WO2020177690A1 - 一种喷流自降温装置 - Google Patents

一种喷流自降温装置 Download PDF

Info

Publication number
WO2020177690A1
WO2020177690A1 PCT/CN2020/077650 CN2020077650W WO2020177690A1 WO 2020177690 A1 WO2020177690 A1 WO 2020177690A1 CN 2020077650 W CN2020077650 W CN 2020077650W WO 2020177690 A1 WO2020177690 A1 WO 2020177690A1
Authority
WO
WIPO (PCT)
Prior art keywords
jet
main flow
working fluid
casing
housing
Prior art date
Application number
PCT/CN2020/077650
Other languages
English (en)
French (fr)
Inventor
潘利生
史维秀
李冰
魏小林
Original Assignee
中国科学院力学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院力学研究所 filed Critical 中国科学院力学研究所
Priority to JP2021552503A priority Critical patent/JP7216837B2/ja
Publication of WO2020177690A1 publication Critical patent/WO2020177690A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the embodiment of the present invention relates to the technical field of refrigeration, in particular to a jet flow self-cooling device.
  • the throttling device is one of the four indispensable components of the refrigeration system. Its main function is to throttle and cool the high-pressure liquid from the condenser, and then the liquid refrigerant vaporizes in the evaporator to absorb heat to achieve the purpose of refrigeration. It is an important part to maintain a high-pressure environment in the condenser and a low-pressure environment in the evaporator.
  • throttling devices are mainly used to reduce the pressure and temperature of refrigerant liquid.
  • Commonly used throttling devices in refrigeration systems include manual expansion valves, floating ball expansion valves, and thermal expansion valves. It is often necessary to obtain low-temperature liquid refrigerants during experimental research or development of new circulation systems. After the liquid working medium passes through the conventional throttling device, the pressure and temperature are significantly reduced, forming a two-phase flow of gas-liquid mixture. It needs to go through the gas-liquid separation or continue the cooling process to obtain the low-temperature liquid refrigerant. The process and equipment system are complicated. A single device that can realize the self-cooling of the liquid working fluid is needed.
  • the embodiment of the present invention provides a jet flow self-cooling device that reduces the temperature of the mainstream liquid working fluid by means of the jet flow self-cooling method, and at the same time separates the vaporized working fluid.
  • a jet flow self-cooling device which includes a casing, and a main flow inlet and a main flow outlet are respectively provided at the upper and lower ends of the casing, and are arranged on the side of the casing.
  • the wall is provided with a gaseous outlet, which is characterized in that a jet wall is circumferentially arranged inside the housing, and a plurality of jet walls are provided on the jet wall for connecting the main flow inlet and the gaseous outlet.
  • gaseous outlet is arranged at the upper end of the side wall of the housing.
  • a jet flow self-cooling device which includes a casing, and a main flow inlet and a main flow outlet are respectively provided at the upper and lower ends of the casing, and are arranged on the side of the casing.
  • the wall is provided with a gaseous outlet, which is characterized in that a jet wall is circumferentially arranged inside the housing, and a number of jet walls are provided on the jet wall for connecting the main flow inlet and the gaseous outlet.
  • An adjusting hollow bolt for adjusting the jet flow rate of the mainstream working fluid is provided between the casing and the jet wall, and at a position where the adjusting hollow bolt contacts the jet wall and the casing Both are provided with an annular groove for setting a sealing ring, and the sealing ring is compressed by setting a sealing hollow bolt.
  • the gaseous outlet is arranged on the upper side of the side wall of the housing; the adjusting hollow bolt and the sealing hollow bolt are both provided with external threads, and are connected with the adjusting hollow bolt and the sealing hollow bolt
  • the component is provided with an internal thread that matches the external thread.
  • a jet flow self-cooling device which includes a casing, and a main flow inlet and a main flow outlet are respectively provided at the upper and lower ends of the casing.
  • the wall is provided with a gaseous outlet, which is characterized in that a jet wall is provided on the side of the inside of the housing close to the gaseous outlet, and a plurality of jet walls are provided on the jet wall for connecting to the main flow inlet and The micropores for injecting the mainstream working fluid under the action of the pressure difference between the gaseous outlets;
  • An adjustment bolt for adjusting the jet flow rate of the mainstream working fluid is provided between the jet wall and the housing, and an annular recess for setting a sealing ring is provided at the contact position between the adjustment bolt and the housing. Groove, the sealing ring is compressed by setting a sealing hollow bolt.
  • the gaseous outlet is arranged on the upper side of the side wall of the housing; the adjusting bolt and the sealing hollow bolt are both provided with external threads, and the part connected with the adjusting bolt and the sealing hollow bolt An internal thread matching the external thread is provided.
  • a jet flow self-cooling device including a casing, characterized in that a communicating and vertical main flow channel and a working fluid flow channel are provided in the casing, and The main flow channel is laterally arranged at the bottom end of the inside of the casing. The two ends of the main flow channel are the main flow inlet and the main flow outlet respectively.
  • a gaseous outlet is provided on the side wall of the casing, which is close to the working fluid flow channel.
  • a jet wall is provided on one side of the gaseous outlet, and a number of micropores for injecting the mainstream working fluid under the action of the pressure difference between the main flow inlet and the gaseous outlet are provided on the jet flow wall;
  • a regulating piston that penetrates the housing and is used to adjust the injection flow of the mainstream working fluid is provided in the working fluid channel, and an annular recess for setting a sealing ring is provided at the position where the regulating piston contacts the housing. Groove, the sealing ring is compressed by setting a sealing hollow bolt.
  • the gaseous outlet is arranged on the upper side of the side wall of the housing and is located upstream of the main flow channel; both the sealing hollow bolt and the adjusting piston are provided with external threads, which are compatible with the sealing hollow bolt.
  • the component connected with the adjusting piston is provided with an internal thread matching the external thread.
  • a jet flow self-cooling device including a casing, characterized in that a main flow inlet and a main flow outlet are respectively provided on two opposite side walls of the casing, A jet cylinder that penetrates the upper side wall of the housing and can be adjusted and moved up and down is provided inside the housing.
  • the upper end of the jet cylinder is a gaseous outlet, and a number of jet cylinders are provided on the side walls of the jet cylinder.
  • the main flow inlet is located at the upper end of the side wall of the casing
  • the main flow outlet is located at the lower end of the side wall of the casing
  • the micro holes are evenly distributed in the lower half of the side wall of the jet cylinder
  • the upper half of the jet cylinder and the sealed hollow bolt are both provided with external threads
  • the parts connected with the jet cylinder and the sealed hollow bolt are provided with internal threads that match the external threads.
  • Figure 1 is a schematic diagram of the structure of a jet flow self-cooling device according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic structural diagram of a jet flow self-cooling device according to Embodiment 2 of the present invention.
  • FIG. 3 is a schematic diagram of the structure of a jet flow self-cooling device according to Embodiment 3 of the present invention.
