WO2020164101A1 - 一种终端的测量方法及装置、终端 - Google Patents

一种终端的测量方法及装置、终端 Download PDF

Info

Publication number
WO2020164101A1
WO2020164101A1 PCT/CN2019/075200 CN2019075200W WO2020164101A1 WO 2020164101 A1 WO2020164101 A1 WO 2020164101A1 CN 2019075200 W CN2019075200 W CN 2019075200W WO 2020164101 A1 WO2020164101 A1 WO 2020164101A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
frequency point
measurement parameter
target frequency
indication information
Prior art date
Application number
PCT/CN2019/075200
Other languages
English (en)
French (fr)
Inventor
王淑坤
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to KR1020217029356A priority Critical patent/KR20210127212A/ko
Priority to CN201980077036.0A priority patent/CN113170364A/zh
Priority to PCT/CN2019/075200 priority patent/WO2020164101A1/zh
Priority to EP19914876.8A priority patent/EP3917207B1/en
Priority to CN202110918894.2A priority patent/CN113709833B/zh
Priority to JP2021547389A priority patent/JP7323628B2/ja
Publication of WO2020164101A1 publication Critical patent/WO2020164101A1/zh
Priority to US17/400,642 priority patent/US11582661B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0094Definition of hand-off measurement parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0058Transmission of hand-off measurement information, e.g. measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0072Transmission or use of information for re-establishing the radio link of resource information of target access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00835Determination of neighbour cell lists
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/00837Determination of triggering parameters for hand-off
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0088Scheduling hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the embodiments of the present application relate to the field of mobile communication technology, and specifically relate to a terminal measurement method and device, and a terminal.
  • the measurement configuration is saved.
  • cell measurement is performed based on the saved measurement configuration; then, the terminal indicates the presence of the measurement result to the network through an uplink message, and reports the measurement result based on the method requested by the base station.
  • the terminal When the terminal performs cell measurement, if the terminal evaluates that the cell selection preparation conditions or the cell reselection preparation conditions are not met within a continuous period of time according to the existing measurement requirements, the terminal will no longer refer to the current measurement criteria, and the terminal will serve All adjacent cell frequency points configured in the cell are measured.
  • the designated measurement frequency point configured by the terminal when the terminal performs cell measurement, if it follows the existing measurement requirements, it is likely that the measurement of the designated measurement frequency point will not be started after the designated measurement frequency point is detected. This part of the designation The detection of measurement frequency points consumes extra power of the terminal.
  • the embodiments of the present application provide a terminal measurement method and device, and a terminal.
  • the terminal obtains first indication information, where the first indication information is used to determine a measurement parameter of a specified measurement frequency point, the measurement parameter of the specified measurement frequency point is the first measurement parameter and/or the second measurement parameter, and the first The measurement parameter is greater than the first measurement parameter.
  • the device includes:
  • An obtaining unit configured to obtain first indication information, where the first indication information is used to determine a measurement parameter of a specified measurement frequency point, and the measurement parameter of the specified measurement frequency point is a first measurement parameter and/or a second measurement parameter, The first measurement parameter is greater than the first measurement parameter.
  • the terminal provided in the embodiment of the present application includes a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the above-mentioned terminal measurement method.
  • the chip provided in the embodiment of the present application is used to implement the above-mentioned terminal measurement method.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes the above-mentioned terminal measurement method.
  • the computer-readable storage medium provided by the embodiments of the present application is used to store a computer program, and the computer program enables a computer to execute the above-mentioned terminal measurement method.
  • the computer program product provided by the embodiment of the present application includes computer program instructions, and the computer program instructions cause a computer to execute the above-mentioned terminal measurement method.
  • the computer program provided by the embodiment of the present application when it runs on a computer, causes the computer to execute the above-mentioned terminal measurement method.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of this application.
  • FIG. 2 is a schematic diagram of RRC state transition provided by an embodiment of this application.
  • FIG. 3 is a schematic diagram of the RNA of the UE in the RRC_INACTIVE state provided by an embodiment of the application;
  • FIG. 4(a) is a schematic diagram of discontinuous carrier aggregation provided by an embodiment of this application.
