WO2020164600A1 - 信息指示的方法及装置 - Google Patents

信息指示的方法及装置 Download PDF

Info

Publication number
WO2020164600A1
WO2020164600A1 PCT/CN2020/075317 CN2020075317W WO2020164600A1 WO 2020164600 A1 WO2020164600 A1 WO 2020164600A1 CN 2020075317 W CN2020075317 W CN 2020075317W WO 2020164600 A1 WO2020164600 A1 WO 2020164600A1
Authority
WO
WIPO (PCT)
Prior art keywords
tci
tci states
code points
order
tci state
Prior art date
Application number
PCT/CN2020/075317
Other languages
English (en)
French (fr)
Inventor
张荻
刘鹍鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201911072492.4A external-priority patent/CN111586862B/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20755134.2A priority Critical patent/EP3897057B1/en
Publication of WO2020164600A1 publication Critical patent/WO2020164600A1/zh
Priority to US17/403,437 priority patent/US20210385832A1/en
Priority to US18/674,559 priority patent/US20240314767A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1614Details of the supervisory signal using bitmaps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/19Connection re-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/02Data link layer protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • This application relates to the field of communications, and more specifically, to a method and device for information indication.
  • High-frequency bands with larger available bandwidth such as millimeter wave bands
  • modern communication systems usually use multi-antenna technology to increase system capacity and coverage in order to improve user experience.
  • the use of high-frequency bands can also greatly reduce the size of multi-antenna configurations, which facilitates site acquisition and deployment of more antennas.
  • LTE Long Term Evolution
  • FIG. 1A shows a schematic diagram of beam training, including downlink joint beam training, uplink joint beam training, downlink terminal beam training, uplink terminal beam training, downlink network equipment beam training, and uplink network equipment beam training, respectively as (a) -(f) shown.
  • a channel quality measurement and result report based on beamforming technology is introduced.
  • the measurement of the channel quality may be implemented based on a synchronization signal or a cell-specific reference signal after beamforming. Among them, compared with the handover between cells, the user handover between different shaped beams will be more dynamic and frequent, so a dynamic measurement and reporting mechanism is required.
  • the report of the channel quality result of the shaped beam may also be sent by the user equipment to the base station through a physical uplink control channel or a physical uplink shared channel.
  • both the transmission beam of the network equipment and the receiving beam of the terminal may change dynamically, and the optimal receiving beam determined by the terminal based on the received signal may include multiple.
  • the terminal may combine multiple The information of each receiving beam is fed back to the network device, and the network device can instruct the terminal to receive the beam by sending beam indication information to the terminal.
  • the terminal adopts beamforming in the analog domain, the terminal can accurately determine the receiving beam of the terminal based on the beam indication information sent by the network device, thereby saving the beam scanning time of the terminal device and achieving the effect of power saving.
  • the current beam indication method only considers the transmission mode in which a single transmission reception point (Transmission Reception Point, TRP) uses one beam to communicate with the terminal at a certain moment.
  • TRP Transmission Reception Point
  • network devices can use different beams to communicate with a terminal at the same time, that is, multi-beam transmission, or multiple TRP serves the terminal.
  • multiple TRPs communicating with one terminal include multiple TRPs communicating with one terminal at the same time, or dynamic point selection (DPS) communicating with one terminal.
  • DPS dynamic point selection
  • the scenario in which multiple TRPs communicate with one terminal at the same time may also be referred to as an incoherent joint transmission (NCJT) scenario or NCJT transmission mode.
  • the beam indication for multiple transmission modes cannot be supported by existing protocols.
  • a corresponding mechanism needs to be introduced to indicate the beam of the data channel, that is, in the scenario of multi-beam/multi-link/multi-layer transmission or multiple TRP transmission, the corresponding mechanism needs to be introduced.
  • the mechanism indicates the beam information of the data channel.
  • the embodiments of the present application provide an information indication method and device, which are used to implement transmission configuration indication information indication and data transmission in a multi-beam transmission scenario.
  • an embodiment of the present application provides an information indication method, including a terminal device receiving first indication information, where the first indication information is used to indicate A transmission configuration indication TCI status, where A is a positive integer; Then receive second indication information, where the second indication information is used to indicate a first code point, and the first code point is one of P code points; and then according to a preset rule and the first code point, determine At least one TCI state corresponding to the first code point, wherein the preset rule includes a rule for mapping the A TCI states to the P code points, and at least one code of the P code points The point corresponds to at least two TCI states of the A TCI states; furthermore, according to the at least one TCI state, downlink information is received and/or uplink information is sent.
  • the method realizes the indication of transmission configuration indication information and data transmission in a multi-beam transmission scenario.
  • the terminal device receives configuration information, where the configuration information is used to indicate M TCI states, where M is a positive integer greater than 1.
  • an embodiment of the present application provides an information indication method, including: a network device sends first indication information, where the first indication information is used to indicate A transmission configuration indication TCI status, where A is a positive integer ; And then determine the first code point corresponding to the at least one TCI state according to a preset rule and at least one TCI state, wherein the preset rule includes a rule for mapping the A TCI states to P code points, At least one of the P code points corresponds to at least two of the A TCI states, and the first code point is one of the P code points; and then a second instruction is sent Information, the second indication information is used to indicate the first code point; further, according to the at least one TCI state, receiving downlink information and/or sending uplink information.
  • the method realizes the indication of transmission configuration indication information and data transmission in a multi-beam transmission scenario.
  • the network device sends configuration information, where the configuration information is used to indicate M TCI states, where M is a positive integer greater than 1.
  • an embodiment of the present application provides an information indicating device, including a processor and a transceiver coupled to the processor; the transceiver is used to receive first indication information, and the first indication information is used to indicate A
  • the transmission configuration indicates the TCI state, where A is a positive integer; it is also used to receive second indication information, the second indication information is used to indicate a first code point, and the first code point is one of P code points
  • a processor for determining at least one TCI state corresponding to the first code point according to a preset rule and the first code point, where the preset rule includes mapping the A TCI states to all According to the rule of the P code points, at least one of the P code points corresponds to at least two TCI states of the A TCI states; the transceiver is also used to, according to the at least one TCI state, Receive downlink information and/or send uplink information.
  • the device realizes the indication and data transmission of transmission configuration indication information in a multi-beam transmission scenario.
  • the transceiver is further configured to receive configuration information, where the configuration information is used to indicate M TCI states, where M is a positive integer greater than 1.
  • an embodiment of the present application provides an information indicating device, including a processor and a transceiver coupled to the processor; the transceiver is configured to send first instruction information, and the first instruction information is used to indicate A transmission configurations indicate the TCI state, where A is a positive integer; the processor is configured to determine the first code point corresponding to the at least one TCI state according to a preset rule and at least one TCI state, where the preset The rule includes a rule for mapping the A TCI states to P code points, at least one of the P code points corresponds to at least two TCI states in the A TCI states, and the first The code point is one of the P code points; the transceiver is also used to send second indication information, the second indication information is used to indicate the first code point; the transceiver is also used to At least one TCI state, receiving downlink information and/or sending uplink information.
  • the device realizes the indication and data transmission of transmission configuration indication information in a multi-beam transmission scenario.
  • the transceiver is used to send configuration information
  • the configuration information is used to indicate M TCI states, where M is a positive integer greater than 1.
  • the A TCI states include K1 first TCI states and K2 second TCI states, wherein the K1 first TCI states At least one of the first TCI states includes one or more of the A TCI states, and at least one second TCI state of the K2 second TCI states includes one or more of the A TCI states A TCI state, K1 and K2 are positive integers, and K1+K2 ⁇ A.
  • the preset rules include a first TCI state mapping rule and a second TCI state mapping rule, wherein the first TCI state mapping rule includes: A rule for mapping the K1 first TCI states to L1 code points in the P code points, and the second TCI state mapping rule includes mapping the K2 second TCI states to the P code points
  • the rule of L2 code points in code points, L1, L2 are positive integers, and L1 ⁇ P, L2 ⁇ P.
  • the first TCI state mapping rule includes: the K1 first TCI states arranged in a first order are respectively mapped to a second order K1 code points out of the L1 code points arranged, K1 ⁇ L1; or
  • the TCI state is mapped to the first of the L1 code points Code points, i is a positive integer, w1 is a positive integer, Indicates rounding up, K1 ⁇ L1; where, the first order is: TCI status identifiers in ascending order, or TCI status identifiers in ascending order, or TCI status identifiers in ascending order
  • the K1 first TCI state vectors are transformed into the order, or the K1 first TCI state vectors arranged in descending order of the TCI state identifiers are transformed into the order, or the first
  • the sequence of the K1 first TCI states indicated by the indication information, or the vector composed of the K1 first TCI states arranged in the sequence of the K1 first TCI states indicated by the first indication information is transformed The
  • the second TCI state mapping rule includes: the K2 second TCI states arranged in the third order are respectively mapped to the K2 second TCI states in the fourth order.
  • Code points j is a positive integer
  • w2 is a positive integer
  • the third order is: TCI status identifiers in ascending order, or TCI status identifiers in ascending order, or all TCI status identifiers in ascending order
  • the sequence obtained by transforming the vector composed of the K2 second TCI states or the sequence obtained by transforming the vector composed of the fourth order.
  • the L1 code points are predefined or indicated by the third indication information; and/or, the L2 code points are predefined Defined or indicated by the fourth indication information.
  • the third indication information includes a first bitmap, the first bitmap is a P bitmap, and the first bitmap is L1 Bits with a value of 1 are used to indicate the L1 code points; and/or, the fourth indication information includes a second bitmap, the second bitmap is a P-bit bitmap, and the second bit In the figure, the L2 bits whose value is 1 are used to indicate the L2 code points.
  • the smallest code point value among the L1 code points is X, and the X is predefined or indicated by the fifth indication information, where X is an integer, 0 ⁇ X+L1 ⁇ P; or, the maximum code point value of the L1 code points is X, and the X is predefined or indicated by the fifth indication information, where X is an integer, X ⁇ L1; and/or, the smallest code point value among the L2 code points is Y, where Y is predefined or indicated by the sixth indication information, where Y is an integer, 0 ⁇ Y+L2 ⁇ P; or, the maximum code point value of the L2 code points is Y, and the Y is predefined or indicated by the sixth indication information, where Y is an integer, and Y ⁇ L2.
  • the code point values of the L1 code points are continuous or non-continuous; and/or, the code points of the L2 code points The value is continuous or non-continuous.
  • the L1 code points and the L2 code points include at least one same code point.
  • the first indication information is a medium access control element MAC CE, wherein the K1 first TCI states are located in the K2 Before the second TCI state.
  • the first indication information includes a first medium access control element MAC CE and a second MAC CE
  • the first MAC CE is used to indicate The K1 first TCI states
  • the second MAC CE is used to indicate the K2 second TCI states.
  • an embodiment of the present application provides a device, including a functional unit for executing the method of each embodiment of the present application.
  • embodiments of the present application provide a computer storage medium, including computer instructions, which, when the computer instructions run on a device, cause the device to execute the information indication method described in each embodiment of the present application.
  • an embodiment of the present application provides a chip for executing the method of each embodiment of the present application.
  • a communication failure method including: a terminal device sends first indication information to a network device in a p-th time unit on a first uplink resource, where the first indication information is used to indicate a first download The communication on the line resource failed;
  • the terminal device starts within the time window of the qth time unit or the qth time unit, or, after the qth time unit, the time window at which the position of the time-frequency resource for sending the downlink control channel starts Inside, detecting communication failure response information, where the communication failure response information is a response to a communication failure on the first downlink resource carried on the second downlink resource;
  • the v is a number greater than or equal to 0, the q is a number greater than or equal to 0, the first uplink resource belongs to the first cell, and the first downlink resource and/or the second downlink resource belongs to A second cell, where the first cell and the second cell are different cells or the same cell;
  • the q-th time unit is determined according to the time unit for sending or sending the first indication information, and/or the system parameter of the first cell, and/or the system parameter of the second cell .
  • the q time unit is the qth time unit of the downlink of the second cell.
  • the time unit for sending or sending the first indication information is the p-th time unit; the p-th time unit is based on the system parameters of the first cell, and/or , The system parameters of the second cell are determined;
  • the p-th time unit is the p-th time unit determined according to the minimum or maximum value of the system parameters of the first cell and the second cell.
  • the system parameter of the first cell is the system parameter of the uplink carrier of the first cell
  • the system parameter of the second cell is the system parameter of the downlink carrier of the second cell.
  • the second uplink resource is the system parameter of the uplink carrier of the first cell
  • the system parameter of the uplink carrier of the first cell is the system parameter of the first uplink resource, the second uplink resource of the first cell, and the smallest system parameter of all the uplink resources of the first cell One of the system parameters of the uplink resource.
  • the system parameters of the downlink carrier of the second cell are system parameters of the first downlink resource, system parameters of the second downlink resource, system parameters of the third downlink resource of the second cell, One of the system parameters of the downlink resource with the smallest system parameter among all the downlink resources of the second cell.
  • the second uplink resource, the third downlink resource, the second uplink resource, and the third downlink resource are system parameters of the first downlink resource, system parameters of the second downlink resource, system parameters of the third downlink resource of the second cell, One of the system parameters of the downlink resource with the smallest system parameter among all the downlink resources of the second cell.
  • the p-th time unit is the p-th time unit determined according to the system parameter of the uplink carrier of the first cell; or
  • the p-th time unit is the p-th time unit determined according to the system parameter of the first uplink resource; or
  • the p-th time unit is the p-th time unit determined according to the system parameter of the second uplink resource of the first cell;
  • the p-th time unit is the p-th time unit determined according to the system parameter of the uplink resource with the smallest system parameter among all the uplink resources of the first cell;
  • the p time units are the p-th time unit determined according to the system parameters of the downlink carrier of the second cell; or
  • the p-th time unit is the p-th time unit determined according to the system parameter of the first downlink resource; or, the p-th time unit is determined according to the system parameter of the second downlink resource The p th time unit of; or
  • the p-th time unit is the p-th time unit determined according to the system parameter of the third downlink resource of the second cell;
  • the p-th time unit is the p-th time unit determined according to the system parameter of the downlink resource with the smallest system parameter among all the downlink resources of the second cell.
  • the qth time unit is the qth time unit determined according to the system parameters of the uplink carrier of the first cell and the system parameters of the downlink carrier of the second cell; or
  • the qth time unit is the qth time unit determined according to the system parameters of the first uplink resource and the system parameters of the first downlink resource; or
  • the qth time unit determined according to the system parameter of the second uplink resource of the first cell and the system parameter of the third downlink resource of the second cell; or
  • the qth time unit is the qth time unit determined according to the system parameter of the uplink carrier of the first cell, the system parameter of the downlink carrier of the second cell, and the p; or
  • the qth time unit is the qth time unit determined according to the system parameter of the first uplink resource, the system parameter of the first downlink resource, and the p; or
  • the qth time unit is the qth time unit determined according to the system parameter of the second uplink resource of the first cell, the system parameter of the third downlink resource of the second cell, and the p.
  • the q is determined by any of the following formulas:
  • the K is an integer greater than or equal to 0;
  • the ⁇ 1 is the system parameter of the uplink carrier of the first cell
  • ⁇ 2 is the system parameter of the downlink carrier of the second cell
  • the ⁇ 1 is the system parameter of the downlink carrier of the second cell
  • ⁇ 2 is the uplink carrier of the first cell System parameters.
  • the K is predefined or reported by the terminal equipment capability or indicated by the network equipment (for example, indicated by the third indication information), for example, K is 4 time slots.
  • q is the number of time units determined by which system parameter
  • K is the number of time units determined by which system parameter.
  • q is the number of time units of the downlink subcarrier of the second cell
  • K is also the number of time units of the downlink subcarrier of the second cell.
  • p is the number of time units determined by which system parameter
  • K is the number of time units determined by which system parameter.
  • p is the number of time units of downlink subcarriers of the second cell
  • K is also the number of time units of downlink subcarriers of the second cell.
  • the K is a positive integer.
  • K is determined by the maximum or minimum value of the system parameter of the downlink subcarrier of the second cell and the system parameter of the uplink subcarrier of the first cell.
  • the K is based on the system parameter of the downlink carrier of the second cell, or the system parameter of the first downlink resource of the second cell, or the system parameter of the second downlink resource of the second cell, or the second cell The number of time units determined by the system parameter of the third downlink resource.
  • the K is based on the number of time units determined by the system parameter of the uplink carrier of the first cell or the system parameter of the first uplink resource of the first cell or the system parameter of the second uplink resource of the first cell.
  • a communication failure method including: a network device receives first indication information on a first uplink resource, where the first indication information is used to indicate a communication failure on the first downlink resource;
  • the communication failure response information is a response to a communication failure on the first downlink resource carried on the second downlink resource
  • the z is a number greater than or equal to 0, the s is a number greater than or equal to 0, the first uplink resource belongs to the first cell, and the first downlink resource and/or the second downlink resource belongs to A second cell, where the first cell and the second cell are different cells or the same cell;
  • the s-th time unit is determined based on receiving or after receiving the first indication information, and/or the system parameters of the first cell, and/or the system parameters of the second cell. In some possible implementations,
  • the time unit at which the first indication information is received or received is the t-th time unit; the t-th time unit is based on the system parameters of the first cell, and/or the time unit of the second cell System parameters are determined;
  • the t is a number greater than or equal to zero.
  • the system parameter of the first cell is the system parameter of the uplink carrier of the first cell, and or, the system parameter of the second cell is the downlink carrier of the second cell System parameters.
  • the system parameter of the uplink carrier of the first cell is the system parameter of the first uplink resource, the second uplink resource of the first cell, and the smallest system parameter of all the uplink resources of the first cell One of the system parameters of the uplink resource;
  • the system parameters of the downlink carrier of the second cell are the system parameters of the first downlink resource, the system parameters of the second downlink resource, the system parameters of the third downlink resource of the second cell, and the middle of all the downlink resources of the second cell.
  • the s is defined by formula (13), formula (14), formula (15), formula (16), formula (17), formula (18), formula (19), formula (20), Formula (21), Formula (22), Formula (23), or Formula (24) is determined by any one of the formulas;
  • the system parameter of the downlink carrier of the second cell, ⁇ 2 is the system parameter of the uplink carrier of the first cell, the second uplink resource, and the third downlink resource.
  • the L is predefined or reported by the terminal equipment capability or indicated by the network equipment (for example, indicated by the third indication information), for example, L is 4 timeslots.
  • s is the number of time units determined by which system parameter
  • L is the number of time units determined by which system parameter.
  • s is the number of time units of the downlink subcarrier of the second cell
  • L is also the number of time units of the downlink subcarrier of the second cell.
  • t is the number of time units determined by which system parameter
  • L is the number of time units determined by which system parameter.
  • t is the number of time units of the downlink subcarrier of the second cell
  • L is also the number of time units of the downlink subcarrier of the second cell.
  • the L is a positive integer.
  • L is determined by the maximum or minimum value of the system parameter of the downlink subcarrier of the second cell and the system parameter of the uplink subcarrier of the first cell.
  • the L is based on the system parameter of the downlink carrier of the second cell, or the system parameter of the first downlink resource of the second cell, or the system parameter of the second downlink resource of the second cell, or the second cell The number of time units determined by the system parameter of the third downlink resource.
  • the L is the number of time units determined based on the system parameter of the uplink carrier of the first cell or the system parameter of the first uplink resource of the first cell or the system parameter of the second uplink resource of the first cell.
  • f1 is the subcarrier spacing of the uplink carrier of the first cell, or f1 is the subcarrier spacing of the first uplink resource, or f1 is the subcarrier spacing of the second uplink resource of the first cell; f2 is the subcarrier spacing of the second uplink resource of the first cell; The subcarrier interval of the downlink carrier of the second cell, or, f2 is the subcarrier interval of the first downlink resource of the second cell; or, f2 is the subcarrier interval of the third downlink resource of the second cell.
  • f2 is the subcarrier spacing of the uplink carrier of the first cell, or f2 is the subcarrier spacing of the first uplink resource, or f2 is the subcarrier spacing of the second uplink resource of the first cell; f1 is the subcarrier spacing of the second uplink resource of the first cell; The subcarrier interval of the downlink carrier of the second cell, or f1 is the subcarrier interval of the first downlink resource of the second cell; or, f1 is the subcarrier interval of the third downlink resource of the second cell.
  • f1 and f2 are equivalent to ⁇ f in Table 7.
  • a communication failure recovery device in a tenth aspect, includes a unit for executing each step in the method in the eighth aspect or any possible implementation manner of the eighth aspect.
  • an apparatus for recovering from a communication failure includes a unit for executing each step in the ninth aspect or any possible implementation manner of the ninth aspect.
  • a device for recovering from a communication failure includes a transceiver, a memory, and a processor.
  • the transceiver, the memory, and the processor communicate with each other through an internal connection path
  • the memory is used to store instructions
  • the processor is used to execute the instructions stored in the memory to control the receiver to receive signals and control the transmitter to send signals
  • the execution causes the processor to execute the eighth aspect or the method in any one of the possible implementation manners of the eighth aspect.
  • a device for recovering from a communication failure includes a transceiver, a memory, and a processor.
  • the transceiver, the memory, and the processor communicate with each other through an internal connection path
  • the memory is used to store instructions
  • the processor is used to execute the instructions stored in the memory to control the receiver to receive signals and control the transmitter to send signals
  • the execution causes the processor to execute the ninth aspect or the method in any one of the possible implementation manners of the ninth aspect.
  • a communication failure recovery system including the device provided in the eighth aspect and the device provided in the ninth aspect; or
  • the system includes the device provided in the eighth aspect and the device provided in the ninth aspect.
  • a computer program product includes a computer program.
  • the computer program product includes a computer program.
  • the computer program is executed by a processor, it is used to execute the method in the eighth aspect or any possible implementation of the eighth aspect .
  • a computer program product includes a computer program.
  • the computer program product includes a computer program.
  • the computer program is executed by a processor, it is used to execute the ninth aspect or the method in any possible implementation of the ninth aspect .
  • a computer-readable storage medium stores a computer program, and when the computer program is executed, it is used to execute the eighth aspect or any possible implementation manner of the eighth aspect Method in.
  • An eighteenth aspect provides a computer-readable storage medium in which a computer program is stored, and when the computer program is executed, it is used to execute the ninth aspect or any possible implementation manner of the ninth aspect Method in.
  • FIG. 1A is a schematic diagram of a beam training provided by this application.
  • FIG. 1B is a schematic diagram of an application scenario provided by an embodiment of this application.
  • FIG. 2 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 3 is a schematic structural diagram of another communication device provided by an embodiment of this application.
  • FIG. 4 is a signaling flowchart of a method for indicating information provided by an embodiment of the application.
  • Figure 4A is a MAC CE format provided by an embodiment of this application.
  • FIG. 4B is another MAC CE format provided by an embodiment of this application.
  • FIG. 4C is another MAC CE format provided by an embodiment of this application.
  • Fig. 4D is another MAC CE format provided by an embodiment of this application.
  • Fig. 5 is a schematic flowchart of a communication failure recovery process provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a communication failure recovery method provided by an embodiment of the present application.
  • FIG. 7 is a schematic block diagram of a communication failure recovery apparatus provided by an embodiment of the present application.
  • FIG. 8 is another schematic block diagram of a communication failure recovery apparatus provided by an embodiment of the present application.
  • FIG. 9 is another schematic block diagram of the communication failure recovery apparatus provided by an embodiment of the present application.
  • FIG. 10 is another schematic block diagram of the communication failure recovery apparatus provided by an embodiment of the present application.
  • FIG. 11 is another schematic block diagram of the communication failure recovery apparatus provided by an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • UMTS Universal Mobile Telecommunications System
  • LTE Long Term Evolution
  • FIG. 1B is a schematic diagram of a communication system provided by an embodiment of this application.
  • the communication system includes at least one network device 101 and at least one terminal device.
  • two terminal devices are taken as an example for illustration.
  • the two terminal devices are terminal device 111 and terminal device 112, respectively.
  • the device 111 and the terminal device 112 are in the coverage area of the base station 101 and communicate with the network device 101 to implement the technical solutions provided in the following embodiments of the present application.
  • the network device 101 is a base station of the NR system
  • the terminal device 101 and the terminal device 102 are corresponding terminal devices of the NR system.
  • the embodiments of this application describe various embodiments in conjunction with network equipment and terminal equipment.
  • the network equipment and terminal equipment can work in a licensed frequency band or an unlicensed frequency band, where:
  • Terminal equipment may also be called User Equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, terminal, wireless communication equipment, user Agent or user device.
  • the terminal equipment can be a station (ST) in a wireless local area network (Wireless Local Area Networks, WLAN), a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, and a wireless local loop (Wireless Local).
  • WLAN wireless Local Area Networks
  • SIP Session Initiation Protocol
  • PDA Personal Digital Assistant
  • handheld devices with wireless communication functions computing devices or other processing devices connected to wireless modems
  • vehicle-mounted devices wearable devices
  • next-generation communication systems For example, terminal equipment in the fifth-generation (5G) network or terminal equipment in the future evolution of the Public Land Mobile Network (PLMN) network, terminal equipment in the NR system, etc.
  • 5G fifth-generation
  • PLMN Public Land Mobile Network
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • the network device may be a device used to communicate with mobile devices.
  • the network equipment can be an access point (Access Point, AP) in WLAN, a base station (Base Transceiver Station, BTS) in GSM or CDMA, a base station (NodeB, NB) in WCDMA, or a base station in LTE Evolutional Node B (eNB or eNodeB), or relay station or access point, or in-vehicle equipment, wearable equipment, and network equipment in the future 5G network or network equipment in the future evolved PLMN network, or in the NR system New generation Node B (gNodeB) and so on. It can be understood that multiple network devices can communicate with one terminal device.
  • the network device provides services for the cell, and the terminal device communicates with the network device through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell.
  • the cell may be a cell corresponding to a network device (for example, a base station), and the cell may belong to a macro base station or a base station corresponding to a small cell (small cell).
  • the small cells here may include: Metro cells, Micro cells, Pico cells, Femto cells, etc. These small cells have the characteristics of small coverage and low transmit power. , Suitable for providing high-speed data transmission services.
  • the carrier in the LTE system or the NR system can have multiple cells working at the same frequency at the same time.
  • the concept of the above-mentioned carrier and the cell can also be considered equivalent.
  • a carrier aggregation (Carrier Aggregation, CA) scenario when a secondary carrier is configured for a UE, the carrier index of the secondary carrier and the cell identification (Cell ID) of the secondary cell working in the secondary carrier will be carried at the same time.
  • the concept of carrier and cell can be considered to be equivalent.
  • the UE accessing a carrier is equivalent to accessing a cell.
  • the high-level signaling in the embodiments of the present application may refer to: signaling sent by a high-level protocol layer, and the high-level protocol layer is at least one protocol layer in each protocol layer above the physical layer.
  • the high-level protocol layer can be specifically at least one of the following protocol layers: Medium Access Control (MAC) layer, Radio Link Control (RLC) layer, Packet Data Convergence Protocol (Packet Data Convergence) Protocol, PDCP) layer, radio resource control (Radio Resource Control, RRC) layer, non-access stratum (Non Access Stratum, NAS) layer, etc.
  • the high-level signaling may be a dedicated signaling for a terminal device, or a signaling shared by multiple terminal devices or a group of terminal devices, or a signaling shared by all terminal devices in a cell.
  • the physical layer signaling can be physical downlink control DCI, or other physical control information, and can be a terminal device-specific signaling, such as a physical layer scrambled with a terminal device’s dedicated identifier Signaling, or physical layer signaling sent in a search space dedicated to terminal equipment, or physical layer signaling sent in a set of control channel resources dedicated to terminal equipment.
  • a terminal device-specific signaling such as a physical layer scrambled with a terminal device’s dedicated identifier Signaling, or physical layer signaling sent in a search space dedicated to terminal equipment, or physical layer signaling sent in a set of control channel resources dedicated to terminal equipment.
  • physical layer control signaling signaling common to multiple terminal devices or a group of terminal devices such as physical layer signaling scrambled by group identification, or physical layer signaling sent in a search space shared by a group of terminal devices, or Physical layer signaling sent in a set of control channel resources shared by a group of terminal devices.
  • the physical layer control signaling is the signaling common to all terminal devices, such as the physical layer signaling with identification scrambled common to all terminal devices, or the physical layer signaling sent in the search space shared by all terminal devices, or in all terminal devices The physical layer signaling sent in the shared control channel resource set.
  • the term "not within X” as used herein, the term X includes any time on X, the start time of X, and the end time of X. "Not in X” can mean that there is no at any time in X, or it can mean that there is no at one or more of the times in X, which is not limited in this application.
  • FIG. 2 shows a wireless communication device provided by an embodiment of the present invention.
  • the wireless communication device may be used as the network device 101 or a device applied to the network device 101. The following description will be made by taking the wireless communication device as the network device 101 as an example.
  • the network device 101 can execute the method provided in the embodiment of the present invention.
  • the network device 101 may include: a processor 201 and a transceiver 202 for implementing wireless communication functions.
  • the processor involved in each embodiment of the present application may be a processing unit, a transceiver, or a transceiver unit. I won't repeat them below.
  • the processor 201 may be a modem processor (modem processor).
  • the processor 201 may include a baseband processor (BBP), which processes the digitized received signal to extract information or data bits carried in the signal.
  • BBP baseband processor
  • DSP digital signal processors
  • IC integrated circuit
  • the transceiver 202 may be used to support sending and receiving information between the network device 101 and the terminal device.
  • the uplink radio frequency signal from the terminal device is received via the antenna, and is mediated by the transceiver 202.
  • the baseband signal is extracted and output to the processor 201 for processing to restore the service data and/or information sent by the terminal device. ⁇ Order information.
  • a baseband signal carrying service data and/or signaling messages to be sent to a terminal device is modulated by the transceiver 202 to generate a downlink radio frequency signal, which is transmitted to the UE via an antenna.
  • the transceiver 202 may include independent receiver and transmitter circuits, or may be integrated in the same circuit to implement the transceiver function.
  • the network device 101 may also include a memory 203, which may be used to store the program code and/or data of the network device 101.
  • the memory involved in each embodiment of the present application may be a storage unit. I won't repeat them below.
  • the network device 101 may also include a communication unit 204, configured to support the network device 101 to communicate with other network entities. For example, it is used to support the communication between the network device 101 and the network device of the core network.
  • the processor 201 may be coupled/connected to the transceiver 202, the memory 203, and the communication unit 204, respectively.
  • the network device 101 may also include a bus.
  • the transceiver 202, the memory 203, and the communication unit 204 may be connected to the processor 201 through a bus.
  • the bus may be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus.
  • the bus may include an address bus, a data bus, and a control bus.
  • FIG. 3 shows another wireless communication device provided by an embodiment of the present invention.
  • the wireless communication device can be used as terminal devices 111-112 or applied to the terminal devices 111-112. The following description will be made by taking the wireless communication device shown in FIG. 3 as a terminal device as an example.
  • the terminal device can execute the method provided in the embodiment of the present invention.
  • the terminal device may be any one of the two terminal devices 111-112.
  • the terminal device includes a transceiver 301, a memory 303, and a processor 304 for implementing wireless communication functions.
  • the processor involved in each embodiment of the present application may be a processing unit, a transceiver, or a transceiver unit. I won't repeat them below.
  • the transceiver 301 may be used to support the sending and receiving of information between the terminal devices 111-112 and the network device 101.
  • the downlink radio frequency signal from the network device is received via the antenna, and is mediated by the transceiver 301.
  • the baseband signal is extracted and output to the processor 304 for processing to restore the service data and/or information sent by the network device. ⁇ Order information.
  • a baseband signal carrying service data and/or signaling messages to be sent to a network device is modulated by the transceiver 301 to generate an uplink radio frequency signal, which is transmitted to the network device via an antenna.
  • the transceiver 301 may include independent receiver and transmitter circuits, or may be integrated in the same circuit to implement the transceiver function.
  • the processor 304 may be a modem processor (modem processor).
  • the processor 304 may include a baseband processor (BBP), and the baseband processor processes the digitized received signal to extract information or data bits carried in the signal.
  • BBP baseband processor
  • DSP digital signal processors
  • IC integrated circuit
  • the processor 304 may include an encoder 3041, a modulator 3042, a decoder 3043, and a demodulator 3044.
  • the encoder 3041 is used to encode the signal to be transmitted.
  • the encoder 3041 may be used to receive service data and/or signaling messages to be sent on the uplink, and process the service data and signaling messages (for example, formatting, encoding, or interleaving, etc.).
  • the modulator 3042 is used to modulate the output signal of the encoder 3041.
  • the modulator can perform symbol mapping and/or modulation on the output signal (data and/or signaling) of the encoder, and provide output samples.
  • the demodulator 3044 is used to demodulate the input signal. For example, the demodulator 3044 processes the input samples and provides symbol estimates.
  • the decoder 3043 is used to decode the demodulated input signal. For example, the decoder 3043 deinterleaves and/or decodes the demodulated input signal, and outputs the decoded signal (data and/or signaling).
  • the processor 304 receives digitized data that can represent voice, data, or control information, and processes the digitized data for transmission.
  • the processor 304 can support one or more of multiple wireless communication protocols of multiple communication systems, such as Long Term Evolution (LTE) communication systems, New Radio (NR), and general mobile communication systems ( Universal Mobile Telecommunications System, UMTS), High Speed Packet Access (HSPA), etc.
  • LTE Long Term Evolution
  • NR New Radio
  • UMTS Universal Mobile Telecommunications System
  • HSPA High Speed Packet Access
  • the processor 304 may also include one or more memories.
  • the terminal device may also include an application processor (application processor) 302, which is used to generate the aforementioned digital data that can represent voice, data, or control information.
  • application processor application processor
  • the processor 304 and the application processor 302 may be integrated in a processor chip.
  • the memory 303 is used to store program codes (sometimes also called programs, instructions, software, etc.) and/or data used to support the communication of the terminal device.
  • program codes sometimes also called programs, instructions, software, etc.
  • the memory involved in each embodiment of the present application may be a storage unit. I won't repeat them below.
  • the memory 203 or the memory 303 may include one or more storage units, for example, may be a storage unit inside the processor 201 or the processor 304 or the application processor 302 for storing program codes, or may be
  • the processor 201, the processor 304, or the application processor 302 is an independent external storage unit, or may also be a storage unit that includes the processor 201, the processor 304, or the application processor 302 and is connected to the processor 201, the processor 304, or the application
  • the processor 302 is a component of an independent external storage unit.
  • the processor 201 and the processor 304 may be the same type of processor or different types of processors. For example, it can be implemented in central processing unit (CPU), general-purpose processor, digital signal processor (Digital Signal Processor, DSP), application-specific integrated circuit (ASIC), field programmable gate array ( Field Programmable Gate Array, FPGA) or other programmable logic devices, transistor logic devices, hardware components, other integrated circuits, or any combination thereof.
  • the processor 201 and the processor 304 may implement or execute various exemplary logical blocks, modules, and circuits described in conjunction with the disclosure of the embodiments of the present invention.
  • the processor may also be a combination of devices that implement computing functions, for example, a combination of one or more microprocessors, a combination of a DSP and a microprocessor, or a system-on-a-chip (SOC) or the like.
  • Control resource set (CORESET)
  • the network device can configure one or more resource sets for the UE to send a Physical Downlink Control Channel (PDCCH).
  • the network device can send a control channel to the terminal on any control resource set corresponding to the terminal.
  • the network device also needs to notify the terminal of other related configurations of the control resource set, such as a search space set.
  • There are differences in the configuration information of each control resource set such as frequency domain width differences, time domain length differences, and so on.
  • control resource set in this application may be a CORESET or a control region (control region) or an ePDCCH set (set) defined by the 5G mobile communication system.
  • QCL information Quasi-co-site/quasi-co-location QCL hypothetical information can also be referred to as QCL information.
  • the QCL information is used to assist in describing the beamforming information on the receiving side of the terminal and the receiving process.
  • the QCL information is used to indicate the QCL relationship between two reference signals, the source reference signal and the target reference signal, where the target reference signal can generally be a demodulation reference signal (DMRS), and channel state information reference Signal (channel state information reference signal, CSI-RS), etc., and the reference signal or source reference signal that is quoted can generally be CSI-RS, tracking reference signal (tracking reference signal, TRS), synchronous signal broadcast channel block (synchronous signal) /PBCH block, SSB) etc.
  • DMRS demodulation reference signal
  • CSI-RS channel state information reference Signal
  • the reference signal or source reference signal that is quoted can generally be CSI-RS, tracking reference signal (tracking reference signal, TRS), synchronous signal broadcast channel block (synchronous signal) /PBCH block, SSB) etc.
  • the spatial characteristic parameters of the two reference signals or channels satisfying the QCL relationship are the same or similar, so that the spatial characteristic parameters of the target reference signal can be inferred based on the source reference signal resource index.
  • the spatial characteristic parameters include one or
  • Angle of incidence AoA
  • dominant (dominant) incidence angle AoA average incidence angle
  • power angular spectrum PAS
  • exit angle angle of departure, AoD
  • main exit angle Average exit angle, power angle spectrum of exit angle
  • terminal transmit beamforming terminal receive beamforming, spatial channel correlation, base station transmit beamforming, base station receive beamforming, average channel gain, average channel delay (averagedelay), time Delay spread (delay spread), Doppler spread (Doppler spread), Doppler shift (Doppler shift), spatial reception parameters (spatial Rx parameters), etc.
  • These spatial characteristic parameters describe the spatial channel characteristics between the antenna ports of the source reference signal and the target reference signal, and help the terminal complete the receiving-side beamforming or receiving process according to the QCL information. It should be understood that the terminal may receive the target reference signal according to the reception information of the source reference signal indicated by the QCL information.
  • the network equipment side can indicate the physical downlink control channel (Physical Downlink Control Channel, PDCCH) or the physical downlink shared channel (Physical Downlink Shared Channel (PDSCH) demodulation reference signal and one or more of the multiple reference signal resources previously reported by the terminal satisfy the QCL relationship, for example, the reference signal may be a CSI-RS.
  • each reported CSI-RS resource index corresponds to a transmit and receive beam pair established during the previous measurement based on the CSI-RS resource. It should be understood that the received beam information of the two reference signals or channels that satisfy the QCL relationship is the same, so that the UE can infer the received beam information of the received PDCCH or PDSCH based on the reference signal resource index.
  • the base station can configure one or more types of QCLs for the UE at the same time, such as QCL type, A+D or C+D:
  • QCL type A Doppler shift (Doppler shift), Doppler spread (Doppler spread), average channel delay (average delay) and delay spread (delay spread);
  • QCL type B Doppler frequency shift and Doppler expansion
  • QCL type C average channel delay and Doppler shift
  • QCL type D spatial reception parameter (spatial Rx parameter).
  • the QCL information in this application includes one or more of QCL type A, type B, type C, and type D.
  • the spatial correlation information is used to indicate the spatial reception parameter relationship between the two reference signals, where the target reference signal may generally be a DMRS, a sounding reference signal (SRS), etc., and the reference signal or source reference cited
  • the signal can generally be CSI-RS, SRS, SSB, etc. It should be understood that the spatial characteristic parameters of the two reference signals or channels that satisfy the spatial correlation information are the same, so that the spatial characteristic parameters of the target reference signal can be inferred based on the source reference signal resource index.
  • the spatial characteristic parameters are the same as the above-mentioned spatial characteristic parameters, such as angle of arrival (AoA), dominant (Dominant) incident angle AoA, average incident angle, ..., spatial reception parameters (spatial Rx parameters), etc. No detailed examples are given here.
  • These spatial characteristic parameters describe the spatial channel characteristics between the antenna ports of the source reference signal and the target reference signal, and help the terminal complete the beamforming or transmission process at the transmitting side according to the spatial related information. It should be understood that the terminal may transmit the target reference signal according to the transmission information of the source reference signal indicated by the spatial related information.
  • TCI Transmission configuration indicator
  • TCI information QCL information used to indicate PDCCH/CORESET or PDSCH. Further, TCI information means that the reference signal included in the TCI meets the QCL relationship with the DMRS of the PDCCH/PDSCH, and is mainly used to indicate that when the PDCCH/PDSCH is received, its spatial characteristic parameters and the spatial characteristic parameters of the reference signal included in the TCI The information is the same, similar or similar.
  • SS/PBCH block Sync signal broadcast channel block
  • SS/PBCH block (synchronous signal/PBCH block) can also be called SSB.
  • the physical broadcast channel physical broadcast channel, PBCH.
  • the SSB includes at least one of a primary synchronization signal (primary synchronization signal, PSS), a secondary synchronization signal (secondary synchronization signal, SSS), and a PBCH. It is mainly used for cell search, cell synchronization, and signals carrying broadcast information.
  • the beam is a communication resource.
  • the beam can be a wide beam, or a narrow beam, or other types of beams.
  • the beam forming technology can be beamforming technology or other technical means.
  • the beamforming technology can be specifically a digital beamforming technology, an analog beamforming technology, and a hybrid digital/analog beamforming technology. Different beams can be considered as different resources, and the same information or different information can be sent through different beams.
  • multiple beams with the same or similar communication characteristics may be regarded as one beam.
  • One beam can include one or more antenna ports, which are used to transmit data channels, control channels, and sounding signals.
  • the transmitting beam may refer to the distribution of signal strength in different directions in space after a signal is transmitted through the antenna
  • the receiving beam may refer to the signal strength distribution of the wireless signal received from the antenna in different directions in space.
  • one or more antenna ports forming a beam can also be regarded as an antenna port set.
  • the beam can be divided into the transmitting beam and the receiving beam of the network device, and the transmitting beam and the receiving beam of the terminal.
  • Network equipment for example, the transmitting beam of the base station is used to describe the beamforming information on the transmitting side of the network equipment, and the base station receiving beam is used to describe the beamforming information on the receiving side of the network equipment.
  • the transmitting beam of the terminal is used to describe the beamforming information on the transmitting side of the terminal
  • the receiving beam of the terminal is used to describe the beamforming information on the receiving side of the terminal. Therefore, it is generally understood that beams can be used to describe beamforming information.
  • the beam may correspond to one or more of time resources, space resources, and frequency domain resources.
  • the beam can also generate a correspondence with a reference signal resource (for example, a reference signal resource for beamforming) or beamforming information.
  • a reference signal resource for example, a reference signal resource for beamforming
  • the beam may also correspond to information associated with the reference signal resource of the network device.
  • the reference signal may be CSI-RS, SSB, DMRS, phase tracking signal (phase tracking reference signal, PTRS), TRS, etc.
  • the information associated with the reference signal resource may be a reference signal resource identifier, or QCL information (especially type D's QCL), TCI information, etc.
  • the reference signal resource identifier corresponds to a transceiver beam pair established during the previous measurement based on the reference signal resource, and the terminal can infer beam information through the reference signal resource index.
  • the beam may also correspond to a spatial filter (spatial filter/spatial domain filter), a spatial domain transmission filter, a spatial filter, and a spatial transmission filter.
  • a spatial filter spatial filter/spatial domain filter
  • the receive beam is equivalent to a spatial transmission filter, a spatial transmission filter, a spatial receive filter, and a spatial receive filter
  • the transmit beam can be equivalent to a spatial filter, a spatial transmission filter, a spatial transmit filter, and a spatial transmit filter Device.
  • the information of spatial related parameters is equivalent to a spatial filter (spatial domain transmission/receive filter).
  • the spatial filter generally includes: a spatial transmission filter and/or a spatial reception filter.
  • the spatial filter can also be called a spatial transmission filter, a spatial reception filter, a spatial transmission filter, a spatial transmission filter and so on.
  • the receiving beam on the terminal side and the transmitting beam on the network device side may be used as a downlink spatial filter, and the transmitting beam on the terminal side and the receiving beam on the network device side may be used as an uplink spatial filter.
  • initial BWP initial BWP
  • initial BWP initial BWP
  • the network equipment When the terminal has a service arrival, the network equipment will schedule the terminal from the initial BWP to a BWP with a bandwidth that matches its service, and can indicate the current BWP, network equipment, and terminal equipment that the terminal equipment is working through through high-level signaling or layer-one signaling. Data and or reference signals can be sent and received on this BWP.
  • This BWP is called the activated BWP.
  • a terminal In the case of a single carrier or a serving cell, a terminal has only one activated BWP at a time, and the terminal can only receive data/reference signals or send data/reference signals on the activated BWP.
  • the network device instructs the terminal device to switch the BWP through downlink control information (DCI) or radio resource control (radio resource control, RRC) signaling.
  • DCI downlink control information
  • RRC radio resource control
  • the DCI is located in the current BWP, and the size of the frequency domain resource allocation information field is determined by the bandwidth of the current BWP.
  • there is an information field of bandwidth part indicator which is used to indicate the ID number of the BWP activated by the terminal.
  • the terminal needs to switch from the current BWP to the BWP indicated in the DCI.
  • the measurement realizes the scheduling of the UE.
  • the UE obtains channel state information (CSI) based on the channel quality measurement of the CSI-RS.
  • the CSI includes a rank indicator (Rank Indicator, RI), a precoding indicator (Precoding Matrix Indicator, PMI), and a channel quality indicator ( At least one of Channel Quality Indicator, CQI), etc.
  • RI rank Indicator
  • PMI Precoding Matrix Indicator
  • CQI Channel Quality Indicator
  • These CSI information can be sent to the base station by the UE through the Physical Uplink Control Channel (PUCCH) or the Physical Uplink Shared Channel (PUSCH).
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • the existing PDSCH or PUSCH spatial related parameter information methods are as follows:
  • the indication of the space-related parameters/spatial characteristic parameters of the PDSCH is mainly achieved through TCI information, for example, through radio resource control (Radio Resource Control, RRC) signaling, and medium access control (Medium Access Control, MAC-CE) signaling.
  • RRC Radio Resource Control
  • MAC-CE Medium Access Control
  • the command and downlink control information are jointly indicated, or, they may also be indicated jointly through RRC signaling and DCI.
  • a dynamic indication method includes:
  • Step 1 The network device configures the M candidate transmission configuration indicators (Transmission Configuration Indicator, TCI) states of the PDSCH through RRC signaling, that is, the RRC message includes M candidate TCI state configuration information, and each candidate TCI state Includes a QCL message.
  • TCI state configuration information includes a TCI ID.
  • QCL type 1 and/or type 2 may also be included.
  • Step 2 The network device activates 2 N TCI states (a subset of the M TCI states) from the M TCI states through the MAC-CE.
  • Table 1 shows a schematic diagram of a MAC CE format that uses MAC-CE to indicate the activation or deactivation status of the TCI status domain.
  • the bandwidth part (Bandwidth part, BWP) ID occupies 2 bits: used to indicate the downlink part of the bandwidth applied by the MAC-CE.
  • Serving cell ID (serving cell ID), occupying 5 bits: used to indicate the ID of the serving cell to which the TCI indicated by the MAC-CE belongs.
  • Ti domain used to indicate the activation/deactivation of the TCI status with the TCI status identifier i. Further, if the Ti field is "1", it means that the TCI with the TCI status identifier i is activated and mapped to the TCI field in the DCI. If the Ti field is "0", it means that the TCI state with the TCI state identifier i is deactivated and will not be mapped to the TCI field of DCI.
  • R stands for reserved bit, which is generally set to "0".
  • all TCI state fields set to 1 are mapped to code points in order of position, that is, the first TCI state field set to 1 is mapped to the point value 0, and the second TCI state set to 1 The domain is mapped to the point value 1, etc.
  • the maximum number of TCI states that can be activated is 8.
  • the TCI field in the DCI has N bits for indicating that one TCI State of the 2 N TCI States is used for PDSCH reception.
  • the DCI shown in Table 2 can be used to indicate one of the TCI states.
  • the network equipment indicates 64 TCI states for PDSCH reception through RRC signaling, and MAC-CE signaling activates 8 TCI states of the 64 TCI states.
  • the IDs of the 8 TCI states are a1 to a8. If DCI If one of the state values is 000, the terminal device determines that the corresponding TCI state ID (TCI state ID) is a1, and the terminal device receives the PDSCH according to the TCI state indicated by the TCI state Id a1.
  • whether the TCI field of the PDSCH exists in the DCI can be indicated by high-level signaling, such as the TCI-PresentInDCI field in RRC signaling.
  • This field can be configured for each CORESET. This field is enabled when a CORESET is configured. , Then there is a TCI field in the DCI detected by the CORESET; when this field is not configured in a CORESET, then there is no TCI field in the DCI detected by the CORESET.
  • the TCI state of the PDSCH is the PDCCH configuration The TCI status.
  • the UE uses the default TCI state to receive the PDSCH; when the scheduling offset value is greater than the threshold k, the UE uses the TCI state indicated in the DCI to receive the PDSCH. It is stipulated that in the initial RRC and MAC-CE stages, the UE assumes that the PDCCH, the DMRS of the PDSCH and the synchronization signal broadcast channel block (synchronous signal/PBCH block, SSB) determined during initial access are QCL.
  • synchronization signal broadcast channel block synchronous signal/PBCH block, SSB
  • the beam information achieved is similar to the PDSCH beam indication process, which can be indicated by RRC signaling, MAC-CE and DCI joint indication, or indicated by RRC signaling and DCI ,
  • the DCI includes a sounding reference signal resource indicator (SRS resource indicator, SRI) field, which is used to indicate the spatial correlation parameter/spatial relation Information (spatial relation Information) of the PUSCH.
  • SRS resource indicator SRI
  • the current beam indication method only considers a transmission mode in which a single transmission reception point (Transmission Reception Point, TRP) uses one beam to communicate with the terminal at a certain moment.
  • TRP Transmission Reception Point
  • network devices can use different beams to communicate with a terminal at the same time, that is, multi-beam transmission, or multiple TRP serves the terminal.
  • multiple TRPs communicating with a terminal include multiple TRPs communicating with a terminal at the same time, or a dynamically selected node in a dynamic point selection (DPS) transmission mode communicating with a terminal.
  • DPS dynamic point selection
  • the scenario in which multiple TRPs communicate with one terminal at the same time may also be referred to as an incoherent joint transmission (NCJT) scenario or NCJT transmission mode.
  • the beam indication of the multi-beam transmission mode cannot be supported by the existing protocol, where the multiple beams may come from one network device or multiple network devices, and may come from one TRP or multiple TRPs.
  • the multiple beams may come from one network device or multiple network devices, and may come from one TRP or multiple TRPs.
  • it is necessary to introduce a corresponding mechanism to indicate the beam of the data channel that is, in the scenario of multiple network equipment/multi-beam/multi-link/multi-layer transmission/TRP transmission, A corresponding mechanism is introduced to indicate the QCL information of the physical channel.
  • Fig. 4 shows a schematic flowchart of an information indication method. Including the following steps:
  • Step 400 The network device 101 sends configuration information to the terminal device 111, where the configuration information includes M TCI state configuration information, and M is a positive integer greater than 1. Correspondingly, the terminal device 111 receives the configuration information.
  • the value of M depends on the capabilities of the UE.
  • Each TCI state can include a QCL message.
  • Each TCI state configuration information includes a TCI ID.
  • QCL type 1 and/or type 2 may also be included. It is understandable that one TCIID may correspond to one or more QCLs of the same type, or a QCL of the same type corresponding to one TCI ID includes one reference signal (mode 1) or multiple (mode 2) reference signals. The embodiments of this application are not limited.
  • each TCI status configuration information includes the following information:
  • the above M TCI states can be divided into at least two sets, and the network equipment/beam/link/transmission layer/TRP corresponding to each TCI state set may be different.
  • the method of dividing into one or more sets includes at least one of the following:
  • Divide into one or more collections method 1 Divide into one or more collections according to the TCI status identifier.
  • the TCI state identifier belongs to the first interval, for example, the first interval is the interval from TCI0 to TCI63
  • the TCI state identifier belongs to the second interval, for example, the second interval is TCI64 ⁇ TCI127
  • the TCI state identifier belongs to the third interval, for example, the third interval is TCI28 to TCI191, and so on. It can be understood that the TCI status identifiers included in the first interval, the second interval, and the third interval may be continuous or discontinuous.
  • One or more of the first interval, the second interval, and the third interval may be specified in the protocol, or the network device may be configured to the terminal device through signaling information.
  • the signaling information may be included in the configuration information, or separate information, which is not limited in the embodiments of the present application.
  • Method 2 Dividing into one or more sets: Divide into one or more sets according to the number of Ti domains whose value is 1 in the first indication information in step 401 or the number of activated TCI states. Specifically, according to the sequence of Ti domains with a value of 1, the first TCI state set includes the first Ti domain with a value of 1 to the H1th Ti domain with a value of 1, and the second TCI state set includes The TCI state corresponding to the H1+1 Ti domain with a value of 1 to the TCI state corresponding to the H2 Ti domain with a value of 1. The third TCI state set includes the TCI corresponding to the H2+1 Ti domain with a value of 1. State to the TCI state corresponding to the Ti domain whose H3 value is 1, etc.
  • the embodiments of this application do not limit the specific values of H1, H2, H3, etc. H1, H2, H3, etc. may all be the same, or may be completely or partially different.
  • One or more of H1, H2, H3, etc. can be specified in the protocol, or the network device can be configured to the terminal device through signaling information.
  • the signaling information may be included in the configuration information, or separate information, which is not limited in the embodiments of the present application.
  • the TCI state corresponding to the first half Ti of the Ti domain whose value is 1 indicated in the first indication information in step 401 is divided into the first TCI state set, and the TCI state corresponding to the latter half Ti is the second TCI state set, etc. .
  • the first TCI state set includes the first activated TCI state to the H1 th activated TCI state
  • the second TCI state set includes the H1+1 th The activated TCI state to the H2th activated TCI state.
  • the indication information associated with the first indication information indicates that it is divided into one or more sets.
  • the indication information may indicate the interval in the way 1 of dividing into one or more sets or the interval of dividing into one or more sets of 2, Hi and other information.
  • Associating with the first indication information means that the indication information may be included in the first indication information or have a mapping relationship with the first indication information.
  • Example 4-1 for example, suppose the above M TCI states are divided into two sets.
  • the first TCI state set includes M1 TCI states, which can correspond to a network device/beam/link/transmission layer/TRP, and can be recorded
  • M1 first TCI states one of the first TCI states includes one TCI state
  • M2 TCI states which can correspond to another network device/beam/link/transport layer/TRP, and can be recorded
  • Example 4-2 for another example, suppose the above M TCI states are divided into two TCI state sets, the first TCI state set includes M1 TCI states, which can correspond to a network device/beam/link/transmission layer/TRP , Can be marked as M1 first TCI states, where one first TCI state includes one TCI state.
  • the second TCI state set includes M2 TCI states, where M2 is a positive integer, that is, among the M2 TCI states, some of the TCI states can correspond to a network device/beam/link/transmission layer/TRP, and the other part of the TCI states can be Corresponding to another network device/beam/link/transport layer/TRP.
  • the TCI states corresponding to different network devices/beams/links/transmission layer/TRP in the M2 TCI states can appear in pairs.
  • they can be recorded as M2' second TCI states, where at least one second TCI state includes two TCI states, M2' ⁇ M2, further optional, M2 /2 ⁇ M2' ⁇ M2.
  • TCI status identifier 64 abbreviated as TCI64
  • TCI status 120 abbreviated as TCI120
  • TCI65 and TCI121 are a pair
  • TCI66 and TCI122 are a pair, and so on.
  • multiple TCI states corresponding to multiple network devices/TRP/beam/link/transmission layers may also be referred to as TCI state groups.
  • TCI state groups For example, in the above example, TCI64 and TCI120 It is called a TCI state group, TCI65 and TCI121 are called a TCI state group, etc.
  • a first TCI state may be a TCI state group
  • a second TCI state may also be a TCI state group.
  • the embodiments of the present application do not limit the number of TCI states included in a TCI state group. In a limit case, a TCI state group can only include one TCI state.
  • Example 4-3 for another example, suppose the above M TCI states are divided into 3 TCI state sets.
  • the first TCI state set includes M1 TCI states, which corresponds to a network device/beam/link/transport layer/TRP, which can be recorded There are M1 first TCI states, one of the first TCI states includes one TCI state.
  • the second TCI state set includes M2 TCI states, which may correspond to a network device/beam/link/transport layer/TRP, and may be recorded as M2 second TCI states, where one second TCI state includes one TCI state.
  • the third TCI state set includes M3 TCI states, some of the TCI states can correspond to one network device/beam/link/transmission layer/TRP, and the other part of the TCI state can correspond to another network device/beam/link/transmission layer/ TRP correspondence, usually, the TCI states corresponding to different network equipment/beam/link/transport layer/TRP among the M3 TCI states can appear in pairs, when there are two network equipment/beam/link/transport layer/TRP , Can be recorded as M3' third TCI states, where at least one third TCI state includes two TCI states.
  • M1, M2, and M3 are all positive integers, M3' ⁇ M3, and optionally, M3/2 ⁇ M3'. The specific meaning is the same as the example in the previous paragraph, so I won’t repeat it here.
  • Table 3 exemplarily shows a corresponding relationship between a TCI state and a network device/beam/link/transmission layer/TRP.
  • the first column and the second column indicate 64 TCI states corresponding to the first network device/beam/link/transport layer/TRP configured using configuration information, and the TCI state identifiers are TCI0 to TCI63, respectively.
  • the third column and the fourth column represent 64 TCI states corresponding to the second network device/beam/link/transport layer/TRP configured using configuration information, and the TCI state identifiers are TCI64 ⁇ TCI127, respectively.
  • the fifth and sixth columns indicate the TCI status corresponding to the first and second network equipment/beam/link/transmission layer/TRP configured by the configuration information, for two network equipment/beam/link/transmission Layer/TRP joint data transmission and reception, TCI status identifiers are paired, where, optionally, the first network device/beam/link/transport layer/TRP before the comma corresponds to the second network device /Beam/link/transport layer/TRP, such as (0,64) means the TCI0 corresponding to the first network device/beam/link/transmission layer/TRP and the second network device/beam/link/
  • the TCI64 corresponding to the transport layer/TRP can be used to jointly send and receive data, (10, 80) represents the TCI10 corresponding to the first network device/beam/link/transport layer/TRP and the second network device/beam/chain
  • the TCI80 corresponding to the road/transport layer/TRP can be used to jointly send and receive data, etc. Among them, when the
  • any two of the M1 TCI state identifiers are different, and any two of the M2 TCI state identifiers are different.
  • any one of the M1 TCI status identifiers and each of the M2 TCI status identifiers may be different, for example, any one of the M1 TCI status identifiers is smaller than each of the M2 TCI status identifiers.
  • at least one of the aforementioned M1 TCI status identifiers is the same as one of the M2 TCI status identifiers. The invention is not limited.
  • the implementation method can refer to the method when two TRPs are used.
  • the various embodiments of this application compare the number of TRPs (or a collection of M TCI states). The number) is not limited.
  • the configuration information may include information related to one or more sets, or may not include Divide related information into one or more sets. That is, when the terminal device receives the configuration information, it may directly obtain one or more sets of related information through the configuration information, or it may combine the first indication information in step 401 or the indication information associated with the first indication information to obtain one or more information. One or more sets of related information, or combined with other signaling information or protocol provisions.