  • FIG. 4 is a schematic diagram of the structure of a jet flow self-cooling device according to Embodiment 4 of the present invention.
  • Fig. 5 is a schematic diagram of the structure of a jet flow self-cooling device in embodiment 5 of the present invention.
  • the main purpose of the present invention is to realize the self-cooling of the liquid working fluid and provide a jet flow self-cooling device, which is mainly composed of a mainstream inlet, a shell, a jet wall, micropores, a mainstream outlet, and a gaseous outlet.
  • a jet flow self-cooling device which is mainly composed of a mainstream inlet, a shell, a jet wall, micropores, a mainstream outlet, and a gaseous outlet.
  • structures such as adjusting hollow bolts, sealing rings, sealing hollow bolts, adjusting bolts, and adjusting pistons.
  • the present invention specifically provides five different types of the following five embodiments Self-cooling device with jet flow structure.
  • this embodiment provides a jet flow self-cooling device, which includes a casing 2.
  • a main flow inlet 1 and a main flow outlet 5 are respectively provided at the upper and lower ends of the casing 2.
  • 2 is provided with a gaseous outlet 6 on the side wall
  • a jet wall 3 is arranged circumferentially inside the casing 2
  • a number of jet walls 3 are provided on the jet wall 3 for connecting the main flow inlet 1 and the
  • the micropores 4 for spraying the mainstream working fluid under the action of the pressure difference between the gaseous outlets 6 are generally between 0.1 mm and 100 mm in size, and the specific size and quantity are determined according to actual system requirements.
  • the main flow working fluid enters the flow channel inside the casing 2 through the main flow inlet 1.
  • part of the main flow working fluid is ejected from the micro holes 4 on the jet wall 3, and the ejection process is accompanied by
  • the temperature of the mainstream working fluid is rapidly reduced. Since the pressure difference between the mainstream working fluid on the downstream sides of the jet wall 4 is relatively small, it may cause incomplete vaporization of the mainstream working fluid after the jet. Therefore, the gaseous outlet 6 is arranged on the upper part of the side wall of the casing 2, and the downstream is not vaporized.
  • the liquid mainstream working fluid can continue to vaporize and absorb heat when it flows upstream.
  • the jet flow self-cooling device of this embodiment can reduce the temperature of the mainstream liquid working fluid by means of the jet flow self-cooling method, and at the same time separate the vaporized working fluid.
  • this embodiment provides a jet flow self-cooling device that can adjust the jet flow rate of the mainstream working fluid in order to meet the requirements for the jet flow rate under different conditions.
  • the specific structural relationships of hollow bolts, sealing rings and sealed hollow bolts are as follows:
  • An adjusting hollow bolt 7 for adjusting the jet flow rate of the mainstream working fluid is provided between the casing 2 and the jet wall 3.
  • the jet wall 3 is located inside the adjusting hollow bolt 7 and is in close contact with the inside of the adjusting hollow bolt 7
  • the outer surface and the inner surface of the housing 2 are connected by threads.
  • the gas generated by the vaporization of the jet flow can easily enter the gap and cause leakage.
  • the adjustment hollow bolt 7 and the The contact position between the jet wall 3 and the housing 2 is provided with an annular groove for setting a sealing ring 8.
  • the sealing ring 8 is compressed by setting a sealing hollow bolt 9 to make a circular sealing ring 8 is in close contact with the housing 2 and the adjusting hollow bolt 7 to achieve a sealing effect.
  • the adjusting hollow bolt 7 and the sealing hollow bolt 9 are both provided with external threads, and the components connected with the adjusting hollow bolt 7 and the sealing hollow bolt 9 are provided with matching the external threads.
  • the internal thread; the annular groove is specifically formed on the inner surface of the housing 2 and the inner surface of the head of the adjusting hollow bolt 7.
  • the external thread of the sealing hollow bolt 9 and the internal thread of the annular groove of the head of the adjusting hollow bolt 7 Match connection.
  • the mainstream working fluid enters the jet flow self-cooling device through the mainstream inlet 1. Under the action of the pressure difference between the mainstream inlet 1 and the gaseous outlet 6, part of the mainstream working fluid is ejected from the micropores 4 on the jet wall 3. The violent vaporization of the main fluid and the absorption of heat from the mainstream working fluid and the jet wall 3 make the temperature of the mainstream working fluid drop rapidly.
  • the pressure difference between the mainstream working fluid on both sides downstream of the jet wall 4 is relatively small, it may cause incomplete vaporization of the working fluid after the jet, so the gaseous outlet is set at the upstream of the device, and when the downstream unvaporized liquid working fluid flows upstream Can continue to vaporize and absorb heat.
  • the adjusting hollow bolt 7 can move positively and negatively along the flow direction of the mainstream working fluid.
  • the adjusting hollow bolt 7 moves forward and backward in the flow direction of the mainstream working fluid, the number of exposed micropores 4 increases, the jet flow rate of the mainstream working fluid increases, and the jet flow self-cooling device
  • the adjusting hollow bolt 7 covers part of the micropores 4, the exposed micropores 4 are reduced, the main flow working fluid spray flow rate is reduced, and the spray flow self-cooling device
  • the cooling capacity is weakened.
  • this embodiment provides a jet flow self-cooling device that can adjust the jet flow rate of the mainstream working fluid in order to meet the requirements for jet flow under different conditions.
  • a jet wall 3 is provided only on the side of the housing 2 close to the gaseous outlet 6, and a jet wall 3 is provided between the jet wall 3 and the housing 2 for adjusting the jet flow rate of the mainstream working fluid.
  • the adjusting bolt 10 non-hollow structure
  • there is a gap between the adjusting bolt 10 and the housing 2 there is a gap between the adjusting bolt 10 and the housing 2, and the gas generated by the vaporization of the jet can easily enter the gap and cause leakage. Therefore, the adjusting bolt 10 and the housing 2
  • the contact position is provided with an annular groove for setting a sealing ring 8.
  • the sealing ring 8 is compressed by setting a sealing hollow bolt 9.
  • the hollow part of the sealing hollow bolt 9 is sleeved on the adjusting bolt 10 to make a circular shape.
  • the sealing ring 8 is in close contact with the housing 2 and the adjusting bolt 10 to achieve a sealing effect.
  • the adjusting bolt 10 and the sealing hollow bolt 9 are both provided with external threads, and the components connected to the adjusting bolt 10 and the sealing hollow bolt 9 are provided with matching the external threads.
  • the internal thread and the annular groove are specifically formed on the inner surface of the housing 2, and the external thread of the sealing hollow bolt 9 is matched and connected with the internal thread of the annular groove on the housing 2.
  • the mainstream working fluid enters the jet flow self-cooling device through the mainstream inlet 1. Under the action of the pressure difference between the mainstream inlet 1 and the gaseous outlet 6, part of the mainstream working fluid is ejected from the micropores 4 on the jet wall 3. The violent vaporization of the main fluid and the absorption of heat from the mainstream working fluid and the jet wall 3 make the temperature of the mainstream working fluid drop rapidly.
  • the gaseous outlet 6 is arranged on the upper part of the side wall of the housing 2, and the downstream unvaporized liquid When the working fluid flows upstream, it can continue to vaporize and absorb heat.
  • the adjusting bolt 10 can move positively and negatively along the flow direction of the mainstream working fluid.
