WO2020167077A1 - 무선 통신 시스템에서 상향링크 데이터에 대한 복조 참조 신호를 전송하기 위한 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 상향링크 데이터에 대한 복조 참조 신호를 전송하기 위한 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2020167077A1
WO2020167077A1 PCT/KR2020/002191 KR2020002191W WO2020167077A1 WO 2020167077 A1 WO2020167077 A1 WO 2020167077A1 KR 2020002191 W KR2020002191 W KR 2020002191W WO 2020167077 A1 WO2020167077 A1 WO 2020167077A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
length
reference signal
papr
base station
Prior art date
Application number
PCT/KR2020/002191
Other languages
English (en)
French (fr)
Inventor
차현수
윤석현
이길봄
박해욱
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US17/431,259 priority Critical patent/US20230047906A1/en
Priority to KR1020217027993A priority patent/KR102648203B1/ko
Priority to CN202080014759.9A priority patent/CN113439412A/zh
Priority to EP20755011.2A priority patent/EP3920458B1/en
Publication of WO2020167077A1 publication Critical patent/WO2020167077A1/ko
Priority to US18/096,884 priority patent/US11838234B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • H04L27/262Reduction thereof by selection of pilot symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/023Multiplexing of multicarrier modulation signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • H04L27/2636Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method for transmitting a demodulation reference signal for uplink data and an apparatus supporting the same.
  • Mobile communication systems have been developed to provide voice services while ensuring user activity.
  • the mobile communication system has expanded to not only voice but also data services, and nowadays, the explosive increase in traffic causes a shortage of resources and users request higher speed services, so a more advanced mobile communication system is required. .
  • next-generation mobile communication system The requirements of the next-generation mobile communication system are largely explosive data traffic acceptance, dramatic increase in transmission rate per user, largely increased number of connected devices, very low end-to-end latency, and support for high energy efficiency. You should be able to. To this end, dual connectivity, Massive Multiple Input Multiple Output (MIMO), In-band Full Duplex, Non-Orthogonal Multiple Access (NOMA), and Super Wideband Various technologies such as wideband) support and device networking are being studied.
  • MIMO Massive Multiple Input Multiple Output
  • NOMA Non-Orthogonal Multiple Access
  • Super Wideband Various technologies such as wideband support and device networking are being studied.
  • An object of the present specification is to provide a method for transmitting a demodulation reference signal for an uplink control signal using a low PAPR sequence.
  • a method performed by a terminal indicates that transform precoding for uplink is enabled.
  • PAPR peak to average power ratio
  • sequence of length-6 is Is determined by, and i is an index of elements of the sequence of length-6.
  • the value of auto-correlation for the low PAPR sequence is less than a specific value.
  • the method further includes applying a Frequency Domain Spectrum Shaping (FDSS) filter to the low PAPR sequence.
  • FDSS Frequency Domain Spectrum Shaping
  • the low PAPR sequence is characterized in that FDM (Frequency Division Multiplexing) is performed in the form of Comb-2 at two antenna ports.
  • FDM Frequency Division Multiplexing
  • the present specification is a terminal for transmitting a demodulation reference signal for uplink data in a wireless communication system, comprising: a transceiver for transmitting and receiving a radio signal; And a processor functionally connected to the transceiver, wherein the processor receives RRC signaling including control information indicating that transform precoding for uplink is enabled, and ; Generate a low peak to average power ratio (PAPR) sequence based on the sequence of length-6; Generate a sequence used for the demodulated reference signal based on the low PAPR sequence; And controlling to transmit the demodulation reference signal to the base station based on the sequence used for the demodulation reference signal, wherein the sequence of length-6 uses 8-PSK (Phase Shift Keying) symbols as each element of the sequence. It is characterized by having.
  • PAPR peak to average power ratio
  • the one or more processors may be configured to perform transform precoding for uplink.
  • RRC signaling including control information indicating that precoding) is enabled is received from the base station;
  • PAPR peak to average power ratio
  • one or more instructions executable by one or more processors are provided by the terminal, and the uplink transform precoding ( RRC signaling including control information indicating that transform precoding) is enabled is received from the base station; Generating a low peak to average power ratio (PAPR) sequence based on the sequence of length-6; Generate a sequence used for the demodulated reference signal based on the low PAPR sequence; And transmitting the demodulation reference signal to the base station based on the sequence used for the demodulation reference signal, wherein the sequence of length-6 has an 8-PSK (Phase Shift Keying) symbol as each element of the sequence. It is characterized.
  • PAPR peak to average power ratio
  • the present specification has an effect of increasing PAPR performance by using a sequence composed of M-PSK and/or M-QAM symbols.
  • FIG. 1 is a diagram showing an example of an NR system structure.
  • FIG. 2 is a diagram showing an example of a frame structure in NR.
  • 3 shows an example of a resource grid in NR.
  • FIG. 4 is a diagram showing an example of a physical resource block in NR.
  • FIG. 5 is a diagram showing an example of a 3GPP signal transmission and reception method.
  • FIG. 6 illustrates a block diagram of a wireless communication system to which the methods proposed in the present specification can be applied.
  • SI system information
  • 11 illustrates a method of notifying an actual transmitted SSB (SSB_tx).
  • FIG. 12 is a diagram showing the PAPR performance of many sequences in the case of using the FDSS filter and the case of not using the FDSS filter.
  • FIG. 13 shows an example of a system model and/or procedure for a DFT-s-OFDM based system.
  • 16 shows PAPR performance for a proposed set of length-6 sequences in which elements of each sequence proposed in this specification are composed of 8-PSK symbols.
  • 17 shows PAPR performance for a proposed set of length-6 sequences in which elements of each sequence proposed in the present specification are composed of 8-PSK symbols.
  • 20 is a flow chart showing an example of a method for generating a low PAPR sequence proposed in the present specification.
  • 21 illustrates a communication system applied to the present invention.
  • FIG 24 shows another example of a wireless device applied to the present invention.
  • 25 illustrates a portable device applied to the present invention.
  • downlink refers to communication from a base station to a terminal
  • uplink refers to communication from a terminal to a base station.
  • the transmitter may be part of the base station, and the receiver may be part of the terminal.
  • the transmitter may be part of the terminal, and the receiver may be part of the base station.
  • the base station may be referred to as a first communication device, and the terminal may be referred to as a second communication device.
  • Base station (BS) is a fixed station, Node B, evolved-NodeB (eNB), Next Generation NodeB (gNB), base transceiver system (BTS), access point (AP), network (5G). Network), AI system, RSU (road side unit), robot, and the like.
  • the terminal may be fixed or mobile, and UE (User Equipment), MS (Mobile Station), UT (user terminal), MSS (Mobile Subscriber Station), SS (Subscriber Station), AMS (Advanced Mobile) Station), WT (Wireless terminal), MTC (Machine-Type Communication) device, M2M (Machine-to-Machine) device, D2D (Device-to-Device) device, vehicle, robot, AI module May be replaced with terms such as.
  • UE User Equipment
  • MS Mobile Station
  • UT user terminal
  • MSS Mobile Subscriber Station
  • SS Subscriber Station
  • AMS Advanced Mobile
  • WT Wireless terminal
  • MTC Machine-Type Communication
  • M2M Machine-to-Machine
  • D2D Device-to-Device
  • vehicle robot
  • AI module May be replaced with terms such as.
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with radio technologies such as Global System for Mobile communications (GSM)/General Packet Radio Service (GPRS)/Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented with a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, and E-UTRA (Evolved UTRA).
  • Wi-Fi IEEE 802.11
  • WiMAX IEEE 802.16
  • IEEE 802-20 and E-UTRA
  • Evolved UTRA Evolved UTRA
  • 3GPP 3rd Generation Partnership Project
  • LTE Long Term Evolution
  • E-UMTS Evolved UMTS
  • LTE-A Advanced
  • LTE-A pro is an evolved version of 3GPP LTE.
  • 3GPP New Radio or New Radio Access Technology (NR) is an evolved version of 3GPP LTE/LTE-A/LTE-A pro.
  • LTE refers to technology after 3GPP TS 36.xxx Release 8.
  • LTE technology after 3GPP TS 36.xxx Release 10 is referred to as LTE-A
  • LTE technology after 3GPP TS 36.xxx Release 13 is referred to as LTE-A pro
  • 3GPP NR refers to the technology after TS 38.xxx Release 15.
  • LTE/NR may be referred to as a 3GPP system.
  • "xxx" means standard document detail number.
  • LTE/NR may be collectively referred to as a 3GPP system.
  • RRC Radio Resource Control
  • RRC Radio Resource Control
  • NR is an expression showing an example of a 5G radio access technology (RAT).
  • RAT 5G radio access technology
  • a new RAT system including NR uses an OFDM transmission scheme or a similar transmission scheme.
  • the new RAT system may follow OFDM parameters different from those of LTE.
  • the new RAT system follows the numerology of the existing LTE/LTE-A as it is, but can have a larger system bandwidth (eg, 100 MHz).
  • one cell may support a plurality of neurology. That is, terminals operating in different neurology can coexist within one cell.
  • Numerology corresponds to one subcarrier spacing in the frequency domain.
  • different numerology can be defined.
  • FIG. 1 is a diagram showing an example of an NR system structure.
  • the NG-RAN is composed of gNBs that provide a control plane (RRC) protocol termination for an NG-RA user plane (new AS sublayer/PDCP/RLC/MAC/PHY) and a user equipment (UE). do.
  • the gNBs are interconnected through an Xn interface.
  • the gNB is also connected to the NGC through the NG interface. More specifically, the gNB is connected to an Access and Mobility Management Function (AMF) through an N2 interface and a User Plane Function (UPF) through an N3 interface.
  • RRC control plane
  • AMF Access and Mobility Management Function
  • UPF User Plane Function
  • FIG. 2 is a diagram showing an example of a frame structure in NR.
  • the neurology may be defined by subcarrier spacing and CP (Cyclic Prefix) overhead.
  • the plurality of subcarrier intervals is an integer N (or, It can be derived by scaling with ). Further, even if it is assumed that a very low subcarrier spacing is not used at a very high carrier frequency, the neurology to be used can be selected independently of the frequency band.
  • OFDM Orthogonal Frequency Division Multiplexing
  • a number of OFDM neurology supported in the NR system may be defined as shown in Table 1.
  • NR supports multiple numerology (or subcarrier spacing (SCS)) to support various 5G services. For example, when the SCS is 15 kHz, it supports a wide area in traditional cellular bands, and when the SCS is 30 kHz/60 kHz, it is dense-urban, lower latency. And a wider carrier bandwidth (wider carrier bandwidth) is supported, and when the SCS is 60 kHz or higher, a bandwidth greater than 24.25 GHz is supported to overcome phase noise.
  • SCS subcarrier spacing
  • the NR frequency band is defined as a frequency range of two types (FR1, FR2).
  • FR1 is a sub 6GHz range
  • FR2 may mean a millimiter wave (mmW) in the above 6GHz range.
  • mmW millimiter wave
  • Table 2 below shows the definition of the NR frequency band.
  • Downlink and uplink transmission It is composed of a radio frame having a section of.
  • each radio frame It consists of 10 subframes having a section of.
  • transmission of the uplink frame number i from the terminal is more than the start of the downlink frame in the corresponding terminal. You have to start before.
  • the slots are within a subframe Are numbered in increasing order of, within the radio frame Are numbered in increasing order.
  • One slot is Consisting of consecutive OFDM symbols of, Is determined according to the used neurology and slot configuration. Slot in subframe Start of OFDM symbol in the same subframe It is aligned in time with the beginning of.
  • Table 3 shows the number of OFDM symbols per slot in a normal CP ( ), the number of slots per radio frame ( ), the number of slots per subframe ( ), and Table 3 shows the number of OFDM symbols per slot, the number of slots per radio frame, and the number of slots per subframe in an extended CP.
  • SCS subcarrier spacing
  • mini-slot may include 2, 4, or 7 symbols, or may include more or fewer symbols.
  • an antenna port In relation to the physical resource in the NR system, an antenna port, a resource grid, a resource element, a resource block, a carrier part, etc. Can be considered.
  • the antenna port is defined such that a channel carrying a symbol on the antenna port can be inferred from a channel carrying another symbol on the same antenna port.
  • the two antenna ports are QC/QCL (quasi co-located or quasi co-location) relationship.
  • the wide range characteristic includes one or more of delay spread, Doppler spread, frequency shift, average received power, and received timing.
  • FIG 3 shows an example of a resource grid supported by a wireless communication system to which the method proposed in the present specification can be applied.
  • the resource grid is in the frequency domain It is composed of subcarriers, and one subframe Although it is exemplarily described as consisting of OFDM symbols, it is not limited thereto.
  • the transmitted signal is One or more resource grids composed of subcarriers and Is described by the OFDM symbols. From here, to be. remind Denotes a maximum transmission bandwidth, which may vary between uplink and downlink as well as neurology.
  • the neurology And one resource grid may be configured for each antenna port p.
  • each element of the resource grid for the antenna port p is referred to as a resource element, and an index pair Is uniquely identified by From here, Is the index in the frequency domain, Refers to the position of a symbol within a subframe.
  • an index pair Is used. From here, to be.
  • antenna port p Is a complex value Corresponds to. If there is no risk of confusion or if a specific antenna port or neurology is not specified, the indices p and Can be dropped, resulting in a complex value or Can be
  • the physical resource block (physical resource block) in the frequency domain It is defined as consecutive subcarriers.
  • Point A serves as a common reference point of the resource block grid and can be obtained as follows.
  • -OffsetToPointA for the PCell downlink indicates the frequency offset between the lowest subcarrier of the lowest resource block and point A of the lowest resource block that overlaps the SS/PBCH block used by the UE for initial cell selection, and the 15 kHz subcarrier spacing for FR1 and It is expressed in resource block units assuming a 60 kHz subcarrier spacing for FR2;
  • -absoluteFrequencyPointA represents the frequency-position of point A expressed as in the absolute radio-frequency channel number (ARFCN).
  • Common resource blocks set the subcarrier interval Numbered from 0 to the top in the frequency domain for.
  • Subcarrier spacing setting The center of subcarrier 0 of the common resource block 0 for is coincided with'point A'.
  • the resource element (k,l) for may be given as in Equation 1 below.
  • Is It can be defined relative to point A so that it corresponds to a subcarrier centered on point A.
  • Physical resource blocks are from 0 in the bandwidth part (BWP) Numbered to, Is the number of the BWP.
  • Physical resource block in BWP i And common resource block The relationship between may be given by Equation 2 below.
  • the NR system can support up to 400 MHz per component carrier (CC). If the terminal operating in such a wideband CC always operates with the RF for the entire CC turned on, the terminal battery consumption may increase. Or, when considering several use cases (e.g., eMBB, URLLC, Mmtc, V2X, etc.) operating within one wideband CC, different numerology (e.g., sub-carrier spacing) for each frequency band within the CC may be supported. Or, the capability for the maximum bandwidth may be different for each terminal. In consideration of this, the base station can instruct the terminal to operate only in a portion of the bandwidth rather than the entire bandwidth of the wideband CC, and the portion of the bandwidth is defined as a bandwidth part (BWP) for convenience.
  • the BWP may be composed of continuous resource blocks (RBs) on the frequency axis, and may correspond to one numerology (e.g., sub-carrier spacing, CP length, slot/mini-slot duration).
  • the base station can set a number of BWPs even within one CC configured to the terminal. For example, in the PDCCH monitoring slot, a BWP occupying a relatively small frequency domain may be set, and a PDSCH indicated by the PDCCH may be scheduled on a larger BWP. Alternatively, if UEs are concentrated in a specific BWP, some UEs can be set to different BWPs for load balancing. Alternatively, in consideration of frequency domain inter-cell interference cancellation between neighboring cells, some spectrum of the total bandwidth may be excluded and both BWPs may be set within the same slot.
  • the base station can configure at least one DL/UL BWP to the terminal associated with the wideband CC, and at a specific time point at least one of the configured DL/UL BWP(s) (L1 signaling or MAC It can be activated by CE or RRC signaling, etc.) and switching to other configured DL/UL BWP can be indicated (by L1 signaling or MAC CE or RRC signaling, etc.) It can also be switched.
  • the activated DL/UL BWP is defined as the active DL/UL BWP.
  • the DL/UL BWP assumed by the terminal is the initial active DL Defined as /UL BWP.
  • FIG. 5 is a diagram showing an example of a 3GPP signal transmission and reception method.
  • the terminal when the terminal is powered on or newly enters a cell, the terminal performs an initial cell search operation such as synchronizing with the base station (S201). To this end, the UE receives a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station to synchronize with the base station and obtain information such as cell ID. have. Thereafter, the terminal may receive a physical broadcast channel from the base station to obtain intra-cell broadcast information. Meanwhile, the UE may check the downlink channel state by receiving a downlink reference signal (DL RS) in the initial cell search step.
  • P-SCH Primary Synchronization Channel
  • S-SCH Secondary Synchronization Channel
  • the terminal may receive a physical broadcast channel from the base station to obtain intra-cell broadcast information. Meanwhile, the UE may check the downlink channel state by receiving a downlink reference signal (DL RS) in the initial cell search step.
  • DL RS downlink reference signal
  • the UE After completing the initial cell search, the UE acquires more detailed system information by receiving a Physical Downlink Control Channel (PDCCH) and a Physical Downlink Control Channel (PDSCH) according to the information carried on the PDCCH. It can be done (S202).
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Control Channel
  • the terminal may perform a random access procedure (RACH) for the base station (steps S203 to S206).
  • RACH random access procedure
  • the UE transmits a specific sequence as a preamble through a physical random access channel (PRACH) (S203 and S205), and may receive a response message for the preamble through a PDCCH and a corresponding PDSCH ( S204 and S206).
  • PRACH physical random access channel
  • a contention resolution procedure may be additionally performed.
  • the UE receives PDCCH/PDSCH (S207) and Physical Uplink Shared Channel (PUSCH)/Physical Uplink Control Channel as a general uplink/downlink signal transmission procedure.
  • Control Channel; PUCCH) transmission (S208) may be performed.
  • the terminal receives downlink control information (DCI) through the PDCCH.
  • DCI downlink control information
  • the DCI includes control information such as resource allocation information for the terminal, and the format is different according to the purpose of use.
  • the control information transmitted by the terminal to the base station through the uplink or received from the base station by the terminal is a downlink/uplink ACK/NACK signal, a channel quality indicator (CQI), a precoding matrix index (PMI), a rank indicator (RI). ), etc.
  • the UE may transmit control information such as the above-described CQI/PMI/RI through PUSCH and/or PUCCH.
  • Table 5 shows an example of a DCI format in the NR system.
  • DCI format 0_0 is used for PUSCH scheduling in one cell.
  • DCI format 0_0 is CRC scrambled by C-RNTI, CS-RNTI, or MCS-C-RNTI and transmitted. And, DCI format 0_1 is used to reserve a PUSCH in one cell.
  • the information included in DCI format 0_1 is transmitted after being CRC scrambled by C-RNTI or CS-RNTI or SP-CSI-RNTI or MCS-C-RNTI.
  • DCI format 1_0 is used for PDSCH scheduling in one DL cell.
  • the information included in DCI format 1_0 is transmitted after being CRC scrambled by C-RNTI, CS-RNTI, or MCS-C-RNTI.
  • DCI format 1_1 is used for PDSCH scheduling in one cell.
  • DCI Format 1_1 is transmitted after being CRC scrambled by C-RNTI, CS-RNTI, or MCS-C-RNTI.
  • DCI format 2_1 is used to inform the PRB(s) and OFDM symbol(s) which may be assumed to be not intended for transmission by the UE.
  • DCI format 2_1 The following information included in DCI format 2_1 is CRC scrambled by INT-RNTI and transmitted.
  • preemption indication N preemption indication 1
  • FIG. 6 illustrates a block diagram of a wireless communication system to which the methods proposed in the present specification can be applied.
  • the wireless communication system includes a first communication device 910 and/or a second communication device 920.
  • 'A and/or B' may be interpreted as having the same meaning as'including at least one of A or B'.
  • the first communication device may represent the base station, and the second communication device may represent the terminal (or the first communication device may represent the terminal, and the second communication device may represent the base station).
  • a base station is a fixed station, Node B, evolved-NodeB (eNB), Next Generation NodeB (gNB), base transceiver system (BTS), access point (AP), general gNB (gNB).
  • BS is a fixed station, Node B, evolved-NodeB (eNB), Next Generation NodeB (gNB), base transceiver system (BTS), access point (AP), general gNB (gNB).
  • eNB evolved-NodeB
  • gNB Next Generation NodeB
  • BTS base transceiver system
  • AP access point
  • gNB general gNB
  • 5G system 5G system
  • network AI system
  • RSU road side unit
  • the terminal may be fixed or mobile, and UE (User Equipment), MS (Mobile Station), UT (user terminal), MSS (Mobile Subscriber Station), SS (Subscriber Station), AMS (Advanced Mobile) Station), WT (Wireless terminal), MTC (Machine-Type Communication) device, M2M (Machine-to-Machine) device, D2D (Device-to-Device) device, vehicle, robot, AI module May be replaced with terms such as.
  • UE User Equipment
  • MS Mobile Station
  • UT user terminal
  • MSS Mobile Subscriber Station
  • SS Subscriber Station
  • AMS Advanced Mobile
  • WT Wireless terminal
  • MTC Machine-Type Communication
  • M2M Machine-to-Machine
  • D2D Device-to-Device
  • vehicle robot
  • AI module May be replaced with terms such as.
  • the first communication device and the second communication device are a processor (processor, 911,921), memory (memory, 914,924), one or more Tx/Rx radio frequency modules (915,925), Tx processors (912,922), Rx processors (913,923). , Antennas 916 and 926.
  • the processor implements the previously salpin functions, processes and/or methods. More specifically, in the DL (communication from the first communication device to the second communication device), higher layer packets from the core network are provided to the processor 911. The processor implements the functions of the L2 layer. In the DL, the processor provides multiplexing between logical channels and transport channels and radio resource allocation to the second communication device 920, and is responsible for signaling to the second communication device.
  • the transmit (TX) processor 912 implements various signal processing functions for the L1 layer (ie, the physical layer).
  • the signal processing function facilitates forward error correction (FEC) in the second communication device, and includes coding and interleaving.
  • FEC forward error correction
  • the coded and modulated symbols are divided into parallel streams, each stream is mapped to an OFDM subcarrier, multiplexed with a reference signal (RS) in the time and/or frequency domain, and uses Inverse Fast Fourier Transform (IFFT). These are combined together to create a physical channel carrying a time domain OFDMA symbol stream.
  • the OFDM stream is spatially precoded to produce multiple spatial streams. Each spatial stream may be provided to a different antenna 916 through a separate Tx/Rx module (or transceiver 915).
  • Each Tx/Rx module can modulate the RF carrier with each spatial stream for transmission.
  • each Tx/Rx module (or transceiver 925) receives a signal through each antenna 926 of each Tx/Rx module.
  • Each Tx/Rx module restores information modulated with an RF carrier and provides the information to the receive (RX) processor 923.
  • the RX processor implements a variety of layer 1 signal processing functions.
  • the RX processor may perform spatial processing on the information to recover any spatial stream destined for the second communication device. If multiple spatial streams are directed to the second communication device, they can be combined into a single OFDMA symbol stream by multiple RX processors.
  • the RX processor transforms the OFDMA symbol stream from time domain to frequency domain using Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the frequency domain signal contains a separate OFDMA symbol stream for each subcarrier of the OFDM signal.
  • the symbols and the reference signal on each subcarrier are reconstructed and demodulated by determining the most probable signal constellation points transmitted by the first communication device. These soft decisions can be based on channel estimate values.
  • the soft decisions are decoded and deinterleaved to recover the data and control signal originally transmitted by the first communication device on the physical channel. Corresponding data and control signals are provided to the processor 921.
  • the UL (communication from the second communication device to the first communication device) is handled in the first communication device 910 in a manner similar to that described with respect to the receiver function in the second communication device 920.
  • Each Tx/Rx module 925 receives a signal through a respective antenna 926.
  • Each Tx/Rx module provides an RF carrier and information to the RX processor 923.
  • the processor 921 may be associated with a memory 924 that stores program code and data.
  • the memory may be referred to as a computer-readable medium.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PAPR Peak-to-Average Power Ratio
  • CA Carrier aggregation
  • DCI Downlink Control format Indicator/index
  • SSB Synchronization signal block-In this specification, it is regarded as the same as the SS/PBCH block.
  • SSBRI SSB resource index/indicator
  • TDM Time division multiplexing
  • CSI-RS or CSIRS Channel State Information Reference Signals
  • CRI CSI-RS resource index/indicator
  • DM-RS or DMRS Demodulation Reference Signals
  • MAC-CE Medium Access Control Channel Element
  • NZP Non Zero Power
  • PT-RS or PTRS Phase Tracking Reference Signals
  • SRI SRS resource index/indicator
  • OFDM Orthogonal Frequency Division Multiplexing
  • BS Base station
  • RSRP Reference Signal Received Power
  • SINR Signal to Interference plus Noise Ratio
  • PUSCH Physical Uplink Shared Channels
  • PUCCH Physical Uplink Control Channels
  • PDCCH Physical Downlink Control Channels
  • PDSCH Physical Downlink Shared Channels
  • gNB generic NodeB (similar to base station)
  • the UE may perform cell search, system information acquisition, beam alignment for initial access, and DL measurement based on the SSB.
  • SSB is used interchangeably with SS/PBCH (Synchronization Signal/Physical Broadcast Channel) block.
  • SS/PBCH Synchronization Signal/Physical Broadcast Channel
  • the SSB is composed of PSS, SSS and PBCH.
  • the SSB is composed of 4 consecutive OFDM symbols, and PSS, PBCH, SSS/PBCH and PBCH are transmitted for each OFDM symbol.
  • the PSS and SSS are each composed of 1 OFDM symbol and 127 subcarriers, and the PBCH is composed of 3 OFDM symbols and 576 subcarriers.
  • Polar coding and Quadrature Phase Shift Keying (QPSK) are applied to the PBCH.
  • the PBCH consists of a data RE and a demodulation reference signal (DMRS) RE for each OFDM symbol. There are 3 DMRS REs for each RB, and 3 data REs exist between the DMRS REs.
  • DMRS demodulation reference signal
  • Cell search refers to a process in which a UE acquires time/frequency synchronization of a cell and detects a cell identifier (eg, Physical layer Cell ID, PCID) of the cell.
  • PSS is used to detect a cell ID within a cell ID group
  • SSS is used to detect a cell ID group.
  • PBCH is used for SSB (time) index detection and half-frame detection.
  • the cell search process of the terminal may be summarized as shown in Table 6 below.
  • cell ID groups There are 336 cell ID groups, and 3 cell IDs exist for each cell ID group. There are a total of 1008 cell IDs, and the cell ID may be defined by Equation 3.
  • NcellID represents a cell ID (eg, PCID).
  • N(1)ID represents a cell ID group and is provided/acquired through SSS.
  • N(2)ID represents the cell ID in the cell ID group and is provided/acquired through PSS.
  • the PSS sequence dPSS(n) may be defined to satisfy Equation 4.
  • the SSS sequence dSSS(n) may be defined to satisfy Equation 5.
  • the SSB is transmitted periodically according to the SSB period.
  • the SSB basic period assumed by the UE during initial cell search is defined as 20 ms.
  • the SSB period may be set to one of ⁇ 5ms, 10ms, 20ms, 40ms, 80ms, 160ms ⁇ by the network (eg, base station).
  • a set of SSB bursts is constructed.
  • the SSB burst set consists of a 5 ms time window (ie, half-frame), and the SSB can be transmitted up to L times in the SS burst set.
  • the maximum number of transmissions L of the SSB may be given as follows according to the frequency band of the carrier. One slot contains at most two SSBs.
  • the temporal position of the SSB candidate within the SS burst set may be defined as follows according to the SCS.
  • the temporal position of the SSB candidate is indexed from 0 to L-1 in the temporal order within the SSB burst set (ie, half-frame) (SSB index).
  • -Case A-15 kHz SCS The index of the start symbol of the candidate SSB is given as ⁇ 2, 8 ⁇ + 14*n.
  • n 0, 1.
  • n 0, 1, 2, 3.
  • -Case B-30 kHz SCS The index of the start symbol of the candidate SSB is given as ⁇ 4, 8, 16, 20 ⁇ + 28*n.
  • n 0.
  • n 0, 1.
  • -Case C-30 kHz SCS The index of the start symbol of the candidate SSB is given as ⁇ 2, 8 ⁇ + 14*n.
  • n 0, 1.
  • n 0, 1, 2, 3.
  • n 0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18.
  • -Case E-240 kHz SCS The index of the start symbol of the candidate SSB is given as ⁇ 8, 12, 16, 20, 32, 36, 40, 44 ⁇ + 56*n.
  • n 0, 1, 2, 3, 5, 6, 7, 8.
  • the UE can acquire DL synchronization by detecting the SSB.
  • the terminal may identify the structure of the SSB burst set based on the detected SSB index, and accordingly, may detect a symbol/slot/half-frame boundary.
  • the number of the frame/half-frame to which the detected SSB belongs can be identified using SFN information and half-frame indication information.
  • the UE may obtain 10-bit SFN (System Frame Number) information from the PBCH (s0 to s9).
  • PBCH System Frame Number
  • MIB Master Information Block
  • PBCH TB Transport Block
  • the terminal may acquire 1-bit half-frame indication information (c0).
  • the half-frame indication information may be implicitly signaled using PBCH DMRS.
  • the UE may acquire an SSB index based on the DMRS sequence and PBCH payload.
  • SSB candidates are indexed from 0 to L-1 in time order within the SSB burst set (ie, half-frame).
  • L 4 out of 3 bits that can be indicated using 8 PBCH DMRS sequences, the SSB index is indicated and the remaining 1 bit may be used for half-frame indication (b2).
  • the UE may acquire AS-/NAS-information through the SI acquisition process.
  • the SI acquisition process may be applied to a UE in an RRC_IDLE state, an RRC_INACTIVE state, and an RRC_CONNECTED state.
  • SI is divided into MIB (Master Information Block) and a plurality of SIB (System Information Block). SI other than MIB may be referred to as RMSI (Remaining Minimum System Information). For details, refer to the following.
  • the MIB includes information/parameters related to SIB1 (System Information Block1) reception and is transmitted through the PBCH of the SSB.
  • SIB1 System Information Block1
  • the UE assumes that the half-frame with SSB is repeated in a 20ms cycle.
  • the UE may check whether there is a CORESET (Control Resource Set) for the Type0-PDCCH common search space based on the MIB.
  • the Type0-PDCCH common search space is a kind of PDCCH search space, and is used to transmit a PDCCH for scheduling SI messages.
  • the UE When there is a Type0-PDCCH common search space, the UE based on information in the MIB (e.g., pdcch-ConfigSIB1) (i) a plurality of consecutive RBs constituting CORESET and one or more consecutive symbols and (ii) PDCCH opportunity (That is, a time domain location for PDCCH reception) can be determined.
  • pdcch-ConfigSIB1 provides information on a frequency location in which SSB/SIB1 exists and a frequency range in which SSB/SIB1 does not exist.
  • SIBx includes information related to availability and scheduling (eg, transmission period, SI-window size) of the remaining SIBs (hereinafter, SIBx, x is an integer greater than or equal to 2).
  • SIB1 may inform whether SIBx is periodically broadcast or is provided by a request of a terminal through an on-demand method.
  • SIB1 may include information necessary for the UE to perform an SI request.
  • SIB1 is transmitted through the PDSCH
  • the PDCCH scheduling SIB1 is transmitted through the Type0-PDCCH common search space
  • SIB1 is transmitted through the PDSCH indicated by the PDCCH.
  • -SIBx is included in the SI message and is transmitted through PDSCH.
  • Each SI message is transmitted within a periodic time window (ie, SI-window).
  • 11 illustrates a method of notifying an actual transmitted SSB (SSB_tx).
  • a maximum of L SSBs may be transmitted, and the number/locations at which SSBs are actually transmitted may vary for each base station/cell.
  • the number/locations at which SSBs are actually transmitted is used for rate-matching and measurement, and information on the actually transmitted SSBs is indicated as follows.
  • rate-matching It may be indicated through UE-specific RRC signaling or RMSI.
  • the UE-specific RRC signaling includes a full (eg, length L) bitmap in both the below 6GHz and above 6GHz frequency ranges.
  • RMSI includes a full bitmap at below 6GHz, and includes a compressed bitmap at above 6GHz.
  • information on the actually transmitted SSB may be indicated using a group-bit map (8 bits) + an intra-group bit map (8 bits).
  • a resource (eg, RE) indicated through UE-specific RRC signaling or RMSI is reserved for SSB transmission, and PDSCH/PUSCH may be rate-matched in consideration of SSB resources.
  • the network eg, the base station
  • the network may indicate the SSB set to be measured within the measurement interval.
  • the SSB set may be indicated for each frequency layer. If there is no indication regarding the SSB set, the default SSB set is used.
  • the default SSB set includes all SSBs in the measurement interval.
  • the SSB set may be indicated using a full (eg, length L) bitmap of RRC signaling. When in RRC idle mode, the default SSB set is used.
  • sequences having a specific length may be predefined. This can be used for transmission of uplink and/or downlink data signals / control signals / reference signals, and the like.
  • a predefined sequence can be defined (or determined) based on various criteria such as a peak-to-average power ratio (PAPR) characteristic of the sequence and an auto-correlation characteristic.
  • PAPR peak-to-average power ratio
  • This specification proposes a method of designing a length-N (sequence length of N) sequence in which each element of the sequence is composed of symbols such as M-PSK (Phase Shift Keying) and M-QAM (Quadrature Amplitude Modulation). .
  • M-PSK Phase Shift Keying
  • M-QAM Quadrature Amplitude Modulation
  • FDSS frequency domain spectrum shaping
  • FIG. 12 is a diagram showing the PAPR performance of many sequences in the case of using the FDSS filter and the case of not using the FDSS filter.
  • the FDSS filter corresponds to a time domain response of [0.28 1 0.28].
  • [0.28 1 0.28] indicates that the side of the filter with the high center in the frequency domain is cut off.
  • 710 denotes PAPR performance of a sequence using FDSS
  • 720 denotes PAPR performance of a sequence without FDSS.
  • FDSS corresponds to a time domain response of [0.28, 0.28, 1.00].
  • the optimal FDSS filter that minimizes PAPR may be different for each sequence.
  • problems such as computational complexity and/or unnecessary implementation complexity of the base station and the terminal may occur.
  • the filter used may vary according to the implementation of the terminal and the base station, and the FDSS may not be used for reasons such as an increase in complexity or an increase in block error rate (BLER) due to the use of FDSS.
  • BLER block error rate
  • the present specification sets the sequence set in consideration of both the case of using and not using the FDSS filter when configuring (or defining or using) a Length-N sequence set composed of M-PSK or M-QAM symbols. Suggest a way to construct (or define).
  • the methods (or proposals) proposed in the present specification are each of a waveform used for DL transmission and/or UL transmission (or transform precoding disabled (CP-OFDM), transform precoding enabled (DFT-s-OFDM)). Can be applied.
  • the UE may receive RRC signaling from the base station with information on a waveform to which the following proposed methods are applied.
  • the RRC signaling may include information indicating the type of a waveform to be used for DL transmission and/or UL transmission.
  • the RRC signaling may be in the form of a configuration IE of a reference signal (RS) to which the method for generating a sequence proposed below may be applied.
  • RS reference signal
  • Table 7 shows an example in which CP-OFDM is applied.
  • Table 8 shows an example in which DFT-s-OFDM is applied.
  • the transform precoding may be used as an expression such as a transform precoder.
  • equations and values related to the pseudo-random sequence (c(i)) below may be used for generation of a sequence proposed below and determination of an initialization value of the sequence.
  • Typical pseudo-random sequences are defined by a length-31 gold sequence.
  • Second m-sequence Initialization of the sequence has a value dependent on the application of the sequence. It is described by
  • the length of the sequence is N (>0), and each element of the sequence is a set of K sequences consisting of M(>0)-PSK and/or M-QAM symbols. ) Can be designed (or created or defined) in accordance with the rules (or conditions) presented below.
  • N N
  • each element of the sequence is a set of K sequences consisting of M(>0)-PSK and/or M-QAM symbols.
  • the number of total sequences that can be considered is to be. That is, the whole Of the possible sequences, total It can be viewed as proposing a rule (or condition) for selecting (or screening) a sequence of dogs.
  • K sequences it may be selected (or determined) to have a low cross-correlation characteristic of a specific threshold or lower than a specific level.
  • K sequences having an auto correlation characteristic lower than a specific threshold or a specific level may be selected (or determined).
  • the auto-correlation value may be for a specific correlation lag, and K sequences may be selected (or determined) in consideration of a threshold for an auto-correlation value for one or more correlation lags.
  • K sequences having a cyclic shift auto-correlation characteristic low below a specific threshold or a specific level may be selected (or determined).
  • correlation between a cyclic shift of +L, +L-1, + L-2, Z, -L+1, and/or -L elements in a length-N sequence and a non-cyclic shift can be selected.
  • L is less than or equal to N-1.
  • nth specific sequence When defined as, sequences having a small value of Equation 7 below can be selected.
  • the sequence may be selected (or determined or defined) to show a low PAPR characteristic below a specific threshold or a specific level (eg, X(>0) dB). have.
  • the FDSS filter may be an FDSS filter corresponding to a time domain response [0.28 1 0.28].
  • multiple FDSS filters may be used in consideration of this.
  • the sequence may be selected (or determined or defined) so as to exhibit a low PAPR characteristic of a specific threshold or a specific level (eg, Y (>0) dB) or less even if the FDSS filter is not used for the K sequences.
  • a specific threshold or a specific level eg, Y (>0) dB
  • Method 1 may be applied to a specific antenna port (e.g., a specific RS (Reference Signal) antenna port), or the same rule may be applied to several antenna ports. Alternatively, some or all of the above rules may be applied (or used) for each antenna in consideration of characteristics of each antenna port.
  • a specific antenna port e.g., a specific RS (Reference Signal) antenna port
  • some or all of the above rules may be applied (or used) for each antenna in consideration of characteristics of each antenna port.
  • a sequence that satisfies all the conditions described above may be selected (or determined or used), or K sequences may be selected in consideration of one or more of the rules.
  • This sequence and/or sequence set may be used by the terminal/base station for RS and/or data transmission.
  • K sequences with low auto-correlation and/or cyclic-auto correlation at a specific level/level or less for the sequences selected according to the condition of the application of the FDSS filter (assuming that the selected sequence is more than K) Can be selected as one sequence set.
  • the selected K sequences are defined (or determined) as one sequence set and can be used by the terminal and the base station, and the base station can indicate/set to the terminal what sequence the terminal will use at a specific time.
  • the M-PSK and M-QAM symbols mean a phase shift keying modulation symbol having a modulation order of M and a quadrature amplitude modulation symbol having a modulation order of M.
  • FIG. 13 shows an example of a system model and/or procedure for a DFT-s-OFDM based system.
  • Method 1 As an application example of Method 1, a CP-OFDM-based system and a DFT-s-OFDM-based system may be considered. 13 illustrates a procedure (or process) that may be required when Method 1 is applied to a DFT-s-OFDM-based system.
  • the length-N sequence set may be configured in various forms, such as a sequence set consisting of an integer index and a sequence set consisting of binary information.
  • the FDSS may not be used due to problems such as a problem of implementation complexity of a transmitter (terminal or base station) or an increase in signal transmission errors caused by using an FDSS filter.
  • the case where FDSS is not applied and the case where FDSS is applied are separately illustrated in FIG. 13.
  • this may be selectively applied by the transmitter.
  • the FDSS filter may be used or the FDSS filter may not be used, and the proposed method for such a transmitter may still be useful. .
  • the above proposed method has the advantage of being able to define (or design or select) a sequence in consideration of various implementation methods of the transmitter.
  • a specific sequence and a sequence having the smallest cross-correlation can be defined (or determined or set) as one pair. That is, a specific sequence index u and a sequence index u'having the smallest cross-correlation may be defined (or set) as a pair. An example of the one pair may be (u,u').
  • the total number of screening sequences in Method 1 You can select or find a sequence by changing one or all of the six rules (or conditions) mentioned as a rule (or condition) that selects (or selects) a sequence by value. have. For example, it is assumed that the number of sequences to be selected is 100 (that is, if one sequence set consists of 100 sequences), and it is assumed that a sequence that satisfies all 6 conditions (or rules) is found. At this time, when the maximum allowable cross-correlation value, cyclic auto-correlation value, and maximum allowable PAPR values when filter is applied are set to a specific value, and when the sequence is selected, the number of possible sequences exceeds 100. can do.
  • each step of the flow chart may be performed simultaneously or may be performed independently. Alternatively, a part of the order of each step may be changed.
  • the transmitter terminal or base station
  • N the length of N (>1) of each sequence
  • each element constituting the sequence is to find a sequence of K (>1) M-PSK / M-QAM symbols , N and M are determined (S1).