  • Figure 4(b) is a schematic diagram of continuous carrier aggregation provided by an embodiment of this application.
  • FIG. 5 is a schematic diagram of an idle measurement configuration provided by an embodiment of the application.
  • Fig. 6 is a network deployment and networking architecture diagram of EN-DC provided by an embodiment of the application.
  • FIG. 7 is a schematic diagram of measurement parameters provided by an embodiment of the application.
  • FIG. 8 is a first schematic flowchart of a terminal measurement method provided by an embodiment of this application.
  • FIG. 9(a) is a schematic diagram 1 of measurement configuration information provided by an embodiment of this application.
  • Figure 9(b) is a second schematic diagram of measurement configuration information provided by an embodiment of this application.
  • FIG. 10 is a second schematic flowchart of a terminal measurement method provided by an embodiment of this application.
  • FIG. 11 is a schematic diagram of a scenario of application example one provided by an embodiment of this application.
  • FIG. 12 is a schematic diagram of the structural composition of a terminal measurement device provided by an embodiment of the application.
  • FIG. 13 is a schematic structural diagram of a communication device provided by an embodiment of this application.
  • FIG. 14 is a schematic structural diagram of a chip according to an embodiment of the application.
  • FIG. 15 is a schematic block diagram of a communication system provided by an embodiment of this application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the communication system 100 applied in the embodiment of the present application is shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal 120 (or called a communication terminal or a terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminals located in the coverage area.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system (Evolutional Node B, eNB or eNodeB), or the wireless controller in the Cloud Radio Access Network (CRAN), or the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks, or network devices in the future evolution of the Public Land Mobile Network (PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • LTE Long Term Evolutional Node B
  • eNB evolved base station
  • CRAN Cloud Radio Access Network
  • the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches
  • the communication system 100 also includes at least one terminal 120 located within the coverage area of the network device 110.
  • the "terminal” used here includes, but is not limited to, connection via wired lines, such as public switched telephone networks (PSTN), digital subscriber lines (Digital Subscriber Line, DSL), digital cables, and direct cable connections; And/or another data connection/network; and/or via a wireless interface, such as for cellular networks, wireless local area networks (WLAN), digital TV networks such as DVB-H networks, satellite networks, AM-FM Broadcast transmitter; and/or another terminal's device configured to receive/send communication signals; and/or Internet of Things (IoT) equipment.
  • a terminal set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellites or cellular phones; Personal Communications System (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, Internet/intranet PDA with internet access, web browser, memo pad, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palmtop receivers or others including radio phone transceivers Electronic device.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • Terminal can refer to access terminal, user equipment (User Equipment, UE), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, user agent or user Device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminals in 5G networks, or terminals in the future evolution of PLMN, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminals 120 may perform device-to-device (D2D) communication.
  • D2D device-to-device
  • the 5G system or 5G network may also be referred to as a New Radio (NR) system or NR network.
  • NR New Radio
  • FIG. 1 exemplarily shows one network device and two terminals.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminals. This embodiment of the present application There is no restriction on this.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • the devices with communication functions in the network/system in the embodiments of the present application may be referred to as communication devices.
  • the communication device may include a network device 110 and a terminal 120 with communication functions, and the network device 110 and the terminal 120 may be the specific devices described above, which will not be repeated here;
  • the device may also include other devices in the communication system 100, such as other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • 5G 3 rd Generation Partnership Project
  • eMBB enhanced Mobile Broadband
  • URLLC Ultra-Reliable Low-Latency Communications
  • mMTC Massive Machine-Type Communications
  • eMBB is still targeting users to obtain multimedia content, services and data, and its demand is growing rapidly.
  • eMBB may be deployed in different scenarios, such as indoors, urban areas, rural areas, etc., its capabilities and requirements are also quite different, so it cannot be generalized, and must be analyzed in detail in conjunction with specific deployment scenarios.
  • Typical applications of URLLC include: industrial automation, power automation, telemedicine operations (surgery), traffic safety protection, etc.