  • the adjusting bolt 10 moves forwardly in the flow direction of the mainstream working fluid, the number of exposed micropores 4 increases, the flow rate of the mainstream working fluid increases, and the jet flow is cooled by the cooling device. The capacity is enhanced.
  • the adjusting bolt 10 moves in the opposite direction to the flow direction of the mainstream working fluid, the adjusting bolt 10 covers part of the pores 4, and the exposed pores 4 are reduced. The flow of the mainstream working fluid is reduced, and the cooling capacity of the self-cooling device of the spray flow is weakened. .
  • the cooling degree of the mainstream working fluid can be adjusted.
  • this embodiment provides a jet flow self-cooling device that can adjust the jet flow rate of the mainstream working fluid in order to meet the requirements for the jet flow rate in different situations.
  • the differences are
  • the main flow channel 13 and the working fluid flow channel 14 which are connected and vertical are provided in the casing 2.
  • the main flow channel 13 is laterally arranged at the inner bottom end of the casing 2, and both ends of the main flow channel 13 are respectively.
  • the main flow inlet 1 and the main flow outlet 5 are provided with a gaseous outlet 6 on the side wall of the housing 2, and a jet wall 3 is provided on the side of the working fluid channel 14 close to the gaseous outlet 6, and
  • the jet wall 3 is provided with a number of micropores 4 for jetting the main flow working fluid under the action of the pressure difference between the main flow inlet 1 and the gaseous outlet 6;
  • the working fluid channel 14 is provided with a regulating piston 11 that penetrates the housing 2 and is used to regulate the jet flow of the mainstream working fluid. Due to the gap between the regulating piston 11 and the housing, the gas generated by the jet vaporization is easy Into this gap, leakage occurs. Therefore, an annular groove for arranging a sealing ring 8 is provided at the position where the adjusting piston 11 contacts the housing 2. The sealing ring 8 is compressed by setting a sealing hollow bolt 9 , So that the circular sealing ring 8 is in close contact with the housing 2 and the regulating piston 11 to achieve a sealing effect.
  • the sealed hollow bolt 9 and the adjustment piston 11 are both provided with external threads, and the parts connected with the sealed hollow bolt 9 and the adjustment piston 11 are provided with internal threads that match the external threads. Thread, the hollow part of the sealing hollow bolt 9 is sleeved on the adjusting piston 11.
  • the annular groove is specifically formed on the inner surface of the housing 2.
  • the external thread of the sealing hollow bolt 9 is matched with the internal thread of the annular groove on the housing 2 .
  • the main flow channel 13 of the jet flow self-cooling device and the working fluid flow channel 14 are arranged vertically, and part of the main flow working fluid enters the main flow channel 13 of the jet flow self-cooling device. Under the action of the pressure difference between the main flow inlet 1 and the gaseous outlet 6, Part of the mainstream working fluid enters the working fluid channel 14 and is ejected from the microholes 4 on the jet wall 3.
  • the jetting process is accompanied by the intense vaporization of the working fluid and absorbs the heat of the mainstream working fluid and the jet wall 3, making the mainstream The working fluid temperature drops rapidly.
  • the gaseous outlet 6 is arranged on the upper side of the side wall of the housing 2 and is located upstream of the main flow channel 13.
  • the regulating piston 11 can move forwards and backwards along the flow direction of the mainstream working fluid in the working fluid channel. When moving in the forward direction, the number of exposed micropores 4 increases, the flow rate of the working fluid increases, and the cooling capacity of the jet self-cooling device is enhanced. When the regulating piston 11 moves in the reverse direction of the mainstream working fluid, the regulating piston 11 covers part of the micropores. , The exposed micropores 4 are reduced, the flow rate of the mainstream working fluid is reduced, and the cooling capacity of the spray flow self-cooling device is weakened. By adjusting the piston 11 to adjust the flow rate of the working fluid, the cooling degree of the mainstream working fluid can be adjusted.
  • this embodiment is different from the foregoing four embodiments.
  • a self-cooling device for jet flow that can adjust the jet flow of mainstream working fluid is provided.
  • the differences are It mainly uses the components that realize the jet flow directly as adjustment parts, which specifically includes: a main flow inlet 1 and a main flow outlet 5 are respectively provided on two opposite side walls of the casing 2, and the main flow inlet 1 is located in the casing 2.
  • the main flow outlet 5 is located at the lower end of the side wall of the housing 2, and a jet cylinder 12 that penetrates the upper side wall of the housing 2 and can be adjusted and moved up and down is arranged inside the housing 2 , Specifically a structure similar to a test tube for testing, the upper end of the jet cylinder 12 is a gaseous outlet 6, and on the side wall of the jet cylinder 12 is provided a number of ports for connecting the main flow inlet 1 and the gaseous outlet The micropores 4 of the main flow working fluid are sprayed under the action of the pressure difference between 6 and the micropores 4 are evenly distributed in the lower half of the side wall of the jet cylinder 12. .
  • the upper half of the jet cylinder 12 and the sealed hollow bolt 9 are both provided with external threads, and the parts connected with the jet cylinder 12 and the sealed hollow bolt 9 are provided with With the internal thread that matches the external thread, due to the gap between the jet wall and the casing, the liquid mainstream working fluid can easily enter the gap and leak. Therefore, at the position where the jet cylinder 12 is in contact with the casing 2 An annular groove for setting a sealing ring 8 is provided. The sealing ring 8 is compressed by setting a sealing hollow bolt 9. The annular groove is specifically formed on the inner surface of the housing 2. The external thread of the sealing hollow bolt 9 and the housing 2 The internal thread of the upper annular groove is matched and connected, so that the circular sealing ring 8 is in close contact with the housing 2 and the jet cylinder 12, achieving a sealing effect.
  • the mainstream working fluid enters the jet flow self-cooling device through the mainstream inlet 1.
  • part of the mainstream working fluid is injected into the jet cylinder 12 from the pores 4 on the jet cylinder 12
  • the jetting process is accompanied by the violent vaporization of the mainstream working fluid, and absorbs the heat of the mainstream working fluid and the jet cylinder 12, so that the temperature of the mainstream working fluid is rapidly reduced.
  • the gaseous outlet 6 is arranged upstream of the entire device, and the downstream unvaporized liquid working fluid upwards It can continue to vaporize and absorb heat while swimming.
  • the jet cylinder 12 can move positively and negatively along the flow direction of the mainstream working fluid.
  • the jet cylinder 12 moves forward in the direction of the mainstream working fluid, the number of exposed micropores 4 increases and the jet flow rate of the mainstream working fluid increases.
  • the jet self-cooling device When the jet cylinder 12 moves in the opposite direction to the flow direction of the mainstream working fluid, the exposed micropores 4 are reduced, the flow rate of the mainstream working fluid is reduced, and the cooling capacity of the jet self-cooling device is weakened.
  • the invention adopts a simple device structure to realize the cooling of the liquid working fluid, and meets the demand for low-temperature refrigerant in experimental research or the research and development of a new cycle system.
  • the method and device are used in a conventional refrigeration cycle to help reduce the area of the evaporator , Reduce unit volume and processing cost.

