使得服务小区的定时偏差超出了基于CRS获得的服务小区的精定时估计范围,终端设备通过缩短进行同频小区搜索的周期(也即,频繁进行小区搜索),在不需要重新驻留或重新搜网的情况下,就可能重新获得服务小区的准确定时,有利于提高服务小区进行定时恢复的效率,从而提高用户体验。
附图说明
图1是适用于本申请实施例的无线通信系统的架构的示例。
图2是本申请提供的小区搜索的方法200的示意性流程图。
图3是本申请提供的小区搜索的方法300的示意性流程图。
图4是本申请提供的通信装置500的示意性框图。
图5是本申请提供的通信装置500的一个结构示例。
图6是本申请提供的终端设备1000的一个结构示例。
图7是本申请提供的终端设备7000的一个结构示例。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请的技术方案适用于多种无线通信系统,例如,无线局域网(wireless local area  networks,WLAN),长期演进(long term evolution,LTE)系统,演进的LTE(LTE-advanced,LTE-A)系统,窄带物联网(narrow band-internet of things,NB-IoT)系统,新空口(new radio,NR)等,本申请对此不作限定。
参见图1,图1是适用于本申请实施例的无线通信系统的架构的示例。如图1所示,无线通信系统中包括至少一个网络设备101以及一个或多个终端设备(例如,图1中所示的终端设备102和终端设备103)。网络设备101可以是基站,也可以是基站与基站控制器集成后的设备,还可以是具有类似通信功能的其它设备。
本申请实施例中涉及的网络设备101基站100包括但不限于:演进型节点B(evolved node base,eNB)、无线网络控制器(radio network controller,RNC)、节点B(node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(home evolved NodeB,或home node B,HNB)、演进的(evolved LTE,eLTE)基站、NR基站(next generation node B,gNB)等,本申请对此不作限定。
本申请实施例中提及的终端设备包括但不限于:用户设备(user equipment,UE)、移动台、接入终端、用户单元、用户站、移动站、远方站、远程终端、移动设备、终端、无线通信设备、用户代理、无线局域网(wireless local access network,WLAN)中的站点(station,ST)、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备、连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的移动台以及未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的终端设备等中的任意一种。
终端设备开机、脱网或者切换过程中需要进行小区搜索。小区搜索是UE接入系统的第一步,关系到UE是否能够快速、准确地接入系统。终端设备通过小区搜索来识别物理层小区,并完成和网络侧的下行同步,进而UE可以读取小区广播信息并完成驻留。之后,就可以使用网络提供的各种服务。
小区搜索的目的是为了获得物理小区标识(physical cell identity,PCI),从而完成下行同步。
在长期演进(long term evolution,LTE)中,物理层是通过PCI来区分不同的小区的。LTE的PCI分成168个不同的组,范围在0~167。每组包含3个不同的小区,范围为0~2。因此,每个PCI唯一对应一个组号和一个组内编号。
在LTE中,UE通过主同步信号(primary synchronization signal,PSS)和辅同步信号(secondary synchronization signal,SSS)完成小区搜索。
(1)PSS和SSS在时域上的位置。
在频分复用(frequency division duplexing,FDD)制式中,PSS周期地出现在时隙0和时隙10的最后一个OFDM符号上,SSS周期地出现在时隙0和时隙10的倒数第二个OFDM符号上。
在时分复用(time division duplexing,TDD)制式中,PSS周期地出现在子帧1和子帧6的第三个OFDM符号上,SSS周期地出现在子帧0和子帧5的最后一个符号上。
SSS在时域上位于PSS之前。在FDD制式中,SSS所在的OFDM符号与PSS所在的OFDM符号相邻。在TDD制式中,SSS所在的OFDM符号与PSS所在的OFDM符号间 隔2个OFDM符号。
(2)PSS和SSS在频域上的位置。
为了简化小区搜索的过程,PSS和SSS在频域上映射到整个带宽中间的6个RB上。都对称分布在直流子载波(direct sub-carrier,DC)左右,各自占用62个子载波。
1、粗同步。
粗同步也即粗略同步。
(1)粗定时同步。
UE利用本地预存的PSS的序列(共有3个)和接收信号进行同步相关,获得期望的峰值,并根据峰值判断出PSS的同步位置。同时,UE根据检测到的PSS可以得到小区的组内ID,同时确定5ms的时隙边界,达到时隙同步。