  • the transmitter sets 1) a PAPR value to be allowed when a specific FDSS filter is used, a PAPR value to be allowed when an FDSS filter is not used, and 2) cross-sequence
  • the allowable range/level of correlation and cyclic auto-correlation values are set, and 3) the cyclic shifted sequence is set to be regarded as the same sequence (S2).
  • the transmitter searches for a sequence that satisfies the set condition by using the set value (S3).
  • the transmitter repeats the process of selecting a sequence by changing one or more of the set conditions until it finds K sequences.
  • K can be excluded and discarded.
  • the transmitter configures or determines a length-N sequence set from the selected K sequences (S4).
  • Method 2 uses the entire sequence shown in Table 9, where each sequence element is composed of 8-PSK (Phase Shift Keying) symbols and has a length of 6, or a part of the sequence shown in Table 9 is uplink PUSCH and/or PUCCH. It is proposed to be used as a DMRS sequence.
  • the proposed sequence may be used for Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing (DFT-S-OFDM) and/or Cyclic Prefix OFDM (CP-OFDM).
  • DFT-S-OFDM Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing
  • CP-OFDM Cyclic Prefix OFDM
  • the main feature of the proposed sequence is that when the FDSS filter (FDSS filter with a time-domain response of [0.28 1 0.28]) is applied, the PAPR characteristics are as low as X(>0) dB or less, even when the FDSS filter is not applied. Y(>0) dB PAPR is low. More specifically, the proposed sequence has the following characteristics. That is, it is proposed that the UE/base station use a sequence that satisfies the following characteristics/conditions.
  • the PAPR is less than or equal to about 2.1 [dB].
  • a sequence with a PAPR less than or equal to about 2.5 [dB] can be selected and used.
  • maximum cyclic auto-correlation is low (less than or equal to about 0.2357).
  • sequence 1 in Table 9 is'-7 -5 -1 5 1 -5', and its cyclic shift version'-5 -1 5 1 -5 -7' is the same sequence.
  • u is the index of the sequence
  • n represents the element (or index of the element) of the sequence.
  • u is the index of the sequence
  • n represents the element (or index of the element) of the sequence.
  • n has 0, 1, 2, 3, 4, 5.
  • index u is 1, Corresponds to -7, 1, -1, -7, 3, 7 respectively.
  • Table 19 shows an example of an 8-PSK-based sequence set (length-6) proposed in the present specification, and the modulation symbols are Is created with
  • the PAPR performance is evaluated in DFT-s-OFDM with Comb-2 type DMRS for one RB (for Comb-2 type DMRS, refer to TS 38.211, TS 38.214, and TS 38.331).
  • the applied FDSS filter corresponds to a time domain response of [0.28 1.0 0.28].
  • the PAPR performance when the FDSS filter (corresponding to the time-domain response of [0.28 1.0 0.28]) is applied to the presented sequence and the PAPR performance when the FDSS filter is not applied can be confirmed.
  • the proposed sequence shows similar performance to the PAPR characteristic seen by the previously proposed sequence when the FDSS filter is applied.
  • the performance is fine but slightly better.
  • the FDSS filter is not applied, the PAPR performance is deteriorated than the FDSS filter is applied, but the PAPR performance superior to the previously presented sequence can be confirmed.
  • the proposed sequence of 30 FDSS filters It can be seen that PAPR does not exceed 2.5 dB even when is not applied.
  • the PAPR values shown in Tables 9 and 15 may be slightly different depending on the IFFT size and the tool for performing the simulation, but the large tendency will be similar. Therefore, even if there is a slight difference, it does not deviate from the spirit of the method proposed in the present specification, and it can be seen that it is included in the method proposed in the present specification. In addition, if the sequence generation/selection method exceeding the auto-correlation threshold is also selected/used in consideration of whether or not FDSS is used, it should be considered to be included in the idea of the method proposed in the present specification.
  • Method 2 mainly uses an FDSS filter (corresponding to time-domain response [0.28, 1.00, 0.28]), but may be considered a sequence that provides comparable PAPR performance even when the FDSS filter is not used.
  • sequences can be used so that PAPR performance when not using an FDSS filter provides better PAPR performance than when using a specific FDSS filter.
  • Method 2-2 uses the entire sequence shown in Table 7 in which each sequence element is composed of an 8-PSK (Phase Shift Keying) symbol and has a length of 6, or a part of the sequence shown in Table 7 is used for uplink PUSCH and/ Or, it relates to a method of using the PUCCH DMRS sequence.
  • the proposed sequence may be used for Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing (DFT-S-OFDM) and/or Cyclic Prefix OFDM (CP-OFDM).
  • DFT-S-OFDM Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing
  • CP-OFDM Cyclic Prefix OFDM
  • a total of two antenna ports eg, two DMRS antenna ports
  • each antenna port is FDM (Frequency Division Multiplexing) in a Comb-2 format.
  • the main feature of the proposed sequence is that when the FDSS filter (FDSS filter with a time-domain response of [0.28 1 0.28]) is applied to both antenna ports FDM in Comb-2 form, the PAPR characteristics are as low as 2.1 dB. Even if the FDSS filter is not applied, 2.3 dB PAPR is low.
  • the proposed sequence has the following characteristics.
  • the proposed sequence has a characteristic that the maximum auto-correlation is less than or equal to about 0.2357 in the +1 and -1 correlation lag.
  • the proposed sequence has a characteristic that the maximum auto-correlation is less than or equal to about 0.8 in the correlation lag(s) of +3, +2, +1, -1, -2, and -3.
  • sequence 1 in Table 10 is "-7 -5 -1 5 1 -5"
  • its cyclic shift version "-5 -1 5 1 -5 -7" is the same sequence.
  • Table 10 shows an example of an 8-PSK-based sequence set (length-6) proposed in the present specification.
  • the modulation symbols are Is created with PAPR performance is evaluated in DFT-s-OFDM with Comb-2 type DMRS for one RB (for Comb-2 type DMRS, refer to TS 38.211, TS 38.214, TS 38.331).
  • the applied FDSS filter corresponds to the time domain response of [0.28 1.0 0.28].
  • the superiority of the sequence proposed in Method 2-2 can be confirmed.
  • the proposed sequence shows low PAPR characteristics in both the case of using and not using the FDSS filter.
  • the difference in performance between the PAPR of the sequence presented in Method 2-2 and the PAPR of the existing sequence is quite large.
  • 16 shows PAPR performance for a proposed set of length-6 sequences in which elements of each sequence proposed in this specification are composed of 8-PSK symbols.
  • Method 2 and Method 2-1 a length-6 DMRS sequence (Pre-DFT leng-6 sequence) was mapped to a time-frequency resource element (RE) in the following manner.
  • DFT Discrete Fourier Transform
  • Is It is a 12 X 1 vector that is a frequency-domain signal after DFT processing of.
  • the length-6 sequence is repeated twice in the pre-DFT stage as mentioned above to perform DFT operation. Just do it.
  • a specific DMRS port may be set to a comb-2 type with a frequency offset of 0, and another DMRS port may be set to a comb-2 type with a frequency offset of 1.
  • frequency offset "0" is obtained. It is assigned a Comb-2 structure (comb-2 structure with a frequency offset of 0).
  • the Comb-2 structure having a frequency offset "0" is allocated.
  • the Comb-2 structure having a frequency offset "1" is allocated according to the following Equation 9 instead of Equation 8.
  • Equation 9 Is a 12x12 matrix, and is a matrix that allows elements allocated to odd-numbered subcarrier REs (Resource Element) to be allocated to even-numbered subcarrier REs.
  • Method 3 uses the entire sequence shown in Table 11, wherein each sequence element consists of 8-PSK (Phase Shift Keying) symbols and has a length of 6, or a part of the sequence shown in Table 11 is uplink PUSCH and/or PUCCH. It relates to a method of using the DMRS sequence.
  • the proposed sequence may be used for Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing (DFT-s-OFDM) and/or Cyclic Prefix OFDM (CP-OFDM).
  • DFT-s-OFDM Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing
  • CP-OFDM Cyclic Prefix OFDM
  • the main feature of the sequence proposed in this specification is that when the FDSS filter is not used, the PAPR characteristic is lower than Y(>0), and the FDSS filter (FDSS filter with a time-domain response of [0.28 1 0.28]) was applied. At this time, the PAPR performance is not better than that of not using the FDSS filter, but it still shows a low PAPR characteristic of less than X(>0) dB. More specifically, the proposed sequence has the following characteristics. That is, it is proposed that the UE/base station use a sequence that satisfies the following characteristics (or conditions).
  • the PAPR is less than or equal to about 2.8 [dB].
  • a sequence with PAPR less than or equal to about 2.1 [dB] can be selected and used.
  • maximum cyclic auto-correlation is low (less than or equal to about 0.2357).
  • Table 11 shows an example of the proposed 8-PSK-based sequence set (length-6).
  • the modulation symbols are Is created with PAPR performance is evaluated in a DFT-s-OFDM system with Comb-2 type DMRS for one RB.
  • 17 shows PAPR performance for a proposed set of length-6 sequences in which elements of each sequence proposed in the present specification are composed of 8-PSK symbols.
  • FIG. 17 shows the PAPR performance when the sequence shown in Table 11 is used as a Comb-2 DMRS sequence in a DFT-S-OFDM system.
  • PAPR performance when the FDSS filter (corresponding to the time-domain response of [0.28 1.0 0.28]) was applied to the presented sequence and the PAPR performance when the FDSS filter was not applied were shown.
  • the sequence defined according to Method 3 shows a PAPR performance of 2.1 dB or less when the FDSS filter is not used.
  • Method 2 and Method 3 have low PAPR characteristics when an FDSS filter (especially an FDSS filter corresponding to a time-domain response of [0.28 1.00 0.28]) is applied or not applied to the same specific sequence, that is, in both cases. It is about how to use the sequence that looks like.
  • Method 4 consists of one sequence set with a total of K sequences with an element of M-PSK/M-QAM symbol and a sequence length of N, and a specific PAPR when using a specific FDSS filter.
  • a sequence with this characteristic Sequences with good PAPR characteristics when dogs and FDSS filters are not used It's all about how to use your dog.
  • the sequence 1-15 is the sequence to use as the main target that does not use the FDSS filter, and the sequence 16-30 uses the FDSS filter corresponding to the time-domain response [0.28 1.0 0.28] together. Considering this, this is a sequence to use as a target.
  • the difference in PAPR performance according to the use of a filter can be found in Table 12 presented.
  • the following sequence is configured to have the following characteristics.
  • maximum cyclic auto-correlation is low (less than or equal to about 0.2357).
  • Table 12 shows an example of the proposed 8-PSK-based sequence set (length-6), the modulation symbols Is created with PAPR performance is evaluated in a DFT-s-OFDM system with Comb-2 type DMRS for one RB.
  • the sequence 1-15 is the sequence to use as the main target that does not use the FDSS filter, and the number 16-47 selects the case where the FDSS filter corresponding to the time-domain response [0.28 1.0 0.28] is used as the target. (Or determined or constructed) a sequence.
  • Method 5 when the FDSS filter is used, it is obvious that the PAPR characteristic is probabilistically improved, but the PAPR is not optimized in terms of each sequence. As described in the present specification, when a specific FDSS filter is applied to a specific sequence, it can be seen that the PAPR characteristic of the specific sequence is deteriorated.
  • the transmitter uses different FDSS filters according to a transmitted sequence, a sequence group, and/or a set (subset) of sequences.
  • a single sequence set optimized for the used FDSS filter can be configured (or determined) and used by the terminal/base station.
  • the system/device shown in FIG. 19 may be considered. Different sequences may be used for each group of specific RB(s) and/or RB(s), or different sequences may be used by the transmitter for each OFDM symbol and/or for each slot(s).
  • the transmitter may inform the receiver which FDSS filter is used for a specific sequence. And/or, the receiver may instruct the transmitter which FDSS filter to use for each specific sequence or sequence group. Alternatively, the receiver and the transmitter can predefine (or promise) which FDSS filter to use for which sequence.
  • One sequence set/group/table is configured, but sequences optimized for the used FDSS filter #1, FDSS filter #2,..., and FDSS filter #D can be used.
  • the D FDSS filters to be used, the D sequence groups/sub-sets with optimized PAPR performance (and/or including various criterions/performances such as cross-correlation/auto-correlation) are constructed using FDSS filters. And, by defining (or configuring) this as one set/group, the transmitter can use it for transmission of reference signals such as DMRS, SRS, and CSI-RS.
  • the transmitter can use it to transmit a reference signal/data signal.
  • NR Rel-16 supports binary CGS in Tables 1, 2 and 3, respectively, followed by pi/2 BPSK modulation, followed by both PUSCH and PUCCH.
  • DFT follows as a DMRS sequence for ⁇ /2 BPSK modulation.
  • CGS can be used up to length-8
  • 8-PSK can be used for length-6.
  • the specific sequence used in the first symbol in the sequence set / group / table and the sequence having the lowest cross-correlation can be used in the second symbol.
  • two sequences are made as one pair, and a predetermined (or defined) is determined (or defined) to be used in two contiguous OFDM symbols, or a sequence pair is set (or indicated) to the terminal by the base station. can do.
  • the sequence set is defined so that cross-correlation between the two sequence sets is minimized.
  • a specific sequence is used in the first (1 st ) DMRS symbol
  • a specific sequence and/or a specific sequence sub-set (a part of 30 sequences) to be used in the second (2 nd ) DMRS symbol may be used.
  • 8-PSK is used.
  • a PUSCH with one OFDM symbol DMRS and pi/2 BPSK modulation it is selected from the following alternatives.
  • Method 2-1 relates to relaxation of the cyclic auto-correlation performance in Method 2.
  • a sequence with better PAPR characteristics may be used through relaxation, or there may be a method of selectively/adaptively using a sequence by greatly increasing the number of sequences constituting one sequence set.
  • the PAPR is 2.3 dB or less
  • the sequence shown in Table 13 is obtained by relaxing the Method 2 condition under the condition of 3.2 dB or less.
  • Table 13 shows an example of a proposed 8-PSK-based sequence set (length-6), and the modulation symbols are Is created with PAPR performance is evaluated in a DFT-s-OFDM system with Comb-2 type DMRS for one RB.
  • Method 6 has a characteristic that when frequency-RE is used as a Comb-2 type in the frequency-domain, the time axis signal appears repeatedly twice. Therefore, in order to transmit a length-6 DMRS sequence in a step before DFT in a DFT-spread-OFDM system, it is necessary to consider repeating the length-6 sequence twice in a time-domain. Therefore, in the (pre-)DFT procedure, a sequence of length 6 must be repeated twice.
  • DFT Discrete Fourier Transform
  • each element Is an M-PSK/M-QAM symbol.
  • the length-6 sequence is repeated twice in the pre-DFT stage as mentioned above to perform DFT operation. Just do it.
  • a specific DMRS port may be set to a comb-2 type with a frequency offset of 0, and another DMRS port may be set to a comb-2 type with a frequency offset of 1.
  • combs having the same frequency offset -2 structure comb-2 structure with a frequency offset of 0. Therefore, when using two DMRS ports, an operation of shifting in the frequency axis may be additionally required. However, since this requires an additional shifting operation, a two-port DMRS sequence can be transmitted/configured with different (even and odd) Comb-2s in a single symbol in the following manner.
  • the sequence may be different or the same sequence selected from the length-6 DMRS sequence table.
  • the sequence transmitted to the first DMRS port for (pre-)DFT processing is It is multiplied with the DFT matrix in the form (DFT processing is performed), and the second DMRS port is And/or In the form of (pre-)DFT processing may be performed.
  • the sequence transmitted to the second DMRS port is set/transmitted to 6 odd-numbered REs and non-zero values as if the frequency offset is set to 1 even if there is no additional shifting processing after DFT processing, and 6 even-numbered REs A value other than 0 or 0 is mapped/transmitted.
  • the sequence transmitted to each of the two ports is distinguished because it is orthogonal in the frequency axis even if the time-domain OCC is not set at the (pre-)DFT stage. In other words, it is possible to map (or set or transmit) different sequences to the two DMRS ports.
  • the first and second DMRS ports mentioned in the present specification refer to different DMRS ports, and are not related to the DMRS port index.
  • Method 2 in order to map two antenna ports (eg, two DMRS antenna ports) to the frequency axis with two Comb-2 structures, a frequency RE mapping matrix is used after DFT. Multiplied.
  • Method 2 Method 2-1, and Method 2-2, two different antenna ports are considered, and the case of using Method 6 for Comb-2 type frequency RE mapping for each antenna port may be considered.
  • the length-6 sequences transmitted to the first and second antenna ports after pre-DFT are respectively frequency RE with a frequency offset of "0" and a frequency offset of "1". Is assigned to the frequency RE.
  • Method 2-3 is proposed similarly to Method 2-2.
  • Method 2-3 uses the entire sequence shown in Table 15, where each sequence element is composed of 8-PSK (Phase Shift Keying) symbols and has a length of 6, or a part of the sequence shown in Table 15 is uplink PUSCH and/ Or, it relates to a method of using the PUCCH DMRS sequence.
  • 8-PSK Phase Shift Keying
  • the proposed sequence may be used for Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing (DFT-s-OFDM) and/or Cyclic Prefix OFDM (CP-OFDM).
  • DFT-s-OFDM Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing
  • CP-OFDM Cyclic Prefix OFDM
  • a total of two antenna ports eg, two DMRS antenna ports
  • each antenna port is frequency division multiplexed (FDM) in the form of Comb-2.
  • the length-6 sequence of the first port is repeated twice in the time axis as shown in Equations 11 and 12 of Salpin Method 6 above,
  • the length-6 sequence of the second port is repeated by changing the sign.
  • the main feature of the proposed sequence is that when the FDSS filter (FDSS filter with a time-domain response of [0.28 1 0.28]) is applied to both antenna ports FDM in Comb-2 form, the PAPR characteristics are as low as 2.2 dB or less. However, even if the FDSS filter is not applied, it shows a low characteristic of 2.9 dB PAPR.
  • the proposed sequence has the following characteristics.
  • the proposed sequence has a characteristic that the maximum auto-correlation (self-correlation) is less than or equal to about 0.2357 in +1, -1 correlation lag.
  • the proposed sequence has a characteristic that the maximum auto-correlation is less than or equal to about 0.85 in the correlation lag(s) of +3, +2, +1, -1, -2, and -3.
  • Table 14 shows an example of the proposed 8-PSK-based sequence set (length-6), the modulation symbols Is created with PAPR performance is generated in a DFT-s-OFDM system with Comb-2 type DMRS for one RB (Resource Block) (for Comb-2 type DMRS, refer to TS 38.211, TS 38.214, TS 38.331).
  • the applied FDSS filter corresponds to the time-domain response of [0.28 1.0 0.28].
  • sequences shown in Table 14 may be used.
  • This configuration can also be considered to be included in the idea of the method proposed in the present specification as an extension (or application or application) of the method proposed in the present specification.
  • Basic sequences are divided into groups, where: Is the group number, Is the base sequence number within the group. Each group is length , One basic sequence of ( ). sequence Is defined by Equation 14 below.
  • the low-PAPR sequence generation type 2 includes (1) sequences of length 30 or larger and (2) sequences of length less than 30 according to the sequence length. Can be divided into
  • the information on the low-PAPR sequence generation type 2 may be applied to the methods proposed in the present specification described above.
  • Salpin above, methods, embodiments, and descriptions for implementing the proposals in the present specification may be applied separately or may be applied in combination of one or more.
  • 20 is a flow chart showing an example of a method of transmitting a demodulation reference signal for an uplink control signal in the present specification.
  • the UE generates a low peak to average power ratio (PAPR) sequence based on a sequence of length-6 (S2010).
  • PAPR peak to average power ratio
  • the UE generates a sequence used for the demodulation reference signal based on the low PAPR sequence (S2020).
  • the terminal transmits the demodulated reference signal to the base station based on the sequence used for the demodulated reference signal (S2030).
  • the length-6 sequence may have an 8-PSK (Phase Shift Keying) symbol as each element of the sequence.
  • sequence of length-6 is Is determined by, and i may be an index of elements of the sequence of length-6.
  • the cyclic shifted sequence for It may be the same sequence as.
  • a value of auto-correlation for the low PAPR sequence may be less than a specific value.
  • the UE may receive RRC signaling including control information indicating that transform precoding for uplink is enabled from the base station.
  • the UE may apply a Frequency Domain Spectrum Shaping (FDSS) filter to the low PAPR sequence.
  • FDSS Frequency Domain Spectrum Shaping
  • the low PAPR sequence may be frequency division multiplexed (FDM) in the form of Comb-2 to two antenna ports.
  • FDM frequency division multiplexed
  • a different low PAPR sequence may be used for each of the two antenna ports.
  • a terminal for transmitting a demodulation reference signal for an uplink control signal may include a transceiver for transmitting and receiving a radio signal and a processor functionally connected to the transceiver.
  • the processor of the terminal generates a low peak to average power ratio (PAPR) sequence based on a sequence of length-6, generates a sequence used for the demodulation reference signal based on the low PAPR sequence, and the demodulation reference signal It is possible to control to transmit the demodulated reference signal to the base station based on the sequence used for.
  • PAPR peak to average power ratio
  • 21 illustrates a communication system applied to the present invention.
  • a communication system 1 applied to the present invention includes a wireless device, a base station, and a network.
  • the wireless device refers to a device that performs communication using a wireless access technology (eg, 5G NR (New RAT), LTE (Long Term Evolution)), and may be referred to as a communication/wireless/5G device.
  • wireless devices include robots 100a, vehicles 100b-1 and 100b-2, eXtended Reality (XR) devices 100c, hand-held devices 100d, and home appliances 100e. ), an Internet of Thing (IoT) device 100f, and an AI device/server 400.
  • the vehicle may include a vehicle equipped with a wireless communication function, an autonomous vehicle, and a vehicle capable of performing inter-vehicle communication.
  • the vehicle may include an Unmanned Aerial Vehicle (UAV) (eg, a drone).
  • UAV Unmanned Aerial Vehicle
  • XR devices include AR (Augmented Reality) / VR (Virtual Reality) / MR (Mixed Reality) devices, including HMD (Head-Mounted Device), HUD (Head-Up Display), TV, smartphone, It can be implemented in the form of a computer, wearable device, home appliance, digital signage, vehicle, robot, and the like.
  • Portable devices may include smart phones, smart pads, wearable devices (eg, smart watches, smart glasses), computers (eg, notebook computers, etc.).
  • Home appliances may include TVs, refrigerators, and washing machines.
  • IoT devices may include sensors, smart meters, and the like.
  • the base station and the network may be implemented as a wireless device, and the specific wireless device 200a may operate as a base station/network node to another wireless device.
  • the wireless devices 100a to 100f may be connected to the network 300 through the base station 200.
  • AI Artificial Intelligence
  • the network 300 may be configured using a 3G network, a 4G (eg, LTE) network, or a 5G (eg, NR) network.
  • the wireless devices 100a to 100f may communicate with each other through the base station 200 / network 300, but may perform direct communication (e.g. sidelink communication) without going through the base station / network.
  • the vehicles 100b-1 and 100b-2 may perform direct communication (e.g.
  • V2V Vehicle to Vehicle
  • V2X Vehicle to Everything
  • the IoT device eg, sensor
  • the IoT device may directly communicate with other IoT devices (eg, sensors) or other wireless devices 100a to 100f.
  • Wireless communication/connections 150a, 150b, and 150c may be established between the wireless devices 100a to 100f / base station 200 and the base station 200 / base station 200.
  • the wireless communication/connection includes various wireless access such as uplink/downlink communication 150a, sidelink communication 150b (or D2D communication), base station communication 150c (eg relay, Integrated Access Backhaul). This can be achieved through technology (eg 5G NR)
  • wireless communication/connections 150a, 150b, 150c the wireless device and the base station/wireless device, and the base station and the base station can transmit/receive radio signals to each other.
  • the wireless communication/connection 150a, 150b, 150c can transmit/receive signals through various physical channels.
  • the first wireless device 100 and the second wireless device 200 may transmit and receive wireless signals through various wireless access technologies (eg, LTE and NR).
  • ⁇ the first wireless device 100, the second wireless device 200 ⁇ is the ⁇ wireless device 100x, the base station 200 ⁇ and/or ⁇ wireless device 100x, wireless device 100x) of FIG. 21 ⁇ Can be matched.
  • the first wireless device 100 includes one or more processors 102 and one or more memories 104, and may further include one or more transceivers 106 and/or one or more antennas 108.
  • the processor 102 controls the memory 104 and/or the transceiver 106 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein.
  • the processor 102 may process information in the memory 104 to generate first information/signal, and then transmit a radio signal including the first information/signal through the transceiver 106.
  • the processor 102 may store information obtained from signal processing of the second information/signal in the memory 104 after receiving a radio signal including the second information/signal through the transceiver 106.
  • the memory 104 may be connected to the processor 102 and may store various information related to the operation of the processor 102.
  • the memory 104 may perform some or all of the processes controlled by the processor 102, or instructions for performing the descriptions, functions, procedures, suggestions, methods, and/or operational flow charts disclosed in this document. It can store software code including
  • the processor 102 and the memory 104 may be part of a communication modem/circuit/chip designed to implement wireless communication technology (eg, LTE, NR).
  • the transceiver 106 may be coupled with the processor 102 and may transmit and/or receive radio signals through one or more antennas 108.
  • the transceiver 106 may include a transmitter and/or a receiver.
  • the transceiver 106 may be mixed with an RF (Radio Frequency) unit.
  • the wireless device may mean a communication modem/circuit/chip.
  • the second wireless device 200 includes one or more processors 202 and one or more memories 204, and may further include one or more transceivers 206 and/or one or more antennas 208.
  • the processor 202 controls the memory 204 and/or the transceiver 206 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein.
  • the processor 202 may process information in the memory 204 to generate third information/signal, and then transmit a wireless signal including the third information/signal through the transceiver 206.
  • the processor 202 may store information obtained from signal processing of the fourth information/signal in the memory 204 after receiving a radio signal including the fourth information/signal through the transceiver 206.
  • the memory 204 may be connected to the processor 202 and may store various information related to the operation of the processor 202.
  • the memory 204 may perform some or all of the processes controlled by the processor 202, or instructions for performing the descriptions, functions, procedures, suggestions, methods and/or operational flow charts disclosed in this document. It can store software code including
  • the processor 202 and the memory 204 may be part of a communication modem/circuit/chip designed to implement wireless communication technology (eg, LTE, NR).
  • the transceiver 206 may be connected to the processor 202 and may transmit and/or receive radio signals through one or more antennas 208.
  • the transceiver 206 may include a transmitter and/or a receiver.
  • the transceiver 206 may be used interchangeably with an RF unit.
  • the wireless device may mean a communication modem/circuit/chip.
  • one or more protocol layers may be implemented by one or more processors 102, 202.
  • one or more processors 102, 202 may implement one or more layers (eg, functional layers such as PHY, MAC, RLC, PDCP, RRC, SDAP).
  • One or more processors 102, 202 may be configured to generate one or more Protocol Data Units (PDUs) and/or one or more Service Data Units (SDUs) according to the description, functions, procedures, proposals, methods, and/or operational flow charts disclosed in this document. Can be generated.
  • PDUs Protocol Data Units
  • SDUs Service Data Units
  • One or more processors 102, 202 may generate messages, control information, data, or information according to the description, function, procedure, suggestion, method, and/or operational flow chart disclosed herein.
  • At least one processor (102, 202) generates a signal (e.g., a baseband signal) including PDU, SDU, message, control information, data or information according to the functions, procedures, proposals and/or methods disclosed herein. , It may be provided to one or more transceivers (106, 206).
  • One or more processors 102, 202 may receive signals (e.g., baseband signals) from one or more transceivers 106, 206, and the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed herein PDUs, SDUs, messages, control information, data, or information may be obtained according to the parameters.
  • signals e.g., baseband signals
  • One or more of the processors 102 and 202 may be referred to as a controller, microcontroller, microprocessor, or microcomputer.
  • One or more of the processors 102 and 202 may be implemented by hardware, firmware, software, or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gate Arrays
  • the description, functions, procedures, suggestions, methods, and/or operational flow charts disclosed in this document may be implemented using firmware or software, and firmware or software may be implemented to include modules, procedures, functions, and the like.
  • the description, functions, procedures, proposals, methods and/or operational flow charts disclosed in this document are included in one or more processors 102, 202, or stored in one or more memories 104, 204, and are It may be driven by the above processors 102 and 202.
  • the descriptions, functions, procedures, proposals, methods and/or operational flowcharts disclosed in this document may be implemented using firmware or software in the form of codes, instructions and/or a set of instructions.
  • One or more memories 104 and 204 may be connected to one or more processors 102 and 202 and may store various types of data, signals, messages, information, programs, codes, instructions and/or instructions.
  • One or more memories 104 and 204 may be composed of ROM, RAM, EPROM, flash memory, hard drive, register, cache memory, computer readable storage medium, and/or combinations thereof.
  • One or more memories 104 and 204 may be located inside and/or outside of one or more processors 102 and 202.
  • one or more memories 104, 204 may be connected to one or more processors 102, 202 through various technologies such as wired or wireless connection.
  • the one or more transceivers 106 and 206 may transmit user data, control information, radio signals/channels, and the like mentioned in the methods and/or operation flow charts of this document to one or more other devices.
  • One or more transceivers (106, 206) may receive user data, control information, radio signals/channels, etc. mentioned in the description, functions, procedures, suggestions, methods and/or operation flow charts disclosed in this document from one or more other devices.
  • one or more transceivers 106 and 206 may be connected to one or more processors 102 and 202, and may transmit and receive wireless signals.
  • one or more processors 102, 202 may control one or more transceivers 106, 206 to transmit user data, control information, or radio signals to one or more other devices.
  • one or more processors 102, 202 may control one or more transceivers 106, 206 to receive user data, control information, or radio signals from one or more other devices.
  • one or more transceivers (106, 206) may be connected with one or more antennas (108, 208), and one or more transceivers (106, 206) through one or more antennas (108, 208), the description and functionality disclosed in this document. It may be set to transmit and receive user data, control information, radio signals/channels, and the like mentioned in a procedure, a proposal, a method and/or an operation flowchart.
  • one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (eg, antenna ports).
  • One or more transceivers (106, 206) in order to process the received user data, control information, radio signal / channel, etc. using one or more processors (102, 202), the received radio signal / channel, etc. in the RF band signal. It can be converted into a baseband signal.
  • One or more transceivers 106 and 206 may convert user data, control information, radio signals/channels, etc. processed using one or more processors 102 and 202 from a baseband signal to an RF band signal.
  • one or more of the transceivers 106 and 206 may include (analog) oscillators and/or filters.
  • the signal processing circuit 1000 may include a scrambler 1010, a modulator 1020, a layer mapper 1030, a precoder 1040, a resource mapper 1050, and a signal generator 1060. have.
  • the operations/functions of FIG. 23 may be performed in the processors 102 and 202 and/or the transceivers 106 and 206 of FIG. 22.
  • the hardware elements of FIG. 23 may be implemented in the processors 102 and 202 and/or the transceivers 106 and 206 of FIG. 22.
  • blocks 1010 to 1060 may be implemented in the processors 102 and 202 of FIG. 22.
  • blocks 1010 to 1050 may be implemented in the processors 102 and 202 of FIG. 22, and block 1060 may be implemented in the transceivers 106 and 206 of FIG. 22.
  • the codeword may be converted into a wireless signal through the signal processing circuit 1000 of FIG. 23.
  • the codeword is an encoded bit sequence of an information block.
  • the information block may include a transport block (eg, a UL-SCH transport block, a DL-SCH transport block).
  • the radio signal may be transmitted through various physical channels (eg, PUSCH, PDSCH).
  • the codeword may be converted into a scrambled bit sequence by the scrambler 1010.
  • the scramble sequence used for scramble is generated based on an initialization value, and the initialization value may include ID information of a wireless device.
  • the scrambled bit sequence may be modulated by the modulator 1020 into a modulation symbol sequence.
  • the modulation scheme may include pi/2-Binary Phase Shift Keying (pi/2-BPSK), m-Phase Shift Keying (m-PSK), m-Quadrature Amplitude Modulation (m-QAM), and the like.
  • the complex modulation symbol sequence may be mapped to one or more transport layers by the layer mapper 1030.
  • the modulation symbols of each transport layer may be mapped to the corresponding antenna port(s) by the precoder 1040 (precoding).
  • the output z of the precoder 1040 can be obtained by multiplying the output y of the layer mapper 1030 by the N*M precoding matrix W.
  • N is the number of antenna ports
  • M is the number of transmission layers.
  • the precoder 1040 may perform precoding after performing transform precoding (eg, DFT transform) on complex modulation symbols. Also, the precoder 1040 may perform precoding without performing transform precoding.
  • the resource mapper 1050 may map modulation symbols of each antenna port to a time-frequency resource.
  • the time-frequency resource may include a plurality of symbols (eg, CP-OFDMA symbols, DFT-s-OFDMA symbols) in the time domain, and may include a plurality of subcarriers in the frequency domain.
  • CP Cyclic Prefix
  • DAC Digital-to-Analog Converter
  • the signal processing process for the received signal in the wireless device may be configured in reverse of the signal processing process 1010 to 1060 of FIG. 23.
  • a wireless device eg, 100, 200 in FIG. 22
  • the received radio signal may be converted into a baseband signal through a signal restorer.
  • the signal restorer may include a frequency downlink converter, an analog-to-digital converter (ADC), a CP canceller, and a Fast Fourier Transform (FFT) module.
  • ADC analog-to-digital converter
  • FFT Fast Fourier Transform
  • the baseband signal may be reconstructed into a codeword through a resource de-mapper process, a postcoding process, a demodulation process, and a de-scramble process.
  • a signal processing circuit for a received signal may include a signal restorer, a resource demapper, a postcoder, a demodulator, a descrambler, and a decoder.
  • FIG 24 shows another example of a wireless device applied to the present invention.
  • the wireless device may be implemented in various forms according to use-examples/services (see FIG. 21).
  • the wireless devices 100 and 200 correspond to the wireless devices 100 and 200 of FIG. 22, and various elements, components, units/units, and/or modules ) Can be composed of.
  • the wireless devices 100 and 200 may include a communication unit 110, a control unit 120, a memory unit 130, and an additional element 140.
  • the communication unit may include a communication circuit 112 and a transceiver(s) 114.
  • the communication circuit 112 may include one or more processors 102 and 202 and/or one or more memories 104 and 204 of FIG. 22.
  • the transceiver(s) 114 may include one or more transceivers 106,206 and/or one or more antennas 108,208 of FIG. 22.
  • the control unit 120 is electrically connected to the communication unit 110, the memory unit 130, and the additional element 140 and controls all operations of the wireless device.
  • the controller 120 may control the electrical/mechanical operation of the wireless device based on the program/code/command/information stored in the memory unit 130.
  • the control unit 120 transmits the information stored in the memory unit 130 to an external (eg, other communication device) through the communication unit 110 through a wireless/wired interface, or through the communication unit 110 to the outside (eg, Information received through a wireless/wired interface from another communication device) may be stored in the memory unit 130.
  • the additional element 140 may be variously configured according to the type of wireless device.
  • the additional element 140 may include at least one of a power unit/battery, an I/O unit, a driving unit, and a computing unit.
  • wireless devices include robots (FIGS. 21, 100a), vehicles (FIGS. 21, 100b-1, 100b-2), XR devices (FIGS. 21, 100c), portable devices (FIGS. 21, 100d), and home appliances.
  • Fig. 21, 100e) IoT device (Fig. 21, 100f), digital broadcasting terminal, hologram device, public safety device, MTC device, medical device, fintech device (or financial device), security device, climate/environment device, It may be implemented in the form of an AI server/device (FIGS. 21 and 400), a base station (FIGS. 21 and 200), and a network node.
  • the wireless device can be used in a mobile or fixed location depending on the use-example/service.
  • various elements, components, units/units, and/or modules in the wireless devices 100 and 200 may be connected to each other through a wired interface, or at least part of them may be wirelessly connected through the communication unit 110.
  • the control unit 120 and the communication unit 110 are connected by wire, and the control unit 120 and the first unit (eg, 130, 140) are connected through the communication unit 110.
  • the control unit 120 and the first unit eg, 130, 140
  • each element, component, unit/unit, and/or module in the wireless device 100 and 200 may further include one or more elements.
  • the controller 120 may be configured with one or more processor sets.
  • control unit 120 may be composed of a set of a communication control processor, an application processor, an electronic control unit (ECU), a graphic processing processor, and a memory control processor.
  • memory unit 130 includes random access memory (RAM), dynamic RAM (DRAM), read only memory (ROM), flash memory, volatile memory, and non-volatile memory. volatile memory) and/or a combination thereof.
  • 25 illustrates a portable device applied to the present invention.
  • Portable devices may include smart phones, smart pads, wearable devices (eg, smart watches, smart glasses), and portable computers (eg, notebook computers).
  • the portable device may be referred to as a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), an advanced mobile station (AMS), or a wireless terminal (WT).
  • MS mobile station
  • UT user terminal
  • MSS mobile subscriber station
  • SS subscriber station
  • AMS advanced mobile station
  • WT wireless terminal
  • the portable device 100 includes an antenna unit 108, a communication unit 110, a control unit 120, a memory unit 130, a power supply unit 140a, an interface unit 140b, and an input/output unit 140c. ) Can be included.
  • the antenna unit 108 may be configured as a part of the communication unit 110.
  • Blocks 110 to 130/140a to 140c correspond to blocks 110 to 130/140 of FIG. 24, respectively.
  • the communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with other wireless devices and base stations.
  • the controller 120 may perform various operations by controlling components of the portable device 100.
  • the controller 120 may include an application processor (AP).
  • the memory unit 130 may store data/parameters/programs/codes/commands required for driving the portable device 100. Also, the memory unit 130 may store input/output data/information, and the like.
  • the power supply unit 140a supplies power to the portable device 100 and may include a wired/wireless charging circuit, a battery, and the like.
  • the interface unit 140b may support connection between the portable device 100 and other external devices.
  • the interface unit 140b may include various ports (eg, audio input/output ports, video input/output ports) for connection with external devices.
  • the input/output unit 140c may receive or output image information/signal, audio information/signal, data, and/or information input from a user.
  • the input/output unit 140c may include a camera, a microphone, a user input unit, a display unit 140d, a speaker, and/or a haptic module.
  • the input/output unit 140c acquires information/signals (eg, touch, text, voice, image, video) input from the user, and the obtained information/signals are stored in the memory unit 130. Can be saved.
  • the communication unit 110 may convert information/signals stored in the memory into wireless signals, and may directly transmit the converted wireless signals to other wireless devices or to a base station.
  • the communication unit 110 may restore the received radio signal to the original information/signal. After the restored information/signal is stored in the memory unit 130, it may be output in various forms (eg, text, voice, image, video, heptic) through the input/output unit 140c.
  • an embodiment of the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention provides one or more ASICs (application specific integrated circuits), DSPs (digital signal processors), DSPDs (digital signal processing devices), PLDs (programmable logic devices), and FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, etc.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, etc.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, or function that performs the functions or operations described above.
  • the software code can be stored in a memory and driven by a processor.
  • the memory may be located inside or outside the processor, and may exchange data with the processor through various known means.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 명세서는 무선 통신 시스템에서 상향링크 데이터에 대한 복조 참조 신호를 전송하기 위한 방법을 제공한다. 보다 구체적으로, 단말에 의해 수행되는 상기 방법은 상향링크에 대한 트랜스폼 프리코딩이 인에이블 되었음을 나타내는 제어 정보를 포함하는 RRC 시그널링을 기지국으로부터 수신하는 단계; 길이-6인 시퀀스에 기초하여 낮은 PAPR 시퀀스를 생성하는 단계; 상기 낮은 PAPR 시퀀스에 기초하여 상기 복조 참조 신호에 사용되는 시퀀스를 생성하는 단계; 및 상기 복조 참조 신호에 사용되는 시퀀스에 기초하여 상기 복조 참조 신호를 상기 기지국으로 전송하는 단계를 포함하되, 상기 길이-6인 시퀀스는 8-PSK 심볼을 시퀀스의 각 엘리먼트로 가지는 것을 특징으로 한다.