  • any one of the above multiple TCI state sets can be associated with one network device/beam/link/transport layer/TRP, or can be associated with multiple network devices/beam/link/transport layer/TRP Associated.
  • the first TCI state set may also be associated with multiple network devices/beams/links/transmission layers/TRPs. The invention is not limited.
  • the configuration information can be included in the high-level signaling, which is not limited in the present invention.
  • the above configuration information can be contained in one piece of signaling or multiple pieces of signaling.
  • each signaling is for a network device/beam/link/transport layer/TRP.
  • the configuration of TRP1, TRP2 or TRP1 and TRP2 can use different signals.
  • different RRC messages are carried, or two of the configurations are carried by the same signaling, for example, the same RRC message is carried, and the configuration of the other is carried by another different signaling, which is not limited by the present invention.
  • the operation of the network device 101 in step 400 may be executed by the transceiver 202, or executed by the processor 201 through the transceiver 202.
  • the operation of the terminal device 111 in step 400 may be executed by the transceiver 301, or executed by the processor 304 through the transceiver 301.
  • the configuration information can be fixed in the protocol, and the network device 101 and the terminal device 111 can obtain the configuration of M TCI states according to the configuration information fixed by the protocol, or the configuration information is indicated by the first indication information in step 401 , That is, the first indication information configures M TCI states and is used to activate M TCI states.
  • Step 401 The network device 111 sends first indication information to the terminal device 111, where the first indication information indicates A TCI states, where A is a positive integer. Correspondingly, the terminal device 111 receives the first indication information.
  • the first indication information may be used to activate A TCI states.
  • a TCI states are a subset of M TCI states.
  • An xth TCI state may include a TCI state, or may include a TCI state group (that is, multiple TCI states).
  • x 2, K1+K2 ⁇ A.
  • a TCI states may also include only the first TCI state or only the second TCI state.
  • the solutions are similar and will not be repeated here.
  • the first indication information may be included in high-layer signaling, or the first indication information may be included in physical layer signaling, and the embodiments of the present invention do not limit specific signaling.
  • the following takes the first indication information included in the MAC layer signaling, that is, the first indication information is MAC CE as an example, to explain the implementation of the first indication information.
  • MAC CE implementation mode A Using one MAC CE, one TCI state set or multiple TCI state sets among M TCI states can be activated.
  • Each Ti field corresponds to at least one TCI state among the M TCI states.
  • the MAC CE includes M'bits, and each bit corresponds to a Ti field, which includes M'Ti fields in total, and M'is a positive integer.
  • M' is a multiple of 8.
  • the MAC CE may also include the serving cell identifier, partial bandwidth identifier, etc., as shown in Table 1, and may also include other information, which is not limited in the embodiments of this application.
  • multiple Ti fields included in a MAC CE can also be divided into one or more sets, and the number of sets is the same as the number of sets described in step 401 for dividing the M TCI states into Similarly, for example, M TCI states are divided into x sets, and multiple Ti domains are also divided into x sets.
  • the Ti domains in each set can be used to activate K1 first TCI states (K1 first TCI
  • the state forms the first TCI state set), K2 second TCI states (K2 second TCI states form the second TCI state set), ..., or Kx xth TCI state (Kx xth TCI state forms xth TCI state set), where any xth TCI state can correspond to one TCI state among the M TCI states, or can correspond to multiple TCI states (ie, TCI state groups) in the M TCI states, and the present invention is not limited.
  • the first TCI state, the second TCI state, ..., the xth TCI state respectively correspond to the TCI states in different sets of the M TCI states.
  • this step 401 divides the Ti domain into one or more sets and/or the TCI state in step 400 divides the TCI state into one or more sets.
  • the relevant description is only for ease of understanding, and in actual implementation, it may not be divided into sets.
  • the TCI state can be divided into one or more sets in step 400, and the Ti domain is divided into one or more sets in this step 401.
  • step 400 Refer to the TCI state in step 400 to divide into one or more sets; or by determining this step 401 divides the Ti domain into one or more sets, thereby determining that the TCI state is divided into one or more sets in step 400.
  • the Ti domain is divided into one or more sets through this step 401, and the TCI state is not divided into sets in step 400.
  • Example 4-1-1A for example, based on the above example 4-1 and the method of dividing into one or more sets, correspondingly, multiple Ti domains are divided into two sets, and the M1 Ti domains of the first set can correspond M1 TCI states are recorded as M1 first TCI states, and M2 Ti in the second set can correspond to M2 TCI states, which are recorded as M2 second TCI states.
  • Example 4-2-1A for another example, based on the above example 4-2, correspondingly, multiple Ti domains are divided into two sets.
  • the M1 Ti domains in the first set can correspond to M1 TCI states, which is recorded as M1
  • the M2 Ti of the second set can correspond to the M2 TCI states, which is recorded as M2' second TCI state, where at least one of the M2' second TCI states includes two TCIs State, M2' ⁇ M2, further optional, M2/2 ⁇ M2' ⁇ M2.
  • Example 4-2-2A for another example, based on the above example 4-2 and the method of dividing into one or more sets, correspondingly, multiple Ti domains are divided into two sets, and the M1 Ti domains of the first set can be Corresponding to M1 TCI states, it is recorded as M1 first TCI state, and M2' Ti of the second set can correspond to M2 TCI states, which are recorded as M2' second TCI state, where M2' is in the second TCI state
  • the at least one second TCI state includes two TCI states.
  • Example 4-3-1A for another example, based on the above example 4-3 and method 1 of dividing into one or more sets, correspondingly, multiple Ti domains are divided into three sets, and the M1 Ti domains of the first set can be Corresponding to M1 TCI states, marked as M1 first TCI states, M2 Ti domains in the second set can correspond to M2 TCI states, recorded as M2 second TCI states, and M3 Ti in the third set can correspond to M3
  • the TCI state is denoted as the M3' third TCI state, where at least one of the M3' third TCI states includes two TCI states.
  • Example 4-3-2A for another example, based on the above example 4-3 and method 1 of dividing into one or more sets, correspondingly, multiple Ti domains are divided into three sets, and the M1 Ti domains of the first set can be Corresponding to M1 TCI states, marked as M1 first TCI states, M2 Ti domains in the second set can correspond to M2 TCI states, recorded as M2 second TCI states, and M3' Ti in the third set can correspond to M3 Each TCI state is denoted as M3' third TCI state, where at least one of the M3' third TCI states includes two TCI states.
  • the method for mapping M TCI states to each Ti domain in MAC CE includes:
  • M TCI status identifiers and M Ti domains are mapped one by one.
  • the TCI state with the TCI state identifier i configured in step 400 may be mapped to the Ti domain.
  • the TCI state identified as 0 is mapped to T0
  • the TCI state identified as 1 is mapped to T1
  • M TCI state identifiers are mapped to M Ti domains one-to-one, and the method is divided into one or more sets. Among them, the value of the TCI state identifiers of the M1 TCI states in the first set The range can be a part of 0 ⁇ 127 in MAC CE.
  • the value range of the TCI status identifier of M1 TCI states is TCI0 ⁇ TCI63
  • M2 64
  • the value of the TCI status identifier of M2 TCI states is selected.
  • the value range can be a part of 0 to 127 in the MAC CE.
  • the value range of the TCI state identifier of M2 TCI states is TCI64 to TCI127.
  • Table 4 shows an example of activating A TCI states.
  • T7 (1) T6 (1) T5 T4 (1) T3 T2 (1) T1 T0 (1) T15 T14 T13 T12 (1) T11 T10 (1) T9 T8 (1) ... ... ... ... ... ... T71 (1) T70 (1) T69 (1) T68 (1) T67 (1) T66 (1) T65 (1) T64 (1) ... ... ... ... ... ... ... T127 T126 T125 T124 T123 T122 T121 T120
  • the value of the T0, T2, T4, T6, T7, T8, T10, T12 fields in the MAC CE is used to activate the first set (that is, the TCI status with the TCI status identifier TCI0 ⁇ TCI63) corresponds to
  • the corresponding TCI state identifiers are TCI0, TCI2, TCI4, TCI6, TCI7, TCI8, TCI10, TCI12.
  • the value of the T64 ⁇ T71 domain is 1, which is used to activate the 8 TCI states corresponding to the second set (that is, the TCI status with TCI status identifiers TCI64 ⁇ TCI127), and the corresponding TCI status identifiers are TCI64 ⁇ TCI71.
  • Ti(1) in Table 4 means that the Ti field is set to 1. The other Ti fields are set to 0.
  • the TCI state of the other, the remaining Ti domains with a value of 1 are used to activate the TCI state corresponding to the second set.
  • Table 5 shows an example of activating A TCI states.
  • T15 T14 T13 T12 T11 T10 (1) T9 T8 (1) ... ... ... ... ... T71 (1) T70 (1) T69 (1) T68 (1) T67 (1) T66 (1) T65 (1) T64 (1) ... ... ... ... ... ... T127 (1) T126 (1) T125 T124 (1) T123 (1) T122 T121 T120
  • the first 8 Ti domains with a value of 1 in MAC CE are T0, T8, T10, T12, T64, T65, T66, and T67 domains, which are used to activate the first set (and the value of the TCI status identifier (Regardless of range) corresponding to the 8 TCI states, the corresponding TCI state identifiers are TCI0, TCI8, TCI10, TCI12, TCI64, TCI65, TCI66, TCI67.
  • T68, T69, T70, T71, T123, T124, T126, T127 is 1, which is used to activate the 8 TCI states corresponding to the second set, and the corresponding TCI state identifiers are TCI64 ⁇ TCI71.
  • Ti(1) in Table 4 means that the Ti field is set to 1. The other Ti fields are set to 0.
  • M TCI state identifiers are mapped to M Ti domains one-to-one, using the method of dividing into one or more sets.
  • the value of the TCI state identifiers of the M1 TCI states in the first set The range can be a part of 0 ⁇ 127 in MAC CE.
  • the value range can be a part of 0 to 127 in the MAC CE.
  • the value range of the TCI state identifier of M2 TCI states is TCI64 to TCI127.
  • Table 6 shows an example of activating A TCI states.
  • T7 (1) T6 (1) T5 (1) T4 (1) T3 (1) T2 (1) T1 (1) T0 (1) T15 T14 T13 T12 T11 T10 T9 T8 ... ... ... ... ... ... T71 T70 T69 T68 T67 T66 (1) T65 (1) T64 (1) ... ... ... ... ... ... ... T127 T126 T125 T124 T123 T122 (1) T121 (1) T120 (1)
  • the value of the T0 ⁇ T7 field in the MAC CE is 1, which is used to activate the 8 TCI states corresponding to the first set, and the corresponding TCI state identifiers are TCI0 ⁇ TCI7.
  • the value of the T64 ⁇ T66 and T120 ⁇ T122 domains is 1, which is used to activate the 8 TCI states corresponding to the second set.
  • the corresponding TCI state identifiers are TCI64 ⁇ TCI66 and TCI120 ⁇ TCI122.
  • Ti(1) in Table 5 means that the Ti field is set to 1.
  • the other Ti fields are set to 0.
  • K2 TCI state groups or K2 second TCI states
  • the M TCI state identifiers are mapped to the M Ti domains one by one, and the example implementation manner of the method 2 of dividing into one or more sets is similar, and will not be repeated.
  • a Ti domain can be mapped to one or more TCI states, that is, some Ti domains are mapped to one TCI state, and some Ti domains are mapped to multiple TCI states (or to a TCI state group).
  • the number of Ti domains (such as N*8) in the MAC CE may be less than the number M of TCI states.
  • the value range of the TCI status identifier of M TCI states can be a part of 0 ⁇ 127 in MAC CE, and among the M TCI states, M1 first TCI state and M1 Ti domain
  • One-to-one mapping, M2/2 second TCI states and M2/2 Ti domains are one-to-one mapping, that is, one TCI state group is mapped to one Ti domain.
  • T64 is mapped to the first second TCI state, that is, to the TCI state group including TCI64 and TCI120
  • T65 is mapped to the second second TCI state, that is, to the TCI state group including TCI65 and TCI121 Mapping, etc.
  • Table 7 shows an example of activating A TCI states.
  • T7 (1) T6 (1) T5 (1) T4 (1) T3 (1) T2 (1) T1 (1) T0 (1) T15 T14 T13 T12 T11 T10 T9 T8 ... ... ... ... ... ... T71 T70 T69 T68 T67 T66 (1) T65 (1) T64 (1) ... ... ... ... ... ... ... T127 T126 T125 T124 T123 T122 T121 T120
  • the value of the T0 ⁇ T7 field in the MAC CE is 1, which is used to activate the 8 TCI states corresponding to the first set, and the corresponding TCI state identifiers are TCI0 ⁇ TCI7.
  • the value of the T64 to T66 domains is 1, which is used to activate the 8 TCI states corresponding to the second set.
  • the corresponding TCI state identifiers are TCI64 to TCI66, and TCI120 to TCI122.
  • Ti(1) in Table 6 means that the Ti field is set to 1.
  • the other Ti fields are set to 0. It is worth noting that in the example of Table 7 above, Ti and TCIi do not have a one-to-one correspondence, such as T64, which does not necessarily correspond to TCI64.
  • mapping rules do not limit the mapping rules from the specific TCI state to the Ti domain, nor do they limit the way to obtain the mapping rules.
  • the mapping rules may be specified in the protocol, or the network device may notify the mapping rules. To terminal equipment, etc.
  • the K1 first TCI state is located before the K2 second TCI state, that is, in the first indication information, the lowest K1 bit (LSB) with a value of 1 and K1 first TCI state
  • the following K2 bits with a value of 1 correspond to K2 second TCI states.
  • the embodiments of the present application are not limited.
  • the K1 first TCI states indicated by the first indication information precede the K2 second TCI states indicated by the first indication information.
  • the 1st to K1th TCI states (active) indicated by the first indication information are the first TCI states, and the first indication information indicates (active)
  • the K1+1th to K1+K2th TCI states are the second TCI states.
  • the ⁇ 1, 3, 5,..., 2*K1-1 ⁇ th TCI state (activated) indicated by the first indication information is the first TCI State
  • the (active) ⁇ 2, 4, 6, ..., 2*K2 ⁇ th TCI state indicated by the first indication information is the second TCI state.
  • which of the (activated) TCI states indicated by the first indication information is the first TCI state and which is the second TCI state may also be indicated by other information.
  • MAC CE implementation method B Multiple MAC CEs are used to activate one TCI state set or multiple TCI state state sets.
  • each MAC CE corresponds to one TCI state set of M TCI states
  • each MAC CE includes multiple Ti domains
  • each Ti domain corresponds to M
  • At least one TCI state in a TCI state set in the TCI state is used to activate the corresponding at least one TCI state.
  • the first MAC CE corresponds to M1 TCI states (first TCI state) in the first set
  • the second MAC CE corresponds to M2 TCI states (second TCI state) in the second set, and so on.
  • MAC CE includes M'bits, each bit corresponds to a Ti field, including M'Ti fields in total, different MAC CE, the number of Ti fields included can be the same or different, optional, M' It is a multiple of 8, that is, an integer multiple of a byte, which is not limited in the embodiments of the present application.
  • Example 4-1-1B for example, based on the above example 4-1, correspondingly, there are two MAC CEs, and the first MAC CE corresponds to the first TCI state set, that is, the M1 Ti domains in the first MAC CE It can correspond to M1 TCI states, which is marked as M1 first TCI state.
  • the second MAC CE corresponds to the second TCI state set, that is, the M2 Ti in the second MAC CE can correspond to M2 TCI states, which are recorded as M2 second TCI states.
  • Example 4-2-1B for another example, based on the above example 4-2, correspondingly, there are two MAC CEs, and the first MAC CE corresponds to the first TCI state set, that is, the M1 Tis in the first MAC CE
  • the domain can correspond to M1 TCI states, which is marked as M1 first TCI state.
  • the second MAC CE corresponds to the second TCI state set, that is, the M2 Ti fields in the second MAC CE can correspond to M2 TCI states, which are recorded as M2' second TCI state, where M2' second TCI state At least one second TCI state among the states includes two TCI states.
  • Example 4-2-2B for another example, based on the above example 4-2, correspondingly, there are two MAC CEs, and the first MAC CE corresponds to the first TCI state set, that is, the M1 Ti in the first MAC CE
  • the domain can correspond to M1 TCI states, which is marked as M1 first TCI state.
  • the second MAC CE corresponds to the second TCI state set, that is, the M2' Ti fields in the second MAC CE can correspond to M2 TCI states, which are recorded as M2' second TCI states, where M2' is the second At least one second TCI state in the TCI states includes two TCI states, that is, one Ti domain corresponds to two TCI states, or corresponds to one TCI state.
  • Example 4-3-1B for another example, based on the above example 4-3, correspondingly, there are three MAC CEs, and the first MAC CE corresponds to the first TCI state set, that is, the M1 Ti domains in the first MAC CE It can correspond to M1 TCI states, which is marked as M1 first TCI state.
  • the second MAC CE corresponds to the second TCI state set, that is, the M2 Ti fields in the second MAC CE can correspond to M2 TCI states, which are recorded as M2 second TCI states.
  • the third MAC CE corresponds to the third TCI state set, that is, the M3 Tis in the third MAC CE can correspond to M3 TCI states, which are recorded as M3' third TCI state, where M3' third TCI state Each third TCI state in includes two TCI states.
  • Example 4-3-2B for another example, based on the above example 4-3, correspondingly, there are three MAC CEs, and the first MAC CE corresponds to the first TCI state set, that is, M1 in the first MAC CE Each Ti domain can correspond to M1 TCI states, which is recorded as M1 first TCI state.
  • the second MAC CE corresponds to the second TCI state set, that is, the M2 Ti fields in the second MAC CE can correspond to M2 TCI states, which are recorded as M2 second TCI states.
  • the third MAC CE corresponds to the third TCI state set, that is, the M3' Tis in the third MAC CE can correspond to M3 TCI states, which are recorded as M3' third TCI states, where M3/2 is the third At least one third TCI state in the TCI state includes two TCI states, that is, one Ti domain can correspond to two TCI states or one TCI state.
  • mapping between multiple Ti domains in each MAC CE and a TCI state set is similar to the mapping in implementation A, except that one MAC CE is replaced with multiple MAC CEs, here Do not repeat it.
  • Implementation C is a combination of A and B, that is, there are multiple MAC CEs, of which at least one MAC CE corresponds to only one TCI state set of M TCI states, and at least one MAC CE Corresponds to multiple TCI state sets. For the specific mapping manner, refer to Implementation A and Implementation B, which will not be repeated here.
  • which TCI state set or which TCI state sets a MAC CE is mapped to can be specified in the protocol or notified by the network device to the terminal device, for example, in the MAC CE header Carry indication information to indicate which TCI state set or several TCI state state sets the MAC CE is used to activate.
  • a new field is added to the MAC CE header to indicate which TCI state set or several TCI state sets the MAC CE is used to activate, for example, using 2 bits to indicate, 00 means to activate the first TCI state Set, 01 means activate the second TCI state set, etc.
  • TRP identification information or virtual identification information such as list identification, antenna panel (Pannel) identification, Pannel virtual identification, reference signal identification, such as SRI, CSI-RS resource indicator (Resource indicator, CRI) Wait.
  • the downlink control information DCI for scheduling the MAC CE such as the format of the DCI, the CRC scrambling information of the DCI, the search space information (such as the index number) where the DCI is located, and the control channel set information (such as the index number) where the DCI is located .
  • the antenna port information carried in the DCI, the transport block TB information or code word information carried in the DCI, or other information in the DCI, etc. determine which TCI state command or which TCI state sets the MAC CE activates.
  • the specific notification method can be implemented without limitation in this application. Through this method, the problem of how MAC-CE updates the TCI state set, how to update each TCI state set, and which TCI state set to update can be solved.
  • the second indication information carries the TCI state identifier of the TCI state to be activated.
  • the second indication information carries TCI1, TCI2, TCI5, TCI6, TCI9, TCI15, TCI16, TCI19, and is used to indicate activation of TCI1, TCI2, TCI5, TCI6, TCI9, TCI15, TCI16, TCI19.
  • the first indication information may not be in the form of a bitmap, but in a form of a TCI status identifier indicating a specific activated TCI status.
  • the activation of TCI1 to TCI8 is explicitly indicated.
  • the MAC CE header may also carry indication information to indicate which TCI state set or several TCI state sets the MAC CE is used to activate. For details, please refer to the description in the previous paragraph. ,No longer.
  • the first indication information indicates the activated K1 first TCI status and the activated K2 second TCI status in a bitmap manner.
  • the first indication information indicates the activated K1 first TCI status and the activated K2 second TCI status by indicating a specific TCI status identifier or index.
  • the first indication information indicates the activated K1 first TCI states by means of a bitmap, and indicates the activated K2 second TCI states by indicating a specific TCI state identifier or index.
  • K1 is a value predefined by the protocol, or the value notified by the network device to the terminal device through signaling information, or the value reported by the terminal device to the network device, or a value determined according to other information, or according to K2 The value is determined by calculation.
  • K2 may be a value predefined by the protocol, or a value notified to the terminal device through signaling information, or a value reported by the terminal device to the network device, or a value determined based on other information, or calculated based on the value of K1.
  • the value of K1 is indicated by MAC CE; the MAC CE may be the first indication information.
  • the value of K2 is indicated by MAC CE; the MAC CE may be the first indication information.
  • both the value of K1 and the value of K2 are indicated by the MAC CE; the MAC CE may be the first indication information.
  • K1 P, and P is the number of code points.
  • K2 A-K1.
  • K1 W
  • W is a positive integer
  • the value of K1 or W can be a multiple of 2, or 2 N.
  • N is the number of bytes of the Ti field included in the MAC CE
  • the value of K1 is one of ⁇ 0, 2, ..., 2 i-1 , ..., 2 N-1 , 2 N ⁇ .
  • the operation of the network device 101 in step 401 may be performed by the transceiver 202, or by the processor 201 through the transceiver 202.
  • the operation of the terminal device 111 in step 401 may be executed by the transceiver 301, or executed by the processor 304 through the transceiver 301.
  • Step 402 The network device 101 determines the first code point corresponding to the at least one TCI state according to the preset rule and the at least one TCI state.
  • the preset rule includes a rule for mapping A activated TCI states to P code points, or, the preset rule includes a rule for mapping K1 first TCI states to P code points, and K2 The rule for mapping the second TCI state to P code points, ... and, including the rule for mapping the Kx xth TCI state to P code points.
  • At least one of the P code points corresponds to at least two TCI states in the A TCI states, that is, at least two TCI states in the A TCI states can be mapped To the same code point.
  • at least one TCI state in the K1 first TCI states and one TCI state in the K2 second TCI states can be mapped to the same code point.
  • each second TCI state includes two TCI states, the two TCI states can be mapped to the same code point.
  • K1 ⁇ P, K2 ⁇ P,..., Kx ⁇ P in step 401 It is understandable that K1 ⁇ P, K2 ⁇ P,..., Kx ⁇ P in step 401.
  • the embodiments of the present application are described by taking the preset rules including the first TCI state mapping rule and the second TCI state mapping rule as an example.
  • the first TCI state mapping rule and the second TCI state mapping rule can be implemented separately or together.
  • the embodiments of this application are not limited.
  • the first TCI state mapping rule and the second TCI state mapping rule may be the same or different, which is not limited in the embodiments of the present application.
  • the first TCI state mapping rule includes a rule for mapping the K1 first TCI states to L1 code points among the P code points
  • the second TCI state mapping rule includes mapping the K2 second TCI states
  • the state is mapped to the rule of L2 code points among the P code points, L1 and L2 are positive integers, and L1 ⁇ P, L2 ⁇ P.
  • each code point in the L1 code points corresponds to at least one first TCI state.
  • each code point in the L2 code points corresponds to at least one second TCI state.
  • the L1 code points and the L2 code points include at least one same code point. That is, at least one code point corresponds to at least one first TCI state and at least one second TCI state.
  • the first TCI state mapping rule includes: the K1 first TCI states arranged in a first order are respectively mapped to K1 code points among the L1 code points arranged in a second order, ( Recorded as the first TCI state mapping rule A) where, K1 ⁇ L1, the first order may be:
  • First order A the order of TCI status identification from small to large, or
  • the first sequence B TCI status identification in descending order, or
  • the first sequence C the sequence obtained by transforming the vector composed of the K1 first TCI states arranged in the descending order of the TCI state identifiers, or
  • the first sequence D the sequence obtained by transforming the vector composed of the K1 first TCI states arranged in the descending order of the TCI state identifiers, or
  • First sequence E the sequence of the K1 first TCI states indicated by the first indication information, or
  • the first sequence F the sequence obtained by transforming the vector composed of the K1 first TCI states arranged in the sequence of the K1 first TCI states indicated by the first indication information, or
  • First order G The order of the first TCI state in a predefined or configured order.
  • the second sequence is:
  • Second order A The order of code point values from small to large, or,
  • Second order B The order of code point values from large to small.
  • the TCI state identifier may be continuous or discontinuous, depending on the TCI state identifier of the actually activated TCI state.
  • first order C, D, F it can be the order in which the column vector composed of K1 first TCI states is multiplied by a transformation matrix to the left, or the row vector composed of K1 first TCI states is multiplied to the right
  • the order of row vectors from a transformation matrix For example, taking the first order C as an example, formula 1 gives an example of the transformed vector, and the transformation methods of other orders are similar, and will not be repeated here. It is understandable that the mapping can be completed before the transformation. The present invention does not limit the order.
  • the above-mentioned transformation matrix may be specified in the protocol, or may be notified to the terminal device by the network device, for example, it may be notified to the terminal device together with the first indication information or the second indication information.
  • the second indication information will be notified in a later step.
  • the various embodiments of the present application do not limit the obtaining manner of the foregoing transformation matrix.
  • the sequence of the K1 first TCI status may be consistent or inconsistent with the TCI status identifier from small to large or from large to small.
  • Each TCI state is related to the mapping relationship of the Ti domain, which is not limited in the embodiments of the present application.
  • Table 8 uses MAC CE to implement Method A, TCI state and M Ti domain mapping method 1, second order The order of code point values from small to large, based on Example 4-2-1A as an example, respectively shows an example of mapping K1 first TCI states to L1 code points in the first sequence A to C. The examples of other sequences are similar and will not be repeated.
  • the K1 code points may be the first K1 code points of the L1 code points, or the last K1 code points of the L1 code points, or they may be pre-fixed or pre-configured K1 code points are not limited in the embodiments of this application.
  • K1 may be equal to L1, that is, K1 code points are L1 code points.
  • the second TCI state mapping rule includes: the K2 second TCI states arranged in the third order are respectively mapped to K2 code points among the L2 code points arranged in the fourth order, ( Recorded as the second TCI state mapping rule A) where, K2 ⁇ L2, the third order may be:
  • the third sequence A TCI status identification from small to large, or
  • the third sequence B TCI status identification from large to small sequence, or
  • the third sequence C the sequence obtained by transforming the vector composed of the K2 second TCI states arranged in the descending order of the TCI state identifiers, or
  • the third sequence D the sequence obtained by transforming the vector composed of the K2 second TCI states arranged in descending order of the TCI state identifiers, or
  • the third sequence E the sequence of the K2 second TCI states indicated by the first indication information, or
  • the third sequence F the sequence obtained by transforming the vector composed of the K2 second TCI states arranged in the sequence of the K2 second TCI states indicated by the first indication information; or
  • First order G The order of the first TCI state in a predefined or configured order.
  • the fourth sequence may be:
  • Fourth order A The order of code point values from small to large, or,
  • Fourth order B the order of code point values from large to small.
  • the TCI status identifier may be continuous or discontinuous, depending on the TCI status identifier of the actually activated TCI status.
  • the third order C, D, F it can be the order in which the column vector composed of K2 second TCI states is multiplied by a transformation matrix to the left, or the row vector composed of K2 first TCI states is multiplied to the right
  • the order of row vectors from a transformation matrix For example, taking the third order C as an example, formula 2 and formula 3 give examples of the transformed vector. It can be understood that the embodiments of the present application do not limit the specific conversion formula. It can be understood that the other order conversion methods are similar, and will not be repeated here. It is understandable that the mapping can be completed before the transformation. The present invention does not limit the order.
  • the TCI state identifier can be replaced with the first TCI state included in each second TCI state, Or the TCI status identifier can be replaced with the second TCI status included in each second TCI status.
  • the activated K1 second TCI states are (0, 64), (10, 80), (11, 81), (15, 85), (16, 87)
  • the invention is not limited.
  • Table 8 shows that when a second TCI state includes two TCI states, and one Ti domain in the MAC CE corresponds to one TCI state (that is, the mapping method 1 between the TCI state and M Ti domains), the activated TCI state and Schematic diagram of code point mapping.
  • the fourth order is the order of code point values from small to large, based on example 4-2- 1A and Table 5.
  • the K2 second TCI states are mapped to L2 code points as shown in Table 9. The examples of other sequences are similar and will not be repeated.
  • the K2 code points can be the first K2 code points of the L2 code points, or the last K2 code points of the L2 code points, or are pre-fixed or pre-configured K2 code points are not limited in the embodiments of this application.
  • K2 can be equal to L2, that is, K2 code points are L2 code points.
  • mapping relationship between K1 first TCI states and code points can refer to the mapping relationship when implementing method A based on MAC CE above; similarly, the K2 Second, the mapping relationship between the TCI state and the code point can refer to the above mapping relationship when implementing method A based on MAC CE, which is not limited in the present invention.
  • first TCI state and the second TCI state are only introduced for convenience of description. Although the above embodiments are described by taking the first TCI state including one TCI state and the second TCI state including two TCI states as an example, the present invention does not limit this.
  • the first TCI state may also include two or more TCI states. There are two TCI states, and the second TCI state may also include one or more TCI states.
  • first TCI state mapping rule and the second TCI state mapping rule may be consistent or inconsistent.
  • first TCI state mapping rule includes a first sequence A and a second sequence A
  • second TCI state mapping rule includes a third sequence A and a fourth sequence A
  • first TCI state mapping rule includes a first sequence A and The second sequence A
  • second TCI state mapping rule includes the third sequence B and the second sequence A.
  • the invention is not limited.
  • L1 and L2 can be less than P, that is, the number of code points that can be mapped by the K1 first TCI state L1 can be less than P, and the number of code points that can be mapped by the K2 second TCI state L2 can be less than P .
  • the K1 first TCI state can only be mapped to 4 code points, for example, the first 4 code points with the smallest value.
  • the first TCI state mapping rule includes: mapping the K1 first TCI states arranged in a first order to L1 code points arranged in a second order, where the i-th first TCI state The TCI state is mapped to the L1 code point in the second order.
  • the 4 code points arranged in the second order A are respectively 000, 001, 010, 011.
  • Table 9 below shows a schematic diagram of the mapping of TCI states to code points.
  • TCI0 and TCI2 are both mapped to the same code point value 000.
  • TCI4 and TCI6 are mapped to the same code point 001
  • TCI7 and TCI8 are mapped to the same code point 010
  • TCI10 It is mapped to the same code point 011 as TCI12.
  • W1 and w2 may be the same or different.
  • W1 and w2 may be specified in the protocol, or may be notified to the terminal device by the network device.
  • the specific notification manner is not limited in the embodiments of this application.
  • the preset rule is that A TCI states arranged in the fifth order are mapped to P code points.
  • the fifth order is similar to the first order or the third order, except that in the fifth order, all A TCI states are sorted uniformly. I won't repeat them here.
  • the preset rule includes: mapping the i-th state of the A TCI states arranged in five order to a code point value of i%P or (i-1)%P, and% is a modulo operation , I is an integer greater than or equal to 0.
  • the network device may also send indication information associated with the first indication information to the terminal device, and when the indication information takes the first value, it is used to notify the terminal device of the A TCI states indicated by the first indication information Map to P code points in sequence.
  • each code point can map at most one TCI state, which is similar to the prior art.
  • the value is the second value
  • a TCI states are mapped to P code points according to the scheme described above in this application. No longer.
  • the indication information may be a reserved bit of the MAC CE header corresponding to the first indication information, the first value may be 0 for the reserved bit, and the second value may be 1 for the reserved bit.
  • the following describes how the terminal device determines L1 code points.
  • Determination method 1 The L1 code points are specified in the protocol, for example, the code point value of the L1 code points is specified as 000, 010, 011, 100. This method can reduce signaling overhead.
  • Determination method 1B The agreement stipulates that on the basis of determining method 1, the minimum (or starting position) of L1 code points is X, where 0 ⁇ X+L1 ⁇ P, or, on the basis of determining method 1. Above, the maximum value of L1 code points is X, where X ⁇ L1. X is an integer. The value of X may be specified in the protocol, or may be notified by the network device to the terminal device, for example, the network device 101 sends the fifth instruction information to the terminal device. Or the terminal equipment reported to the network equipment.
  • Determination method 2 The network device sends third indication information to the terminal device, and the third indication information indicates L1 code points.
  • the third indication information may be carried on the MAC CE, and the MAC CE may be the first indication information.
  • the second bit corresponds to the code point 001
  • the eighth bit corresponds to the code point value 111.
  • Table 10 An example is given in Table 10 below.
  • the third indication information can also take other forms.
  • the L1 code point value is directly notified, or the starting position (such as X) and the number L1 of the L1 code point value are notified.
  • It can also indicate the comb mode, such as a code point with an odd value.
  • the invention is not limited.
  • the third indication information method can improve the flexibility of L1 code points. For example, at different times, L1 can be flexibly changed, and the code point value used can also be flexibly changed.
  • the following describes how the terminal device determines the L2 code points.
  • Determination method 1 The L2 code points are specified in the protocol, for example, the code point value of the L2 code points is specified as 000, 010, 011, 100. This method can reduce signaling overhead.
  • Determination method 1B It is stipulated in the agreement that on the basis of determining method 1, the minimum value (or starting position) of L2 code points is Y, where 0 ⁇ Y+L1 ⁇ P, or, on the basis of determining method 1. Above, the maximum value of L2 code points is Y, where Y ⁇ L1. Y is an integer. The value of Y may be specified in the protocol, or may be notified by the network device to the terminal device, for example, the network device 101 sends the sixth instruction information to the terminal device. Or the terminal equipment reported to the network equipment.
  • Determination method 2 The network device sends fourth indication information to the terminal device, and the fourth indication information indicates L2 code points.
  • the fourth indication information may be carried on the MAC CE, and the MAC CE may be the first indication information.
  • the fourth indication information and the third indication information may be carried on one MAC CE, and the MAC CE signaling may be different from the MAC CE that carries the first indication information.
  • the fourth indication information may be a bitmap, and the bitmap includes P bits, where each bit corresponds to one bit of the P code points.
  • P 8
  • the first bit corresponds to the code point value 000
  • the second bit corresponds to the code point 001
  • the eighth bit corresponds to the code point value 111.
  • Table 10 which will not be repeated here.
  • the fourth indication information can also take other forms.
  • the L2 code point values are directly notified, or the starting position (such as Y) and the number L2 of the L2 code point values are notified.
  • It can also indicate the comb mode, such as a code point with an even number, which is not limited in the present invention.
  • Using the fourth indication information method can improve the flexibility of L2 code points. For example, at different times, L2 can be flexibly changed, and the code point value used can also be flexibly changed.
  • code point values of the L1 code points in each embodiment may be continuous or discontinuous; similarly, the code point values of the L2 code points may be continuous or discontinuous.
  • the embodiments of this application are not limited.
  • the method for determining L1 and the method for determining L2 may be the same or different. That is, in each embodiment of the present application, any method for determining L1 code points can be combined with a method for determining L2 code points.
  • the determination method 1 is used to determine L1 code points
  • the determination method 2 is used to determine L2 code points. Even if the same method is used, the values of the parameters involved may be the same or different.
  • the embodiments of this application are not limited.
  • the L1 code points are comb-shaped (Comb), and/or the L2 code points are comb-shaped (Comb).
  • L1 code points are code points with odd numbers
  • L2 code points are code points with even numbers.
  • the present invention does not limit the comb tooth interval.
  • L1 code points and L2 code points can be completely the same, or partly the same, or completely different, or L1 code points and L2 codes form P code points, that is, L1+L2 ⁇ P, this
  • L1 code points and L2 codes form P code points, that is, L1+L2 ⁇ P, this
  • L1+L2 ⁇ P L1+L2 ⁇ P
  • the following Table X-Table X respectively give the mapping relationship between the code point value and the TCI state.
  • the TCI state with a value of 1 indicated by the first indication information and its sequence are as follows:
  • K1 first TCI states ⁇ TCI1, TCI2, TCI4, TCI5, TCI6, TCI15, TCI16, TCI19 ⁇
  • K2 first TCI states ⁇ TCI64, TCI66, TCI68, TCI71, TCI72, TCI73 ⁇
  • K1 first TCI states are arranged in the first order A
  • the K2 second TCI states are arranged in the third order A.
  • the third order and the fourth order are the order of code point values from small to large, and the mapping relationship between code point values and TCI states is as follows The table shows:
  • the TCI state with a value of 1 indicated by the first indication information and its sequence are as follows:
  • K1 TCI ID is ⁇ TCI1, TCI2, TCI4, TCI5, TCI6, TCI15 ⁇
  • K2 TCI ID is ⁇ TCI64, TCI66, TCI68, TCI71, TCI72, TCI73 ⁇
  • K1 first TCI status is arranged in the first order A
  • K2 second TCI states are arranged in the third order A.
  • the third order and the fourth order are the order of code point values from small to large.
  • the mapping relationship between code point values and TCI states is shown in the following table:
  • X 0, Y>0, assuming that K is less than or equal to P, and K2 is less than P.
  • K1 TCI IDs are ⁇ TCI1, TCI2, TCI4, TCI5, TCI6, TCI15, TCI16, TCI19, TCI64, TCI66, TCI68, TCI71, TCI72, TCI73, TCI126, TCI127 ⁇ .
  • K1 TCI IDs are ⁇ TCI1, TCI2, TCI4, TCI5, TCI6, TCI15, TCI16, TCI19 ⁇ , and K2 TCI IDs are ⁇ TCI64, TCI66, TCI68, TCI71, TCI72, TCI73 ⁇ .
  • K1 first TCI states are arranged in the first order A
  • K2 second TCI states are arranged in the third order A
  • the third order and the fourth order are the order of the code point value from small to large
  • the code point value and TCI state The mapping relationship is shown in the following table:
  • L1 uses the bitmap method in the determination method 2
  • the TCI state with a value of 1 indicated by the first indication information and its sequence are as follows:
  • K1 TCI IDs are ⁇ TCI1, TCI2, TCI4, TCI5, TCI6, TCI15 ⁇
  • K2 TCI IDs are ⁇ TCI64, TCI66, TCI68, TCI71, TCI72, TCI73 ⁇ , confirm that the value indicated by the bitmap in Method 2 is 10101111 , K1 first TCI states are arranged in the first order A, K2 second TCI states are arranged in the third order A, the third order and the fourth order are the order of the code point value from small to large, then the code point value and TCI
  • the state mapping relationship is shown in the following table:
  • L1 uses the Comb method in the determination method 2, using an even number of code points
  • the TCI state with a value of 1 indicated by the first indication information and its sequence are as follows:
  • K1 first TCI states ⁇ TCI1, TCI2, TCI4, TCI5, TCI6, TCI15, TCI64, TCI66, TCI68, TCI71, TCI72, TCI73 ⁇ .
  • K1 first TCI states ⁇ TCI1, TCI2, TCI4, TCI5 ⁇
  • K2 second TCI states ⁇ TCI64, TCI66, TCI68, TCI71, TCI72, TCI73 ⁇
  • K1 first TCI states are arranged in the first order A
  • the K2 second TCI states are arranged in the third order A.
  • the third order and the fourth order are the order of code point values from small to large.
  • the mapping relationship between code point values and TCI states is shown in the following table:
  • TCI state with a value of 1 indicated by the first indication information and its sequence are as follows:
  • the TCI state with a value of 1 indicated by the first indication information and its sequence are as follows: ⁇ TCI1, TCI2, TCI4, TCI5, TCI6, TCI15, TCI64, TCI66, TCI68, TCI71, TCI72, TCI73, TCI126 ⁇ . The order of code point values from small to large.
  • mapping relationship between the code point value and the TCI state is shown in the following table:
  • This MAC CE may include one or more of the following:
  • the serving cell identity field indicates the identity of the serving cell to which the activated TCI state indicated by the MAC CE belongs; in other words, the serving cell ID field indicates the identity of the serving cell to which the MAC CE belongs.
  • the serving cell identity field can indicate the serving cell identity in a state value manner.
  • the serving cell identification field can also be referred to as the Serving Cell ID field.
  • a network device can be configured for a terminal device with a total of S serving cells (there can be at most S), then the serving cell identity field passes Bit indication.
  • 5 bits can be used to indicate the identity of the serving cell to which the MAC CE is applied. For example, 00001 indicates a cell with a cell ID of 1; 00010 indicates a cell with a cell ID of 2, ... and so on.
  • the bandwidth area identifier field indicates the bandwidth area identifier applied by the activated TCI state indicated by the MAC CE; in other words, the bandwidth area identifier field indicates the bandwidth area identifier applied by the MAC CE.
  • the bandwidth area is a bandwidth part indicator field of DCI.
  • the bandwidth area identifier field can indicate the bandwidth area identifier in a state value manner.
  • the bandwidth area identification field may also be referred to as a BWP ID field.
  • a network device can be configured for a terminal device with a total of B bandwidth area identifiers in a cell (there can be at most B), then the bandwidth area identifier domain passes Bit indication.
  • bit can be used to indicate the identifier of the bandwidth area to which the MAC CE applies. For example, 00 indicates a cell with a BWP ID of 0; 01 indicates a cell with a cell ID of 1, ... and so on.
  • the TCI state identification field is used to indicate the activated TCI state; or the TCI state identification field is used to indicate the activated/deactivated TCI state.
  • the TCI status identification field may indicate the activated TCI state through a state value; or, the TCI state identification field may also indicate the activated/deactivated TCI state through a bitmap.
  • the TCI state identification domain may also be called a Ti domain, or may also be called a TCI state ID domain, or may also be called a TCI state domain.
  • a network device can be configured for a terminal device with a total of T TCI status identifiers in a certain cell (there can be at most T), then a TCI status field passes Bit indication.
  • MAC CE indicates A active TCI status, then a total of A TCI status fields are required, The bits indicate A active TCI states.
  • T 128, then 7 bits can be used to indicate the identifier of the activated TCI state indicated by the MAC CE. For example, 0000000, indicates that the TCI state with TCI state ID of 0 is activated; 0000001, indicates that the TCI state with TCI state ID of 1, is activated, and so on. It should be understood that the identifier of the TCI state can also be understood as an index of the TCI state.
  • T (at most T) TCI status identifiers in a certain cell that a network device can configure to a certain terminal device, and then a TCI status field is indicated by T bits.
  • MAC CE indicates A activated TCI status
  • T TCI status fields are required in total
  • T bits indicate A activated TCI status.
  • each bit corresponds to the activation or deactivation of a TCI state
  • the i-th bit corresponds to the i-th TCI state in the T TCI states; when the bit value is 1, it indicates the i-th TCI state Is activated; when the bit value is 0, it indicates that the i-th TCI state is deactivated.
  • T 128, then 128 bits can be used to indicate the identifier of the activated TCI state indicated by the MAC CE. For example, 0000000, indicates that the TCI state with TCI state ID of 0 is activated; 0000001, indicates that the TCI state with TCI state ID of 1, is activated, and so on. It should be understood that the identifier of the TCI state can also be understood as an index of the TCI state.
  • the C domain is used to indicate the code point mapped by the activated TCI state; the C domain may indicate the code point mapped by the activated TCI state through the state value; or the C domain may also indicate the activated TCI state through a bitmap.
  • the C domain can also be called a codepoint domain.
  • each bit of the bitmap can correspond to a C i field or a C ij field.
  • C i represents the region corresponding to the code point mapping an active state TCI
  • field C i assuming a value of 0 indicates that the corresponding field C i no code point mapping Active TCI status.
  • the code point corresponding to domain 1 does not map an activated first TCI state.
  • the value of the C i,1 field is 1, it means that the code point corresponding to the C i,1 field maps an activated first TCI state. If the value of the C i,1 field is 0, it means that the C i,1 field corresponds to The code point does not map an activated first TCI state.
  • a network device can be configured for a certain terminal device DCI TCI field candidate status at most P (also can be understood as a maximum of P code points, then a C domain passes
  • the bits indicate the code point that maps the activated TCI state.
  • MAC CE indicates L code points mapped with activated TCI status, then a total of L C status fields are required,
  • the bits indicate P code points mapped with the activated TCI state. If the first TCI state and the second TCI state both need to indicate their respective mapped code points, then a total of L1+L2 C state domains are required,
  • the bits indicate (L1+L2) code points mapped with the activated TCI state. Among them, the first TCI state can be mapped to the first L1 indicated code points, and the second TCI state can be mapped to the last L2 indicated code points.
  • a network device can configure a DCI for a certain terminal device with a maximum of P candidate states of the TCI field (it can also be understood as having a maximum of P code points, then a C field indicates the mapping to activate the TCI state through P bits L code points.
  • MAC CE indicates L code points mapped with active TCI states. If both the first TCI state and the second TCI state need to indicate their respective mapped code points, then a total of L1+L2 C state fields are required 2*P bits indicate (L1+L2) code points mapped with active TCI states.
  • the first 8 bits can be used to indicate the code points mapped to the first TCI state, and the next 8 bits can be used for Indicate the code point for the second TCI state mapping.
  • the first TCI state can be mapped to the first L1 indicated code point
  • the second TCI state can be mapped to the last L2 indicated code point.
  • 16 bits can be used to indicate the L1 code points of the activated first TCI state mapping indicated by the MAC CE and the L2 code points of the activated second TCI state mapping.
  • the K1 such as 5 first TCI states that indicate activation are mapped to code points 000, 001, 010, 011, 100 according to preset rules
  • the K2 such as 2) second TCI states that indicate activation are based on the preset rules.
  • the rule be mapped to code points 000 and 100. It should be understood that which activated TCI indicated by the TCI status field is mapped to the code point indicated by which C field can be determined by the above preset rule, which will not be repeated here.
  • the relationship between the serving cell ID field, the TCI status field, and the C field can be: the serving cell ID field indicates the ID of the serving cell to which the MAC CE is applied, and the TCI field indicates the activated TCI state ,
  • the C field indicates the codepoint identifier or index of the activated TCI state mapping indicated by the TCI field.
  • the codepoint is the candidate state value of the TCI field in the DCI.
  • the A field occupies 6 bits or 1 byte and indicates the number of activated TCI states.
  • the A field can indicate the number of activated TCI states in the form of state values.
  • the A domain includes two domains, A 1 and A 2 .
  • a 1 indicates the number of activated first TCI states; for example, if the A 1 field is "100", it means that the number of activated first TCI states is 4. If the A 1 field is "101", it means that the number of activated first TCI states is 5. Of course, the meanings of the values "100” and “101” are only examples, and the application is not limited thereto. For example, if the A 2 field is "011”, it means that the number of activated second TCI states is 3. If the A 1 field is "010”, it means that the number of activated first TCI states is 2. Of course, the meanings of the values "011” and “010” are only examples, and the application is not limited thereto.
  • the A domain is used to indicate the number of activated TCI states; the A domain can indicate the number of activated TCI states through a state value.
  • the A domain can include two domains, A 1 and A 2 .
  • a 1 indicates the number of activated first TCI states; for example, if the A 1 field is "100", it means that the number of activated first TCI states is 4. If the A 1 field is "101", it means that the number of activated first TCI states is 5. Of course, the meanings of the values "100” and “101” are only examples, and the application is not limited thereto. For example, if the A 2 field is "011”, it means that the number of activated second TCI states is 3. If the A 1 field is "010", it means that the number of activated first TCI states is 2. Of course, the meanings of the values "011” and “010” are only examples, and the application is not limited thereto.
  • the A 1 field indicates K1, which means that the first activated TCI state is K1
  • the A 2 field indicates K2, which means that the activated second TCI state is K2.
  • the network device can configure the DCI TCI field candidate state of a certain terminal device to have at most P (it can also be understood as having at most P code points, then an A field passes
  • the bits indicate the number of activated TCI states for the mapping. If both the first TCI state and the second TCI state need to indicate the number of their respective active TCI states, then a total of The bits indicates the number of activated TCI states. Among them, assuming that the A field indicates that the number of activated first TCI states is K1, and the number of activated second TCI states is K2, then the activated first TCI state is mapped to the first K1 of the P code points Code points, the activated second TCI state is mapped to the previous K2 code points among the P code points.
  • the number of activated first TCI states and the number of activated second TCI states indicated by the MAC CE can be indicated by 6 bits.
  • 010110 indicates the first TCI state of K1 (such as 6) and the second TCI state of K2 (such as 2) that are activated.
  • the activated K1 (such as 6) first TCI states are mapped to code points 000, 001, 010, 011, 100, 101 according to preset rules;
  • the activated K2 (such as 2) second TCI states follow preset rules Map to code points 000, 001. It should be understood that which activated TCI indicated by the TCI status field is mapped to the code point indicated by which C field can be determined by the above preset rule, which will not be repeated here.
  • the relationship between the serving cell ID field, the TCI status field, and the A field can be: the serving cell ID field indicates the ID of the serving cell to which the MAC CE is applied; the TCI field indicates the activated TCI state ; The A field indicates the number of bytes or bits included in the TCI field, or the number of activated first TCI states and the number of second TCI states.
  • the reserved field means reserved bits, which are generally set to '0' and are not used to indicate any information.
  • the R field in the first byte of the MAC CE can be set to 1, which is used to indicate the format, type, or mapping rule of the MAC CE, or to indicate whether certain fields in the MAC CE exist.
  • serving cell identification domain bandwidth area identification domain
  • TCI status identification domain or TCI status domain
  • reserved domain C domain
  • a domain are all just names, and do not affect the scope of protection of the embodiments of this application.
  • the embodiments of this application do not exclude the use of other names to represent the same meaning in future agreements.
  • the first indication information or MAC CE may be information indicating the activation and or deactivation of the TCI state of the PDSCH (eg, TCI States Activation/Deactivation for UE-specific PDSCH MAC CE).
  • the MAC CE may be the first indication information.
  • the first indication information is the MAC-CE, and several specific examples are described. As shown in FIGS. 4A to 4D, one octet (Oct, octet) represents a byte (byte) composed of 8 bits (bits), and it is recorded as Oct 1, Oct 2, etc. to distinguish different bytes. Oct1 can be referred to as the first byte, Oct2 can be referred to as the second byte, etc. It should be understood that the first byte, the second byte, etc. are only names for distinguishing, and do not limit the protection scope of the embodiments of the present application.
  • Example 1 Figure 4A shows a possible MAC CE format that uses MAC-CE to indicate activated TCI state information.
  • FIG. 4A one Oct represents one byte composed of 8 bits.
  • Figure 4A includes K1+K2+3 Octs, which are denoted as Oct 1, Oct 2, ..., Oct K1+K2+3.
  • the format includes at least:
  • the C field indicates one or more code points mapped by the activated TCI state.
  • the C domain can indicate the code point mapped by the activated TCI state by means of a bitmap.
  • the C domain includes two bitmaps, and any bit of the first bitmap indicates whether there is a first TCI state corresponding to the code point mapping of the bit, which is represented by C i,1 .
  • Any bit of the second bitmap indicates whether there is a second TCI state of the code point mapping corresponding to the bit, which is represented by C i,2 .
  • the number of bits or bytes occupied by the TCI status field may be related to the C field.
  • the number of bits with a value of 1 in the C field is equal to the number of bytes included in the TCI status field.
  • the number of activated TCI states indicated by the TCI state field may be related to the C field.
  • the number of bit values 1 in the C domain is equal to the number of activated TCI states indicated by the TCI status domain.
  • the C i,1 field is "1”
  • the C i,1 field is "0”
  • the meanings of the values "1" and "0" are only examples, and the application is not limited thereto.
  • the second bitmap of the two bitmaps corresponds to C i,2 indicating the code point of the second TCI mapping; for example, if the C i,2 field is "1", it means that the C i,2 field corresponds to Code point i has a second TCI state mapped to it. If the C i,2 field is "0", it means that the code point i corresponding to the C i,2 field does not have a second TCI state mapped to it. Of course, the meanings of the values "1" and "0" are only examples, and the application is not limited thereto. When a code point i maps both the first TCI state and the second TCI state, the code point can correspond to two TCI states.
  • the TCI status field indicates the index of the active TCI status. Among them, the number of the first bitmap indicated as 1 included in the C field is equal to K1, and the number of the second bitmap included in the C field indicated as 1 is equal to K2; then, the TCI status field indicates the activated K1 The first TCI state, K2 activated second TCI state.
  • the TCI status domain includes the first TCI status domain and the second TCI status domain.
  • the first TCI status domain indicates the K1 first TCI status activated
  • the second TCI status domain indicates the K2 second TCI status activated.
  • the TCI state identification field indicates K1+K2 active TCI states.
  • the TCI status field occupies (K1+K2)*7 bits or (K1+K2) bytes.
  • the first TCI status field may include 7*K1bit
  • the second TCI status field may include 7*K2bit.
  • the TCI status field may include K1+K2 bytes.
  • the first TCI status domain may be in front of the second TCI status domain.
  • the TCI status indicated by the status field is sequentially mapped to the code point with the indication value of 1 in the second bitmap of the C field.
  • TCI state ID i,1 is mapped to the first bitmap of the C domain to indicate the i+1th code point among the code points with the value 1.
  • the second bitmap of TCI state ID i,2 mapped to the C domain indicates the i+1th code point among the code points with the value 1.
  • a bitmap is used to indicate whether each code point is mapped to one TCI state or two TCI states. This method does not include the case where one code point does not map any TCI state. At this time, the number of bits of MAC CE is not fixed. The UE needs to know how many bits of information the MAC CE contains through blind detection. In the method of this example, the MAC CE can flexibly indicate the TCI status of each code point mapping through two bitmaps (such as the C domain). The code point may not map the TCI status, or only map one TCI status, or map two. TCI status.
  • the MAC-CE may also include a serving cell identification field, a bandwidth area identification field, and reserved bits.
  • Serving cell identification field occupies 5 bits: indicates the ID of the serving cell to which the MAC CE is applied.
  • Bandwidth area identification field indicates the bandwidth area identification of the MAC CE application.
  • R stands for reserved bit, which is generally set to “0".
  • the R domain in Oct1 can be 1.
  • Example 2 Figure 4B shows a possible MAC CE format that uses MAC-CE to indicate activated TCI state information, and there are two C fields in the format.
  • FIG. 4B one Oct represents one byte composed of 8 bits.
  • Figure 4B includes K1+K2+2 Octs, which are marked as Oct 1, Oct 2, ..., Oct K1+K2+2.
  • the format includes at least:
  • the A field indicates the number of active TCI states.
  • the A field can indicate the number of activated TCI states in the form of state values.
  • the A domain can include two domains, A 1 and A 2 .
  • a 1 indicates the number of activated first TCI states;
  • a 2 indicates the number of activated first TCI states.
  • the number of bits or bytes occupied by the TCI status identification field may be related to the A field.
  • the number of activated TCI states in the A field is equal to the number of bytes included in the TCI state identification field.
  • the number of activated TCI states indicated by the TCI state identification field may be related to the A field.
  • the number of activated TCI states indicated by the A field is equal to the number of activated TCI states indicated by the TCI state identifier field.
  • the sum of the number of activated first TCI states indicated by the A field and the number of activated second TCI states is equal to the number of activated TCI states indicated by the TCI state identifier field.
  • the A 1 field is "100”, it means that the number of activated first TCI states is 4. If the A 1 field is "101”, it means that the number of activated first TCI states is 5. Of course, the meanings of the values "100” and “101” are only examples, and the application is not limited thereto. For another example, if the A 1 field is "010" and the A 2 field is "011”, it means that the number of activated first TCI states is 2 and the number of activated second TCI states is 3. Of course, the meanings of the values "011” and "010” are only examples, and the application is not limited thereto.
  • the A field occupies 6 bits or 1 byte. If the A domain can include two domains, A 1 and A 2 , A 1 occupies 3 bits, and A 2 occupies 3 bits.
  • the TCI status identifier field indicates the identifier (or index) of the activated TCI status.
  • the TCI status domain may include a first TCI status domain and a second TCI status domain.
  • the A1 field indicates that the number of activated first TCI states is equal to K1
  • the A2 field indicates that the number of activated second TCI states is equal to K2.
  • the TCI status field indicates the first TCI state of K1 activated, and the second TCI state of K2 activated.
  • the TCI status domain includes the first TCI status domain and the second TCI status domain.
  • the first TCI status domain indicates the K1 first TCI status activated
  • the second TCI status domain indicates the K2 second TCI status activated.
  • the TCI status identification field occupies (K1+K2)*7 bits or K1+K2 bytes.
  • the first TCI state identification field may include 7*K1bit
  • the corresponding first TCI state identification field may include 7*K2bit.
  • the corresponding TCI status identification field includes K1+K2 bytes.
  • the first TCI state field may be in front of the second TCI state field.
  • the indicated K2 TCI states are respectively mapped to the first K2 code points among the 8 code points.
  • TCI state ID i,1 maps to the i+1th code point among the first K1 code points.
  • TCI state ID i,2 is mapped to the i+1th code point among the first K2 code points.
  • K1 code points are the previous consecutive K1 code points among the 8 code points, such as code points 0, 1, ..., K1-1;
  • K2 code points are the previous consecutive 8 code points K2 code points, such as code points 0,1,...,K2-1.
  • the code point can correspond to two TCI states.
  • the number of bits of the MAC CE is not fixed because the number of TCI states mapped by each code point is different, and the terminal device needs to learn how many bits of information the MAC CE contains through blind detection.
  • the method in this example indicates the specific number of bits occupied by the subsequent TCI state identification field by indicating the number of activated TCI states, which can effectively save resource overhead and solve the problem of high detection complexity of terminal devices.
  • the MAC-CE may also include a serving cell identification field, a bandwidth area identification field, and reserved bits.
  • Serving cell identification field occupies 5 bits: indicates the ID of the serving cell to which the MAC CE is applied.
  • Bandwidth area identification field indicates the bandwidth area identification of the MAC CE application.
  • R stands for reserved bit, which is generally set to “0".
  • the R domain in Oct1 can be 1.
  • Example 3 Figure 4C shows a possible MAC CE format that uses MAC-CE to indicate activated TCI state information. There are two C fields in the format.
  • one Oct represents one byte composed of 8 bits.
  • Figure 4C includes N+K2+1 Octs, which are marked as Oct 1, Oct 2, ..., Oct N+K2+1 for distinction.
  • the format includes at least one of the following:
  • the C field indicates the code point mapped by the activated second TCI state.
  • the C domain can indicate the code point mapped by the activated second TCI state by means of a bitmap.
  • Each bit of the bitmap can correspond to a Ci field.
  • the bitmap C i indicates the second TCI mapping code point i; for example, if the C i field is "1", it means that the code point i corresponding to the Ci field has a second TCI state mapped to it. If the C i field is "0", it means that the code point i corresponding to the C i field does not have a second TCI state mapped to it.
  • the meanings of the values "1" and "0" are only examples, and the application is not limited thereto.
  • the TCI status identifier field indicates the identifier (or index) of the activated TCI status.
  • the TCI status domain includes a first TCI status domain and a second TCI status domain.
  • the first TCI status domain indicates the activated K1 first TCI status
  • the second TCI status domain indicates the activated K2 second TCI status.
  • the first TCI state field uses a bitmap to indicate the activated first TCI state, where each bit in the bitmap corresponds to the Ti field.
  • the Ti field is used to indicate the activation/deactivation of the TCI status with the TCI status identifier i. Further, if the Ti field is "1", it means that the TCI with the TCI status identifier i is activated and mapped to the TCI field in the DCI. If the Ti field is "0", it means that the TCI state with the TCI state identifier i is deactivated and will not be mapped to the TCI field of DCI.
  • the second TCI status field indicates the activated second TCI status through the flag indicating the TCI status. Among them, the number of bits included in the C domain with a value of 1 is equal to K2.
  • the second TCI status field occupies K2*7 bits or K2 bytes.
  • the number of bits or bytes occupied by the second TCI status field may be related to the C field.
  • the number of bits with a value of 1 in the C field is equal to the number of bytes included in the second TCI status field.
  • the number of activated TCI states indicated by the second TCI state field may be related to the C field.
  • the number of bit values of 1 in the C field is equal to the number of activated TCI states indicated by the second TCI state field.
  • the corresponding second TCI state field may include 7*K2 bits.
  • the corresponding second TCI status field may include K2 bytes, or the second TCI status field may indicate K2 TCI status identifiers.
  • the number of bits or bytes occupied by the TCI status field may be related to the C field.
  • the number of bits with a value of 1 in the C field is equal to the number of bytes included in the TCI status field.
  • the first TCI status domain may be in front of the second TCI status domain.
  • the sequence of the TCI status with the indication value of 1 in the Ti field can be mapped to L1 code points from the P code points, and then the TCI status field indicates The sequence of the TCI state is mapped to the code point of the C domain with an indicator value of 1.
  • the "R” field indicates a reserved bit (Reserved bit), which is generally set to "0".
  • the R domain in Oct1 can be 1.
  • the MAC CE when the value of the R field in Oct1 is 0, it means that the MAC CE does not have a C field and a second TCI status field; when the value of the R field in Oct1 is 1, it means that the MAC CE has a C field and TCI. Status field.
  • the MAC CE when the R field in Oct1 indicates 0, the MAC CE is the same as the MAC CE of Release 15 indicating the activated TCI status of the PDSCH. It can be used for TCI indication during single TRP transmission (or at most each code point). Corresponds to a TCI state).
  • the MAC CE When the R field in Oct1 indicates 1, the MAC CE is different from the MAC CE of Release 15 indicating the activated TCI status of the PDSCH. It can be used for TCI indication during multi-TRP transmission (or at most each code point can Corresponding to two TCI states).
  • the MAC-CE may also include a serving cell identification field and a bandwidth area identification field.
  • Serving cell identification field occupies 5 bits: indicates the ID of the serving cell to which the MAC CE is applied.
  • Bandwidth area identification field indicates the bandwidth area identification of the MAC CE application.
  • the MAC CE can be compatible with the version 15 (Release 15) MAC CE indicating the TCI status of the PDSCH (for example, it can be the same as Table 1, and one code point can map at most one TCI status), and can also support flexible TCI indication (Indicate that one code point maps at most one TCI state, or indicate that one code point maps at most 2 TCI states).
  • first TCI state and the second TCI state may come from the same TCI state set, or the first TCI state and the second TCI state may come from a different TCI state set. This is not limited.
  • two MAC CEs are used to indicate the activated TCI state.
  • the first MAC CE indicates the index of all activated TCI states
  • the second MAC CE indicates the mapping relationship between the activated index and the code point.
  • the first MAC CE including information may be in the same format as the MAC CE of Release 15 indicating the TCI status of the PDSCH. For example, it can be the same as Table 1. However, the Ti field is only used to indicate the activated TCI state, and the direct relationship between the TCI state and the code point is not determined in a predefined manner, but is indicated by the second MAC CE.
  • the R field in Oct1 of the first MAC CE can be used to indicate whether the second MAC CE exists.
  • the value of the R field in Oct1 of the first MAC CE is 0, it means that the second MAC CE does not exist, and the mapping relationship between the activated TCI state and the code point is still determined according to the Release 15 method;
  • the value of the R field in Oct1 is 1, it indicates that there is a second MAC CE, and the TCI state corresponding to each code point is determined according to the mapping relationship between the activated TCI state and the code point indicated by the second MAC CE.
  • the MAC CE is the same as the MAC CE of Release 15 indicating the activated TCI status of the PDSCH.
  • TCI indication can be used during single TRP transmission (or at most each code point). Corresponds to a TCI state).
  • the R field in Oct1 indicates 1
  • two MAC CEs can indicate the TCI state used for multi-TRP transmission (or each code point can correspond to two TCI states at most).
  • the second MAC CE includes at least:
  • the C field indicates one or more code points mapped by the activated TCI state.
  • the C domain can indicate the code point mapped by the activated TCI state by means of a bitmap.
  • the C domain includes two bitmaps, and any bit of the first bitmap indicates whether there is a first TCI state corresponding to the codepoint mapping of the bit, which is represented by Ci,1.
  • Any bit of the second bitmap indicates whether there is a second TCI state of the code point mapping corresponding to the bit, which is represented by Ci,2.
  • the number of bits or bytes occupied by the TCI status field may be related to the C field.
  • the number of bits with a value of 1 in the C field is equal to the number of bytes included in the TCI status field.
  • the number of activated TCI states indicated by the TCI state field may be related to the C field.
  • the number of bit values 1 in the C domain is equal to the number of activated TCI states indicated by the TCI status domain.
  • the Ci,1 field is "1" it means that the code point i corresponding to the Ci,1 field has a first TCI state mapped to it. If the Ci,1 field is "0", it means that the code point i corresponding to the Ci,1 field does not have a first TCI state mapped to it.
  • the second bitmap of the two bitmaps corresponds to Ci,2 indicating the code point of the second TCI mapping; for example, if the Ci,2 field is "1", it means the code point i corresponding to the Ci,2 field There is a second TCI state mapped to it.
  • Ci,2 field If the Ci,2 field is "0", it means that the code point i corresponding to the Ci,2 field does not have a second TCI state mapped to it.
  • the meanings of the values "1" and "0" are only examples, and the application is not limited thereto.
  • the code point can correspond to two TCI states.
  • the TCI state identification field indicates the index of the active TCI state of the code point mapping. It should be understood that the index is a relative index, and may be one of the activated TCI states indicated by the first MAC CE.