Abstract

本发明公开了一种喷流自降温装置,包括壳体,在所述壳体的上、下端分别设置有主流入口和主流出口,在所述壳体的侧壁上设置有气态出口,在所述壳体内部环向设置有喷流壁,且在所述喷流壁上设置有若干用于在所述主流入口和所述气态出口之间压差作用下喷射主流工质的微孔。本发明采用简单的装置结构实现了液态工质自降温,满足了实验研究或新循环系统研发中对低温制冷剂的需求,在常规制冷循环中采用该方法及装置,有助于减小蒸发器面积,降低机组体积和加工成本。

Description

一种喷流自降温装置 技术领域
本发明实施例涉及制冷技术领域,具体涉及一种喷流自降温装置。
背景技术
节流装置是制冷系统不可缺少的四大部件之一,它的主要作用是对从冷凝器出来的高压液体节流降温,然后液态制冷剂在蒸发器中汽化吸热,达到制冷目的。它是维持冷凝器中为高压环境、蒸发器中为低压环境的重要部件。
目前,对制冷剂液体的降压降温主要采用的仍是节流装置。制冷系统常用的节流装置有:手动式膨胀阀、浮球式膨胀阀、热力膨胀阀等。在实验研究或新循环系统研发时,常需获得低温的液态制冷剂。液态工质通过常规节流装置后,压力和温度显著降低,形成气液混合的两相流,需经过气液分离或继续冷却过程,才能获得低温的液态制冷剂,工艺过程和设备系统复杂,需要能够实现液态工质自降温的单一装置。
发明内容
本发明实施例提供一种通过喷流自降温的方式降低主流液态工质温度,并同时将汽化的工质分离出来的喷流自降温装置。
为了实现上述目的,本发明的实施方式提供如下技术方案:
根据本发明实施方式的第一个方面,提供了一种喷流自降温装置,包括壳体,在所述壳体的上、下端分别设置有主流入口和主流出口,在所述壳体的侧壁上设置有气态出口,其特征在于,在所述壳体内部环向设置有喷流壁,且在所述喷流壁上设置有若干用于在所述主流入口和所述气态出口之间压差作用下喷射主流工质的微孔。
进一步地,所述气态出口设置在所述壳体侧壁的上端。
根据本发明实施方式的第二个方面,提供了一种喷流自降温装置,包括壳体,在所述壳体的上、下端分别设置有主流入口和主流出口,在所述壳体的侧壁上设置有气态出口,其特征在于,在所述壳体内部环向设置有喷流壁, 且在所述喷流壁上设置有若干用于在所述主流入口和所述气态出口之间压差作用下喷射主流工质的微孔;
在所述壳体与所述喷流壁之间设置有用于调节主流工质喷射流量的调节中空螺栓,在所述调节中空螺栓与所述喷流壁、所述壳体之间相接触的位置均设置有用于设置密封圈的环形凹槽,所述密封圈通过设置密封中空螺栓压紧。
进一步地,所述气态出口设置在所述壳体的侧壁上侧;所述调节中空螺栓和所述密封中空螺栓均设有外螺纹,与所述调节中空螺栓和所述密封中空螺栓相连接的部件设置有与所述外螺纹相匹配的内螺纹。
根据本发明实施方式的第三个方面,提供了一种喷流自降温装置,包括壳体,在所述壳体的上下两端分别设置有主流入口和主流出口,在所述壳体的侧壁上设置有气态出口,其特征在于,在所述壳体内部靠近所述气态出口的一侧设置有喷流壁,且在所述喷流壁上设置有若干用于在所述主流入口和所述气态出口之间压差作用下喷射主流工质的微孔;
在所述喷流壁与所述外壳之间设置有用于调节主流工质喷射流量的调节螺栓,在所述调节螺栓与所述壳体之间相接触的位置设置有用于设置密封圈的环形凹槽,所述密封圈通过设置密封中空螺栓压紧。
进一步地,所述气态出口设置在所述壳体的侧壁上侧;所述调节螺栓和所述密封中空螺栓均设有外螺纹,与所述调节螺栓和所述密封中空螺栓相连接的部件设置有与所述外螺纹相匹配的内螺纹。
根据本发明实施方式的第四个方面,提供了一种喷流自降温装置,包括壳体,其特征在于,在所述壳体内设置有相通且垂直的主流道和工质流道,所述主流道横向设置在所述壳体内部底端,所述主流道两端分别为主流入口和主流出口,在所述壳体的侧壁上设置有气态出口,在所述工质流道内靠近所述气态出口的一侧设置有喷流壁,且在所述喷流壁上设置有若干用于在所述主流入口和所述气态出口之间压差作用下喷射主流工质的微孔;
在所述工质流道内设置有贯穿所述壳体且用于调节主流工质喷射流量的 调节活塞,在所述调节活塞与所述壳体相接触的位置设置有用于设置密封圈的环形凹槽,所述密封圈通过设置密封中空螺栓压紧。
进一步地,所述气态出口设置在所述壳体的侧壁上侧,且位于所述主流道的上游;所述密封中空螺栓和所述调节活塞均设有外螺纹,与所述密封中空螺栓和所述调节活塞相连接的部件设置有与所述外螺纹相匹配的内螺纹。
根据本发明实施方式的第五个方面,提供了一种喷流自降温装置,包括壳体,其特征在于,在所述壳体的两相对的侧壁上分别设置有主流入口和主流出口,在所述壳体的内部设置有贯穿所述壳体上侧壁且可以上下调节移动的喷流筒,所述喷流筒上端为气态出口,在所述喷流筒的侧壁上设置有若干用于在所述主流入口和所述气态出口之间压差作用下喷射主流工质的微孔,所述喷流筒与所述壳体相接触的位置设置有用于设置密封圈的环形凹槽,所述密封圈通过设置密封中空螺栓压紧。
进一步地,所述主流入口位于所述壳体侧壁的上端,所述主流出口位于所述壳体侧壁的下端,所述微孔均匀分布在所述喷流筒侧壁的下半部分,所述喷流筒的上半部分与所述密封中空螺栓均设有外螺纹,与所述喷流筒和所述密封中空螺栓相接的部件设置有与所述外螺纹相匹配的内螺纹。
附图说明
图1为本发明实施例1喷流自降温装置的结构示意图;
图2为本发明实施例2喷流自降温装置的结构示意图;
图3为本发明实施例3喷流自降温装置的结构示意图;
图4为本发明实施例4喷流自降温装置的结构示意图;