Description

무선 통신 시스템에서 상향링크 데이터에 대한 복조 참조 신호를 전송하기 위한 방법 및 이를 위한 장치
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게 상향링크 데이터에 대한 복조 참조 신호를 전송하기 위한 방법 및 이를 지원하는 장치에 관한 것이다.
이동 통신 시스템은 사용자의 활동성을 보장하면서 음성 서비스를 제공하기 위해 개발되었다. 그러나 이동통신 시스템은 음성뿐 아니라 데이터 서비스까지 영역을 확장하였으며, 현재에는 폭발적인 트래픽의 증가로 인하여 자원의 부족 현상이 야기되고 사용자들이 보다 고속의 서비스를 요구하므로, 보다 발전된 이동 통신 시스템이 요구되고 있다.
차세대 이동 통신 시스템의 요구 조건은 크게 폭발적인 데이터 트래픽의 수용, 사용자 당 전송률의 획기적인 증가, 대폭 증가된 연결 디바이스 개수의 수용, 매우 낮은 단대단 지연(End-to-End Latency), 고에너지 효율을 지원할 수 있어야 한다. 이를 위하여 이중 연결성(Dual Connectivity), 대규모 다중 입출력(Massive MIMO: Massive Multiple Input Multiple Output), 전이중(In-band Full Duplex), 비직교 다중접속(NOMA: Non-Orthogonal Multiple Access), 초광대역(Super wideband) 지원, 단말 네트워킹(Device Networking) 등 다양한 기술들이 연구되고 있다.
본 명세서는 낮은 PAPR 시퀀스를 이용하여 상향링크 제어 신호에 대한 복조 참조 신호를 전송하기 위한 방법을 제공하는데 목적이 있다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 명세서는 무선 통신 시스템에서 상향링크 데이터에 대한 복조 참조 신호를 전송하기 위한 방법에 있어서, 단말에 의해 수행되는 방법은 상향링크에 대한 트랜스폼 프리코딩(transform precoding)이 인에이블(enable) 되었음을 나타내는 제어 정보를 포함하는 RRC 시그널링을 기지국으로부터 수신하는 단계; 길이-6인 시퀀스에 기초하여 낮은 PAPR(peak to average power ratio) 시퀀스를 생성하는 단계; 상기 낮은 PAPR 시퀀스에 기초하여 상기 복조 참조 신호에 사용되는 시퀀스를 생성하는 단계; 및 상기 복조 참조 신호에 사용되는 시퀀스에 기초하여 상기 복조 참조 신호를 상기 기지국으로 전송하는 단계를 포함하되, 상기 길이-6인 시퀀스는 8-PSK(Phase Shift Keying) 심볼을 시퀀스의 각 엘리먼트(element)로 가지는 것을 특징으로 한다.
또한, 본 명세서에서 상기 길이-6인 시퀀스는
Figure PCTKR2020002191-appb-I000001
에 의해 결정되며, 상기 i는 상기 길이-6인 시퀀스의 엘리먼트들의 인덱스인 것을 특징으로 한다.
또한, 본 명세서에서 상기
Figure PCTKR2020002191-appb-I000002
의 값은 (-1 -7 -3 -5 -1 3), (-7 3 -7 5 -7 -3), (5 -7 7 1 5 1), (-7 3 1 5 -1 3), (-7 -5 -1 -7 -5 5), (-7 1 -3 3 7 5) 및 (-7 1 -3 1 5 1)을 포함하는 것을 특징으로 한다.
또한, 본 명세서에서 상기
Figure PCTKR2020002191-appb-I000003
에 대해 사이클릭 쉬프트된(cyclic shifted) 시퀀스는 상기
Figure PCTKR2020002191-appb-I000004
와 동일한 시퀀스인 것을 특징으로 한다.
또한, 본 명세서에서 상기
Figure PCTKR2020002191-appb-I000005
의 값이 가질 수 있는 수는
Figure PCTKR2020002191-appb-I000006
인 것을 특징으로 한다.
또한, 본 명세서에서 상기 낮은 PAPR 시퀀스에 대한 자기-상관(auto-correlation)의 값은 특정 값 미만인 것을 특징으로 한다.
또한, 본 명세서에서 상기 방법은 상기 낮은 PAPR 시퀀스에 FDSS(Frequency Domain Spectrum Shaping) 필터를 적용하는 단계를 더 포함하는 것을 특징으로 한다.
또한, 본 명세서에서 상기 낮은 PAPR 시퀀스는 2개의 안테나 포트들에 Comb-2 형태로 FDM(Frequency Division Multiplexing)되는 것을 특징으로 한다.
또한, 본 명세서에서 상기 2개의 안테나 포트들 각각에 서로 다른 낮은 PAPR 시퀀스가 사용되는 것을 특징으로 한다.
또한, 본 명세서는 무선 통신 시스템에서 상향링크 데이터에 대한 복조 참조 신호를 전송하기 위한 단말에 있어서, 무선 신호를 송수신하기 위한 송수신기(tranceiver); 및 상기 송수신기와 기능적으로 연결되어 있는 프로세서를 포함하고, 상기 프로세서는, 상향링크에 대한 트랜스폼 프리코딩(transform precoding)이 인에이블(enable) 되었음을 나타내는 제어 정보를 포함하는 RRC 시그널링을 기지국으로부터 수신하며; 길이-6인 시퀀스에 기초하여 낮은 PAPR(peak to average power ratio) 시퀀스를 생성하며; 상기 낮은 PAPR 시퀀스에 기초하여 상기 복조 참조 신호에 사용되는 시퀀스를 생성하며; 및 상기 복조 참조 신호에 사용되는 시퀀스에 기초하여 상기 복조 참조 신호를 상기 기지국으로 전송하도록 제어하되, 상기 길이-6인 시퀀스는 8-PSK(Phase Shift Keying) 심볼을 시퀀스의 각 엘리먼트(element)로 가지는 것을 특징으로 한다.
또한, 본 명세서는 하나 이상의 메모리들 및 상기 하나 이상의 메모리들과 기능적으로 연결되어 있는 하나 이상의 프로세서들을 포함하는 장치에 있어서, 상기 하나 이상의 프로세서들은 상기 장치가, 상향링크에 대한 트랜스폼 프리코딩(transform precoding)이 인에이블(enable) 되었음을 나타내는 제어 정보를 포함하는 RRC 시그널링을 기지국으로부터 수신하고; 길이-6인 시퀀스에 기초하여 낮은 PAPR(peak to average power ratio) 시퀀스를 생성하고; 상기 낮은 PAPR 시퀀스에 기초하여 상기 복조 참조 신호에 사용되는 시퀀스를 생성하고; 및 상기 복조 참조 신호에 사용되는 시퀀스에 기초하여 상기 복조 참조 신호를 상기 기지국으로 전송하되, 상기 길이-6인 시퀀스는 8-PSK(Phase Shift Keying) 심볼을 시퀀스의 각 엘리먼트(element)로 가지는 것을 특징으로 한다.
또한, 본 명세서는 하나 이상의 명령어를 저장하는 하나 이상의 비일시적(non-transitory) 컴퓨터 판독 가능 매체에 있어서, 하나 이상의 프로세서에 의해 실행 가능한 하나 이상의 명령어는 단말이, 상향링크에 대한 트랜스폼 프리코딩(transform precoding)이 인에이블(enable) 되었음을 나타내는 제어 정보를 포함하는 RRC 시그널링을 기지국으로부터 수신하고; 길이-6인 시퀀스에 기초하여 낮은 PAPR(peak to average power ratio) 시퀀스를 생성하고; 상기 낮은 PAPR 시퀀스에 기초하여 상기 복조 참조 신호에 사용되는 시퀀스를 생성하고; 및 상기 복조 참조 신호에 사용되는 시퀀스에 기초하여 상기 복조 참조 신호를 상기 기지국으로 전송하되, 상기 길이-6인 시퀀스는 8-PSK(Phase Shift Keying) 심볼을 시퀀스의 각 엘리먼트(element)로 가지는 것을 특징으로 한다.
본 명세서는 M-PSK 및/또는 M-QAM 심볼 등으로 구성된 시퀀스를 이용함으로써 PAPR 성능을 높일 수 있는 효과가 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시 예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.
도 1은 NR 시스템 구조의 일례를 나타낸 도이다.
도 2는 NR에서의 프레임 구조의 일례를 나타낸 도이다.
도 3은 NR에서의 자원 그리드(resource grid)의 일 예를 나타낸다.
도 4는 NR에서의 물리 자원 블록의 일례를 나타낸 도이다.
도 5는 3GPP 신호 송수신 방법의 일례를 나타낸 도이다.
도 6은 본 명세서에서 제안하는 방법들이 적용될 수 있는 무선 통신 시스템의 블록 구성도를 예시한다.
도 7은 SSB 구조를 예시한다.
도 8은 SSB 전송을 예시한다.
도 9는 단말이 DL 시간 동기에 관한 정보를 획득하는 것을 예시한다.
도 10은 시스템 정보(SI) 획득 과정을 예시한다.
도 11은 실제로 전송되는 SSB(SSB_tx)를 알려주는 방법을 예시한다.
도 12는 FDSS 필터를 사용하는 경우와 FDSS 필터를 사용하지 않는 경우에 대한 많은 시퀀스들의 PAPR 성능을 나타낸 도이다.
도 13은 DFT-s-OFDM 기반 시스템에 대한 시스템 모델 및/또는 절차의 일례를 나타낸다.
도 14는 본 명세서에서 제안하는 방법 1의 순서도를 나타낸 도이다.
도 15는 각 시퀀스의 엘리먼트들이 8-PSK 심볼들로 구성된 길이-6 시퀀스들의 제안하는 세트에 대한 PAPR 성능을 나타낸다.
도 16은 본 명세서에서 제안하는 각 시퀀스의 엘리먼트들이 8-PSK 심볼들로 구성된 길이-6 시퀀스들의 제안된 세트에 대한 PAPR 성능을 나타낸다.
도 17은 본 명세서에서 제안하는 각 시퀀스의 엘리먼트들이 8-PSK 심볼들로 구성된 길이-6 시퀀스들의 제안된 세트에 대한 PAPR 성능을 나타낸다.
도 18은 본 명세서에서 제안하는 FDSS 필터를 적응적으로 적용하기 위한 일례를 나타낸다.
도 19는 본 명세서에서 제안하는 각 시퀀스의 엘리먼트들이 8-PSK 심볼들로 구성된 길이-6 시퀀스들의 제안된 세트에 대한 PAPR 성능을 나타낸다.
도 20은 본 명세서에서 제안하는 낮은 PAPR 시퀀스를 생성하는 방법의 일례를 나타낸 순서도이다.
도 21은 본 발명에 적용되는 통신 시스템을 예시한다.
도 22는 본 발명에 적용될 수 있는 무선 기기를 예시한다.
도 23은 본 발명에 적용되는 신호 처리 회로를 예시한다.
도 24는 본 발명에 적용되는 무선 기기의 다른 예를 나타낸다.
도 25는 본 발명에 적용되는 휴대 기기를 예시한다.
이하에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다. 기지국은 제 1 통신 장치로, 단말은 제 2 통신 장치로 표현될 수도 있다. 기지국(BS: Base Station)은 고정국(fixed station), Node B, eNB(evolved-NodeB), gNB(Next Generation NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point), 네트워크(5G 네트워크), AI 시스템, RSU(road side unit), 로봇 등의 용어에 의해 대체될 수 있다. 또한, 단말(Terminal)은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치, 차량(vehicle), 로봇(robot), AI 모듈 등의 용어로 대체될 수 있다.
이하의 기술은 CDMA, FDMA, TDMA, OFDMA, SC-FDMA 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(Long Term Evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부이고 LTE-A(Advanced)/LTE-A pro는 3GPP LTE의 진화된 버전이다. 3GPP NR(New Radio or New Radio Access Technology)는 3GPP LTE/LTE-A/LTE-A pro의 진화된 버전이다.
설명을 명확하게 하기 위해, 3GPP 통신 시스템(예, LTE-A, NR)을 기반으로 설명하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다. LTE는 3GPP TS 36.xxx Release 8 이후의 기술을 의미한다. 세부적으로, 3GPP TS 36.xxx Release 10 이후의 LTE 기술은 LTE-A로 지칭되고, 3GPP TS 36.xxx Release 13 이후의 LTE 기술은 LTE-A pro로 지칭된다. 3GPP NR은 TS 38.xxx Release 15 이후의 기술을 의미한다. LTE/NR은 3GPP 시스템으로 지칭될 수 있다. "xxx"는 표준 문서 세부 번호를 의미한다. LTE/NR은 3GPP 시스템으로 통칭될 수 있다. 본 발명의 설명에 사용된 배경기술, 용어, 약어 등에 관해서는 본 발명 이전에 공개된 표준 문서에 기재된 사항을 참조할 수 있다. 예를 들어, 다음 문서를 참조할 수 있다.
3GPP LTE
- 36.211: Physical channels and modulation
- 36.212: Multiplexing and channel coding
- 36.213: Physical layer procedures
- 36.300: Overall description
- 36.331: Radio Resource Control (RRC)
3GPP NR
- 38.211: Physical channels and modulation
- 38.212: Multiplexing and channel coding
- 38.213: Physical layer procedures for control
- 38.214: Physical layer procedures for data
- 38.300: NR and NG-RAN Overall Description
- 38.331: Radio Resource Control (RRC) protocol specification
NR (NR Radio access)
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 radio access technology 에 비해 향상된 mobile broadband 통신에 대한 필요성이 대두되고 있다. 또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 massive MTC (Machine Type Communications) 역시 차세대 통신에서 고려될 주요 이슈 중 하나이다. 뿐만 아니라 reliability 및 latency 에 민감한 서비스/단말을 고려한 통신 시스템 디자인이 논의되고 있다. 이와 같이 eMBB(enhanced mobile broadband communication), Mmtc(massive MTC), URLLC (Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 radio access technology 의 도입이 논의되고 있으며, 본 명세서에서는 편의상 해당 technology 를 NR 이라고 부른다. NR은 5G 무선 접속 기술(radio access technology, RAT)의 일례를 나타낸 표현이다.
NR을 포함하는 새로운 RAT 시스템은 OFDM 전송 방식 또는 이와 유사한 전송 방식을 사용한다. 새로운 RAT 시스템은 LTE의 OFDM 파라미터들과는 다른 OFDM 파라미터들을 따를 수 있다. 또는 새로운 RAT 시스템은 기존의 LTE/LTE-A의 뉴머롤로지(numerology)를 그대로 따르나 더 큰 시스템 대역폭(예, 100MHz)를 지닐 수 있다. 또는 하나의 셀이 복수 개의 뉴머롤로지들을 지원할 수도 있다. 즉, 서로 다른 뉴머롤로지로 동작하는 하는 단말들이 하나의 셀 안에서 공존할 수 있다.
뉴머로러지(numerology)는 주파수 영역에서 하나의 subcarrier spacing에 대응한다. Reference subcarrier spacing을 정수 N으로 scaling함으로써, 상이한 numerology가 정의될 수 있다.
시스템 구조 (system architecture)
도 1은 NR 시스템 구조의 일례를 나타낸 도이다.
도 1을 참조하면, NG-RAN은 NG-RA 사용자 평면(새로운 AS sublayer/PDCP/RLC/MAC/PHY) 및 UE(User Equipment)에 대한 제어 평면(RRC) 프로토콜 종단을 제공하는 gNB들로 구성된다. 상기 gNB는 Xn 인터페이스를 통해 상호 연결된다. 상기 gNB는 또한, NG 인터페이스를 통해 NGC로 연결된다. 보다 구체적으로는, 상기 gNB는 N2 인터페이스를 통해 AMF (Access and Mobility Management Function)로, N3 인터페이스를 통해 UPF (User Plane Function)로 연결된다.
프레임 구조 (frame structure)
도 2는 NR에서의 프레임 구조의 일례를 나타낸 도이다.
NR 시스템에서는 다수의 뉴머롤로지(numerology)들이 지원될 수 있다. 여기에서, 뉴머롤로지는 서브캐리어 간격(subcarrier spacing)과 CP(Cyclic Prefix) 오버헤드에 의해 정의될 수 있다. 이 때, 다수의 서브캐리어 간격은 기본 서브캐리어 간격을 정수 N(또는,
Figure PCTKR2020002191-appb-I000007
)으로 스케일링(scaling) 함으로써 유도될 수 있다. 또한, 매우 높은 반송파 주파수에서 매우 낮은 서브캐리어 간격을 이용하지 않는다고 가정될지라도, 이용되는 뉴머롤로지는 주파수 대역과 독립적으로 선택될 수 있다.
또한, NR 시스템에서는 다수의 뉴머롤로지에 따른 다양한 프레임 구조들이 지원될 수 있다.
이하, NR 시스템에서 고려될 수 있는 OFDM(Orthogonal Frequency Division Multiplexing) 뉴머롤로지 및 프레임 구조를 살펴본다.
NR 시스템에서 지원되는 다수의 OFDM 뉴머롤로지들은 표 1과 같이 정의될 수 있다.
Figure PCTKR2020002191-appb-T000001
NR은 다양한 5G 서비스들을 지원하기 위한 다수의 numerology(또는 subcarrier spacing(SCS))를 지원한다. 예를 들어, SCS가 15kHz인 경우, 전통적인 셀룰러 밴드들에서의 넓은 영역(wide area)를 지원하며, SCS가 30kHz/60kHz인 경우, 밀집한-도시(dense-urban), 더 낮은 지연(lower latency) 및 더 넓은 캐리어 대역폭(wider carrier bandwidth)를 지원하며, SCS가 60kHz 또는 그보다 높은 경우, 위상 잡음(phase noise)를 극복하기 위해 24.25GHz보다 큰 대역폭을 지원한다.
NR 주파수 밴드(frequency band)는 2가지 type(FR1, FR2)의 주파수 범위(frequency range)로 정의된다. FR1은 sub 6GHz range이며, FR2는 above 6GHz range로 밀리미터 웨이브(millimiter wave, mmW)를 의미할 수 있다.
아래 표 2는 NR frequency band의 정의를 나타낸다.
Figure PCTKR2020002191-appb-T000002
NR 시스템에서의 프레임 구조(frame structure)와 관련하여, 시간 영역의 다양한 필드의 크기는
Figure PCTKR2020002191-appb-I000008
의 시간 단위의 배수로 표현된다. 여기에서,
Figure PCTKR2020002191-appb-I000009
이고,
Figure PCTKR2020002191-appb-I000010
이다. 하향링크(downlink) 및 상향크(uplink) 전송은
Figure PCTKR2020002191-appb-I000011
의 구간을 가지는 무선 프레임(radio frame)으로 구성된다. 여기에서, 무선 프레임은 각각
Figure PCTKR2020002191-appb-I000012
의 구간을 가지는 10 개의 서브프레임(subframe)들로 구성된다. 이 경우, 상향링크에 대한 한 세트의 프레임들 및 하향링크에 대한 한 세트의 프레임들이 존재할 수 있다.
또한, 단말(User Equipment, UE)로 부터의 상향링크 프레임 번호 i의 전송은 해당 단말에서의 해당 하향링크 프레임의 시작보다
Figure PCTKR2020002191-appb-I000013
이전에 시작해야 한다.
뉴머롤로지
Figure PCTKR2020002191-appb-I000014
에 대하여, 슬롯(slot)들은 서브프레임 내에서
Figure PCTKR2020002191-appb-I000015
의 증가하는 순서로 번호가 매겨지고, 무선 프레임 내에서
Figure PCTKR2020002191-appb-I000016
의 증가하는 순서로 번호가 매겨진다. 하나의 슬롯은
Figure PCTKR2020002191-appb-I000017
의 연속하는 OFDM 심볼들로 구성되고,
Figure PCTKR2020002191-appb-I000018
는, 이용되는 뉴머롤로지 및 슬롯 설정(slot configuration)에 따라 결정된다. 서브프레임에서 슬롯
Figure PCTKR2020002191-appb-I000019
의 시작은 동일 서브프레임에서 OFDM 심볼
Figure PCTKR2020002191-appb-I000020
의 시작과 시간적으로 정렬된다.
모든 단말이 동시에 송신 및 수신을 할 수 있는 것은 아니며, 이는 하향링크 슬롯(downlink slot) 또는 상향링크 슬롯(uplink slot)의 모든 OFDM 심볼들이 이용될 수는 없다는 것을 의미한다.
표 3은 일반(normal) CP에서 슬롯 별 OFDM 심볼의 개수(
Figure PCTKR2020002191-appb-I000021
), 무선 프레임 별 슬롯의 개수(
Figure PCTKR2020002191-appb-I000022
), 서브프레임 별 슬롯의 개수(
Figure PCTKR2020002191-appb-I000023
)를 나타내며, 표 3은 확장(extended) CP에서 슬롯 별 OFDM 심볼의 개수, 무선 프레임 별 슬롯의 개수, 서브프레임 별 슬롯의 개수를 나타낸다.
Figure PCTKR2020002191-appb-T000003
Figure PCTKR2020002191-appb-T000004
도 2는, μ=2인 경우, 즉 서브캐리어 간격(subcarrier spacing, SCS)이 60kHz인 경우의 일례로서, 표 3을 참고하면 1 서브프레임(또는 프레임)은 4개의 슬롯들을 포함할 수 있으며, 도 2에 도시된 1 서브프레임={1,2,4} 슬롯들은 일례로서, 1 서브프레임에 포함될 수 있는 스롯(들)의 개수는 표 3 또는 표 4와 같이 정의될 수 있다.
또한, mini-slot은 2, 4 또는 7 symbol들을 포함할 수 있거나 그 보다 더 많은 또는 더 적은 심볼들을 포함할 수 있다.
물리 자원
NR 시스템에서의 물리 자원(physical resource)과 관련하여, 안테나 포트(antenna port), 자원 그리드(resource grid), 자원 요소(resource element), 자원 블록(resource block), 캐리어 파트(carrier part) 등이 고려될 수 있다.
이하, NR 시스템에서 고려될 수 있는 상기 물리 자원들에 대해 구체적으로 살펴본다.
먼저, 안테나 포트와 관련하여, 안테나 포트는 안테나 포트 상의 심볼이 운반되는 채널이 동일한 안테나 포트 상의 다른 심볼이 운반되는 채널로부터 추론될 수 있도록 정의된다. 하나의 안테나 포트 상의 심볼이 운반되는 채널의 광범위 특성(large-scale property)이 다른 안테나 포트 상의 심볼이 운반되는 채널로부터 유추될 수 있는 경우, 2 개의 안테나 포트는 QC/QCL(quasi co-located 혹은 quasi co-location) 관계에 있다고 할 수 있다. 여기에서, 상기 광범위 특성은 지연 확산(Delay spread), 도플러 확산(Doppler spread), 주파수 쉬프트(Frequency shift), 평균 수신 파워(Average received power), 수신 타이밍(Received Timing) 중 하나 이상을 포함한다.
도 3은 본 명세서에서 제안하는 방법이 적용될 수 있는 무선 통신 시스템에서 지원하는 자원 그리드(resource grid)의 일례를 나타낸다.
도 3을 참고하면, 자원 그리드가 주파수 영역 상으로
Figure PCTKR2020002191-appb-I000024
서브캐리어들로 구성되고, 하나의 서브프레임이
Figure PCTKR2020002191-appb-I000025
OFDM 심볼들로 구성되는 것을 예시적으로 기술하나, 이에 한정되는 것은 아니다.
NR 시스템에서, 전송되는 신호(transmitted signal)는
Figure PCTKR2020002191-appb-I000026
서브캐리어들로 구성되는 하나 또는 그 이상의 자원 그리드들 및
Figure PCTKR2020002191-appb-I000027
의 OFDM 심볼들에 의해 설명된다. 여기에서,
Figure PCTKR2020002191-appb-I000028
이다. 상기
Figure PCTKR2020002191-appb-I000029
는 최대 전송 대역폭을 나타내고, 이는, 뉴머롤로지들뿐만 아니라 상향링크와 하향링크 간에도 달라질 수 있다.
이 경우, 도 2와 같이, 뉴머롤로지
Figure PCTKR2020002191-appb-I000030
및 안테나 포트 p 별로 하나의 자원 그리드가 설정될 수 있다.
뉴머롤로지
Figure PCTKR2020002191-appb-I000031
및 안테나 포트 p에 대한 자원 그리드의 각 요소는 자원 요소(resource element)로 지칭되며, 인덱스 쌍
Figure PCTKR2020002191-appb-I000032
에 의해 고유적으로 식별된다. 여기에서,
Figure PCTKR2020002191-appb-I000033
는 주파수 영역 상의 인덱스이고,
Figure PCTKR2020002191-appb-I000034
는 서브프레임 내에서 심볼의 위치를 지칭한다. 슬롯에서 자원 요소를 지칭할 때에는, 인덱스 쌍
Figure PCTKR2020002191-appb-I000035
이 이용된다. 여기에서,
Figure PCTKR2020002191-appb-I000036
이다.
뉴머롤로지
Figure PCTKR2020002191-appb-I000037
및 안테나 포트 p에 대한 자원 요소
Figure PCTKR2020002191-appb-I000038
는 복소 값(complex value)
Figure PCTKR2020002191-appb-I000039
에 해당한다. 혼동(confusion)될 위험이 없는 경우 혹은 특정 안테나 포트 또는 뉴머롤로지가 특정되지 않은 경우에는, 인덱스들 p 및
Figure PCTKR2020002191-appb-I000040
는 드롭(drop)될 수 있으며, 그 결과 복소 값은
Figure PCTKR2020002191-appb-I000041
또는
Figure PCTKR2020002191-appb-I000042
이 될 수 있다.
또한, 물리 자원 블록(physical resource block)은 주파수 영역 상의
Figure PCTKR2020002191-appb-I000043
연속적인 서브캐리어들로 정의된다.
Point A는 자원 블록 그리드의 공통 참조 지점(common reference point)으로서 역할을 하며 다음과 같이 획득될 수 있다.
- PCell 다운링크에 대한 offsetToPointA는 초기 셀 선택을 위해 UE에 의해 사용된 SS/PBCH 블록과 겹치는 가장 낮은 자원 블록의 가장 낮은 서브 캐리어와 point A 간의 주파수 오프셋을 나타내며, FR1에 대해 15kHz 서브캐리어 간격 및 FR2에 대해 60kHz 서브캐리어 간격을 가정한 리소스 블록 단위(unit)들로 표현되고;
- absoluteFrequencyPointA는 ARFCN(absolute radio-frequency channel number)에서와 같이 표현된 point A의 주파수-위치를 나타낸다.
공통 자원 블록(common resource block)들은 서브캐리어 간격 설정
Figure PCTKR2020002191-appb-I000044
에 대한 주파수 영역에서 0부터 위쪽으로 넘버링(numbering)된다.
서브캐리어 간격 설정
Figure PCTKR2020002191-appb-I000045
에 대한 공통 자원 블록 0의 subcarrier 0의 중심은 'point A'와 일치한다. 주파수 영역에서 공통 자원 블록 번호(number)
Figure PCTKR2020002191-appb-I000046
와 서브캐리어 간격 설정
Figure PCTKR2020002191-appb-I000047
에 대한 자원 요소(k,l)은 아래 수학식 1과 같이 주어질 수 있다.
Figure PCTKR2020002191-appb-M000001
여기에서,
Figure PCTKR2020002191-appb-I000048
Figure PCTKR2020002191-appb-I000049
이 point A를 중심으로 하는 subcarrier에 해당하도록 point A에 상대적으로 정의될 수 있다. 물리 자원 블록들은 대역폭 파트(bandwidth part, BWP) 내에서 0부터
Figure PCTKR2020002191-appb-I000050
까지 번호가 매겨지고,
Figure PCTKR2020002191-appb-I000051
는 BWP의 번호이다. BWP i에서 물리 자원 블록
Figure PCTKR2020002191-appb-I000052
와 공통 자원 블록
Figure PCTKR2020002191-appb-I000053
간의 관계는 아래 수학식 2에 의해 주어질 수 있다.
Figure PCTKR2020002191-appb-M000002
여기에서,
Figure PCTKR2020002191-appb-I000054
는 BWP가 공통 자원 블록 0에 상대적으로 시작하는 공통 자원 블록일 수 있다.
대역폭 파트 (Bandwidth part, BWP)
NR 시스템은 하나의 component carrier (CC) 당 최대 400 MHz까지 지원될 수 있다. 이러한 wideband CC 에서 동작하는 단말이 항상 CC 전체에 대한 RF 를 켜둔 채로 동작한다면 단말 배터리 소모가 커질 수 있다. 혹은 하나의 wideband CC 내에 동작하는 여러 use case 들 (e.g., eMBB, URLLC, Mmtc, V2X 등)을 고려할 때 해당 CC 내에 주파수 대역 별로 서로 다른 numerology (e.g., sub-carrier spacing)가 지원될 수 있다. 혹은 단말 별로 최대 bandwidth 에 대한 capability 가 다를 수 있다. 이를 고려하여 기지국은 wideband CC 의 전체 bandwidth 가 아닌 일부 bandwidth 에서만 동작하도록 단말에게 지시할 수 있으며, 해당 일부 bandwidth를 편의상 bandwidth part (BWP)로 정의한다. BWP 는 주파수 축 상에서 연속한 resource block (RB) 들로 구성될 수 있으며, 하나의 numerology (e.g., sub-carrier spacing, CP length, slot/mini-slot duration) 에 대응될 수 있다.
한편, 기지국은 단말에게 configure 된 하나의 CC 내에서도 다수의 BWP 를 설정할 수 있다. 일 예로, PDCCH monitoring slot 에서는 상대적으로 작은 주파수 영역을 차지하는 BWP 를 설정하고, PDCCH 에서 지시하는 PDSCH 는 그보다 큰 BWP 상에 schedule 될 수 있다. 혹은, 특정 BWP 에 UE 들이 몰리는 경우 load balancing 을 위해 일부 UE 들을 다른 BWP 로 설정할 수 있다. 혹은, 이웃 셀 간의 frequency domain inter-cell interference cancellation 등을 고려하여 전체 bandwidth 중 가운데 일부 spectrum 을 배제하고 양쪽 BWP 들을 동일 slot 내에서도 설정할 수 있다. 즉, 기지국은 wideband CC 와 association 된 단말에게 적어도 하나의 DL/UL BWP 를 configure 해 줄 수 있으며, 특정 시점에 configured DL/UL BWP(s) 중 적어도 하나의 DL/UL BWP 를 (L1 signaling or MAC CE or RRC signalling 등에 의해) activation 시킬 수 있고 다른 configured DL/UL BWP 로 switching 이 (L1 signaling or MAC CE or RRC signalling 등에 의해) 지시될 수 있거나 timer 기반으로 timer 값이 expire 되면 정해진 DL/UL BWP 로 switching 될 수 도 있다. 이 때, activation 된 DL/UL BWP 를 active DL/UL BWP 로 정의한다. 그런데 단말이 initial access 과정에 있거나, 혹은 RRC connection 이 set up 되기 전 등의 상황에서는 DL/UL BWP 에 대한 configuration 을 수신하지 못할 수 있는데, 이러한 상황에서 단말이 가정하는 DL/UL BWP 는 initial active DL/UL BWP 라고 정의한다.
3GPP 신호 송수신 방법
도 5는 3GPP 신호 송수신 방법의 일례를 나타낸 도이다.
도 5를 참고하면, 단말은 전원이 켜지거나 새로이 셀에 진입한 경우 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다(S201). 이를 위해, 단말은 기지국으로부터 주 동기 채널(Primary Synchronization Channel; P-SCH) 및 부 동기 채널(Secondary Synchronization Channel; S-SCH)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득할 수 있다. 그 후, 단말은 기지국으로부터 물리 방송 채널(Physical Broadcast Channel)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal; DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 물리 하향링크 제어 채널(Physical Downlink Control Channel; PDCCH) 및 상기 PDCCH에 실린 정보에 따라 물리 하향링크 공유 채널(Physical Downlink Control Channel; PDSCH)을 수신함으로써 좀더 구체적인 시스템 정보를 획득할 수 있다(S202).
한편, 기지국에 최초로 접속하거나 신호 송신을 위한 무선 자원이 없는 경우 단말은 기지국에 대해 임의 접속 과정(Random Access Procedure; RACH)을 수행할 수 있다(단계 S203 내지 단계 S206). 이를 위해, 단말은 물리 임의 접속 채널(Physical Random Access Channel; PRACH)을 통해 특정 시퀀스를 프리앰블로 송신하고(S203 및 S205), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S204 및 S206). 경쟁 기반 RACH의 경우, 추가적으로 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 송신 절차로서 PDCCH/PDSCH 수신(S207) 및 물리 상향링크 공유 채널(Physical Uplink Shared Channel; PUSCH)/물리 상향링크 제어 채널(Physical Uplink Control Channel; PUCCH) 송신(S208)을 수행할 수 있다. 특히 단말은 PDCCH를 통하여 하향링크 제어 정보(Downlink Control Information; DCI)를 수신한다. 여기서 DCI는 단말에 대한 자원 할당 정보와 같은 제어 정보를 포함하며, 그 사용 목적에 따라 포맷이 서로 다르다.
한편, 단말이 상향링크를 통해 기지국에 송신하는 또는 단말이 기지국으로부터 수신하는 제어 정보는 하향링크/상향링크 ACK/NACK 신호, CQI(Channel Quality Indicator), PMI(Precoding Matrix 인덱스), RI(Rank Indicator) 등을 포함한다. 3GPP LTE 시스템의 경우, 단말은 상술한 CQI/PMI/RI 등의 제어 정보를 PUSCH 및/또는 PUCCH를 통해 송신할 수 있다.
표 5는 NR 시스템에서의 DCI 포맷(format)의 일례를 나타낸다.
Figure PCTKR2020002191-appb-T000005
표 5를 참고하면, DCI format 0_0은 하나의 셀에서 PUSCH의 스케줄링에 사용된다.
DCI format 0_0에 포함된 정보는 C-RNTI 또는 CS-RNTI 또는 MCS-C-RNTI에 의해 CRC 스크램블링되어 전송된다. 그리고, DCI format 0_1은 하나의 셀에서 PUSCH를 예약하는 데 사용된다. DCI format 0_1에 포함된 정보는 C-RNTI 또는 CS-RNTI 또는 SP-CSI-RNTI 또는 MCS-C-RNTI에 의해 CRC 스크램블링되어 전송된다. DCI format 1_0은 하나의 DL 셀에서 PDSCH의 스케줄링을 위해 사용된다. DCI format 1_0에 포함된 정보는 C-RNTI 또는 CS-RNTI 또는 MCS-C-RNTI에 의해 CRC 스크램블링되어 전송된다. DCI format 1_1은 하나의 셀에서 PDSCH의 스케줄링을 위해 사용된다. DCI format 1_1에 포함되는 정보는 C-RNTI 또는 CS-RNTI 또는 MCS-C-RNTI에 의해 CRC 스크램블링되어 전송된다. DCI 포맷 2_1은 단말이 전송을 의도하지 않은 것으로 가정할 수 있는 PRB(들) 및 OFDM 심볼(들)을 알리는데 사용된다.
DCI 포맷 2_1에 포함되는 다음 정보는 INT-RNTI에 의해 CRC 스크램블링되어 전송된다.
- preemption indication 1, preemption indication 2, ..., preemption indication N.
무선 통신 시스템 블록 구성도
도 6은 본 명세서에서 제안하는 방법들이 적용될 수 있는 무선 통신 시스템의 블록 구성도를 예시한다.