获得5ms时隙同步之后,UE在PSS基础上向前搜索SSS。由于映射在前后半帧的SSS不同,因此就可以确定10ms的帧边界,达到帧同步。同时,由于SSS携带了小区组ID,通过检测SSS还可以获得小区组ID。
UE将SSS携带的小区的组ID和PSS携带的组内ID结合,就可以得到PCI。
此外,通过检测SSS,还可以确定循环前缀(cyclic prefix,CP)类型为正常CP(normal CP)或扩展CP(extended CP)。
(2)粗频率同步。
UE利用时域接收信号和本地预存的PSS信号进行叉积鉴频,可以获得粗频偏估计。
如上所述,通过PSS和SSS,UE获得和小区的粗定时同步和粗频率同步。
2、精同步。
精同步也即精确同步。
UE通过粗同步过程检测到PCI,可以获知小区特定参考信号CRS的时频资源位置。UE可以基于CRS进行服务小区的精定时估计与跟踪以及精频偏估计与跟踪。
另外,由于正交频分复用(orthogonal frequency division multiplexing,OFDM)系统对时间同步和频率偏移非常敏感,如果定时不准确,相邻OFDM符号会进入当前处理的OFDM符号上,导致符号间干扰。而由于收发两端本地的振荡器频率通常都不一致,以及通信信道的误差以及多普勒频移等原因,载波频率在信号传输过程中发生偏移。频率偏移会引入子载波间干扰,破坏子载波间的正交性,导致子载波间的干扰。这两种干扰都会严重降低接收机性能。因此,UE需要准确跟踪服务小区的定时和频偏,以提高解调性能。
其中,定时估计范围以及频偏估计范围和接收端采用的估计算法有关。
终端设备在对服务小区进行精定时估计与跟踪以及精频偏估计与跟踪的过程中,由于一些因素的变化(例如,突然出现的恶劣条件等),服务小区可能会出现较大的定时突变或频偏突变。例如,如果服务小区的定时突变超出了CRS的精定时估计范围,终端设备在较长时间内可能无法获得服务小区的准确定时,在此期间将接收不到寻呼或业务数据。
或者,服务小区的频偏突变超出了CRS的精频偏估计范围,终端设备可能在较长的时间内将无法获得服务小区的准确频偏,在此期间也将接收不到寻呼消息或业务数据。这将严重影响终端设备对信号的解调性能。
下面对本申请提供的进行小区搜索的方法进行说明。
参见图2,图2是本申请提供的小区搜索的方法200的示意性流程图。方法200可以 由终端设备执行,或者由配置在终端设备中的芯片执行,本申请不作限定。以下描述中,以终端设备作为示例。
201、驻留到服务小区。
这里,不限定终端设备驻留到服务小区之后的状态。例如,终端设备可以处于空闲态(RRC-idle),或处于激活态RRC-connected配置了非连续接收(discontinuous reception,DRX),或者处于RRC-connected未配置DRX。
202、以第一周期进行同频小区搜索。
应理解,同频小区搜索是指在服务小区的频率上进行小区搜索。
203、检测服务小区的定时偏差是否超出了CRS的精定时估计范围。
服务小区的定时偏差超出了基于CRS进行精定时估计获得的精定时估计范围,也即发生了定时突变。
这里,服务小区的定时偏差是指终端设备以第一周期进行同频小区搜索获得的服务小区的粗定时和终端设备基于CRS对服务小区进行精定时获得的服务小区的精定时之间的差值。
应理解,服务小区的粗定时是指终端设备以第一周期进行同频小区搜索确定的服务小区的帧头位置(或者说,帧头时标)。服务小区的精定时是指终端设备使用CRS跟踪到的服务小区的帧头位置。
如果服务小区的定时偏差未超出CRS的精定时估计范围,则返回202。
服务小区的定时偏差未超出CRS的精定时估计范围,说明服务小区的定时突变在CRS的精定时估计范围内,终端设备不改变同频小区搜索的周期,也即,继续采用第一周期进行同频小区搜索。
如果服务小区的定时偏差超出了CRS的精定时估计范围,则执行204。
可选地,服务小区的定时偏差是否超出了CRS的精定时估计范围,可以采用多种方法进行判定。
在一个实施例中,终端设备在多个无线帧(radio frame)中进行同频小区搜索以对服务小区进行粗定时,并使用CRS对服务小区进行精定时。终端设备对粗定时和精定时进行比较。如果连续N次两者的差值的绝对值大于第一门限,则判定为服务小区的定时偏差已经超出了CRS的精定时估计范围。其中,N>1且为整数。N的取值可以由终端设备进行预先设置。
在另一个实施例中,终端设备在多个无线帧中进行同频小区搜索,以对服务小区进行粗定时,并使用CRS对服务小区进行精定时。同样地,终端设备对粗定时和精定时进行比较。如果在M次比较中,有L次两者的差值的绝对值大于第一门限,则判定为服务小区的定时偏差已经超出了CRS的精定时估计范围。其中,M和L均为整数,且满足M≥L。与N类似,M和L的取值可以由终端设备预先设置。
这里,第一门限由终端设备预先设定。可选地,第一门限可以设置为0。
此外,在203中,也可以采用其它的方法来判定服务小区的定时偏差是否超出了CRS的精定时估计范围,本申请对此不作限定。
204、采用第二周期进行同频小区搜索。
其中,第二周期小于第一周期。
如果服务小区的定时偏差超出了CRS的精定时估计范围,进行同频小区搜索的第二周期小于服务小区未发生定时突变之前进行同频小区搜索的第一周期。换句话说,如果服务小区发生定时突变,终端设备缩小同频小区搜索的周期。
205、判断在第一时长内是否搜索到服务小区。