图5为本发明实施例5喷流自降温装置的结构示意图。
图中:
1-主流入口;2-壳体;3-喷流壁;4-微孔;5-主流出口;6-气态出口;7-调节中空螺栓;8-密封圈;9-密封中空螺栓;10-调节螺栓;11-调节活塞;12-喷流筒;13-主流道;14-工质流道。
本发明的较佳实施方式
以下由特定的具体实施例说明本发明的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本发明的其他优点及功效,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明主要目的是为了能够实现液态工质的自降温,提供了一种喷流自降温装置,其主要由主流入口、壳体、喷流壁、微孔、主流出口、以及气态出口组成,为了实现主流工质的喷射流量的调节,还可以增加调节中空螺栓、密封圈、密封中空螺栓、调节螺栓和调节活塞等结构,根据实际需求,本发明具体提供了以下五个实施例的五种不同结构的喷流自降温装置。
实施例1:
如图1所示,本实施例提供了一种喷流自降温装置,包括壳体2,在所述壳体2的上、下端分别设置有主流入口1和主流出口5,在所述壳体2的侧壁上设置有气态出口6,在所述壳体2内部环向设置有喷流壁3,且在所述喷流壁3上设置有若干用于在所述主流入口1和所述气态出口6之间压差作用下喷射主流工质的微孔4,微孔的尺寸一般在0.1mm~100mm之间,具体的尺寸和数量根据实际的系统需求而定。
本实施例的工作原理如下:
主流工质通过主流入口1进入壳体2内部的流道,在主流入口1和气态出口5压差的作用下,部分主流工质从喷流壁3上的微孔4喷射出来,喷射过程伴随着主流工质的剧烈汽化,并吸收主流工质及喷流壁4的热量,使得主流工质温度迅速降低。由于主流工质在喷流壁4下游两侧压差相对较小,可能会导致喷流后主流工质汽化不完全,因此将气态出口6设置在壳体2侧壁的上部分,下游未汽化的液态主流工质向上游流动时可继续汽化吸热。
本实施例的喷流自降温装置可通过喷流自降温的方式降低主流液态工质温度,并同时将汽化的工质分离出来。
实施例2:
如图2所示,本实施例在实施例1的基础上,为了满足对于不同情况下对于喷射流量的需求,提供了一种可以调节主流工质喷射流量的喷流自降温装置,具体增加调节中空螺栓、密封圈和密封中空螺栓等结构,其具体构造关系如下:
在所述壳体2与所述喷流壁3之间设置有用于调节主流工质喷射流量的调节中空螺栓7,喷流壁3位于调节中空螺栓7内部且与其内部紧密接触,调节中空螺栓7的外表面与壳体2内表面通过螺纹连接。调节中空螺栓7与喷流壁3、壳体2之间均存在间隙,喷流汽化产生的气体很容易进入该空隙从而发生泄露,考虑整个装置的密封性能,在所述调节中空螺栓7与所述喷流壁3、所述壳体2之间相接触的位置均设置有用于设置密封圈8的环形凹槽,所述密封圈8通过设置密封中空螺栓9压紧,使圆形的密封圈8与壳体2、调节中空螺栓7紧密接触,达到密封的效果。
在本实施方式中,调节中空螺栓7和所述密封中空螺栓9均设有外螺纹,与所述调节中空螺栓7和所述密封中空螺栓9相连接的部件设置有与所述外螺纹相匹配的内螺纹;环形凹槽具体是在外壳2的内表面和调节中空螺栓7的头部内表面加工形成,密封中空螺栓9的外螺纹与调节中空螺栓7的头部的环形凹槽的内螺纹匹配连接。
本实施例的工作原理如下:
主流工质通过主流入口1进入喷流自降温装置,在主流入口1和气态出口6压差的作用下,部分主流工质从喷流壁3上的微孔4喷射出来,喷射过程伴随着工质的剧烈汽化,并吸收主流工质及喷流壁3的热量,使得主流工质温度迅速降低。
由于主流工质在喷流壁4下游两侧压差相对较小,可能会导致喷流后工质汽化不完全,因此将气态出口设置在装置上游,下游未汽化的液态工质向上 游流动时可继续汽化吸热。
调节中空螺栓7可以沿主流工质流动方向正反移动,当调节中空螺栓7向主流工质流动方向正向移动时,裸露的微孔4增多,主流工质喷流量增多,喷流自降温装置的降温能力增强,当调节中空螺栓7向主流工质流动方向反向移动时,调节中空螺栓7覆盖部分微孔4,裸露的微孔4减少,主流工质喷流量减少,喷流自降温装置的降温能力减弱。通过调节中空螺栓7对工质喷流量的调节,可以调节主流工质的降温程度。
实施例3:
如图3所示,本实施例在实施例1的基础上,为了满足对于不同情况下对于喷射流量的需求,提供了一种可以调节主流工质喷射流量的喷流自降温装置,不同之处在于,仅在所述壳体2内部靠近所述气态出口6的一侧设置有喷流壁3,在所述喷流壁3与所述外壳2之间设置有用于调节主流工质喷射流量的调节螺栓10(非中空结构),调节螺栓10与壳体2之间存在间隙,喷流汽化产生的气体很容易进入该空隙从而发生泄露,因此,在所述调节螺栓10与所述壳体2之间相接触的位置设置有用于设置密封圈8的环形凹槽,所述密封圈8通过设置密封中空螺栓9压紧,密封中空螺栓9的中空部分套接在调节螺栓10上,使圆形的密封圈8与壳体2、调节螺栓10之间紧密接触,达到密封的效果。
在本实施方式中,所述调节螺栓10和所述密封中空螺栓9均设有外螺纹,与所述调节螺栓10和所述密封中空螺栓9相连接的部件设置有与所述外螺纹相匹配的内螺纹,环形凹槽具体是在外壳2的内表面加工形成,密封中空螺栓9的外螺纹与外壳2上环形凹槽的内螺纹匹配连接。
本实施例的工作原理:
主流工质通过主流入口1进入喷流自降温装置,在主流入口1和气态出口6压差的作用下,部分主流工质从喷流壁3上的微孔4喷射出来,喷射过程伴随着工质的剧烈汽化,并吸收主流工质及喷流壁3的热量,使得主流工质温度迅速降低。