  • the TCI status identification domain may include a first TCI status domain and a second TCI status domain. Among them, the TCI state identifier field is used to indicate one of the activated TCI states indicated by the first MAC CE.
  • the TCI status field can indicate the activated TCI status through the status value.
  • the number of bits or bytes occupied by the TCI status field may be related to the C field.
  • the number of activated TCI states indicated by the TCI state field may be related to the C field.
  • the number of bit values 1 in the C domain is equal to the number of activated TCI states indicated by the TCI status domain.
  • the number of bits or bytes occupied by the TCI status field may be related to the C field.
  • the number of bits with a value of 1 in the C field divided by 2 is equal to the number of bytes in the TCI status field.
  • the TCI status identification field indicates the activated K1
  • the TCI status identifier domain includes a first TCI status domain and a second TCI status domain.
  • the first TCI status domain indicates the K1 first TCI status activated
  • the second TCI status domain indicates the K2 second TCI activated. status.
  • the TCI state identification field indicates K1+K2 active TCI states.
  • the TCI status identification field occupies (K1+K2)*3 bits or Bytes.
  • the corresponding first TCI state field may include 3*K1bit
  • the corresponding second TCI state field may include 3*K2bit.
  • the corresponding TCI status identification field can include Bytes.
  • the first TCI state field may be in front of the second TCI state field. According to the order in which the TCI state field indicates the TCI state, first map the previous K1 TCI states to the code point of the first bitmap indicating value 1 in the C field respectively, and then respectively sequentially map the following K2 TCI states.
  • the second bitmap mapped to the C domain indicates a code point with a value of 1.
  • the first bitmap of TCI state ID 0 mapped to the C domain indicates the i+1th code point among the code points of 1
  • the first bitmap of TCI state ID 1 mapped to the C domain indicates the value
  • the MAC-CE may also include a serving cell identification domain, a bandwidth area identification domain, and a reserved domain; wherein the serving cell identification domain, the bandwidth area identification domain, and the reserved domain may be the same as explained in the above embodiment (the same MAC Explanation when the CE indicates the activated TCI state), which will not be repeated here.
  • a network device can indicate A activated TCI status through the first MAC CE (it can be a maximum of A activated TCI status), then a TCI status field passes The bits indicate that one of the A activated TCI states is mapped to a certain code point.
  • the relative index of the activated TCI state indicated by the MAC CE can be indicated by 3 bits. For example, 000 indicates the first activated TCI state in the first MAC CE; 001 indicates the second activated TCI state in the first MAC CE, and so on.
  • Figure 4D shows a possible second MAC CE format.
  • one Oct represents one byte composed of 8 bits.
  • Figure 4D includes M Octs, which are marked as Oct 1, Oct 2, ..., Oct M for distinction.
  • the MAC-CE may include a serving cell identification field, a bandwidth area identification field, a C field, a TCI status field, and reserved bits.
  • Serving cell identification field occupies 5 bits: indicates the ID of the serving cell to which the MAC CE is applied.
  • Bandwidth area identification field indicates the bandwidth area identification of the MAC CE application.
  • R stands for reserved bit, which is generally set to "0".
  • the first byte in the MAC CE indicating the TCI status is
  • the "R" field can be used to indicate the mapping rule, or indicate whether there are certain fields in the MAC CE, or indicate the format of the MAC CE. For example: when the R field is 0, the MAC CE only indicates the first TCI state (it can be the same as the MAC CE that indicates the TCI state in Release 15). When the R field is 1, the MAC CE indicates the first TCI state and the second TCI state . For another example: when the R field is 0, the field indicating the second TCI state related information in the MAC CE does not exist, and when the R field is 1, the MAC CE indicates the presence of the second TCI state related information.
  • the field of the second TCI state related information may only include a field indicating the activation of the second TCI state, or may include a field indicating the activation of the second TCI state and a code point indicating field to which the activated second TCI state is mapped .
  • the MAC CE can be compatible with the version 15 (Release 15) MAC CE indicating the TCI status of the PDSCH (for example, it can be the same as Table 1, and one code point can map at most one TCI status), and can also support flexible TCI indication (update the mapping relationship between TCI status and code point through the second MAC CE).
  • the indication of the activated TCI status and the mapping relationship between the code points of the activated TCI status domain can also be updated separately, which can effectively reduce the overhead.
  • the activated TCI status indication may not be updated frequently, and the mapping relationship between the activated TCI status and the code point (it can also be understood that different TRP cooperation will have different TCI status mapped to a code point) can follow the UE location The mobile is updated in time.
  • the network device 101 determines the first code point value according to the foregoing preset rule and at least one first TCI state and/or at least one second TCI state.
  • Example 4-2-1A taking the first order A in Table 8 as an example, when the network device 101 determines that the current TCI state is TCI2, that is, among the K1 first TCI states, the TCI state is identified as the TCI state 2, then The network device 101 determines that the first code point value is 001.
  • Example 4-2-1A taking the third sequence A in Table 9 as an example, when the network device 101 determines that the current TCI status is TCI66 and TCI122, that is, the K2 second TCI status includes the second TCI status of TCI65 and TCI121 , The network device 101 determines that the first code point value is 001.
  • Example 4-2-1A Based on Example 4-2-1A, taking Table 10 as an example, when the network device 101 determines that the current TCI states are TCI4 and TCI6, that is, among the K1 first TCI states, the first TCI state identified as TCI4 and TCI6, then the network device 101 determines that the first code point value is 001.
  • Example 4-2-1A Based on Example 4-2-1A, taking Tables 8 and 9 as examples, suppose that the network device 101 determines that the first TCI state is TCI2, and the second TCI state is the second TCI state including TCI65 and TCI121, then the network device 101 determines the first TCI state.
  • One code point value is 001.
  • one or more of the preset rules, the first TCI state mapping rule, and the second TCI state mapping rule may be fixed in the protocol, or the network device may notify the terminal device through signaling information.
  • the command information may be physical layer signaling or high-layer signaling, and the embodiments of the present invention do not limit specific signaling.
  • the preset rules, the first TCI state mapping rule, and the second TCI state mapping rule may be the same, or the part 1 may be the same, or may be completely different.
  • the network device may first obtain a mapping table according to a preset rule, and then obtain the first code point by looking up the table according to at least one TCI state. Or the network device determines the first code point every time according to a preset rule and at least one TCI state. This application does not restrict this.
  • the third indication information and the fourth indication information may be the same indication information or different indication information, which is not limited in this application.
  • the operation of the network device 101 in step 402 may be executed by the processor 201.
  • the operation of the network device 101 may be It is executed by the transceiver 202, or executed by the processor 201 through the transceiver 202.
  • the operation of the terminal device 111 in step 402 may be executed by the transceiver 301, or executed by the processor 304 through the transceiver 301.
  • Step 403 The network device 101 sends second indication information to the terminal device 111, where the second indication information is used to indicate the first code point.
  • the corresponding terminal device 111 receives the second indication information.
  • the second indication information may be carried in physical layer control signaling such as DCI, or may be carried in control signaling of other layers, which is not limited by the embodiments of the present application.
  • the second indication information may be a TCI field included in the DCI.
  • the field includes N bits and can indicate at most 2 N code points, and the corresponding code point value is 0 to (2 N -1). In each embodiment of the present application, unless otherwise specified, the number of code points P ⁇ 2 N.
  • a TCI ID corresponding to the same type of QCL includes a reference signal.
  • a ⁇ 2 N or P
  • a code point can correspond to a TCI state (or a TCI ID). At this time, it can be applied to a network device/beam/link/transmission layer/TRP scenario.
  • one TCI ID corresponding to the same type of QCL includes one reference signal.
  • A>2 N (or P) at least one code point can correspond to two or two More than one TCI status (or two or more TCI IDs). At this time, it can be applied to scenarios of multiple network devices/beams/links/transmission layer/TRP.
  • a TCI ID corresponding to the same type of QCL includes two reference signals.
  • a ⁇ 2 N or P
  • one code point can correspond to one TCI state (or one TCI ID), at this time, it can also be applied to multiple network equipment/beam/link/transmission layer/TRP scenarios.
  • the network device 101 may send indication information associated with the second indication information, and the indication information may be used to indicate the TCI state set used by the terminal device to communicate with the network device, that is, which or several network devices /Beam/Link/Transport layer/TRP to communicate with terminal equipment.
  • the indication information associated with the second indication information may be the format of DCI, CRC scrambling information of DCI, search space information (such as index number) where DCI is located, and control channel set information (such as index number) where DCI is located ,
  • the indication information can be antenna port information.
  • the operation of the network device 101 may be performed by the transceiver 202, or by the processor 201 through the transceiver 202.
  • the operation of the terminal device 111 in step 403 may be executed by the transceiver 301, or executed by the processor 304 through the transceiver 301.
  • Step 404 The terminal device 111 determines at least one TCI state corresponding to the first code point value according to the preset rule and the first code point value.
  • the operation of the terminal device 111 in step 404 can refer to the operation of the network device 101 in step 402. The only difference is that the network device first determines at least one TCI state and then determines the value of the first code point, while in step 404, The terminal device 111 performs the reverse process, and determines the at least one TCI state according to the value of the received first code point.
  • the at least one TCI state is TCI2 (please refer to The third row and second column of Table 7), that is, the first TCI state is TCI2;
  • the at least one TCI state is TCI65 and TCI121 ( Please refer to the third row and second column of Table 8), that is, the second TCI state is the TCI state including TCI65 and TCI121.
  • the terminal device 111 determines that the first code point value is 001, it is determined that the first TCI state is TCI2, and the second TCI state is the second TCI state including TCI65 and TCI121.
  • the operation of the terminal device 111 in step 404 may be executed by the processor 304.
  • Step 405 The terminal device 111 and the network device 101 communicate according to the determined at least one TCI state.
  • the network device 101 sends downlink information to the terminal device 111 according to at least one determined TCI state, including downlink signaling information and downlink data information, such as sending downlink information on the PDCCH or sending downlink information on the PDSCH.
  • the network device 101 receives uplink information from the terminal device 111 according to the determined at least one TCI state, including uplink signaling information and uplink data information, such as receiving information on the PUSCH or receiving information on the PUCCH.
  • the embodiments of this application do not limit this.
  • the terminal device 111 sends information to the network device 101 according to the determined at least one TCI state, including signaling information and data information, such as sending information on the PUCCH or sending information on the PUSCH. Or the terminal device 111 receives information from the network device 101 according to the determined at least one TCI state, including signaling information and data information, such as receiving information on the PDSCH or receiving information on the PDCCH.
  • the embodiments of this application do not limit this.
  • step 405 the operation of the network device 101 may be performed by the transceiver 202, or by the processor 201 through the transceiver 202.
  • the operation of the terminal device 111 in step 405 may be executed by the transceiver 301, or executed by the processor 304 through the transceiver 301.
  • the embodiments of the present application can be implemented to indicate the QCL information of the physical channel in the scenario of multi-beam or multiple TRP transmission, that is, the currently used TCI status information, thereby achieving effective communication in the foregoing scenario.
  • the TCI state can also be replaced with spatial relation information (Spatial Relation Information).
  • the TCI field in the second indication information can be replaced with an SRI field or other fields used to indicate space-related information.
  • uplink data transmission can be realized, such as PUSCH transmission.
  • the present invention can solve the problem of scheduling a piece of data by one DCI (that is, the second indication information in step 403), or when the data scheduled by different DCI comes from different network equipment/multi-beam/multi-link/multi-layer transmission/TRP scenarios or the data In the scenario where which TRP is sent is dynamically determined, how to indicate the TCI ID through MAC-CE signaling (that is, the first indication information in step 401) and how to map the TCI ID to the code point of the TCI domain of DCI , Without increasing the MAC-CE bit, support single network equipment/multi-beam/multi-link/transport layer/TRP transmission and multiple network equipment/multi-beam/multi-link/transport layer/TRP transmission, reducing indication overhead .
  • the embodiments of the present application can also solve the problem of how MAC-CE updates the TCI state set, how to update each TCI state set, and which TCI state set to update.
  • the understandable TCI ID X can also be expressed as TCI state ID, TCI X, which is used to indicate the TCI state.
  • this application also provides a method and device for recovering from a communication failure.
  • the sending terminal device detects the communication failure response information and the network device sends the communication failure response information at different times, causing the terminal device to fail to detect the link. The problem of failed recovery response.
  • communication failure may also be referred to as communication link failure, communication link failure, link failure, link failure, communication failure, beam failure, etc.
  • the communication failure means that the signal quality of the reference signal used for beam failure detection of the PDCCH is less than or equal to a preset threshold. In the embodiments of this application, these concepts have the same meaning.
  • the terminal device needs to select a reference signal resource with channel quality information (such as RSRP, RSRQ, CQI, etc.) higher than a predetermined threshold from the candidate reference signal resource set to restore the communication link.
  • channel quality information such as RSRP, RSRQ, CQI, etc.
  • the predetermined threshold can be configured by a network device.
  • beam failure detection RS is used for the terminal device to detect the channel quality of a certain transmit beam of the network device, and the transmit beam is the beam used when the network device communicates with the terminal device.
  • Candidate beam identification RS is a reference signal set used by the terminal device to initiate link reconfiguration after determining that the transmission beam of the network device has a communication link failure.
  • communication failure may also be referred to as communication failure, link failure, link failure, beam failure, beam failure, communication link failure, communication link failure, and so on.
  • communication failure recovery can also be referred to as recovering communication between network equipment and terminal equipment, communication failure recovery, link failure recovery, link failure recovery, beam failure recovery, beam failure recovery, communication link failure recovery, communication Link failure recovery, link reconfiguration, etc.
  • the names of the reference signal resource set used for beam failure detection and the reference signal resource set used to restore the link between the terminal device and the network device may also have other names, and this application will not make specifics about this. limited.
  • the communication failure recovery request information may also be referred to as communication failure recovery request information, link failure recovery request information, link failure recovery request information, beam failure recovery request information, beam failure recovery request information, communication link Failure recovery request information, communication link failure recovery request information, link reconfiguration request information, reconfiguration request information, etc.
  • the communication failure recovery response information may also be referred to as communication failure response information, beam failure recovery response information, beam failure response information, communication link failure recovery response information, communication link failure response information, communication link failure Recovery response information, communication link failure response information, beam failure recovery response information, beam failure response information, link reconfiguration response information, link failure recovery response information, link failure response information, link failure recovery response information, chain Road failure response information, communication failure recovery response information, communication failure response information, reconfiguration response information, etc.
  • the communication failure recovery request may refer to sending a signal on the resource used to carry the communication failure recovery request
  • the communication failure recovery response information may refer to the control resource used to send the communication failure recovery response.
  • the communication failure recovery response information may also be scrambled by other information, which is not limited in the embodiment of the present application.
  • FIG. 5 shows a schematic flowchart of a communication failure recovery process in an embodiment of the present application.
  • the communication failure recovery process includes:
  • the terminal device measures a beam failure detection RS set (beam failure detection RS set), and determines a link failure between the terminal device and the network device.
  • a beam failure detection RS set beam failure detection RS set
  • the terminal device when the terminal device determines that the channel quality information of all or part of the reference signal in the beam failure detection RS or beam failure detection RS set is less than or equal to the second preset threshold, the terminal device can determine that the terminal device and the network device The link between the two has failed.
  • the manner in which the terminal device determines that the link between the terminal device and the network device is faulty is not limited to the above examples, and may be determined by other judgment methods, which is not limited in this application.
  • the terminal device determines, according to the channel quality information of the candidate reference signal set (candidate beam identification RS), a reference signal (new identified beam) whose channel quality is greater than or equal to a first preset threshold; the determination process here may be to measure the The channel quality information of the candidate reference signal set is determined.
  • S520 is an optional step and can be implemented in other ways.
  • the terminal device sends a link failure recovery request (BFRQ) to the network device, where the link failure recovery request information is associated with a reference signal (new identified beam) whose channel quality identified in S320 is greater than or equal to the preset threshold.
  • the terminal device may notify the network device of the new identified beam or the reference signal resource and or the cell identity of the first cell in an explicit or implicit manner.
  • the link failure recovery request may be sent through one or more resources. For example, one resource (which can be a periodic or semi-periodic resource) is used to notify the base station of the occurrence of a link failure event, and then another resource (which can be aperiodic Resource or half-period resource) to notify the new identification reference signal information and or the cell identity of the first cell.
  • the terminal device can send a BFRQ to the network device, and recover the link failure between the terminal device and the network device through the network device, or the terminal device can send a BFRQ to another network device.
  • the device sends a BFRQ, and the other network device recovers the link failure between the terminal device and the network device.
  • the media access control (MAC) layer of the terminal device maintains a link failure recovery timer (beam failure recovery timer) and a link failure recovery counter (beam failure recovery counter).
  • the link failure recovery timer is used to control the entire link failure recovery time.
  • the link failure recovery counter is used to limit the number of times the terminal device sends link failure recovery requests. When the link failure recovery counter reaches the maximum value, the The terminal device considers that the link failure recovery is unsuccessful and stops the link failure recovery process.
  • the recovery time of the recovery timer and the count value of the recovery counter may be configured by the network device, or may be preset values.
  • the network device sends a link failure recovery response (BFRR) to the terminal device, and the terminal device detects the control resource set (CORESET) and the search space set (search space set), and receives the BFRR.
  • BFRR link failure recovery response
  • the CORESET and/or search space set are dedicated CORESET and search space sets configured by the network device for the terminal device, which are used to send a link failure request by the terminal device to the network device. Downlink control resource for the response message of path failure.
  • the time sequence of S310 and S320 in the link failure recovery process is not limited. It can be S510 before S520, S520 before S510, or S510 and S520 at the same time. get on.
  • the uplink resources may be physical uplink control channel (PUCCH) resources, and or, physical random access channel (PRACH) resources, and or, physical uplink shared channel (physical uplink shared channel, PUSCH) resources.
  • PUCCH physical uplink control channel
  • PRACH physical random access channel
  • PUSCH physical uplink shared channel
  • the network equipment allocates dedicated periodic uplink resource overhead relatively large.
  • the PUCCH or the physical uplink shared channel (PUSCH) used for channel state information (channel state information, CSI) reporting is multiplexed or punctured to send the link failure recovery request, which can be effective Save resource overhead.
  • the terminal device sends or sends the link failure request information in the p-th time unit, and detects the link failure recovery response information in the q-th time unit.
  • the terminal equipment does not know which subcarrier interval (or system parameter) the p-th time unit is in, and does not know the q-th time unit.
  • the unit is the time unit under which subcarrier interval (or system parameter). In the existing system, under different subcarrier intervals, the absolute time of the time unit is different. In view of this, a method for recovering from a communication failure is described below.
  • the communication failure recovery method 600 of the embodiment of the present application can be applied in a multi-carrier aggregation scenario.
  • the primary cell can assist the secondary cell in recovering from the communication failure.
  • the primary cell and the secondary cell need to exchange information.
  • In an ideal backhaul scenario although its The interaction delay is short but the interaction delay may not be fixed; in non-ideal backhaul scenarios, the interaction delay is longer, and it is difficult to predict the time when the secondary cell receives the response information to the communication failure request sent in the primary cell.
  • the terminal device does not know when to receive the communication failure response message sent by the second network device.
  • the terminal device receives the communication failure response message starting time too early, it may cause excessive power consumption of the terminal device, or it may not be able to ( The communication failure response information is received within the time window) and the communication failure recovery request is initiated again, and the link cannot be recovered quickly or even the link cannot be recovered.
  • the method 600 in the embodiment of the present application is mainly used to solve the problem that the terminal device cannot successfully receive the communication failure recovery response Information problem.
  • FIG. 6 shows a schematic flowchart of a communication failure recovery method 600 according to an embodiment of the present application. As shown in FIG. 6, the method 600 includes:
  • the terminal device is on the first uplink resource and sends first indication information to the network device.
  • the network device is on the first uplink resource and receives the first indication information sent by the terminal device.
  • the first indication information uses Indicating that the communication on the first downlink resource failed;
  • the first uplink resource belongs to a first cell
  • the first downlink resource and/or the second downlink resource belongs to a second cell
  • the first cell and the second cell are different cells or the same cell.
  • the terminal device sends the first indication information to the first network device on the first uplink resource, and the communication failure is a communication failure between the terminal device and the second network device in the second cell.
  • the first uplink resource may include one or more of time domain resources, frequency domain resources, space resources, and beam resources.
  • the first uplink resource belongs to the first cell, and the first cell may be a cell under the first network device.
  • the first indication information may be sent on one or more first uplink resources.
  • the first first uplink resource is used to notify the link failure event
  • the second first uplink resource is used to notify the cell identity of the second cell and/or newly identified reference signal information (the reference signal information may be a reference Signal index, this information is used to restore the downlink of the second cell).
  • the first first uplink resource is used to notify the cell identity of the second cell of the link failure event
  • the second first uplink resource is used to notify the newly identified reference signal information (the reference signal information may be the reference signal index , This information is used to restore the downlink of the second cell).
  • the method before the terminal device sends the first indication information to the first network device, the method further includes:
  • S601 The terminal device determines that communication on the first downlink resource fails.
  • the terminal device determines that the second cell communication between the terminal device and the second network device fails, and the first downlink resource belongs to the second cell.
  • the first indication information may correspond to the BFRQ information in FIG. 5, and the BFRQ information is used to request recovery of a link failure between the terminal device and the second network device.
  • the BFRQ information may be used to restore the link between the terminal device and the second network device in the second cell. It should be understood that the BFRQ may also be a piece of other information used to restore the link between the terminal device and the second network device in the second cell. The BFRQ may also be an indication information, which is used for link failure recovery.
  • the first network device and the second network device are the same network device.
  • the communication failure on the first downlink resource may be understood as the channel quality of the reference signal used for beam failure detection of the second network device is less than or equal to a preset threshold, or other conditions are met.
  • the communication failure on the first downlink resource is that the channel quality of the reference signal used for beam failure detection of the second network device in the second cell is less than or equal to a preset threshold, or meets other conditions.
  • the first downlink resource may be a downlink resource configured by the second network device for the terminal device, and may also be a downlink resource configured by the first network device for the terminal device.
  • the first downlink resource may be a downlink resource configured by the second network device for the terminal device in the second cell, and may also be a downlink resource configured by the first network device for the terminal device in the second cell. Resources.
  • the first network device may be a primary network device of the terminal device
  • the second network device may be one of multiple secondary network devices of the terminal device.
  • the first network device may be a primary base station and the second network device may be a secondary base station; or the first network device may be a secondary base station and the second network device may be a primary base station.
  • the first network device may be a base station where a primary cell/primary serving cell (primary serving cell, Pcell) is located, a base station where a secondary primary cell (PScell) is located, and a special cell ( The base station where the special cell, SPcell is located, or it may be the base station where the transmission and reception point (TRP), the secondary cell/secondary serving cell (Scell) is located, and the second network device may It is the base station where the Scell is located, or it can be a TRP.
  • the first network device may be a TRP, a base station where the Scell is located
  • the second network device may be a Pcell, PScell, SPcell, TRP, or a base station where the Scell is located.
  • the first cell may be Pcell, PScell, SPcell, or Scell
  • the second cell may be Scell
  • the first cell may be Scell
  • the second cell may be Pcell, PScell, SPcell, or Scell
  • Pcell The cell where the terminal device resides in the CA scenario. Generally, only Pcell has uplink resources, such as PUCCH channel.
  • PScell A special secondary cell on the secondary network device that the primary network device configures to the terminal device through RRC connection signaling.
  • Scell A cell configured to a terminal device through RRC connection signaling. It works on a secondary carrier (SCC) and can provide more wireless resources for the terminal device.
  • SCC secondary carrier
  • the SCell can have only downlink or both uplink and downlink.
  • the SPCell refers to the Pcell of the master cell group (MSG) or the PScell of the secondary cell group (SCG); otherwise, as in the CA scenario, the SPcell refers to the Pcell.
  • the technical solutions in the embodiments of the present application may be applicable to the case where the primary cell (Pcell) is high frequency or low frequency, and the secondary cell (Scell) is high frequency or low frequency.
  • Pcell primary cell
  • Scell secondary cell
  • Pcell primary cell
  • Scell secondary cell
  • the PUCCH/PUSCH for CSI reporting resources of the Pcell can be used to assist the Scell in recovering the link.
  • low frequency and high frequency are relative terms, but also can be divided by a certain frequency, such as 6GHz.
  • the technical solutions of the embodiments of the present application may be applied to one cell in a carrier aggregation (CA) scenario to assist another cell or multiple cells to restore links.
  • CA carrier aggregation
  • DC DC scenario
  • one cell in a cell group assists another cell or multiple cells to restore links.
  • a cell and “another cell” can belong to the same cell group, or belong to a different cell group.
  • Different cell groups mainly describe the DC scenario.
  • a cell of cell group 1 can assist the cell group
  • the other cell of 2 restores the link.
  • the cell in the MCG assists the cell in the SCG to restore the link.
  • the cell in the SCG assists the cell in the MCG to restore the link.
  • cell can be understood as “serving cell” and “carrier”.
  • the cell includes at least one of a downlink carrier, an uplink (uplink, UL) carrier, and an uplink supplementary (supplementary uplink, SUL) carrier.
  • a cell may include a downlink carrier and an uplink carrier; or a cell may include a downlink carrier and an uplink supplementary carrier; or a cell may include a downlink carrier, an uplink carrier, and an uplink supplementary carrier.
  • the carrier frequency of the uplink supplementary carrier is lower than that of the uplink carrier to improve uplink coverage.
  • the uplink carrier and the downlink carrier have different carrier frequencies; in the TDD system, the uplink carrier and the downlink carrier have the same carrier frequency.
  • the uplink resource is on the uplink carrier, and the uplink resource includes the first uplink resource; the downlink resource is on the downlink carrier, and the downlink resource includes the first downlink resource, the second downlink resource, and the third downlink resource. Downlink resources.
  • the uplink carrier may be a normal uplink carrier, or may be a supplementary uplink (SUL) carrier.
  • SUL supplementary uplink
  • the terminal device may be in the first cell.
  • the first indication information is sent on the uplink carrier with the smallest subcarrier interval among the multiple uplink subcarriers in a cell. If the subcarrier interval of the first uplink carrier of the first cell is smaller than the subcarrier interval of the second uplink carrier of the first cell, then the terminal device sends the first indication information and/or the second uplink carrier on the first uplink carrier of the first cell. Instructions.
  • the terminal device can be the uplink carrier with the smallest subcarrier spacing among the multiple uplink subcarriers of the first cell
  • the first instruction message is sent on. If the subcarrier interval of the first uplink carrier of the first cell is greater than the subcarrier interval of the second uplink carrier of the first cell, then the terminal device sends the first indication information on the second uplink carrier of the first cell.
  • the first uplink resource may be the resource on the first uplink carrier of the first cell
  • the first uplink resource may be the resource of the second uplink carrier in the first cell, the first uplink carrier of the first cell or the resource of the second cell
  • the second uplink carrier may be the carrier with the smallest sub-carrier interval.
  • the terminal device can send the first indication information on the carrier with the smallest sub-carrier interval, thereby increasing the probability of successfully sending the first indication information, thus improving the link The probability of successful recovery from failure.
  • the terminal device may determine the carrier with the smallest subcarrier interval in the carrier set as the uplink carrier for sending the first indication information, and the carrier set includes multiple carriers.
  • the carrier set may be the set of uplink carriers configured by the network equipment to the terminal device; in another possible implementation, the carrier set may be the primary cell and/or the primary cell and/or A collection of uplink carriers that assist the primary cell.
  • the uplink carrier can be replaced with an uplink channel and/or an uplink signal.
  • the uplink channel includes one or more of the following channels: PUSCH, PUCCH, and PRACH;
  • the uplink signal includes one or more of the following signals: SRS, CSI-RS, and DMRS.
  • the difference in spatial related parameters mainly describes that in a coordinated multipoint transmission/reception (CoMP) scenario, one TRP assists another TRP to restore the link. Or in a single-station non-reciprocity scenario, uplink resources are available, but downlink resources are unavailable, and the downlink is restored through the uplink assistance.
  • single-site or multi-site scenarios can be reflected by space-related parameters.
  • the space-related parameters of downlink resources can correspond to TCI or QCL information (including one or more reference signals), and space-related parameters of uplink resources. It can correspond to spatial relation (including one or more reference signals).
  • the spatial correlation parameter is equivalent to a spatial filter (spatial dimain transmission/receive filter).
  • the spatial filter generally includes a spatial transmission filter and/or a spatial reception filter.
  • the spatial filter can also be called a spatial transmission filter, a spatial reception filter, a spatial transmission filter, a spatial transmission filter and so on.
  • CoMP includes non-coherent joint transmission (NCJT), coherent joint transmission (CJT), joint transmission (JT), and so on.
  • different spatial related parameters mean that the spatial transmission filter used by the terminal device to send information on the uplink resource is different from the spatial receiving filter used by the terminal device to receive information on the downlink resource.
  • the technical solutions of the embodiments of the present application may be applicable to the case where the first cell and the second cell belong to the same network equipment, and may also be applicable to the case where the first cell and the second cell belong to different network equipment.
  • the first network device and the second network device are different network devices.
  • the method 600 of the embodiment of the present application can be applied to the scenario of dual-link or coordinated multi-point transmission.
  • the terminal device can be connected to a primary network device and multiple secondary network devices. When one of the multiple secondary network devices is After a communication failure occurs between the auxiliary network device and the terminal device, the terminal device may send the first indication information to the main network device.
  • the terminal device may use the uplink resource belonging to the primary network device in the first cell to send the first indication information.
  • the first network device and the second network device are the same network device.
  • the method 600 of the embodiment of the present application may also be applied in a carrier aggregation scenario.
  • the first cell and the second cell may be different cells.
  • the terminal device may use the uplink resource belonging to the first network device in the first cell to send the first indication information.
  • the method 600 of the embodiment of the present application may also be applied in a single carrier scenario, the first cell and the second cell may be the same cell, when the terminal device and the network device communicate in the first cell After the failure, the terminal device can use the uplink resource belonging to the network device in the first cell to send the first indication information.
  • the first downlink resource and or the second downlink resource are physical downlink control channel PDCCH resources.
  • the PDCCH is scrambled by a cell radio network temporary identifier (C-RNTI).
  • C-RNTI cell radio network temporary identifier
  • the first uplink resource is a physical uplink control channel PUCCH resource or a physical uplink shared channel PUSCH resource.
  • the communication failure on the first downlink resource may also be understood as a link failure or link failure between the terminal device and the second network device.
  • the communication failure on the first downlink resource may also be understood as a link failure or link failure between the terminal device and the second network device in the second cell.
  • the terminal device starts within the time window of the qth time unit or the qth time unit, or, after the qth time unit, the time when the vth time-frequency resource position for sending the downlink control channel starts In the window, check the communication failure response message;
  • the v is a number greater than or equal to 0, the q is a number greater than or equal to 0, the first uplink resource belongs to the first cell, and the first downlink resource and/or the second downlink resource belongs to A second cell, where the first cell and the second cell are different cells or the same cell;
  • the q-th time unit is determined according to the time unit for sending or sending the first indication information, and/or the system parameter of the first cell, and/or the system parameter of the second cell .
  • the communication failure response information may be a response to a communication failure on the first downlink resource and carried on the second downlink resource.
  • the terminal device detects the communication failure response information may also be understood as the terminal device receiving the communication failure response information.
  • the first cell may be a Pcell, PScell, SPcell, or Scell
  • the second cell may be an Scell
  • the first cell may be an Scell
  • the second cell may be a Pcell, PScell, SPcell or Scell.
  • the time-frequency resource location may be the time-frequency resource location of the second cell for sending the downlink control channel.
  • the terminal device receives the communication failure response information sent by the second network device.
  • the terminal device receives the communication failure response information sent by the second network device in the second cell.
  • the first network device and the second network device are the same network device, or the first network device and the second network device are different network devices.
  • the first downlink resource, the second downlink resource, and the third downlink resource all belong to the second cell.
  • the first indication information may also be link failure recovery request (beam failure recovery request, BFRQ) information, and the BFRQ information is used to request recovery of a link failure between the terminal device and the second network device.
  • BFRQ link failure recovery request
  • the communication failure response information may be link failure recovery response (beam failure recovery response, BFRR) information
  • BFRR beam failure recovery response
  • the time unit in the embodiments of this application may be one or more radio frames, one or more subframes, one or more time slots, and one or more mini-slots defined in the LTE or 5G NR system ( Mini slot), one or more orthogonal frequency division multiplexing (OFDM) symbols, may also be a time window formed by multiple frames or subframes, such as a system information (SI) window.
  • SI system information
  • the terminal device receives the communication failure response information on the second cell.
  • the terminal device receives the communication failure response information on the first time-frequency resource.
  • the time unit at which the terminal device sends the first indication information is the p-th time unit, or the time unit at which the terminal device sends the first indication information is the p-th time unit.
  • the p-th time unit may be determined according to the system parameters of the first cell and/or the system parameters of the second cell;
  • the p-th time unit may be determined according to the maximum or minimum value of the system parameter of the first cell and the system parameter of the second cell.
  • the p is a number greater than or equal to zero.
  • the system parameter of the first cell is a system parameter of an uplink carrier of the first cell
  • the system parameter of the second cell is a system parameter of a downlink carrier of the second cell
  • the system parameter of the uplink carrier of the first cell is the system parameter of the first uplink resource, the second uplink resource of the first cell, and the smallest system parameter of all the uplink resources of the first cell One of the system parameters of uplink resources;
  • the system parameters of the downlink carrier of the second cell are the system parameters of the first downlink resource, the system parameters of the second downlink resource, the system parameters of the third downlink resource of the second cell, and all the parameters of the second cell.
  • the p-th time unit is the p-th time unit determined according to the system parameter of the uplink carrier of the first cell; or
  • the p-th time unit is the p-th time unit determined according to the system parameter of the first uplink resource; or
  • the p-th time unit is the p-th time unit determined according to the system parameter of the second uplink resource of the first cell; or
  • the p-th time unit is the p-th time unit determined according to the system parameter of the uplink resource with the smallest system parameter among all the uplink resources of the first cell; or
  • the p time units are the p-th time unit determined according to the system parameters of the downlink carrier of the second cell; or
  • the p-th time unit is the p-th time unit determined according to the system parameter of the first downlink resource; or, the p-th time unit is determined according to the system parameter of the second downlink resource The p th time unit of; or
  • the p-th time unit is the p-th time unit determined according to the system parameter of the third downlink resource of the second cell; or
  • the p-th time unit is the p-th time unit determined according to the system parameter of the downlink resource with the smallest system parameter among all the downlink resources of the second cell.
  • the qth time unit is the qth time unit determined according to the system parameters of the uplink carrier of the first cell and the system parameters of the downlink carrier of the second cell; or
  • the qth time unit is the qth time unit determined according to the system parameters of the first uplink resource and the system parameters of the first downlink resource; or
  • the qth time unit is the qth time unit determined according to the system parameter of the first uplink resource and the system parameter of the second downlink resource; or
  • the qth time unit determined according to the system parameter of the second uplink resource of the first cell and the system parameter of the third downlink resource of the second cell; or
  • the qth time unit is the qth time unit determined according to the system parameter of the uplink carrier of the first cell, the system parameter of the downlink carrier of the second cell, and the p; or
  • the qth time unit is the qth time unit determined according to the system parameter of the first uplink resource, the system parameter of the first downlink resource, and the p; or
  • the qth time unit is the qth time unit determined according to the system parameter of the first uplink resource, the system parameter of the second downlink resource, and the p; or
  • the qth time unit is the qth time unit determined according to the system parameter of the second uplink resource of the first cell, the system parameter of the third downlink resource of the second cell, and the p.
  • the terminal device receiving the communication failure response information includes: the terminal device receives the communication failure response information sent by the second network device on the designated downlink resource.
  • the terminal device receiving communication failure response information includes: the terminal device receives the communication failure response information of the second network device on the second cell on the designated downlink resource.
  • first network device and the second network device may be the same network device, and the network devices in which the first cell and the second cell are located are both the first network device; or, the first network device and The second network device is a different network device, the network device where the first cell is located is the first network device, and the network device where the second cell is located is the second network device.
  • the terminal device sends the first indication information to the first network device on the first uplink resource.
  • the first downlink resource is a physical downlink control channel PDCCH resource.
  • the second downlink resource is a physical downlink control channel PDCCH resource.
  • the first uplink resource is a physical random access channel PRACH resource.
  • the first uplink resource is a physical uplink control channel PUCCH resource or a physical uplink shared channel PUSCH resource.
  • the system parameter includes subcarrier spacing (SCS) and/or cyclic prefix (CP).
  • SCS subcarrier spacing
  • CP cyclic prefix
  • the length of a time unit is jointly determined by the subcarrier interval and the cyclic prefix.
  • the subcarrier spacing of the first cell and/or the second cell may be 15KHz, 30KHz, 60KHz, 120KHz, 240KHz.
  • the subcarrier interval of the first cell is the subcarrier interval of the uplink carrier or the subcarrier interval of the downlink carrier.
  • the subcarrier interval of the second cell is the subcarrier interval of the downlink carrier.
  • the method 600 further includes:
  • the terminal device determines the qth time unit according to one of the following formulas.
  • the terminal device determines the K according to the subcarrier interval of the first cell.
  • the length of the K time units may be 4 downlink slots of the first cell.
  • the length of the K time units may also be 8 downlink slots of the first cell.
  • the terminal device determines the K according to the subcarrier interval of the second cell.
  • the length of the K time units may be 4 downlink slots of the second cell.
  • the length of the K time units may also be 8 downlink slots of the second cell.
  • the terminal device determines the K according to the subcarrier spacing of the first cell and the second cell.
  • the terminal device determines the K according to the minimum value of the subcarrier spacing between the first cell and the second cell. For example, if the subcarrier interval of the first cell is 60KHz, and the subcarrier interval of the second cell is 120KHz, the K determined by the terminal equipment is the time unit when the subcarrier interval is 60KHz.
  • the terminal device determines the K according to the maximum value of the subcarrier spacing between the first cell and the second cell. For example, if the subcarrier interval of the first cell is 60KHz and the subcarrier interval of the second cell is 120KHz, the K determined by the terminal equipment is the time unit when the subcarrier interval is 120KHz.
  • the terminal equipment may determine K according to the minimum value of the uplink subcarrier spacing of the first cell and the downlink subcarrier spacing of the second cell; for example, the uplink subcarrier spacing of the first cell is 60KHz, and the downlink subcarrier spacing of the second cell If the subcarrier interval is 120KHz, the terminal device determines that n is K time units when the subcarrier interval is 60KHz.
  • the terminal equipment may determine K according to the maximum value of the uplink subcarrier spacing of the first cell and the downlink subcarrier spacing of the second cell; for example, the uplink subcarrier spacing of the first cell is 60KHz, and the downlink subcarrier spacing of the second cell If the subcarrier interval is 120KHz, the K determined by the terminal device is K time units when the subcarrier interval is 120KHz.
  • the terminal equipment may determine K according to the minimum of the subcarrier spacing of the downlink carrier of the first cell and the downlink subcarrier spacing of the second cell; for example, the downlink subcarrier spacing of the first cell is 60KHz, and the downlink subcarrier spacing of the second cell If the subcarrier interval is 120KHz, the K determined by the terminal device is K time units when the subcarrier interval is 60KHz.
  • the terminal equipment may determine n or m according to the maximum value of the downlink subcarrier spacing of the downlink carrier of the first cell and the downlink subcarrier spacing of the second cell; for example, the downlink subcarrier spacing of the first cell is 60KHz, and the second cell If the interval of the downlink subcarriers is 120KHz, the K determined by the terminal equipment is K time units when the interval of the subcarriers is 120KHz.
  • the terminal device may determine K according to the minimum value of the subcarrier spacing of the first uplink resource and the subcarrier spacing of the first downlink resource or the second downlink resource; for example, the subcarrier spacing of the first uplink resource is 60KHz, The subcarrier interval of one downlink resource or the second downlink resource is 120KHz, then K determined by the terminal equipment is K time units when the subcarrier interval is 60KHz.
  • the terminal device may determine K according to the maximum value of the subcarrier interval of the first uplink resource and the subcarrier interval of the first downlink resource or the second downlink resource; for example, the subcarrier interval of the first uplink resource is 60KHz, The subcarrier interval of one downlink resource or the second downlink resource is 120KHz, then K determined by the terminal equipment is K time units when the subcarrier interval is 120KHz.
  • the first uplink resource may be a resource on the uplink carrier of the first cell
  • the first downlink resource or the second downlink resource may be a resource on the downlink carrier of the second cell.
  • the terminal device may determine K according to the minimum value of the subcarrier spacing of the first uplink resource and the subcarrier spacing of the first downlink resource or the second downlink resource; for example, the subcarrier spacing of the first uplink resource is 60KHz, The subcarrier interval of one downlink resource or the second downlink resource is 120KHz, then K determined by the terminal equipment is K time units when the subcarrier interval is 60KHz.
  • the terminal device may determine K according to the maximum value of the subcarrier interval of the first uplink resource and the subcarrier interval of the first downlink resource or the second downlink resource; for example, the subcarrier interval of the first uplink resource is 60KHz, The subcarrier interval of one downlink resource or the second downlink resource is 120KHz, then K determined by the terminal equipment is K time units when the subcarrier interval is 120KHz.
  • the first uplink resource may be a resource on the uplink carrier of the first cell
  • the first downlink resource or the second downlink resource may be a resource on the downlink carrier of the second cell.
  • n is a positive integer
  • K is predefined, or configured by the base station, or reported by the terminal capability.
  • the determined K may be a value corresponding to the subcarrier spacing.
  • the terminal device determines the K according to the detection time of the communication failure recovery response of the first cell and the offset of the subcarrier spacing between the first cell and the second cell. Or, the terminal device determines the K according to the detection time of the communication failure recovery response of the first cell, the subcarrier interval of the first cell and the subcarrier interval of the second cell.
  • the first network device is within the time window starting from the sth time unit or the sth time unit, or the zth time-frequency resource used for sending the downlink control channel after the sth time unit
  • communication failure response information is sent, where the communication failure response information is a response to the communication failure on the first downlink resource and carried on the second downlink resource.
  • the method is similar to the terminal device, so I won't repeat it here.
  • the terminal device if it does not receive the communication failure response information within the time window, it will re-send the first indication information to the first network device, that is, re-initiate communication failure recovery Request, when the communication failure recovery request is re-initiated, a different beam can be used from the last communication failure recovery request, or the same beam can be used when the communication failure recovery request is re-initiated and the last communication failure recovery request is sent, and the terminal device can respond accordingly Increase the transmit power.
  • the first network device that is, re-initiate communication failure recovery Request
  • the terminal device will continue to detect (or receive) the first time-frequency resource or the PDCCH carried on the first time-frequency resource.
  • the terminal device uses the beam detection of the reference signal whose channel quality is greater than or equal to the first threshold value or the beam detection of the PDCCH or the downlink reference signal associated with the first indication information or the PDCCH. That is, the terminal device detects or receives the PDCCH by using the reference signal whose channel quality is greater than or equal to the first threshold value or the spatial correlation parameter of the downlink reference signal associated with the first indication information.
  • the network device sends the terminal device the information of the start time of receiving the communication failure response information, which helps the terminal device to ensure that the terminal device detects the communication failure response information.
  • the first network device may not only send the information of the first reference signal to the second network device, but also The second network device sends other information.
  • the first network device may forward the first indication information to the second network device.
  • the first network device sends the DCI to the terminal device on a control resource set dedicated to sending communication failure response information and/or a search space set dedicated to sending communication failure response information; or the first network device
  • the MAC CE and RRC are sent on the PDSCH resource scheduled by the PDCCH carried on the control resource set dedicated to sending communication failure response information and/or the search space set dedicated to sending communication failure response information.
  • the control resource set and/or search space set and/or PDSCH are resources of the second cell configured for the first network device.
  • the first network device may send instruction information to the terminal, so as to inform the terminal device of the starting time of receiving the communication failure response information.
  • the method for link failure recovery in the embodiment of the present application helps ensure that the terminal device receives the link failure recovery response information more accurately and efficiently by sending indication information to the terminal device, quickly recovers the link, and ensures the stability of the system. At the same time, it also helps to save the power consumption of terminal equipment.
  • Table 5 The number of OFDM symbols in each slot of the normal cyclic prefix The number of time slots in each frame Number of time slots in each subframe
  • Table 6 The number of OFDM symbols contained in each slot for which the cyclic prefix is being extended The number of time slots in each frame Number of time slots in each subframe
  • is the identifier of the system parameter, and the value of ⁇ is related to the subcarrier spacing, as shown in Table 7 below.
  • the unit length of the uplink time slot and the downlink time slot can be different. Take PDCCH as an example. Because the subcarrier spacing (SCS) of uplink transmission and downlink transmission may be different, for example, the uplink transmission uses 15kHz SCS, the length of an uplink slot is 1 millisecond, and the downlink transmission uses 120KHz SCS. The length of the downlink time slot is 0.125 milliseconds. According to Table 3, it can be seen that uplink transmission uses 15kHz SCS, that is, ⁇ f is 15kHz, and its corresponding system parameter ⁇ is 0, and downlink transmission uses 120kHz SCS, that is, ⁇ f is 120kHz, and its corresponding system parameter ⁇ is 3.
  • the system parameters corresponding to the transmission are different, and the unit lengths of the uplink time slot and the downlink time slot are also different, causing the network equipment and the terminal to send or send the link failure recovery request information (the pth time unit), and the detection link failure recovery
  • the time of the response message (the qth time unit) will be interpreted differently.
  • the p-th time unit is the p-th time unit among the time units determined by the subcarrier interval of the downlink carrier of the second cell at the time when the first indication information is sent.
  • the k can be 4.
  • the p-th time unit is the time unit in which the first indication information is sent, and the time unit is the p-th time unit in the time unit determined by the subcarrier interval of the uplink carrier of the first cell Time unit.
  • the k can be 4.
  • the p-th time unit is the time unit in which the first indication information is sent, and the time unit is the p-th time unit in the time unit determined by the subcarrier interval of the uplink carrier of the first cell Time unit.
  • the qth time unit is the qth time unit among the time units determined according to the subcarrier interval of the downlink carrier of the second cell. q can be determined by one of the following formulas:
  • the k can be 4.
  • the ⁇ 1 is the system parameter of the uplink carrier of the first cell, and ⁇ 2 is the system parameter of the downlink carrier of the second cell; or, the ⁇ 1 is the system parameter of the downlink carrier of the second cell, and ⁇ 2 is the uplink carrier of the first cell System parameters.
  • the p-th time unit is the time unit in which the first indication information is sent, and the time unit is the p-th time unit in the time unit determined by the subcarrier interval of the uplink carrier of the first cell Time unit.
  • the qth time unit is the qth time unit among the time units determined according to the subcarrier interval of the uplink carrier of the first cell. q can be determined by one of the following formulas:
  • the k can be 4.
  • the ⁇ 1 is the system parameter of the uplink carrier of the first cell, and ⁇ 2 is the system parameter of the downlink carrier of the second cell; or, the ⁇ 1 is the system parameter of the downlink carrier of the second cell, and ⁇ 2 is the uplink carrier of the first cell System parameters.
  • the foregoing is the time for the terminal device to determine the communication failure response information.
  • p and q may be determined according to the foregoing manner.
  • the time when the network device determines to send the communication failure response information is similar to that of the terminal device, and the time to receive the first indication information and the time to determine the transmission failure response information can also be determined according to the above method, which will not be described in detail here.
  • FIG. 9 shows a schematic block diagram of a communication failure recovery apparatus 900 provided by an embodiment of the present application.
  • the apparatus 900 may correspond to the terminal device described in the above method 600, or may correspond to the chip or component of the terminal device, and the apparatus Each module or unit in 900 may be used to execute each action or processing procedure performed by the terminal device in the foregoing method 600.
  • the communication failure recovery apparatus 900 may include a processing unit 910 and a transceiver unit 920.
  • the processing unit 910 is configured to determine that the communication of the device on the first downlink resource fails;
  • the transceiving unit 920 is configured to send first indication information to the network device on the first uplink resource, where the first indication information is used to indicate that the apparatus fails to communicate on the first downlink resource;
  • the transceiving unit 920 is also used for the position of the time-frequency resource used for sending the downlink control channel in the time window starting from the qth time unit or the qth time unit, or after the qth time unit In the initial time window, detecting communication failure response information, where the communication failure response information is a response to the communication failure on the first downlink resource carried on the second downlink resource.
  • the v is a number greater than or equal to 0, the q is a number greater than or equal to 0, the first uplink resource belongs to the first cell, and the first downlink resource and/or the second downlink resource belongs to A second cell, where the first cell and the second cell are different cells or the same cell;
  • the q-th time unit is determined according to the time unit for sending or sending the first indication information, and/or the system parameter of the first cell, and/or the system parameter of the second cell .
  • the processing unit 810 is further configured to send or finish sending the first indication information according to the time unit, and/or the system parameters of the first cell, and/or the time unit of the second cell
  • the system parameter determines the qth time unit.
  • the time unit for sending or sending the first indication information is the p-th time unit.
  • FIG. 10 shows a schematic block diagram of an apparatus 1000 for recovering from a communication failure provided by an embodiment of the present application.
  • the apparatus 1000 may correspond to the network device described in the above method 600, or may correspond to the chip or component of the network device, and the device Each module or unit in 1000 may be used to execute each action or processing procedure performed by the network device in the above method 600.
  • the communication failure recovery apparatus 1000 may include a transceiver unit 1010 and a processing unit 1020.
  • the transceiver unit 1010 is configured to receive, on the first uplink resource, first indication information sent by a terminal device, where the first indication information is used to indicate that the terminal device fails to communicate on the first downlink resource;
  • the processing unit 1020 is configured to determine that the communication of the terminal device on the first downlink resource fails;
  • the transceiver unit 1010 is further configured to receive first indication information on the first uplink resource, where the first indication information is used to indicate that communication on the first downlink resource fails;
  • the communication failure response information is a response to a communication failure on the first downlink resource carried on the second downlink resource
  • the z is a number greater than or equal to 0, the s is a number greater than or equal to 0, the first uplink resource belongs to the first cell, and the first downlink resource and/or the second downlink resource belongs to A second cell, where the first cell and the second cell are different cells or the same cell;
  • the s-th time unit is determined based on receiving or after receiving the first indication information, and/or the system parameters of the first cell, and/or the system parameters of the second cell.
  • the processing unit 1020 is further configured to be further configured according to the received or received first indication information, and/or the system parameters of the first cell, and/or the system parameters of the second cell Determine the sth time unit.
  • processing unit 920 is specifically configured to determine the sth time unit according to the following formula:
  • the foregoing processing unit may be a processor or a processing circuit, etc.; the transceiver unit may be a transceiver (or a transceiver circuit), etc., and the transceiver unit may constitute a communication interface.
  • the processor can be used to perform, for example, but not limited to, baseband related processing
  • the transceiver can be used to perform, for example, but not limited to, radio frequency transceiving.
  • the above-mentioned devices can be arranged on separate chips, or at least partly or completely on the same chip.
  • the processor can be further divided into an analog baseband processor and a digital baseband processor.
  • the analog baseband processor and the transceiver can be integrated on the same chip, and the digital baseband processor can be set on a separate chip. With the continuous development of integrated circuit technology, more and more devices can be integrated on the same chip.
  • a digital baseband processor can be combined with a variety of application processors (such as but not limited to graphics processors, multimedia processors, etc.) Integrated on the same chip.
  • application processors such as but not limited to graphics processors, multimedia processors, etc.
  • Such a chip may be called a system on chip (SOC).
  • SOC system on chip
  • an embodiment of the present application provides a schematic block diagram of a communication failure recovery apparatus 1100, and the apparatus 1100 includes:
  • At least one processor 1101 may optionally include a communication interface 1102 and a memory 1103.
  • the communication interface 1102 is used to support communication and interaction between the apparatus 1100 and other devices.
  • the memory 1003 has program instructions; at least one processor 1101 runs the program instructions This enables the function operating on any of the following devices in any design of the foregoing embodiments of the present application to be realized: terminal devices or network devices.
  • the memory 1103 can be used to store the program instructions necessary to realize the above device functions or process data generated during the execution of the program.
  • the apparatus 1100 may also include internal interconnection lines to implement communication interaction among the at least one processor 1101, the communication interface 1102, and the memory 1103.
  • the at least one processor 1001 may be implemented by a dedicated processing chip, a processing circuit, a processor, or a general-purpose chip.
  • the present application also provides a computer program product, the computer program product includes: computer program code, when the computer program code runs on a computer, the computer executes the method in the above embodiment .
  • the various embodiments in this application can also be combined with each other.
  • the present application also provides a computer-readable medium with a program code stored in the computer-readable interpretation, and when the program code runs on a computer, the computer executes the method in the foregoing embodiment .
  • the present application also provides a system, which includes the aforementioned terminal device and network device.
  • the foregoing method embodiments in the embodiments of the present application may be applied to a processor or implemented by a processor.
  • the processor may be an integrated circuit chip with signal processing capabilities.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (digital signal processor, DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • An embodiment of the present application also provides a processor-readable storage medium including instructions, which implement the foregoing method when the instructions run on the processor.
  • the sending action may be the input and output port of the processor outputting a baseband signal carrying the information to be sent
  • the receiving action may be the input and output port of the processor receiving the baseband carrying the information to be received signal.
  • the processor-readable storage medium provided in the embodiment of the present invention may also be a computer-readable storage medium.
  • the example of the present invention also provides a device (for example, an integrated circuit, a wireless device, a circuit module, etc.) for implementing the above method.
  • the device includes a processor and a memory connected to the processor, the memory is used to store instructions, and the processor is used to read and execute the instructions stored in the memory, so that the device executes the foregoing Methods.
  • the device implementing the description herein may be a self-supporting device or may be part of a larger device.
  • the device can be (i) a self-supporting IC; (ii) a collection of one or more ICs, which can include a memory IC for storing data and/or instructions; (iii) an RFIC, such as an RF receiver or RF transmitter /Receiver; (iv) ASIC, such as mobile station modem; (v) modules that can be embedded in other devices; (vi) receivers, cellular phones, wireless devices, handsets, or mobile units; (vii) others, etc. Wait.
  • the method and device provided by the embodiments of the present invention can be applied to terminal equipment or access network equipment (or network equipment) (which may be collectively referred to as wireless equipment).
  • the terminal device or access network device or wireless device may include a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating system, Unix operating system, Android operating system, iOS operating system, or windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiment of the present invention does not limit the specific structure of the execution subject of the method, as long as the program recorded with the code of the method of the embodiment of the present invention can be executed to transmit the signal according to the embodiment of the present invention.
  • the execution subject of the wireless communication method in the embodiment of the present invention may be a terminal device or an access network device, or a function that can call and execute the program in the terminal device or the access network device Module.
  • various aspects or features of the embodiments of the present invention can be implemented as methods, devices, or products using standard programming and/or engineering techniques.
  • article of manufacture as used in this application encompasses a computer program accessible from any computer-readable device, carrier, or medium.
  • computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks, or tapes, etc.), optical disks (for example, compact discs (CD), digital versatile discs (DVD)) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and it does not correspond to the present invention.
  • the implementation process of the embodiment constitutes any limitation.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solutions of the embodiments of the present invention can be embodied in the form of software products in essence or parts that contribute to the prior art or parts of the technical solutions, and the computer software product is stored in a storage medium , Including several instructions to enable a computer device (which may be a personal computer, a server, or an access network device, etc.) to perform all or part of the steps of the methods described in the embodiments of the present invention.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种信息指示的方法和装置,用以实现多波束传输场景下传输配置指示信息的指示及数据传输。该方法和装置中,网络设备向终端设备发送配置信息,以配置M个传输配置指示TCI状态;网络设备向终端设备发送第一指示信息,第一指示信息用于指示M个TCI状态中的A个TCI状态;网络设备向终端设备发送第二指示信息,用于指示第一码点,第一码点为网络设备根据至少一个TCI状态和预设的TCI状态到码点的映射规则确定的;网络设备根据上述至少一个TCI状态与终端设备进行通信。