  • Typical features of mMTC include: high connection density, small data volume, delay-insensitive services, low-cost modules and long service life.
  • RRC Radio Resource Control
  • RRC_INACTIVE Radio Resource Control
  • RRC_IDLE state (abbreviated as idle state): Mobility is UE-based cell selection and reselection, paging is initiated by the core network (Core Network, CN), and the paging area is configured by the CN. There is no UE context and no RRC connection on the base station side.
  • RRC_CONNECTED state (referred to as connected state for short): There is an RRC connection, and UE context exists on the base station side and the UE side. The network side knows that the location of the UE is of a specific cell level. Mobility is the mobility controlled by the network side. Unicast data can be transmitted between the UE and the base station.
  • Mobility is UE-based cell selection and reselection, there is a connection between CN-NR, UE context is stored on a certain base station, and paging is triggered by RAN, based on The paging area of the RAN is managed by the RAN, and the network side knows that the location of the UE is based on the paging area level of the RAN.
  • the network side can control the RRC state transition of the UE, as shown in Figure 2, specifically:
  • the network side can control the UE to transition from the RRC_CONNECTED state to the RRC_INACTIVE state by releasing and suspending the RRC connection;
  • the network side can control the UE to transition from the RRC_INACTIVE state to the RRC_CONNECTED state by restoring the RRC connection.
  • the network side can control the UE to transition from the RRC_CONNECTED state to the RRC_IDLE state by releasing the RRC connection;
  • the network side can control the UE to transition from the RRC_IDLE state to the RRC_CONNECTED state by establishing an RRC connection.
  • the network side can control the UE to transition from the RRC_INACTIVE state to the RRC_IDLE state by releasing the RRC connection.
  • any one of the following events can trigger the UE to return to the RRC_IDLE state autonomously:
  • start timer T319 When initiating an RRC recovery request, start timer T319, if the timer T319 expires;
  • Radio Access Technology RAT
  • the UE When the UE is in the RRC_INACTIVE state, it has the following characteristics:
  • the UE is reachable to the RAN side, and the relevant parameters are configured by the RAN;
  • the UE moves within the RNA configured by the RAN, it does not need to notify the network side, but it needs to notify the network side when it moves out of the RNA;
  • the UE moves within the RNA according to the cell selection reselection method.
  • the network side When the UE is in the RRC_INACTIVE state, the network side will configure the parameters of the RRC_INACTIVE state for the UE through RRC release (RRCRelease) dedicated signaling.
  • the main parameters include: I-RNTI, which is used to identify the context corresponding to the inactive state of the UE on the base station side, I- RNTI is unique in the base station.
  • RNA is used to control the area where the UE performs cell selection and reselection in the inactive state, and is also the paging range area for RAN initial paging.
  • the RAN discontinuous reception cycle (RAN DRX cycle) is used to calculate the paging occasion of the RAN initial paging.
  • RNAU period (RNAU periodicity) is used to control the period in which the UE performs periodic RAN location updates.
  • NCC used for the secret key used in the RRC connection recovery process.
  • Figure 3 is a schematic diagram of the RNA when the UE is in the RRC_INACTIVE state.
  • the cell range covered by the base station 1 to the base station 5 is RNA.
  • the network side does not need to be notified, and the mobility behavior in the idle state is followed, that is, cell selection reselection in principle.
  • the UE moves out of the paging area configured by the RAN, the UE will be triggered to resume the RRC connection and reacquire the paging area configured by the RAN.
  • the gNB that maintains the connection between the RAN and the CN for the UE will trigger all cells in the RAN paging area to send paging messages to the UE, so that the UE in the inactive state can resume the RRC connection and receive data.
  • the UE in the inactive state is configured with a RAN paging area. In this area, in order to ensure the reachability of the UE, the UE needs to perform periodic location update according to the network configuration period.
  • the UE enters the connected state from the inactive state, there are three situations:
  • the UE itself initiates RAN location area update, such as periodic RAN location update or cross-area location update.
  • RAN location area update such as periodic RAN location update or cross-area location update.
  • the third is that the UE has an uplink data transmission requirement, which prompts the UE to enter the connected state.