由于主流工质在喷流壁4下游两侧压差相对较小,可能会导致喷流后工质 汽化不完全,因此将气态出口6设置在外壳2侧壁的上部分,下游未汽化的液态工质向上游流动时可继续汽化吸热。
调节螺栓10可以沿主流工质流动方向正反移动,当调节螺栓10向主流工质流动方向正向移动时,裸露的微孔4增多,主流工质喷流量增多,喷流自降温装置的降温能力增强,当调节螺栓10向主流工质流动方向反向移动时,调节螺栓10覆盖部分微孔4,裸露的微孔4减少,主流工质喷流量减少,喷流自降温装置的降温能力减弱。通过调节螺栓10对主流工质喷流量的调节,可以调节主流工质的降温程度。
实施例4:
如图4所示,本实施例在实施例1的基础上,为了满足对于不同情况下对于喷射流量的需求,提供了一种可以调节主流工质喷射流量的喷流自降温装置,不同之处在于,在所述壳体2内设置有相通且垂直的主流道13和工质流道14,所述主流道13横向设置在所述壳体2内部底端,所述主流道13两端分别为主流入口1和主流出口5,在所述壳体2的侧壁上设置有气态出口6,在所述工质流道14内靠近所述气态出口6的一侧设置有喷流壁3,且在所述喷流壁3上设置有若干用于在所述主流入口1和所述气态出口6之间压差作用下喷射主流工质的微孔4;
在所述工质流道14内设置有贯穿所述壳体2且用于调节主流工质喷射流量的调节活塞11,由于调节活塞11与壳体间存在间隙,喷流汽化产生的气体很容易进入该空隙从而发生泄露,因此,在所述调节活塞11与所述壳体2相接触的位置设置有用于设置密封圈8的环形凹槽,所述密封圈8通过设置密封中空螺栓9压紧,使圆形的密封圈8与壳体2、调节活塞11紧密接触,达到密封的效果。
在本实施方式中,密封中空螺栓9和所述调节活塞11均设有外螺纹,与所述密封中空螺栓9和所述调节活塞11相连接的部件设置有与所述外螺纹相匹配的内螺纹,密封中空螺栓9的中空部分套接在调节活塞11上,环形凹槽具体是在外壳2的内表面加工形成,密封中空螺栓9的外螺纹与外壳2上环形凹槽的 内螺纹匹配连接。
本实施例的工作原理如下:
该喷流自降温装置的主流道13与工质流道14垂直布置,部分主流工质进入喷流自降温装置的主流道13,在主流入口1和气态出口6之间压差的作用下,部分主流工质进入工质流道14,并从喷流壁3上的微孔4喷射出来,喷射过程伴随着工质的剧烈汽化,并吸收主流工质及喷流壁3的热量,使得主流工质温度迅速降低。
气态出口6设置在壳体2的侧壁上侧,且位于主流道13的上游,调节活塞11可以沿工质流道中主流工质流动方向正反移动,当调节活塞11沿主流工质流动方向正向移动时,裸露的微孔4增多,工质喷流量增多,喷流自降温装置的降温能力增强,当调节活塞11沿主流工质流动方向反向移动时,调节活塞11覆盖部分微孔,裸露的微孔4减少,主流工质喷流量减少,喷流自降温装置的降温能力减弱。通过调节活塞11对工质喷流量的调节,可以调节主流工质的降温程度。
实施例5:
如图5所示,本实施例与前述四种实施例不同,为了满足对于不同情况下对于喷射流量的需求,提供了一种可以调节主流工质喷射流量的喷流自降温装置,不同之处在于,主要将实现喷流的部件直接作为调节零件,其具体包括:在壳体2的两相对的侧壁上分别设置有主流入口1和主流出口5,在主流入口1位于所述壳体2侧壁的上端,所述主流出口5位于所述壳体2侧壁的下端,在所述壳体2的内部设置有贯穿所述壳体2上侧壁且可以上下调节移动的喷流筒12,具体为类似于试验用试管的结构,所述喷流筒12上端为气态出口6,在所述喷流筒12的侧壁上设置有若干用于在所述主流入口1和所述气态出口6之间压差作用下喷射主流工质的微孔4,所述微孔4均匀分布在所述喷流筒12侧壁的下半部分。。
在本实施例中,喷流筒12的上半部分与所述密封中空螺栓9均设有外螺纹,与所述喷流筒12和所述密封中空螺栓9相接的部件设置有与所述外螺纹相 匹配的内螺纹,由于喷流壁与壳体间存在间隙,液态的主流工质很容易进入该空隙从而发生泄露,因此,在喷流筒12与所述壳体2相接触的位置设置有用于设置密封圈8的环形凹槽,所述密封圈8通过设置密封中空螺栓9压紧,环形凹槽具体是在外壳2的内表面加工形成,密封中空螺栓9的外螺纹与外壳2上环形凹槽的内螺纹匹配连接,使圆形的密封圈8与壳体2、喷流筒12紧密接触,达到密封的效果。
本实施例的工作原理如下:
主流工质通过主流入口1进入喷流自降温装置,在主流入口1和气态出口6压差的作用下,部分主流工质从喷流筒12上的微孔4喷射进入喷流筒12的内部腔体,喷射过程伴随着主流工质的剧烈汽化,并吸收主流工质及喷流筒12的热量,使得主流工质温度迅速降低。
由于主流工质在喷流壁4下游两侧压差相对较小,,可能会导致喷流后工质汽化不完全,因此将气态出口6设置在整个装置上游,下游未汽化的液态工质向上游流动时可继续汽化吸热。
喷流筒12可以沿主流工质流动方向正反移动,当喷流筒12向主流工质流动方向正向移动时,裸露的微孔4增多,主流工质喷流量增多,喷流自降温装置的降温能力增强,当喷流筒12向主流工质流动方向反向移动时,裸露的微孔4减少,主流工质喷流量减少,喷流自降温装置的降温能力减弱。通过喷流筒12对主流工质喷流量的调节,可以调节主流工质的降温程度。
虽然,上文中已经用一般性说明及具体实施例对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。
工业实用性
本发明采用简单的装置结构实现了液态工质降温,满足了实验研究或新循环系统研发中对低温制冷剂的需求,在常规制冷循环中采用该方法及装置,有助于减小蒸发器面积,降低机组体积和加工成本。