Description

信息指示的方法及装置 技术领域
本申请涉及通信领域,并且更具体而言,涉及一种信息指示的方法和装置。
背景技术
随着智能终端中视频业务的出现,当前的频谱资源已经难以满足用户对容量需求的爆炸式增长,具有更大的可用带宽的高频频段比如毫米波频段,日益成为下一代通信系统的候选频段。另一方面,现代通信系统通常使用多天线技术来提高系统的容量和覆盖,以便改善用户的体验。此外,使用高频频段还可以大大减小多天线配置的尺寸,从而便于站址获取和更多天线的部署。然而,与现有长期演进(Long Term Evolution,LTE)系统的工作频段不同的是,高频频段将导致更大的路径损耗,特别是大气、植被等因素的影响更进一步加剧了无线传播的损耗。
为克服高频频段带来的传播损耗,一种基于波束赋形(Beamforming,BF)技术的信号传输机制被采用,以通过较大的天线增益来补偿信号传播过程中的损耗。其中,波束赋形的信号可以包括广播信号,同步信号,以及小区特定的参考信号等。图1A示出了一种波束训练的示意图,包括下行联合波束训练,上行联合波束训练,下行终端波束训练,上行终端波束训练,下行网络设备波束训练,上行网络设备波束训练,分别如(a)-(f)所示。
当信号基于波束赋形技术进行传输时,一旦用户发生移动,可能出现传输信号对应的赋形波束的方向不再匹配移动后的用户位置,从而会导致接收信号频繁中断的问题。为了跟踪信号传输过程中的赋形波束的变化,一种基于波束赋形技术的信道质量测量及结果上报被引入。所述信道质量的测量可以基于波束赋形后的同步信号或小区特定参考信号来实现。其中,相比小区之间的切换,用户在不同赋形波束间的切换会更加动态和频繁,因此需要一种动态的测量和上报机制。可选地,类似于CSI信息的上报,所述赋形波束的信道质量结果的上报也可由用户设备通过物理上行控制信道或物理上行共享信道发送给基站。
在下行信号的传输中,网络设备发射波束和终端接收波束均可能发生动态变化,且终端基于接收信号确定的最优接收波束可能包括多个,为了使终端确定自身的接收波束,终端可以将多个接收波束的信息反馈给网络设备,网络设备可以通过向终端发送波束指示信息来向终端指示终端接收波束。当终端采用模拟域的波束赋形时,终端可以基于网络设备发送的波束指示信息来精确的确定终端接收波束,从而可以节省终端设备的波束扫描时间,达到省电的效果。
当前的波束指示方法,仅考虑了单个传输接收点(Transmission Reception Point,TRP)某时刻使用一个波束与该终端通信的传输方式。但是在新一代通信系统,比如新空口(new radio,NR)中,可以支持网络设备同时使用不同的波束与一个终端进行通信,即多波束传输(multi-beam transmission),或者也可以支持多个TRP为终端服务。其中,多个TRP与一个终端通信包括多个TRP同时与一个终端通信,或者是由动态节点选择(dynamic point selection,DPS)与一个终端通信。其中,多个TRP同时与一个终端通信的场景也可以称为非相干联合传输(Incoherent joint transmission,NCJT)场景或NCJT传输方式。
对于多种传输方式的波束指示现有协议无法支持。在multi-beam或多个TRP传输的场景下,需要引入相应的机制指示数据信道的波束,即,在多波束/多链路/多层传输或多个TRP传输的场景下,需要引入相应的机制指示数据信道的波束信息。
发明内容
本申请实施例提供了一种信息指示方法和装置,用以实现多波束传输场景下传输配置指示信息的指示及数据传输。
第一方面,本申请实施例提供了一种信息指示的方法,包括终端设备接收第一指示信息,所述第一指示信息用于指示A个传输配置指示TCI状态,其中,A为正整数;然后接收第二指示信息,所述第二指示信息用于指示第一码点,所述第一码点为P个码点中的一个;再根据预设规则及所述第一码点,确定所述第一码点对应的至少一个TCI状态,其中,所述预设规则包括将所述A个TCI状态映射到所述P个码点的规则,所述P个码点中的至少一个码点对应于所述A个TCI状态中的至少两个TCI状态;进而根据所述至少一个TCI状态,接收下行信息和/或发送上行信息。该方法实现了多波束传输场景下传输配置指示信息的指示及数据传输。
结合第一方面,在一种可能的设计中,终端设备接收配置信息,所述配置信息用于指示M个TCI状态,其中M为大于1的正整数。
第二方面,本申请实施例提供了一种信息指示的方法,包括:网络设备发送第一指示信息,所述第一指示信息用于指示A个传输配置指示TCI状态,其中,A为正整数;然后根据预设规则及至少一个TCI状态,确定所述至少一个TCI状态对应的第一码点,其中,所述预设规则包括将所述A个TCI状态映射到P个码点的规则,所述P个码点中的至少一个码点对应于所述A个TCI状态中的至少两个TCI状态,所述第一码点为所述P个码点中的一个;再发送第二指示信息,所述第二指示信息用于指示所述第一码点;进面根据所述至少一个TCI状态,接收下行信息和/或发送上行信息。该方法实现了多波束传输场景下传输配置指示信息的指示及数据传输。
结合第二方面,在一种可能的设计中,网络设备发送配置信息,所述配置信息用于指示M个TCI状态,其中M为大于1的正整数。
第三方面,本申请实施例提供了一种信息指示装置,包括处理器和与所述处理器耦合的收发器;收发器用于接收第一指示信息,所述第一指示信息用于指示A个传输配置指示TCI状态,其中,A为正整数;还用于接收第二指示信息,所述第二指示信息用于指示第一码点,所述第一码点为P个码点中的一个;处理器,用于根据预设规则及所述第一码点,确定所述第一码点对应的至少一个TCI状态,其中,所述预设规则包括将所述A个TCI状态映射到所述P个码点的规则,所述P个码点中的至少一个码点对应于所述A个TCI状态中的至少两个TCI状态;收发器,还用于根据所述至少一个TCI状态,接收下行信息和/或发送上行信息。该装置实现了多波束传输场景下传输配置指示信息的指示及数据传输。
结合第三方面,在一种可能的设计中,所述收发器,还用于接收配置信息,所述配置信息用于指示M个TCI状态,其中M为大于1的正整数。
第四方面,本申请实施例提供了一种信息指示装置,包括处理器和与所述处理器耦合的收发器;收发器,用于发送第一指示信息,所述第一指示信息用于指示A个传输配置指示TCI状态,其中,A为正整数;处理器,用于根据预设规则及至少一个TCI状态,确定所述至少一个TCI状态对应的第一码点,其中,所述预设规则包括将所述A个TCI状态映射到P个码点的规则,所述P个码点中的至少一个码点对应于所述A个TCI状态中的至少两个TCI状态,所述第一码点为所述P个码点中的一个;收发器,还用于发送第二指示信息,所述第二指示信息用于指示所述第一码点;收发器,还用于根据所述至少一个TCI状态,接收下行信息和/或发送上行信息。该装置实现了多波束传输场景下传输配置指示信息的指示及数据传输。
结合第四方面,在一种可能的设计中,所述收发器用于发送配置信息,所述配置信息用于指示M个 TCI状态,其中M为大于1的正整数。
结合上述任一方面或可能的设计,在一种可能的设计中,所述A个TCI状态包括K1个第一TCI状态和K2个第二TCI状态,其中,所述K1个第一TCI状态中的至少一个第一TCI状态包括所述A个TCI状态中的一个或多个TCI状态,所述K2个第二TCI状态中的至少一个第二TCI状态包括所述A个TCI状态中一个或多个TCI状态,K1、K2为正整数,且K1+K2≤A。
结合上述任一方面或可能的设计,在一种可能的设计中,所述预设规则包括第一TCI状态映射规则和第二TCI状态映射规则,其中,所述第一TCI状态映射规则包括:将所述K1个第一TCI状态映射到所述P个码点中的L1个码点的规则,所述第二TCI状态映射规则包括将所述K2个第二TCI状态映射到所述P个码点中的L2个码点的规则,L1,L2为正整数,且L1≤P,L2≤P。
结合上述任一方面或可能的设计,在一种可能的设计中,所述第一TCI状态映射规则包括:按第一顺序排列的所述K1个第一TCI状态分别依次映射到按第二顺序排列的L1个码点中的K1个码点,K1≤L1;或者
按第一顺序排列的所述K1个第一TCI状态映射到按第二顺序排列的L1个码点,其中,K1=w1*L1,所述K1个第一TCI状态中的第i个第一TCI状态映射到所述L1个码点中的第
Figure PCTCN2020075317-appb-000001
个码点,i为正整数,w1为正整数,
Figure PCTCN2020075317-appb-000002
表示向上取整,K1≥L1;其中,所述第一顺序为:TCI状态标识从小到大的顺序,或者TCI状态标识从大到小的顺序,或者按TCI状态标识从小到大的顺序排列的所述K1个第一TCI状态组成的向量经过变换得到的顺序,或者按TCI状态标识从大到小的顺序排列的所述K1个第一TCI状态组成的向量经过变换得到的顺序,或者第一指示信息指示的所述K1个第一TCI状态的先后顺序,或者按第一指示信息指示的所述K1个第一TCI状态的先后顺序排列的所述K1个第一TCI状态组成的向量经过变换得到的顺序,所述第二顺序为:码点值从小到大的顺序,或者,码点值从大到小的顺序。
结合上述任一方面或可能的设计,在一种可能的设计中,所述第二TCI状态映射规则包括:按第三顺序排列的所述K2个第二TCI状态分别依次映射到按第四顺序排列的L2个码点中的K2个码点,K2≤L2;或者按第三顺序排列的所述K2个第二TCI状态映射到按第四顺序排列的L2个码点,其中,K2=w2*L2,所述K2个第二TCI状态中的第j个第二TCI状态映射到所述L2个码点中的第
Figure PCTCN2020075317-appb-000003
个码点,j为正整数,w2为正整数,
Figure PCTCN2020075317-appb-000004
表示向上取整,K2≥L2;其中所述第三顺序为:TCI状态标识从小到大的顺序,或者TCI状态标识从大到小的顺序,或者按TCI状态标识从小到大的顺序排列的所述K2个第二TCI状态组成的向量经过变换得到的顺序,或者按TCI状态标识从大到小的顺序排列的所述K2个第二TCI状态组成的向量经过变换得到的顺序,或者第一指示信息指示的所述K2个第二TCI状态的先后顺序,或者按第一指示信息指示的所述K2个第二TCI状态的先后顺序排列的所述K2个第二TCI状态组成的向量经过变换得到的顺序,所述第四顺序为:码点值从小到大的顺序,或者,码点值从大到小的顺序。
结合上述任一方面或可能的设计,在一种可能的设计中,所述L1个码点是预定义的,或者通过第三指示信息指示的;和/或,所述L2个码点是预定义的,或者通过第四指示信息指示的。
结合上述任一方面或可能的设计,在一种可能的设计中,所述第三指示信息包括第一位图,所述第一位图为P比特位图,所述第一位图中L1个值为1的比特位用于指示所述L1个码点;和/或,所述第四指示信息包括第二位图,所述第二位图为P比特位图,所述第二位图中L2个值为1的比特位用于指示所述L2个码点。
结合上述任一方面或可能的设计,在一种可能的设计中,所述L1个码点中最小码点值为X,所述X为预定义的,或者通过第五指示信息指示的,其中X为整数,0≤X+L1≤P;或者,所述L1个码点中最大码点值为X,所述X为预定义的,或者通过第五指示信息指示的,其中X为整数,X≥L1;和/或,所述L2个码 点中最小码点值为Y,所述Y为预定义的,或者通过第六指示信息指示的,其中Y为整数,0≤Y+L2≤P;或者,所述L2个码点中最大码点值为Y,所述Y为预定义的,或者通过第六指示信息指示的,其中Y为整数,Y≥L2。
结合上述任一方面或可能的设计,在一种可能的设计中,所述L1个码点的码点值是连续的,或者非连续的;和/或,所述L2个码点的码点值是连续的,或者非连续的。
结合上述任一方面或可能的设计,在一种可能的设计中,所述L1个码点与所述L2个码点包含至少一个相同的码点。
结合上述任一方面或可能的设计,在一种可能的设计中,所述第一指示信息为一个媒体接入控制控制元素MAC CE,其中,所述K1个第一TCI状态位于所述K2个第二TCI状态之前。
结合上述任一方面或可能的设计,在一种可能的设计中,所述第一指示信息包括第一媒体接入控制控制元素MAC CE和第二MAC CE,所述第一MAC CE用于指示所述K1个第一TCI状态,所述第二MAC CE用于指示所述K2个第二TCI状态。
第五方面,本申请实施例提供了一种装置,包括用于执行本申请各实施例的方法的功能单元。
第六方面,本申请实施例提供了一种计算机存储介质,包括计算机指令,当所述计算机指令在设备上运行时,使得所述设备执行本申请各实施例所述的信息指示方法。
第七方面,本申请实施例提供了一种芯片,用于执行本申请各实施例的方法。
第八方面,提供了一种通信失败方法,包括:终端设备在第一上行资源上,在第p个时间单元向网络设备发送第一指示信息,所述第一指示信息用于指示第一下行资源上的通信失败;
所述终端设备在第q个时间单元或第q个时间单元开始的时间窗内,或,在第q个时间单元后的第v个用于发送下行控制信道的时频资源位置开始的时间窗内,检测通信失败响应信息,所述通信失败响应信息为承载在第二下行资源上的对所述第一下行资源上的通信失败的响应;
其中,所述v为大于或者等于0的数,所述q为大于或者等于0的数,所述第一上行资源属于第一小区,所述第一下行资源和/或第二下行资源属于第二小区,所述第一小区和所述第二小区为不同的小区或者相同的小区;
所述第q个时间单元为根据发送或发送完所述第一指示信息的时间单元,和/或,所述第一小区的系统参数,和/或,所述第二小区的系统参数确定的。
可选的,所述q时间单元为第二小区的下行的第q个时间单元。
在某些可能的实现方式中,发送或发送完所述第一指示信息的时间单元为第p个时间单元;所述第p个时间单元为根据所述第一小区的系统参数,和/或,所述第二小区的系统参数确定的;
可选地,第p个时间单元为根据所述第一小区和第二小区系统参数的最小值或最大值确定的第p个时间单元。
在某些可能的实现方式中,所述第一小区的系统参数为第一小区的上行载波的系统参数,和或,所述第二小区的系统参数为第二小区的下行载波的系统参数。第二上行资源。
在某些可能的实现方式中,所述第一小区的上行载波的系统参数为第一上行资源的系统参数、第一小区的第二上行资源、第一小区的所有上行资源的中系统参数最小的上行资源的系统参数中的一种。
在某些可能的实现方式中,所述第二小区的下行载波的系统参数为第一下行资源的系统参数、第二下行资源的系统参数、第二小区的第三下行资源的系统参数、第二小区的所有下行资源的中系统参数最小的下行资源的系统参数中的一种。第二上行资源第三下行资源第二上行资源第三下行资源。
可选地,所述第p个时间单元为根据所述第一小区的上行载波的系统参数确定的第p个时间单元;或者
所述第p个时间单元为根据所述第一上行资源的系统参数确定的第p个时间单元;或者
所述第p时间单元为根据所述第一小区的第二上行资源的系统参数确定的第p个时间单元;
所述第p时间单元为根据所述第一小区的所有上行资源的中系统参数最小的上行资源的系统参数确定的第p个时间单元;
所述p个时间单元为根据所述第二小区的下行载波的系统参数确定的第p个时间单元;或者
所述第p个时间单元为根据所述第一下行资源的系统参数确定的第p个时间单元;或者,所述所述第p个时间单元为根据所述第二下行资源的系统参数确定的第p个时间单元;或者
所述第p时间单元为根据所述第二小区的第三下行资源的系统参数确定的第p个时间单元;
所述第p时间单元为根据所述第二小区的所有下行资源的中系统参数最小的下行资源的系统参数确定的第p个时间单元。
可选地,所述第q个时间单元为根据所述第一小区的上行载波的系统参数与第二小区的下行载波的系统参数确定的第q个时间单元;或者
所述第q个时间单元为根据所述第一上行资源的系统参数与第一下行资源的系统参数确定的第q个时间单元;或者
所述第q个时间单元根据所述第一小区的第二上行资源的系统参数和第二小区的第三下行资源的系统参数确定的第q个时间单元;或者
所述第q个时间单元为根据所述第一小区的上行载波的系统参数、所述第二小区的下行载波的系统参数和所述p确定的第q个时间单元;或者
所述第q个时间单元为根据所述第一上行资源的系统参数、第一下行资源的系统参数和所述p确定的第q个时间单元;或者
所述第q个时间单元为根据所述第一小区的第二上行资源的系统参数、第二小区的第三下行资源的系统参数和所述p确定的第q个时间单元。
在某些可能的实现方式中,所述q为通过以下任一个公式确定的;
q=p+K      (1)
Figure PCTCN2020075317-appb-000005
Figure PCTCN2020075317-appb-000006
Figure PCTCN2020075317-appb-000007
Figure PCTCN2020075317-appb-000008
Figure PCTCN2020075317-appb-000009
Figure PCTCN2020075317-appb-000010
Figure PCTCN2020075317-appb-000011
Figure PCTCN2020075317-appb-000012
Figure PCTCN2020075317-appb-000013
Figure PCTCN2020075317-appb-000014
Figure PCTCN2020075317-appb-000015
其中,
Figure PCTCN2020075317-appb-000016
为下取整运算,
Figure PCTCN2020075317-appb-000017
为上取整运算;所述K大于或等于0的整数;
所述μ1是第一小区的上行载波的系统参数,μ2是第二小区的下行载波的系统参数;或者,所述μ1是第二小区的下行载波的系统参数,μ2是第一小区的上行载波的系统参数。在某些可能的实现方式中,所述K为预定义的或者终端设备能力上报的或者网络设备指示的(如通过第三指示信息指示),如K为4个时隙。
可选地,q是哪个系统参数确定的时间单元的个数,K就是哪个系统参数确定的时间单元的个数。如,q是第二小区的下行子载波的时间单元的个数,K也为第二小区的下行子载波的时间单元的个数。
可选地,p是哪个系统参数确定的时间单元的个数,K就是哪个系统参数确定的时间单元的个数。如,p是第二小区的下行子载波的时间单元的个数,K也为第二小区的下行子载波的时间单元的个数。所述K为正整数。
可选地,K是由第二小区的下行子载波的系统参数和第一小区的上行子载波的系统参数的最大值或最小值确定的。
可选的,所述K基于第二小区的下行载波的系统参数,或者,第二小区的第一下行资源的系统参数,或者第二小区的第二下行资源的系统参数,或者第二小区的第三下行资源的系统参数确定的时间单元的个数。
可选的,所述K基于第一小区的上行载波的系统参数或者第一小区的第一上行资源的系统参数或者第一小区的第二上行资源的系统参数确定的时间单元的个数。
第九方面,提供了一种通信失败方法,包括:网络设备在第一上行资源上,接收第一指示信息,所述第一指示信息用于指示第一下行资源上的通信失败;
在第s个时间单元或第s个时间单元开始的时间窗内,或,在第s个时间单元后的第z个用于发送下行控制信道的时频资源位置开始的时间窗内,发送通信失败响应信息,所述通信失败响应信息为承载在第二下行资源上的对所述第一下行资源上的通信失败的响应;
其中,所述z为大于或者等于0的数,所述s为大于或者等于0的数,所述第一上行资源属于第一小区,所述第一下行资源和/或第二下行资源属于第二小区,所述第一小区和所述第二小区为不同的小区或者相同的小区;
所述第s个时间单元为根据接收或接收完所述第一指示信息,和/或,所述第一小区的系统参数,和/或,所述第二小区的系统参数确定的。在某些可能的实现方式中,
所述接收或接收完所述第一指示信息的时间单元为第t个时间单元;所述第t个时间单元为根据所述第一小区的系统参数,和/或,所述第二小区的系统参数确定的;
其中,所述t为大于或者等于0的数。第二上行资源在某些可能的实现方式中,所述第一小区的系统参数为第一小区的上行载波的系统参数,和或,所述第二小区的系统参数为第二小区的下行载波的系统参数。第二上行资源第三下行资源第二上行资源第三下行资源。
在某些可能的实现方式中,所述第一小区的上行载波的系统参数为第一上行资源的系统参数、第一小区的第二上行资源、第一小区的所有上行资源的中系统参数最小的上行资源的系统参数中的一种;
和/或,
所述第二小区的下行载波的系统参数为第一下行资源的系统参数、第二下行资源的系统参数、第二小区的第三下行资源的系统参数、第二小区的所有下行资源的中系统参数最小的下行资源的系统参数中的一种。。
在某些可能的实现方式中,所述s为通过公式(13)、公式(14)、公式(15)、公式(16)、公式(17)、公式(18)、公式(19)、公式(20)、公式(21)、公式(22)、公式(23)或公式(24)中的任一个公式确定的;
s=t+L       (13)
Figure PCTCN2020075317-appb-000018
Figure PCTCN2020075317-appb-000019
Figure PCTCN2020075317-appb-000020
Figure PCTCN2020075317-appb-000021
Figure PCTCN2020075317-appb-000022
Figure PCTCN2020075317-appb-000023
Figure PCTCN2020075317-appb-000024
Figure PCTCN2020075317-appb-000025
Figure PCTCN2020075317-appb-000026
Figure PCTCN2020075317-appb-000027
Figure PCTCN2020075317-appb-000028
其中,
Figure PCTCN2020075317-appb-000029
为下取整运算,
Figure PCTCN2020075317-appb-000030
为上取整运算;所述L为大于或等于0的整数;所述μ1是第一小区的上行载波的系统参数,μ2是第二小区的下行载波的系统参数;或者,所述μ1是第二小区的下行载波的系统参数,μ2是第一小区的上行载波的系统参数第二上行资源第三下行资源。
在某些可能的实现方式中,所述L为预定义的或者终端设备能力上报的或者网络设备指示的(如通过第三指示信息指示),如L为4个时隙。
可选地,s是哪个系统参数确定的时间单元的个数,L就是哪个系统参数确定的时间单元的个数。如,s是第二小区的下行子载波的时间单元的个数,L也为第二小区的下行子载波的时间单元的个数。
可选地,t是哪个系统参数确定的时间单元的个数,L就是哪个系统参数确定的时间单元的个数。如,t是第二小区的下行子载波的时间单元的个数,L也为第二小区的下行子载波的时间单元的个数。所述L为正整数。
可选地,L是由第二小区的下行子载波的系统参数和第一小区的上行子载波的系统参数的最大值或最小值确定的。
可选的,所述L基于第二小区的下行载波的系统参数,或者,第二小区的第一下行资源的系统参数,或者第二小区的第二下行资源的系统参数,或者第二小区的第三下行资源的系统参数确定的时间单元的个数。
可选的,所述L基于第一小区的上行载波的系统参数或者第一小区的第一上行资源的系统参数或者第一小区的第二上行资源的系统参数确定的时间单元的个数。
在一些可能的实现方式中,在第八方面或第九方面中,
Figure PCTCN2020075317-appb-000031
可以替换为
Figure PCTCN2020075317-appb-000032
其中,所述f1是第一小区的上行载波的子载波间隔,或者,f1是第一上行资源的子载波间隔,或者,f1是第一小区的第二上行资源的子载波间隔;f2是第二小区的下行载波的子载波间隔,或者,f2是第二小区的第一下行资源的子载波间隔;或者,f2是第二小区的第三下行资源的子载波间隔。或者,所述f2是第一小区的上行载波的子载波间隔,或者,f2是第一上行资源的子载波间隔,或者,f2是第一小区的第二上行资源的子载波间隔;f1是第二小区的下行载波的子载波间隔,或者,f1是第二小区的第一下行资源的子载波间隔;或者,f1是第二小区的第三下行资源的子载波间隔。其中f1和f2等价于表7中的Δf。
第十方面,提供了一种通信失败恢复的装置,该装置包括用于执行第八方面或第八方面任意可能的实现方式中的方法中各个步骤的单元。
第十一方面,提供了一种通信失败恢复的装置,该装置包括用于执行第九方面或第九方面任意可能的实现方式中的方法中各个步骤的单元。
第十二方面,提供了一种通信失败恢复的装置,该装置包括:收发器、存储器和处理器。其中,该收发器、该存储器和该处理器通过内部连接通路互相通信,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,以控制接收器接收信号,并控制发送器发送信号,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第八方面或第八方面的任一种可能的实现方式中的方法。
第十三方面,提供了一种通信失败恢复的装置,该装置包括:收发器、存储器和处理器。其中,该收发器、该存储器和该处理器通过内部连接通路互相通信,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,以控制接收器接收信号,并控制发送器发送信号,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第九方面或第九方面的任一种可能的实现方式中的方法。
第十四方面,提供了一种通信失败恢复的系统,该系统包括上述第八方面提供的装置以及第九方面提供的装置;或者
该系统包括上述第八方面提供的装置以及第九方面提供的装置。
第十五方面,提供了一种计算机程序产品,该计算机程序产品包括计算机程序,该计算机程序在被处理器执行时,用于执行第八方面或第八方面的任意可能的实现方式中的方法。
第十六方面,提供了一种计算机程序产品,该计算机程序产品包括计算机程序,该计算机程序在被处理器执行时,用于执行第九方面或第九方面的任意可能的实现方式中的方法。
第十七方面,提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,当该计算机程序被执行时,用于执行第八方面或第八方面的任意可能的实现方式中的方法。
第十八方面,提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,当该计算机程序被执行时,用于执行第九方面或第九方面的任意可能的实现方式中的方法。
附图说明
图1A为本申请提供的一种波束训练的示意图;
图1B为本申请实施例提供的一种应用场景的示意图;
图2为本申请实施例提供一种通信设备的结构示意图;
图3为本申请实施例提供另一种通信设备的结构示意图;
图4为本申请实施例提供一种指示信息的方法的信令流程图。
图4A为本申请实施例提供的一种MAC CE格式;
图4B为本申请实施例提供的又一种MAC CE格式;
图4C为本申请实施例提供的又一种MAC CE格式;
图4D为本申请实施例提供的又一种MAC CE格式;
图5是本申请实施例提供的通信失败恢复流程的示意性流程图。
图6是本申请实施例提供的通信失败恢复的方法的示意性流程图。
图7是本申请实施例提供的通信失败恢复的装置的示意性框图。
图8是本申请实施例提供的通信失败恢复的装置的另一示意性框图。
图9是本申请实施例提供的通信失败恢复的装置的再一示意性框图。
图10是本申请实施例提供的通信失败恢复的装置的再一示意性框图。
图11是本申请实施例提供的通信失败恢复的装置的再一示意性框图。
具体实施方式
为了使本技术领域的人员更好地理解本申请实施例中的技术方案,并使本申请实施例的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请实施例中的技术方案作进一步详细的说明。
本申请实施例可用于各种无线通信系统,例如:全球移动通信(Global System of Mobile communication,GSM)系统,码分多址(Code Division Multiple Access,CDMA)系统,宽带码分多址(Wideband Code Division Multiple Access Wireless,WCDMA)系统,通用分组无线业务(General Packet Radio Service,GPRS)系统,通用移动通信系统(Universal Mobile Telecommunications System,UMTS),以及长期演进(Long Term Evolution,LTE)系统及其演进系统,新空口(New Radio,NR)系统。
图1B为本申请实施例提供的通信系统的示意图。如图1B所示,该通信系统包括至少一个网络设备101和至少一个终端设备,这里以两个终端设备为例进行说明,该两个终端设备分别为终端设备111和终端设备112,其中,终端设备111和终端设备112处在基站101覆盖范围内并与网络设备101进行通信,以实施下 述各本申请实施例提供的技术方案。示例性地,网络设备101是NR系统的基站,终端设备101和终端设备102是对应的NR系统的终端设备。
本申请实施例结合网络设备和终端设备描述了各个实施例,该网络设备和终端设备可以工作在许可频段或免许可频段上,其中:
终端设备也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备可以是无线局域网(Wireless Local Area Networks,WLAN)中的站点(STATION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统,例如,第五代通信(the fifth-generation,5G)网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备,NR系统中的终端设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,网络设备可以是用于与移动设备通信的设备。网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备,或NR系统中的新一代基站(new generation Node B,gNodeB)等。可以理解的,多个网络设备可以与一个终端设备通信。
另外,在本申请实施例中,网络设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信。该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(small cell)对应的基站。这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
此外,LTE系统或NR系统中的载波上可以同时有多个小区同频工作,在某些特殊场景下,也可以认为上述载波与小区的概念等同。例如在载波聚合(Carrier Aggregation,CA)场景下,当为UE配置辅载波时,会同时携带辅载波的载波索引和工作在该辅载波的辅小区的小区标识(Cell Identify,Cell ID),在这种情况下,可以认为载波与小区的概念等同,比如UE接入一个载波和接入一个小区是等同的。
如无特殊说明,本申请各实施例中的高层信令可以指:高层协议层发出的信令,高层协议层为物理层以上的每个协议层中的至少一个协议层。其中,高层协议层可以具体为以下协议层中的至少一个:媒体接入控制(Medium Access Control,MAC)层、无线链路控制(Radio Link Control,RLC)层、分组数据会聚协议(Packet Data Convergence Protocol,PDCP)层、无线资源控制(Radio Resource Control,RRC)层和非接入层(Non Access Stratum,NAS)层等。高层信令可以是一个终端设备专用的信令,或者多个终端设备或一组终端设备共用的信令,或者是一个小区内所有终端设备共用的信令。
如无特殊说明,本申请各实施例中,物理层信令可以是物理下行控制DCI,或者其它物理控制信息,可以是一个终端设备专用的信令,比如使用终端设备专用标识加扰的物理层信令,或者在终端设备专用的搜索空间发送的物理层信令,或者在终端设备专用的控制信道资源集合中发送的物理层信令。或者物理层控制信令多个终端设备或一组终端设备共用的信令,比如是组标识加扰的物理层信令,或者在一组终端设备共享的搜索空间发送的物理层信令,或者在一组终端设备共享的控制信道资源集合中发送的物理层信令。或者是一个小区内所有终端设备共用的信令。或者物理层控制信令是所有终端设备共用信令,比如所有终端设备共用的标识加扰的物理层信令,或者在所有终端设备共享的搜索空间发送的物理层信令,或者在所有终端设备共享的控制信道资源集合中发送的物理层信令。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
应当理解,本文中使用的术语“在X内没有”,X内包括X上的任一时刻、X的起始时刻、X的终止时刻。“在X内没有”可以表示在X内的时刻都没有,也可以表示是在X内的时刻中一个或多个时刻没有,本申请不做限定。
图2示出了本发明实施例提供的一种无线通信设备,该无线通信设备可以作为网络设备101或者应用于网络设备101中的装置。下面以该无线通信设备为网络设备101为例进行说明。该网络设备101能够执行本发明实施例提供的方法。该网络设备101可以包括:用于实现无线通信功能的处理器201和收发器202。
本申请各实施例涉及的处理器,可以是处理单元,收发器,可以是收发单元。以下不再赘述。
处理器201可以是调制解调器处理器(modem processor)。处理器201可包括基带处理器(baseband processor,BBP),该基带处理器处理经数字化的收到信号以提取该信号中承载的信息或数据比特。为此目的,BBP通常由处理器201内的一个或多个数字信号处理器(digital signal processor,DSP)中或由分开的集成电路(integrated circuit,IC)来实现。
收发器202可以用于支持网络设备101与终端设备之间收发信息。在上行链路,来自终端设备的上行链路射频信号经由天线接收,由收发器202进行调解,提取基带信号并输出至处理器201进行处理,来恢复终端设备所发送的业务数据和/或信令信息。在下行链路上,承载着将要向终端设备发送的业务数据和/或信令消息的基带信号由收发器202进行调制,来产生下行链路的射频信号,并经由天线发射给UE。收发器202可以包括独立的接收器和发送器电路,也可以集成在同一个电路实现收发功能。
所述网络设备101还可以包括存储器203,可以用于存储该网络设备101的程序代码和/或数据。
本申请各实施例涉及的存储器,可以是存储单元。以下不再赘述。
所述网络设备101还可以包括通信单元204,用于支持所述网络设备101与其他网络实体进行通信。例如,用于支持所述网络设备101与核心网的网络设备等进行通信。
在图2示出的实现方式中,处理器201可以分别与收发器202、存储器203和通信单元204耦合/连接。作为另一个替代方式,网络设备101还可以包括总线。收发器202、存储器203以及通信单元204可以通过总线与处理器201连接。例如,总线可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。所述总线可以包括地址总线、数据总线、以及控制总线等。
图3示出了本发明实施例提供的另一种无线通信设备,该无线通信装设备可以作为终端设备111~112或者应用于终端设备111~112中的装置。以下以图3所示的无线通信设备为终端设备为例进行说明。该终端设备能够执行本发明实施例提供的方法。该终端设备可以是2个终端设备111~112中的任一个。所述终端设备包括收发器301、存储器303和用于实现无线通信功能的处理器304。
本申请各实施例涉及的处理器,可以是处理单元,收发器,可以是收发单元。以下不再赘述。
收发器301可以用于支持终端设备111~112与网络设备101之间收发信息。在下行链路,来自网络设备的下行链路射频信号经由天线接收,由收发器301进行调解,提取基带信号并输出至处理器304进行处理,来恢复网络设备所发送的业务数据和/或信令信息。在上行链路上,承载着将要向网络设备发送的业务数据和/或信令消息的基带信号由收发器301进行调制,来产生上行链路的射频信号,并经由天线发射给网络设备。收发器301可以包括独立的接收器和发送器电路,也可以集成在同一个电路实现收发功能。
处理器304可以是调制解调器处理器(modem processor)。处理器304可包括基带处理器(baseband processor,BBP),该基带处理器处理经数字化的收到信号以提取该信号中承载的信息或数据比特。为此目的,BBP通常由处理器304内的一个或多个数字信号处理器(digital signal processor,DSP)中或由分开的集成电路(integrated circuit,IC)来实现。
例如,如图3所示,在处理器304的一个实现方式中,处理器304可包括编码器3041,调制器3042,解码器3043,解调器3044。编码器3041用于对待发送信号进行编码。例如,编码器3041可用于接收要在上行链路上发送的业务数据和/或信令消息,并对业务数据和信令消息进行处理(例如,格式化、编码、或交织等)。调制器3042用于对编码器3041的输出信号进行调制。例如,调制器可对编码器的输出信号(数据和/或信令)进行符号映射和/或调制等处理,并提供输出采样。解调器3044用于对输入信号进行解调处理。例如,解调器3044处理输入采样并提供符号估计。解码器3043用于对解调后的输入信号进行解码。例如,解码器3043对解调后的输入信号解交织、和/或解码等处理,并输出解码后的信号(数据和/或信令)。
处理器304接收可表示语音、数据或控制信息的数字化数据,并对这些数字化数据处理后以供传输。处理器304可以支持多种通信系统的多种无线通信协议中的一种或多种,例如长期演进(Long Term Evolution,LTE)通信系统,新空口(New Radio,NR),通用移动通信系统(Universal Mobile Telecommunications System,UMTS),高速分组接入(High Speed Packet Access,HSPA)等等。可选的,处理器304中也可以包括一个或多个存储器。
所述终端设备还可以包括应用处理器(application processor)302,用于生成上述的可表示语音、数据或控制信息的数字化数据。
处理器304和应用处理器302可以是集成在一个处理器芯片中。
存储器303用于存储用于支持所述终端设备通信的程序代码(有时也称为程序,指令,软件等)和/或数据。
本申请各实施例涉及的存储器,可以是存储单元。以下不再赘述。
需要说明的是,存储器203或存储器303可以包括一个或多个存储单元,例如,可以是用于存储程序代码的处理器201或处理器304或应用处理器302内部的存储单元,或者可以是与处理器201或处理器304或应用处理器302独立的外部存储单元,或者还可以是包括处理器201或处理器304或应用处理器302内部的存储单元以及与处理器201或处理器304或应用处理器302独立的外部存储单元的部件。
处理器201和处理器304可以是相同类型的处理器,也可以是不同类型的处理器。例如可以实现在中央处理器(Central Processing Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件、其他集成电路、或者其任意组合。处理器201和处理器304可以实现或执行结合本发明实施例公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能器件的组合,例如包含一个或多个微处理器组合,DSP和微 处理器的组合或者片上系统(system-on-a-chip,SOC)等等。
本领域技术人员能够理解,结合本申请所公开的诸方面描述的各种解说性逻辑块、模块、电路和算法可被实现为电子硬件、存储在存储器中或另一计算机可读介质中并由处理器或其它处理设备执行的指令、或这两者的组合。作为示例,本文中描述的设备可用在任何电路、硬件组件、IC、或IC芯片中。本申请所公开的存储器可以是任何类型和大小的存储器,且可被配置成存储所需的任何类型的信息。为清楚地解说这种可互换性,以上已经以其功能性的形式一般地描述了各种解说性组件、框、模块、电路和步骤。此类功能性如何被实现取决于具体应用、设计选择和/或加诸于整体系统上的设计约束。本领域技术人员可针对每种特定应用以不同方式来实现所描述的功能性,但此类实现决策不应被解读为致使脱离本发明的范围。
在对本申请实施例的技术方案说明之前,首先对本申请实施例中的相关技术术语和应用场景进行解释和说明。
1、控制资源集合(control resource set,CORESET)
CORESET:为了提高终端盲检控制信道的效率,NR标准制定过程中提出了控制资源集合的概念。网络设备可为UE配置一个或多个资源集合,用于发送物理下行控制信道(Physical Downlink Control Channel,PDCCH)。网络设备可以在终端对应的任一控制资源集合上,向终端发送控制信道。此外,网络设备还需要通知终端所述控制资源集合的相关联的其他配置,例如搜索空间集合等。每个控制资源集合的配置信息存在差异,例如频域宽度差异、时域长度差异等。
可选的,本申请中的控制资源集合可以是5G移动通信系统定义的CORESET或控制区域(control region)或ePDCCH集合(set)。
2、准共址(Quasi-collocation,QCL)信息
QCL信息:准共站/准共址QCL假设信息也可以称为QCL信息。QCL信息用于辅助描述终端接收侧波束赋形信息以及接收流程。
进一步地,QCL信息用于指示两种参考信号之间的QCL关系,源参考信号和目标参考信号,其中目标参考信号一般是可以是解调参考信号(demodulation reference signal,DMRS),信道状态信息参考信号(channel state information reference signal,CSI-RS)等,而被引用的参考信号或者源参考信号一般可以是CSI-RS、追踪参考信号(tracking reference signal,TRS)、同步信号广播信道块(synchronous signal/PBCH block,SSB)等。应理解满足QCL关系的两个参考信号或信道的空间特性参数是相同的或相近的,从而基于该源参考信号资源索引可推断出目标参考信号的空间特性参数。其中,空间特性参数包括以下参数中的一种或多种:
入射角(angle of arrival,AoA)、主(dominant)入射角AoA、平均入射角、入射角的功率角度谱(power angular spectrum,PAS)、出射角(angle of departure,AoD)、主出射角、平均出射角、出射角的功率角度谱、终端发送波束成型、终端接收波束成型、空间信道相关性、基站发送波束成型、基站接收波束成型、平均信道增益、平均信道时延(average delay)、时延扩展(delay spread)、多普勒扩展(Doppler spread)、多普勒频移(Doppler shift)、空间接收参数(spatial Rx parameters)等。
这些空间特性参数描述了源参考信号与目标参考信号的天线端口间的空间信道特性,有助于终端根据该QCL信息完成接收侧波束赋形或接收处理过程。应理解地,终端可以根据QCL信息指示的源参考信号的接收信息,接收目标参考信号。
其中,为了节省网络设备侧对终端侧的QCL信息指示开销,一种可选的实施方式是,网络设备侧可以指示物理下行控制信道(Physical Downlink Control Channel,PDCCH)或物理下行共享信道(Physical Downlink Shared Channel,PDSCH)的解调参考信号与终端之前上报的多个参考信号资源中的一个或多个是满足QCL 关系的,如,该参考信号可以是CSI-RS。这里,每一个上报的CSI-RS资源索引对应了一个之前基于该CSI-RS资源测量时建立的一个收发波束对。应理解地,满足QCL关系的两个参考信号或信道的接收波束信息是相同的,从而基于该参考信号资源索引UE可推断出接收PDCCH或PDSCH的接收波束信息。
现有标准中定义了四种类型的QCL,基站可以同时给UE配置一个或多种类型的QCL,如QCL type,A+D或者C+D:
QCL类型A:多普勒频移(Doppler shift)、多普勒拓展(Doppler spread)、平均信道时延(average delay)和时延拓展(delay spread);
QCL类型B:多普勒频移和多普勒拓展;
QCL类型C:平均信道时延和多普勒频移;
QCL类型D:空间接收参数(spatial Rx parameter)。
可以理解地,本申请中的QCL信息包括QCL类型A、类型B、类型C和类型D中的一个或多个。
3、空间相关信息(spatial relation infomation)
空间相关信息,用于辅助描述终端发射侧波束赋形信息或发射流程。具体地,所述空间相关信息用于指示两种参考信号之间的空间接收参数关系,其中目标参考信号一般是可以是DMRS,探测参考信号(SRS)等,而被引用的参考信号或者源参考信号一般可以是CSI-RS、SRS、SSB等。应理解地,满足空间相关性信息的两个参考信号或信道的空间特性参数是相同的,从而基于该源参考信号资源索引可推断出目标参考信号的空间特性参数。其中,所述空间特性参数与上述空间特性参数,比如入射角(angle of arrival,AoA)、主(Dominant)入射角AoA、平均入射角、…、空间接收参数(spatial Rx parameters)等相同,此处不详细例举。这些空间特性参数描述了源参考信号与目标参考信号的天线端口间的空间信道特性,有助于终端根据该空间相关信息完成发射侧波束赋形或发射处理过程。应理解,终端可以根据空间相关信息指示的源参考信号的发射信息,发射目标参考信号。
4、传输配置指示(transmission configuration indicator,TCI)
TCI信息:用于指示PDCCH/CORESET或者是PDSCH的QCL信息。进一步地,TCI信息是指TCI中包括的参考信号与PDCCH/PDSCH的DMRS满足QCL关系,主要用于指示接收PDCCH/PDSCH时,其空间特性参数等信息与TCI中包括的参考信号的空间特性参数等信息相同、相似或相近。
5、同步信号广播信道块(SS/PBCH block)
SS/PBCH block(synchronous signal/PBCH block)还可以称为SSB。其中,物理广播信道(physical broadcast channel,PBCH)。SSB包含主同步信号(primary synchronization signal,PSS)、辅同步信号(secondary synchronization signal,SSS)和PBCH中的至少一个。主要用于小区搜索、小区同步、承载广播信息的信号。
6、波束(beam)
波束是一种通信资源。波束可以是宽波束,或者窄波束,或者其他类型波束。形成波束的技术可以是波束赋形技术或者其他技术手段。波束赋形技术可以具体为数字波束赋形技术,模拟波束赋形技术,混合数字/模拟波束赋形技术。不同的波束可以认为是不同的资源,通过不同的波束可以发送相同的信息或者不同的信息。
可选的,可以将具有相同或者类似的通信特征的多个波束视为是一个波束。一个波束内可以包括一个或多个天线端口,用于传输数据信道,控制信道和探测信号等。例如,发射波束可以是指:信号经天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指:从天线上接收到的无线信号在空间不同方向上的信号强度分布。可以理解的是,形成一个波束的一个或多个天线端口也可以看作是一个天线端口集。
波束可以分为网络设备的发送波束和接收波束,与终端的发送波束和接收波束。网络设备,比如基站的发送波束用于描述网络设备发送侧波束赋形信息,基站接收波束用于描述网络设备接收侧波束赋形信息。同理地,终端的发送波束用于描述终端发送侧波束赋形信息,终端接收波束用于描述终端接收侧波束赋形信息。因此概括地理解,波束可以用于描述波束赋形信息。
此外,波束可以对应时间资源,空间资源,频域资源中的一种或多种。
可选的,波束还可以与参考信号资源(例如,波束赋形的参考信号资源),或者波束赋形信息产生对应关系。
可选的,波束还可以与网络设备的参考信号资源关联的信息相对应。其中,参考信号可以为CSI-RS,SSB,DMRS,相位跟踪信号(phase tracking reference signal,PTRS),TRS等,与参考信号资源关联的信息可以是参考信号资源标识,或者QCL信息(特别是类型D的QCL),TCI信息等。其中,参考信号资源标识对应了之前基于该参考信号资源测量时建立的一个收发波束对,通过该参考信号资源索引,终端可推断波束信息。
可选的,波束还可以与空域滤波器(spatial filter/spatial domain filter),空域传输滤波器(spatial domain transmission filter)、空间滤波器、空间传输滤波器对应。其中,接收波束等价于空间传输滤波器,空域传输滤波器,空域接收滤波器,空间接收滤波器;发送波束可以等价于空域滤波器,空域传输滤波器,空域发送滤波器,空间发送滤波器。空间相关参数的信息等价于空间滤波器(spatial domain transmission/receive filter)。
进一步地,空间滤波器一般包括:空间发送滤波器,和/或,空间接收滤波器。该空间滤波器还可以称之为空域发送滤波器,空域接收滤波器,空间传输滤波器,空域传输滤波器等。可选的,终端侧的接收波束和网络设备侧的发送波束可以作为下行空间滤波器,终端侧的发送波束和网络设备侧的接收波束可以作为上行空间滤波器。
7、初始带宽区域(Initial Bandwidth part,Initial BWP)
当终端从RRC空闲(idle)状态接入一个小区或者一个宽带载波时,终端初始接入时的BWP称为:初始BWP(initial BWP),或者可以理解为终端在初始BWP上执行随机接入。
8、激活(active)BWP
当终端有业务到达时,网络设备将终端从初始BWP调度到一个带宽和其业务相匹配的BWP上,并且可以通过高层信令或者层一信令指示当前终端设备工作的BWP,网络设备,终端在这个BWP上可以收发数据和或参考信号。这个BWP就称为激活BWP。对于单载波的情况或一个服务小区的情况,一个终端在同一时刻只有一个激活的BWP,终端只能在激活的BWP上接收数据/参考信号或者发送数据/参考信号。
目前通信系统中支持BWP的动态切换。网络设备通过下行控制信息(downlink control information,DCI)或无线资源控制(radio resource control,RRC)信令指示终端设备进行BWP的切换。DCI位于当前BWP中,其频域资源分配信息域的大小由当前BWP的带宽决定。DCI中有一个带宽区域指示(bandwidth part indicator)的信息域,用于指示终端所激活的BWP的ID号。当该信息域所指示的BWP ID号与终端当前激活的BWP ID号(即传输DCI的当前BWP)不一致时,终端需要从当前BWP切换至DCI中所指示的BWP上。
当前,通信系统通常使用不同种类的参考信号:一类参考信号用于估计信道,比如DMRS,从而可以对含有控制信息或者数据的接收信号进行相干解调;另一类用于信道状态或信道质量的测量,比如CSI-RS,从而实现对UE的调度。UE基于对CSI-RS的信道质量测量得到信道状态信息(channel state information,CSI),所述CSI包括秩指示(Rank Indicator,RI),预编码指示(Precoding Matrix Indicator,PMI),信道质量指示(Channel Quality Indicator,CQI)等中的至少一种。这些CSI信息可由UE通过物理上行控制信道(Physical  Uplink Control Channel,PUCCH)或物理上行共享信道(Physical Uplink Shared Channel,PUSCH)发送给基站。
现有的PDSCH或PUSCH的空间相关参数信息方法如下:
对于PDSCH的空间相关参数/空间特性参数的指示,主要是通过TCI信息来实现,例如通过无线资源控制(Radio Resource Control,RRC)信令、媒体接入控制(Medium Access Control,MAC-CE)信令和下行控制信息(Downlink Control Information,DCI)联合指示,或者,还可以通过RRC信令和DCI联合指示。