第一时长可以由终端设备进行设置。也即是说,终端设备在服务小区的定时偏差超出了服务小区的CRS的精定时估计范围的情况下,采用第二周期进行同频小区搜索是在一定时长内执行的。其中,第一时长可以预先设置。
具体地,如果在第一时长内未搜索到服务小区,则返回202。即,继续以第一周期进行同频小区搜索。
如果在第一时长内搜索到服务小区,则执行206-207。
206、将基于第二周期进行同频小区搜索获得的粗定时重置为服务小区的定时。
应理解,服务小区的定时是指在终端侧维护的服务小区的定时,是终端设备所认为的服务小区的定时。
207、基于重置之后的服务小区的定时,使用CRS进行精定时估计与跟踪。
采用CRS进行精定时估计与跟踪的过程与现有技术相同,这里不再赘述。
终端设备驻留到服务小区之后,如果发生了较大的定时突变,使得服务小区的定时偏差超出了CRS的精定时估计范围,终端设备通过缩短进行同频小区搜索的周期(也即,频繁进行小区搜索),在不需要重新驻留或重新搜网的情况下,就可能重新获得服务小区的准确定时,可以提高服务小区进行定时恢复的效率,从而提高用户体验。
上面结合图2对服务小区发生定时突变之后的解决方法做了说明。下面结合图3说明服务小区发生频偏突变之后的解决方法。
参见图3,图3是本申请提供的进行小区搜索的方法300的示意性流程图。方法300可以由终端设备执行,或者由配置在终端设备中的芯片执行,本申请不作限定。
301、驻留到服务小区。
302、以第一周期进行同频小区搜索。
这里,301-302可以参见图2所示的方法200中201-202的说明,这里不再赘述。
303、检测服务小区的频偏是否超出了基于CRS获得的服务小区的精频偏估计范围。
服务小区的频偏超出了基于CRS进行精频偏估计获得的精频偏估计范围,也即发生了频偏突变。
服务小区的频偏是指终端设备以第一周期进行同频小区搜索确定的服务小区的粗频偏估计值与终端设备基于CRS进行服务小区的精频偏估计得到的服务小区的精频偏估计值的差值。
如果服务小区的频偏未超出了CRS的精频偏估计范围,则返回执行302。
如果服务小区的频偏超出了CRS的精频偏估计范围,则执行304。
可选地,服务小区的频偏是否超出了CRS的精频偏估计范围,也可以有多种方法来判定。
在一个实施例中,终端设备在多个无线帧中基于同频小区搜索获得服务小区的粗频偏估计值,并使用服务小区的CRS获得服务小区的精频偏估计值。终端设备将粗频偏估计值和精频偏估计值进行比较。如果连续Q次两者的差值的绝对值大于第二门限,则判定为 服务小区的频偏已经超出了CRS的精频偏估计范围。其中,Q>1且为整数。Q的取值可以由终端设备进行预先设置。
在另一个实施例中,终端设备在多个无线帧中对服务小区进行粗频偏估计和精频偏估计,并将获得的粗频偏估计值和精频偏估计值进行比较。如果在W次比较中,有Z次两者的差值的绝对值大于第二门限,则判定为服务小区的频偏已经超出了CRS的精频偏估计范围。其中,W和Z均为整数,且满足W≥Z。W和Z的取值可以由终端设备预先设置。
其中,第二门限可以预先设定。在一种实现中,第二门限可以为设置为0。
可选地,第二门限和第一门限可以相等,也可以不相等,本申请不作限定。
可选地,303也可以采用其它的方法来判定服务小区的频偏是否超出了CRS的精频偏估计范围,本申请对此不作限定。
304、以第二周期进行同频小区搜索。
其中,第二周期小于第一周期。
如果服务小区的频偏超出了CRS的精频偏估计范围,则终端设备采用更小的周期进行同频小区搜索。
305、判断在第二时长内是否搜索到服务小区。
这里,第二时长也可以预先设置。
可选地,发生定时突变和频偏突变之后,以第二周期进行同频小区搜索的时长可以设置为相同(也即,第一时长和第二时长被设置为相等),或者,也可以被设置为不同,本申请不作限定。
如果搜索到服务小区,则执行306-307。如果未搜索到,返回执行302。
306、将以第二周期进行同频小区搜索获得的粗频偏估计重置为服务小区的频偏。
307、基于重置之后的服务小区的频偏,使用CRS进行精频偏估计与跟踪。
以上对本申请提供的小区搜索的方法300进行了详细说明。
本申请的技术方案,终端设备驻留到服务小区之后,如果发生了较大的频偏突变,使得服务小区的频偏超出了CRS的精频偏估计范围,终端设备通过缩短进行同频小区搜索的周期,在不需要重新驻留或重新搜网的情况下,就可能重新获得服务小区的准确频偏,可以提高服务小区频偏恢复的效率,从而可以提升用户体验。
需要说明的是,以上方法200和方法300可以单独使用,也可以结合使用。
例如,终端设备驻留到服务小区之后,服务小区仅发生了定时突变或者仅发生了频偏突变。在发生定时突变时,根据方法200可能重新获得服务小区的准确定时。在发生频偏突变时,根据方法300可能重新获得服务小区的准确频偏。
又例如,终端设备驻留到服务小区之后,既发生定时突变又发生频偏突变,此时,需要根据方法200和方法300进行小区搜索,重新确定服务小区的准确定时和准确频偏。
以上是对本申请提供的小区搜索的方法的说明,下面介绍本申请提供的通信装置。
参见图4,图4是本申请提供的通信装置500的示意性框图。如图4所示,通信装置500包括收发单元510和处理单元520。通信装置500的各单元用于执行方法实施例的相应操作和/或步骤。
在一个实施例中,装置500的各单元用于执行方法200的相应操作和/或处理。
收发单元510,用于在通信装置500驻留到服务小区之后,以第一周期进行同频小区搜索;