Claims (10)

  1. 一种喷流自降温装置,其特征在于,包括壳体(2),在所述壳体(2)的上、下端分别设置有主流入口(1)和主流出口(5),在所述壳体(2)的侧壁上设置有气态出口(6),在所述壳体(2)内部环向设置有喷流壁(3),且在所述喷流壁(3)上设置有若干用于在所述主流入口(1)和所述气态出口(6)之间压差作用下喷射主流工质的微孔(4)。
  2. 根据权利要求1所述的一种喷流自降温装置,其特征在于,所述气态出口(6)设置在所述壳体(2)侧壁的上端。
  3. 一种喷流自降温装置,其特征在于,包括壳体(2),在所述壳体(2)的上、下端分别设置有主流入口(1)和主流出口(5),在所述壳体(2)的侧壁上设置有气态出口(6),在所述壳体(2)内部环向设置有喷流壁(3),且在所述喷流壁(3)上设置有若干用于在所述主流入口(1)和所述气态出口(6)之间压差作用下喷射主流工质的微孔(4);
    在所述壳体(2)与所述喷流壁(3)之间设置有用于调节主流工质喷射流量的调节中空螺栓(7),在所述调节中空螺栓(7)与所述喷流壁(3)、所述壳体(2)之间相接触的位置均设置有用于设置密封圈(8)的环形凹槽,所述密封圈(8)通过设置密封中空螺栓(9)压紧。
  4. 根据权利要求3所述的一种喷流自降温装置,其特征在于,所述气态出口(6)设置在所述壳体(2)的侧壁上侧;所述调节中空螺栓(7)和所述密封中空螺栓(9)均设有外螺纹,与所述调节中空螺栓(7)和所述密封中空螺栓(9)相连接的部件设置有与所述外螺纹相匹配的内螺纹。
  5. 一种喷流自降温装置,其特征在于,包括壳体(2),在所述壳体(2)的上下两端分别设置有主流入口(1)和主流出口(5),在所述壳体(2)的侧壁上设置有气态出口(6),在所述壳体(2)内部靠近所述气态出口(6)的一侧设置有喷流壁(3),且在所述喷流壁(3)上设置有若干用于在所述主流入口(1)和所述气态出口(6)之间压差作用下喷射主流工质的微孔(4);
    在所述喷流壁(3)与所述外壳(2)之间设置有用于调节主流工质喷射流量的调节螺栓(10),在所述调节螺栓(10)与所述壳体(2)之间相接触的位置设置有用于设置密封圈(8)的环形凹槽,所述密封圈(8)通过设置密封中空螺栓(9)压紧。
  6. 根据权利要求5所述的一种喷流自降温装置,其特征在于,所述气态出口(6)设置在所述壳体(2)的侧壁上侧;所述调节螺栓(10)和所述密封中空螺栓(9)均设有外螺纹,与所述调节螺栓(10)和所述密封中空螺栓(9)相连接的部件设置有与所述外螺纹相匹配的内螺纹。
  7. 一种喷流自降温装置,包括壳体(2),其特征在于,在所述壳体(2)内设置有相通且垂直的主流道和工质流道,所述主流道横向设置在所述壳体(2)内部底端,所述主流道两端分别为主流入口(1)和主流出口(5),在所述壳体(2)的侧壁上设置有气态出口(6),在所述工质流道内靠近所述气态出口(6)的一侧设置有喷流壁(3),且在所述喷流壁(3)上设置有若干用于在所述主流入口(1)和所述气态出口(6)之间压差作用下喷射主流工质的微孔(4);
    在所述工质流道内设置有贯穿所述壳体(2)且用于调节主流工质喷射流量的调节活塞(11),在所述调节活塞(11)与所述壳体(2)相接触的位置设置有用于设置密封圈(8)的环形凹槽,所述密封圈(8)通过设置密封中空螺栓(9)压紧。
  8. 根据权利要求7所述的一种喷流自降温装置,其特征在于,所述气态出口(6)设置在所述壳体(2)的侧壁上侧,且位于所述主流道的上游;所述密封中空螺栓(9)和所述调节活塞(11)均设有外螺纹,与所述密封中空螺栓(9)和所述调节活塞(11)相连接的部件设置有与所述外螺纹相匹配的内螺纹。
  9. 一种喷流自降温装置,包括壳体(2),其特征在于,在所述壳体(2)的两相对的侧壁上分别设置有主流入口(1)和主流出口(5),在所述壳体 (2)的内部设置有贯穿所述壳体(2)上侧壁且可以上下调节移动的喷流筒(12),所述喷流筒(12)上端为气态出口(6),在所述喷流筒(12)的侧壁上设置有若干用于在所述主流入口(1)和所述气态出口(6)之间压差作用下喷射主流工质的微孔(4),所述喷流筒(12)与所述壳体(2)相接触的位置设置有用于设置密封圈(8)的环形凹槽,所述密封圈(8)通过设置密封中空螺栓(9)压紧。
  10. 根据权利要求9所述的一种喷流自降温装置,其特征在于,所述主流入口(1)位于所述壳体(2)侧壁的上端,所述主流出口(5)位于所述壳体(2)侧壁的下端,所述微孔(4)均匀分布在所述喷流筒(12)侧壁的下半部分,所述喷流筒(12)的上半部分与所述密封中空螺栓(9)均设有外螺纹,与所述喷流筒(12)和所述密封中空螺栓(9)相接的部件设置有与所述外螺纹相匹配的内螺纹。
PCT/CN2020/077650 2019-03-05 2020-03-03 一种喷流自降温装置 WO2020177690A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021552503A JP7216837B2 (ja) 2019-03-05 2020-03-03 噴流自己冷却装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910164046.XA CN109974349B (zh) 2019-03-05 2019-03-05 一种喷流自降温装置
CN201910164046.X 2019-03-05

Publications (1)

Publication Number Publication Date
WO2020177690A1 true WO2020177690A1 (zh) 2020-09-10

Family

ID=67077898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/077650 WO2020177690A1 (zh) 2019-03-05 2020-03-03 一种喷流自降温装置

Country Status (3)