도 6을 참조하면, 무선 통신 시스템은 제 1 통신 장치(910) 및/또는 제 2 통신 장치(920)을 포함한다. 'A 및/또는 B'는 'A 또는 B 중 적어도 하나를 포함한다'와 동일한 의미로 해석될 수 있다. 제 1 통신 장치가 기지국을 나타내고, 제 2 통신 장치가 단말을 나타낼 수 있다(또는 제 1 통신 장치가 단말을 나타내고, 제 2 통신 장치가 기지국을 나타낼 수 있다).
기지국(BS: Base Station)은 고정국(fixed station), Node B, eNB(evolved-NodeB), gNB(Next Generation NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point), gNB(general NB), 5G 시스템, 네트워크, AI 시스템, RSU(road side unit), 로봇 등의 용어에 의해 대체될 수 있다. 또한, 단말(Terminal)은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치, 차량(vehicle), 로봇(robot), AI 모듈 등의 용어로 대체될 수 있다.
제 1 통신 장치와 제 2 통신 장치는 프로세서(processor, 911,921), 메모리(memory, 914,924), 하나 이상의 Tx/Rx RF 모듈(radio frequency module, 915,925), Tx 프로세서(912,922), Rx 프로세서(913,923), 안테나(916,926)를 포함한다. 프로세서는 앞서 살핀 기능, 과정 및/또는 방법을 구현한다. 보다 구체적으로, DL(제 1 통신 장치에서 제 2 통신 장치로의 통신)에서, 코어 네트워크로부터의 상위 계층 패킷은 프로세서(911)에 제공된다. 프로세서는 L2 계층의 기능을 구현한다. DL에서, 프로세서는 논리 채널과 전송 채널 간의 다중화(multiplexing), 무선 자원 할당을 제 2 통신 장치(920)에 제공하며, 제 2 통신 장치로의 시그널링을 담당한다. 전송(TX) 프로세서(912)는 L1 계층 (즉, 물리 계층)에 대한 다양한 신호 처리 기능을 구현한다. 신호 처리 기능은 제 2 통신 장치에서 FEC(forward error correction)을 용이하게 하고, 코딩 및 인터리빙(coding and interleaving)을 포함한다. 부호화 및 변조된 심볼은 병렬 스트림으로 분할되고, 각각의 스트림은 OFDM 부반송파에 매핑되고, 시간 및/또는 주파수 영역에서 기준 신호(Reference Signal, RS)와 멀티플렉싱되며, IFFT (Inverse Fast Fourier Transform)를 사용하여 함께 결합되어 시간 영역 OFDMA 심볼 스트림을 운반하는 물리적 채널을 생성한다. OFDM 스트림은 다중 공간 스트림을 생성하기 위해 공간적으로 프리코딩된다. 각각의 공간 스트림은 개별 Tx/Rx 모듈(또는 송수신기,915)를 통해 상이한 안테나(916)에 제공될 수 있다. 각각의 Tx/Rx 모듈은 전송을 위해 각각의 공간 스트림으로 RF 반송파를 변조할 수 있다. 제 2 통신 장치에서, 각각의 Tx/Rx 모듈(또는 송수신기,925)는 각 Tx/Rx 모듈의 각 안테나(926)을 통해 신호를 수신한다. 각각의 Tx/Rx 모듈은 RF 캐리어로 변조된 정보를 복원하여, 수신(RX) 프로세서(923)에 제공한다. RX 프로세서는 layer 1의 다양한 신호 프로세싱 기능을 구현한다. RX 프로세서는 제 2 통신 장치로 향하는 임의의 공간 스트림을 복구하기 위해 정보에 공간 프로세싱을 수행할 수 있다. 만약 다수의 공간 스트림들이 제 2 통신 장치로 향하는 경우, 다수의 RX 프로세서들에 의해 단일 OFDMA 심볼 스트림으로 결합될 수 있다. RX 프로세서는 고속 푸리에 변환 (FFT)을 사용하여 OFDMA 심볼 스트림을 시간 영역에서 주파수 영역으로 변환한다. 주파수 영역 신호는 OFDM 신호의 각각의 서브 캐리어에 대한 개별적인 OFDMA 심볼 스트림을 포함한다. 각각의 서브캐리어 상의 심볼들 및 기준 신호는 제 1 통신 장치에 의해 전송된 가장 가능성 있는 신호 배치 포인트들을 결정함으로써 복원되고 복조된다. 이러한 연 판정(soft decision)들은 채널 추정 값들에 기초할 수 있다. 연판정들은 물리 채널 상에서 제 1 통신 장치에 의해 원래 전송된 데이터 및 제어 신호를 복원하기 위해 디코딩 및 디인터리빙되다. 해당 데이터 및 제어 신호는 프로세서(921)에 제공된다.
UL(제 2 통신 장치에서 제 1 통신 장치로의 통신)은 제 2 통신 장치(920)에서 수신기 기능과 관련하여 기술된 것과 유사한 방식으로 제 1 통신 장치(910)에서 처리된다. 각각의 Tx/Rx 모듈(925)는 각각의 안테나(926)을 통해 신호를 수신한다. 각각의 Tx/Rx 모듈은 RF 반송파 및 정보를 RX 프로세서(923)에 제공한다. 프로세서 (921)는 프로그램 코드 및 데이터를 저장하는 메모리 (924)와 관련될 수 있다. 메모리는 컴퓨터 판독 가능 매체로서 지칭될 수 있다.
약어 및 정의(Abbreviation and Definition)
PUSCH: Physical Uplink Shared Channel
PUCCH: Physical Uplink Control Channel
FDSS: Frequency Domain Spectrum Shaping
PSK: Phase Shift Keying
QAM: Quadrature Amplitude Modulation
PAPR: Peak-to-Average Power Ratio
DMRS: DeModulation Reference Signals
ACK: Acknowledgement
NACK: Negative Acknowledgement
CA: Carrier aggregation
DCI: Downlink Control format Indicator/index
MAC-CE: Multiple Access Channel Control Elements
BWP: Bandwidth part
RF: Radio frequency
CC: Component carrier
SS: Synchronization Signals
SSB: Synchronization signal block - 본 명세서에서는 SS/PBCH block과 동일한 것으로 간주한다.
SSBRI: SSB resource index/indicator
IM: Interference measurement
FDM: Frequency division multiplexing
TDM: Time division multiplexing
RS: Reference Signal(s)
CSI-RS or CSIRS: Channel State Information Reference Signals
CSI-IM: Channel State Information Interference Measurement
CRI: CSI-RS resource index/indicator
DM-RS or DMRS: Demodulation Reference Signals
MAC: Medium Access Control
MAC-CE: Medium Access Control Channel Element
NZP: Non Zero Power
ZP: Zero power
PT-RS or PTRS: Phase Tracking Reference Signals
SRS: Sounding Reference Signals
SRI: SRS resource index/indicator
PRS: Positioning Reference Signals
PRI: PRS resource index/indicator
OFDM: Orthogonal Frequency Division Multiplexing
TX: Transmitter
TP: Transmission Point
BS: Base station
RX: Receiver
RRC: Radio Resource Control
RSRP: Reference Signal Received Power
RSRQ: Reference Signal Received Quality
SNR: Signal to Noise Ratio
SINR: Signal to Interference plus Noise Ratio
URLLC: Ultra Reliable Low Latency Communication
PUSCH: Physical Uplink Shared Channels
PUCCH: Physical Uplink Control Channels
PDCCH: Physical Downlink Control Channels
PDSCH: Physical Downlink Shared Channels
ID: Identity (or identity/identification number를 의미함)
UL: Uplink
DL: Downlink
UE: User equipment (단말을 의미함)
gNB: generic NodeB (기지국과 유사한 개념)
초기 접속 (Initial Access, IA) 절차
SSB(Synchronization Signal Block) 전송 및 관련 동작
도 7은 SSB 구조를 예시한다. 단말은 SSB에 기반하여 셀 탐색(search), 시스템 정보 획득, 초기 접속을 위한 빔 정렬, DL 측정 등을 수행할 수 있다. SSB는 SS/PBCH(Synchronization Signal/Physical Broadcast channel) 블록과 혼용된다.
도 7을 참조하면, SSB는 PSS, SSS와 PBCH로 구성된다. SSB는 4개의 연속된 OFDM 심볼에 구성되며, OFDM 심볼 별로 PSS, PBCH, SSS/PBCH 및 PBCH가 전송된다. PSS와 SSS는 각각 1개의 OFDM 심볼과 127개의 부반송파로 구성되고, PBCH는 3개의 OFDM 심볼과 576개의 부반송파로 구성된다. PBCH에는 폴라 코딩 및 QPSK(Quadrature Phase Shift Keying)이 적용된다. PBCH는 OFDM 심볼마다 데이터 RE와 DMRS(Demodulation Reference Signal) RE로 구성된다. RB 별로 3개의 DMRS RE가 존재하며, DMRS RE 사이에는 3개의 데이터 RE가 존재한다.
셀 탐색(search)
셀 탐색은 단말이 셀의 시간/주파수 동기를 획득하고, 상기 셀의 셀 ID(Identifier)(예, Physical layer Cell ID, PCID)를 검출하는 과정을 의미한다. PSS는 셀 ID 그룹 내에서 셀 ID를 검출하는데 사용되고, SSS는 셀 ID 그룹을 검출하는데 사용된다. PBCH는 SSB (시간) 인덱스 검출 및 하프-프레임 검출에 사용된다.
단말의 셀 탐색 과정은 하기 표 6과 같이 정리될 수 있다.
Figure PCTKR2020002191-appb-T000006
336개의 셀 ID 그룹이 존재하고, 셀 ID 그룹 별로 3개의 셀 ID가 존재한다. 총 1008개의 셀 ID가 존재하며, 셀 ID는 수학식 3에 의해 정의될 수 있다.
Figure PCTKR2020002191-appb-M000003
여기서,
Figure PCTKR2020002191-appb-I000055
이고,
Figure PCTKR2020002191-appb-I000056
.
여기서, NcellID는 셀 ID(예, PCID)를 나타낸다. N(1)ID는 셀 ID 그룹을 나타내며 SSS를 통해 제공/획득된다. N(2)ID는 셀 ID 그룹 내의 셀 ID를 나타내며 PSS를 통해 제공/획득된다.
PSS 시퀀스 dPSS(n)는 수학식 4를 만족하도록 정의될 수 있다.
Figure PCTKR2020002191-appb-M000004
여기서,
Figure PCTKR2020002191-appb-I000057
이고,
Figure PCTKR2020002191-appb-I000058
이다.
SSS 시퀀스 dSSS(n)는 수학식 5를 만족하도록 정의될 수 있다.
Figure PCTKR2020002191-appb-M000005
여기서,
Figure PCTKR2020002191-appb-I000059
이고,
Figure PCTKR2020002191-appb-I000060
이다.
도 8은 SSB 전송을 예시한다.
SSB는 SSB 주기(periodicity)에 맞춰 주기적으로 전송된다. 초기 셀 탐색 시에 단말이 가정하는 SSB 기본 주기는 20ms로 정의된다. 셀 접속 후, SSB 주기는 네트워크(예, 기지국)에 의해 {5ms, 10ms, 20ms, 40ms, 80ms, 160ms} 중 하나로 설정될 수 있다. SSB 주기의 시작 부분에 SSB 버스트(burst) 세트가 구성된다. SSB 버스트 세트는 5ms 시간 윈도우(즉, 하프-프레임)로 구성되며, SSB는 SS 버스트 세트 내에서 최대 L번 전송될 수 있다. SSB의 최대 전송 횟수 L은 반송파의 주파수 대역에 따라 다음과 같이 주어질 수 있다. 하나의 슬롯은 최대 2개의 SSB를 포함한다.
- For frequency range up to 3 GHz, L = 4
- For frequency range from 3GHz to 6 GHz, L = 8
- For frequency range from 6 GHz to 52.6 GHz, L = 64
SS 버스트 세트 내에서 SSB 후보의 시간 위치는 SCS에 따라 다음과 같이 정의될 수 있다. SSB 후보의 시간 위치는 SSB 버스트 세트(즉, 하프-프레임) 내에서 시간 순서에 따라 0 ~ L-1로 인덱싱 된다(SSB 인덱스).
- Case A - 15 kHz SCS: 후보 SSB의 시작 심볼의 인덱스는 {2, 8} + 14*n으로 주어진다. 반송파 주파수가 3 GHz 이하인 경우 n=0, 1이다. 반송파 주파수가 3 GHz ~ 6 GHz인 경우 n=0, 1, 2, 3이다.
- Case B - 30 kHz SCS: 후보 SSB의 시작 심볼의 인덱스는 {4, 8, 16, 20} + 28*n으로 주어진다. 반송파 주파수가 3 GHz 이하인 경우 n=0이다. 반송파 주파수가 3 GHz ~ 6 GHz인 경우 n=0, 1이다.
- Case C - 30 kHz SCS: 후보 SSB의 시작 심볼의 인덱스는 {2, 8} + 14*n으로 주어진다. 반송파 주파수가 3 GHz 이하인 경우 n=0, 1이다. 반송파 주파수가 3 GHz ~ 6 GHz인 경우 n=0, 1, 2, 3이다.
- Case D - 120 kHz SCS: 후보 SSB의 시작 심볼의 인덱스는 {4, 8, 16, 20} + 28*n으로 주어진다. 반송파 주파수가 6 GHz보다 큰 경우 n=0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18이다.
- Case E - 240 kHz SCS: 후보 SSB의 시작 심볼의 인덱스는 {8, 12, 16, 20, 32, 36, 40, 44} + 56*n으로 주어진다. 반송파 주파수가 6 GHz보다 큰 경우 n=0, 1, 2, 3, 5, 6, 7, 8이다.
도 9는 단말이 DL 시간 동기에 관한 정보를 획득하는 것을 예시한다.
단말은 SSB를 검출함으로써 DL 동기를 획득할 수 있다. 단말은 검출된 SSB 인덱스에 기반하여 SSB 버스트 세트의 구조를 식별할 수 있고, 이에 따라 심볼/슬롯/하프-프레임 경계를 검출할 수 있다. 검출된 SSB가 속하는 프레임/하프-프레임의 번호는 번호는 SFN 정보와 하프-프레임 지시 정보를 이용하여 식별될 수 있다.
구체적으로, 단말은 PBCH로부터 10 비트 SFN(System Frame Number) 정보를 획득할 수 있다(s0~s9). 10 비트 SFN 정보 중 6 비트는 MIB(Master Information Block)로부터 얻어지고, 나머지 4 비트는 PBCH TB(Transport Block)으로부터 얻어진다.
다음으로, 단말은 1 비트 하프-프레임 지시 정보를 획득할 수 있다(c0). 반송파 주파수가 3GHz 이하인 경우, 하프-프레임 지시 정보는 PBCH DMRS를 이용하여 묵시적으로(implicitly) 시그널링 될 수 있다. PBCH DMRS는 8개의 PBCH DMRS 시퀀스들 중 하나를 사용함으로써 3 비트 정보를 지시한다. 따라서, L=4의 경우, 8개의 PBCH DMRS 시퀀스를 이용하여 지시될 수 있는 3 비트 중 SSB 인덱스를 지시하고 남는 1 비트는 하프-프레임 지시 용도로 사용될 수 있다
마지막으로, 단말은 DMRS 시퀀스와 PBCH 페이로드에 기반하여 SSB 인덱스를 획득할 수 있다. SSB 후보는 SSB 버스트 세트(즉, 하프-프레임) 내에서 시간 순서에 따라 0 ~ L-1로 인덱싱 된다. L = 8 또는 64인 경우, SSB 인덱스의 LSB(Least Significant Bit) 3 비트는 8개의 서로 다른 PBCH DMRS 시퀀스를 이용하여 지시될 수 있다(b0~b2). L = 64인 경우, SSB 인덱스의 MSB(Most Significant Bit) 3 비트는 PBCH를 통해 지시된다(b3~b5). L = 2인 경우, SSB 인덱스의 LSB 2 비트는 4개의 서로 다른 PBCH DMRS 시퀀스를 이용하여 지시될 수 있다(b0, b1). L = 4인 경우, 8개의 PBCH DMRS 시퀀스를 이용하여 지시할 수 있는 3 비트 중 SSB 인덱스를 지시하고 남는 1 비트는 하프-프레임 지시 용도로 사용될 수 있다(b2).
시스템 정보 획득
도 10은 시스템 정보(SI) 획득 과정을 예시한다. 단말은 SI 획득 과정을 통해 AS-/NAS-정보를 획득할 수 있다. SI 획득 과정은 RRC_IDLE 상태, RRC_INACTIVE 상태, 및 RRC_CONNECTED 상태의 단말에게 적용될 수 있다.
SI는 MIB(Master Information Block)와 복수의 SIB(System Information Block)으로 나눠진다. MIB 외의 SI는 RMSI(Remaining Minimum System Information)으로 지칭될 수 있다. 자세한 사항은 다음을 참조할 수 있다.
- MIB는 SIB1(SystemInformationBlock1) 수신과 관련된 정보/파라미터를 포함하며 SSB의 PBCH를 통해 전송된다. 초기 셀 선택 시, 단말은 SSB를 갖는 하프-프레임이 20ms 주기로 반복된다고 가정한다. 단말은 MIB에 기반하여 Type0-PDCCH 공통 탐색 공간(common search space)을 위한 CORESET(Control Resource Set)이 존재하는지 확인할 수 있다. Type0-PDCCH 공통 탐색 공간은 PDCCH 탐색 공간의 일종이며, SI 메세지를 스케줄링 하는 PDCCH를 전송하는데 사용된다. Type0-PDCCH 공통 탐색 공간이 존재하는 경우, 단말은 MIB 내의 정보(예, pdcch-ConfigSIB1)에 기반하여 (i) CORESET을 구성하는 복수의 연속된 RB와 하나 이상의 연속된 심볼과 (ii) PDCCH 기회(즉, PDCCH 수신을 위한 시간 도메인 위치)를 결정할 수 있다. Type0-PDCCH 공통 탐색 공간이 존재하지 않는 경우, pdcch-ConfigSIB1은 SSB/SIB1이 존재하는 주파수 위치와 SSB/SIB1이 존재하지 않는 주파수 범위에 관한 정보를 제공한다.
- SIB1은 나머지 SIB들(이하, SIBx, x는 2 이상의 정수)의 가용성 및 스케줄링(예, 전송 주기, SI-윈도우 사이즈)과 관련된 정보를 포함한다. 예를 들어, SIB1은 SIBx가 주기적으로 방송되는지 on-demand 방식에 의해 단말의 요청에 의해 제공되는지 여부를 알려줄 수 있다. SIBx가 on-demand 방식에 의해 제공되는 경우, SIB1은 단말이 SI 요청을 수행하는데 필요한 정보를 포함할 수 있다. SIB1은 PDSCH를 통해 전송되며, SIB1을 스케줄링 하는 PDCCH는 Type0-PDCCH 공통 탐색 공간을 통해 전송되며, SIB1은 상기 PDCCH에 의해 지시되는 PDSCH를 통해 전송된다.
- SIBx는 SI 메세지에 포함되며 PDSCH를 통해 전송된다. 각각의 SI 메세지는 주기적으로 발생하는 시간 윈도우(즉, SI-윈도우) 내에서 전송된다.
채널 측정 및 레이트-매칭
도 11은 실제로 전송되는 SSB(SSB_tx)를 알려주는 방법을 예시한다.
SSB 버스트 세트 내에서 SSB는 최대 L개가 전송될 수 있으며, SSB가 실제로 전송되는 개수/위치는 기지국/셀 별로 달라질 수 있다. SSB가 실제로 전송되는 개수/위치는 레이트-매칭과 측정을 위해 사용되며, 실제로 전송된 SSB에 관한 정보는 다음과 같이 지시된다.
- 레이트-매칭과 관련된 경우: 단말-특정(specific) RRC 시그널링이나 RMSI를 통해 지시될 수 있다. 단말-특정 RRC 시그널링은 below 6GHz 및 above 6GHz 주파수 범위에서 모두 풀(full)(예, 길이 L) 비트맵을 포함한다. 반편, RMSI는 below 6GHz에서 풀 비트맵을 포함하고, above 6GHz에서는 도시된 바와 같이 압축 형태의 비트맵을 포함한다. 구체적으로, 그룹-비트 맵(8비트) + 그룹-내 비트맵(8비트)을 이용하여 실제로 전송된 SSB에 관한 정보가 지시될 수 있다. 여기서, 단말-특정 RRC 시그널링이나 RMSI를 통해 지시된 자원(예, RE)은 SSB 전송을 위해 예약되고, PDSCH/PUSCH 등은 SSB 자원을 고려하여 레이트-매칭될 수 있다.
- 측정과 관련된 경우: RRC 연결(connected) 모드에 있는 경우, 네트워크(예, 기지국)는 측정 구간 내에서 측정될 SSB 세트를 지시할 수 있다. SSB 세트는 주파수 레이어(frequency layer) 별로 지시될 수 있다. SSB 세트에 관한 지시가 없는 경우, 디폴트 SSB 세트가 사용된다. 디폴트 SSB 세트는 측정 구간 내의 모든 SSB를 포함한다. SSB 세트는 RRC 시그널링의 풀(full)(예, 길이 L) 비트맵을 이용하여 지시될 수 있다. RRC 아이들(idle) 모드에 있는 경우, 디폴트 SSB 세트가 사용된다.
앞서 살핀 내용들(NR system, frame structure 등)은 후술할 본 명세서에서 제안하는 방법들과 결합되어 적용될 수 있으며, 또는 본 명세서에서 제안하는 방법들의 기술적 특징을 명확하게 하는데 보충될 수 있다.
본 명세서에서 사용되는 'A/B'의 표현은 A 그리고/또는 B, A 또는 B 중 적어도 하나 등과 동일한 의미로 해석될 수 있다.
특정 길이를 갖는 시퀀스 여러 개가 미리 정의될 수 있다. 이는 상향링크 그리고/또는 하향링크 데이터 신호 / 제어 신호 / 참조 신호 등의 전송을 위하여 사용될 수 있다. 이렇게 미리 정의해 두는 시퀀스는 시퀀스의 PAPR(Peak-to-Average Power Ratio) 특성, 자기 상관(Auto-correlation) 특성 등의 여러 가지 기준으로 정의(또는 결정)될 수 있다.
본 명세서는 시퀀스의 각 element가 M-PSK(Phase Shift Keying), M-QAM(Quadrature Amplitude Modulation) 등의 심볼로 구성되는 length-N(시퀀스의 길이가 N) 시퀀스를 설계하는 방법에 대해서 제안한다.
FDSS(Frequency Domain Spectrum Shaping) 필터를 사용하는 경우, 일반적으로 PAPR 성능이 향상된다고 알려져 있다. 이에 대한 예시로 도 7을 볼 수 있다. 이러한 이유로, pi/2 BPSK modulation 심볼로 구성되는 시퀀스, M-PSK 심볼로 구성되는 시퀀스의 설계를 위해서 FDSS 필터를 함께 고려하는 방식들이 제안되었다.
도 12는 FDSS 필터를 사용하는 경우와 FDSS 필터를 사용하지 않는 경우에 대한 많은 시퀀스들의 PAPR 성능을 나타낸 도이다.
도 12에서, FDSS 필터는 [0.28 1 0.28]의 시간 영역 응답에 해당한다. 여기서, [0.28 1 0.28]은 주파수 영역에서 가운데가 높은 filter 옆이 깎이는 것을 나타낸다.
도 12에서 710은 FDSS를 사용한 시퀀스의 PAPR 성능을 나타내며, 720은 FDSS를 사용하지 않은 시퀀스의 PAPR 성능을 나타낸다.
상당히 많은 시퀀스에 대한 PAPR 성능을 보았을 때, FDSS filter를 사용하는 경우 PAPR 성능이 향상되는 것을 알 수 있다.
예를 들어, FDSS는 [0.28, 0.28, 1.00]의 시간 영역 응답에 해당한다.
그러나, 특정 하나의 시퀀스 관점에서 보았을 때, PAPR을 최소화하는 최적의 FDSS 필터가 시퀀스 별로 다를 수도 있다. 그러나, 시퀀스마다 다른 필터를 사용하는 경우, 기지국과 단말의 연산 복잡도 그리고/또는 불필요한 구현 복잡도 등의 문제가 발생할 수 있다. 또한, 단말과 기지국 구현에 따라서 사용하는 필터가 달라질 수도 있으며, FDSS를 사용함에 따른 복잡도의 증가 또는 BLER(Block Error Rate)이 증가하는 등의 이유로 FDSS를 사용하지 않을 수도 있다.
따라서, 본 명세서는 M-PSK 또는 M-QAM 심볼로 구성되는 Length-N sequence set을 구성(또는 정의 또는 사용)할 때, FDSS 필터를 사용하는 경우와 사용하지 않는 경우 모두를 고려하여 sequence set을 구성(또는 정의)하는 방법을 제안한다.
이하, 본 명세서에서 제안하는 방법들(또는 제안들)은 DL 전송 및/또는 UL 전송에 사용되는 waveform(CP-OFDM(or transform precoding disabled), DFT-s-OFDM(transform precoding enabled))에 각각 적용될 수 있다. 이와 관련하여 단말은 아래 제안 방법들이 적용될 waveform에 대한 정보를 기지국으로부터 RRC signaling을 수신할 수 있다.
즉, 상기 RRC signaling은 DL 전송 및/또는 UL 전송에 이용될 waveform의 종류를 나타내는 정보를 포함할 수 있다. 그리고, 상기 RRC signaling은 아래 제안하는 시퀀스 생성 방법이 적용될 수 있는 RS(reference signal)의 configuration IE 형태일 수 있다.
Waveform의 종류를 나타내는 정보가 RS configuration IE 형태로 포함될 경우, 아래 표들과 같은 필드(또는 파라미터 또는 정보)를 포함할 수 있다.
표 7은 CP-OFDM이 적용되는 경우의 일례를 나타낸다.
Figure PCTKR2020002191-appb-T000007
표 8은 DFT-s-OFDM이 적용되는 경우의 일례를 나타낸다.
Figure PCTKR2020002191-appb-T000008
상기 transform precoding은 transform precoder 등의 표현으로 사용될 수도 있다.
또한, 이하에서 제안하는 시퀀스의 생성 및 시퀀스의 초기화 값 결정 등에 아래 pseudo-random sequence(c(i))와 관련된 수학식 및 값들이 사용될 수 있다.
일반적인 슈도-랜덤 시퀀스들은 길이-31 골드 시퀀스에 의해 정의된다. 길이 MPN의 출력 시퀀스 c(n)은 아래 수학식 6에 의해 정의된다. 여기서, n=0,1,...,MPN-1이다.
Figure PCTKR2020002191-appb-M000006
여기서,
Figure PCTKR2020002191-appb-I000061
이고, 첫 번째 m-시퀀스
Figure PCTKR2020002191-appb-I000062
Figure PCTKR2020002191-appb-I000063
로 초기화될 것이다.
두 번째 m-시퀀스
Figure PCTKR2020002191-appb-I000064
의 초기화는 시퀀스의 적용(application)에 의존하는 값을 가진
Figure PCTKR2020002191-appb-I000065
에 의해 기재된다.
(방법 1)
시퀀스의 길이가 N(>0)이고, 시퀀스의 각 원소(element)가 M(>0)-PSK 및/또는 M-QAM 심볼로 구성되어 있는 K(>0)개의 시퀀스(a set of K sequences)를 아래에서 제시하는 규칙(또는 조건)에 의거하여 설계(또는 생성 또는 정의)할 수 있다. 여기서, length-N인 시퀀스이므로, 고려할 수 있는 전체 시퀀스의 개수는
Figure PCTKR2020002191-appb-I000066
이다. 즉, 전체
Figure PCTKR2020002191-appb-I000067
개의 가능한 시퀀스 가운데, 총
Figure PCTKR2020002191-appb-I000068
개의 시퀀스를 선택(또는 선별)하는 규칙(또는 조건)을 제안하는 것으로 볼 수 있다.
①전체
Figure PCTKR2020002191-appb-I000069
개의 시퀀스 가운데, K개의 시퀀스 간에는 특정 임계값(threshold) 또는 특정 레벨 이하의 낮은 상호-상관(cross-correlation) 특성을 갖도록 선별(또는 결정)될 수 있다.
②전체
Figure PCTKR2020002191-appb-I000070
개의 시퀀스 가운데, 특정 threshold 또는 특정 레벨 이하로 낮은 auto correlation 특성을 갖는 K개의 시퀀스가 선별(또는 결정)될 수 있다. 상기 Auto-correlation 값은 특정 correlation Lag에 대한 것일 수 있으며, 하나 이상의 correlation lags에 대한 auto-correlation 값에 대한 threshold를 고려하여 K개의 시퀀스를 선별(또는 결정)할 수 있다.
③전체
Figure PCTKR2020002191-appb-I000071
개의 시퀀스 가운데, 특정 threshold 또는 특정 레벨 이하로 낮은 cyclic shift auto-correlation 특성을 갖는 K개의 시퀀스가 선별(또는 결정)될 수 있다. 보다 구체적인 예시로, length-N인 시퀀스에서 +L, +L-1, + L-2, 쪋, -L+1, 및/또는 -L개의 원소들을 cyclic shift한 것과 cyclic shift 하지 않은 것 간의 correlation이 낮은 K개의 시퀀스를 선별할 수 있다. 상기 L은 N-1보다 작거나 같다.
즉, n번째 특정 시퀀스를
Figure PCTKR2020002191-appb-I000072
으로 정의하는 경우, 하기 수학식 7의 값이 작은 시퀀스들을 선별할 수 있다.
Figure PCTKR2020002191-appb-M000007
④선별되는 K개의 시퀀스 가운데, 특정 length-N 시퀀스의 가능한 cyclic shift된 형태는 모두 동일한 시퀀스로 간주할 수 있다. 따라서, K개의 선별된 시퀀스 가운데, 어떠한 특정 시퀀스도 다른 시퀀스의 가능한 cyclic shift 형태와 동일하지 않는다.
⑤전체
Figure PCTKR2020002191-appb-I000073
개의 시퀀스 가운데, K개의 시퀀스에 특정 FDSS 필터를 적용할 때, 특정 threshold 또는 특정 레벨 (e.g., X(>0) dB) 이하의 낮은 PAPR 특성을 보이도록 시퀀스가 선별(또는 결정 또는 정의)될 수 있다.
예를 들어, 상기 FDSS 필터는 시간 영역 응답 [0.28 1 0.28]에 해당되는 FDSS 필터일 수 있다.
추가적으로, 두 개 이상의 multiple FDSS 필터들이 사용되는 것이 고려될 수 있다. 특정 시퀀스 마다 각 FDSS 필터를 적용할 때 나타내는 PAPR 성능이 다르기 때문에, 이를 고려하여 multiple FDSS 필터들이 사용될 수 있다.
⑥전체
Figure PCTKR2020002191-appb-I000074
개의 시퀀스 가운데, K개의 시퀀스에 FDSS 필터를 사용하지 않더라도 특정 threshold 또는 특정 레벨 (e.g., Y(>0) dB) 이하의 낮은 PAPR 특성을 보이도록 시퀀스가 선별(또는 결정 또는 정의)될 수 있다.
⑦특정 length-N 시퀀스에서 시퀀스 요소(sequence element)별로 동일한 phase가 곱해진 형태의 시퀀스는 서로 다른 시퀀스로 고려하지 않고 동일한 시퀀스로 간주한다.
이는 phase만 shift된 형태의 시퀀스를 사용할 경우, 채널 때문에 phase가 shift 된 것인지 등 시퀀스를 구별하는데 문제가 발생하기 때문에 서로 다른 시퀀스로 사용하기 어렵기 때문이다.
상기 방법 1은 특정 안테나 포트에 (e.g., 특정 RS(Reference Signal) antenna port) 대해서 적용될 수도 있고, 여러 안테나 포트들에 대해서 동일한 규칙이 적용될 수 있다. 또는, 상기 규칙 가운데 일부 혹은 전부가 안테나 포트 별 특성을 고려하여 각 안테나 별로 적용(또는 사용)될 수 있다.
상기 규칙을 모두 고려하여, 위에 제시한 모든 조건들을 만족시키는 시퀀스가 선별(또는 결정 또는 사용)될 수도 있고, 상기 규칙 가운데 하나 이상을 고려하여 K개의 시퀀스가 선별될 수 있다.
- 예를 들어, 전체
Figure PCTKR2020002191-appb-I000075
개의 시퀀스에서, FDSS 필터를 적용하였을 때 특정 수준/threshold (e.g., X dB) 이하의 PAPR 성능을 보임과 동시에, FDSS 필터를 적용하지 않았을 때에도 특정 수준/threshold (e.g., Y dB) 이하의 PAPR 성능을 보이는 시퀀스 K개를 선별하여 하나의 시퀀스 set으로 정의(또는 선별)할 수 있다.
이러한 시퀀스 및/또는 시퀀스 set은 단말/기지국이 참조신호 그리고/또는 데이터 전송을 위해서 사용될 수 있다.
상기 FDSS 필터 적용 유무에 따른 조건에 따라서 선별한 시퀀스들에 대해서(선별한 시퀀스가 K개 이상임을 가정함) 추가적으로 auto-correlation 및/또는 cyclic-auto correlation이 특정 수준/레벨 이하로 낮은 K개의 시퀀스를 선별하여 하나의 시퀀스 set으로 결정할 수 있다.
선별된 K개의 시퀀스는 하나의 시퀀스 set으로 정의(또는 결정)되어 단말 및 기지국이 사용할 수 있으며, 특정시점에 단말이 어떠한 시퀀스를 사용할지 기지국이 단말에게 지시/설정할 수 있다. 참고로, 상기 M-PSK 및 M-QAM 심볼은 변조 차수(modulation order)가 M인 Phase shift keying modulation 심볼 및 modulation order가 M인 Quadrature Amplitude modulation 심볼을 의미한다.
도 13은 DFT-s-OFDM 기반 시스템에 대한 시스템 모델 및/또는 절차의 일례를 나타낸다.
상기 방법 1의 적용 예시로 CP-OFDM 기반의 시스템 및 DFT-s-OFDM 기반의 시스템을 고려할 수 있다. 상기 도 13에 방법 1을 DFT-s-OFDM 기반의 시스템에 적용할 때 필요할 수 있는 절차(또는 과정)을 도시하였다.
상기 도 13에서 length-N sequence set은 integer index로 구성된 sequence set, binary information으로 구성된 sequence set 등의 다양한 형태로 구성될 수 있다. 또한, 송신기(단말 또는 기지국) 구현 복잡도 문제 또는 FDSS filter를 사용함에 따라서 발생하는 신호 전송 오류 증가 등의 문제로 FDSS를 사용하지 않을 수 있다. 이를 반영하여 상기 도 13에 FDSS를 적용하지 않는 경우와 FDSS를 적용하는 경우를 나누어서 도시하였다. 또한, 이를 선택적으로 송신기가 적용할 수도 있다. 상기 도 13에 도시되어 있지는 않지만, 송신기의 구현에 따라서 FDSS filter를 사용하는 것과 FDSS filter를 사용하지 않는 경우 가운데 둘 중 하나로만 구현될 수 있으며, 이러한 송신기에도 제안하는 방식은 여전히 유용하게 사용될 수 있다.
위의 제안하는 방식으로, 송신기의 다양한 구현 방식을 감안하여 시퀀스를 정의(또는 설계 또는 선별)하여 사용할 수 있는 장점이 있다.
(방법 1-1)
제안하는 K개의 시퀀스를 동일한 slot 안에서 multiple OFDM 심볼에 걸쳐서 사용할 때, K개의 시퀀스 간의 cross-correlation/auto-correlation 등의 특성을 고려할 필요가 있다.
- 연접한(concatenated) 2개의 OFDM 심볼들에서 K개의 시퀀스 가운데, 각 심볼 당 하나의 시퀀스를 사용하여 2개의 시퀀스를 사용할 때, K개의 시퀀스 가운데 먼저 사용된 시퀀스와 cross-correlation이 가장 작은 시퀀스를 다음 심볼에 사용할 수 있다. 이를 위해서 특정 시퀀스와 cross-correlation이 가장 작은 sequence를 하나의 pair로 정의(또는 결정 또는 설정)할 수 있다. 즉, 특정 시퀀스 인덱스 u와 cross-correlation이 가장 작은 sequence index u'을 pair로 정의(또는 설정)할 수 있다. 상기 하나의 pair의 일례는 (u,u')일 수 있다.
추가적으로, 상기 방법 1에서 시퀀스를 선별하는 총 개수
Figure PCTKR2020002191-appb-I000076
값에 따라 시퀀스를 선택(또는 선별)하는 규칙(또는 조건)으로 언급된 ①, ②, ③, ④, ⑤, ⑥ 6개의 규칙(또는 조건) 가운데 하나 혹은 전부를 변경하면서 시퀀스를 선별하거나 찾을 수 있다. 예를 들어, 선별하는 시퀀스 개수가 100개라고 가정하고(즉, 하나의 sequence set이 100개의 시퀀스들로 구성된다면), 상기 조건(또는 규칙) 6개를 모두 만족하는 시퀀스를 찾는다고 가정한다. 이 때, 최대 허용하는 cross-correlation 값, cyclic auto-correlation 값, filter를 적용했을 때의 최대 허용 가능한 PAPR 값들을 특정 값으로 설정하고, 시퀀스를 선별하였을 때, 가능한 시퀀스의 개수가 100개를 초과할 수 있다.
따라서, 찾고자 하는 시퀀스 개수를 고정해두고 상기 조건들을 더욱 강한 제한 조건으로 변경하면서 찾고자 하는 시퀀스의 개수를 찾을 수 있다.
상기 방법 1에 관련하여, 제안하는 방식(또는 알고리즘)에 대한 순서도를 도 14와 같이 나타낼 수 있다. 또한, 상기 순서도의 각 단계는 동시에 수행될 수도 있거나 또는 독립적으로 수행될 수도 있다. 또는, 각 단계의 순서의 일부가 변경될 수도 있다.
도 14는 본 명세서에서 제안하는 방법 1의 순서도를 나타낸 도이다.
도 14에서, 먼저 송신기(단말 또는 기지국)은 각 시퀀스의 길이가 N(>1)이고, 시퀀스를 구성하는 각 요소가 M-PSK / M-QAM 심볼인 시퀀스 K(>1)개를 찾기 위해서, N과 M을 결정한다(S1).