  • the UE's neighbor cell measurement behaviors in idle state and inactive state are restricted by related parameters in system broadcast messages.
  • the inter-frequency measurement with the same priority or low priority when the serving cell Srxlev>SnonIntraSearchP and the serving cell Squal>SnonIntraSearchQ, the inter-frequency measurement with the same priority or low priority is not started, otherwise it is started.
  • CA Carrier Aggregation
  • CC component carriers
  • Figure 4(a) is a schematic diagram of discontinuous carrier aggregation
  • Figure 4(b) is continuity
  • PCC Primary Cell Component
  • SCC Secondary Cell Component
  • C-RNTI Cell-Radio Network Temporary Identifier
  • the base station ensures that the C-RNTI does not conflict in the cell where each carrier is located. Since both asymmetric carrier aggregation and symmetric carrier aggregation are supported, the carriers required to be aggregated must have downlink carriers, but may not have uplink carriers. Moreover, for the primary carrier cell, there must be a physical downlink control channel (PDCCH) and PUCCH of the cell, and only the primary carrier cell has a PUCCH, and other secondary carrier cells may have a PDCCH.
  • PDCH physical downlink control channel
  • the Scell is configured through RRC dedicated signaling, and the initial configuration state is inactive, and data transmission and reception cannot be performed in this state. Then the Scell is activated through the Media Access Control Control Element (MAC CE) to transmit and receive data. From the perspective of Scell configuration and activation delay, this architecture is not an optimal architecture. This time delay reduces the efficiency of CA usage and radio resources, especially in small cell deployment scenarios. In a dense small cell deployment scenario, the signaling load of each Scell is also very large, especially when each Scell needs to be configured separately. Therefore, the current CA architecture introduces additional delay, which limits the use of CA and reduces the gain of CA load sharing.
  • MAC CE Media Access Control Control Element
  • LTE R15 has optimized CA, and the main optimization functions are as follows:
  • the RRC release message (the RRC release message is RRC dedicated signaling) can configure the measurement configuration in the idle state (the measurement configuration is the dedicated measurement configuration), and the system broadcasts SIB5 can also configure the measurement configuration under idle. If the UE has a dedicated measurement configuration, use the dedicated measurement configuration, otherwise use the measurement configuration in SIB5. Here, the measurement configuration in SIB5 has no effective time limit. When the dedicated measurement configuration is configured in the RRC dedicated signaling, the effective time of the dedicated measurement configuration is also configured, that is, T331 (measIdleDuration). When T331 times out or stops, the measurement configuration configured in the dedicated signaling is released. Whether the UE continues to use the measurement configuration in SIB5 depends on the implementation of the UE.
  • idle measurement configuration After the UE obtains the idle state measurement configuration (abbreviated as idle measurement configuration), the UE performs measurement by indicating the presence of idle state measurement results on the network side in an uplink message (abbreviated as idle measurement results), and then reports based on the base station request. At the same time, the cell will also broadcast whether to support the reporting of idle measurement results in SIB2.
  • the idle measurement configuration is shown in Figure 5.
  • the idle measurement configuration (MeasIdleConfigSIB) in the system broadcast SIB5 includes the carrier list (measIdleCarrierListEUTRA), and the idle measurement configuration (MeasIdleConfigDedicated) in the RRC dedicated signaling includes the carrier list (measIdleCarrierListEUTRA) and effective time (measIdleDuration). ). Further, for measIdleCarrierListEUTRA, it includes carrierFreq, allowedMeasBandwidth, validityArea, reportQuantities, and qualityThreshold.
  • carrierFreq and allowedMeasBandwidth indicate the measured frequency and measurement bandwidth; validityArea indicates the effective range of the idle measurement configuration, which is a cell list. If the UE reselects to a cell outside the validityArea, the timer T331 is stopped. The measCellList gives the cell where the measurement configuration is reported, and other cells do not need to report it. If the measCellList is not configured, the UE reports the measurement report of the maxCellMeasIdle cells that meet the qualityThreshold. The reported measurement is specified by reportQuantities.