具体地,一种动态指示的方法包括:
步骤1,网络设备通过RRC信令配置PDSCH的M个候选传输配置指示(Transmission Configuration Indicator,TCI)状态(states),即RRC消息中包括M个候选TCI状态配置信息,所述每个候选TCI状态中包括一个QCL信息。每个TCI状态配置信息包括一个TCI ID。进一步的,还可以包括QCL类型1和/或类型2。
步骤2,网络设备通过MAC-CE从M个TCI状态中激活2 N个TCI状态(M个TCI状态的子集)。
表1示出了一种利用MAC-CE指示TCI状态域的激活或去激活的状态的MAC CE格式示意图。
表1
Figure PCTCN2020075317-appb-000033
其中,带宽区域(Bandwidth part,BWP)ID,占用2比特:用于指示该MAC-CE所应用的下行部分带宽。
服务小区标识(serving cell ID),占用5比特:用于指示该MAC-CE所指示的TCI所属的服务小区的ID。
Ti域:用于指示TCI状态标识为i的TCI状态的激活/去激活。进一步地,如果Ti域为“1”,则表示TCI状态标识为i的TCI被激活,并映射到DCI中的TCI域。如果Ti域为“0”,则表示TCI状态标识为i的TCI状态被去激活,且不会映射到DCI的TCI字域。
“R”表示预留比特(Reserved bit),一般设置为“0”。
该MAC CE中,所有设为1的TCI状态域按按顺序位置映射到码点上,即,第一个设为1的TCI状态域映射到点值0,第二个设为1的TCI状态域映射到点值1,等。在NR Rel-15协议中,能激活的TCI状态最大数量为8。
DCI中的TCI域有N bit用于指示2 N个TCI State中的一个TCI State用于PDSCH的接收,NR版本15(Release 15,Rel-15)协议中,N=3。表2所示的DCI可以用于指示TCI状态中的一个。
表2
Figure PCTCN2020075317-appb-000034
例如,网络设备通过RRC信令指示64个TCI状态用于PDSCH的接收,MAC-CE信令激活64个TCI状态中的8个TCI状态,该8个TCI状态的ID为a1至a8,如果DCI中的一个状态值为000,则终端设备确定对应的TCI状态的标识(TCI state ID)为a1,终端设备根据TCI state Id a1指示的TCI state接收PDSCH。
其中,DCI中是否存在PDSCH的TCI域可以通过高层信令指示,比如RRC信令中的TCI-PresentInDCI字段,每个CORESET都可以配置的该字段,当某个CORESET配置了该字段是使能的,那么在该CORESET检测的DCI中存在TCI字域;当某个CORESET没有配置该字段,那么该CORESET检测的DCI中不存在TCI字域,此时,可选的,PDSCH的TCI state为PDCCH配置的TCI状态。
当调度偏移值小于门限k时,UE使用默认的TCI状态接收PDSCH;当调度偏移值大于门限k时,UE使用DCI中指示的TCI状态接收PDSCH。规定,在初始RRC和MAC-CE阶段,UE假设PDCCH,PDSCH的DMRS与初始接入时确定的同步信号广播信道块(synchronous signal/PBCH block,SSB)是QCL的。
对于PUSCH的空间相关参数/空间特性参数的指示,其实现的波束信息与PDSCH的波束指示流程类似,可以是通过RRC信令、MAC-CE和DCI联合指示,或者由RRC信令和DCI来指示,其中DCI中包括探测参考信号资源指示(SRS resource indicator,SRI)域,用于指示PUSCH的空间相关参数/空间特性参数信息(spatial relationInformation)。
如背景技术所示,当前的波束指示方法,仅考虑了单个传输接收点(Transmission Reception Point,TRP)某时刻使用一个波束与该终端通信的传输方式。但是在新一代通信系统,比如新空口(new radio,NR)中,可以支持网络设备同时使用不同的波束与一个终端进行通信,即多波束传输(multi-beam transmission),或者也可以支持多个TRP为终端服务。其中,多个TRP与一个终端通信包括多个TRP同时与一个终端通信,或者是动态节点选择(dynamic point selection,DPS)传输模式下动态选择的节点与一个终端通信。其中,多个TRP同时与一个终端通信的场景也可以称为非相干联合传输(Incoherent joint transmission,NCJT)场景或NCJT传输方式。
对于多波束传输方式的波束指示现有协议无法支持,其中,该多个波束可以来自于一个网络设备或者多个网络设备,可以来自于一个TRP或者多个TRP。在multi-beam或多个TRP传输的场景下,需要引入相应的机制指示数据信道的波束,即,在多个网络设备/多波束/多链路/多层传输/TRP传输的场景下,需要引入相应的机制指示物理信道的QCL信息。
为解决上述问题,本申请提供的技术方案如下。
图4示出了一种信息指示方法的流程示意图。包括如下步骤:
步骤400,网络设备101向终端设备111发送配置信息,所述配置信息包括M个TCI状态配置信息,M为大于1的正整数。相应的,终端设备111接收配置信息。
具体的,M的取值取决于UE的能力。
每个TCI状态中可以包括一个QCL信息。每个TCI状态配置信息包括一个TCI ID。进一步的,还可以包括QCL类型1和/或类型2。可以理解的,一个TCIID可以对应一个或多个相同类型的QCL,或者一个TCI ID对应的相同类型的QCL中包括一个参考信号(方式1)或多个(方式2)参考信号。本申请各实施例不作限制。
比如,每个TCI状态配置信息包括如下信息:
Figure PCTCN2020075317-appb-000035
Figure PCTCN2020075317-appb-000036
具体的,上述M个TCI状态中,可以划分成至少两个集合,每个TCI状态集合所对应的网络设备/波束/链路/传输层/TRP可以不同。
具体的,分成一个或多个集合的方式包括如下至少一种:
分成一个或多个集合的方式1:根据TCI状态标识分成一个或多个集合。第一TCI状态集合中,TCI状态标识属于第一区间,比如,第一区间为TCI0~TCI63的区间,第二TCI状态集合中,TCI状态标识属于第二区间,比如,第二区间为TCI64~TCI127,第三TCI状态集合中,TCI状态标识属于第三区间,比如,第三区间为TCI28~TCI191,等。可以理解的,第一区间,第二区间,第三区间等包括的TCI状态标识可以是连续的,也可以是不连续的。第一区间,第二区间,第三区间等中的一个或多个可以在协议中规定,或者网络设备通过信令信息配置给终端设备。该信令信息可以包含在配置信息中,或者是单独的信息,本申请各实施例不作限制。
分成一个或多个集合的方式2:根据步骤401中第一指示信息中值为1的Ti域的个数或者激活的TCI状态的个数来分成一个或多个集合。具体的,按值为1的Ti域的先后顺序,第一TCI状态集合包括第一个值为1的Ti域到第H1个值为1的Ti域对应的TCI状态,第二TCI状态集合包括第H1+1个值为1的Ti域对应的TCI状态到第H2个值为1的Ti域对应的TCI状态,第三TCI状态集合包括第H2+1个值为1的Ti域对应的TCI状态到第H3个值为1的Ti域对应的TCI状态,等。比如H1=8,H2=16,H3=24等,本申请各实施例对H1,H2,H3等的具体取值不作限制,H1,H2,H3等可以全部相同,也可以完全或部分不同。H1,H2,H3等中的一个或多个可以在协议中规定,或者网络设备通过信令信息配置给终端设备。该信令信息可以包含在配置信息中,或者是单独的信息,本申请各实施例不作限制。当步骤401中的第一指示信息中指示的值为1的Ti域个数小于或等于H1时,则只分为一个集合,如果值为1的Ti域个数大于H1且小于或等于H2时,则前H1个Ti域为第一TCI状态集合,后面的为第二TCI状态集合,等。
或者,步骤401中的第一指示信息中指示的值为1的Ti域的前面一半Ti对应的TCI状态分为第一TCI状态集合,后面一半Ti对应的TCI状态为第二TCI状态集合,等。
或者,按照第一指示信息指示的激活的TCI状态的先后顺序,第一TCI状态集合包括第一个激活的TCI状态到第H1个激活的TCI状态,第二TCI状态集合包括第H1+1个激活的TCI状态到第H2个激活的TCI状态。
分成一个或多个集合的方式3:步骤401中与第一指示信息关联的指示信息指示分成一个或多个集合的。具体的,该指示信息可以指示分成一个或多个集合的方式1或分成一个或多个集合的2中的区间,Hi等信息。与第一指示信息关联指的是,可以在第一指示信息中包括该指示信息,或者与第一指示信息有映 射关系。
示例4-1,比如,假设上述M个TCI状态被划分成两个集合,第一TCI状态集合包括M1个TCI状态,可以与一个网络设备/波束/链路/传输层/TRP对应,可以记为M1个第一TCI状态,其中一个第一TCI状态包括一个TCI状态,第二TCI状态集合包括M2个TCI状态,可以与另一个网络设备/波束/链路/传输层/TRP对应,可以记为M2个第二TCI状态,其中一个第二TCI状态包括一个TCI状态,M1+M2=M。
示例4-2,再比如,假设上述M个TCI状态被划分成两个TCI状态集合,第一TCI状态集合包括M1个TCI状态,可以与一个网络设备/波束/链路/传输层/TRP对应,可以记为M1个第一TCI状态,其中一个第一TCI状态包括一个TCI状态。第二TCI状态集合包括M2个TCI状态,其中,M2为正整数,即M2个TCI状态中,一部分TCI状态可以与一个网络设备/波束/链路/传输层/TRP对应,另一部分TCI状态可以与另一个网络设备/波束/链路/传输层/TRP对应,通常,M2个TCI状态中与不同网络设备/波束/链路/传输层/TRP对应的TCI状态可以成对出现,当有两个网络设备/波束/链路/传输层/TRP时,可以记为M2’个第二TCI状态,其中至少一个第二TCI状态包括两个TCI状态,M2’≤M2,进一步可选的,M2/2≤M2’≤M2。假设M2=16,TCI状态标识64(简称TCI64)与TCI状态120(简称TCI120)为一对,TCI65与TCI121为一对,TCI66与TCI122为一对,等。应该理解,与多个网络设备/波束/链路/传输层/TRP对应的含义为可以使用该多个网络设备/波束/链路/传输层/TRP进行联合数据发送或联合数据接收。为了描述方便,本申请各实施例中,也可以将与多个网络设备/TRP/波束/链路/传输层对应的多个TCI状态称为TCI状态组,比如,上例中,TCI64与TCI120称为一个TCI状态组,TCI65与TCI121称为一个TCI状态组,等。因此,在本请各实施例中,一个第一TCI状态可以是一个TCI状态组,一个第二TCI状态也可以是一个TCI状态组。本申请各实施例不对一个TCI状态组包括的TCI状态的数量进行限制。一种极限情况,一个TCI状态组可以只包括一个TCI状态。
示例4-3,再比如,假设上述M个TCI状态分成3个TCI状态集合,第一TCI状态集合包括M1个TCI状态,与一个网络设备/波束/链路/传输层/TRP对应,可以记为M1个第一TCI状态,其中一个第一TCI状态包括一个TCI状态。第二TCI状态集合包括M2个TCI状态,可以与一个网络设备/波束/链路/传输层/TRP对应,可以记为M2个第二TCI状态,其中一个第二TCI状态包括一个TCI状态。第三TCI状态集合包括M3个TCI状态,一部分TCI状态可以与一个网络设备/波束/链路/传输层/TRP对应,另一部分TCI状态可以与另一个网络设备/波束/链路/传输层/TRP对应,通常,M3个TCI状态中与不同网络设备/波束/链路/传输层/TRP对应的TCI状态可以成对出现,当有两个网络设备/波束/链路/传输层/TRP时,可以记为M3’个第三TCI状态,其中至少一个第三TCI状态包括两个TCI状态。其中M1+M2+M3≤M。M1,M2,M3均为正整数,M3’≤M3,进一步可选的,M3/2≤M3’。具体含义与上一段示例含义相同,在此不作赘述。
表3示例性的示出了一种TCI状态与网络设备/波束/链路/传输层/TRP的对应关系。第一列和第二列表示使用配置信息配置的与第一个网络设备/波束/链路/传输层/TRP对应的64个TCI状态,TCI状态标识分别为TCI0~TCI63。第三列和第四列表示使用配置信息配置的与第二个网络设备/波束/链路/传输层/TRP对应的64个TCI状态,TCI状态标识分别为TCI64~TCI127。第五列和第六列表示配置信息配置的与第一个和第二个网络设备/波束/链路/传输层/TRP对应的TCI状态,用于两个网络设备/波束/链路/传输层/TRP联合收发数据,TCI状态标识是成对的,其中,可选地,逗号前面的对应第一个网络设备/波束/链路/传输层/TRP,逗号后面的对应第二个网络设备/波束/链路/传输层/TRP,如(0,64)表示与第一个网络设备/波束/链路/传输层/TRP对应的TCI0和与第二个网络设备/波束/链路/传输层/TRP对应的TCI64可以用于联合收发数据,(10,80)表示与第一个网络设备/波束/链路/传输层/TRP对应的TCI10和与第二个网络设备/波束/链路/传输层/TRP对应的TCI80可以用于联合收发数据,等。其中,第一个网络设备/波束/链路/传输层/TRP和第二个网络设备/波束/链路/传输层/TRP联合收发数据时TCI ID也可以非成对出现。
可选地,上述M1个TCI状态标识中的任意两个TCI状态标识不同,M2个TCI状态标识中的任意两个TCI状态标识不同。可选地,上述M1个TCI状态标识中任意一个TCI状态标识与M2个TCI状态标识中的每一个都可以不同,比如M1个TCI状态标识中的任一个都小于M2个TCI状态标识中的每一个。或者,可选地,上述M1个TCI状态标识中有至少一个与M2个TCI状态标识中一个相同。本发明不作限制。
表3
Figure PCTCN2020075317-appb-000037
可以理解的,当有多个网络设备/波束/链路/传输层/TRP时,实现方法可以参照两个TRP时的方法,本申请各实施例对TRP的数量(或者M个TCI状态的集合的数量)不作限制。
需要说明的是,上述将M个TCI状态进行分成一个或多个集合相关的描述只是为了便于理解,在具体实施中,配置信息中可以包括成一个或多个集合相关的信息,也可以不包括分成一个或多个集合相关的信息。即终端设备接收到配置信息时,有可能通过配置信息直接获得一个或多个集合相关信息,也可能是结合步骤401中的第一指示信息或与第一指示信息关联的指示信息获得一个或多个集合相关信息,或者结合其它信令信息或协议规定获得一个或多个集合相关信息。
可以理解的,上述多个TCI状态集合中的任一个集合,可以与一个网络设备/波束/链路/传输层/TRP关联,也可以与多个网络设备/波束/链路/传输层/TRP关联。比如上述示例中,第一TCI状态集合也可以关联多个网络设备/波束/链路/传输层/TRP。本发明不作限制。
配置信息可以包含在高层信令中,本发明不作限制。
上述配置信息可以包含在一条信令,也可以包含在多条信令中。当上述配置信息包含在多条信令时,每个信令针对一个网络设备/波束/链路/传输层/TRP,如分别对TRP1,TRP2或TRP1和TRP2的配置,可以分别使用不同的信令,比如不同的RRC消息来携带,或者,其中两个的配置使用同一条信令,比如同一条RRC消息携带,另外一个的配置使用另一条不同的信令携带,本发明不作限制。
步骤400中网络设备101的操作可以由收发器202来执行,或者由处理器201通过收发器202执行。步骤400中终端设备111的操作可以由收发器301来执行,或者由处理器304通过收发器301来执行。
本步骤可选。当没有本步骤时,配置信息可以在协议中固定,网络设备101和终端设备111可以根据协议固定的配置信息获得M个TCI状态的配置,或者配置信息通过步骤401中的第一指示信息来指示,即第一指示信息即配置M个TCI状态,又用于激活M个TCI状态。
步骤401,网络设备111向终端设备111发送第一指示信息,所述第一指示信息指示A个TCI状态,其中A为正整数。相应的,终端设备111接收第一指示信息。
具体的,第一指示信息可以用于激活A个TCI状态。可选地,A个TCI状态为M个TCI状态的子集。
或者,第一指示信息可以用于配置A个TCI状态,A=M,同时,该第一指示信息激活该A个TCI状态。如步骤400中所述,此时,没有步骤400,或者说步骤400和步骤401合并成一个步骤。
其中,A个TCI状态包括K1个第一TCI状态和K2个第二TCI状态,还可以包括K3个第三TCI状态,Kx个第x TCI状态等,x为大于1的正整数,Kx为正整数,且K1+K2+…+Kx≤A。可以理解的,x的取值等于M个TCI状态的被划分的集合数,比如M个TCI状态被划分成2个集合,则x=2,M个TCI状态被划分成3个集合,则x=3。一个第x TCI状态可以包括一个TCI状态,也可以包括一个TCI状态组(即多个TCI状态)。
下面以A个TCI状态包括K1个第一TCI状态和K2个第二TCI状态为例,进行描述,即x=2,K1+K2≤A。对于x为其它值时,方案类似,在此不作赘述。可以理解的,本申请各实施例中,A个TCI状态也可以只包括第一TCI状态,或者只包括第二TCI状态,方案类似,在此不作赘述。可以理解的,第一指示信息可以包含在高层信令中,或者,第一指示信息可以包含在物理层信令中,本发明各实施例不对具体信令不作限制。
下面以第一指示信息包含在MAC层信令,即第一指示信息为MAC CE为例,解释第一指示信息的实现方式。
MAC CE实现方式A:采用一个MAC CE,可以激活M个TCI状态中的一个TCI状态集合或多个TCI状态集合。
采用一个MAC CE,具体格式可以参考表1,每个Ti域对应于M个TCI状态中的至少一个TCI状态。其中MAC CE包括M’个比特,其中每个比特对应于一个Ti域,一共包括M’个Ti域,M’为正整数。可选的,M’为8的倍数。可选的,MAC CE还可以包括如表1所示的服务小区标识,部分带宽标识等,还可以包括其它信息,本申请各实施例不作限制。
本申请各实施例中,为了方便描述,一个MAC CE中包括的多个Ti域也可以分成一个或多个集合,其集合数与在步骤401中描述的将M个TCI状态划分成的集合数相同,比如,M个TCI状态被划分成x个集合,多个Ti域也被划分成x集合,每个集合中的Ti域可以分别用于激活K1个第一TCI状态(K1个第一TCI状态组成第一TCI状态集合),K2个第二TCI状态(K2个第二TCI状态组成第二TCI状态集合),……,或Kx个第x TCI状态(Kx个第x TCI状态组成第x TCI状态集合),其中任一第x TCI状态可以对应M个TCI状态中的一个TCI状态,也可以对应M个TCI状态中的多个TCI状态(即TCI状态组),本发明不作限制。第一TCI状态,第二TCI状态,……,第x TCI状态分别对应M个TCI状态中不同集合中的TCI状态。值得说明的是,本步骤401对Ti域分成一个或多个集合和/或步骤400中对TCI状态分成一个或多个集合相关描述仅仅是为了便于理解,在实际实施时,可以没有划分成集合的动作,且本步骤401对Ti域分成一个或多个集合和步骤400中对TCI状态分成一个或多个集合没有固定的先后顺序或固定的因果关系。比如,可以是先将步骤400中对TCI状态分成一个或多个集合,本步骤401对Ti域分成一个或多个集合参考步骤400中对TCI状态分成一个或多个集合;或者通过确定本步骤401对Ti域分成一个或多个集合,从而确定步骤400中对TCI状态分成一个或多个集合。或者通过本步骤401将Ti域分成一个或多个集合,步骤400中不对TCI状态进行集合的划分。
示例4-1-1A,比如,基于上述示例4-1和分成一个或多个集合的方式1,相应的,将多个Ti域划分成两个集合,第一集合的M1个Ti域可以对应M1个TCI状态,记为M1个第一TCI状态,第二集合的M2个Ti可以对应M2个TCI状态,记为M2个第二TCI状态。
示例4-2-1A,再比如,基于上述示例4-2,相应的,将多个Ti域划分成两个集合,第一集合的M1个Ti域可以对应M1个TCI状态,记为M1个第一TCI状态,第二集合的M2个Ti可以对应M2个TCI状态,记为M2’个第二TCI状态,其中,M2'个第二TCI状态中的至少个第二TCI状态包括两个TCI状态,M2’≤M2,进一步可选的,M2/2≤M2’≤M2。
示例4-2-2A,再比如,基于上述示例4-2和分成一个或多个集合的方式1,相应的,将多个Ti域划分 成两个集合,第一集合的M1个Ti域可以对应M1个TCI状态,记为M1个第一TCI状态,第二集合的M2’个Ti可以对应M2个TCI状态,记为M2’个第二TCI状态,其中,M2’个第二TCI状态中的至少一个个第二TCI状态包括两个TCI状态。
示例4-3-1A,再比如,基于上述示例4-3和分成一个或多个集合的方式1,相应的,将多个Ti域划分成三个集合,第一集合的M1个Ti域可以对应M1个TCI状态,记为M1个第一TCI状态,第二集合的M2个Ti域可以对应M2个TCI状态,记为M2个第二TCI状态,第三集合的M3个Ti可以对应M3个TCI状态,记为M3’个第三TCI状态,其中,M3’个第三TCI状态中的至少一个第三TCI状态包括两个TCI状态。
示例4-3-2A,再比如,基于上述示例4-3和分成一个或多个集合的方式1,相应的,将多个Ti域划分成三个集合,第一集合的M1个Ti域可以对应M1个TCI状态,记为M1个第一TCI状态,第二集合的M2个Ti域可以对应M2个TCI状态,记为M2个第二TCI状态,第三集合的M3’个Ti可以对应M3个TCI状态,记为M3’个第三TCI状态,其中,M3’个第三TCI状态中的至少一个第三TCI状态包括两个TCI状态。
具体的,在本申请各实施例中,假设MAC CE中Ti域的总个数为128。将M个TCI状态映射到MAC CE中各个Ti域中的方法包括:
映射方法1,M个TCI状态标识与M个Ti域一一映射。
具体的,可以将步骤400中配置的TCI状态标识为i的TCI状态映射到Ti域中。比如,标识为0的TCI状态映射到T0,标识为1的TCI状态映射到T1,等。可以参考表1。基于示例4-1-1A,M个TCI状态标识与M个Ti域一一映射,采用分成一个或多个集合的方式1,其中,第一集合中M1个TCI状态的TCI状态标识的取值范围可以是MAC CE中0~127中的一部分,比如,M1=64,M1个TCI状态的TCI状态标识的取值范围为TCI0~TCI63,M2=64,M2个TCI状态的TCI状态标识的取值范围可以是MAC CE中0~127中的一部分,比如,M2个TCI状态的TCI状态标识取值范围为TCI64~TCI127等。
表4给出了激活A个TCI状态的一个示例。
表4
T7 (1) T6 (1) T5 T4 (1) T3 T2 (1) T1 T0 (1)
T15 T14 T13 T12 (1) T11 T10 (1) T9 T8 (1)
T71 (1) T70 (1) T69 (1) T68 (1) T67 (1) T66 (1) T65 (1) T64 (1)
T127 T126 T125 T124 T123 T122 T121 T120
如上表4所示,MAC CE中T0,T2,T4,T6,T7,T8,T10,T12域取值为1,用于激活第一集合(即TCI状态标识为TCI0~TCI63的TCI状态)对应的8个TCI状态,对应的TCI状态标识分别为TCI0,TCI2,TCI4,TCI6,TCI7,TCI8,TCI10,TCI12。MAC CE中,T64~T71域取值为1,用于激活第二集合(即TCI状态标识为TCI64~TCI127的TCI状态)对应的8个TCI状态,对应的TCI状态标识为TCI64~TCI71。其中,表4中的Ti(1)表示该Ti域设为1。其它的Ti域设为0。
终端设备根据表4所示的MAC CE,即可确定激活的第一集合对应的8个TCI状态(或K1个第一TCI状态,K1=8),以及第二集合对应的激活的8个TCI状态(或K2个第二TCI状态,K2=8)。其中A=8+8=16。
再基于4-1-1A,M个TCI状态标识与M个Ti域一一映射,采用分集合方式2,假设H1=8,即值为1和前8个Ti域用于激活第一集合对应的TCI状态,其余的值为1的Ti域用于激活第二集合对应的TCI状态。表5给出了激活A个TCI状态的一个示例。
表5
T7 T6 T5 T4 T3 T2 T1 T0 (1)
T15 T14 T13 T12 (1) T11 T10 (1) T9 T8 (1)
T71 (1) T70 (1) T69 (1) T68 (1) T67 (1) T66 (1) T65 (1) T64 (1)
T127 (1) T126 (1) T125 T124 (1) T123 (1) T122 T121 T120
如上表5所示,MAC CE中前8个值为1的Ti域为T0,T8,T10,T12,T64,T65,T66,T67域,用于激活第一集合(与TCI状态标识的取值范围无关)对应的8个TCI状态,对应的TCI状态标识分别为TCI0,TCI8,TCI10,TCI12,TCI64,TCI65,TCI66,TCI67。MAC CE中,T68,T69,T70,T71,T123,T124,T126,T127域取值为1,用于激活第二集合对应的8个TCI状态,对应的TCI状态标识为TCI64~TCI71。其中,表4中的Ti(1)表示该Ti域设为1。其它的Ti域设为0。
终端设备根据表5所示的MAC CE,即可确定激活的第一集合对应的8个TCI状态(或K1个第一TCI状态,K1=8),以及第二集合对应的激活的8个TCI状态(或K2个第二TCI状态,K2=8)。其中A=8+8=16。
基于示例4-2-1A,M个TCI状态标识与M个Ti域一一映射,采用分成一个或多个集合的方式1,其中,第一集合中M1个TCI状态的TCI状态标识的取值范围可以是MAC CE中0~127中的一部分,比如,M1=64,M1个TCI状态的TCI状态标识的取值范围为TCI0~TCI63,M2=64,M2个TCI状态的TCI状态标识的取值范围可以是MAC CE中0~127中的一部分,比如,M2个TCI状态的TCI状态标识取值范围为TCI64~TCI127等。表6给出了激活A个TCI状态的一个示例。
表6
T7 (1) T6 (1) T5 (1) T4 (1) T3 (1) T2 (1) T1 (1) T0 (1)
T15 T14 T13 T12 T11 T10 T9 T8
T71 T70 T69 T68 T67 T66 (1) T65 (1) T64 (1)
T127 T126 T125 T124 T123 T122 (1) T121 (1) T120 (1)
如上表6所示,MAC CE中T0~T7域取值为1,用于激活第一集合对应的8个TCI状态,对应的TCI状态标识为TCI0~TCI7。MAC CE中,T64~T66以及T120~T122域取值为1,用于激活和二集合对应的8个TCI状态,对应的TCI状态标识为TCI64~TCI66,以及TCI120~TCI122。其中,表5中的Ti(1)表示该Ti域设为1。其它的Ti域设为0。
终端设备根据表6所示的MAC CE,即可确定激活的第一集合对应的8个TCI状态(或K1个第一TCI状态,K1=8),以及第二集合对应的激活的8个TCI状态(或K2个TCI状态组,或K2个第二TCI状态,此时,一个第二TCI状态包括两个TCI状态,K2=4)。其中A=8+8=16。
再基于4-2-1A,M个TCI状态标识与M个Ti域一一映射,采用分成一个或多个集合的方式2的示例实现方式类似,不再赘述。
映射方法2,一个Ti域可以与一个或多个TCI状态映射,即有些Ti域与一个TCI状态映射,有些Ti域与多个TCI状态映射(或与一个TCI状态组映射)。
此时,MAC CE中的Ti域数(如N*8)可以小于TCI状态数M。
基于示例4-2-2A,M个TCI状态的TCI状态标识的取值范围可以是MAC CE中0~127中的一部分,且M个TCI状态中,M1个第一TCI状态与M1个Ti域一一映射,M2/2个第二TCI状态与M2/2个Ti域一一映射,即一个TCI状态组映射到一个Ti域。如表6所示,T64与第一个第二TCI状态映射,即与包括TCI64和TCI120 的TCI状态组映射,T65与第二个第二TCI状态映射,即与包括TCI65和TCI121的TCI状态组映射,等。表7给出了激活A个TCI状态的一个示例。
表7
T7 (1) T6 (1) T5 (1) T4 (1) T3 (1) T2 (1) T1 (1) T0 (1)
T15 T14 T13 T12 T11 T10 T9 T8
T71 T70 T69 T68 T67 T66 (1) T65 (1) T64 (1)
T127 T126 T125 T124 T123 T122 T121 T120
如上表7所示,MAC CE中T0~T7域取值为1,用于激活第一集合对应的8个TCI状态,对应的TCI状态标识为TCI0~TCI7。MAC CE中,T64~T66域取值为1,用于激活第二集合对应的8个TCI状态,对应的TCI状态标识为TCI64~TCI66,以及TCI120~TCI122。其中,表6中的Ti(1)表示该Ti域设为1。其它的Ti域设为0。值得注意的是,在上表7示例中,Ti与TCIi并没有一一对应的关系,比如T64,并不一定对应TCI64。
终端设备根据表7所示的MAC CE,即可确定激活的第一集合的8个TCI状态(或K1个第一TCI状态,K1=8),以及第二集合的8个TCI状态(或K2个TCI状态组,或K2个第二TCI状态,此时,一个第二TCI状态包括两个TCI状态,K2=4)。其中A=8+8=16。
可以理解的,本申请各实施例对具体的TCI状态到Ti域的映射规则不作限制,也不对获得映射规则的方式作限制,比如可以是在协议中规定映射规则,或者网络设备将映射规则通知给终端设备等。
一种可能的实现方式中,K1个第一TCI状态位于K2个第二TCI状态前面,即在第一指示信息中,最低K1个值为1的比特位(LSB)与K1个第一TCI状态对应,后面K2个值为1的比特位与K2个第二TCI状态对应。或者顺序相反,本申请各实施例不作限制。例如,在第一指示信息指示的激活的TCI状态的顺序中,第一指示信息指示的所述K1个第一TCI状态,在第一指示信息指示的所述K2个第二TCI状态的前面。再例如,第一指示信息指示的激活的TCI状态中,第一指示信息指示的(激活的)第1个至第K1个TCI状态为第一TCI状态,第一指示信息指示的(激活的)第K1+1个至第K1+K2个TCI状态为第二TCI状态。再例如,第一指示信息指示的(激活的)TCI状态中,第一指示信息指示的(激活的)第{1,3,5,…,2*K1-1}个TCI状态为第一TCI状态,第一指示信息指示的(激活的)第{2,4,6,…,2*K2}个TCI状态为第二TCI状态。
一种可能的实现方式中,第一指示信息指示的(激活的)TCI状态中,哪些是第一TCI状态哪些是第二TCI状态,还可以通过其他信息指示。
MAC CE实现方式B:采用多个MAC CE,激活一个TCI状态集合或多个TCI状态状态集合。
采用多个MAC CE的具体格式可以参考表1,具体的,每个MAC CE对应M个TCI状态中的一个TCI状态集合,每个MAC CE包括多个Ti域,每个Ti域对应于M个TCI状态中的一个TCI状态集合中的至少一个TCI状态,用于激活对应的至少一个TCI状态。比如,第一个MAC CE对应于第一集合中的M1个TCI状态(第一TCI状态),第二个MAC CE对应于第二集合中的M2个TCI状态(第二TCI状态),等。MAC CE包括M’个比特,每个比特对应于一个Ti域,一共包括M’个Ti域,不同的MAC CE,包括的Ti域的个数可以相同,也可以不同,可选的,M’为8的倍数,即为字节的整数倍,本申请各实施例不作限制。
示例4-1-1B,比如,基于上述示例4-1,相应的,有两个MAC CE,第一个MAC CE对应于第一TCI状态集合,即第一个MAC CE中的M1个Ti域可以对应M1个TCI状态,记为M1个第一TCI状态。第二个MAC CE对应于第二TCI状态集合,即第二个MAC CE中的M2个Ti可以对应M2个TCI状态,记为M2个第二TCI状态。
示例4-2-1B,再比如,基于上述示例4-2,相应的,有两个MAC CE,第一个MAC CE对应于第一TCI状态集合,即第一个MAC CE中的M1个Ti域可以对应M1个TCI状态,记为M1个第一TCI状态。第二个MAC CE对应于第二TCI状态集合,即第二个MAC CE中的M2个Ti域可以对应M2个TCI状态,记为M2’个第二TCI状态,其中,M2’个第二TCI状态中的至少一个第二TCI状态包括两个TCI状态。
示例4-2-2B,再比如,基于上述示例4-2,相应的,有两个MAC CE,第一个MAC CE对应于第一TCI状态集合,即第一个MAC CE中的M1个Ti域可以对应M1个TCI状态,记为M1个第一TCI状态。第二个MAC CE对应于第二TCI状态集合,即第二个MAC CE中的M2’个Ti域可以对应M2个TCI状态,记为M2’个第二TCI状态,其中,M2’个第二TCI状态中的至少一个第二TCI状态包括两个TCI状态,即一个Ti域对应两个TCI状态,或者对应一个TCI状态。
示例4-3-1B,再比如,基于上述示例4-3,相应的,有三个MAC CE,第一个MAC CE对应于第一TCI状态集合,即第一个MAC CE中的M1个Ti域可以对应M1个TCI状态,记为M1个第一TCI状态。第二个MAC CE对应于第二TCI状态集合,即第二个MAC CE中的M2个Ti域可以对应M2个TCI状态,记为M2个第二TCI状态。第三个MAC CE对应于第三TCI状态集合,即第三个MAC CE中的M3个Ti可以对应M3个TCI状态,记为M3’个第三TCI状态,其中,M3’个第三TCI状态中的每个第三TCI状态包括两个TCI状态。
示例4-3-2B,再比如,基于上述示例4-3,相应的,相应的,有三个MAC CE,第一个MAC CE对应于第一TCI状态集合,即第一个MAC CE中的M1个Ti域可以对应M1个TCI状态,记为M1个第一TCI状态。第二个MAC CE对应于第二TCI状态集合,即第二个MAC CE中的M2个Ti域可以对应M2个TCI状态,记为M2个第二TCI状态。第三个MAC CE对应于第三TCI状态集合,即第三个MAC CE中的M3’个Ti可以对应M3个TCI状态,记为M3’个第三TCI状态,其中,M3/2个第三TCI状态中的至少一个第三TCI状态包括两个TCI状态,即一个Ti域可以对应两个TCI状态,或者对应一个TCI状态。
在该实现方式B中,每个MAC CE中的多个Ti域与一个TCI状态集合的映射方式与实现方式A中的映射方式类似,只不过将一个MAC CE替换成多个MAC CE,在此不作赘述。
MAC CE实现方式C:该实现方式C是实现方式A与实现方式B的结合,即有多个MAC CE,其中至少一个MAC CE只对应M个TCI状态中的一个TCI状态集合,至少一个MAC CE对应多个TCI状态集合。具体映射方式可以参考实现方式A和实现方式B,在此不作赘述。
针对MAC CE实现方式B或实现方式C,一个MAC CE与哪个TCI状态集合或哪几个TCI状态集合映射,可以协议中规定,也可以由网络设备通知给终端设备,比如,在MAC CE头部携带指示信息,用于指示该MAC CE是用于激活哪个TCI状态集合或哪几个TCI状态状态集合,具体的,可以利用现有技术中MAC CE头部中的预留比特(参考表1),指示该MAC CE是用于激活哪个TCI状态集合或哪几个TCI状态集合,如R=1,表示激活第一TCI状态集合,即,激活K1个第一TCI状态,R=0用于表示激活第二TCI状态集合,即,激活K2个第二TCI状态。或者,R=0表示激活第一TCI状态集合,即,激活K1个第一TCI状态,R=1表示激活第二TCI状态集合和/或第三TCI状态集合,即,激活K1个第一TCI状态和/或K2个第二TCI状态,等。再比如,在MAC CE头部增加新的域,用于指示该MAC CE是用于激活哪个TCI状态集合或哪几个TCI状态集合,比如,使用2比特来表示,00表示激活第一TCI状态集合,01表示激活第二TCI状态集合,等。再比如,在MAC CE中,携带TRP标识信息或虚拟标识信息,如列表标识,天线面板(Pannel)标识,Pannel虚拟标识,参考信号标识,如SRI,CSI-RS资源指示(Resource indicator,CRI)等。再比如,根据调度该MAC CE的下行控制信息DCI,例如DCI的格式,DCI的CRC加扰信息,DCI所在的搜索空间信息(如索引号),DCI所在的控制信道集合信息(如索引号),DCI携带的天线端口信息,DCI中携带的传输块TB信息或码字信息,或DCI中的其他信息等,确定该MAC CE激活哪个TCI状态命令或哪几个TCI状态集合。具体通知方 式本申请可实施例不作限制。通过本方法,可以解决MAC-CE更新TCI状态集合,如何更新每个TCI状态集合,更新哪个TCI状态集合的问题。
另一种激活A个TCI状态的方式为,第二指示信息携带待激活的TCI状态的TCI状态标识。比如,第二指示信息携带TCI1,TCI2,TCI5,TCI6,TCI9,TCI15,TCI16,TCI19,用于表示激活TCI1,TCI2,TCI5,TCI6,TCI9,TCI15,TCI16,TCI19。
可选的,第一指示信息可以不采用位图的方式,而是采用指示具体的激活的TCI状态的TCI状态标识的方式。比如,在第一指示信息中,显式指示激活TCI1~TCI8等。当第一指示信息是MAC CE时,在MAC CE头部,也可以携带指示信息,用于指示该MAC CE是用于激活哪个TCI状态集合或哪几个TCI状态集合,具体可以参考上一段描述,不再赘述。例如:第一指示信息通过位图方式指示激活的K1个第一TCI状态,和激活的K2个第二TCI状态。再例如:第一指示信息通过指示具体的TCI状态标识或索引的方式指示激活的K1个第一TCI状态,和激活的K2个第二TCI状态。再例如:第一指示信息通过位图的方式指示激活的K1个第一TCI状态,通过指示具体的TCI状态标识或索引的方式指示激活的K2个第二TCI状态。
一种实现方式中,K1是协议预定义的值,或者网络设备通过信令信息通知给终端设备的值,或者终端设备向网络设备上报的值,或者根据其它信息确定的值,或者根据K2的值计算确定的。K2可以是协议预定义的值,或者通过信令信息通知给终端设备的值,或者终端设备向网络设备上报的值,或者根据其它信息确定的值,或者根据K1的值计算确定的。
可选的,K1的值通过MAC CE指示;该MAC CE可以是第一指示信息。
可选的,K2的值通过MAC CE指示;该MAC CE可以是第一指示信息。
可选的,K1的值和K2的值均是通过MAC CE指示;该MAC CE可以是第一指示信息。
可选的,K1=P,P为码点的个数,具体可以参考步骤402,在此不作赘述。K2=A-K1。
可选的,K1=W,W为正整数,且0≤W≤P,K2=A-K1。
可选的,K1或W取值可以为2的倍数,或者2 N。比如N=3,则K1=8;如果A=12,则可知K2=A-K1=4。
可选的,N为MAC CE包括的Ti域的字节数,K1的取值为{0,2,…,2 i-1,…,2 N-1,2 N}中的一个。步骤401中网络设备101的操作可以由收发器202来执行,或者由处理器201通过收发器202执行。步骤401中终端设备111的操作可以由收发器301来执行,或者由处理器304通过收发器301来执行。
步骤402,网络设备101根据预设规则和至少一个TCI状态,确定至少一个TCI状态对应的第一码点。
具体的,预设规则包括将A个激活的TCI状态映射到P个码点上的规则,或者,预设规则包括将K1个第一TCI状态映射到P个码点上的规则,将K2个第二TCI状态映射到P个码点上的规则,……,以及,包括将Kx个第x TCI状态映射到P个码点上的规则。
一种实施方式中,应用所述规则后,P个码点中的至少一个码点对应于A个TCI状态中的至少两个TCI状态,即A个TCI状态中至少有两个TCI状态可以映射到同一个码点中。比如,K1个第一TCI状态中存在至少一个TCI状态和K2个第二TCI状态中的一个TCI状态可以映射到同一个码点中。再比如,假设每个第二TCI状态包括两个TCI状态,则该两个TCI状态可以映射到同一个码点中。
可以理解的,步骤401中的K1≤P,K2≤P,……,Kx≤P。
为方便描述,本申请各实施例以预设规则包括第一TCI状态映射规则和第二TCI状态映射规则为例,进行描述。第一TCI状态映射规则和第二TCI状态映射规则可以单独实施,也可以一起实施。本申请各实施例不作限制。第一TCI状态映射规则和第二TCI状态映射规则可以相同,也可以不同,本申请各实施例 不作限制。
第一TCI状态映射规则包括将所述K1个第一TCI状态映射到所述P个码点中的L1个码点的规则,所述第二TCI状态映射规则包括将所述K2个第二TCI状态映射到所述P个码点中的L2个码点的规则,L1,L2为正整数,且L1≤P,L2≤P。
一种实现方式中,K1≤L1。
一种实现方式中,K2≤L2。
一种实现方式中,L1≤K1,此时L1个码点中每个码点对应至少一个第一TCI状态。
一种实现方式中,L2≤K2,此时L2个码点中每个码点对应至少一个第二TCI状态。
一种实现方式中,所述L1个码点与所述L2个码点包含至少一个相同的码点。即至少一个码点对应至少一个第一TCI状态和至少一个第二TCI状态。
一种实现方式中,第一TCI状态映射规则包括:按第一顺序排列的所述K1个第一TCI状态分别依次映射到按第二顺序排列的L1个码点中的K1个码点,(记为第一TCI状态映射规则A)其中,K1≤L1,所述第一顺序可以为:
第一顺序A:TCI状态标识从小到大的顺序,或者
第一顺序B:TCI状态标识从大到小的顺序,或者
第一顺序C:按TCI状态标识从小到大的顺序排列的所述K1个第一TCI状态组成的向量经过变换得到的顺序,或者
第一顺序D:按TCI状态标识从大到小的顺序排列的所述K1个第一TCI状态组成的向量经过变换得到的顺序,或者
第一顺序E:第一指示信息指示的所述K1个第一TCI状态的先后顺序,或者
第一顺序F:按第一指示信息指示的所述K1个第一TCI状态的先后顺序排列的所述K1个第一TCI状态组成的向量经过变换得到的顺序,或者
第一顺序G:按预定义或配置的顺序排列的第一TCI状态的顺序。
所述第二顺序为:
第二顺序A:码点值从小到大的顺序,或者,
第二顺序B:码点值从大到小的顺序。
可以理解的,上述各第一顺序中,TCI状态标识可以连续,也可以不连续,取决于实际激活的TCI状态的TCI状态标识。
关于第一顺序C,D,F,具体可以是K1个第一TCI状态组成的列向量左乘一个变换矩阵得到的列向量的顺序,也可以是K1个第一TCI状态组成的行向量右乘一个变换矩阵得到的行向量的顺序。比如,以第一顺序C为例,公式1给出了经过变换后的向量的示例,其它顺序的变换方式类似,在此不作赘述。可以理解的,可以先完成映射后,再进行变换。本发明不对顺序进行限制。
Figure PCTCN2020075317-appb-000038
可以理解的,上述变换矩阵可以在协议中规定,也可以由网络设备通知给终端设备,比如,与第一指示信息或第二指示信息一起通知给终端设备,第二指示信息在后面步骤中会详述。本申请各实施例对上述变换矩阵的获得方式不作限制。
关于第一顺序E和F中的第一指示信息指示的所述K1个第一TCI状态的先后顺序,可以于TCI状态标识从小到大或从大到小的顺序一致,或者不一致,具体与M个TCI状态与Ti域的映射关系有关,本申请各实施例不作限制。
假设P=8,L1=8,L2=8,对应的码点值分别为0~7,下表8以采用MAC CE实现方法A,TCI状态与M个Ti域的映射方法1,第二顺序为码点值从小到大的顺序,基于示例4-2-1A为例,分别示出了第一顺序A至C时,K1个第一TCI状态映射到L1个码点的示例。其它顺序的示例类似,不再赘述。
表8
Figure PCTCN2020075317-appb-000039
可以理解的,上述实现方式中,K1个码点,可以是L1个码点中的前K1个码点,或者是L1个码点中的后K1个码点,或者是预固定或预配置的K1个码点,本申请各实施例不作限制。或者,K1可以等于L1,也即K1个码点即为L1个码点。一种实现方式中,第二TCI状态映射规则包括:按第三顺序排列的所述K2个第二TCI状态分别依次映射到按第四顺序排列的L2个码点中的K2个码点,(记为第二TCI状态映射规则A)其中,K2≤L2,所述第三顺序可以为:
第三顺序A:TCI状态标识从小到大的顺序,或者
第三顺序B:TCI状态标识从大到小的顺序,或者
第三顺序C:按TCI状态标识从小到大的顺序排列的所述K2个第二TCI状态组成的向量经过变换得到的顺序,或者
第三顺序D:按TCI状态标识从大到小的顺序排列的所述K2个第二TCI状态组成的向量经过变换得到的顺序,或者
第三顺序E:第一指示信息指示的所述K2个第二TCI状态的先后顺序,或者
第三顺序F:按第一指示信息指示的所述K2个第二TCI状态的先后顺序排列的所述K2个第二TCI状态组成的向量经过变换得到的顺序;或者
第一顺序G:按预定义或配置的顺序排列的第一TCI状态的顺序。
所述第四顺序可以为:
第四顺序A:码点值从小到大的顺序,或者,
第四顺序B:码点值从大到小的顺序。
可以理解的,所述第三顺序与第一顺序类似,第四顺序与第二顺序类似在此不作赘述。
可以理解的,上述各第三顺序中,TCI状态标识可以连续,也可以不连续,取决于实际激活的TCI状态的TCI状态标识。
关于第三顺序C,D,F,具体可以是K2个第二TCI状态组成的列向量左乘一个变换矩阵得到的列向量的顺序,也可以是K2个第一TCI状态组成的行向量右乘一个变换矩阵得到的行向量的顺序。比如,以第三顺序C为例,公式2和公式3给出了经过变换后的向量的示例。可以理解的,本申请各实施例不对具体的变换公式作限制。可以理解的,其它顺序的变换方式类似,在此不作赘述。可以理解的,可以先完成映射后,再进行变换。本发明不对顺序进行限制。
Figure PCTCN2020075317-appb-000040
Figure PCTCN2020075317-appb-000041
可以理解的,如果采用映射方式1,且第二TCI状态包括两个TCI状态,则上述各第一顺序中,TCI状态标识可以替换成每个第二TCI状态中包括的第一个TCI状态,或者TCI状态标识可以替换成每个第二TCI状态中包括的第二个TCI状态。比如,激活的K1个第二TCI状态分别为(0,64),(10,80),(11,81),(15,85),(16,87),则可以按0,10,11,15,16排序,或者,按64,80,81,85,87排序。本发明不作限制。
下表8给出了一个第二TCI状态包括两个TCI状态,且MAC CE中一个Ti域对应1个TCI状态(即TCI状态与M个Ti域的映射方法1)时,激活的TCI状态与码点的映射示意图。假设P=8,L1=8,L2=8,对应的码点值分别为0~7,采用MAC CE实现方法A,第四顺序为码点值从小到大的顺序,基于示例4-2-1A和表5,第三顺序A至C时,K2个第二TCI状态映射到L2个码点的如表9所示。其它顺序的示例类似,不再赘述。
表9
码点值 第三顺序A 第三顺序B 第三顺序C(公式2) 第三顺序C(公式3)
000 TCI64,TCI120 TCI66,TCI122 TCI64,TCI120  
001 TCI65,TCI121 TCI65,TCI121 TCI66,TCI122  
010 TCI66,TCI122 TCI64,TCI120 TCI65,TCI121  
011        
100        
101       TCI66,TCI122
110       TCI65,TCI121
111       TCI64,TCI120
可以理解的,基于示例示例4-2-2A,示例4-3-1A,示例4-3-2A,时,K2个第二TCI状态与码点值的映射关系类似,在此不作赘述。
可以理解的,上述实现方式中,K2个码点,可以是L2个码点中的前K2个码点,或者是L2个码点中的后K2个码点,或者是预固定或预配置的K2个码点,本申请各实施例不作限制。或者,K2可以等于L2,也即K2个码点即为L2个码点。
可以理解的,基于MAC CE实现方法B和MAC CE实现方法C时,K1个第一TCI状态到码点的映射关系可以参考上面基于MAC CE实现方法A时的映射关系;同样的,K2个第二TCI状态到码点的映射关系可以参考上面基于MAC CE实现方法A时的映射关系,本发明不作限制。
可以理解的,第一TCI状态和第二TCI状态只是为了描述方便而引入的。虽然上面实施例都是以第一TCI状态包括一个TCI状态,第二TCI状态包括两个TCI状态为例进行描述,本发明不对此作限制,比如,第一TCI状态也可以包括两个或多个TCI状态,第二TCI状态也可以包括一个或多个TCI状态等。
可以理解的,上述第一TCI状态映射规则和第二TCI状态映射规则可以一致,也可以不一致。比如,第一TCI状态映射规则包括第一顺序A和第二顺序A,第二TCI状态映射规则包括第三顺序A和第四顺序A;或者,第一TCI状态映射规则包括第一顺序A和第二顺序A,第二TCI状态映射规则包括第三顺序B和第二顺序A。本发明不作限制。
可以理解的,上述L1和L2可以小于P,即K1个第一TCI状态可以映射的码点的个数L1可以小于P,K2个第二TCI状态可以映射的码点的个数L2可以小于P。比如P=8,L1=4,则K1个第一TCI状态只能映射到4个码点上,比如值最小的前4个码点。
一种实现方式中,所述第一TCI状态映射规则包括:按第一顺序排列的所述K1个第一TCI状态映射到按第二顺序排列的L1个码点,其中,第i个第一TCI状态映射到按第二顺序排列的L1个码点中的第
Figure PCTCN2020075317-appb-000042
个码点,i为正整数,
Figure PCTCN2020075317-appb-000043
表示向上取整,K1=w1*L1,其中,w1为正整数,即L1≤K1。(记为第一TCI状态映射规则B)
基于示例4-2-1A和表5,比如,w1=2,K1=8,L1=4,基于表4,按第一顺序A排列的8个TCI状态标识分别为TCI0,TCI2,TCI4,TCI6,TCI7,TCI8,TCI10,TCI12。按第二顺序A排列的4个码点分别为000,001,010,011。下表9示出了TCI状态到码点的映射的示意图。
表10
Figure PCTCN2020075317-appb-000044
Figure PCTCN2020075317-appb-000045
由上表10可以看出,TCI0和TCI2都映射到同一个码点值000上,类似的,TCI4和TCI6映射到同一个码点001上,TCI7和TCI8映射到同一个码点010上,TCI10和TCI12映射到同一个码点011上。
一种实现方式中,所述第二TCI状态映射规则包括:按第三顺序排列的所述K2个第二TCI状态映射到按第四顺序排列的L2个码点,其中,K2=w2*L2,w2为正整数,按第三顺序排列的K2个第二TCI状态中的第j个第二TCI状态映射到按第四顺序排列L2个码点中的第
Figure PCTCN2020075317-appb-000046
个码点,j为正整数,
Figure PCTCN2020075317-appb-000047
表示向上取整。(记为第二TCI状态映射规则B)。可以理解的,该实现方式与上一实现方式类似,在此不作赘述。
可以理解的,w1和w2可以相同,也可以不同,w1和w2可以在协议中规定,也可以由网络设备通知给终端设备,具体的通知方式本申请各实施例不作限制。
一种实现方式中,所述预设规则为按第五顺序排列的A个TCI状态映射到P个码点。其中,第五顺序与第一顺序或第三顺序类似,只是在第五顺序中,将所有A个TCI状态统一排序。在此不作赘述。此时,所述预设规则包括:将按五顺序排列的A个TCI状态中的第i个状态,映射至码点值为i%P或(i-1)%P,%为取模操作,i为大于或等于0的整数。
可选的,网络设备还可以向终端设备发送与第一指示信息关联的指示信息,当该指示信息取第一值时,用于通知所述终端设备将第一指示信息指示的A个TCI状态按顺序依次映射到P个码点。可选的,当A≤P时,每个码点最多只映射一个TCI状态,与现有技术类似。当该值为第二值时,按本申请上述描述的方案将A个TCI状态映射到P个码点。不再赘述。具体的,指示信息可以是第一指示信息对应的MAC CE头部的预留位,第一值可以是该预留位为0,第二值可以是该预留位为1。
下面介绍终端设备确定L1个码点的方法。
确定方法1,在协议中规定所述L1个码点,比如,规定L1个码点的码点值为000,010,011,100。该方法可以减少信令开销。