处理单元520,用于确定服务小区的定时偏差是否超出了基于CRS获得的服务小区的精定时估计范围;
收发单元510,用于在处理单元520确定服务小区的定时偏差超出了基于CRS获得的服务小区的精定时估计范围的情况下,以第二周期进行同频小区搜索,其中,第二周期小于第一周期。
可选地,处理单元520还用于在收发单元510在第一时长内搜索到服务小区的情况下,将基于第二周期进行同频小区搜索获得的服务小区的粗定时重置为服务小区的定时;
以及,收发单元510还用于基于重置之后的服务小区的定时,使用CRS对服务小区进行精定时估计与跟踪。
可选地,收发单元510还用于在第一时长内未搜索到服务小区的情况下,基于第一周期进行同频小区搜索。
可选地,处理单元520还用于在收发单元510基于第二周期进行同频小区搜索之前确定服务小区的频偏超出了基于CRS进行精频偏估计获得的服务小区精频偏估计范围。
可选地,收发单元510在第二时长内未搜索到服务小区的情况下,处理单元520将基于第二周期进行同频小区搜索获得的粗频偏估计值重置为服务小区的频偏;以及,收发单元510还用于基于重置之后的服务小区的频偏,使用CRS对服务小区进行精频偏估计与跟踪。
可选地,收发单元510还用于在第二时长内未搜索到服务小区的情况下,基于第一周期进行同频小区搜索。
可选地,处理单元520具体用于:
当连续N次基于同频小区搜索获得的服务小区的粗定时与基于CRS获得的服务小区的精定时之差的绝对值大于第一门限时,或者,当M次中有L次基于同频小区搜索获得的服务小区的粗定时与基于CRS获得的服务小区的精定时之差的绝对值大于第二门限时,确定服务小区的定时偏差超出了基于CRS获得的服务小区的精定时估计范围,N≥1且为整数,M≥1且为整数,L≥1且为整数,M≥L。
可选地,处理单元520具体用于:
当连续Q次基于同频小区搜索获得的服务小区的粗频偏估计值与基于CRS获得的服务小区的精频偏估计值之差的绝对值大于第三门限时,或者,
当W次中有Z次基于同频小区搜索获得的服务小区的粗频偏估计值与基于CRS获得的服务小区的精频偏估计值之差的绝对值大于第四门限时,确定服务小区的频偏超出了基于CRS获得的服务小区的精频偏估计范围,Q≥1且为整数,W≥1且为整数,Z≥1且为整数,W≥Z。
在另一个实施例中,通信装置500的各单元用于执行方法300的相应操作和/或处理。
收发单元510,用于在通信装置500驻留到服务小区之后,以第一周期进行同频小区搜索;
处理单元520,用于确定服务小区的频偏是否超出了基于CRS获得的服务小区的精频偏估计范围;
收发单元510,用于在处理单元520确定服务小区的频偏超出了CRS的精频偏估计范围的情况下,以第二周期进行同频小区搜索,其中,第二周期小于第一周期。
可选地,处理单元520还用于在收发单元510在第一时长内未搜索到服务小区的情况下,将基于第二周期进行同频小区搜索获得的粗频偏估计值重置为服务小区的频偏;
以及,收发单元510还用于基于重置之后的服务小区的频偏,使用CRS对服务小区进行精频偏估计与跟踪。
可选地,收发单元510还用于在第一时长内未搜索到服务小区的情况下,基于第一周期进行同频小区搜索。
可选地,通信装置500可以为芯片。
可选地,所述芯片可以是现场可编程门阵列(field-programmable gate array,FPGA)、专用集成芯片(application specific integrated circuit,ASIC)、系统芯片(system on chip,SoC)、中央处理器(central processor unit,CPU)、数字信号处理电路(digital signal processor,DSP),微控制器(micro controller unit,MCU)、可编程控制器(programmable logic device,PLD)或其它集成芯片等,本申请对此不作限定。
此时,通信装置500的结构可以参见图5所示,图5是本申请提供的通信装置500的一个结构示例。
图4中所示的收发单元510可以由图5中所示的通信接口510实现,处理单元520可以由图5中所示的处理器520实现。
可选地,通信装置500还包括存储器530,用于存储计算机程序。当处理器520调用并执行存储器530中存储的计算机程序时,通信装置500执行上述任一方法实施例的方法。
可选地,通信接口可以为输入输出接口或者收发电路。输入输出接口可以包括输入接口和输出接口。收发电路可以包括接收电路和发射电路。
需要说明的是,图5中所示的存储器530用虚线框示出,表示存储器530可以位于通信装置500中,或者,也可以位于通信装置500之外,这里不作限定。
可选地,通信装置500还可以为终端设备。
参见图6,图6是本申请提供的终端设备1000的一个结构示例。终端设备1000用于实现方法实施例中的相应操作和/或处理。如图6所示,终端设备1000包括天线1101、射频装置1102、基带装置1103。天线1101与射频装置1102连接。在上行方向,射频装置1102从基带装置1103获取终端设备产生的信号,并通过天线1101将信号发射出去。在下行方向,射频装置1102通过天线1101从网络侧接收信号,并将接收到的信号发给基带装置1103进行处理。
基带装置1103可以包括一个或多个处理单元11031。处理单元11031具体可以为处理器。