이후, 송신기는 찾고자 하는 K개의 시퀀스의 특성을 결정하기 위해서, 1) 특정 FDSS 필터를 사용할 때 허용할 PAPR 값, FDSS 필터를 사용하지 않을 때 허용할 PAPR 값을 설정하고, 2) 시퀀스 간의 cross-correlation, cyclic auto-correlation 값의 허용 범위/레벨을 설정하고, 3) cyclic shift된 시퀀스는 동일한 시퀀스로 간주하도록 설정한다(S2).
이후, 송신기는 상기 설정된 값을 사용하여 설정된 조건에 부합하는 시퀀스를 찾는다(S3). 여기서, 상기 송신기는 찾은 시퀀스의 개수가 K를 초과하면, 상기 설정한 조건 가운데 하나 이상의 기준을 변경하여 시퀀스를 선별하는 과정을 K개의 시퀀스를 찾을 때까지 반복한다. 여기서, 정확하게 K개가 발생되지 않으면 K개를 제외하고 버릴 수 있다.
이후, 상기 송신기는 상기 선별된 K개의 시퀀스로 길이-N 시퀀스 세트를 구성 또는 결정한다(S4).
상기 방법의 구체적인 예시로, 시퀀스 길이가 6이고, 시퀀스를 구성하는 각 원소가 8-PSK 심볼로 구성되는 30개의 시퀀스 (sequence set)가 정의될 수 있다. 즉, 도 14에서 N=6, M=8인 경우가 고려될 수 있다.
(방법 2)
방법 2는 각 시퀀스 원소가 8-PSK(Phase Shift Keying) 심볼로 구성되고, 길이가 6인 표 9에 제시된 시퀀스의 전체를 사용하거나, 표 9에 제시된 시퀀스의 일부를 상향링크 PUSCH and/or PUCCH DMRS 시퀀스로 사용할 것을 제안한다. 상기 제안 시퀀스는 DFT-S-OFDM (Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing) and/or CP-OFDM(Cyclic Prefix OFDM)에 사용될 수 있다. 본 경우, N=6, M=8 이므로 고려할 수 있는 전체 시퀀스 개수는
Figure PCTKR2020002191-appb-I000077
이다. 전체
Figure PCTKR2020002191-appb-I000078
개 시퀀스 가운데, 일부 K(>0)개 제안하는 시퀀스를 생성/선별/사용하는 규칙은 다음과 같다. 본 제안에서 K=30을 가정하였다.
제안하는 시퀀스의 주된 특징은 FDSS 필터(time-domain response가 [0.28 1 0.28]인 FDSS filter)를 적용 했을 때 X(>0) dB 이하로 낮은 PAPR 특성을 보이고, FDSS 필터를 적용하지 않은 경우에도 Y(>0) dB PAPR이 낮은 특성을 보이는 것이다. 보다 구체적으로, 제안하는 시퀀스는 다음의 특성을 갖는다. 즉, 다음의 특성/조건을 만족하는 시퀀스를 단말/기지국이 사용할 것을 제안한다.
- FDSS 필터(time-domain response가 [0.28 1 0.28]인 FDSS filter)를 적용하였을 때 PAPR이 약 2.1 [dB] 보다 작거나 같은 특성을 갖는다.
- 상기 FDSS 필터를 사용하지 않았을 때 PAPR이 약 2.5 [dB] 보다 작거나 같은 시퀀스를 선별해서 사용할 수 있다.
- +1, -1 cyclic auto-correlation에서 최대 cyclic auto-correlation이 낮은 (약 0.2357보다 작거나 같은) 특성을 갖는다.
- +2, +1, -1, -2 cyclic auto-correlation에서 최대 cyclic auto-correlation이 낮은 (약 0.4714 보다 작거나 같은) 특성을 갖는다.
- +3, +2, +1, -1, -2, -3 cyclic auto-correlation에서 최대 cyclic auto-correlation이 낮은 (약 0.80474 보다 작거나 같은) 특성을 갖는다.
- 선별되는 K개의 시퀀스 가운데, 특정 length-N 시퀀스의 가능한 cyclic shifted 형태는 모두 동일한 시퀀스로 간주한다. 따라서, K개의 선별된 시퀀스 가운데, 어떠한 특정 시퀀스도 다른 시퀀스의 가능한 cyclic shift 형태와 동일하지 않다.
즉, 예를 들어, 표 9의 1번 시퀀스가 '-7 -5 -1 5 1 -5'인데, 이의 cyclic shift version인 '-5 -1 5 1 -5 -7'은 동일한 시퀀스이다.
Figure PCTKR2020002191-appb-T000009
Figure PCTKR2020002191-appb-I000079
Figure PCTKR2020002191-appb-I000080
표 9의
Figure PCTKR2020002191-appb-I000081
에서, u는 시퀀스의 인덱스이며, n은 시퀀스의 엘리먼트(또는 엘리먼트의 인덱스)를 나타낸다. 예를 들어, 표 9와 같이 시퀀스의 길이가 6인 경우, n은 0, 1, 2, 3, 4, 5를 가진다.
표 9에서, 예를 들어, index u가 1인 경우,
Figure PCTKR2020002191-appb-I000082
Figure PCTKR2020002191-appb-I000083
는 각각 -7, 1, -1, -7, 3, 7에 대응한다.
상기 표 19는 본 명세서에서 제안하는 8-PSK 기반 시퀀스 세트 (길이-6)의 일례를 나타내며, 상기 변조 심볼들은
Figure PCTKR2020002191-appb-I000084
로 생성된다.
상기 PAPR 성능은 하나의 RB에 대한 Comb-2 타입 DMRS를 가지는 DFT-s-OFDM에서 평가된다(Comb-2 type DMRS는 TS 38.211, TS 38.214, TS 38.331을 참고한다).
변조 심볼들은
Figure PCTKR2020002191-appb-I000085
로 생성된다.
Figure PCTKR2020002191-appb-I000086
: 시퀀스 인덱스(sequence index)
Figure PCTKR2020002191-appb-I000087
: 각 시퀀스의 엘리먼트 인덱스(element index of each sequence)
상기 적용되는 FDSS 필터는 [0.28 1.0 0.28]의 시간 영역 응답에 해당한다.
- IFFT 사이즈는 64이고, DFT 사이즈는 12이다.
상기 표 9에서 제시한 length-6 8-PSK 시퀀스의 PAPR 성능 측면에서 우수성은 도 15에서 확인할 수 있다. 상기 표 9에서 제시한 시퀀스 가운데, 1-30번에 해당되는 총 30개 시퀀스의 PAPR 성능을 보였다. 상기 도 15에서는 위의 표 9에서 제시한 시퀀스를 DFT-S-OFDM 시스템에서 Comb-2 DMRS 시퀀스로 사용할 때 PAPR 성능을 나타낸다.
상기 제시된 시퀀스에 대해서 FDSS 필터(corresponding to the time-domain response of [0.28 1.0 0.28])를 적용한 경우의 PAPR 성능과 FDSS 필터를 적용하지 않았을 때의 PAPR 성능을 확인할 수 있다.
기존에 제시된 length-6 8-PSK 시퀀스에 대해서도 동일하게 FDSS 적용 유무를 구분하여 PAPR 성능을 제시하였다. 기존 방식 및 제안하는 방식 모두 하나의 sequence set이 30개로 구성되는 것을 고려한 것이고, 이에 대한 PAPR evaluation 결과이다. 따라서, evaluation sample이 부족하여 probability(PAPR>PAPR_0)=0.1 이하로 그래프가 제시되지 않을 수 있지만, 개별 시퀀스에 대한 성능 차이는 분명하게 확인할 수 있다. 기존에 제시된 length-6 8-PSK 시퀀스로 R1-1813445, R1-190081, R1-1900020 및 R1-1900673에 제시된 것을 참고하였다.
도 15에 도시된 바와 같이, 제안하는 시퀀스는 FDSS 필터를 적용하였을 때 기존에 제시된 시퀀스가 보이는 PAPR 특성과 유사한 성능을 보인다. 특히, probability(PAPR>PAPR_0)=0.1 이하인 영역에서는 미세하지만 조금 더 나은 성능을 보이는 것을 볼 수 있다. FDSS 필터를 적용하지 않았을 때, FDSS 필터를 적용하는 것보다는 PAPR 성능이 열화되지만 기존에 제시된 시퀀스보다 우수한 PAPR 성능을 확인할 수 있다. 즉, 제안하는 시퀀스 30개는 기존에 제시된 sequence set(R1-1813445, R1-190081, R1-1900020 및 R1-1900673. 각각의 레퍼런스에서 30개의 시퀀스를 하나의 sequence set으로 제시)과는 달리 FDSS 필터를 적용하지 않았을 때에도 PAPR이 2.5 dB를 초과하지 않음을 확인할 수 있다.
도 15는 각 시퀀스의 엘리먼트들이 8-PSK 심볼들로 구성된 길이-6 시퀀스들의 제안하는 세트에 대한 PAPR 성능을 나타낸다.
상기 표 9 및 도 15에서 제시한 PAPR 값은 IFFT size 및 시뮬레이션을 수행하는 도구 등에 따라서 미세하게 차이가 있을 수 있지만, 큰 경향은 유사할 것이다. 따라서, 상기 미세한 차이가 있다고 하더라도 본 명세서에서 제안하는 방법의 사상에서 벗어나는 것이 아니며, 본 명세서에서 제안하는 방법에 포함된다고 볼 수 있다. 또한, 상기 auto-correlation threshold를 초과하는 시퀀스 생성/선별 방법 또한, FDSS 사용 유무를 모두 감안하여 시퀀스를 선별/사용한다면, 본 명세서에서 제안하는 방법의 사상에 포함되는 것으로 보아야 할 것이다.
상기 방법 2는 주로 FDSS filter(corresponding to time-domain response [0.28, 1.00, 0.28])를 사용하지만, FDSS 필터를 사용하지 않을 때에도 comparable한 PAPR 성능을 제공하는 시퀀스로 고려될 수도 있다.
반대로, FDSS 필터를 사용하지 않을 때 PAPR 성능이 특정 FDSS 필터를 사용할 때보다 더욱 좋은 PAPR 성능을 제공하도록 시퀀스를 사용할 수도 있다.
단, 특정 FDSS 필터를 사용할 때에도 comparable한 PAPR 성능을 보일 수 있도록 설계한다. 만약, 송신기 구현 복잡도 그리고/또는 FDSS 핕터 사용으로 인하여 원 전송신호의 왜곡 발생으로 인한 오류율 증가 등의 문제로 인하여 FDSS 필터를 사용하지 않는 경우가 많다면, 다음 방법 3에서 제안하는 방식의 시퀀스가 유용하게 사용될 수 있다.
(방법 2-2)
방법 2-2는 각 시퀀스 원소가 8-PSK(Phase Shift Keying) 심볼로 구성되고, 길이가 6인 표 7에 제시된 시퀀스의 전체를 사용하거나, 표 7에 제시된 시퀀스의 일부를 상향링크 PUSCH 및/또는 PUCCH DMRS 시퀀스로 사용하는 방법에 관한 것이다. 상기 제안 시퀀스는 DFT-S-OFDM (Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing) 및/또는 CP-OFDM(Cyclic Prefix OFDM)에 사용될 수 있다.
본 방법의 경우, N=6, M=8 이므로 고려할 수 있는 전체 시퀀스 개수는
Figure PCTKR2020002191-appb-I000088
이다. 본 예제에서는 총 2개의 Antenna ports(e.g., two DMRS antenna ports)를 고려하고, 각 안테나 포트는 Comb-2 형태로 FDM(Frequency Division Multiplexing)된다. 전체
Figure PCTKR2020002191-appb-I000089
개 시퀀스 가운데, 일부 K(>0)개 제안하는 시퀀스를 생성/선별/사용하는 규칙은 다음과 같다. 본 방법에서 K=45을 가정하였다.
제안하는 시퀀스의 주된 특징은 Comb-2 형태로 FDM되는 두 개의 안테나 포트 모두 FDSS 필터(time-domain response가 [0.28 1 0.28]인 FDSS filter)를 적용했을 때 2.1 dB 이하로 낮은 PAPR 특성을 보이고, FDSS 필터를 적용하지 않은 경우에도 2.3 dB PAPR이 낮은 특성을 보이는 것이다.
추가적으로, 제안하는 시퀀스는 다음의 특성을 갖는다.
- 제안하는 시퀀스는 +1, -1 correlation lag에서 최대 auto-correlation이 약 0.2357보다 작거나 같은 특성을 갖는다.
- 제안하는 시퀀스는 +3, +2, +1, -1, -2, -3 correlation lag(s)에서 최대 auto-correlation이 약 0.8보다 작거나 같은 특성을 갖는다.
- 선별되는 K개의 시퀀스 가운데, 특정 length-N 시퀀스의 가능한 cyclic shifted 형태는 모두 동일한 시퀀스로 간주한다. 따라서, K개의 선별된 시퀀스 가운데, 어떠한 특정 시퀀스도 다른 시퀀스의 가능한 cyclic shift 형태와 동일하지 않다.
즉, 예를 들어, 표 10의 1번 시퀀스가 "-7 -5 -1 5 1 -5"인데, 이의 cyclic shift version인 "-5 -1 5 1 -5 -7"은 동일한 시퀀스이다.
Figure PCTKR2020002191-appb-T000010
Figure PCTKR2020002191-appb-I000090
Figure PCTKR2020002191-appb-I000091
표 10은 본 명세서에서 제안하는 8-PSK 기반 시퀀스 세트(길이-6)의 일례를 나타낸다. 여기서, 변조 심볼들은
Figure PCTKR2020002191-appb-I000092
로 생성된다. PAPR 성능은 하나의 RB에 대한 Comb-2 타입 DMRS를 가지는 DFT-s-OFDM에서 평가된다(Comb-2 type DMRS는 TS 38.211, TS 38.214, TS 38.331을 참고 한다).
- 변조 심볼들은
Figure PCTKR2020002191-appb-I000093
로 생성된다.
Figure PCTKR2020002191-appb-I000094
: 시퀀스 인덱스(sequence index)
Figure PCTKR2020002191-appb-I000095
: 각 시퀀스의 엘리먼트 인덱스(element index of each sequence).
- 상기 적용된 FDSS filter는 [0.28 1.0 0.28]의 시간 영역 응답에 해당한다.
- IFFT 사이즈는 64이고, DFT 사이즈는 12이다.
상기 표 10에 제시된 시퀀스 가운데 일부 혹은 전부를 사용할 것을 제안한다. 또한, 상기 표 10에 제시된 시퀀스 가운데 일부 또는 전부와 상기 표에 제시되어 있지 않은 (특성이 다른) 시퀀스들과 하나의 sequence set으로 구성되어 사용될 수 있다. 이러한 구성 또한, 본 발명의 확장(또는 적용 또는 응용)으로써 본 명세서에서 제안하는 방법의 사상에 포함된다고 볼 수 있다.
도 16에서 상기 방법 2-2에서 제안하는 시퀀스의 우수성을 확인할 수 있다. 기존의 시퀀스와 비교하였을 때, 제안하는 시퀀스는 FDSS 필터를 사용하는 경우 및 사용하지 않는 경우 모두 낮은 PAPR 특성을 보인다. 특히, FDSS 필터를 사용하지 않는 경우, 본 방법 2-2에서 제시하는 시퀀스의 PAPR과 기존의 시퀀스의 PAPR 성능 차이가 상당히 크다.
도 16은 본 명세서에서 제안하는 각 시퀀스의 엘리먼트들이 8-PSK 심볼들로 구성된 길이-6 시퀀스들의 제안된 세트에 대한 PAPR 성능을 나타낸다.
상기 방법 2 및 방법 2-1에서 length-6 DMRS sequence (Pre-DFT leng-6 sequence)를 시간-주파수 RE(resource element)에 다음과 같은 방식으로 mapping 하였다.
주파수-영역에서 Comb-2 type으로 frequency-RE를 사용하면, 시간 축 신호가 2번 반복해서 나타나는 특성이 있다. 따라서, DFT-spread-OFDM 시스템에서 DFT 이전 단계에서 length-6 DMRS sequence를 전송하기 위해서는, time-domain에서 length-6 sequence를 두 번 반복하는 것을 고려하여 사용할 필요가 있다. 따라서, (pre-)DFT 절차에서 길이가 6인 시퀀스가 두 번 반복되도록 사용해야 한다.
Figure PCTKR2020002191-appb-M000008
여기서,
Figure PCTKR2020002191-appb-I000096
는 DFT(Discrete Fourier Transform) matrix를 나타낸다.
Figure PCTKR2020002191-appb-I000097
은 6x1 vector (one length-6 sequence)이다. 여기서, 각 엘리먼트
Figure PCTKR2020002191-appb-I000098
는 M-PSK/M-QAM symbol이다.
Figure PCTKR2020002191-appb-I000099
Figure PCTKR2020002191-appb-I000100
의 DFT 프로세싱 후 주파수-영역 신호인 12 X 1 vector이다.
이 때, DFT-spread-OFDM 방식으로 DMRS 시퀀스를 전송할 때, single-port DMRS 전송 시에는 상기 언급한 바와 같이 pre-DFT 단에서 length-6 시퀀스가 두 번 반복되는 형태로 사용해서 DFT 연산을 수행하면 된다.
DMRS port가 두 개인 경우, 특정 DMRS port는 frequency offset이 0인 comb-2 type에 설정하고, 다른 DMRS port는 frequency offset이 1인 comb-2 type에 설정할 수 있다. 이 때, 두 번째 DMRS 포트에서 사용할 length-6 sequence와 첫 번째 DMRS 포트에서 사용할 length-6 sequence를 상기 수학식 8과 같이 (pre-)DFT 과정을 통하여 주파수 축에 mapping하면 frequency offset "0"을 갖는 Comb-2 structure (frequency offset이 0인 comb-2 structure)로 할당된다.
두 번째 DMRS 포트에서 사용할 length-6 sequence는 상기 수학식 5와 같이 (pre-)DFT 과정을 통하여 주파수 축에 mapping하면 frequency offset "0"을 갖는 Comb-2 structure로 할당된다. 첫 번째 DMRS port와 RE가 겹치지 않도록 frequency offset "1"을 갖는 Comb-2 structure로 할당하기 위해서 수학식 8 대신 다음 수학식 9를 따라서 할당한다.
Figure PCTKR2020002191-appb-M000009
Figure PCTKR2020002191-appb-I000101
상기 수학식 9에서
Figure PCTKR2020002191-appb-I000102
는 12x12 행렬이고, 홀수 번째 subcarrier RE(Resource Element)에 할당되는 요소들을 짝수 번째 subcarrier RE에 할당되도록 하는 행렬이다.
(방법 3)
방법 3은 각 시퀀스 원소가 8-PSK(Phase Shift Keying) 심볼로 구성되고, 길이가 6인 표 11에 제시된 시퀀스의 전체를 사용하거나, 표 11에 제시된 시퀀스의 일부를 상향링크 PUSCH 및/또는 PUCCH DMRS 시퀀스로 사용하는 방법에 관한 것이다. 상기 제안 시퀀스는 DFT-s-OFDM (Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing) 및/또는 CP-OFDM(Cyclic Prefix OFDM)에 사용될 수 있다.
본 방법의 경우, N=6, M=8 이므로 고려할 수 있는 전체 시퀀스 개수는
Figure PCTKR2020002191-appb-I000103
이다.
전체
Figure PCTKR2020002191-appb-I000104
개 시퀀스 가운데, 일부 K(>0)개 제안하는 시퀀스를 생성(또는 선별 또는 사용)하는 규칙은 다음과 같다.
본 명세서에서 제안하는 시퀀스의 주된 특징은 FDSS필터를 사용하지 않을 때에 Y(>0) 이하로 낮은 PAPR 특성을 보이고, FDSS 필터(time-domain response가 [0.28 1 0.28]인 FDSS filter)를 적용 했을 때에는 FDSS 필터를 사용하지 않는 것 보다는 PAPR 성능이 좋지는 않지만, 여전히 X(>0) dB 이하로 낮은 PAPR 특성을 보이는 것이다. 보다 구체적으로, 제안하는 시퀀스는 다음의 특성을 갖는다. 즉, 다음의 특성(또는 조건)을 만족하는 시퀀스를 단말/기지국이 사용할 것을 제안한다.
- FDSS 필터(time-domain response가 [0.28 1 0.28]인 FDSS filter)를 적용하였을 때 PAPR이 약 2.8 [dB] 보다 작거나 같은 특성을 갖는다.
- 상기 FDSS 필터를 사용하지 않았을 때 PAPR이 약 2.1 [dB] 보다 작거나 같은 시퀀스를 선별해서 사용할 수 있다.
- +1, -1 cyclic auto-correlation에서 최대 cyclic auto-correlation이 낮은 (약 0.2357보다 작거나 같은) 특성을 갖는다.
- +2, +1, -1, -2 cyclic auto-correlation에서 최대 cyclic auto-correlation이 낮은 (약 0.4714 보다 작거나 같은) 특성을 갖는다.
- +3, +2, +1, -1, -2, -3 cyclic auto-correlation에서 최대 cyclic auto-correlation이 낮은 (약 0.80474 보다 작거나 같은) 특성을 갖는다.
- 선별되는 K개의 시퀀스 가운데, 특정 length-N 시퀀스의 가능한 cyclic shift된 형태는 모두 동일한 시퀀스로 간주한다. 따라서, K개의 선별된 시퀀스 가운데, 어떠한 특정 시퀀스도 다른 시퀀스의 가능한 cyclic shift 형태와 동일하지 않는다.
Figure PCTKR2020002191-appb-T000011
Figure PCTKR2020002191-appb-I000105
Figure PCTKR2020002191-appb-I000106
표 11은 제안된 8-PSK 기반 시퀀스 세트(길이-6)의 일례를 나타낸다. 상기 변조 심볼들은
Figure PCTKR2020002191-appb-I000107
로 생성된다. PAPR 성능은 하나의 RB에 대해 Comb-2 type DMRS를 가지는 DFT-s-OFDM system에서 평가된다.
도 17은 본 명세서에서 제안하는 각 시퀀스의 엘리먼트들이 8-PSK 심볼들로 구성된 길이-6 시퀀스들의 제안된 세트에 대한 PAPR 성능을 나타낸다.
상기 표 11에 제시한 length-6의 8-PSK 시퀀스의 장점을 도 17에서 볼 수 있다. 상기 도 17은 위의 표 11에서 제시한 시퀀스를 DFT-S-OFDM 시스템에서 Comb-2 DMRS 시퀀스로 사용할 때 PAPR 성능을 나타낸다. 상기 제시된 시퀀스에 대해서 FDSS 필터(corresponding to the time-domain response of [0.28 1.0 0.28])를 적용한 경우의 PAPR 성능과 FDSS 필터를 적용하지 않았을 때의 PAPR 성능을 보였다. 상기 방법 3에 따라서 정의한 시퀀스는 FDSS 필터를 사용하지 않을 때 2.1 dB 이하의 PAPR 성능을 보임을 확인할 수 있다.
상기 방법 2 및 상기 방법 3은 동일한 특정 시퀀스에 대해서 FDSS 필터(특히 time-domain response가 [0.28 1.00 0.28]에 상응하는 FDSS필터)를 적용할 때와 적용하지 않는 경우, 즉 두 경우 모두 낮은 PAPR 특성을 보이는 시퀀스를 사용하는 방법에 대한 것이다.
그러나, FDSS 필터를 사용하지 않는 경우만 고려하여 낮은 PAPR 특성을 갖는 시퀀스를 결정(또는 사용)하거나, FDSS 필터를 사용하는 것만 가정하고 낮은 PAPR 특성을 갖는 시퀀스를 결정(또는 사용)하면 위의 경우보다 더욱 낮은 PAPR 특성을 갖는 시퀀스를 사용할 수 있다. 즉, 필터를 적용할 때와 적용하지 않을 때 두 경우 모두 PAPR이 성능이 좋은 것은 한계가 있기 때문에 이를 감안하여 다음 방법을 제안한다.
(방법 4)
방법 4는 하나의 시퀀스를 구성하는 원소(element)가 M-PSK/M-QAM 심볼이고, 시퀀스 길이가 N인 총 K개의 시퀀스로 하나의 sequence set을 구성하되, 특정 FDSS 필터를 사용할 때 특정 PAPR이 특성이 좋은 시퀀스
Figure PCTKR2020002191-appb-I000108
개와 FDSS 필터를 사용하지 않을 때 PAPR 특성이 좋은 시퀀스
Figure PCTKR2020002191-appb-I000109
개를 사용하는 방법에 관한 것이다.
하나의 sequence set을 구성하는 총 sequence 개수
Figure PCTKR2020002191-appb-I000110
개이다.
특정 FDSS 필터를 많이 사용하는지 아니면 주로 FDSS 필터를 사용하지 않는지 등의 여러 환경을 고려함에 따라서 상기
Figure PCTKR2020002191-appb-I000111
Figure PCTKR2020002191-appb-I000112
는 결정될 수 있다. 예를 들어, 특정 FDSS 필터를 주로 사용하는 것을 고려해서 length-N 시퀀스 K개를 정의(또는 구성 또는 사용)한다면,
Figure PCTKR2020002191-appb-I000113
인 시퀀스 set을 구성할 수 있다.
또는, FDSS 필터를 사용하지 않는 경우를 target으로 하나의 sequence set을 구성(또는 결정) (K개의 시퀀스를 구성(또는 결정) 한다면,
Figure PCTKR2020002191-appb-I000114
인 sequence set을 구성(또는 결정)할 수 있다. 예를 들어, K=30이라고 가정하면,
Figure PCTKR2020002191-appb-I000115
인 경우와 같이 극단적인 경우를 고려할 수 있다.
- 예를 들어, 8-PSK 심볼로 구성되는 length-6 시퀀스를 고려하여 30개의 시퀀스를 하나의 시퀀스 set으로 구성한다면, 하기의 표 12에 제시한 시퀀스를 사용할 수 있다. 이 가운에 일부 혹은 전부를 DFT-s-OFDM 시스템에서 DMRS 등의 참조신호 시퀀스로 사용할 것을 제안한다.
- 하기의 표 12는
Figure PCTKR2020002191-appb-I000116
,
Figure PCTKR2020002191-appb-I000117
를 가정하고 구성한 것이다.
표 12에서 볼 수 있듯이, 1-15번 시퀀스는 FDSS 필터를 사용하지 않는 것을 주된 target으로 사용할 시퀀스이고, 16-30번은 time-domain response [0.28 1.0 0.28]에 상응하는 FDSS 필터를 함께 사용하는 것을 감안하여 이를 target으로 사용할 시퀀스이다. 필터 사용 유무에 따른 PAPR 성능 차이는 제시한 표 12에서 확인할 수 있다. 또한, 아래의 시퀀스는 다음의 특성을 갖도록 구성되었다.
- +1, -1 cyclic auto-correlation에서 최대 cyclic auto-correlation이 낮은 (약 0.2357보다 작거나 같은) 특성을 갖는다.
- +2, +1, -1, -2 cyclic auto-correlation에서 최대 cyclic auto-correlation이 낮은 (약 0.4714 보다 작거나 같은) 특성을 갖는다.
- +3, +2, +1, -1, -2, -3 cyclic auto-correlation에서 최대 cyclic auto-correlation이 낮은 (약 0.80474 보다 작거나 같은) 특성을 갖는다.
- 선별되는 K개의 시퀀스 가운데, 특정 length-N 시퀀스의 가능한 cyclic shift된 형태는 모두 동일한 시퀀스로 간주한다. 따라서, K개의 선별된 시퀀스 가운데, 어떠한 특정 시퀀스도 다른 시퀀스의 가능한 cyclic shift 형태와 동일하지 않는다.
- 선별되는 K개의 시퀀스 간에 단순히 phase만 shift된 형태의 시퀀스는 없도록 구성한다. 즉, 6개의 시퀀스 element에 동일한 phase가 곱해진 형태의 시퀀스는 동일한 것으로 간주하고 제외한다. 하기의 표 13에서 각 시퀀스의 첫 번째 sequence element를 -7로 고정하였지만, 각 시퀀스에 상응하는 6개의 element를 모두 동일하게 phase shift한 것은 동일한 sequence로 보아야 한다. 즉, 하기의 표 12에서 제시되지는 않았지만, 하기의 시퀀스에서 phase shift한 것은 동일한 시퀀스로써 본 명세서에서 제안하는 시퀀스에 포함된다고 볼 수 있다.
Figure PCTKR2020002191-appb-T000012
Figure PCTKR2020002191-appb-I000118
Figure PCTKR2020002191-appb-I000119
표 12는 제안된 8-PSK 기반 시퀀스 세트(길이-6)의 일례를 나타내며, 상기 변조 심볼들은
Figure PCTKR2020002191-appb-I000120
로 생성된다. PAPR 성능은 하나의 RB에 대해 Comb-2 타입 DMRS를 가지는 DFT-s-OFDM 시스템에서 평가된다.
상기 표 12에서 1-15번 시퀀스는 FDSS 필터를 사용하지 않는 것을 주된 target으로 사용할 시퀀스이고, 16-47번은 time-domain response [0.28 1.0 0.28]에 상응하는 FDSS 필터를 사용하는 경우를 target으로 선별(또는 결정 또는 구성)한 시퀀스이다.
(방법 5)
방법 5는 FDSS 필터를 사용하면, 확률적으로 PAPR 특성이 좋아지는 것은 자명하지만, 각 시퀀스 관점에서 PAPR이 최적화되지 못한다. 본 명세서에서 살펴본 것처럼 특정 시퀀스에 대해서 특정 FDSS 필터를 적용할 때, 특정 시퀀스의 PAPR 특성이 나빠지는 것을 볼 수 있다.
이를 배경으로, 송신기는 전송하는 시퀀스, 시퀀스그룹 그리고/또는 시퀀스들의 세트(서브 세트)에 따라서 서로 다른 FDSS filter를 사용하는 것을 제안한다. 또한, 사용하는 FDSS filter에 대하여 최적화된 하나의 sequence set을 구성(또는 결정)하여 단말/기지국이 사용할 수 있다. 일례로, 도 19에 도시된 시스템/장치를 고려할 수 있다. 특정 RB(s) 그리고/또는 RB(s)의 그룹 별로 서로 다른 시퀀스가 사용될 수도 있고, OFDM symbol 별 그리고/또는 slot(s) 별로 서로 다른 시퀀스를 송신기가 사용할 수 있다.
이를 수신기에서 적절하게 복원하도록 돕기 위하여 송신기는 수신기에게 특정 시퀀스에 어떠한 FDSS 필터를 사용하는지 알려줄 수 있다. 그리고/또는, 수신기가 송신기에게 특정 시퀀스, 시퀀스 그룹 별로 어떠한 FDSS 필터를 사용할지를 지시할 수 있다. 또는, 수신기와 송신기가 어떤 시퀀스에 대해서 어떠한 FDSS 필터를 사용하는지 미리 정의(또는 약속)해두고 사용할 수 있다.
- 하나의 sequence set/group/table을 구성하되, 사용하는 FDSS filter #1, FDSS filter #2,..., FDSS filter #D에 대해서 최적화된 시퀀스들이 사용될 수 있다. 즉, 사용할 D개의 FDSS filter들에 대하여, FDSS 필터를 사용하여 PAPR 성능(그리고/또는 cross-correlation/auto-correlation 등의 다양한 criterion/성능 포함)이 최적화된 D개의 시퀀스 그룹/sub-set을 구성하고, 이를 하나의 set/group으로 정의(또는 구성)하여 송신기가 DMRS, SRS, CSI-RS 등의 참조신호 전송을 위해서 사용할 수 있다.
- 추가적으로, FDSS 필터를 사용하지 않는 경우도 고려하여, D개의 FDSS 필터를 사용하는 경우 및 FDSS 필터를 사용하지 않는 경우에 대해서 PAPR 성능이 최적화된 총 (D+1)개의 시퀀스 그룹(또는 sub-set)을 구성하고, 하나의 sequence set/group/table을 구성하여 송신기가 참조신호/데이터 신호 등을 전송하는데 사용할 수 있다.
도 18은 본 명세서에서 제안하는 FDSS 필터를 적응적으로 적용하기 위한 일례를 나타낸다.
길이 12, 18 및 24 각각에 대해, NR Rel-16은 각각 표 1, 2 및 3에서 이진 CGS를 지원하고, 그 다음에 pi/2 BPSK 변조가 뒤따르고, 그 다음에 PUSCH와 PUCCH 모두에 대해 π/2 BPSK 변조를 위한 DMRS 시퀀스로서 DFT가 뒤따른다.
위의 내용은 단일의 DMRS 설정에 적용 가능하다. 2-symbol DMRS 설정에 대한 CGS가 논의될 수 있다. 표 1, 2 및 3은 R1-1901362에서 발견될 수 있다.
여기서, length-8까지 CGS를 이용할 수 있으며, length-6은 8-PSK를 이용할 수 있다.
이하에서, two-symbol DMRS configuration에서, 컴퓨터 생성 시퀀스(computer generation sequence) 적용 방법에 대해 살펴본다.
두 심볼에서 동일한 CGS(Computer Generate Sequence)를 사용할 수 있음.
CGS 세트 (30개의 sequences) 가운데, 첫 번째 심볼에서 특정 시퀀스를 사용하는 경우, 이와 연동하여 다음 심볼에서 특정 시퀀스를 사용하도록 한다.
이 때, 첫 번째 심볼에서 사용된 특정 시퀀스를 제외한 다른 시퀀스 가운데, 시퀀스 세트 / 그룹 / 표에서 첫번째 심볼에서 사용된 특정 시퀀스와 cross-correlation이 가장 낮은 시퀀스를 두 번째 심볼에서 사용할 수 있다.
또는, 다른 기준(criterion)에 따라서, 두 개의 시퀀스를 하나의 pair로 만들어두고, 2개의 연접한 OFDM 심볼에서 사용되도록 미리 결정(또는 정의)해두거나 sequence pair를 기지국이 단말에 설정(또는 지시)할 수 있다.
첫 번째(1st) DMRS 심볼과 두 번째(2nd) DMRS 심볼에 대해서 각각 독립적인 CGS(Computer Generation Sequence)를 사용하는 것을 생각할 수 있다.
이를 위해서, 심볼 당 30개의 CGS를 정의해서 총 60개의 CGS들을 정의할 수 있다. 이 때, 30개 시퀀스들을 하나의 sequence set으로 고려할 수 있다.
이 때, 두 개의 sequence set 간의 cross-correlation 이 최소화되도록 sequence set이 정의되는 것을 고려할 수 있다. 또는, 첫 번째(1st) DMRS 심볼에서 특정 시퀀스가 사용될 때, 두 번째(2nd) DMRS symbol에서 사용할 특정 시퀀스 그리고/또는 특정 시퀀스 sub-set(30개의 sequences 가운데 일부분)이 사용될 수 있다.
길이-6 CGS에 대해, 8-PSK가 사용된다.
하나의 OFDM 심볼 DMRS 및 pi/2 BPSK 변조를 가진 PUSCH의 경우, 다음 대안 중에서 선택한다.
대안 0: 단일 DMRS 포트만 지원된다 (하나의 comb가 사용된다)
대안 1: comb 당 하나의 DMRS 포트가 지원된다 (총 2개 포트들에서)
대안 2: comb 당 2개의 DMRS 포트들을 지원한다 (총 4개 포트들에서)
이하에서, 앞서 살핀 방법 2에 대한 추가적인 실시 예를 방법 2-1을 통해 살펴본다.
(방법 2-1)
방법 2-1은 상기 방법 2에서 cyclic auto-correlation 성능을 relaxation 하는 것에 관한 것이다. Relaxation을 통해서 PAPR 특성이 더욱 좋은 시퀀스를 사용할 수도 있고, 하나의 시퀀스 set을 구성하는 시퀀스 개수를 크게 늘려서 선택적/적응적으로 사용하는 방법이 있을 수 있다. 방법 2에서, 상기 FDSS 필터를 사용할 때, PAPR이 2.3 dB 이하이고, FDSS 필터를 사용하지 않을 때 3.2 dB 이하인 조건으로 방법 2 조건을 relaxation하면, 아래의 표 13에 제시되어 있는 시퀀스를 얻을 수 있다. 상기 표 14에 제시되어 있는 시퀀스 가운데 하나 이상의 일부 혹은 전체 시퀀스들을 DFT-spread-OFDM 기반의 DMRS sequence로 사용할 것을 제안한다.
Figure PCTKR2020002191-appb-T000013
Figure PCTKR2020002191-appb-I000121
Figure PCTKR2020002191-appb-I000122
Figure PCTKR2020002191-appb-I000123
Figure PCTKR2020002191-appb-I000124
Figure PCTKR2020002191-appb-I000125
Figure PCTKR2020002191-appb-I000126
Figure PCTKR2020002191-appb-I000127
표 13은 제안되는 8-PSK 기반 시퀀스 세트 (길이-6)의 일례를 나타내며, 상기 변조 심볼들은
Figure PCTKR2020002191-appb-I000128
로 생성된다. PAPR 성능은 하나의 RB에 대해 Comb-2 타입 DMRS를 가진 DFT-s-OFDM 시스템에서 평가된다.
(방법 6)
방법 6은 주파수-영역(frequency-domain)에서 Comb-2 type으로 frequency-RE를 사용하면, 시간 축 신호가 2번 반복해서 나타나는 특성이 있다. 따라서, DFT-spread-OFDM 시스템에서 DFT 이전 단계에서 length-6 DMRS sequence를 전송하기 위해서, time-domain에서 length-6 sequence를 두 번 반복하는 것을 고려하여 사용할 필요가 있다. 따라서 (pre-)DFT 절차에서 길이가 6인 시퀀스가 두 번 반복되도록 사용해야 한다.
Figure PCTKR2020002191-appb-M000010
여기서,
Figure PCTKR2020002191-appb-I000129
는 DFT(Discrete Fourier Transform) 매트릭스를 나타낸다.
Figure PCTKR2020002191-appb-I000130
는 6x1 벡터 (one length-6 sequence)이며, 각 엘리먼트
Figure PCTKR2020002191-appb-I000131
는 M-PSK/M-QAM 심볼이다.
Figure PCTKR2020002191-appb-I000132
Figure PCTKR2020002191-appb-I000133
의 DFT 프로세싱 이후의 주파수-영역 신호인 12 X 1 벡터이다.
이 때, DFT-spread-OFDM 방식으로 DMRS 시퀀스를 전송할 때, single-port DMRS 전송 시에는 상기 언급한 바와 같이 pre-DFT 단에서 length-6 시퀀스가 두 번 반복되는 형태로 사용해서 DFT 연산을 수행하면 된다.