确定方法1A:在协议中规定,L1个码点为按第二顺序排列的码点。比如,假设P=8,在协议中规定L1=8,且按第二顺序排列的8个码点,或者,L1=4且按第二顺序A排列的4个码点,或者,L1=4且按第二顺序B排列的4个码点,等。
确定方法1B:在协议中规定,在确定方法1的基础上,L1个码点的最小值(或起始位置)为X,其中0≤X+L1≤P,或者,在确定方法1的基础上,L1个码点的最大值为X,其中X≥L1。X为整数。X的取值可以在协议中规定,也可以由网络设备通知给终端设备,比如网络设备101向终端设备发送第五指示信息。或者是终端设备上报给网络设备的。
确定方法2:网络设备向终端设备发送第三指示信息,第三指示信息指示L1个码点。
可选地,第三指示信息可以承载在MAC CE上,该MAC CE可以为第一指示信息。
具体的,第三指示信息可以是一个位图,该位图包括P比特,其中每个比特对应P个码点中的一个比特。比如P=8,第1个比特(可以从最高位MSB开始的第一个比特,或者从最低位LSB开始的第一个比特),对应码点值000,第2个比特对应码点001,……,第8个比特对应码点值111。下表10给出了一个示例。
表11
Figure PCTCN2020075317-appb-000048
Figure PCTCN2020075317-appb-000049
由上表11,可以看出,当第三指示信息取值为01100101时,对应的L1个码点值分别为001,010,100,111。
可以理解的,第三指示信息也可以采用其它形式,比如,在第三指示信息中,直接通知L1个码点值,或者通知L1个码点值的起始位置(如X)及个数L1,还可以是指示梳齿comb方式,如值为奇数的码点。本发明不作限制。
采用第三指示信息的方式,可以提升L1个码点的灵活性,比如,在不同的时刻,L1可以灵活的改变,所使用的码点值也可以灵活的改变。
确定方法3:终端设备根据第一指示信息指示的激活的TCI状态各数A和预配置的参数z1,确定L1个码点个数。具体的,L1=A/z1,z1为正整数,当A不能被z1整除时,L1可以向上取整或向下取整。比如z1=2。
下面介绍终端设备确定L2个码点的方法。
确定方法1,在协议中规定所述L2个码点,比如,规定L2个码点的码点值为000,010,011,100。该方法可以减少信令开销。
确定方法1A:在协议中规定,L2个码点为按第四顺序排列的码点。比如,假设P=8,在协议中规定L1=8,且按第四顺序排列的8个码点,或者,L1=4且按第四顺序A排列的4个码点,或者,L1=4且按第四顺序B排列的4个码点,等。
确定方法1B:在协议中规定,在确定方法1的基础上,L2个码点的最小值(或起始位置)为Y,其中0≤Y+L1≤P,或者,在确定方法1的基础上,L2个码点的最大值为Y,其中Y≥L1。Y为整数。Y的取值可以在协议中规定,也可以由网络设备通知给终端设备,比如网络设备101向终端设备发送第六指示信息。或者是终端设备上报给网络设备的。
确定方法2:网络设备向终端设备发送第四指示信息,第四指示信息指示L2个码点。
可选地,第四指示信息可以承载在MAC CE上,该MAC CE可以为第一指示信息。
可选地,第四指示信息和第三指示信息可以承载在一个MAC CE上,该MAC CE信令可以不同于承载第一指示信息的MAC CE。
具体的,第四指示信息可以是一个位图,该位图包括P比特,其中每个比特对应P个码点中的一个比特。比如P=8,第1个比特(可以从最高位MSB开始的第一个比特,或者从最低位LSB开始的第一个比特),对应码点值000,第2个比特对应码点001,……,第8个比特对应码点值111。具体示例可以参考表10,在此不作赘述。
可以理解的,第四指示信息也可以采用其它形式,比如,在第四指示信息中,直接通知L2个码点值,或者通知L2个码点值的起始位置(如Y)及个数L2,还可以是指示梳齿comb方式,如值为偶数的码点,本发明不作限制。
采用第四指示信息的方式,可以提升L2个码点的灵活性,比如,在不同的时刻,L2可以灵活的改变,所使用的码点值也可以灵活的改变。
确定方法3:终端设备根据第一指示信息指示的激活的TCI状态各数A和预配置的参数z2,确定L2个码点个数。具体的,L2=A/z2,z2为正整数,当A不能被z2整除时,L2可以向上取整。比如z2=2。
可以理解的,各实施例中L1个码点的码点值可以是连续的,或者非连续的;同样的,L2个码点的码点值可以是连续的,或者非连续的。本申请各实施例不作限制。
可以理解的,确定L1的方法和确定L2的方法可以一样,也可以不一样。即本申请各实施例中,确定L1个码点的任一方法可以与确定L2个码点的一种方法组合。比如,采用确定方法1确定L1个码点,而采用确定方法2确定L2个码点等。即便采用的方法一样,涉及的参数取值可能相同,也可能不同。比如,同样采用确定方法1B,X可以与Y相同,比如X=Y=0,也可以不同,比如X>0,Y=0。本申请各实施例不作限制。
一种实现方式中,L1个码点是梳齿状(Comb)的,和/或L2个码点是梳齿状(Comb)的。比如L1个码点为取值为奇数的码点,L2个码点为取值为偶数的码点。等,本发明对梳齿间隔不作限制。
可选的,L1个码点与L2个码点可以完全相同,或者部分相同,或者完全不相同,或者,L1个码点与L2个码组成P个码点,即L1+L2≤P,本申请各实施例不作限制。
可以理解的,第一TCI映射规则
基于上述预设规则(第一TCI状态预设规则和/或第二TCI状态映射规则),下述表X-表X分别给出了码点值与TCI状态的映射关系。
在一种可能的实施例中,采用确定方法1B,X=Y=0,假设K1=P,K2小于P。或者K1小于P,K2=P。比如,第一指示信息指示的值为1的TCI状态及其顺序如下:
{TCI1,TCI2,TCI4,TCI5,TCI6,TCI15,TCI16,TCI19,TCI64,TCI66,TCI68,TCI71,TCI72,TCI73}。K1个第一TCI状态为{TCI1,TCI2,TCI4,TCI5,TCI6,TCI15,TCI16,TCI19},K2个第一TCI状态为{TCI64,TCI66,TCI68,TCI71,TCI72,TCI73},K1个第一TCI状态按第一顺序A排列,K2个第二TCI状态按第三顺序A排列,第三顺序和第四顺序为码点值从小到大的顺序,则码点值与TCI状态的映射关系如下表所示:
表12
码点值 K1个第一TCI状态 K2个第二TCI状态
000 TCI1 TCI64
001 TCI2 TCI66
010 TCI4 TCI68
011 TCI5 TCI71
100 TCI6 TCI72
101 TCI15 TCI73
110 TCI16  
111 TCI19  
在另一种可能的实施例中,采用确定方法1B,X>0,Y=0,假设K小于P,K2小于或等于P。比如,X=2,第一指示信息指示的值为1的TCI状态及其顺序如下:
{TCI1,TCI2,TCI4,TCI5,TCI6,TCI15,TCI64,TCI66,TCI68,TCI71,TCI72,TCI73}。K1个TCI ID为{TCI1,TCI2,TCI4,TCI5,TCI6,TCI15},K2个TCI ID为{TCI64,TCI66,TCI68,TCI71,TCI72,TCI73},K1个第一TCI状态按第一顺序A排列,K2个第二TCI状态按第三顺序A排列,第三顺序和第四顺序为码点值从小到 大的顺序,则码点值与TCI状态的映射关系如下表所示:
表13
码点值 K1个第一TCI状态 K2个第二TCI状态
000 - TCI64
001 - TCI66
010 TCI1 TCI68
011 TCI2 TCI71
100 TCI4 TCI72
101 TCI5 TCI73
110 TCI6  
111 TCI15  
在另一种可能的实施例中,采用确定方法1B,X=0,Y>0,假设K小于或等于P,K2小于P。比如,Y=2,第一指示信息指示的值为1的TCI状态及其顺序如下:
{TCI1,TCI2,TCI4,TCI5,TCI6,TCI15,TCI16,TCI19,TCI64,TCI66,TCI68,TCI71,TCI72,TCI73,TCI126,TCI127}。K1个TCI ID为{TCI1,TCI2,TCI4,TCI5,TCI6,TCI15,TCI16,TCI19},K2个TCI ID为{TCI64,TCI66,TCI68,TCI71,TCI72,TCI73}。K1个第一TCI状态按第一顺序A排列,K2个第二TCI状态按第三顺序A排列,第三顺序和第四顺序为码点值从小到大的顺序,则码点值与TCI状态的映射关系如下表所示:
表14
码点值 K1个第一TCI状态 K2个第二TCI状态
000 TCI1  
001 TCI2  
010 TCI4 TCI64
011 TCI5 TCI66
100 TCI6 TCI68
101 TCI15 TCI71
110 TCI16 TCI72
111 TCI19 TCI73
在另一种可能的实施例中,L1采用确定方法2中的位图方式,L2采用确定方法1B,Y=0,P=8,
第一指示信息指示的值为1的TCI状态及其顺序如下:
{TCI1,TCI2,TCI4,TCI5,TCI6,TCI15,TCI64,TCI66,TCI68,TCI71,TCI72,TCI73}。K1个TCI ID为{TCI1,TCI2,TCI4,TCI5,TCI6,TCI15},K2个TCI ID为{TCI64,TCI66,TCI68,TCI71,TCI72,TCI73},确定方法2中的位图指示的值为10101111,K1个第一TCI状态按第一顺序A排列,K2个第二TCI状态按第三顺序A排列,第三顺序和第四顺序为码点值从小到大的顺序,则码点值与TCI状态的映射关系如下表所示:
表15
码点值 K1个第一TCI状态 K2个第二TCI状态
000 TCI1 TCI64
001   TCI66
010 TCI2 TCI68
011   TCI71
100 TCI4 TCI72
101 TCI5 TCI73
110 TCI6  
111 TCI15  
在另一种可能的实施例中,L1采用确定方法2中的Comb方式,用取值为偶数的码点,L2采用确定方法1B,Y=0,P=8,
第一指示信息指示的值为1的TCI状态及其顺序如下:
{TCI1,TCI2,TCI4,TCI5,TCI6,TCI15,TCI64,TCI66,TCI68,TCI71,TCI72,TCI73}。K1个第一TCI状态{TCI1,TCI2,TCI4,TCI5},K2个第二TCI状态为{TCI64,TCI66,TCI68,TCI71,TCI72,TCI73},K1个第一TCI状态按第一顺序A排列,K2个第二TCI状态按第三顺序A排列,第三顺序和第四顺序为码点值从小到大的顺序,则码点值与TCI状态的映射关系如下表所示:
表16
码点值 K1个第一TCI状态 K2个第二TCI状态
000 TCI1 TCI64
001   TCI66
010 TCI2 TCI68
011   TCI71
100 TCI4 TCI72
101   TCI73
110 TCI5  
111    
在一种可能的实施例中,采用确定方法1B,X=Y=0,假设K1小于或等于P,K2小于或等于P。或者K1小于或等于P,K2=P。比如,第一指示信息指示的值为1的TCI状态及其顺序如下:
{TCI1,TCI2,TCI4,TCI5,TCI6,TCI15,TCI16,TCI19,TCI64,TCI66,TCI68,TCI71,TCI72,TCI73}。K1个第一TCI状态为{TCI1,TCI2,TCI4,TCI5,TCI6,TCI15,TCI16,TCI19},K2个第一TCI状态为{TCI64,TCI66,TCI68,TCI71,TCI72,TCI73},K1个第一TCI状态按第一顺序A排列,K2个第二TCI状态按第三顺序A排列,第三顺序为码点值从小到大的顺序,第四顺序为码点值从大到小的顺序,则码点值与TCI状态的映射关系如下表所示:
表17
码点值 K1个第一TCI状态 K2个第二TCI状态
000 TCI1  
001 TCI2  
010 TCI4 TCI73
011 TCI5 TCI72
100 TCI6 TCI71
101 TCI15 TCI68
110 TCI16 TCI66
111 TCI19 TCI64
在一种可能的实施例中,采用第一TCI映射规则B,w1=2,采用确定方法1B,X=Y=0,假设K1小于或 等于P,K2小于或等于P。或者K1小于或等于P,K2=P=8。比如,第一指示信息指示的值为1的TCI状态及其顺序如下:{TCI1,TCI2,TCI4,TCI5,TCI6,TCI15,TCI64,TCI66,TCI68,TCI71,TCI72,TCI73,TCI126}。码点值从小到大的顺序。
则码点值与TCI状态的映射关系如下表所示:
表18
Figure PCTCN2020075317-appb-000050
可以理解的,如上表所示,当P≤A≤P*w时,w=2,则L1=P*w-A,L2=A-P。相应的,有L1个码点对应一个TCI状态,有L2个码点对应w个TCI状态。如,A=12,则L1=4,L2=4。
在一种可能的实施例中,给出了几种采用一个MAC CE指示激活的TCI状态的实施方式。该一个MAC CE可以包括以下一项或多项:
服务小区标识域、带宽区域标识域、TCI状态标识域、预留域、C域、A域;
其中,所述服务小区标识域指示该MAC CE指示的激活的TCI状态所属的服务小区的标识;或者说,服务小区ID域指示该MAC CE所属的服务小区的标识。该服务小区标识域可以通过状态值方式指示服务小区标识。服务小区标识域还可以称为Serving Cell ID域。
例如,网络设备可以配置给某个终端设备的服务小区共有S个(可以是最多有S个),那么该服务小区标识域通过
Figure PCTCN2020075317-appb-000051
个比特指示。
示例地,S=32,那么可以通过5比特(bit)指示该MAC CE应用的服务小区的标识。如00001,指示小区ID为1的小区;00010,指示小区ID为2的小区,……以此类推。
其中,所述带宽区域标识域指示该MAC CE指示的激活的TCI状态所应用带宽区域标识;或者说,带宽区域标识域指示该MAC CE所应用带宽区域标识。该带宽区域如DCI的带宽区域指示(bandwidth part indicator)域。该带宽区域标识域可以通过状态值方式指示带宽区域标识。该带宽区域标识域还可以称为BWP ID域。
例如,网络设备可以配置给某个终端设备的某个小区内的带宽区域标识共有B个(可以是最多有B个),那么该带宽区域标识域通过
Figure PCTCN2020075317-appb-000052
个比特指示。
示例地,B=4,那么可以通过2比特(bit)指示该MAC CE应用的带宽区域的标识。如00,指示BWP ID为0的小区;01,指示小区ID为1的小区,……以此类推。
其中,所述TCI状态标识域用于指示激活的TCI状态;或者所述TCI状态标识域用于指示激活的/去激活的TCI状态。该TCI状态标识域可以通过状态值指示激活的TCI状态;或者,TCI状态标识域还可以通过位图方式指示激活的/去激活的TCI状态。该TCI状态标识域还可以称为Ti域,或者,还可以称为TCI state ID域,或者还可以称为TCI状态域。
例如:网络设备可以配置给某个终端设备的某个小区内的TCI状态标识共有T个(可以是最多有T个), 那么一个TCI状态域通过
Figure PCTCN2020075317-appb-000053
个比特指示。MAC CE指示A个激活的TCI状态,那么共需要A个TCI状态域,
Figure PCTCN2020075317-appb-000054
个比特指示A个激活的TCI状态。
示例地,T=128,那么可以通过7比特(bit)指示该MAC CE指示的激活的TCI状态的标识。如0000000,指示TCI state ID为0的TCI状态被激活;0000001,指示TCI state ID为1的TCI状态被激活,……以此类推。应理解该TCI状态的标识也可以理解为TCI状态的索引。
再例如:网络设备可以配置给某个终端设备的某个小区内的TCI状态标识共有T个(可以是最多有T个),那么一个TCI状态域通过T个比特指示。MAC CE指示A个激活的TCI状态,那么共需要T个TCI状态域,T个比特指示A个激活的TCI状态。其中,每个bit对应一个TCI状态的激活或去激活的状态,第i个bit对应T个TCI状态中的第i个TCI状态;当该比特位值为1时,指示该第i个TCI状态被激活;当该比特位值为0时,指示该第i个TCI状态被去激活。
示例地,T=128,那么可以通过128比特(bit)指示该MAC CE指示的激活的TCI状态的标识。如0000000,指示TCI state ID为0的TCI状态被激活;0000001,指示TCI state ID为1的TCI状态被激活,……以此类推。应理解该TCI状态的标识也可以理解为TCI状态的索引。
其中,所述C域用于指示激活的TCI状态所映射的码点;该C域可以通过状态值指示激活的TCI状态所映射的码点;或者,C域还可以通过位图方式指示激活的TCI状态所映射的码点。该C域还可以称为codepoint域。
C域通过位图指示激活的TCI状态所映射的码点时,位图的每个比特位可以对应一个C i域,或者一个C ij域。可选地,例如:假设Ci域取值为1,表示该C i域对应的码点映射一个激活的TCI状态,假设C i域取值为0,表示该C i域对应的码点没有映射激活的TCI状态。可选地,假设C i,1域取值为1,表示该C i,1域对应的码点映射一个激活的第一TCI状态,假设C i,1域取值为0,表示该C i,1域对应的码点没有映射一个激活的第一TCI状态。假设C i,1域取值为1,表示该C i,1域对应的码点映射一个激活的第一TCI状态,假设C i,1域取值为0,表示该C i,1域对应的码点没有映射一个激活的第一TCI状态。
例如:网络设备可以配置给某个终端设备的DCI的TCI field的候选状态最多有P个(也可以理解为最多有P个码点,那么一个C域通过
Figure PCTCN2020075317-appb-000055
个比特指示映射激活TCI状态的码点。MAC CE指示L个映射有激活的TCI状态的码点,那么共需要L个C状态域,
Figure PCTCN2020075317-appb-000056
个比特指示P个映射有激活的TCI状态的码点。若第一TCI状态和第二TCI状态均需要指示其各自映射的码点,那么共需要L1+L2个C状态域,
Figure PCTCN2020075317-appb-000057
Figure PCTCN2020075317-appb-000058
个比特指示(L1+L2)个映射有激活的TCI状态的码点。其中,第一TCI状态可以映射至前L1个指示的码点,第二TCI状态可以映射至后L2个指示的码点。
示例地,P=8,那么可以通过3比特(bit)指示该MAC CE指示的激活的TCI状态映射的一个码点。如000,指示激活的TCI状态映射至码点000,001指示激活的TCI状态映射至码点001,……以此类推。应理解,TCI状态域指示的哪个激活的TCI映射至哪个C域指示的码点可以通过上文中的预设规则确定,此处不再赘述。
再例如:网络设备可以配置给某个终端设备的DCI的TCI field的候选状态最多有P个(也可以理解为最多有P个码点,那么一个C域通过P个比特指示映射激活TCI状态的L个码点。MAC CE指示L个映射有激活的TCI状态的码点。若第一TCI状态和第二TCI状态均需要指示其各自映射的码点,那么共需要L1+L2个C状态域2*P个比特指示(L1+L2)个映射有激活的TCI状态的码点。其中,前面的8个比特可以用于指示第一TCI状态映射的码点,后面的8个比特可以用于指示第二TCI状态映射的码点。第一TCI状态可以映射至前L1个指示的码点,第二TCI状态可以映射至后L2个指示的码点。
示例地,P=8,那么可以通过16比特(bit)指示该MAC CE指示的激活的第一TCI状态映射的L1个 码点,激活的第二TCI状态映射的L2个码点。如00010001 00011111,指示激活的K1(如5)个第一TCI状态按照预设规则映射至码点000、001、010、011、100;指示激活的K2(如2)个第二TCI状态按照预设规则映射至码点000、100。应理解,TCI状态域指示的哪个激活的TCI映射至哪个C域指示的码点可以通过上文中的预设规则确定,此处不再赘述。
应理解,以一个小区为例,服务小区ID域、TCI状态域、以及C域之间的关系可以是:服务小区ID域指示该MAC CE应用的服务小区的ID,TCI域指示激活的TCI状态,C域指示TCI域指示的激活的TCI状态映射的codepoint标识或索引。该codepoint为DCI中的TCI field的候选状态值。
其中,A域,占用6bit或1个字节,指示激活的TCI状态的个数。A域可以通过状态值的方式指示激活的TCI状态的个数。其中,A域包括两个域,A 1、A 2。A 1指示激活的第一TCI状态的个数;例如,如果A 1域为“100”,则表示该激活的第一TCI状态的个数为4。如果A 1域为“101”,则表示该激活的第一TCI状态的个数为5。当然,取值“100”、“101”的含义仅为示例,本申请不限于此。例如,如果A 2域为“011”,则表示该激活的第二TCI状态的个数为3。如果A 1域为“010”,则表示该激活的第一TCI状态的个数为2。当然,取值“011”、“010”的含义仅为示例,本申请不限于此。
其中,所述A域用于指示激活的TCI状态的个数;该A域可以通过状态值指示激活的TCI状态的个数。A域可以包括两个域,A 1、A 2。A 1指示激活的第一TCI状态的个数;例如,如果A 1域为“100”,则表示该激活的第一TCI状态的个数为4。如果A 1域为“101”,则表示该激活的第一TCI状态的个数为5。当然,取值“100”、“101”的含义仅为示例,本申请不限于此。例如,如果A 2域为“011”,则表示该激活的第二TCI状态的个数为3。如果A 1域为“010”,则表示该激活的第一TCI状态的个数为2。当然,取值“011”、“010”的含义仅为示例,本申请不限于此。
例如:假设A 1域指示K1,表示激活的第一TCI状态为K1个,A 2域指示K2,表示激活的第二TCI状态为K2个。
进一步地,网络设备可以配置给某个终端设备的DCI的TCI field的候选状态最多有P个(也可以理解为最多有P个码点,那么一个A域通过
Figure PCTCN2020075317-appb-000059
个比特指示映射激活TCI状态的个数。若第一TCI状态和第二TCI状态均需要指示其各自的激活TCI状态的个数,那么共需要
Figure PCTCN2020075317-appb-000060
个比特指示激活的TCI状态的个数。其中,假设A域指示激活的第一TCI状态的个数为K1,激活的第二TCI状态的个数为K2,那么激活的第一TCI状态映射映射至P个码点中的前面的K1个码点,激活的第二TCI状态映射映射至P个码点中的前面的K2个码点。
示例地,P=8,那么可以通过6比特(bit)指示该MAC CE指示的激活的第一TCI状态的个数和激活的第二TCI状态的个数。如010110,指示激活的K1(如6)个第一TCI状态和激活的K2(如2)个第二TCI状态。其中,激活的K1(如6个)第一TCI状态按照预设规则映射至码点000、001、010、011、100、101;激活的K2(如2)个第二TCI状态按照预设规则映射至码点000、001。应理解,TCI状态域指示的哪个激活的TCI映射至哪个C域指示的码点可以通过上文中的预设规则确定,此处不再赘述。
应理解,以一个小区为例,服务小区ID域、TCI状态域、以及A域之间的关系可以是:服务小区ID域指示该MAC CE应用的服务小区的ID;TCI域指示激活的TCI状态;A域指示TCI域包括的字节数,或比特数,或激活的第一TCI状态的个数和第二TCI状态的个数。
其中,预留域,表示预留比特位,一般设置为’0’,不用于指示任何信息。特别地,MAC CE中第一个字节中的R域可以设置为1,用于指示该MAC CE的格式,或类型,或映射规则,或指示该MAC CE中的某些字域是否存在。
应理解,上述服务小区标识域、带宽区域标识域、TCI状态标识域(或TCI状态域)、预留域、C域、A 域均只是一种命名,并不对本申请实施例的保护范围造成限定,本申请实施例不排除在未来协议中用其他命名来表示相同的含义。
应理解,本申请各实施例中,第一指示信息或MAC CE可以为指示PDSCH的激活的和或去激活TCI状态的信息(如,TCI States Activation/Deactivation for UE-specific PDSCH MAC CE)。
上文示例性地介绍了一个指示TCI状态的MAC CE可以包括的内容,应理解,本申请实施例并未限定于此。此外,该MAC CE可以为第一指示信息。下文以第一指示信息为MAC-CE,结合几种具体示例性说明。如图4A至图4D所示,一个八位字节(Oct,octet)表示8比特(bits)构成的一个字节(byte),为区分记不同字节记为Oct 1、Oct 2等。Oct1可以简称为第一字节,Oct2可以简称为第二字节等。应理解,第一字节、第二字节等仅是为区分做的命名,并不对本申请实施例的保护范围造成限定。
示例一:图4A示出了利用MAC-CE指示激活的TCI state信息的一种可能的MAC CE格式。
可以理解的,本实施方式的具体步骤可以参考前面实施例描述,在此不作赘述。即该示例对第一指示信息的具体格式进行描述。
如图4A所示,一个Oct表示8比特构成的一个字节,图4A中包括K1+K2+3个Oct,为区分记为Oct 1、Oct 2、…、Oct K1+K2+3。
具体的,该格式中至少包含:
C域,指示激活的TCI状态所映射的一个或多个码点。C域可以通过位图(bitmap)的方式指示激活的TCI状态所映射的码点。其中,C域包括两个比特位图,第一个位图的任一比特位表示是否存在与该比特位对应的码点映射的第一TCI状态,用C i,1表示。第二个位图的任一个比特位表示是否存在与该比特位对应的码点映射的第二TCI状态,用C i,2表示。
应理解,TCI状态域所占的比特位或字节的个数可以与C域相关。比如,C域中比特位值为1的个数等于TCI状态域包括的字节数。
或者说TCI状态域指示的激活的TCI状态的个数可以与C域相关。比如,C域中比特位值为1的个数等于TCI状态域指示的激活的TCI状态的个数。例如,如果C i,1域为“1”,则表示该C i,1域对应的码点i存在一个第一TCI状态与之映射。如果C i,1域为“0”,则表示该C i,1域对应的码点i不存在一个第一TCI状态与之映射。当然,取值“1”、“0”的含义仅为示例,本申请不限于此。该两个位图中的第二个位图对应C i,2指示第二TCI映射的码点情况;例如,如果C i,2域为“1”,则表示该C i,2域对应的码点i存在一个第二TCI状态与之映射。如果C i,2域为“0”,则表示该C i,2域对应的码点i不存在一个第二TCI状态与之映射。当然,取值“1”、“0”的含义仅为示例,本申请不限于此。当一个码点i既映射了第一TCI状态,也映射了第二TCI状态,该码点即可对应两个TCI状态。
一种可能的实施方式中,C域占用16bit,i=0-7。
TCI状态域,指示激活的TCI状态的索引。其中,C域中包括的第一个位图指示为1的个数等于K1,C域中包括的第二个位图指示为1的个数等于K2;那么,TCI状态域指示激活的K1个第一TCI状态,激活的K2个第二个TCI状态。或者说,该TCI状态域包括第一TCI状态域和第二TCI状态域,第一TCI状态域指示激活的K1个第一TCI状态,第二TCI状态域指示激活的K2个第二个TCI状态。或者说,该TCI状态标识域指示K1+K2个激活的TCI状态。
一种可能的实施方式中,TCI状态域占用(K1+K2)*7比特或者(K1+K2)个字节。例如,第一TCI状态域可以包括7*K1bit,第二TCI状态域可以包括7*K2bit。或者,TCI状态域可以包括K1+K2个字节。
TCI状态域中,第一TCI状态域可以在第二TCI状态域的前面。按照TCI状态域指示激活的TCI状态的 先后顺序,先将第一TCI状态域指示的TCI状态分别依次映射至C域的第一个位图指示值为1的码点上,再将第二TCI状态域指示的TCI状态分别依次映射至C域的第二个位图指示值为1的码点上。例如:TCI state ID i,1映射至C域的第一个位图指示值为1的码点中的第i+1个码点。TCI state ID i,2映射至C域的第二个位图指示值为1的码点中的第i+1个码点。
通过一个位图指示每个码点映射的是一个TCI状态还是两个TCI状态,该方法中并不包括一个码点不映射任何TCI状态的情况,此时MAC CE的比特数是不固定的,UE需要通过盲检获知该MAC CE具体包含多少比特信息。而本示例的方法中,通过两个比特位图(如C域),MAC CE可以灵活指示每个码点映射的TCI状态情况,码点可以不映射TCI状态或者只映射一个TCI状态或者映射两个TCI状态。
进一步的,该MAC-CE还可以包括服务小区标识域、带宽区域标识域、以及预留比特位。
服务小区标识域,占用5比特:指示该MAC CE所应用的服务小区的ID。
带宽区域标识域,占用2比特:指示该MAC CE应用的带宽区域标识。
“R”表示预留比特(Reserved bit),一般设置为“0”。特别的,Oct1中的R域可以是1。
示例二:图4B示出了利用MAC-CE指示激活的TCI state信息的一种可能的MAC CE格式,该格式中存在两个C域。
如图4B所示,一个Oct表示8比特构成的一个字节,图4B中包括K1+K2+2个Oct,为区分记为Oct 1、Oct 2、…、Oct K1+K2+2。
具体的,该格式中至少包含:
A域,指示激活的TCI状态的个数。A域可以通过状态值的方式指示激活的TCI状态的个数。其中,A域可以包括两个域,A 1、A 2。A 1指示激活的第一TCI状态的个数;A 2指示激活的第一TCI状态的个数。
应理解,TCI状态标识域所占的比特位或字节的个数可以与A域相关。比如,A域中指示激活的TCI状态的个数等于TCI状态标识域包括的字节数。或者说TCI状态标识域指示的激活的TCI状态的个数可以与A域相关。比如,A域指示的激活的TCI状态的个数等于等于TCI状态标识域指示的激活的TCI状态的个数。A域指示的激活的第一TCI状态的个数与激活的第二TCI状态的个数之和等于TCI状态标识域指示的激活的TCI状态的个数。
例如,如果A 1域为“100”,则表示该激活的第一TCI状态的个数为4。如果A 1域为“101”,则表示该激活的第一TCI状态的个数为5。当然,取值“100”、“101”的含义仅为示例,本申请不限于此。再例如,如果A 1域为“010”,A 2域为“011”,则表示该激活的第一TCI状态的个数为2,激活的第二TCI状态的个数为3。当然,取值“011”、“010”的含义仅为示例,本申请不限于此。
一种可能的实施方式中,A域,占用6bit或1个字节。若A域可以包括两个域,A 1、A 2,则A 1占用3个bit,A 2占用3个bit。
TCI状态标识域,指示激活的TCI状态的标识(或索引)。该TCI状态域可以包括第一TCI状态域和第二TCI状态域。其中,A1域指示激活的第一TCI状态的个数等于K1,A2域指示激活的第二TCI状态的个数等于K2。那么,TCI状态域指示激活的K1个第一TCI状态,激活的K2个第二个TCI状态。或者说,该TCI状态域包括第一TCI状态域和第二TCI状态域,第一TCI状态域指示激活的K1个第一TCI状态,第二TCI状态域指示激活的K2个第二个TCI状态。
一种可能的实施方式中,TCI状态标识域,占用(K1+K2)*7比特或者K1+K2个字节。例如,第一TCI状态标识域可以包括7*K1bit,对应的第一TCI状态标识域可以包括7*K2bit。再例如,对应的TCI状态标识域包括K1+K2个字节。
TCI状态标识域中,第一TCI状态域可以在第二TCI状态域的前面。按照TCI状态域指示激活的TCI状态的先后顺序,先将第一TCI状态域指示的K1个TCI状态分别依次映射至8个码点中的前K1个码点上,再将第二TCI状态域指示的K2个TCI状态分别依次映射至8个码点中的前K2个的码点上。例如:TCI state ID i,1映射至前K1个码点中的第i+1个码点。TCI state ID i,2映射至前K2个码点中的第i+1个码点。
应理解,K1个码点为8个码点中的前面的连续的K1个码点,如码点0,1,…,K1-1;K2个码点为8个码点中的前面的连续的K2个码点,如码点0,1,…,K2-1。
当一个码点i既映射了第一TCI状态,也映射了第二TCI状态,该码点即可对应两个TCI状态。
现有技术中,存在因为每个码点映射的TCI状态的个数不同而导致的MAC CE的比特数不固定,终端设备需要通过盲检获知该MAC CE具体包含多少比特信息的问题。本示例的方法,通过指示激活的TCI状态的个数来指示后面TCI状态标识域所占的具体比特数,可以有效节省资源开销,解决了终端设备检测复杂度高的问题。
进一步地,该MAC-CE还可以包括服务小区标识域、带宽区域标识域,以及预留比特位。
服务小区标识域,占用5比特:指示该MAC CE所应用的服务小区的ID。
带宽区域标识域,占用2比特:指示该MAC CE应用的带宽区域标识。
“R”表示预留比特(Reserved bit),一般设置为“0”。特别的,Oct1中的R域可以是1。
示例三:图4C示出了利用MAC-CE指示激活的TCI state信息的一种可能的MAC CE格式,该格式中存在两个C域。
如图4C所示,一个Oct表示8比特构成的一个字节,图4C中包括N+K2+1个Oct,为区分记为Oct 1、Oct 2、…、Oct N+K2+1。
具体的,该格式中至少包含以下内容中的一个:
C域,指示激活的第二TCI状态所映射的码点。C域可以通过位图(bitmap)的方式指示激活的第二TCI状态所映射的码点。其中位图的每个比特位可以对应一个Ci域。该位图C i指示第二TCI映射码点i的情况;例如,如果C i域为“1”,则表示该Ci域对应的码点i存在一个第二TCI状态与之映射。如果C i域为“0”,则表示该C i域对应的码点i不存在一个第二TCI状态与之映射。当然,取值“1”、“0”的含义仅为示例,本申请不限于此。
一种可能的实施方式中,C域占用8bit,i=0-7。
TCI状态标识域,指示激活的TCI状态的标识(或索引)。该TCI状态域包括第一TCI状态域和第二TCI状态域,第一TCI状态域指示激活的K1个第一TCI状态,第二TCI状态域指示激活的K2个第二个TCI状态。
其中,第一TCI状态域采用位图方式指示激活的第一TCI状态,其中,该位图中的每个比特对应Ti域。Ti域用于指示TCI状态标识为i的TCI状态的激活/去激活。进一步地,如果Ti域为“1”,则表示TCI状态标识为i的TCI被激活,并映射到DCI中的TCI域。如果Ti域为“0”,则表示TCI状态标识为i的TCI状态被去激活,且不会映射到DCI的TCI字域。第二TCI状态域通过指示TCI状态的标识指示激活的第二TCI状态。其中,C域中包括的比特位值为1的个数等于K2。
在一种可能的实施方式中,第二TCI状态域占用K2*7比特或者K2个字节。
应理解,第二TCI状态域所占的比特位或字节的个数可以与C域相关。比如,C域中比特位值为1的个数等于第二TCI状态域包括的字节数。或者说第二TCI状态域指示的激活的TCI状态的个数可以与C域相关。比如,C域中比特位值为1的个数等于第二TCI状态域指示的激活的TCI状态的个数。例如,当C域指示的值为1个数为K2时,对应的第二TCI状态域可以包括7*K2bit。或者,对应的第二TCI状态域可以包括 K2个字节,或者第二TCI状态域指示K2个TCI状态的标识。
应理解,TCI状态域所占的比特位或字节的个数可以与C域相关。比如,C域中比特位值为1的个数等于TCI状态域包括的字节数。
TCI状态域中,第一TCI状态域可以在第二TCI状态域的前面。按照TCI状态域指示激活的TCI状态的顺序,可以先将Ti域指示值为1的TCI状态的先后顺序分别依次映射至从P个码点中的L1个码点,再将TCI状态域指示的TCI状态的先后顺序分别依次映射至C域的指示值为1的码点上。
“R”域,表示预留比特(Reserved bit),一般设置为“0”。特别的,Oct1中的R域可以是1。
可选地,当Oct1中的R域值为0时,表示该MAC CE不存在C域和第二TCI状态域;当Oct1中的R域值为1时,表示该MAC CE存在C域和TCI状态域。这样,当Oct1中的R域指示为0时,该MAC CE与Release 15的指示PDSCH的激活TCI状态的MAC CE格式相同,可以用于单TRP传输时的TCI指示(或者说每个码点最多对应一个TCI状态)。当Oct1中的R域指示为1时,该MAC CE与Release 15的指示PDSCH的激活TCI状态的MAC CE格式不相同,可以用于多TRP传输时的TCI指示(或者说每个码点最多可以对应两个TCI状态)。
进一步地,该MAC-CE还可以包括服务小区标识域、带宽区域标识域。
服务小区标识域,占用5比特:指示该MAC CE所应用的服务小区的ID。
带宽区域标识域,占用2比特:指示该MAC CE应用的带宽区域标识。
通过该方法,该MAC CE可以与版本15(Release 15)的指示PDSCH的TCI状态的MAC CE兼容(如可以与表1相同,一个码点最多映射一个TCI状态),还可以支持灵活的TCI指示(指示一个码点最多映射一个TCI状态,或者指示一个码点最多映射2个TCI状态)。
应理解,上述第一TCI状态和第二TCI状态可以来自于相同的TCI状态集合,或者,上述第一TCI状态和第二TCI状态可以来自于不相同的TCI状态集合,本申请各实施例对此不作限定。
在另一种可能的实施例中,采用2个MAC CE指示激活的TCI状态。其中,第一个MAC CE指示所有激活的TCI状态的索引,第二个MAC CE指示激活的索引与码点的映射关系。
第一个MAC CE包括信息可以同Release 15的指示PDSCH的TCI状态的MAC CE格式相同。例如可以与表1相同。但是Ti域仅用于指示激活的TCI状态,该TCI状态与码点直接的关系并不通过预定义的方式确定,而是通过第二MAC CE指示。
此外,第一个MAC CE的Oct1中的R域可以用于指示第二个MAC CE是否存在。可选地,当第一个MAC CE的Oct1中的R域值为0时,表示第二个MAC CE不存在,仍然按照Release 15的方法确定激活的TCI状态与码点间的映射关系;当Oct1中的R域值为1时,表示存在第二个MAC CE,按照第二个MAC CE指示的激活TCI状态与码点间的映射关系确定每个码点对应的TCI状态。这样,当Oct1中的R域指示为0时,该MAC CE与Release 15的指示PDSCH的激活TCI状态的MAC CE格式相同,可以用于单TRP传输时的TCI指示(或者说每个码点最多对应一个TCI状态)。当Oct1中的R域指示为1时,通过两个MAC CE可以指示用于多TRP传输时的TCI状态或者说每个码点最多可以对应两个TCI状态)。
具体的,第二个MAC CE至少包括:
C域,指示激活的TCI状态所映射的一个或多个码点。C域可以通过位图(bitmap)的方式指示激活的TCI状态所映射的码点。其中,C域包括两个比特位图,第一个位图的任一比特位表示是否存在与该比特位对应的码点映射的第一TCI状态,用Ci,1表示。第二个位图的任一个比特位表示是否存在与该比特位对应的码点映射的第二TCI状态,用Ci,2表示。
应理解,TCI状态域所占的比特位或字节的个数可以与C域相关。比如,C域中比特位值为1的个数等 于TCI状态域包括的字节数。或者说TCI状态域指示的激活的TCI状态的个数可以与C域相关。比如,C域中比特位值为1的个数等于TCI状态域指示的激活的TCI状态的个数。
例如,如果Ci,1域为“1”,则表示该Ci,1域对应的码点i存在一个第一TCI状态与之映射。如果Ci,1域为“0”,则表示该Ci,1域对应的码点i不存在一个第一TCI状态与之映射。当然,取值“1”、“0”的含义仅为示例,本申请不限于此。该两个位图中的第二个位图对应Ci,2指示第二TCI映射的码点情况;例如,如果Ci,2域为“1”,则表示该Ci,2域对应的码点i存在一个第二TCI状态与之映射。如果Ci,2域为“0”,则表示该Ci,2域对应的码点i不存在一个第二TCI状态与之映射。当然,取值“1”、“0”的含义仅为示例,本申请不限于此。当一个码点i既映射了第一TCI状态,也映射了第二TCI状态,该码点即可对应两个TCI状态。
一种可能的实施方式中,C域占用16bit,i=0-7。
TCI状态标识域,指示码点映射的激活的TCI状态的索引。应理解,该索引是相对索引,可以是第一个MAC CE指示的激活的TCI状态中的一个。该TCI状态标识域可以包括第一TCI状态域和第二TCI状态域。其中,TCI状态标识域用于指示第一个MAC CE指示的激活的TCI状态中的一个。该TCI状态域可以通过状态值指示激活的TCI状态。
应理解,TCI状态域所占的比特位或字节的个数可以与C域相关。或者说TCI状态域指示的激活的TCI状态的个数可以与C域相关。比如,C域中比特位值为1的个数等于TCI状态域指示的激活的TCI状态的个数。应理解,TCI状态域所占的比特位或字节的个数可以与C域相关。比如,C域中比特位值为1的个数除以2上取整后等于TCI状态域的字节数。
其中,C域中包括的第一个位图指示为1的个数等于K1,C域中包括的第二个位图指示为1的个数等于K2;那么,TCI状态标识域指示激活的K1个第一TCI状态,激活的K2个第二个TCI状态。或者说,该TCI状态标识域包括第一TCI状态域和第二TCI状态域,第一TCI状态域指示激活的K1个第一TCI状态,第二TCI状态域指示激活的K2个第二个TCI状态。或者说,该TCI状态标识域指示K1+K2个激活的TCI状态。
一种可能的实施方式中,TCI状态标识域,占用(K1+K2)*3比特或者
Figure PCTCN2020075317-appb-000061
个字节。例如,对应的第一TCI状态域可以包括3*K1bit,对应的第二TCI状态域可以包括3*K2bit。或者,对应的TCI状态标识域可以包括
Figure PCTCN2020075317-appb-000062
个字节。
TCI状态标识域中,第一TCI状态域可以在第二TCI状态域的前面。按照TCI状态域指示TCI状态的先后顺序,先将前面的K1个TCI状态分别依次映射至C域的第一个位图指示值为1的码点上,再将后面的K2个TCI状态分别依次映射至C域的第二个位图指示值为1的码点上。例如:TCI state ID 0映射至C域的第一个位图指示值为1的码点中的第i+1个码点,TCI state ID 1映射至C域的第一个位图指示值为1的码点中的第2个码点,…,以此类推,当第一个位图中值为1的码点均映射完TCI状态后,将TCI状态域指示的其他K2个TCI状态,依次映射至第二个位图中值为1的码点。
进一步的,该MAC-CE还可以包括服务小区标识域、带宽区域标识域、预留域;其中,服务小区标识域、带宽区域标识域,预留域可以同上述实施例的解释(同一个MAC CE指示激活的TCI状态时的解释),此处不再赘述。
例如:网络设备可以通过第一个MAC CE指示A个激活的TCI状态(可以是最多有A个激活的TCI状态),那么一个TCI状态域通过
Figure PCTCN2020075317-appb-000063
个比特指示A个激活TCI状态中的一个映射至某个码点上。
示例地,A=8,那么可以通过3比特(bit)指示MAC CE指示的激活的TCI状态的相对索引。如000,指示第一个MAC CE中第一个被激活的TCI state;001,指示第一个MAC CE中第二个被激活的TCI state,…… 以此类推。
如图4D示出了一种可能的第二个MAC CE格式。
如图4D所示,一个Oct表示8比特构成的一个字节,图4D中包括M个Oct,为区分记为Oct 1、Oct 2、…、Oct M。如图4D所示,该MAC-CE可以包括服务小区标识域、带宽区域标识域、C域、TCI状态域,以及预留比特位。
服务小区标识域,占用5比特:指示该MAC CE所应用的服务小区的ID。
带宽区域标识域,占用2比特:指示该MAC CE应用的带宽区域标识。
“R”表示预留比特(Reserved bit),一般设置为“0”。
应理解,本申请各实施例中,指示TCI状态的MAC CE中的第一个字节中的
“R”域可以用来指示映射规则,或者指示该MAC CE中是否存在某些字域,或者指示该MAC CE的格式。例如:R域为0时,该MAC CE只指示第一TCI状态(可以同Release 15指示TCI状态的MAC CE),当R域为1时,该MAC CE指示第一TCI状态和第二TCI状态。再例如:R域为0时,该MAC CE中指示第二TCI状态相关信息的域不存在,当R域为1时,该MAC CE中指示第二TCI状态相关信息的与存在。其中,第二TCI状态相关信息的域,可以仅包括指示激活第二TCI状态的域,或者,可以包括指示激活第二TCI状态的域和指示该激活第二TCI状态所映射的码点指示域。通过本示例的方法,该MAC CE可以与版本15(Release 15)的指示PDSCH的TCI状态的MAC CE兼容(如可以与表1相同,一个码点最多映射一个TCI状态),还可以支持灵活的TCI指示(通过第二个MAC CE更新TCI状态与码点的映射关系)。此外本实施例方法,还可以分别更新激活的TCI状态的指示,和激活TCI状态域码点间的映射关系,可以有效减少开销。例如,激活的TCI状态指示可以不用频繁更新,而激活的TCI状态与码点的映射关系(也可以理解为,不同的TRP协作会有不同的TCI状态映射至一个码点)可以随着UE位置的移动及时更新。
在步骤402中,网络设备101根据上述预设规则,和至少一个第一TCI状态和/或至少一个第二TCI状态,确定第一码点值。
基于示例4-2-1A,以表8中第一顺序A为例,当网络设备101确定当前的TCI状态为TCI2,即K1个第一TCI状态中,TCI状态标识为2的TCI状态,则网络设备101确定第一码点值为001。
基于示例4-2-1A,以表9中第三顺序A为例,当网络设备101确定当前TCI状态为TCI66和TCI122,即K2个第二TCI状态中,包括TCI65和TCI121的第二TCI状态,则网络设备101确定第一码点值为001。
基于示例4-2-1A,以表10为例,当当网络设备101确定当前TCI状态为TCI4和TCI6,即K1个第一TCI状态中,标识为TCI4和TCI6的第一TCI状态,则网络设备101确定第一码点值为001。
基于示例4-2-1A,以表8和表9为例,假设网络设备101确定第一TCI状态为TCI2,第二TCI状态为包括TCI65和TCI121的第二TCI状态,则网络设备101确定第一码点值为001。
可以理解的,所述预设规则,第一TCI状态映射规则,第二TCI状态映射规则中的一个或多个规则可以在协议中固定,或者网络设备通过信令信息通知给终端设备,具体信令信息可以是物理层信令或高层信令,本发明各实施例不对具体信令不作限制。所述预设规则,第一TCI状态映射规则,第二TCI状态映射规则规则可以相同,也可以部分1相同,也可以完全不同。
可以理解的,本步骤402中,网络设备可以先根据预设规则,获得映射表,然后根据至少一个TCI状态,通过查表来获得第一码点。或者网络设备每次根据预设规则和至少一个TCI状态,确定第一码点。本发申请对此不作限制。
一种实现方式中,第三指示信息和第四指示信息可以是相同的指示信息或者不同的指示信息,本申请 不作限制。
步骤402中网络设备101的操作可以由处理器201执行。
步骤402中关于与第一指示信息关联的指示信息和/或第三指示信息和/或第四指示信息和/或第五指示信息和/或第六指示信息的操作,网络设备101的操作可以由收发器202来执行,或者由处理器201通过收发器202执行。步骤402中终端设备111的操作可以由收发器301来执行,或者由处理器304通过收发器301来执行。
步骤403,网络设备101向终端设备111发送第二指示信息,第二指示信息用于指示第一码点。相应的终端设备111接收第二指示信息。
具体的,第二指示信息可以携带在物理层控制信令如DCI中,也可以携带在其它层的控制信令中,本申请各实施例不作限制。
比如,第二指示信息可以是包含在DCI中的TCI域,该域包括N比特,最多可以指示2 N个码点,对应的码点值为0~(2 N-1)。本申请各实施例中,如无特殊说明,码点个数P≤2 N
一种可选的实施方式中,假设在步骤400中一个TCI ID对应相同类型的QCL包括一个参考信号,当A≤2 N(或P)时,一个码点可以对应一个TCI状态(或一个TCI ID),此时,可以应用于一个网络设备/波束/链路/传输层/TRP的场景。
一种可选的实施方式中,假设在步骤400中一个TCI ID对应相同类型的QCL包括1个参考信号,当A>2 N(或P)时,至少有一个码点可以对应两个或两个以上TCI状态(或两个或两个以上TCI ID)。此时,可以应用于多个网络设备/波束/链路/传输层/TRP的场景。
一种可选的实施方式中,假设在步骤400中一个TCI ID对应相同类型的QCL包括2个参考信号,当A≤2 N(或P)时,一个码点可以对应一个TCI状态(或一个TCI ID),此时,也可以应用于多个网络设备/波束/链路/传输层/TRP的场景。
一种可能的实施例,网络设备101可以发送与第二指示信息关联的指示信息,该指示信息可以用于指示终端设备与网络设备通信所使用的TCI状态集合,即哪个或哪几个网络设备/波束/链路/传输层/TRP与终端设备通信。可选的,与第二指示信息关联的指示信息可以是DCI的格式,DCI的CRC加扰信息,DCI所在的搜索空间信息(如索引号),DCI所在的控制信道集合信息(如索引号),DCI携带的天线端口信息,DCI中携带的传输块TB信息或码字信息,或DCI中的其他信息等。比如该指示信息可以是天线端口信息,当天线端口信息取第一值时,可以使用第一TCI状态集合中的至少一个TCI状态通信,当天线端口信息取第二值时,可以使用第二状态集合中的至少一个TCI状态通信,等。步骤403中关于第二指示信息的操作,网络设备101的操作可以由收发器202来执行,或者由处理器201通过收发器202执行。步骤403中终端设备111的操作可以由收发器301来执行,或者由处理器304通过收发器301来执行。
步骤404,终端设备111根据预设规则和第一码点值,确定第一码点值对应的至少一个TCI状态。
可以理解的,步骤404中终端设备111的操作可以参考步骤402中网络设备101的操作,区别仅在于网络设备是先确定至少一个TCI状态,然后确定第一码点的值,而步骤404中,终端设备111执行相反的过程,根据接收到的第一码点的值,确定所述至少一个TCI状态。
以表7为例,基于第一顺序A和第二顺序A映射,则如果终端设备111接收到的第一码点的码点值为001,则确定所述至少一个TCI状态为TCI2(请参考表7第三行第二列),即第一TCI状态为TCI2;
以表8为例,基于第三顺序A和第二顺序A映射,则如果终端设备111接收到的第一码点的码点值为001,则确定所述至少一个TCI状态为TCI65和TCI121(请参见表8第三行第二列),即第二TCI状态为包括TCI65和TCI121的TCI状态。
以表7和表8为例,假设终端设备111确定第一码点值为001,则确定第一TCI状态为TCI2,第二TCI状态为包括TCI65和TCI121的第二TCI状态。
步骤404中终端设备111的操作可以由处理器304来执行。
步骤405,终端设备111与网络设备101根据确定的至少一个TCI状态,进行通信。
具体的,网络设备101根据确定的至少一个TCI状态向终端设备111发送下行信息,包括下行信令信息和下行数据信息,比如在PDCCH上发送下行信息,或者在PDSCH上发送下行信息。或者网络设备101根据确定的至少一个TCI状态从终端设备111接收上行信息,包括上行信令信息和上行数据信息,比如在PUSCH上接收信息,或者在PUCCH上接收信息。本申请各实施例对此不作限制。
相应的,终端设备111根据确定的至少一个TCI状态向网络设备101发送信息,包括信令信息和数据信息,比如在PUCCH上发送信息,或者在PUSCH上发送信息。或者终端设备111根据确定的至少一个TCI状态从网络设备101接收信息,包括信令信息和数据信息,比如在PDSCH上接收信息,或者在PDCCH上接收信息。本申请各实施例对此不作限制。
步骤405中,网络设备101的操作可以由收发器202来执行,或者由处理器201通过收发器202执行。步骤405中终端设备111的操作可以由收发器301来执行,或者由处理器304通过收发器301来执行。