此外,基带装置1103还可以包括一个或多个存储单元11032以及一个或多个通信接口11033。存储单元11032用于存储计算机程序和/或数据。通信接口11033用于与射频装置1102交互信息。存储单元11032具体可以为存储器,通信接口11033可以为输入输出接口或者收发电路。
在图6中,基带装置1103可以执行装置实施例中由处理单元520执行的操作和/或处理。射频装置1102可以执行装置实施例中由收发单元510执行的操作和/或处理。
可选地,当无线通信装置500为终端设备时,终端设备的结构可以参见图7所示。
图7为本申请提供的终端设备7000的一个结构示例。如图7所示,终端设备7000包括处理器7001和收发器7002。
可选地,终端设备7000还包括存储器7003。其中,处理器7001、收发器7002和存储器7003之间可以通过内部连接通路互相通信,传递控制信号和/或数据信号。
其中,存储器7003用于存储计算机程序。处理器7001用于执行存储器7003中存储的计算机程序,从而实现上述装置实施例中通信装置500的各功能。
具体地,处理器7001可以用于执行装置实施例(例如,图4)中描述的由处理单元520执行的操作和/或处理,而收发器7002用于执行由收发单元510执行操作和/处理。
例如,收发器7002从网络侧接收主辅同步信号,CRS等。又例如,处理器7001根据收发器7002接收到的主辅同步信号进行粗定时同步和粗频率同步等,根据收发器7002接收到的CRS进行精定时估计与跟踪、精频偏估计与跟踪等。又例如,处理器7001判断服务小区的定时偏差是否超出了基于CRS获得的服务小区的精定时估计范围,以及判断服务小区的频偏是否超出了基于CRS获得的服务小区的精频偏估计范围等。
可选地,存储器7003也可以集成在处理器7001中,或者独立于处理器7001。
可选地,终端设备7000还可以包括天线7004,用于将收发器7002输出的信号发射出去。或者,收发器7002通过天线接收信号。
可选地,终端设备7000还可以包括电源7005,用于给终端设备中的各种器件或电路提供电源。
除此之外,为了使得终端设备的功能更加完善,终端设备7000还可以包括输入单元7006、显示单元7007(也可以认为是输出单元)、音频电路7008、摄像头7009和传感器610等中的一个或多个。音频电路还可以包括扬声器70082、麦克风70084等,此处不再赘述。
可选地,通信装置500还可以为集成电路。
此外,本申请提供一种计算机可读存储介质,计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得计算机执行本申请提供的任一方法实施例的方法。
本申请还提供一种计算机程序产品,计算机程序产品包括计算机程序代码,当计算机程序代码在计算机上运行时,使得计算机执行本申请提供的任一方法实施例的方法。
本申请还提供一种芯片,包括处理器。处理器用于调用并运行设置在芯片之外的存储器中存储的计算机程序,以执行本申请提供的任一方法实施例的方法。
可选地,所述芯片还包括存储器,存储器与处理器通过电路和/或电线连接。处理器用于读取并执行存储器中的计算机程序。
进一步可选地,所述芯片还包括通信接口,处理器与通信接口连接。通信接口用于接收需要处理的信号,处理器从通信接口获取该信号并对其进行处理。
本申请还提供一种终端设备,包括存储器和处理器。存储器用于存储计算机程序,处理器用于调用并运行存储器中存储的计算机程序,使得终端设备执行任一方法实施例中的方法。
可选地,终端设备还包括通信接口。所述通信接口可以为收发器或者输入输出接口。
上述实施例中涉及的存储器与处理器可以是物理上相互独立的单元,或者,存储器也可以和处理器集成在一起。
本申请还提供一种通信系统,包括上述图4中所示的通信装置500。
以上各实施例中,处理器可以为中央处理器(central processing unit,CPU)、微处理器、特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请技术方案程序执行的集成电路等。例如,处理器可以是数字信号处理器设备、微处理器设备、模数转换器、数模转换器等。处理器可以根据这些设备各自的功能而在这些设备之间分配终端设备或网络设备的控制和信号处理的功能。此外,处理器可以具有操作一个或多个软件程序的功能,软件程序可以存储在存储器中。处理器的所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
存储器可以是只读存储器(read-only memory,ROM)、可存储静态信息和指令的其它类型的静态存储设备、随机存取存储器(random access memory,RAM)或可存储信息和指令的其它类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其它磁存储设备,或者还可以是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其它介质等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例的技术方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储 在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。本申请的保护范围应以权利要求的保护范围为准。