DMRS port가 두 개인 경우, 특정 DMRS port는 frequency offset이 0인 comb-2 type에 설정하고, 다른 DMRS port는 frequency offset이 1인 comb-2 type에 설정할 수 있다. 이 때, 두 번째 DMRS 포트에서 사용할 length-6 sequence와 첫 번째 DMRS 포트에서 사용할 length-6 sequence를 상기 수학식 8과 같이 (pre-)DFT 과정을 통하여 주파수 축에 mapping하면 동일한 frequency offset을 갖는 Comb-2 structure (frequency offset이 0인 comb-2 structure)로 할당된다. 따라서, 두 DMRS 포트를 사용할 때에는 주파수 축(frequency axis)에서 shift하는 동작이 추가적으로 필요할 수 있다. 그러나, 이는 추가적인 shifting 동작이 필요하므로, 다음과 같은 방식으로 single symbol에 서로 다른 (even 및 odd) Comb-2로 two-port DMRS sequence를 전송/설정할 수 있다.
첫 번째 DMRS port로 전송하는 시퀀스:
Figure PCTKR2020002191-appb-I000134
(6 X 1 vector)
두 번째 DMRS port로 전송하는 시퀀스
Figure PCTKR2020002191-appb-I000135
(6 X 1 vector)
상기 시퀀스는 length-6 DMRS sequence 표에서 선택된 서로 다른 혹은 동일한 시퀀스일 수 있다.
두 DMRS 포트에서 전송하는 시퀀스가 서로 다른 Comb-2로 전송되도록 하기 위해서 (pre-)DFT processing을 위해서 첫 번째 DMRS port로 전송하는 시퀀스는
Figure PCTKR2020002191-appb-I000136
형태로 DFT 행렬과 곱해지고 (DFT processing이 수행되고), 두 번째 DMRS port는
Figure PCTKR2020002191-appb-I000137
그리고/또는
Figure PCTKR2020002191-appb-I000138
형태로 (pre-)DFT processing이 수행될 수 있다. 결과적으로, 두 번째 DMRS port로 전송되는 시퀀스는 DFT processing 후에 추가적으로 shifting 처리가 없더라도 frequency offset이 1이 설정된 것과 같이 홀수 번째 RE 6개에 0이 아닌 값이 설정/전송되고, 짝수 번째 RE 6개에는 0 또는 0이 아닌 값이 맵핑/전송된다.
첫 번째 DMRS port:
Figure PCTKR2020002191-appb-M000011
두 번째 DMRS port:
Figure PCTKR2020002191-appb-M000012
상기 방식에서 두 포트로 각각 전송되는 시퀀스가 (pre-)DFT 단에서 시간 영역(time-domain) OCC가 설정되지 않더라도 주파수 축에서 orthogonal 하기 때문에 구분된다. 즉, 두 DMRS 포트로 서로 다른 시퀀스를 맵핑(또는 설정 또는 전송)이 가능하다.
참고로, 본 명세서에서 언급하는 첫 번째, 두 번째 DMRS 포트는 서로 다른 DMRS 포트를 의미하는 것이고, DMRS 포트 인덱스와는 무관하다.
앞서 언급한 방법 2, 방법 2-1, 방법 2-2는 두 개의 안테나 포트를 (e.g., two DMRS antenna ports) 두 개의 Comb-2 structure로 주파수 축에 맵핑하기 위해서 DFT 이후에 frequency RE mapping 행렬을 곱하였다.
방법 2, 방법 2-1, 방법 2-2에서, 서로 다른 두 안테나 포트를 고려하고 각 안테나 포트 별로 Comb-2 형태의 frequency RE mapping을 위하여 상기 방법 6을 사용하는 경우를 고려할 수 있다.
즉, 방법 6의 수학식 11 및 12를 보면, pre-DFT 이후에 첫 번째 및 두 번째 안테나 포트로 전송하는 length-6 sequence가 각각 frequency offset이 "0"인 frequency RE와 frequency offset이 "1"인 frequency RE에 할당된다. 상기 방법 6을 고려하여, 방법 2-2와 유사하게 다음 방법 2-3을 제안한다.
이하에서, 앞서 살핀 방법 2에 대한 추가적인 실시 예를 방법 2-3을 통해 살펴본다.
(방법 2-3)
방법 2-3은 각 시퀀스 원소가 8-PSK(Phase Shift Keying) 심볼로 구성되고, 길이가 6인 표 15에 제시된 시퀀스의 전체를 사용하거나, 표 15에 제시된 시퀀스의 일부를 상향링크 PUSCH 그리고/또는 PUCCH DMRS 시퀀스로 사용하는 방법에 관한 것이다.
제안하는 시퀀스는 DFT-s-OFDM (Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing) 그리고/또는 CP-OFDM(Cyclic Prefix OFDM)에 사용될 수 있다. 방법 2-3의 경우, N=6, M=8 이므로 고려할 수 있는 전체 시퀀스의 개수는
Figure PCTKR2020002191-appb-I000139
이다. 여기서, 총 2개의 Antenna ports(e.g., two DMRS antenna ports)를 고려하고, 각 안테나 포트는 Comb-2 형태로 FDM(Frequency Division Multiplexing)된다.
이 때, 두 안테나 포트의 length-6 시퀀스를 Comb-2 structure로 맵핑하기 위해서 앞서 살핀 방법 6의 수학식 11 및 12와 같이 첫 번째 포트의 length-6 시퀀스를 시간 축에서 두 번 반복 하도록 하고, 두 번째 포트의 length-6 sequence는 부호를 바꿔서 반복적으로 나오도록 한다.
전체
Figure PCTKR2020002191-appb-I000140
개 시퀀스 가운데, 일부 K(>0)개의 제안하는 시퀀스를 생성(또는 선별 또는 사용)하는 규칙은 다음과 같다. 여기서, K=45을 가정한다.
제안하는 시퀀스의 주된 특징은 Comb-2 형태로 FDM되는 두 개의 안테나 포트 모두 FDSS 필터(time-domain response가 [0.28 1 0.28]인 FDSS filter)를 적용했을 때, 2.2 dB 이하로 낮은 PAPR 특성을 보이고, FDSS 필터를 적용하지 않은 경우에도 2.9 dB PAPR로 낮은 특성을 보이는 것이다.
추가적으로, 제안하는 시퀀스는 다음의 특성을 갖는다.
- 제안하는 시퀀스는 +1, -1 correlation lag(상관 지연)에서 최대 auto-correlation(자기-상관)이 약 0.2357보다 작거나 같은 특성을 갖는다.
- 제안하는 시퀀스는 +3, +2, +1, -1, -2, -3 correlation lag(s)에서 최대 auto-correlation이 약 0.85보다 작거나 같은 특성을 갖는다.
- 선별되는 K개의 시퀀스 가운데, 특정 length-N 시퀀스의 가능한 cyclic shift된 형태는 모두 동일한 시퀀스로 간주한다. 따라서, K개의 선별된 시퀀스 가운데, 어떠한 특정 시퀀스도 다른 시퀀스의 가능한 cyclic shift 형태와 동일하지 않다.
Figure PCTKR2020002191-appb-T000014
Figure PCTKR2020002191-appb-I000141
Figure PCTKR2020002191-appb-I000142
표 14는 제안된 8-PSK 기반 시퀀스 세트 (길이-6)의 일례를 나타내며, 변조 심볼들은
Figure PCTKR2020002191-appb-I000143
로 생성된다. PAPR 성능은 하나의 RB(Resource Block)에 대해 Comb-2 타입 DMRS를 가진 DFT-s-OFDM 시스템에서 생성된다(Comb-2 type DMRS는 TS 38.211, TS 38.214, TS 38.331을 참고한다).
- 변조 심볼들은
Figure PCTKR2020002191-appb-I000144
로 생성된다.
Figure PCTKR2020002191-appb-I000145
: 시퀀스 인덱스(sequence index)
Figure PCTKR2020002191-appb-I000146
: 각 시퀀스의 엘리먼트 인덱스(element index of each sequence)
- 적용된 FDSS 필터는 [0.28 1.0 0.28]의 시간-영역 응답에 해당한다.
- IFFT 사이즈는 64이고, DFT 사이즈는 12이다.
상기 표 14에 제시된 시퀀스 가운데 일부 혹은 전부가 사용될 수 있다.
또한, 상기 표 14에 제시된 시퀀스 가운데 일부 또는 전부와 상기 표 14에 제시되어 있지 않은 (특성이 다른) 시퀀스들과 하나의 sequence set으로 구성되어 사용될 수도 있다. 이러한 구성 또한, 본 명세서에서 제안하는 방법의 확장(또는 적용 또는 응용)으로써 본 명세서에서 제안하는 방법의 사상에 포함된다고 볼 수 있다.
도 19는 본 명세서에서 제안하는 각 시퀀스의 엘리먼트들이 8-PSK 심볼들로 구성된 길이-6 시퀀스들의 제안된 세트에 대한 PAPR 성능을 나타낸다.
low-PAPR 시퀀스 생성 타입 2(sequence generation type 2)
추가적으로, low-PAPR 시퀀스 생성 타입 2(sequence generation type 2)에 대해 간략히 살펴본다.
low-PAPR sequence
Figure PCTKR2020002191-appb-I000147
는 아래 수학식 13에 따라 기본 시퀀스
Figure PCTKR2020002191-appb-I000148
에 의해 정의될 수 있다.
Figure PCTKR2020002191-appb-M000013
여기서,
Figure PCTKR2020002191-appb-I000149
시퀀스의 길이를 나타낸다. 다수의 시퀀스들은
Figure PCTKR2020002191-appb-I000150
Figure PCTKR2020002191-appb-I000151
의 다른 값들을 통해 단일의 기본 시퀀스로부터 정의된다.
기본 시퀀스들
Figure PCTKR2020002191-appb-I000152
은 그룹들로 나뉘며, 여기서,
Figure PCTKR2020002191-appb-I000153
는 그룹 번호(group number)이고,
Figure PCTKR2020002191-appb-I000154
는 그룹 내 기본 시퀀스 번호(base sequence number)이다. 각 그룹은 길이
Figure PCTKR2020002191-appb-I000155
,
Figure PCTKR2020002191-appb-I000156
의 하나의 기본 시퀀스(
Figure PCTKR2020002191-appb-I000157
)를 포함한다. 시퀀스
Figure PCTKR2020002191-appb-I000158
는 아래 수학식 14에 의해 정의된다.
Figure PCTKR2020002191-appb-M000014
Figure PCTKR2020002191-appb-I000159
여기서,
Figure PCTKR2020002191-appb-I000160
의 정의는 시퀀스 길이에 의존한다.
상기 low-PAPR 시퀀스 생성 타입 2(sequence generation type 2)은 시퀀스 길이에 따라 (1) 길이 30 또는 그 이상의(length 30 or larger) 시퀀스들과 (2) 길이 30 미만의(length less than 30) 시퀀스들로 구분할 수 있다.
길이 30 미만의 시퀀스들에 대해 간단히 살펴본다.
길이 30 미만의 시퀀스들(Sequences of length less than 30)
Figure PCTKR2020002191-appb-I000161
에 대해, 시퀀스
Figure PCTKR2020002191-appb-I000162
는 아래 수학식 15에 의해 주어진다.
Figure PCTKR2020002191-appb-M000015
여기서,
Figure PCTKR2020002191-appb-I000163
의 값은 앞서 살핀 표들에서와 같이 주어질 수 있다.
Figure PCTKR2020002191-appb-I000164
에 대해, 시퀀스
Figure PCTKR2020002191-appb-I000165
는 ∏/2-BPSK 변조로 인한 복소수 값 변조 심볼들로 얻어진다.
상기 low-PAPR 시퀀스 생성 타입 2(sequence generation type 2)에 대한 내용은 앞서 설명한 본 명세서에서 제안하는 방법들에 적용될 수 있다.
앞서 살핀, 본 명세서에서의 제안을 구현하기 위한 방법들, 실시 예들, 설명들은 별개로 적용될 수도 있고, 하나 이상을 조합하여 적용될 수도 있다.
도 20은 본 명세서에서 상향링크 제어 신호에 대한 복조 참조 신호를 전송하는 방법의 일례를 나타낸 순서도이다.
구체적으로, 단말은 길이-6인 시퀀스에 기초하여 낮은 PAPR(peak to average power ratio) 시퀀스를 생성한다(S2010).
그리고, 상기 단말은 상기 낮은 PAPR 시퀀스에 기초하여 상기 복조 참조 신호에 사용되는 시퀀스를 생성한다(S2020).
그리고, 상기 단말은 상기 복조 참조 신호에 사용되는 시퀀스에 기초하여 상기 복조 참조 신호를 상기 기지국으로 전송한다(S2030).
여기서, 상기 길이-6인 시퀀스는 8-PSK(Phase Shift Keying) 심볼을 시퀀스의 각 엘리먼트(element)로 가질 수 있다.
또한, 상기 길이-6인 시퀀스는
Figure PCTKR2020002191-appb-I000166
에 의해 결정되며, 상기 i는 상기 길이-6인 시퀀스의 엘리먼트들의 인덱스일 수 있다.
그리고, 상기
Figure PCTKR2020002191-appb-I000167
의 값은 (-1 -7 -3 -5 -1 3), (-7 3 -7 5 -7 -3), (5 -7 7 1 5 1), (-7 3 1 5 -1 3), (-7 -5 -1 -7 -5 5), (-7 1 -3 3 7 5) 및 (-7 1 -3 1 5 1)을 포함할 수 있다.
그리고, 상기
Figure PCTKR2020002191-appb-I000168
에 대해 사이클릭 쉬프트된(cyclic shifted) 시퀀스는 상기
Figure PCTKR2020002191-appb-I000169
와 동일한 시퀀스일 수 있다.
상기
Figure PCTKR2020002191-appb-I000170
의 값이 가질 수 있는 수는
Figure PCTKR2020002191-appb-I000171
일 수 있다.
여기서, 상기 낮은 PAPR 시퀀스에 대한 자기-상관(auto-correlation)의 값은 특정 값 미만일 수 있다.
추가적으로, 상기 단말은 상향링크에 대한 트랜스폼 프리코딩(transform precoding)이 인에이블(enable) 되었음을 나타내는 제어 정보를 포함하는 RRC 시그널링을 기지국으로부터 수신할 수 있다.
또한, 상기 단말은 상기 낮은 PAPR 시퀀스에 FDSS(Frequency Domain Spectrum Shaping) 필터를 적용할 수 있다.
여기서, 상기 낮은 PAPR 시퀀스는 2개의 안테나 포트들에 Comb-2 형태로 FDM(Frequency Division Multiplexing)될 수 있다.
상기 2개의 안테나 포트들 각각에 서로 다른 낮은 PAPR 시퀀스가 사용될 수 있다.
도 20에서 설명한 방법이 무선 장치에서 구현되는 구체적인 동작에 대해 살펴본다.
무선 통신 시스템에서 상향링크 제어 신호에 대한 복조 참조 신호를 전송하기 위한 단말은 무선 신호를 송수신하기 위한 송수신기(tranceiver) 및 상기 송수신기와 기능적으로 연결되어 있는 프로세서를 포함할 수 있다.
상기 단말의 프로세서는 길이-6인 시퀀스에 기초하여 낮은 PAPR(peak to average power ratio) 시퀀스를 생성하며, 상기 낮은 PAPR 시퀀스에 기초하여 상기 복조 참조 신호에 사용되는 시퀀스를 생성하며 및 상기 복조 참조 신호에 사용되는 시퀀스에 기초하여 상기 복조 참조 신호를 상기 기지국으로 전송하도록 제어할 수 있다.
본 발명이 적용되는 통신 시스템 예
이로 제한되는 것은 아니지만, 본 문서에 개시된 본 발명의 다양한 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 기기들간에 무선 통신/연결(예, 5G)을 필요로 하는 다양한 분야에 적용될 수 있다.
이하, 도면을 참조하여 보다 구체적으로 예시한다. 이하의 도면/설명에서 동일한 도면 부호는 다르게 기술하지 않는 한, 동일하거나 대응되는 하드웨어 블블록, 소프트웨어 블록 또는 기능 블록을 예시할 수 있다.
도 21은 본 발명에 적용되는 통신 시스템을 예시한다.
도 21을 참조하면, 본 발명에 적용되는 통신 시스템(1)은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(100a), 차량(100b-1, 100b-2), XR(eXtended Reality) 기기(100c), 휴대 기기(Hand-held device)(100d), 가전(100e), IoT(Internet of Thing) 기기(100f), AI기기/서버(400)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량은 UAV(Unmanned Aerial Vehicle)(예, 드론)를 포함할 수 있다. XR 기기는 AR(Augmented Reality)/VR(Virtual Reality)/MR(Mixed Reality) 기기를 포함하며, HMD(Head-Mounted Device), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기는 센서, 스마트미터 등을 포함할 수 있다. 예를 들어, 기지국, 네트워크는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(200a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.
무선 기기(100a~100f)는 기지국(200)을 통해 네트워크(300)와 연결될 수 있다. 무선 기기(100a~100f)에는 AI(Artificial Intelligence) 기술이 적용될 수 있으며, 무선 기기(100a~100f)는 네트워크(300)를 통해 AI 서버(400)와 연결될 수 있다. 네트워크(300)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(100a~100f)는 기지국(200)/네트워크(300)를 통해 서로 통신할 수도 있지만, 기지국/네트워크를 통하지 않고 직접 통신(e.g. 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(100b-1, 100b-2)은 직접 통신(e.g. V2V(Vehicle to Vehicle)/V2X(Vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(100a~100f)와 직접 통신을 할 수 있다.
무선 기기(100a~100f)/기지국(200), 기지국(200)/기지국(200) 간에는 무선 통신/연결(150a, 150b, 150c)이 이뤄질 수 있다. 여기서, 무선 통신/연결은 상향/하향링크 통신(150a)과 사이드링크 통신(150b)(또는, D2D 통신), 기지국간 통신(150c)(e.g. relay, IAB(Integrated Access Backhaul)과 같은 다양한 무선 접속 기술(예, 5G NR)을 통해 이뤄질 수 있다. 무선 통신/연결(150a, 150b, 150c)을 통해 무선 기기와 기지국/무선 기기, 기지국과 기지국은 서로 무선 신호를 송신/수신할 수 있다. 예를 들어, 무선 통신/연결(150a, 150b, 150c)은 다양한 물리 채널을 통해 신호를 송신/수신할 수 있다. 이를 위해, 본 발명의 다양한 제안들에 기반하여, 무선 신호의 송신/수신을 위한 다양한 구성정보 설정 과정, 다양한 신호 처리 과정(예, 채널 인코딩/디코딩, 변조/복조, 자원 매핑/디매핑 등), 자원 할당 과정 등 중 적어도 일부가 수행될 수 있다.
본 발명이 적용되는 무선 기기 예
도 22는 본 발명에 적용될 수 있는 무선 기기를 예시한다.
도 22를 참조하면, 제1 무선 기기(100)와 제2 무선 기기(200)는 다양한 무선 접속 기술(예, LTE, NR)을 통해 무선 신호를 송수신할 수 있다. 여기서, {제1 무선 기기(100), 제2 무선 기기(200)}은 도 21의 {무선 기기(100x), 기지국(200)} 및/또는 {무선 기기(100x), 무선 기기(100x)}에 대응할 수 있다.
제1 무선 기기(100)는 하나 이상의 프로세서(102) 및 하나 이상의 메모리(104)를 포함하며, 추가적으로 하나 이상의 송수신기(106) 및/또는 하나 이상의 안테나(108)를 더 포함할 수 있다. 프로세서(102)는 메모리(104) 및/또는 송수신기(106)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(102)는 메모리(104) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, 송수신기(106)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(102)는 송수신기(106)를 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(104)에 저장할 수 있다. 메모리(104)는 프로세서(102)와 연결될 수 있고, 프로세서(102)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(104)는 프로세서(102)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(102)와 메모리(104)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(106)는 프로세서(102)와 연결될 수 있고, 하나 이상의 안테나(108)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(106)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(106)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 본 발명에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
제2 무선 기기(200)는 하나 이상의 프로세서(202), 하나 이상의 메모리(204)를 포함하며, 추가적으로 하나 이상의 송수신기(206) 및/또는 하나 이상의 안테나(208)를 더 포함할 수 있다. 프로세서(202)는 메모리(204) 및/또는 송수신기(206)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202)는 메모리(204) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202)는 송수신기(206)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204)에 저장할 수 있다. 메모리(204)는 프로세서(202)와 연결될 수 있고, 프로세서(202)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204)는 프로세서(202)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202)와 메모리(204)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206)는 프로세서(202)와 연결될 수 있고, 하나 이상의 안테나(208)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206)는 RF 유닛과 혼용될 수 있다. 본 발명에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
이하, 무선 기기(100, 200)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(102, 202)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 계층(예, PHY, MAC, RLC, PDCP, RRC, SDAP와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(Service Data Unit)를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(106, 206)에게 제공할 수 있다. 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)로부터 신호(예, 베이스밴드 신호)를 수신할 수 있고, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.
하나 이상의 프로세서(102, 202)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(102, 202)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(102, 202)에 포함될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(102, 202)에 포함되거나, 하나 이상의 메모리(104, 204)에 저장되어 하나 이상의 프로세서(102, 202)에 의해 구동될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.
본 발명이 적용되는 신호 처리 회로 예
도 23은 본 발명에 적용되는 신호 처리 회로를 예시한다.
도 23을 참조하면, 신호 처리 회로(1000)는 스크램블러(1010), 변조기(1020), 레이어 매퍼(1030), 프리코더(1040), 자원 매퍼(1050), 신호 생성기(1060)를 포함할 수 있다. 이로 제한되는 것은 아니지만, 도 23의 동작/기능은 도 22의 프로세서(102, 202) 및/또는 송수신기(106, 206)에서 수행될 수 있다. 도 23의 하드웨어 요소는 도 22의 프로세서(102, 202) 및/또는 송수신기(106, 206)에서 구현될 수 있다. 예를 들어, 블록 1010~1060은 도 22의 프로세서(102, 202)에서 구현될 수 있다. 또한, 블록 1010~1050은 도 22의 프로세서(102, 202)에서 구현되고, 블록 1060은 도 22의 송수신기(106, 206)에서 구현될 수 있다.
코드워드는 도 23의 신호 처리 회로(1000)를 거쳐 무선 신호로 변환될 수 있다. 여기서, 코드워드는 정보블록의 부호화된 비트 시퀀스이다. 정보블록은 전송블록(예, UL-SCH 전송블록, DL-SCH 전송블록)을 포함할 수 있다. 무선 신호는 다양한 물리 채널(예, PUSCH, PDSCH)을 통해 전송될 수 있다.
구체적으로, 코드워드는 스크램블러(1010)에 의해 스크램블된 비트 시퀀스로 변환될 수 있다. 스크램블에 사용되는 스크램블 시퀀스는 초기화 값에 기반하여 생성되며, 초기화 값은 무선 기기의 ID 정보 등이 포함될 수 있다. 스크램블된 비트 시퀀스는 변조기(1020)에 의해 변조 심볼 시퀀스로 변조될 수 있다. 변조 방식은 pi/2-BPSK(pi/2-Binary Phase Shift Keying), m-PSK(m-Phase Shift Keying), m-QAM(m-Quadrature Amplitude Modulation) 등을 포함할 수 있다. 복소 변조 심볼 시퀀스는 레이어 매퍼(1030)에 의해 하나 이상의 전송 레이어로 매핑될 수 있다. 각 전송 레이어의 변조 심볼들은 프리코더(1040)에 의해 해당 안테나 포트(들)로 매핑될 수 있다(프리코딩). 프리코더(1040)의 출력 z는 레이어 매퍼(1030)의 출력 y를 N*M의 프리코딩 행렬 W와 곱해 얻을 수 있다. 여기서, N은 안테나 포트의 개수, M은 전송 레이어의 개수이다. 여기서, 프리코더(1040)는 복소 변조 심볼들에 대한 트랜스폼(transform) 프리코딩(예, DFT 변환)을 수행한 이후에 프리코딩을 수행할 수 있다. 또한, 프리코더(1040)는 트랜스폼 프리코딩을 수행하지 않고 프리코딩을 수행할 수 있다.
자원 매퍼(1050)는 각 안테나 포트의 변조 심볼들을 시간-주파수 자원에 매핑할 수 있다. 시간-주파수 자원은 시간 도메인에서 복수의 심볼(예, CP-OFDMA 심볼, DFT-s-OFDMA 심볼)을 포함하고, 주파수 도메인에서 복수의 부반송파를 포함할 수 있다. 신호 생성기(1060)는 매핑된 변조 심볼들로부터 무선 신호를 생성하며, 생성된 무선 신호는 각 안테나를 통해 다른 기기로 전송될 수 있다. 이를 위해, 신호 생성기(1060)는 IFFT(Inverse Fast Fourier Transform) 모듈 및 CP(Cyclic Prefix) 삽입기, DAC(Digital-to-Analog Converter), 주파수 상향 변환기(frequency uplink converter) 등을 포함할 수 있다.
무선 기기에서 수신 신호를 위한 신호 처리 과정은 도 23의 신호 처리 과정(1010~1060)의 역으로 구성될 수 있다. 예를 들어, 무선 기기(예, 도 22의 100, 200)는 안테나 포트/송수신기를 통해 외부로부터 무선 신호를 수신할 수 있다. 수신된 무선 신호는 신호 복원기를 통해 베이스밴드 신호로 변환될 수 있다. 이를 위해, 신호 복원기는 주파수 하향 변환기(frequency downlink converter), ADC(analog-to-digital converter), CP 제거기, FFT(Fast Fourier Transform) 모듈을 포함할 수 있다. 이후, 베이스밴드 신호는 자원 디-매퍼 과정, 포스트코딩(postcoding) 과정, 복조 과정 및 디-스크램블 과정을 거쳐 코드워드로 복원될 수 있다. 코드워드는 복호(decoding)를 거쳐 원래의 정보블록으로 복원될 수 있다. 따라서, 수신 신호를 위한 신호 처리 회로(미도시)는 신호 복원기, 자원 디-매퍼, 포스트코더, 복조기, 디-스크램블러 및 복호기를 포함할 수 있다.
본 발명이 적용되는 무선 기기 활용 예
도 24는 본 발명에 적용되는 무선 기기의 다른 예를 나타낸다.
무선 기기는 사용-예/서비스에 따라 다양한 형태로 구현될 수 있다(도 21 참조). 도 24를 참조하면, 무선 기기(100, 200)는 도 22의 무선 기기(100,200)에 대응하며, 다양한 요소(element), 성분(component), 유닛/부(unit), 및/또는 모듈(module)로 구성될 수 있다. 예를 들어, 무선 기기(100, 200)는 통신부(110), 제어부(120), 메모리부(130) 및 추가 요소(140)를 포함할 수 있다. 통신부는 통신 회로(112) 및 송수신기(들)(114)을 포함할 수 있다. 예를 들어, 통신 회로(112)는 도 22의 하나 이상의 프로세서(102,202) 및/또는 하나 이상의 메모리(104,204) 를 포함할 수 있다. 예를 들어, 송수신기(들)(114)는 도 22의 하나 이상의 송수신기(106,206) 및/또는 하나 이상의 안테나(108,208)을 포함할 수 있다. 제어부(120)는 통신부(110), 메모리부(130) 및 추가 요소(140)와 전기적으로 연결되며 무선 기기의 제반 동작을 제어한다. 예를 들어, 제어부(120)는 메모리부(130)에 저장된 프로그램/코드/명령/정보에 기반하여 무선 기기의 전기적/기계적 동작을 제어할 수 있다. 또한, 제어부(120)는 메모리부(130)에 저장된 정보를 통신부(110)을 통해 외부(예, 다른 통신 기기)로 무선/유선 인터페이스를 통해 전송하거나, 통신부(110)를 통해 외부(예, 다른 통신 기기)로부터 무선/유선 인터페이스를 통해 수신된 정보를 메모리부(130)에 저장할 수 있다.
추가 요소(140)는 무선 기기의 종류에 따라 다양하게 구성될 수 있다. 예를 들어, 추가 요소(140)는 파워 유닛/배터리, 입출력부(I/O unit), 구동부 및 컴퓨팅부 중 적어도 하나를 포함할 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(도 21, 100a), 차량(도 21, 100b-1, 100b-2), XR 기기(도 21, 100c), 휴대 기기(도 21, 100d), 가전(도 21, 100e), IoT 기기(도 21, 100f), 디지털 방송용 단말, 홀로그램 장치, 공공 안전 장치, MTC 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, AI 서버/기기(도 21, 400), 기지국(도 21, 200), 네트워크 노드 등의 형태로 구현될 수 있다. 무선 기기는 사용-예/서비스에 따라 이동 가능하거나 고정된 장소에서 사용될 수 있다.
도 24에서 무선 기기(100, 200) 내의 다양한 요소, 성분, 유닛/부, 및/또는 모듈은 전체가 유선 인터페이스를 통해 상호 연결되거나, 적어도 일부가 통신부(110)를 통해 무선으로 연결될 수 있다. 예를 들어, 무선 기기(100, 200) 내에서 제어부(120)와 통신부(110)는 유선으로 연결되며, 제어부(120)와 제1 유닛(예, 130, 140)은 통신부(110)를 통해 무선으로 연결될 수 있다. 또한, 무선 기기(100, 200) 내의 각 요소, 성분, 유닛/부, 및/또는 모듈은 하나 이상의 요소를 더 포함할 수 있다. 예를 들어, 제어부(120)는 하나 이상의 프로세서 집합으로 구성될 수 있다. 예를 들어, 제어부(120)는 통신 제어 프로세서, 어플리케이션 프로세서(Application processor), ECU(Electronic Control Unit), 그래픽 처리 프로세서, 메모리 제어 프로세서 등의 집합으로 구성될 수 있다. 다른 예로, 메모리부(130)는 RAM(Random Access Memory), DRAM(Dynamic RAM), ROM(Read Only Memory), 플래시 메모리(flash memory), 휘발성 메모리(volatile memory), 비-휘발성 메모리(non-volatile memory) 및/또는 이들의 조합으로 구성될 수 있다.
본 발명이 적용되는 휴대기기 예
도 25는 본 발명에 적용되는 휴대 기기를 예시한다.
휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 휴대용 컴퓨터(예, 노트북 등)을 포함할 수 있다. 휴대 기기는 MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station) 또는 WT(Wireless terminal)로 지칭될 수 있다.
도 25를 참조하면, 휴대 기기(100)는 안테나부(108), 통신부(110), 제어부(120), 메모리부(130), 전원공급부(140a), 인터페이스부(140b) 및 입출력부(140c)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110~130/140a~140c는 각각 도 24의 블록 110~130/140에 대응한다.
통신부(110)는 다른 무선 기기, 기지국들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 휴대 기기(100)의 구성 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 AP(Application Processor)를 포함할 수 있다. 메모리부(130)는 휴대 기기(100)의 구동에 필요한 데이터/파라미터/프로그램/코드/명령을 저장할 수 있다. 또한, 메모리부(130)는 입/출력되는 데이터/정보 등을 저장할 수 있다. 전원공급부(140a)는 휴대 기기(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 인터페이스부(140b)는 휴대 기기(100)와 다른 외부 기기의 연결을 지원할 수 있다. 인터페이스부(140b)는 외부 기기와의 연결을 위한 다양한 포트(예, 오디오 입/출력 포트, 비디오 입/출력 포트)를 포함할 수 있다. 입출력부(140c)는 영상 정보/신호, 오디오 정보/신호, 데이터, 및/또는 사용자로부터 입력되는 정보를 입력 받거나 출력할 수 있다. 입출력부(140c)는 카메라, 마이크로폰, 사용자 입력부, 디스플레이부(140d), 스피커 및/또는 햅틱 모듈 등을 포함할 수 있다.
일 예로, 데이터 통신의 경우, 입출력부(140c)는 사용자로부터 입력된 정보/신호(예, 터치, 문자, 음성, 이미지, 비디오)를 획득하며, 획득된 정보/신호는 메모리부(130)에 저장될 수 있다. 통신부(110)는 메모리에 저장된 정보/신호를 무선 신호로 변환하고, 변환된 무선 신호를 다른 무선 기기에게 직접 전송하거나 기지국에게 전송할 수 있다. 또한, 통신부(110)는 다른 무선 기기 또는 기지국으로부터 무선 신호를 수신한 뒤, 수신된 무선 신호를 원래의 정보/신호로 복원할 수 있다. 복원된 정보/신호는 메모리부(130)에 저장된 뒤, 입출력부(140c)를 통해 다양한 형태(예, 문자, 음성, 이미지, 비디오, 헵틱)로 출력될 수 있다.
이상에서 설명된 실시 예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시 예를 구성하는 것도 가능하다. 본 발명의 실시 예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시 예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시 예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명에 따른 실시 예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시 예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시 예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 통상의 기술자에게 자명하다. 따라서 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명은 3GPP LTE/LTE-A/NR 시스템에 적용되는 예를 중심으로 설명하였으나, 3GPP LTE/LTE-A/NR 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (17)