Country Link
JP (1) JP7216837B2 (zh)
CN (1) CN109974349B (zh)
WO (1) WO2020177690A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109974349B (zh) * 2019-03-05 2020-04-24 中国科学院力学研究所 一种喷流自降温装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1088463A (en) * 1963-07-11 1967-10-25 Woldemar George Nolcken Improvements in or relating to refrigeration apparatus
CN201062904Y (zh) * 2007-07-30 2008-05-21 无锡同方人工环境有限公司 一种热泵机组使用的节流型闪蒸器
CN105299947A (zh) * 2014-06-19 2016-02-03 美的集团股份有限公司 空调系统
CN205300340U (zh) * 2016-01-25 2016-06-08 山东邦华热能工程有限公司 一种喷流管
CN206973964U (zh) * 2017-07-28 2018-02-06 广东美芝制冷设备有限公司 闪蒸器和具有其的空调系统
CN107894114A (zh) * 2017-11-15 2018-04-10 西安交通大学 一种具有自优化特性的电子器件闪蒸喷雾循环冷却系统
CN109114850A (zh) * 2018-09-18 2019-01-01 郑州云海信息技术有限公司 一种制冷系统过冷却装置
CN109944649A (zh) * 2019-03-05 2019-06-28 中国科学院力学研究所 一种自深度冷却动力循环方法及系统
CN109974349A (zh) * 2019-03-05 2019-07-05 中国科学院力学研究所 一种喷流自降温装置
CN109974323A (zh) * 2019-03-05 2019-07-05 中国科学院力学研究所 一种带喷流降温装置的冷热电联供循环方法及系统

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1032278B (de) * 1953-11-06 1958-06-19 Waggon Und Maschinenfabriken G Verfahren und Vorrichtung zum Betrieb mehrstufiger Kaelteanlagen
JPS477972Y1 (zh) * 1970-02-18 1972-03-27
JPH045975Y2 (zh) * 1985-03-26 1992-02-19
CZ291004B6 (cs) * 1994-06-13 2002-11-13 Chiyoda Corporation Rozptylovací trubka pro uvádění plynu do kontaktu s kapalinou a zařízení na zpracování spalin
JPH08313117A (ja) * 1995-05-17 1996-11-29 Sanyo Electric Co Ltd 冷凍装置
JPH1194401A (ja) * 1997-07-24 1999-04-09 Hitachi Ltd 冷凍空調装置
JP2008051425A (ja) 2006-08-25 2008-03-06 Samsung Electronics Co Ltd 空気調和装置
JP5072523B2 (ja) 2007-10-10 2012-11-14 三菱電機株式会社 気液分離器及び空気調和器
JP2014055765A (ja) 2009-01-12 2014-03-27 Denso Corp 蒸発器ユニット
KR101288681B1 (ko) 2011-09-06 2013-07-22 엘지전자 주식회사 공기조화기
CN102538288A (zh) * 2012-02-22 2012-07-04 王汝武 一种利用汽车发动机余热制冷的方法及装置
CN203880989U (zh) * 2014-05-14 2014-10-15 天津商业大学商业科技实业总公司 一种制冷循环自适应装置
CN205027005U (zh) * 2015-09-24 2016-02-10 苏州恒兆空调节能科技有限公司 双凹槽密封型空调喷射节流装置
CN106568245B (zh) * 2016-10-30 2019-10-22 广州市粤联水产制冷工程有限公司 自动放空气器
CN108253671B (zh) * 2017-12-23 2020-06-12 中国科学院理化技术研究所 节流阀

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1088463A (en) * 1963-07-11 1967-10-25 Woldemar George Nolcken Improvements in or relating to refrigeration apparatus
CN201062904Y (zh) * 2007-07-30 2008-05-21 无锡同方人工环境有限公司 一种热泵机组使用的节流型闪蒸器
CN105299947A (zh) * 2014-06-19 2016-02-03 美的集团股份有限公司 空调系统
CN205300340U (zh) * 2016-01-25 2016-06-08 山东邦华热能工程有限公司 一种喷流管
CN206973964U (zh) * 2017-07-28 2018-02-06 广东美芝制冷设备有限公司 闪蒸器和具有其的空调系统
CN107894114A (zh) * 2017-11-15 2018-04-10 西安交通大学 一种具有自优化特性的电子器件闪蒸喷雾循环冷却系统
CN109114850A (zh) * 2018-09-18 2019-01-01 郑州云海信息技术有限公司 一种制冷系统过冷却装置
CN109944649A (zh) * 2019-03-05 2019-06-28 中国科学院力学研究所 一种自深度冷却动力循环方法及系统
CN109974349A (zh) * 2019-03-05 2019-07-05 中国科学院力学研究所 一种喷流自降温装置
CN109974323A (zh) * 2019-03-05 2019-07-05 中国科学院力学研究所 一种带喷流降温装置的冷热电联供循环方法及系统

Also Published As

Publication number Publication date
CN109974349B (zh) 2020-04-24
JP7216837B2 (ja) 2023-02-01
JP2022526709A (ja) 2022-05-26
CN109974349A (zh) 2019-07-05

Similar Documents

Publication Publication Date Title
WO2020177690A1 (zh) 一种喷流自降温装置
CN105387653A (zh) 蒸发器及具有其的冷水机组
CN207126700U (zh) 喷嘴和喷射器
EP3423771B1 (en) Heat exchange device suitable for low pressure refrigerant
US9982924B2 (en) Ejector and heat pump apparatus
CN109737056A (zh) 一种采用喷水润滑的涡旋水蒸气压缩机系统与工作方法
CN214620160U (zh) 一种低温冷水制冷机组
JP2010053765A (ja) ヒートポンプ装置及び冷媒用往復動型圧縮機
CN103968612A (zh) 一种制冷系统中的喷液式热交换器
CN103574955A (zh) 一种通过变流程来实现变温差的降膜式螺杆冷水机组
CN101995114A (zh) 利用高沸点物质引射预冷低沸点物质的节流制冷系统
JP2011163192A (ja) ヒートポンプ装置及び冷媒用往復動型圧縮機
CN111141043A (zh) 喷射引射补气的螺杆压缩复叠组合系统
CN217031689U (zh) 一种冷水机的集中供冷装置
CN211695487U (zh) 跨临界二氧化碳泵供液制冷系统回油装置
CN108954982B (zh) 闪发换热管的干式蒸发器
CN220707775U (zh) 一种节流制冷器
CN214887724U (zh) 一种适用于螺杆压缩机的虹吸冷却系统
CN113074467B (zh) 喷射器及包括该喷射器的吸收型冷却器和加热器
CN204630187U (zh) 液体分配器及干式蒸发器
CN219934119U (zh) 一种特种机械降温的空调制冷结构
CN111141042A (zh) 喷射引射两次补气的螺杆压缩多温区系统
CN112594950B (zh) 一种低温冷水制冷机组及控制方法
CN219318697U (zh) 进出液管及冷却装置
CN112254379B (zh) 一种复合型降膜蒸发器和制冷装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20766855

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021552503

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/01/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20766855

Country of ref document: EP

Kind code of ref document: A1