Claims (25)

  1. 一种小区搜索的方法,其特征在于,包括:
    驻留到服务小区后,基于第一周期进行同频小区搜索;
    确定所述服务小区的定时偏差超出了基于小区特定参考信号CRS获得的所述服务小区的精定时估计范围;
    基于第二周期进行同频小区搜索,所述第二周期小于所述第一周期。
  2. 根据权利要求1所述的方法,其特征在于,所述基于第二周期进行同频小区搜索之后,所述方法还包括:
    在第一时长内搜索到所述服务小区的情况下,将所述基于第二周期进行同频小区搜索获得的所述服务小区的粗定时重置为所述服务小区的定时;
    以及,所述方法还包括:
    基于重置之后的所述服务小区的定时,使用所述CRS对所述服务小区进行精定时估计与跟踪。
  3. 根据权利要求2所述的方法,其特征在于,所述基于第二周期进行同频小区搜索之后,所述方法还包括:
    在第一时长内未搜索到所述服务小区的情况下,基于所述第一周期进行同频小区搜索。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述基于第二周期进行同频小区搜索之前,所述方法还包括:
    确定所述服务小区的频偏超出了基于所述CRS进行精频偏估计获得的所述服务小区的精频偏估计范围。
  5. 根据权利要求4所述的方法,其特征在于,所述基于所述第二周期进行同频小区搜索之后,所述方法还包括:
    在第二时长内搜索到所述服务小区的情况下,将所述基于第二周期进行同频小区搜索获得的粗频偏估计值重置为所述服务小区的频偏;
    基于重置之后的所述服务小区的频偏,使用所述CRS对所述服务小区进行精频偏估计与跟踪。
  6. 根据权利要求4所述的方法,其特征在于,所述基于所述第二周期进行同频小区搜索之后,所述方法还包括:
    在第二时长内未搜索到所述服务小区的情况下,基于所述第一周期进行同频小区搜索。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于,所述确定所述服务小区的定时偏差超出了基于CRS获得的所述服务小区的精定时估计范围,包括:
    当连续N次基于同频小区搜索获得的所述服务小区的粗定时与基于CRS获得的所述服务小区的精定时之差的绝对值大于第一门限时,或者,
    当M次中有L次基于同频小区搜索获得的所述服务小区的粗定时与基于CRS获得的所述服务小区的精定时之差的绝对值大于第二门限时,确定所述服务小区的定时偏差超出 了所述CRS的精定时估计范围,N≥1且为整数,M≥1且为整数,L≥1且为整数,M≥L。
  8. 根据权利要求4-7中任一项所述的方法,其特征在于,所述确定所述服务小区的频偏超出了基于所述CRS进行精频偏估计获得的所述服务小区的精频偏估计范围,包括:
    当连续Q次基于同频小区搜索获得的所述服务小区的粗频偏估计值与基于CRS获得的所述服务小区的精频偏估计值之差的绝对值大于第三门限时,或者,
    当W次中有Z次基于同频小区搜索获得的所述服务小区的粗频偏估计值与基于CRS获得的所述服务小区的精频偏估计值之差的绝对值大于第四门限时,确定所述服务小区的频偏超出了基于所述CRS获得的所述服务小区的精频偏估计范围,Q≥1且为整数,W≥1且为整数,Z≥1且为整数,W≥Z。
  9. 一种进行小区搜索的方法,其特征在于,包括:
    驻留到服务小区后,基于第一周期进行小区搜索;
    确定所述服务小区的频偏超出了基于小区特定参考信号CRS获得的所述服务小区的精频偏估计范围;
    基于第二周期进行同频小区搜索,所述第二周期小于所述第一周期。
  10. 根据权利要求9所述的方法,其特征在于,所述基于第二周期进行同频小区搜索之后,所述方法还包括:
    在第二时长内搜索到所述服务小区的情况下,将所述基于第二周期进行同频小区搜索获得的粗频偏估计值重置为所述服务小区的频偏;
    以及,所述方法还包括:
    基于重置之后的所述服务小区的频偏,使用所述CRS对所述服务小区进行精频偏估计与跟踪。
  11. 根据权利要求9所述的方法,其特征在于,所述基于第二周期进行小区搜索之后,所述方法还包括:
    在第二时长内未搜索到所述服务小区的情况下,基于第一周期进行同频小区搜索。
  12. 一种小区搜索的装置,其特征在于,包括:
    收发单元,用于在所述装置驻留到服务小区之后,基于第一周期进行同频小区搜索;
    处理单元,用于确定服务小区的定时偏差是否超出了基于小区特定参考信号CRS获得的所述服务小区的精定时估计范围;
    所述收发单元,还用于在所述处理单元确定所述服务小区的定时偏差超出了所述服务小区的精定时估计范围的情况下,基于第二周期进行同频小区搜索,其中,所述第二周期小于所述第一周期。