  1. 무선 통신 시스템에서 상향링크 데이터에 대한 복조 참조 신호를 전송하기 위한 방법에 있어서, 단말에 의해 수행되는 방법은,
    상향링크에 대한 트랜스폼 프리코딩(transform precoding)이 인에이블(enable) 되었음을 나타내는 제어 정보를 포함하는 RRC 시그널링을 기지국으로부터 수신하는 단계;
    길이-6인 시퀀스에 기초하여 낮은 PAPR(peak to average power ratio) 시퀀스를 생성하는 단계;
    상기 낮은 PAPR 시퀀스에 기초하여 상기 복조 참조 신호에 사용되는 시퀀스를 생성하는 단계; 및
    상기 복조 참조 신호에 사용되는 시퀀스에 기초하여 상기 복조 참조 신호를 상기 기지국으로 전송하는 단계를 포함하되,
    상기 길이-6인 시퀀스는 8-PSK(Phase Shift Keying) 심볼을 시퀀스의 각 엘리먼트(element)로 가지는 것을 특징으로 하는 방법.
  2. 제 1항에 있어서,
    상기 길이-6인 시퀀스는
    Figure PCTKR2020002191-appb-I000172
    에 의해 결정되며,
    상기 i는 상기 길이-6인 시퀀스의 엘리먼트들의 인덱스인 것을 특징으로 하는 방법.
  3. 제 2항에 있어서,
    상기
    Figure PCTKR2020002191-appb-I000173
    의 값은 (-1 -7 -3 -5 -1 3), (-7 3 -7 5 -7 -3), (5 -7 7 1 5 1), (-7 3 1 5 -1 3), (-7 -5 -1 -7 -5 5), (-7 1 -3 3 7 5) 및 (-7 1 -3 1 5 1)을 포함하는 것을 특징으로 하는 방법.
  4. 제 3항에 있어서,
    상기
    Figure PCTKR2020002191-appb-I000174
    에 대해 사이클릭 쉬프트된(cyclic shifted) 시퀀스는 상기
    Figure PCTKR2020002191-appb-I000175
    와 동일한 시퀀스인 것을 특징으로 하는 방법.
  5. 제 4항에 있어서,
    상기
    Figure PCTKR2020002191-appb-I000176
    의 값이 가질 수 있는 수는
    Figure PCTKR2020002191-appb-I000177
    인 것을 특징으로 하는 방법.
  6. 제 1항에 있어서,
    상기 낮은 PAPR 시퀀스에 대한 자기-상관(auto-correlation)의 값은 특정 값 미만인 것을 특징으로 하는 방법.
  7. 제 1항에 있어서,
    상기 낮은 PAPR 시퀀스에 FDSS(Frequency Domain Spectrum Shaping) 필터를 적용하는 단계를 더 포함하는 것을 특징으로 하는 방법.
  8. 제 1항에 있어서,
    상기 낮은 PAPR 시퀀스는 2개의 안테나 포트들에 Comb-2 형태로 FDM(Frequency Division Multiplexing)되는 것을 특징으로 하는 방법.
  9. 제 8항에 있어서,
    상기 2개의 안테나 포트들 각각에 서로 다른 낮은 PAPR 시퀀스가 사용되는 것을 특징으로 하는 방법.
  10. 무선 통신 시스템에서 상향링크 데이터에 대한 복조 참조 신호를 전송하기 위한 단말에 있어서,
    무선 신호를 송수신하기 위한 송수신기(tranceiver); 및
    상기 송수신기와 기능적으로 연결되어 있는 프로세서를 포함하고, 상기 프로세서는,
    상향링크에 대한 트랜스폼 프리코딩(transform precoding)이 인에이블(enable) 되었음을 나타내는 제어 정보를 포함하는 RRC 시그널링을 기지국으로부터 수신하며;
    길이-6인 시퀀스에 기초하여 낮은 PAPR(peak to average power ratio) 시퀀스를 생성하며;
    상기 낮은 PAPR 시퀀스에 기초하여 상기 복조 참조 신호에 사용되는 시퀀스를 생성하며; 및
    상기 복조 참조 신호에 사용되는 시퀀스에 기초하여 상기 복조 참조 신호를 상기 기지국으로 전송하도록 제어하되,
    상기 길이-6인 시퀀스는 8-PSK(Phase Shift Keying) 심볼을 시퀀스의 각 엘리먼트(element)로 가지는 것을 특징으로 하는 단말.
  11. 제 10항에 있어서,
    상기 길이-6인 시퀀스는
    Figure PCTKR2020002191-appb-I000178
    에 의해 결정되며,
    상기 i는 상기 길이-6인 시퀀스의 엘리먼트들의 인덱스인 것을 특징으로 하는 단말.
  12. 제 11항에 있어서,
    상기
    Figure PCTKR2020002191-appb-I000179
    의 값은 (-1 -7 -3 -5 -1 3), (-7 3 -7 5 -7 -3), (5 -7 7 1 5 1), (-7 3 1 5 -1 3), (-7 -5 -1 -7 -5 5), (-7 1 -3 3 7 5) 및 (-7 1 -3 1 5 1)을 포함하는 것을 특징으로 하는 단말.
  13. 제 12항에 있어서,
    상기
    Figure PCTKR2020002191-appb-I000180
    에 대해 사이클릭 쉬프트된(cyclic shifted) 시퀀스는 상기
    Figure PCTKR2020002191-appb-I000181
    와 동일한 시퀀스인 것을 특징으로 하는 단말.
  14. 제 10항에 있어서, 상기 프로세서는,
    상기 낮은 PAPR 시퀀스에 FDSS(Frequency Domain Spectrum Shaping) 필터를 적용하도록 제어하는 것을 특징으로 하는 단말.
  15. 제 10항에 있어서,
    상기 낮은 PAPR 시퀀스는 2개의 안테나 포트들에 Comb-2 형태로 FDM(Frequency Division Multiplexing)되는 것을 특징으로 하는 단말.
  16. 하나 이상의 메모리들 및 상기 하나 이상의 메모리들과 기능적으로 연결되어 있는 하나 이상의 프로세서들을 포함하는 장치에 있어서,
    상기 하나 이상의 프로세서들은 상기 장치가,
    상향링크에 대한 트랜스폼 프리코딩(transform precoding)이 인에이블(enable) 되었음을 나타내는 제어 정보를 포함하는 RRC 시그널링을 기지국으로부터 수신하고;
    길이-6인 시퀀스에 기초하여 낮은 PAPR(peak to average power ratio) 시퀀스를 생성하고;
    상기 낮은 PAPR 시퀀스에 기초하여 상기 복조 참조 신호에 사용되는 시퀀스를 생성하고; 및
    상기 복조 참조 신호에 사용되는 시퀀스에 기초하여 상기 복조 참조 신호를 상기 기지국으로 전송하되,
    상기 길이-6인 시퀀스는 8-PSK(Phase Shift Keying) 심볼을 시퀀스의 각 엘리먼트(element)로 가지는 것을 특징으로 하는 장치.
  17. 하나 이상의 명령어를 저장하는 하나 이상의 비일시적(non-transitory) 컴퓨터 판독 가능 매체에 있어서,
    하나 이상의 프로세서에 의해 실행 가능한 하나 이상의 명령어는 단말이,
    상향링크에 대한 트랜스폼 프리코딩(transform precoding)이 인에이블(enable) 되었음을 나타내는 제어 정보를 포함하는 RRC 시그널링을 기지국으로부터 수신하고;
    길이-6인 시퀀스에 기초하여 낮은 PAPR(peak to average power ratio) 시퀀스를 생성하고;
    상기 낮은 PAPR 시퀀스에 기초하여 상기 복조 참조 신호에 사용되는 시퀀스를 생성하고; 및
    상기 복조 참조 신호에 사용되는 시퀀스에 기초하여 상기 복조 참조 신호를 상기 기지국으로 전송하되,
    상기 길이-6인 시퀀스는 8-PSK(Phase Shift Keying) 심볼을 시퀀스의 각 엘리먼트(element)로 가지는 것을 특징으로 하는 비일시적(non-transitory) 컴퓨터 판독 가능 매체.
PCT/KR2020/002191 2019-02-15 2020-02-17 무선 통신 시스템에서 상향링크 데이터에 대한 복조 참조 신호를 전송하기 위한 방법 및 이를 위한 장치 WO2020167077A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/431,259 US20230047906A1 (en) 2019-02-15 2020-02-17 Method for transmitting demodulation reference signal for uplink data in wireless communication system, and device for same
KR1020217027993A KR102648203B1 (ko) 2019-02-15 2020-02-17 무선 통신 시스템에서 상향링크 데이터에 대한 복조 참조 신호를 전송하기 위한 방법 및 이를 위한 장치
CN202080014759.9A CN113439412A (zh) 2019-02-15 2020-02-17 在无线通信系统中发送用于上行链路数据的解调参考信号的方法及用于该方法的设备
EP20755011.2A EP3920458B1 (en) 2019-02-15 2020-02-17 Method for transmitting demodulation reference signal for uplink data in wireless communication system, and device for same
US18/096,884 US11838234B2 (en) 2019-02-15 2023-01-13 Method for transmitting demodulation reference signal for uplink data in wireless communication system, and device for same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201962806716P 2019-02-15 2019-02-15
KR20190017741 2019-02-15
US62/806,716 2019-02-15
KR10-2019-0017741 2019-02-15
KR10-2019-0033971 2019-03-25
KR20190033971 2019-03-25