本申请各实施例,可以实现在multi-beam或多个TRP传输的场景下,指示物理信道的QCL信息,即当前所使用的TCI状态信息,从而实现在上述场景下有效的通信。
一种可能的实施例中,TCI状态也可以替换为空间相关信息(Spatial Relation Information)。相应的,第二指示信息中的TCI域可以替换为SRI域或其它用于指示空间相关信息的域。该实施例方式,可以实现上行数据传输,如实现PUSCH的传输。本发明可以解决一个DCI(即步骤403中的第二指示信息)调度一份数据,不同DCI调度的数据来自不同网络设备/多波束/多链路/多层传输/TRP的场景时或者该数据是由哪个TRP发送是动态确定的场景下,如何通过MAC-CE信令(即步骤401中的第一指示信息)指示TCI ID及如何将该TCI ID映射至DCI的TCI域的码点的问题,在不增加MAC-CE比特的情况下,支持单网络设备/多波束/多链路/传输层/TRP传输和多网络设备/多波束/多链路/传输层/TRP传输,降低指示开销。
本申请各实施例还可以解决,MAC-CE更新TCI状态集合,如何更新每个TCI状态集合,更新哪个TCI状态集合的问题。
本实施例中,可以理解的TCI ID X,还可以表示为TCI state ID,TCI X,用于指示TCI状态。
另外,本申请还提供了一种一种通信失败恢复的方法和装置。以避免当第一指示信息和通信失败响应信息所在载波的子载波间隔不同时,发送终端设备检测通信失败响应信息和网络设备发送通信失败响应信息时间对不齐,导致终端设备无法检测到链路失败恢复响应的问题。
在本申请实施例中,通信失败还可以称为通信链路失败、通信链路故障、链路故障、链路失败、通信故障、波束失败等。该通信失败是指用于PDCCH的波束失败检测的参考信号的信号质量小于或者等于预设门限。在本申请实施例中,这些概念是相同的含义。通信链路故障后,终端设备需要从候选参考信号资源集合中选出信道质量信息(如RSRP、RSRQ、CQI等)高于预定门限的参考信号资源,用于恢复通信链路。
可选的,该预定门限可以由网络设备配置。这里,beam failure detection RS是用于终端设备检测网络设备的某一发射波束的信道质量,该发射波束是网络设备与该终端设备进行通信时所使用的波束。
Candidate beam identification RS用于终端设备在判断出网络设备的该发射波束发生通信链路故障后,用于发起链路重配的参考信号集合。
在本申请实施例中,通信失败也可以称为通信故障、链路失败、链路故障、波束失败、波束故障、通 信链路失败、通信链路故障等。
在本申请实施例中,通信失败恢复也可以称为恢复网络设备与终端设备通信,通信故障恢复、链路失败恢复、链路故障恢复、波束失败恢复、波束故障恢复通信链路失败恢复、通信链路故障恢复、链路重配等。
在具体实现中,用于波束失败检测的参考信号资源集合以及用于恢复终端设备与网络设备链路的参考信号资源集合这两个集合的名称还可以有其他叫法,本申请对此不作具体限定。
本申请实施例中,通信失败恢复请求信息又可以称为通信故障恢复请求信息、链路失败恢复请求信息、链路故障恢复请求信息、波束失败恢复请求信息、波束故障恢复请求信息、通信链路失败恢复请求信息、通信链路故障恢复请求信息、链路重配请求信息、重配请求信息等。
本申请实施例中,通信失败恢复响应信息又可以称为通信失败响应信息、波束失败恢复响应信息、波束失败响应信息、通信链路故障恢复响应信息、通信链路故障响应信息、通信链路失败恢复响应信息、通信链路失败响应信息、波束故障恢复响应信息、波束故障响应信息、链路重配响应信息、链路故障恢复响应信息、链路故障响应信息、链路失败恢复响应信息、链路失败响应信息、通信故障恢复响应信息、通信故障响应信息、重配响应信息等。
本申请实施例中,可选地,通信失败恢复请求可以是指在用于承载通信失败恢复请求的资源上发送信号,通信失败恢复响应信息可以是指在用于发送通信失败恢复响应的控制资源集合和/或搜索空间集合上接收循环冗余校验(cyclic redundancy check,CRC)由小区无线网络临时标识(cell radio network temporary identifier,C-RNTI)加扰的下行控制信息(downlink control information,DCI),该通信失败恢复响应信息还可以由其他信息加扰,本申请实施例对此并不作限定。
应理解,本申请实施例中的通信失败、通信失败恢复、通信失败恢复请求信息和通信失败恢复响应信息的名称还可以有其他叫法,本申请对此不作具体限定。
图5示出了本申请实施例中通信失败恢复流程的示意性流程图,如图5所示,该通信失败恢复流程包括:
S510,终端设备测量波束失败检测的参考信号资源集合(beam failure detection RS set),确定该终端设备与网络设备之间的链路故障。
例如,当终端设备判断连续N次beam failure detection RS或者beam failure detection RS set中所有或部分参考信号的信道质量信息小于或等于第二预设门限时,该终端设备可以确定该终端设备与网络设备之间的链路发生故障。
应理解,本申请实施例中,该终端设备确定与网络设备之间的链路发生故障的方式并不限于以上举例,还可以由其他判断方式确定,本申请对此并不作任何限定。
S520,该终端设备根据候选参考信号集合(candidate beam identification RS)的信道质量信息,确定信道质量大于或者等于第一预设门限的参考信号(new identified beam);这里的确定过程可以是测量所述候选参考信号集合的信道质量信息确定的。
应理解S520是个可选地步骤,可以通过其他方式实现。
S530,该终端设备向网络设备发送链路失败恢复请求(BFRQ),其中,该链路失败恢复请求信息关联S320中识别的信道质量大于或者等于该预设门限的参考信号(new identified beam),该终端设备可以通过显示或者隐式的方式将new identified beam或者参考信号资源和或第一小区的小区标识通知给该网络设备。可选地,该链路失败恢复请求可以通过一个或多个资源发送,如先通过一个资源(可以是周期或半周期资源)通知基站发生链路失败事件,再通过另一个资源(可以是非周期资源或半周期资源)通知新识别 参考信号信息和或第一小区的小区标识。
应理解,本申请实施例中,该终端设备可以向该网络设备发送BFRQ,并通过该网络设备恢复该终端设备与该网络设备之间的链路故障,还可以是该终端设备向另一个网络设备发送BFRQ,通过该另一个网络设备恢复该终端设备与该网络设备之间的链路故障。
可选地,该终端设备的媒体接入控制(media access control,MAC)层会维护一个链路失败恢复计时器(beam failure recovery timer)和链路失败恢复计数器(beam failure recovery counter)。该链路失败恢复计时器用于控制整个链路失败恢复的时间,该链路失败恢复计数器用于限制该终端设备发送链路失败恢复请求的次数,当链路失败恢复计数器达到最大值时,该终端设备认为链路失败恢复不成功,停止链路失败恢复过程。所述恢复计时器的恢复时间和所述恢复计数器的计数值可以是网络设备配置的,也可以是预设值。
S540,网络设备向该终端设备发送链路失败恢复响应(BFRR),该终端设备检测控制资源集合(CORESET)和搜索空间集合(search space set),接收该BFRR。
应理解,可选地,该CORESET和/或search space set是网络设备为该终端设备配置的专用的CORESET和search space set,用于在该终端设备发送链路失败请求后,网络设备发送对链路失败的响应信息的下行控制资源。
还应理解,本申请实施例中,并不对链路失败恢复流程中S310和S320的时间先后顺序进行限定,可以是S510在S520之前,也可以是S520在S510之前,还可以是S510和S520同时进行。
该上行资源可以是物理上行控制信道(physical uplink control channel,PUCCH)资源,和或,物理随机接入信道(physical random access channel,PRACH)资源,和或,物理上行共享信道(physical uplink shared channel,PUSCH)资源。
由于链路失败为突发事件,网络设备分配专用的周期性的上行资源开销比较大。本申请实施例的方案中通过复用或者打孔用于信道状态信息(channel state information,CSI)上报的PUCCH或者物理上行共享信道(physical uplink shared channel,PUSCH)发送链路失败恢复请求,可以有效节省资源开销。
终端设备在第p时间单元发送或发送完链路失败请求信息,在第q时间单元检测链路失败恢复响应信息。但是由于该小区的上行载波和下行载波的子载波间隔(或系统参数)不同,使得终端设备不知第p时间单元是在哪个子载波间隔(或系统参数)情况下的时间单元,不知第q时间单元是在哪个子载波间隔(或系统参数)情况下的时间单元。现有系统中在不同的子载波间隔下,其时间单元的绝对时间不同。鉴于此,下面描述一种通信失败恢复的方法。
本申请实施例的通信失败恢复的方法600可以应用在多载波聚合场景下,主小区可以辅助辅小区进行通信失败恢复,主小区和辅小区需要进行信息交互,在理想的backhaul场景下,虽然其交互时延较短但是交互时延可能并不固定;在非理想的backhaul场景下,其交互时延较长,在辅小区接收对在主小区发送的通信失败请求的响应信息时间比较难预测,终端设备不知何时接收该第二网络设备发送的通信失败响应信息,若终端设备接收通信失败响应信息起始时间过早,有可能会造成终端设备的功耗过大,或无法在有限时间(时间窗)内接收到通信失败响应信息而再次发起通信失败恢复请求,无法快速恢复链路甚至无法恢复链路,本申请实施例中的方法600主要用于解决终端设备无法成功接收通信失败恢复响应信息的问题。
图6示出了本申请实施例的通信失败恢复的方法600的示意性流程图,如图6所示,该方法600包括:
S610,该终端设备在第一上行资源,向该网络设备发送第一指示信息,该网络设备在该第一上行资源上,接收该终端设备发送的该第一指示信息,该第一指示信息用于指示该第一下行资源上的通信失败;
其中,该第一上行资源属于第一小区,该第一下行资源和/或第二下行资源属于第二小区,该第一小区和该第二小区为不同的小区或者相同的小区。
可选地,该终端设备在第一上行资源上向第一网络设备发送该第一指示信息,该通信失败为该终端设备和第二网络设备在该第二小区的通信失败。
可选地,该第一上行资源可以包括时域资源、频域资源、空间资源和波束资源中的一种或者多种。
应理解,该第一上行资源属于该第一小区,该第一小区可以为该第一网络设备下的小区。
可选地,该第一指示信息可以通过一个或多个第一上行资源上发送。例如:第一个第一上行资源用于通知链路失败事件,第二个第一上行资源用于通知第二小区的小区标识和/或新识别的参考信号信息(该参考信号信息可以为参考信号索引,该信息用于恢复第二小区的下行链路)。再例如:第一个第一上行资源用于通知链路失败事件第二小区的小区标识,第二个第一上行资源用于通知新识别的参考信号信息(该参考信号信息可以为参考信号索引,该信息用于恢复第二小区的下行链路)。
可选地,在该终端设备向该第一网络设备发送第一指示信息之前,该方法还包括:
S601,该终端设备确定在该第一下行资源上通信失败。
可选地,该终端设备确定该终端设备和第二网络设备之间的第二小区通信失败,该第一下行资源属于该第二小区。
应理解,该第一指示信息可以对应于图5中的BFRQ信息,该BFRQ信息用于请求恢复该终端设备与该第二网络设备之间的链路失败。
具体地,该BFRQ信息可以用于恢复该终端设备与该第二网络设备之间在该第二小区的链路。应理解,所述BFRQ也可以是一条用于恢复该终端设备与该第二网络设备之间在该第二小区的链路的其它信息。所述BFRQ还可以是一个指示信息,该信息用于链路失败恢复。
可选地,该第一网络设备和该第二网络设备为相同的网络设备。
应理解,该第一下行资源上的通信失败可以理解为用于该第二网络设备的波束失败检测的参考信号的信道质量小于或者等于预设门限,或者满足其它条件。
具体地,该第一下行资源上的通信失败为用于该第二网络设备在该第二小区的波束失败检测的参考信号的信道质量小于或者等于预设门限,或者满足其他条件。
还应理解,该第一下行资源可以为该第二网络设备为该终端设备配置的下行资源,还可以为该第一网络设备为该终端设备配置的下行资源。
具体地,该第一下行资源可以为该第二网络设备在该第二小区为该终端设备配置的下行资源,还可以为该第一网络设备在该第二小区为该终端设备配置的下行资源。
可选地,该第一网络设备可以为该终端设备的主网络设备,该第二网络设备可以为该终端设备的多个辅网络设备中的一个。
一个实施例中,该第一网络设备可以是主基站,该第二网络设备可以是辅基站;或者该第一网络设备可以是辅基站,该第二网络设备可以是主基站。
本申请实施例中,该第一网络设备可以为主小区/主服务小区(primary cell/primary serving cell,Pcell)所在的基站,辅助主小区(primary secondary cell,PScell)所在的基站,特殊小区(special cell,SPcell)所在的基站,或者可以是传输接收节点(transmission and reception point,TRP),辅小区/辅服务小区(secondary cell/secondary serving cell,Scell)所在的基站,该第二网络设备可以为Scell所在的基站,或者可以是TRP。或者,该第一网络设备可以为TRP,Scell所在的基站,该第二网络设备可以为Pcell,PScell,SPcell,TRP,Scell所在的基站。
本申请实施例中,该第一小区可以为Pcell,PScell,SPcell或者Scell,该第二小区可以为Scell;或者, 该第一小区可以为Scell,该第二小区可以为Pcell,PScell,SPcell或者Scell。
其中,有关Pcell,PScell,Scell和SPcell的解释如下:
Pcell:CA场景中终端设备驻留的小区。一般情况下只有Pcell才有上行资源,如PUCCH信道。
PScell:主网络设备通过RRC连接信令配置给终端设备的在辅网络设备上的一个特殊辅小区。
Scell:通过RRC连接信令配置给终端设备的小区,工作在辅载波(SCC)上,可以为终端设备提供更多的无线资源。SCell可以只有下行,也可以上下行同时存在。
SPcell:对于DC场景,SPCell指主小区组(master cell group,MSG)的Pcell或者辅小区组(secondary cell group,SCG)的PScell;否则,如CA场景,SPcell指Pcell。
应理解,本申请实施例中的技术方案可以适用于主小区(Pcell)是高频或者低频,辅小区(Scell)是高频或者低频的情况,例如,当Pcell是低频,Scell是高频,此时由于Scell没有配置上行资源,Pcell是低频也没配置用于链路失败检测的PRACH资源或者PUCCH资源,因此可以使用Pcell的PUCCH/PUSCH for CSI reporting资源辅助Scell恢复链路。通常低频和高频是相对而言的,也可以以某一特定频率为分界,例如6GHz。
一个实施例中,本申请实施例的技术方案可以应用于载波聚合(carrier aggregation,CA)场景下的一个小区辅助另一个小区或者多个小区恢复链路。或者是DC场景下,一个小区组内的一个小区辅助另一个小区或者多个小区恢复链路。
本申请实施例中,“一个小区”可以和“另一个小区”属于相同的小区组,或者,属于不同的小区组,不同小区组主要描述DC场景下,小区组1的一个小区可以辅助小区组2的另一个小区恢复链路。
可选地,MCG中的小区辅助SCG中的小区恢复链路。
可选地,SCG中的小区辅助MCG中的小区恢复链路。
还应理解,本申请中,“小区”可以理解为“服务小区”、“载波”。
可选地,小区包括下行载波、上行(uplink,UL)载波、上行补充(supplementary uplink,SUL)载波中的至少一个。具体地,小区可以包括下行载波、上行载波;或者小区可以包括下行载波、上行补充载波;或者小区包括下行载波、上行载波、上行补充载波。
可选地,上行补充载波的载频低于上行载波,用以提高上行覆盖。
可选地,一般情况下,FDD系统中,上行载波与下行载波的载频不同;TDD系统中,上行载波与下行载波的载频相同。
还应理解,本申请中,上行资源在上行载波上,上行资源包括该第一上行资源;下行资源在下行载波上,下行资源包括该第一下行资源、和该第二下行资源、第三下行资源。
还应理解,本申请中,上行载波可以是正常的上行载波,还可以是补充上行(supplementary uplink,SUL)载波。
在一种可选地方式中,在本申请实施例中,若第一小区包括多个上行载波,如第一小区的第一上行载波,第一小区的第二上行载波,终端设备可以在第一小区的多个上行子载波中子载波间隔最小的上行载波上发送第一指示信息。如第一小区的第一上行载波的子载波间隔小于第一小区的第二上行载波的子载波间隔,那么终端设备在第一小区的第一上行载波上发送第一指示信息和/或第二指示信息。若第一小区包括多个上行载波,如第一小区的第一上行载波,第一小区的第二上行载波,终端设备可以在第一小区的多个上行子载波中子载波间隔最小的上行载波上发送第一指示信息。如第一小区的第一上行载波的子载波间隔大于第一小区的第二上行载波的子载波间隔,那么终端设备在第一小区的第二上行载波上发送第一指示信息。第一上行资源可以为在第一小区的第一上行载波上的资源,第一上行资源可以为在第一小区的第二上 行载波的资源,第一小区的第一上行载波或第二小区的第二上行载波可以是子载波间隔最小的载波,这样,终端设备就可以在子载波间隔最小的载波上发送第一指示信息,从而可以提高发送第一指示信息成功的概率,这样可以提高链路失败恢复成功的概率。更进一步地,终端设备可以在载波集合中将子载波间隔最小的载波确定为发送第一指示信息的上行载波,载波集合包括多个载波。在一种可能的实现中,载波集合可以是网络设备配置给终端设备的上行载波组成的集合;在另一种可能的实现中,载波集合可以是网络设备配置给终端设备的主小区和/或辅助主小区的上行载波组成的集合。
需要说明的是,上行载波可以替换为上行信道和/或上行信号。其中,可选地,上行信道包括以下信道中的一种或多种:PUSCH,PUCCH,PRACH;可选地,上行信号包括以下信号中的一种或多种:SRS,CSI-RS,DMRS。
一个实施例中,空间相关参数不同主要描述在多点协作传输(coordinated multipoint transmission/reception,CoMP)场景下,一个TRP辅助另一个TRP恢复链路。或者在单站的非互易性场景下,上行资源可用,下行资源不可用,通过上行链路辅助恢复下行链路。本申请实施例中可以通过空间相关参数体现单站或者多站场景,下行资源的空间相关参数可以对应的是TCI或者是QCL信息(其中包括一个或者多个参考信号),上行资源的空间相关参数可以对应的是spatial relation(其中包括一个或者多个参考信号)。空间相关参数等价于空间滤波器(spatial dimain transmission/receive filter)。可选地,空间滤波器一般包括空间发送滤波器,和/或空间接收滤波器。该空间滤波器还可以称之为空域发送滤波器,空域接收滤波器,空间传输滤波器,空域传输滤波器等。其中CoMP包括非相干联合发送(non coherent joint transmission,NCJT)、相干联合发送(coherent joint transmission,CJT)、联合发送(joint transmission,JT)等。
本申请实施例中,不同的空间相关参数是指终端设备在上行资源上发送信息所使用的空间发送滤波器与在下行资源上接收信息所使用的空间接收滤波器不同。
本申请实施例的技术方案可以适用于第一小区和第二小区属于同一网络设备的情况下,也可以适用于第一小区和第二小区属于不同的网络设备的情况下。
可选地,该第一网络设备和该第二网络设备为不同的网络设备。
具体而言,本申请实施例的方法600可以应用于双链接或者多点协作传输场景下,终端设备可以和一个主网络设备和多个辅网络设备相连,当多个辅网络设备中的某一个辅网络设备与该终端设备发生通信失败后,该终端设备可以向主网络设备发送该第一指示信息。
例如,当该终端设备和某一个辅网络设备之间在第二小区发生通信失败后,该终端设备可以使用属于主网络设备在第一小区的上行资源发送该第一指示信息。
可选地,该第一网络设备和该第二网络设备为相同的网络设备。
具体而言,本申请实施例的方法600还可以应用于载波聚合场景下,该第一小区和该第二小区可以为不同的小区,例如,当终端设备和第一网络设备之间在第二小区发生通信失败后,该终端设备可以使用属于该第一网络设备在第一小区的上行资源发送该第一指示信息。
具体而言,本申请实施例的方法600也可以应用于单载波场景下,该第一小区和该第二小区可以为相同的小区,当该终端设备和网络设备之间在第一小区发生通信失败后,该终端设备可以使用属于该网络设备在该第一小区的上行资源发送该第一指示信息。
可选地,该第一下行资源和或第二下行资源为物理下行控制信道PDCCH资源。
可选地,该PDCCH由小区无线网络临时标识(cell radio network temporary identifier,C-RNTI)加扰。
可选地,该第一上行资源为物理上行控制信道PUCCH资源或者物理上行共享信道PUSCH资源。
应理解,该第一下行资源上的通信失败也可以理解为该终端设备与该第二网络设备之间的链路失败或者链路故障。
还应理解,该第一下行资源上的通信失败还可以理解为该终端设备与该第二网络设备在该第二小区的链路失败或者链路故障。
S620,该终端设备在第q个时间单元或第q个时间单元开始的时间窗内,或,在第q个时间单元后的第v个用于发送下行控制信道的时频资源位置开始的时间窗内,检测通信失败响应信息;
其中,所述v为大于或者等于0的数,所述q为大于或者等于0的数,所述第一上行资源属于第一小区,所述第一下行资源和/或第二下行资源属于第二小区,所述第一小区和所述第二小区为不同的小区或者相同的小区;
所述第q个时间单元为根据发送或发送完所述第一指示信息的时间单元,和/或,所述第一小区的系统参数,和/或,所述第二小区的系统参数确定的。
该通信失败响应信息可以为承载在第二下行资源上的对所述第一下行资源上的通信失败的响应。
应理解,本申请实施例中,该终端设备检测通信失败响应信息还可以理解为该终端设备接收该通信失败响应信息。
还应理解,本申请实施例中,该第一小区可以为Pcell,PScell,SPcell或者Scell,该第二小区可以为Scell;或者,该第一小区可以为Scell,该第二小区可以为Pcell,PScell,SPcell或者Scell。
可选地,该时频资源位置可以为该第二小区的用于发送下行控制信道的时频资源位置。
可选地,该终端设备接收第二网络设备发送的该通信失败响应信息。
可选地,当该第一小区属于该第一网络设备,该第二小区都属于第二网络设备,该终端设备接收该第二网络设备在该第二小区发送的该通信失败响应信息。
可选地,该第一网络设备和该第二网络设备为相同的网络设备,或者,该第一网络设备和该第二网络设备为不同的网络设备。
可选地,该第一下行资源和该第二下行资源、第三下行资源都属于该第二小区。
应理解,该第一指示信息还可以为链路失败恢复请求(beam failure recovery request,BFRQ)信息,该BFRQ信息用于请求恢复该终端设备与该第二网络设备之间的链路失败。
还应理解,该通信失败响应信息可以为链路失败恢复响应(beam failure recovery response,BFRR)信息,该BFRR信息为该第二网络设备发送的对该BFRQ信息的响应。
还应理解,本申请实施例中的时间单元可以是LTE或者5G NR系统中定义的一个或多个无线帧,一个或多个子帧,一个或多个时隙,一个或多个微时隙(mini slot),一个或多个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,也可以是多个帧或子帧构成的时间窗口,例如系统信息(system information,SI)窗口。
可选地,该终端设备接收该第二小区上的该通信失败响应信息。
可选地,该终端设备在第一时频资源上接收该通信失败响应信息。
可选地,该终端设备发送所述第一指示信息的时间单元为第p个时间单元,或者,该终端设备发送完所述第一指示信息的时间单元为第p个时间单元。
该第p个时间单元可以为根据所述第一小区的系统参数,和/或,所述第二小区的系统参数确定的;
可选地,该第p个时间单元可以为根据该第一小区的系统参数和第二小区的系统参数的最大值或者最小值确定的。
其中,所述p为大于或者等于0的数。
在一种可能的实现方式中,所述第一小区的系统参数为第一小区的上行载波的系统参数,和或,所述第二小区的系统参数为第二小区的下行载波的系统参数。
可选地,更进一步地,所述第一小区的上行载波的系统参数为第一上行资源的系统参数、第一小区的第二上行资源、第一小区的所有上行资源的中系统参数最小的上行资源的系统参数中的一种;
可选地,所述第二小区的下行载波的系统参数为第一下行资源的系统参数、第二下行资源的系统参数、第二小区的第三下行资源的系统参数、第二小区的所有下行资源的中系统参数最小的下行资源的系统参数中的一种。
具体地,可选地,所述第p个时间单元为根据所述第一小区的上行载波的系统参数确定的第p个时间单元;或者
所述第p个时间单元为根据所述第一上行资源的系统参数确定的第p个时间单元;或者
所述第p时间单元为根据所述第一小区的第二上行资源的系统参数确定的第p个时间单元;或者
所述第p时间单元为根据所述第一小区的所有上行资源的中系统参数最小的上行资源的系统参数确定的第p个时间单元;或者
所述p个时间单元为根据所述第二小区的下行载波的系统参数确定的第p个时间单元;或者
所述第p个时间单元为根据所述第一下行资源的系统参数确定的第p个时间单元;或者,所述所述第p个时间单元为根据所述第二下行资源的系统参数确定的第p个时间单元;或者
所述第p时间单元为根据所述第二小区的第三下行资源的系统参数确定的第p个时间单元;或者
所述第p时间单元为根据所述第二小区的所有下行资源的中系统参数最小的下行资源的系统参数确定的第p个时间单元。
可选地,所述第q个时间单元为根据所述第一小区的上行载波的系统参数与第二小区的下行载波的系统参数确定的第q个时间单元;或者
所述第q个时间单元为根据所述第一上行资源的系统参数与第一下行资源的系统参数确定的第q个时间单元;或者
所述第q个时间单元为根据所述第一上行资源的系统参数与第二下行资源的系统参数确定的第q个时间单元;或者
所述第q个时间单元根据所述第一小区的第二上行资源的系统参数和第二小区的第三下行资源的系统参数确定的第q个时间单元;或者
所述第q个时间单元为根据所述第一小区的上行载波的系统参数、所述第二小区的下行载波的系统参数和所述p确定的第q个时间单元;或者
所述第q个时间单元为根据所述第一上行资源的系统参数、第一下行资源的系统参数和所述p确定的第q个时间单元;或者
所述第q个时间单元为根据所述第一上行资源的系统参数、第二下行资源的系统参数和所述p确定的第q个时间单元;或者
所述第q个时间单元为根据所述第一小区的第二上行资源的系统参数、第二小区的第三下行资源的系统参数和所述p确定的第q个时间单元。
可选地,该终端设备接收通信失败响应信息,包括:该终端设备在指定的下行资源上,接收该第二网络设备发送的通信失败响应信息。
可选地,该终端设备接收通信失败响应信息,包括:该终端设备在指定的下行资源上,接收该第二网络设备在该第二小区上的通信失败响应信息。
应理解,该第一网络设备可以和该第二网络设备为相同的网络设备,该第一小区和该第二小区所在的网络设备均为该第一网络设备;或者,该第一网络设备和该第二网络设备为不同的网络设备,该第一小区所在的网络设备为该第一网络设备,该第二小区所在的网络设备为该第二网络设备。
可选地,该终端设备在第一上行资源上,向该第一网络设备发送该第一指示信息。
可选地,该第一下行资源为物理下行控制信道PDCCH资源。
可选地,该第二下行资源为物理下行控制信道PDCCH资源。
可选地,该第一上行资源为物理随机接入信道PRACH资源。
可选地,该第一上行资源为物理上行控制信道PUCCH资源或者物理上行共享信道PUSCH资源。
可选地,该系统参数(numerology)包括子载波间隔(subcarrier spacing,SCS)和/或循环前缀(cyclic prefix,CP)。
应理解,本申请实施例中,可选地,一个时间单元的长度是由子载波间隔和循环前缀共同决定的。
可选地,该第一小区和/或该第二小区的子载波间隔可以为15KHz,30KHz,60KHz,120KHz,240KHz。
可选地,该第一小区的子载波间隔为上行载波的子载波间隔或者下行载波的子载波间隔。
可选地,该第二小区的子载波间隔为下行载波的子载波间隔。
可选地,该方法600还包括:
该终端设备根据下述公式中的一个确定第q个时间单元。
q=p+K       (1)
Figure PCTCN2020075317-appb-000064
Figure PCTCN2020075317-appb-000065
Figure PCTCN2020075317-appb-000066
Figure PCTCN2020075317-appb-000067
Figure PCTCN2020075317-appb-000068
Figure PCTCN2020075317-appb-000069
Figure PCTCN2020075317-appb-000070
Figure PCTCN2020075317-appb-000071
Figure PCTCN2020075317-appb-000072
Figure PCTCN2020075317-appb-000073
Figure PCTCN2020075317-appb-000074
可选地,该终端设备根据该第一小区的子载波间隔,确定该K。
例如,该第一小区的子载波间隔为60KHz,那么其中K个时间单元的长度可以为该第一小区的下行的4个时隙(slot)。
又例如,该第一小区的子载波间隔为120KHz,那么其中K个时间单元的长度还可以为该第一小区的下行的8个时隙(slot)。
可选地,该终端设备根据该第二小区的子载波间隔,确定该K。
例如,该第二小区的子载波间隔为60KHz,那么其中K个时间单元的长度可以为该第二小区的下行的4个时隙(slot)。
又例如,该第二小区的子载波间隔为120KHz,那么其中K个时间单元的长度还可以为该第二小区的下行的8个时隙(slot)。
可选地,该终端设备根据该第一小区和第二小区的子载波间隔,确定该K。
可选地,终端设备根据第一小区和第二小区的子载波间隔的最小值,确定该K。例如,第一小区的子载波间隔为60KHz,第二小区的子载波间隔为120KHz,则终端设备确定的K为子载波间隔为60KHz时的时间单元。可选地,终端设备根据第一小区和第二小区的子载波间隔的最大值,确定该K。例如,第一小区的子载波间隔为60KHz,第二小区的子载波间隔为120KHz,则终端设备确定的K为子载波间隔为120KHz时的时间单元。
可选地,终端设备可以根据第一小区的上行载波的子载波间隔与第二小区的下行子载波间隔的最小值确定K;例如第一小区的上行子载波间隔为60KHz,第二小区的下行子载波间隔为120KHz,则终端设备确定的n为子载波间隔为60KHz时的K个时间单元。可选地,终端设备可以根据第一小区的上行载波的子载波间隔与第二小区的下行子载波间隔的最大值确定K;例如第一小区的上行子载波间隔为60KHz,第二小区的下行子载波间隔为120KHz,则终端设备确定的K为子载波间隔为120KHz时的K个时间单元。
可选地,终端设备可以根据第一小区的下行载波的子载波间隔与第二小区的下行子载波间隔的最小值确定K;例如第一小区的下行子载波间隔为60KHz,第二小区的下行子载波间隔为120KHz,则终端设备确定的K为子载波间隔为60KHz时的K个时间单元。可选地,终端设备可以根据第一小区的下行载波的子载波间隔与第二小区的下行子载波间隔的最大值确定n或m;例如第一小区的下行子载波间隔为60KHz,第二小区的下行子载波间隔为120KHz,则终端设备确定的K为子载波间隔为120KHz时的K个时间单元。
可选地,终端设备可以根据第一上行资源的子载波间隔与第一下行资源或第二下行资源的子载波间隔的最小值确定K;例如第一上行资源的子载波间隔为60KHz,第一下行资源或第二下行资源的子载波间隔为120KHz,则终端设备确定的K为子载波间隔为60KHz时的K个时间单元。可选地,终端设备可以根据第一上行资源的子载波间隔与第一下行资源或第二下行资源的子载波间隔的最大值确定K;例如第一上行资源的子载波间隔为60KHz,第一下行资源或第二下行资源的子载波间隔为120KHz,则终端设备确定的K为子载波间隔为120KHz时的K个时间单元。这里需要说明的是,第一上行资源可以为在第一小区的上行载波上的资源,第一下行资源或第二下行资源可以为在第二小区的下行载波上的资源。
可选地,终端设备可以根据第一上行资源的子载波间隔与第一下行资源或第二下行资源的子载波间隔的最小值确定K;例如第一上行资源的子载波间隔为60KHz,第一下行资源或第二下行资源的子载波间隔为120KHz,则终端设备确定的K为子载波间隔为60KHz时的K个时间单元。可选地,终端设备可以根据第一上行资源的子载波间隔与第一下行资源或第二下行资源的子载波间隔的最大值确定K;例如第一上行资源的子载波间隔为60KHz,第一下行资源或第二下行资源的子载波间隔为120KHz,则终端设备确定的K为子载波间隔为120KHz时的K个时间单元。这里需要说明的是,第一上行资源可以为在第一小区的上行载波上的资源,第一下行资源或第二下行资源可以为在第二小区的下行载波上的资源。应理解,上述的n为正整数,可选地,K为预定义的,或基站配置的,或终端能力上报的。
需要说明的是,在本申请实施例中,确定的K可以是与子载波间隔有对应关系的值。
在一个实施例中,该终端设备根据该第一小区的通信失败恢复响应的检测时间、该第一小区和第二小区的子载波间隔偏移量,确定该K。或该终端设备根据该第一小区的通信失败恢复响应的检测时间、该第一小区的子载波间隔和第二小区的子载波间隔,确定该K。
可选地,该第一网络设备在第s个时间单元或第s个时间单元开始的时间窗内,或,在第s个时间单元后的第z个用于发送下行控制信道的时频资源位置开始的时间窗内,发送通信失败响应信息,所述通信失败响应信息为承载在第二下行资源上的对所述第一下行资源上的通信失败的响应。其方法类似于终端设备,此处不再赘述。
可选地,本申请实施例中,若该终端设备在该时间窗口内没有收到该通信失败响应信息,则会重新向该第一网络设备发送该第一指示信息,即重新发起通信失败恢复请求,重新发起通信失败恢复请求时可以和上一次发送通信失败恢复请求使用不同的波束,或者,重新发起通信失败恢复请求时和上一次发送通信失败恢复请求使用相同的波束,终端设备可以相应地提高发射功率。
可选地,若该终端设备在该时间窗口内收到该第一指示信息,则该终端设备还会继续检测(或者,接收)第一时频资源或第一时频资源上承载的PDCCH。其中,可选地,终端设备使用信道质量大于或者等于第一门限值的参考信号的波束检测或接收PDCCH或第一指示信息关联的下行参考信号的波束检测或接收PDCCH。也即终端设备采用信道质量大于或等于第一门限值的参考信号或第一指示信息关联的下行参考信号的空间相关参数检测或接收PDCCH。
本申请实施例的通信失败恢复的方法,通过网络设备向终端设备发送接收通信失败响应信息的起始时刻的信息,有助于终端设备确保终端设备检测到该通信失败响应信息。
还应理解,本申请实施例中,该第一网络设备在收到该终端设备发送的该第一指示信息后,除了可以向该第二网络设备发送该第一参考信号的信息,还可以向该第二网络设备发送其他信息,例如,该第一网络设备可以向该第二网络设备转发该第一指示信息。
可选地,该第一网络设备在专用于发送通信失败响应信息的控制资源集合和/或专用于发送通信失败响应信息的搜索空间集合上向该终端设备发送该DCI;或者该第一网络设备在专用于发送通信失败响应信息的控制资源集合和/或专用于发送通信失败响应信息的搜索空间集合上承载的PDCCH所调度的PDSCH资源上发送MAC CE、RRC。可选地,该控制资源集合和/或搜索空间集合和/或PDSCH是为第一网络设备配置的第二小区的资源。
本申请实施例中,由于知道主小区和/或辅小区的子载波间隔,或网络设备内部/之间的交互或处理时延,和或终端上报的终端能力信息(如小区切换时延等),则该第一网络设备可以向该终端发送指示信息,以便于告知终端设备接收通信失败响应信息的起始时刻。
本申请实施例的链路失败恢复的方法,通过向终端设备发送指示信息,有助于保证终端设备更准确和 高效得接收链路失败恢复响应信息,快速恢复链路,保证系统的稳定性,同时,还有助于节省终端设备的功耗。
表5:正常循环前缀的每个时隙所含的OFDM符号数目
Figure PCTCN2020075317-appb-000075
每帧所含的时隙数目
Figure PCTCN2020075317-appb-000076
每子帧所含的时隙数目
Figure PCTCN2020075317-appb-000077
表5
Figure PCTCN2020075317-appb-000078
表6:正扩展循环前缀的每个时隙所含的OFDM符号数目
Figure PCTCN2020075317-appb-000079
每帧所含的时隙数目
Figure PCTCN2020075317-appb-000080
每子帧所含的时隙数目
Figure PCTCN2020075317-appb-000081
表6
Figure PCTCN2020075317-appb-000082
其中,μ是系统参数的标识,μ的取值与子载波间隔有关,如下表7所示。
表7
Figure PCTCN2020075317-appb-000083
上行时隙和下行时隙的单位长度可以是不同的。以PDCCH为例,由于上行传输和下行传输的子载波间隔(Subcarrier spacing,SCS)可能不同,例如上行传输使用15kHz的SCS,一个上行时隙的长度为1毫秒,下行传输使用120KHz的SCS,一个下行时隙的长度为0.125毫秒。结合表3可知,上行传输使用15kHz的SCS,即Δf为15kHz,其对应的系统参数μ为0,下行传输使用120kHz的SCS,即Δf为120kHz,其对应的系统参数μ为3,因此上下行传输对应的系统参数不同,上行时隙和下行时隙的单位长度也不同,导致网络设备和终端发送或发送完链路失败恢复请求信息的时刻(第p时间单元),以及检测链路失败恢复响应信息(第q时间单元)的时刻会有不同的理解。
下面对方法600举例说明:
在一种可能的实现方式中,第p个时间单元为发送完第一指示信息的时刻在第二小区的下行载波的子载波间隔确定的时间单元中的第p个时间单元。此时,q=p+k,也即,第q个时间单元为根据第二小区的下行载波的子载波间隔确定的时间单元中的第p+k个时间单元。该k可以为4。
在另一种可能的实现方式中,第p个时间单元为发送第一指示信息时所在的时间单元,该时间单元是第一小区的上行载波的子载波间隔确定的时间单元中的第p个时间单元。此时,q=p+k,也即,第q个时间 单元为根据第一小区的上行载波的子载波间隔确定的时间单元中的第p+k个时间单元。该k可以为4。
在另一种可能的实现方式中,第p个时间单元为发送第一指示信息时所在的时间单元,该时间单元是第一小区的上行载波的子载波间隔确定的时间单元中的第p个时间单元。此时,第q个时间单元为根据第二小区的下行载波的子载波间隔确定的时间单元中的第q个时间单元。q可以通过以下公式中的一个确定:
Figure PCTCN2020075317-appb-000084
Figure PCTCN2020075317-appb-000085
Figure PCTCN2020075317-appb-000086
Figure PCTCN2020075317-appb-000087
Figure PCTCN2020075317-appb-000088
Figure PCTCN2020075317-appb-000089
该k可以为4。
所述μ1是第一小区的上行载波的系统参数,μ2是第二小区的下行载波的系统参数;或者,所述μ1是第二小区的下行载波的系统参数,μ2是第一小区的上行载波的系统参数。
在另一种可能的实现方式中,第p个时间单元为发送第一指示信息时所在的时间单元,该时间单元是第一小区的上行载波的子载波间隔确定的时间单元中的第p个时间单元。此时,第q个时间单元为根据第一小区的上行载波的子载波间隔确定的时间单元中的第q个时间单元。q可以通过以下公式中的一个确定:
q=p+K        (1)
Figure PCTCN2020075317-appb-000090
Figure PCTCN2020075317-appb-000091
Figure PCTCN2020075317-appb-000092
Figure PCTCN2020075317-appb-000093
Figure PCTCN2020075317-appb-000094
该k可以为4。
所述μ1是第一小区的上行载波的系统参数,μ2是第二小区的下行载波的系统参数;或者,所述μ1是第二小区的下行载波的系统参数,μ2是第一小区的上行载波的系统参数。
网络侧的s,t的确定可以有相同的方法,此处不再赘述。
应理解,上述为终端设备确定检测通信失败响应信息的时间,具体可以根据上面的方式确定p和q。网络设备确定发送通信失败响应信息的时间与终端设备类似,也可以根据上面的方式确定接收第一指示信息的时间以及确定发送失败响应信息的时间,在此不详细举例说明。
以上结合图5至图6,详细得描述了本申请实施例提供的通信失败恢复的方法,下面结合图9至图11,详细描述本申请实施例提供的通信失败恢复的装置、终端设备和网络设备。
图9示出了本申请实施例提供的通信失败恢复的装置900的示意性框图,该装置900可以对应上述方法600中描述的终端设备,也可以对应终端设备的芯片或者组件,并且,该装置900中各个模块或者单元分别可以用于执行上述方法600中终端设备所执行的各动作或处理过程,如图8所示,该通信失败恢复的装置900可以包括处理单元910和收发单元920。
具体地,处理单元910,用于确定该装置在第一下行资源上的通信失败;
收发单元920,用于在第一上行资源上,向网络设备发送第一指示信息,该第一指示信息用于指示该装置在第一下行资源上的通信失败;
该收发单元920,还用于在第q个时间单元或第q个时间单元开始的时间窗内,或,在第q个时间单元后的第v个用于发送下行控制信道的时频资源位置开始的时间窗内,检测通信失败响应信息,所述通信失败响应信息为承载在第二下行资源上的对所述第一下行资源上的通信失败的响应。
其中,所述v为大于或者等于0的数,所述q为大于或者等于0的数,所述第一上行资源属于第一小区,所述第一下行资源和/或第二下行资源属于第二小区,所述第一小区和所述第二小区为不同的小区或者相同的小区;
所述第q个时间单元为根据发送或发送完所述第一指示信息的时间单元,和/或,所述第一小区的系统参数,和/或,所述第二小区的系统参数确定的。可选地,该处理单元810,还用于根据发送或发送完所述第一指示信息的时间单元,和/或,所述第一小区的系统参数,和/或,所述第二小区的系统参数确定第q个时间单元。
其中,该发送或发送完所述第一指示信息的时间单元为第p个时间单元。
应理解,装置900中各单元执行上述相应步骤的具体过程请参照前文中结合图6的方法实施例的描述,为了简洁,这里不加赘述。
图10示出了本申请实施例提供的通信失败恢复的装置1000的示意性框图,该装置1000可以对应上述方法600中描述的网络设备,也可以对应网络设备的芯片或者组件,并且,该装置1000中各个模块或者单元分别可以用于执行上述方法600中网络设备所执行的各动作或处理过程,如图9所示,该通信失败恢复的装置1000可以包括收发单元1010和处理单元1020。
具体地,收发单元1010,用于在第一上行资源上,接收终端设备发送的第一指示信息,该第一指示信息用于指示该终端设备在第一下行资源上的通信失败;
处理单元1020,用于确定该终端设备在第一下行资源上的通信失败;
该收发单元1010,还用于在第一上行资源上,接收第一指示信息,所述第一指示信息用于指示第一下行资源上的通信失败;
在第s个时间单元或第s个时间单元开始的时间窗内,或,在第s个时间单元后的第z个用于发送下行控制信道的时频资源位置开始的时间窗内,发送通信失败响应信息,所述通信失败响应信息为承载在第二下行资源上的对所述第一下行资源上的通信失败的响应;
其中,所述z为大于或者等于0的数,所述s为大于或者等于0的数,所述第一上行资源属于第一小 区,所述第一下行资源和/或第二下行资源属于第二小区,所述第一小区和所述第二小区为不同的小区或者相同的小区;
所述第s个时间单元为根据接收或接收完所述第一指示信息,和/或,所述第一小区的系统参数,和/或,所述第二小区的系统参数确定的。可选地,该处理单元1020,还用于根据根据接收或接收完所述第一指示信息,和/或,所述第一小区的系统参数,和/或,所述第二小区的系统参数确定第s个时间单元。
可选地,所述处理单元920,具体用于:根据下述公式确定第s个时间单元:
s=t+L       (13)
Figure PCTCN2020075317-appb-000095
Figure PCTCN2020075317-appb-000096
Figure PCTCN2020075317-appb-000097
Figure PCTCN2020075317-appb-000098
Figure PCTCN2020075317-appb-000099
Figure PCTCN2020075317-appb-000100
Figure PCTCN2020075317-appb-000101
Figure PCTCN2020075317-appb-000102
Figure PCTCN2020075317-appb-000103
Figure PCTCN2020075317-appb-000104
Figure PCTCN2020075317-appb-000105
应理解,装置1000中各单元执行上述相应步骤的具体过程请参照前文中结合图6的方法实施例的描述,为了简洁,这里不加赘述。
在硬件实现上,上述处理单元可以为处理器或者处理电路等;收发单元可以是收发器(或者,收发电路)等,收发单元可以构成通信接口。
在具体实现过程中,处理器可用于进行,例如但不限于,基带相关处理,收发器可用于进行,例如但不限于,射频收发。上述器件可以分别设置在彼此独立的芯片上,也可以至少部分的或者全部的设置在同 一块芯片上。例如,处理器可以进一步划分为模拟基带处理器和数字基带处理器,其中模拟基带处理器可以与收发器集成在同一块芯片上,数字基带处理器可以设置在独立的芯片上。随着集成电路技术的不断发展,可以在同一块芯片上集成的器件越来越多,例如,数字基带处理器可以与多种应用处理器(例如但不限于图形处理器,多媒体处理器等)集成在同一块芯片之上。这样的芯片可以称为系统芯片(system on chip,SOC)。将各个器件独立设置在不同的芯片上,还是整合设置在一个或者多个芯片上,往往取决于产品设计的具体需要。本申请实施例对上述器件的具体实现形式不做限定。
可以理解的是,对于前述实施例中所涉及的终端设备或者网络设备可以通过具有处理器和通信接口的硬件平台执行程序指令来分别实现其在本申请前述实施例中任一设计中涉及的功能,基于此,如图11所示,本申请实施例提供了一种通信失败恢复的装置1100的示意性框图,所述装置1100包括:
至少一个处理器1101,可选包括通信接口1102和存储器1103,该通信接口1102用于支持该装置1100和其他设备进行通信交互,该存储器1003具有程序指令;至少一个处理器1101运行所述程序指令使得本申请前述实施例任一设计中在如下任一设备上操作的功能得以实现:终端设备或者网络设备。一种可选设计中,存储器1103可用以存储实现上述设备功能所必须的程序指令或者程序执行过程中所产生的过程数据。可选的,该装置1100还可以包含内部的互联线路,以实现该至少一个处理器1101,通信接口1102以及存储器1103之间的通信交互。该至少一个处理器1001可以考虑通过专用处理芯片、处理电路、处理器或者通用芯片实现。
可以理解的是,本申请实施例描述的各种设计涉及的方法,流程,操作或者步骤,能够以一一对应的方式,通过计算机软件,电子硬件,或者计算机软件和电子硬件的结合来一一对应实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件,比如,考虑通用性好成本低软硬件解耦等方面,可以采纳执行程序指令的方式来实现,又比如,考虑系统性能和可靠性等方面,可以采纳使用专用电路来实现。普通技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,此处不做限定。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行上述实施例中的方法。本申请中的各个实施例也可以互相结合。
根据本申请实施例提供的方法,本申请还提供一种计算机可读介质,该计算机可读解释存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行上述实施例中的方法。
根据本申请实施例提供的方法,本申请还提供一种系统,其包括前述的终端设备和网络设备。
在本申请实施例中,应注意,本申请实施例上述的方法实施例可以应用于处理器中,或者由处理器实现。处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(Field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
本申请实施例还提供一种处理器可读存储介质包括指令,当所述指令在处理器上运行时,实现上述方法。当处理器执行本发明实施例的方法时,其中的发送动作可以是处理器的输入输出端口输出承载待发送信息的基带信号,接收动作可以是处理器的输入输出端口接收承载待接收信息的基带信号。可以理解的,本发明实施例提供的处理器可读存储介质也可以为计算机可读存储介质。
本发明示例还提供一种装置(例如,集成电路、无线设备、电路模块等)用于实现上述方法。所述装置包括处理器和与所述处理器相连接的存储器,所述存储器用于存储指令,所述处理器用于读取并执行所述存储器中存储的所述指令,使得所述装置执行上述的方法。实现本文描述的装置可以是自立设备或者可以是较大设备的一部分。设备可以是(i)自立的IC;(ii)具有一个或多个IC的集合,其可包括用于存储数据和/或指令的存储器IC;(iii)RFIC,诸如RF接收机或RF发射机/接收机;(iv)ASIC,诸如移动站调制解调器;(v)可嵌入在其他设备内的模块;(vi)接收机、蜂窝电话、无线设备、手持机、或者移动单元;(vii)其他等等。
本发明实施例提供的方法和装置,可以应用于终端设备或接入网设备(或网络设备)(可以统称为无线设备)。该终端设备或接入网设备或无线设备可以包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、以及即时通信软件等应用。并且,在本发明实施例中,本发明实施例并不限定方法的执行主体的具体结构,只要能够通过运行记录有本发明实施例的方法的代码的程序,以根据本发明实施例的传输信号的方法进行通信即可,例如,本发明实施例的无线通信的方法的执行主体可以是终端设备或接入网设备,或者,是终端设备或接入网设备中能够调用程序并执行程序的功能模块。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明实施例的范围。
此外,本发明实施例的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心 进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
应理解,在本发明实施例的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者接入网设备等)执行本发明实施例各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明实施例的具体实施方式,但本发明实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明实施例的保护范围之内。