  13. 根据权利要求12所述的装置,其特征在于,所述处理单元还用于在所述收发单元在第一时长内搜索到所述服务小区的情况下,将基于第二周期进行同频小区搜索获得的所述服务小区的粗定时重置为所述服务小区的定时;
    以及,所述收发单元还用于基于重置之后的所述服务小区的定时,使用所述CRS对所述服务小区进行精定时估计与跟踪。
  14. 根据权利要求13所述的装置,其特征在于,所述收发单元还用于在第一时长内未搜索到所述服务小区的情况下,基于所述第一周期进行同频小区搜索。
  15. 根据权利要求12-14中任一项所述的装置,其特征在于,所述处理单元还用于在所述收发单元基于第二周期进行同频小区搜索之前确定所述服务小区的频偏超出了基于CRS进行精频偏估计获得的所述服务小区精频偏估计范围。
  16. 根据权利要求15所述的装置,其特征在于,所述收发单元在第二时长内未搜索到所述服务小区的情况下,所述处理单元将基于第二周期进行同频小区搜索获得的粗频偏估计值重置为所述服务小区的频偏;
    以及,所述收发单元还用于基于重置之后的所述服务小区的频偏,使用所述CRS对所述服务小区进行精频偏估计与跟踪。
  17. 根据权利要求15所述的装置,其特征在于,所述收发单元还用于在所述第二时长内未搜索到所述服务小区的情况下,基于所述第一周期进行同频小区搜索。
  18. 根据权利要去12-17中任一项所述的装置,其特征在于,所述处理单元具体用于:
    当连续N次基于同频小区搜索获得的所述服务小区的粗定时与基于CRS获得的所述服务小区的精定时之差的绝对值大于第一门限时,或者,
    当M次中有L次基于同频小区搜索获得的所述服务小区的粗定时与基于CRS获得的所述服务小区的精定时之差的绝对值大于第二门限时,确定所述服务小区的定时偏差超出了基于CRS获得的所述服务小区的精定时估计范围,N≥1且为整数,M≥1且为整数,L≥1且为整数,M≥L。
  19. 根据权利要求15-18中任一项所述的装置,其特征在于,所述处理单元具体用于:
    当连续Q次基于同频小区搜索获得的所述服务小区的粗频偏估计值与基于CRS获得的所述服务小区的精频偏估计值之差的绝对值大于第三门限时,或者,
    当W次中有Z次基于同频小区搜索获得的所述服务小区的粗频偏估计值与基于CRS获得的所述服务小区的精频偏估计值之差的绝对值大于第四门限时,确定所述服务小区的频偏超出了基于CRS获得的所述服务小区的精频偏估计范围,Q≥1且为整数,W≥1且为整数,Z≥1且为整数,W≥Z。
  20. 一种小区搜索的装置,其特征在于,包括:
    收发单元,用于在所述装置驻留到服务小区之后,基于第一周期进行小区搜索;
    处理单元,用于确定所述服务小区的频偏超出了基于小区特定参考信号CRS获得的所述服务小区的精频偏估计范围;
    所述收发单元,还用于基于第二周期进行同频小区搜索,所述第二周期小于所述第一周期。
  21. 根据权利要求20所述的装置,其特征在于,所述处理单元还用于在所述收发单元在第一时长内未搜索到所述服务小区的情况下,将基于第二周期进行同频小区搜索获得的粗频偏估计值重置为所述服务小区的频偏;
    以及,所述收发单元还用于基于重置之后的所述服务小区的频偏,使用所述CRS对所述服务小区进行精频偏估计与跟踪。
  22. 根据权利要求20所述的装置,其特征在于,所述收发单元还用于在第一时长内未搜索到所述服务小区的情况下,基于所述第一周期进行同频小区搜索。
  23. 一种无线通信装置,其特征在于,包括存储器和处理器,所述存储器用于存储计算机程序,所述处理器用于读取并运行所述存储器中存储的计算机程序,以执行权利要求 1-11中任一项所述的方法。
  24. 一种无线通信系统,其特征在于,包括如权利要求23中所述的无线通信装置。
  25. 一种芯片,其特征在于,包括存储器和处理器,所述存储器用于存储计算机程序,所述处理器用于读取并运行所述存储器中存储的计算机程序,以执行权利要求1-11中任一项所述的方法。
PCT/CN2019/078532 2019-03-18 2019-03-18 小区搜索的方法、装置和系统 WO2020186426A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/078532 WO2020186426A1 (zh) 2019-03-18 2019-03-18 小区搜索的方法、装置和系统
CN201980081768.7A CN113170384B (zh) 2019-03-18 2019-03-18 小区搜索的方法、装置和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/078532 WO2020186426A1 (zh) 2019-03-18 2019-03-18 小区搜索的方法、装置和系统