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US17/431,259 A-371-Of-International US20230047906A1 (en) 2019-02-15 2020-02-17 Method for transmitting demodulation reference signal for uplink data in wireless communication system, and device for same
US17431259 A-371-Of-International 2021-08-16
US18/096,884 Continuation US11838234B2 (en) 2019-02-15 2023-01-13 Method for transmitting demodulation reference signal for uplink data in wireless communication system, and device for same

Publications (1)

Publication Number Publication Date
WO2020167077A1 true WO2020167077A1 (ko) 2020-08-20

Family

ID=72045006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/002191 WO2020167077A1 (ko) 2019-02-15 2020-02-17 무선 통신 시스템에서 상향링크 데이터에 대한 복조 참조 신호를 전송하기 위한 방법 및 이를 위한 장치

Country Status (5)

Country Link
US (2) US20230047906A1 (ko)
EP (1) EP3920458B1 (ko)
KR (1) KR102648203B1 (ko)
CN (1) CN113439412A (ko)
WO (1) WO2020167077A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022188659A1 (zh) * 2021-03-09 2022-09-15 华为技术有限公司 一种通信方法及通信装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021054765A1 (ko) * 2019-09-19 2021-03-25 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신 하는 방법 및 이를 지원하는 장치
US20230291630A1 (en) * 2022-03-08 2023-09-14 Qualcomm Incorporated Low peak-to-average power ratio waveform generation
WO2024010108A1 (ko) * 2022-07-05 2024-01-11 엘지전자 주식회사 무선 통신 시스템에서 협력 전송을 수행하기 위한 방법 및 이를 위한 장치

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018128574A1 (en) * 2017-01-05 2018-07-12 Telefonaktiebolaget Lm Ericsson (Publ) Device and node in a wireless communication system for transmitting uplink control information
KR20180122917A (ko) * 2017-05-04 2018-11-14 삼성전자주식회사 무선 통신 시스템에서 피크 대 평균 전력비 감소를 위한 송수신 방법 및 장치

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101782647B1 (ko) * 2010-01-28 2017-09-28 엘지전자 주식회사 무선 통신 시스템에서 상향링크 제어 정보 인코딩 방법 및 장치
KR20140132336A (ko) * 2012-01-16 2014-11-17 엘지전자 주식회사 무선 통신 시스템에서 복조참조신호 전송 방법 및 장치
US9628310B2 (en) * 2015-03-25 2017-04-18 Newracom, Inc. Long training field sequence construction
EP3413495B1 (en) * 2016-02-02 2023-04-05 LG Electronics Inc. Method for transmitting dmrs in wireless communication system supporting nb-iot and apparatus therefor
KR102192250B1 (ko) * 2016-03-27 2020-12-17 엘지전자 주식회사 무선 통신 시스템에서 상향링크 복조 참조 신호 송수신 방법 및 이를 위한 장치
US11038729B2 (en) * 2018-11-02 2021-06-15 Qualcomm Incorporated Computer-generated sequence design for binary phase shift keying modulation data

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018128574A1 (en) * 2017-01-05 2018-07-12 Telefonaktiebolaget Lm Ericsson (Publ) Device and node in a wireless communication system for transmitting uplink control information
KR20180122917A (ko) * 2017-05-04 2018-11-14 삼성전자주식회사 무선 통신 시스템에서 피크 대 평균 전력비 감소를 위한 송수신 방법 및 장치

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"TSG RAN; NR; Physical channels and modulation (Release 15", 3GPP TS 38.211 V15.4.0, 16 January 2019 (2019-01-16), pages 1 - 96, XP051591794 *
"TSG RAN; NR; Physical layer procedures for data (Release 15", 3GPP TS 38.214 V15.4.0, 11 January 2019 (2019-01-11), pages 1 - 102, XP051591682 *
HUAWEI: "Simulation results for low PAPR Type 2 DMRS sequence", R1-1814087, 3GPP TSG RAN WG1 MEETING #95, 15 November 2018 (2018-11-15), Spokane, USA, XP051494535 *
See also references of EP3920458A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022188659A1 (zh) * 2021-03-09 2022-09-15 华为技术有限公司 一种通信方法及通信装置

Also Published As

Publication number Publication date
EP3920458B1 (en) 2023-04-05
EP3920458A1 (en) 2021-12-08
US20230171057A1 (en) 2023-06-01
US20230047906A1 (en) 2023-02-16
US11838234B2 (en) 2023-12-05
KR102648203B1 (ko) 2024-03-18
EP3920458A4 (en) 2022-03-30
KR20210113412A (ko) 2021-09-15
CN113439412A (zh) 2021-09-24

Similar Documents

Publication Publication Date Title
WO2020145748A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2020032691A1 (ko) 비면허 대역을 지원하는 무선 통신 시스템에서 단말과 기지국의 동작 방법 및 이를 지원하는 장치
WO2020167076A1 (ko) 무선 통신 시스템에서 낮은 papr 시퀀스를 생성하기 위한 방법 및 이를 위한 장치
WO2020167077A1 (ko) 무선 통신 시스템에서 상향링크 데이터에 대한 복조 참조 신호를 전송하기 위한 방법 및 이를 위한 장치
WO2020167075A1 (ko) 무선 통신 시스템에서 상향링크 제어 신호에 대한 복조 참조 신호를 전송하기 위한 방법 및 이를 위한 장치
WO2020032705A1 (ko) 무선 통신 시스템에서 신호를 송수신 하는 방법 및 이를 지원하는 장치
WO2021054801A1 (ko) 무선 통신 시스템에서 신호를 송수신 하는 방법 및 이를 지원하는 장치
WO2020222606A1 (ko) 무선 통신 시스템에서 위상 추적 참조 신호의 송수신 방법 및 이에 대한 장치
WO2020032726A1 (ko) 무선 통신 시스템에서 통신 장치가 wus 신호를 감지 또는 송신하는 방법 및 장치
WO2021054800A1 (ko) 무선 통신 시스템에서 신호를 송수신 하는 방법 및 이를 지원하는 장치
WO2021054802A1 (ko) 무선 통신 시스템에서 신호를 송수신 하는 방법 및 이를 지원하는 장치
WO2020231125A1 (ko) 무선 통신 시스템에서 사운딩 참조 신호 송수신 방법 및 장치
WO2020032738A1 (ko) 무선 통신 시스템에서 대역폭 파트를 설정하는 방법 및 이를 지원하는 장치
WO2021034055A1 (ko) 사물 인터넷을 지원하는 무선 통신 시스템에서 하향링크 정보를 송수신하는 방법 및 이를 위한 장치
WO2021153826A1 (ko) 반송파 집성을 지원하는 무선 통신 시스템에서 시스템 정보의 송수신 방법 및 그 장치
WO2019212216A1 (ko) 무선 통신 시스템에서 데이터를 송수신하기 위한 방법 및 이를 지원하는 장치
WO2021071337A1 (ko) 무선 통신 시스템에서 채널 상태 정보를 보고하는 방법 및 이에 대한 장치
WO2020060381A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2021066602A1 (ko) 무선 통신 시스템에서 신호를 송수신 하는 방법 및 이를 지원하는 장치
WO2020091315A1 (ko) 무선 통신 시스템에서 릴레이 단말의 신호 송수신 방법 및 그 장치
WO2020197335A1 (ko) 무선 통신 시스템에서 사운딩 참조 신호 송수신 방법 및 장치
WO2020145652A1 (ko) 무선 통신 시스템에서 신호의 송수신 방법 및 이를 위한 장치
WO2021015564A1 (ko) 기계 타입 통신을 지원하는 무선 통신 시스템에서 긴급 정보를 송수신하는 방법 및 이를 위한 장치
WO2021066625A1 (ko) 무선 통신 시스템에서 하향링크 데이터 채널의 송수신 방법 및 이에 대한 장치
WO2021034054A1 (ko) 사물 인터넷을 지원하는 무선 통신 시스템에서 하향링크 정보를 송수신하는 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20755011

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217027993

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020755011

Country of ref document: EP

Effective date: 20210831