  • Scell dormant state The state of Scell is divided into active state and inactive state. For fast cell recovery, a new cell state is defined, namely the dormant state. In the dormant state, the UE measures and reports Channel Quality Indicator (CQI) and/or Radio Resource Management (RRM) measurement results, but does not decode PDCCH.
  • CQI Channel Quality Indicator
  • RRM Radio Resource Management
  • a newly defined MAC CE controls the transition of the dormant state. Specifically, the newly defined MAC CE controls the transition between the active state and the dormant state. The MAC CE is set to 1 to indicate the dormant state, and 0 to indicate the active state.
  • RRC signaling can configure the state of Scell as active or dormant, and the default is inactive.
  • Short CQI reporting The Scell is active, and the UE may be configured with another short CQI reporting period, allowing the UE to quickly indicate that the CQI is after the Scell is activated. After a certain period of time, the UE switches to the conventional CQI configuration.
  • Common Scell configuration Define a Scell group to provide UE with common configuration information to optimize signaling.
  • the configuration parameters dedicated to each Scell can override the parameters in common.
  • EN-DC LTE-NR Dual Connectivity
  • the LTE base station serves as the master node (Master Node, MN)
  • the NR base station serves as the secondary node (Secondary Node, SN).
  • Evolved Universal Terrestrial Radio Access Networ E-UTRAN
  • Evolved Packet Core network EPC
  • the access network part is composed of at least one eNB (two eNBs are shown in Figure 6) and at least one en-gNB (two en-gNBs are shown in Figure 6), where eNB is used as MN and en-gNB is used as SN , MN and SN are both connected to EPC.
  • eNB is used as MN
  • en-gNB is used as SN
  • MN and SN are both connected to EPC.
  • other DC modes will be supported, namely NE-DC, 5GC-EN-DC, and NR DC.
  • EN-DC the core network connected to the access network is EPC, while the core network connected to other DC modes is 5GC.
  • the configuration and activation of Scell and the configuration and activation delay of SCG need to be reduced to meet the improvement of cell capacity especially in small cell deployment scenarios.
  • the mobility of the UE in the idle state in the SA mode divides the measurement requirements for cell reselection into the following according to the relationship between the measurement frequency and the serving cell frequency:
  • the UE measurement involves three measurement parameters, namely the detection time (Tdetect), the measurement time (Tmeasure), and the evaluation time (Tevaluate).
  • Tdetect the detection time
  • Tmeasure the measurement time
  • Tevaluate the evaluation time
  • Tdetect the definition of Tdetect, Tmeasure, and Tevaluate, as shown in Figure 7, taking in-band measurement as an example, other types of measurement are similar to in-band measurement:
  • the UE recognizes the new intra-frequency cells and measures the synchronization signal reference signal received power (Synchronization Signal-Reference Signal Received Power, SS-RSRP) and the synchronization signal reference signal received quality (Synchronization Signal) at the specified frequency point -Reference Signal Received Quality, SS-RSRQ);
  • the UE evaluates whether a newly detectable intra-frequency cell meets the cell reselection criteria, and the detection time is Tdetect;
  • the UE measures the SS-RSRP and SS-RSRQ of intra-frequency cells according to the measurement criteria, and the measurement duration is Tmeasure;
  • the UE should evaluate the measurement data of this cell within the Tevaluate time for filtering.
  • the UE filters the SS-RSRP and SS-RSRQ of each intra-frequency cell measured (at least 2 groups), and at least two sets of measurements should be separated by at least Tmeasure/2.
  • the serving cell instructs (in the measurement control system information) that the UE in the cell reselection does not perform neighbor cell measurement, the UE does not consider the frequency measurement of the neighbor cell.
  • the UE in the idle state or inactive state evaluates that the cell selection preparation or cell reselection preparation is not satisfied in several consecutive DRX cycles according to the existing measurement requirements.
  • the UE will no longer refer to the current measurement criteria and begin to configure all of the serving cell Measure the frequency points in the adjacent cell.
  • the above behavior of the UE is the same.