Publications (1)

Publication Number Publication Date
WO2020186426A1 true WO2020186426A1 (zh) 2020-09-24

Family

ID=72519497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/078532 WO2020186426A1 (zh) 2019-03-18 2019-03-18 小区搜索的方法、装置和系统

Country Status (2)

Country Link
CN (1) CN113170384B (zh)
WO (1) WO2020186426A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114928874A (zh) * 2022-04-11 2022-08-19 哲库科技(北京)有限公司 小区搜索方法、装置、芯片、终端设备及计算机存储介质
CN115955291B (zh) * 2023-03-09 2023-05-23 北京智联安科技有限公司 一种降低nbiot网络小区搜索误检概率的方法及设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001145162A (ja) * 1999-11-15 2001-05-25 Toshiba Corp 移動無線端末装置
CN1505436A (zh) * 2002-12-04 2004-06-16 �ձ�������ʽ���� 至少两种移动电话系统的移动无线终端中的小区搜索方法
CN102316552A (zh) * 2010-07-06 2012-01-11 联芯科技有限公司 移动终端无网络小区搜索方法
CN102754467A (zh) * 2011-06-17 2012-10-24 华为技术有限公司 一种调度小区搜索和能量测量任务的方法和装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8718154B2 (en) * 2009-11-18 2014-05-06 Qualcomm Incorporated Monitoring and correcting timing errors in wireless communication
CN106878205B (zh) * 2015-12-10 2019-07-05 电信科学技术研究院 一种定时偏差估计方法及装置
CN107231326B (zh) * 2017-05-19 2020-04-14 大连理工大学 一种NB-IoT系统下行链路中的小区搜索系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001145162A (ja) * 1999-11-15 2001-05-25 Toshiba Corp 移動無線端末装置
CN1505436A (zh) * 2002-12-04 2004-06-16 �ձ�������ʽ���� 至少两种移动电话系统的移动无线终端中的小区搜索方法
CN102316552A (zh) * 2010-07-06 2012-01-11 联芯科技有限公司 移动终端无网络小区搜索方法
CN102754467A (zh) * 2011-06-17 2012-10-24 华为技术有限公司 一种调度小区搜索和能量测量任务的方法和装置

Also Published As

Publication number Publication date
CN113170384A (zh) 2021-07-23
CN113170384B (zh) 2022-08-19

Similar Documents

Publication Publication Date Title
US11005698B2 (en) Communication method and communications apparatus
US11290173B2 (en) Radio link monitoring method and apparatus
JP6262849B2 (ja) 送信機、受信機、および同期信号を送信/受信するための方法
WO2020038331A1 (zh) 确定上行资源的方法与装置
WO2021179327A1 (zh) 一种同步信号块的确定方法以及相关装置
US20190173600A1 (en) Information Transmission Method, Terminal, and Network Device
WO2019028793A1 (zh) 随机接入前导码传输方法及装置
JP7228619B2 (ja) 信号伝送方法、ネットワーク設備及び端末設備
Nasraoui et al. Robust neighbor discovery through sideLink demodulation reference signal for LTE ProSe network
WO2020186426A1 (zh) 小区搜索的方法、装置和系统
US9674808B1 (en) Method and apparatus for early frequency synchronization in LTE wireless communication systems
US9553752B1 (en) Method and apparatus for frequency offset detection in OFDM systems with frequency reuse
WO2008024173A2 (en) Method and apparatus for performing hybrid timing and frequency offset synchronization in wireless communication systems
US20080279156A1 (en) Orthogonal hadamard code based secondary synchronization channel
CN116828494A (zh) Prach信号的检测方法、装置、网络侧设备及介质
US20230397109A1 (en) Signal transmission method, network device, user equipment and storage medium
WO2018028343A1 (zh) 传输信号的方法和装置
CN114765504B (zh) 发送位置确定方法、通信设备和存储介质
CN114828222A (zh) 一种寻呼方法、装置、网络侧设备及终端
CN114390650B (zh) 信号传输方法、网络设备、终端和存储介质
JP6559763B2 (ja) 送信機、受信機、および同期信号を送信/受信するための方法
WO2022016337A1 (zh) 通信方法、用户设备、基站设备及计算机存储介质
US20240172123A1 (en) Method and apparatus for signal communications, and readable storage medium
Katumba et al. The LTE Access Procedure
WO2021092898A1 (en) Method and receiver for frequency offset estimation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19920249

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19920249

Country of ref document: EP

Kind code of ref document: A1