Claims (52)

  1. 一种信息指示方法,其特征在于,包括:
    接收第一指示信息,所述第一指示信息用于指示A个传输配置指示TCI状态,其中,A为正整数;
    接收第二指示信息,所述第二指示信息用于指示第一码点,所述第一码点为P个码点中的一个;
    根据预设规则及所述第一码点,确定所述第一码点对应的至少一个TCI状态,其中,所述预设规则包括将所述A个TCI状态映射到所述P个码点的规则,所述P个码点中的至少一个码点对应于所述A个TCI状态中的至少两个TCI状态;
    根据所述至少一个TCI状态,接收下行信息和/或发送上行信息。
  2. 根据权利要求1所述的方法,其特征在于,所述A个TCI状态包括K1个第一TCI状态和K2个第二TCI状态,其中,所述K1个第一TCI状态中的至少一个第一TCI状态包括所述A个TCI状态中的一个或多个TCI状态,所述K2个第二TCI状态中的至少一个第二TCI状态包括所述A个TCI状态中一个或多个TCI状态,K1、K2为正整数,且K1+K2≤A。
  3. 根据权利要求2所述的方法,其特征在于,所述预设规则包括第一TCI状态映射规则和第二TCI状态映射规则,其中,所述第一TCI状态映射规则包括:
    将所述K1个第一TCI状态映射到所述P个码点中的L1个码点的规则,所述第二TCI状态映射规则包括将所述K2个第二TCI状态映射到所述P个码点中的L2个码点的规则,L1,L2为正整数,且L1≤P,L2≤P。
  4. 根据权利要求3所述的方法,其特征在于,所述第一TCI状态映射规则包括:
    按第一顺序排列的所述K1个第一TCI状态分别依次映射到按第二顺序排列的L1个码点中的K1个码点,K1≤L1;或者
    按第一顺序排列的所述K1个第一TCI状态映射到按第二顺序排列的L1个码点,其中,K1=w1*L1,所述K1个第一TCI状态中的第i个第一TCI状态映射到所述L1个码点中的第
    Figure PCTCN2020075317-appb-100001
    个码点,i为正整数,w1为正整数,
    Figure PCTCN2020075317-appb-100002
    表示向上取整,K1≥L1;
    其中,所述第一顺序为:TCI状态标识从小到大的顺序,或者TCI状态标识从大到小的顺序,或者按TCI状态标识从小到大的顺序排列的所述K1个第一TCI状态组成的向量经过变换得到的顺序,或者按TCI状态标识从大到小的顺序排列的所述K1个第一TCI状态组成的向量经过变换得到的顺序,或者第一指示信息指示的所述K1个第一TCI状态的先后顺序,或者按第一指示信息指示的所述K1个第一TCI状态的先后顺序排列的所述K1个第一TCI状态组成的向量经过变换得到的顺序,所述第二顺序为:码点值从小到大的顺序,或者,码点值从大到小的顺序。
  5. 根据权利要求3或4所述的方法,其特征在于,所述第二TCI状态映射规则包括:
    按第三顺序排列的所述K2个第二TCI状态分别依次映射到按第四顺序排列的L2个码点中的K2个码点,K2≤L2;或者
    按第三顺序排列的所述K2个第二TCI状态映射到按第四顺序排列的L2个码点,其中,K2=w2*L2,
    所述K2个第二TCI状态中的第j个第二TCI状态映射到所述L2个码点中的第
    Figure PCTCN2020075317-appb-100003
    个码点,j为正整数,w2为正整数,
    Figure PCTCN2020075317-appb-100004
    表示向上取整,K2≥L2;
    其中所述第三顺序为:TCI状态标识从小到大的顺序,或者TCI状态标识从大到小的顺序,或者按TCI状态标识从小到大的顺序排列的所述K2个第二TCI状态组成的向量经过变换得到的顺序,或者按TCI状态标识从大到小的顺序排列的所述K2个第二TCI状态组成的向量经过变换得到的顺序,或者第一指示信息指示的所述K2个第二TCI状态的先后顺序,或者按第一指示信息指示的所述K2个第二TCI状态的先后顺序排列的所述K2个第二TCI状态组成的向量经过变换得到的顺序,所述第四顺序为:码点值从小到大的顺序,或者,码点值从大到小的顺序。
  6. 根据权利要求3-5任一项所述的方法,其特征在于,所述L1个码点是预定义的,或者通过第三指示信息指示的;和/或
    所述L2个码点是预定义的,或者通过第四指示信息指示的。
  7. 根据权利要求6所述的方法,其特征在于,所述第三指示信息包括第一位图,所述第一位图为P比特位图,所述第一位图中L1个值为1的比特位用于指示所述L1个码点;
    和/或,
    所述第四指示信息包括第二位图,所述第二位图为P比特位图,所述第二位图中L2个值为1的比特位用于指示所述L2个码点。
  8. 根据权利要求3-7任一项所述的方法,其特征在于,所述L1个码点中最小码点值为X,所述X为预定义的,或者通过第五指示信息指示的,其中X为整数,0≤X+L1≤P;或者,所述L1个码点中最大码点值为X,所述X为预定义的,或者通过第五指示信息指示的,其中X为整数,X≥L1;
    和/或
    所述L2个码点中最小码点值为Y,所述Y为预定义的,或者通过第六指示信息指示的,其中Y为整数,0≤Y+L2≤P;或者,所述L2个码点中最大码点值为Y,所述Y为预定义的,或者通过第六指示信息指示的,其中Y为整数,Y≥L2。
  9. 根据权利要求3-8任一项所述的方法,其特征在于,
    所述L1个码点的码点值是连续的,或者非连续的;和/或
    所述L2个码点的码点值是连续的,或者非连续的。
  10. 根据权利要求3-9任一项所述的方法,其特征在于,所述L1个码点与所述L2个码点包含至少一个相同的码点。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,所述第一指示信息为一个媒体接入控制控制元素MAC CE,其中,所述K1个第一TCI状态位于所述K2个第二TCI状态之前。
  12. 根据权利要求1-10任一项所述的方法,其特征在于,所述第一指示信息包括第一媒体接入控制控制元素MAC CE和第二MAC CE,所述第一MAC CE用于指示所述K1个第一TCI状态,所述第二MAC CE用于指示所述K2个第二TCI状态。
  13. 一种信息指示方法,其特征在于,包括:
    发送第一指示信息,所述第一指示信息用于指示A个传输配置指示TCI状态,其中,A为正整数;
    根据预设规则及至少一个TCI状态,确定所述至少一个TCI状态对应的第一码点,其中,所述预设规则包括将所述A个TCI状态映射到P个码点的规则,所述P个码点中的至少一个码点对应于所述A个TCI状态中的至少两个TCI状态,所述第一码点为所述P个码点中的一个;
    发送第二指示信息,所述第二指示信息用于指示所述第一码点;
    根据所述至少一个TCI状态,接收下行信息和/或发送上行信息。
  14. 根据权利要求13所述的方法,其特征在于,所述A个TCI状态包括K1个第一TCI状态和K2个第二TCI状态,其中,所述K1个第一TCI状态中的至少一个第一TCI状态包括所述A个TCI状态中的一个或多个TCI状态,所述K2个第二TCI状态中的至少一个第二TCI状态包括所述A个TCI状态中一个或多个TCI状态,K1、K2为正整数,且K1+K2≤A。
  15. 根据权利要求14所述的方法,其特征在于,所述预设规则包括第一TCI状态映射规则和第二TCI状态映射规则,其中,所述第一TCI状态映射规则包括:
    将所述K1个第一TCI状态映射到所述P个码点中的L1个码点的规则,所述第二TCI状态映射规则包括将所述K2个第二TCI状态映射到所述P个码点中的L2个码点的规则,L1,L2为正整数,且L1≤P,L2≤P。
  16. 根据权利要求15所述的方法,其特征在于,所述第一TCI状态映射规则包括:
    按第一顺序排列的所述K1个第一TCI状态分别依次映射到按第二顺序排列的L1个码点中的K1个码点,K1≤L1;或者
    按第一顺序排列的所述K1个第一TCI状态映射到按第二顺序排列的L1个码点,其中,K1=w1*L1,所述K1个第一TCI状态中的第i个第一TCI状态映射到所述L1个码点中的第
    Figure PCTCN2020075317-appb-100005
    个码点,i为正整数,w1为正整数,
    Figure PCTCN2020075317-appb-100006
    表示向上取整,K1≥L1;
    其中,所述第一顺序为:TCI状态标识从小到大的顺序,或者TCI状态标识从大到小的顺序,或者按TCI状态标识从小到大的顺序排列的所述K1个第一TCI状态组成的向量经过变换得到的顺序,或者按TCI状态标识从大到小的顺序排列的所述K1个第一TCI状态组成的向量经过变换得到的顺序,或者第一指示信息指示的所述K1个第一TCI状态的先后顺序,或者按第一指示信息指示的所述K1个第一TCI状态的先后顺序排列的所述K1个第一TCI状态组成的向量经过变换得到的顺序,所述第二顺序为:码点值从小到大的顺序,或者,码点值从大到小的顺序。
  17. 根据权利要求15或16所述的方法,其特征在于,所述第二TCI状态映射规则包括:
    按第三顺序排列的所述K2个第二TCI状态分别依次映射到按第四顺序排列的L2个码点中的K2个码点,K2≤L2;或者
    按第三顺序排列的所述K2个第二TCI状态映射到按第四顺序排列的L2个码点,其中,K2=w2*L2,
    所述K2个第二TCI状态中的第j个第二TCI状态映射到所述L2个码点中的第
    Figure PCTCN2020075317-appb-100007
    个码点,j为正整数,w2为正整数,
    Figure PCTCN2020075317-appb-100008
    表示向上取整,K2≥L2;
    其中所述第三顺序为:TCI状态标识从小到大的顺序,或者TCI状态标识从大到小的顺序,或者按TCI 状态标识从小到大的顺序排列的所述K2个第二TCI状态组成的向量经过变换得到的顺序,或者按TCI状态标识从大到小的顺序排列的所述K2个第二TCI状态组成的向量经过变换得到的顺序,或者第一指示信息指示的所述K2个第二TCI状态的先后顺序,或者按第一指示信息指示的所述K2个第二TCI状态的先后顺序排列的所述K2个第二TCI状态组成的向量经过变换得到的顺序,所述第四顺序为:码点值从小到大的顺序,或者,码点值从大到小的顺序。
  18. 根据权利要求15-17任一项所述的方法,其特征在于,所述L1个码点是预定义的,或者通过第三指示信息指示的;和/或
    所述L2个码点是预定义的,或者通过第四指示信息指示的。
  19. 根据权利要求18所述的方法,其特征在于,所述第三指示信息包括第一位图,所述第一位图为P比特位图,所述第一位图中L1个值为1的比特位用于指示所述L1个码点;
    和/或,
    所述第四指示信息包括第二位图,所述第二位图为P比特位图,所述第二位图中L2个值为1的比特位用于指示所述L2个码点。
  20. 根据权利要求15-19任一项所述的方法,其特征在于,所述L1个码点中最小码点值为X,所述X为预定义的,或者通过第五指示信息指示的,其中X为整数,0≤X+L1≤P;或者,所述L1个码点中最大码点值为X,所述X为预定义的,或者通过第五指示信息指示的,其中X为整数,X≥L1;
    和/或
    所述L2个码点中最小码点值为Y,所述Y为预定义的,或者通过第六指示信息指示的,其中Y为整数,0≤Y+L2≤P;或者,所述L2个码点中最大码点值为Y,所述Y为预定义的,或者通过第六指示信息指示的,其中Y为整数,Y≥L2。
  21. 根据权利要求15-20任一项所述的方法,其特征在于,
    所述L1个码点的码点值是连续的,或者非连续的;和/或
    所述L2个码点的码点值是连续的,或者非连续的。
  22. 根据权利要求15-21任一项所述的方法,其特征在于,所述L1个码点与所述L2个码点包含至少一个相同的码点。
  23. 根据权利要求13-22任一项所述的方法,其特征在于,所述第一指示信息为一个媒体接入控制控制元素MAC CE,其中,所述K1个第一TCI状态位于所述K2个第二TCI状态之前。
  24. 根据权利要求13-22任一项所述的方法,其特征在于,所述第一指示信息包括第一媒体接入控制控制元素MAC CE和第二MAC CE,所述第一MAC CE用于指示所述K1个第一TCI状态,所述第二MAC CE用于指示所述K2个第二TCI状态。
  25. 一种信息指示装置,其特征在于,包括:
    处理器和与所述处理器耦合的收发器;
    所述收发器,用于接收第一指示信息,所述第一指示信息用于指示A个传输配置指示TCI状态,其中,A为正整数;
    所述收发器,还用于接收第二指示信息,所述第二指示信息用于指示第一码点,所述第一码点为P个码点中的一个;
    所述处理器,用于根据预设规则及所述第一码点,确定所述第一码点对应的至少一个TCI状态,其中,所述预设规则包括将所述A个TCI状态映射到所述P个码点的规则,所述P个码点中的至少一个码点对应于所述A个TCI状态中的至少两个TCI状态;
    所述收发器,用于根据所述至少一个TCI状态,接收下行信息和/或发送上行信息。
  26. 根据权利要求25所述的装置,其特征在于,所述A个TCI状态包括K1个第一TCI状态和K2个第二TCI状态,其中,所述K1个第一TCI状态中的至少一个第一TCI状态包括所述A个TCI状态中的一个或多个TCI状态,所述K2个第二TCI状态中的至少一个第二TCI状态包括所述A个TCI状态中一个或多个TCI状态,K1、K2为正整数,且K1+K2≤A。
  27. 根据权利要求26所述的装置,其特征在于,所述预设规则包括第一TCI状态映射规则和第二TCI状态映射规则,其中,所述第一TCI状态映射规则包括:
    将所述K1个第一TCI状态映射到所述P个码点中的L1个码点的规则,所述第二TCI状态映射规则包括将所述K2个第二TCI状态映射到所述P个码点中的L2个码点的规则,L1,L2为正整数,且L1≤P,L2≤P。
  28. 根据权利要求27所述的装置,其特征在于,所述第一TCI状态映射规则包括:
    按第一顺序排列的所述K1个第一TCI状态分别依次映射到按第二顺序排列的L1个码点中的K1个码点,K1≤L1;或者
    按第一顺序排列的所述K1个第一TCI状态映射到按第二顺序排列的L1个码点,其中,K1=w1*L1,所述K1个第一TCI状态中的第i个第一TCI状态映射到所述L1个码点中的第
    Figure PCTCN2020075317-appb-100009
    个码点,i为正整数,w1为正整数,
    Figure PCTCN2020075317-appb-100010
    表示向上取整,K1≥L1;
    其中,所述第一顺序为:TCI状态标识从小到大的顺序,或者TCI状态标识从大到小的顺序,或者按TCI状态标识从小到大的顺序排列的所述K1个第一TCI状态组成的向量经过变换得到的顺序,或者按TCI状态标识从大到小的顺序排列的所述K1个第一TCI状态组成的向量经过变换得到的顺序,或者第一指示信息指示的所述K1个第一TCI状态的先后顺序,或者按第一指示信息指示的所述K1个第一TCI状态的先后顺序排列的所述K1个第一TCI状态组成的向量经过变换得到的顺序,所述第二顺序为:码点值从小到大的顺序,或者,码点值从大到小的顺序。
  29. 根据权利要求27或28所述的装置,其特征在于,所述第二TCI状态映射规则包括:
    按第三顺序排列的所述K2个第二TCI状态分别依次映射到按第四顺序排列的L2个码点中的K2个码点,K2≤L2;或者
    按第三顺序排列的所述K2个第二TCI状态映射到按第四顺序排列的L2个码点,其中,K2=w2*L2,
    所述K2个第二TCI状态中的第j个第二TCI状态映射到所述L2个码点中的第
    Figure PCTCN2020075317-appb-100011
    个码点,j为正整数,w2为正整数,
    Figure PCTCN2020075317-appb-100012
    表示向上取整,K2≥L2;
    其中所述第三顺序为:TCI状态标识从小到大的顺序,或者TCI状态标识从大到小的顺序,或者按TCI 状态标识从小到大的顺序排列的所述K2个第二TCI状态组成的向量经过变换得到的顺序,或者按TCI状态标识从大到小的顺序排列的所述K2个第二TCI状态组成的向量经过变换得到的顺序,或者第一指示信息指示的所述K2个第二TCI状态的先后顺序,或者按第一指示信息指示的所述K2个第二TCI状态的先后顺序排列的所述K2个第二TCI状态组成的向量经过变换得到的顺序,所述第四顺序为:码点值从小到大的顺序,或者,码点值从大到小的顺序。
  30. 根据权利要求27-29任一项所述的装置,其特征在于,所述L1个码点是预定义的,或者通过第三指示信息指示的;和/或
    所述L2个码点是预定义的,或者通过第四指示信息指示的。
  31. 根据权利要求30所述的装置,其特征在于,所述第三指示信息包括第一位图,所述第一位图为P比特位图,所述第一位图中L1个值为1的比特位用于指示所述L1个码点;
    和/或,
    所述第四指示信息包括第二位图,所述第二位图为P比特位图,所述第二位图中L2个值为1的比特位用于指示所述L2个码点。
  32. 根据权利要求27-31任一项所述的装置,其特征在于,所述L1个码点中最小码点值为X,所述X为预定义的,或者通过第五指示信息指示的,其中X为整数,0≤X+L1≤P;或者,所述L1个码点中最大码点值为X,所述X为预定义的,或者通过第五指示信息指示的,其中X为整数,X≥L1;
    和/或
    所述L2个码点中最小码点值为Y,所述Y为预定义的,或者通过第六指示信息指示的,其中Y为整数,0≤Y+L2≤P;或者,所述L2个码点中最大码点值为Y,所述Y为预定义的,或者通过第六指示信息指示的,其中Y为整数,Y≥L2。
  33. 根据权利要求27-32任一项所述的装置,其特征在于,
    所述L1个码点的码点值是连续的,或者非连续的;和/或
    所述L2个码点的码点值是连续的,或者非连续的。
  34. 根据权利要求27-33任一项所述的装置,其特征在于,所述L1个码点与所述L2个码点包含至少一个相同的码点。
  35. 根据权利要求25-34任一项所述的装置,其特征在于,所述第一指示信息为一个媒体接入控制控制元素MAC CE,其中,所述K1个第一TCI状态位于所述K2个第二TCI状态之前。
  36. 根据权利要求25-34任一项所述的方法,其特征在于,所述第一指示信息包括第一媒体接入控制控制元素MAC CE和第二MAC CE,所述第一MAC CE用于指示所述K1个第一TCI状态,所述第二MAC CE用于指示所述K2个第二TCI状态。
  37. 一种信息指示装置,其特征在于,包括:
    处理器和与所述处理器耦合的收发器;
    所述收发器,用于发送第一指示信息,所述第一指示信息用于指示A个传输配置指示TCI状态,其中,A为正整数;
    所述处理器,用于根据预设规则及至少一个TCI状态,确定所述至少一个TCI状态对应的第一码点,其中,所述预设规则包括将所述A个TCI状态映射到P个码点的规则,所述P个码点中的至少一个码点对应于所述A个TCI状态中的至少两个TCI状态,所述第一码点为所述P个码点中的一个;
    所述收发器,还用于发送第二指示信息,所述第二指示信息用于指示所述第一码点;
    所述收发器,还用于根据所述至少一个TCI状态,接收下行信息和/或发送上行信息。
  38. 根据权利要求37所述的装置,其特征在于,所述A个TCI状态包括K1个第一TCI状态和K2个第二TCI状态,其中,所述K1个第一TCI状态中的至少一个第一TCI状态包括所述A个TCI状态中的一个或多个TCI状态,所述K2个第二TCI状态中的至少一个第二TCI状态包括所述A个TCI状态中一个或多个TCI状态,K1、K2为正整数,且K1+K2≤A。
  39. 根据权利要求38所述的装置,其特征在于,所述预设规则包括第一TCI状态映射规则和第二TCI状态映射规则,其中,所述第一TCI状态映射规则包括:
    将所述K1个第一TCI状态映射到所述P个码点中的L1个码点的规则,所述第二TCI状态映射规则包括将所述K2个第二TCI状态映射到所述P个码点中的L2个码点的规则,L1,L2为正整数,且L1≤P,L2≤P。
  40. 根据权利要求39所述的装置,其特征在于,所述第一TCI状态映射规则包括:
    按第一顺序排列的所述K1个第一TCI状态分别依次映射到按第二顺序排列的L1个码点中的K1个码点,K1≤L1;或者
    按第一顺序排列的所述K1个第一TCI状态映射到按第二顺序排列的L1个码点,其中,K1=w1*L1,所述K1个第一TCI状态中的第i个第一TCI状态映射到所述L1个码点中的第
    Figure PCTCN2020075317-appb-100013
    个码点,i为正整数,w1为正整数,
    Figure PCTCN2020075317-appb-100014
    表示向上取整,K1≥L1;
    其中,所述第一顺序为:TCI状态标识从小到大的顺序,或者TCI状态标识从大到小的顺序,或者按TCI状态标识从小到大的顺序排列的所述K1个第一TCI状态组成的向量经过变换得到的顺序,或者按TCI状态标识从大到小的顺序排列的所述K1个第一TCI状态组成的向量经过变换得到的顺序,或者第一指示信息指示的所述K1个第一TCI状态的先后顺序,或者按第一指示信息指示的所述K1个第一TCI状态的先后顺序排列的所述K1个第一TCI状态组成的向量经过变换得到的顺序,所述第二顺序为:码点值从小到大的顺序,或者,码点值从大到小的顺序。
  41. 根据权利要求39或40所述的装置,其特征在于,所述第二TCI状态映射规则包括:
    按第三顺序排列的所述K2个第二TCI状态分别依次映射到按第四顺序排列的L2个码点中的K2个码点,K2≤L2;或者
    按第三顺序排列的所述K2个第二TCI状态映射到按第四顺序排列的L2个码点,其中,K2=w2*L2,
    所述K2个第二TCI状态中的第j个第二TCI状态映射到所述L2个码点中的第
    Figure PCTCN2020075317-appb-100015
    个码点,j为正整数,w2为正整数,
    Figure PCTCN2020075317-appb-100016
    表示向上取整,K2≥L2;
    其中所述第三顺序为:TCI状态标识从小到大的顺序,或者TCI状态标识从大到小的顺序,或者按TCI状态标识从小到大的顺序排列的所述K2个第二TCI状态组成的向量经过变换得到的顺序,或者按TCI状态 标识从大到小的顺序排列的所述K2个第二TCI状态组成的向量经过变换得到的顺序,或者第一指示信息指示的所述K2个第二TCI状态的先后顺序,或者按第一指示信息指示的所述K2个第二TCI状态的先后顺序排列的所述K2个第二TCI状态组成的向量经过变换得到的顺序,所述第四顺序为:码点值从小到大的顺序,或者,码点值从大到小的顺序。
  42. 根据权利要求39-41任一项所述的装置,其特征在于,所述L1个码点是预定义的,或者通过第三指示信息指示的;和/或
    所述L2个码点是预定义的,或者通过第四指示信息指示的。
  43. 根据权利要求42所述的装置,其特征在于,所述第三指示信息包括第一位图,所述第一位图为P比特位图,所述第一位图中L1个值为1的比特位用于指示所述L1个码点;
    和/或,
    所述第四指示信息包括第二位图,所述第二位图为P比特位图,所述第二位图中L2个值为1的比特位用于指示所述L2个码点。
  44. 根据权利要求39-43任一项所述的装置,其特征在于,所述L1个码点中最小码点值为X,所述X为预定义的,或者通过第五指示信息指示的,其中X为整数,0≤X+L1≤P;或者,所述L1个码点中最大码点值为X,所述X为预定义的,或者通过第五指示信息指示的,其中X为整数,X≥L1;
    和/或
    所述L2个码点中最小码点值为Y,所述Y为预定义的,或者通过第六指示信息指示的,其中Y为整数,0≤Y+L2≤P;或者,所述L2个码点中最大码点值为Y,所述Y为预定义的,或者通过第六指示信息指示的,其中Y为整数,Y≥L2。
  45. 根据权利要求39-44任一项所述的装置,其特征在于,
    所述L1个码点的码点值是连续的,或者非连续的;和/或
    所述L2个码点的码点值是连续的,或者非连续的。
  46. 根据权利要求39-45任一项所述的装置,其特征在于,所述L1个码点与所述L2个码点包含至少一个相同的码点。
  47. 根据权利要求37-46任一项所述的装置,其特征在于,所述第一指示信息为一个媒体接入控制控制元素MAC CE,其中,所述K1个第一TCI状态位于所述K2个第二TCI状态之前。
  48. 根据权利要求37-46任一项所述的装置,其特征在于,所述第一指示信息包括第一媒体接入控制控制元素MAC CE和第二MAC CE,所述第一MAC CE用于指示所述K1个第一TCI状态,所述第二MAC CE用于指示所述K2个第二TCI状态。
  49. 一种通信装置,其特征在于,所述装置包括用于执行如权利要求1至12中的任一项所述方法的功能单元。
  50. 一种通信装置,其特征在于,所述装置包括用于执行如权利要求13至24中的任一项所述方法的功能单元。
  51. 一种计算机存储介质,其特征在于,包括计算机指令,当所述计算机指令在设备上运行时,使得 所述设备执行如权利要求1至12中的任一项所述的信息指示方法。
  52. 一种计算机存储介质,其特征在于,包括计算机指令,当所述计算机指令在设备上运行时,使得所述设备执行如权利要求13至24中的任一项所述的信息指示方法。
PCT/CN2020/075317 2019-02-15 2020-02-14 信息指示的方法及装置 WO2020164600A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20755134.2A EP3897057B1 (en) 2019-02-15 2020-02-14 Information indication method and apparatus
US17/403,437 US20210385832A1 (en) 2019-02-15 2021-08-16 Information indication method and apparatus
US18/674,559 US20240314767A1 (en) 2019-02-15 2024-05-24 Information indication method and apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910118164 2019-02-15
CN201910118164.7 2019-02-15
CN201911072492.4 2019-11-05
CN201911072492.4A CN111586862B (zh) 2019-02-15 2019-11-05 信息指示的方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/403,437 Continuation US20210385832A1 (en) 2019-02-15 2021-08-16 Information indication method and apparatus

Publications (1)

Publication Number Publication Date
WO2020164600A1 true WO2020164600A1 (zh) 2020-08-20

Family

ID=72044961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075317 WO2020164600A1 (zh) 2019-02-15 2020-02-14 信息指示的方法及装置

Country Status (3)

Country Link
US (1) US20240314767A1 (zh)
EP (1) EP3897057B1 (zh)
WO (1) WO2020164600A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114390614A (zh) * 2020-10-21 2022-04-22 联发科技股份有限公司 用于无线通信的方法及用户设备
WO2022144861A1 (en) * 2021-01-04 2022-07-07 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Methods and systems of downlink and uplink transmission configuration indicator (tci)
WO2022155198A1 (en) * 2021-01-12 2022-07-21 Ofinno, Llc Common beam indication based on link selection
WO2022237236A1 (zh) * 2021-05-08 2022-11-17 华为技术有限公司 一种通信方法、装置和存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021258320A1 (en) 2020-06-24 2021-12-30 Zte Corporation A method for identifying radio communication services
WO2024092623A1 (en) * 2022-11-03 2024-05-10 Apple Inc. Technologies for transmission configuration indicator association for physical downlink shared channel reception

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018141165A1 (zh) * 2017-09-30 2018-08-09 北京小米移动软件有限公司 数据传输方法及装置
WO2018156696A1 (en) * 2017-02-27 2018-08-30 Intel IP Corporation Exit conditions for conditional handovers and beam based mobility state estimation
CN109089322A (zh) * 2017-06-14 2018-12-25 维沃移动通信有限公司 一种上行多波束传输方法、终端及网络设备
WO2019017751A1 (ko) * 2017-07-21 2019-01-24 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 정보 참조 신호를 송수신하는 방법 및 이를 위한 장치

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113365359B (zh) * 2018-07-27 2023-09-12 北京小米移动软件有限公司 传输配置指示的配置方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018156696A1 (en) * 2017-02-27 2018-08-30 Intel IP Corporation Exit conditions for conditional handovers and beam based mobility state estimation
CN109089322A (zh) * 2017-06-14 2018-12-25 维沃移动通信有限公司 一种上行多波束传输方法、终端及网络设备
WO2019017751A1 (ko) * 2017-07-21 2019-01-24 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 정보 참조 신호를 송수신하는 방법 및 이를 위한 장치
WO2018141165A1 (zh) * 2017-09-30 2018-08-09 北京小米移动软件有限公司 数据传输方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NOKIA: "CR to 38.214 capturing the RAN1#92bis meeting agreements", 3GPP DRAFT; R1-1805796, 20 April 2018 (2018-04-20), Sanya, P.R. China, pages 1 - 83, XP051461509 *
See also references of EP3897057A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114390614A (zh) * 2020-10-21 2022-04-22 联发科技股份有限公司 用于无线通信的方法及用户设备
CN114390614B (zh) * 2020-10-21 2024-08-06 联发科技股份有限公司 用于无线通信的方法及用户设备
US12082184B2 (en) 2020-10-21 2024-09-03 Mediatek Inc. TCI state activation for downlink transmission and uplink transmission
WO2022144861A1 (en) * 2021-01-04 2022-07-07 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Methods and systems of downlink and uplink transmission configuration indicator (tci)
WO2022155198A1 (en) * 2021-01-12 2022-07-21 Ofinno, Llc Common beam indication based on link selection
EP4260506A1 (en) * 2021-01-12 2023-10-18 Ofinno, LLC Common beam indication based on link selection
US12058700B2 (en) 2021-01-12 2024-08-06 Ofinno, Llc Common beam indication based on link selection
WO2022237236A1 (zh) * 2021-05-08 2022-11-17 华为技术有限公司 一种通信方法、装置和存储介质

Also Published As

Publication number Publication date
EP3897057A4 (en) 2022-03-02
EP3897057A1 (en) 2021-10-20
US20240314767A1 (en) 2024-09-19
EP3897057B1 (en) 2023-07-12

Similar Documents

Publication Publication Date Title
CN111586862B (zh) 信息指示的方法及装置
WO2020164600A1 (zh) 信息指示的方法及装置
EP3817479B1 (en) Communication method and communication apparatus
CN108347778B (zh) 通信方法及装置
CN111918416B (zh) 通信方法和通信装置
US20210167839A1 (en) Link failure recovery method and related device
WO2021062709A1 (zh) 数据传输的方法和装置
WO2018202098A1 (zh) 无线通信的方法、网络设备和终端设备
WO2020083053A1 (zh) 通信方法和通信装置
WO2020207333A1 (zh) 链路失败恢复的方法和装置
CN111866959B (zh) 波束失败上报的方法和装置
US20220015085A1 (en) Communication method and apparatus
JP2020509686A (ja) 通信方法、ネットワークデバイス、および端末デバイス
CN116368939A (zh) 一种通信方法及通信装置
US20190305902A1 (en) Reference signal transmission method and apparatus
US11895683B2 (en) Information transmission method, network device, and terminal device
CN112312441B (zh) 一种通信方法和通信装置
CN114073146A (zh) 一种发送波束失败恢复请求的方法及装置
CN110912625B (zh) 传输信号的方法和通信装置
WO2022027683A1 (zh) 确定传输使用的天线面板的方法和终端设备
WO2022077346A1 (zh) 信道传输的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20755134

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020755134

Country of ref document: EP

Effective date: 20210715

NENP Non-entry into the national phase

Ref country code: DE