  • configuring dedicated measurement for the UE in the idle state for fast CA configuration will affect the power consumption performance of the UE. For example, if the configured dedicated measurement frequency point has a relatively low priority in the system information, the UE may not start the measurement of the frequency point according to the existing measurement behavior. In addition, the residence time of the UE in the idle state is unpredictable, that is, when the UE leaves the idle state and enters the connected state, it is impossible to determine when the link is released. If the UE does not need to establish or restore the RRC connection for a long time, then this part of the dedicated measurement will not be available to the network and will consume extra power of the UE. It should be noted that the above description about the UE in the idle state is also applicable to the UE in the inactive state, and will not be repeated here.
  • the embodiments of the present application propose the following technical solutions, which can implement fast cell selection or cell reselection by the terminal and save power consumption of the terminal.
  • FIG. 8 is a schematic flow chart 1 of a terminal measurement method provided by an embodiment of the application. As shown in FIG. 8, the terminal measurement method includes the following steps:
  • Step 801 The terminal obtains first indication information, where the first indication information is used to determine a measurement parameter of a specified measurement frequency point, and the measurement parameter of the specified measurement frequency point is the first measurement parameter and/or the second measurement parameter The first measurement parameter is greater than the first measurement parameter.
  • the terminal may be any device capable of communicating with the network, such as a mobile phone, a tablet computer, a notebook, a vehicle-mounted terminal, and a wearable device.
  • the terminal is a terminal in an idle state or an inactive state.
  • the terminal may obtain the first indication information in the following manner:
  • Manner 1 The first indication information is configured by the network side using RRC dedicated signaling.
  • the terminal receives the RRC dedicated signaling sent by the base station, and obtains the first indication information through the RRC dedicated signaling.
  • the RRC dedicated signaling is, for example, an RRC release (RRC Release) message.
  • Manner 2 The first indication information is configured by the network side using SIB signaling.
  • the terminal receives the SIB signaling sent by the base station, and obtains the first indication information through the SIB signaling.
  • the SIB signaling is, for example, SIB5 signaling.
  • Manner 3 The first indication information is configured by the protocol.
  • the terminal obtains the first indication information according to the protocol.
  • the network side uses RRC dedicated signaling or SIB signaling to configure measurement parameters of a designated measurement frequency (for example, DC/CA frequency) of one or more terminals in a certain serving cell.
  • a designated measurement frequency for example, DC/CA frequency
  • the number of the designated measurement frequency points may be one or more.
  • the measurement parameter of the designated measurement frequency point is the first measurement parameter or the second measurement parameter.
  • the measurement parameters of the multiple designated measurement frequency points may all be the first measurement parameter, or all of the second parameter parameters, or part of the first measurement parameter and the other part of the second measurement parameter.
  • the first indication information is carried in measurement configuration information.
  • the measurement configuration information includes a list of designated measurement frequency points, and the first indication information is carried in the list of designated measurement frequency points.
  • the designated measurement frequency point list includes a DC frequency point list or a CA frequency point list.
  • the measurement configuration information (MeasConfigSIB) in the SIB signaling includes a designated measurement frequency list (measCarrierList), and the measurement configuration information (MeasConfigDedicated) in the RRC dedicated signaling includes measCarrierList and effective time (measDuration). Further, for measCarrierList, it includes carrierFreq, allowedMeasBandwidth, validityArea, reportQuantities, qualityThreshold, and so on. Among them, carrierFreq and allowedMeasBandwidth indicate the measured frequency and measurement bandwidth; validityArea indicates the effective range of the measurement configuration, which is a cell list.
  • the measCellList gives the cell where the measurement configuration is reported, and other cells do not need to report it. If the measCellList is not configured, the UE reports the measurement report of the maxCellMeasIdle cells that meet the qualityThreshold. The reported measurement is specified by reportQuantities.
  • measCarrierList is used to quickly implement CA or DC.
  • MeasConfigSIB may be expressed as MeasIdleConfigSIB
  • measCarrierList may be expressed as measIdleCarrierList
  • MeasConfigDedicated may be expressed as MeasIdleConfigDedicated
  • meshDuration may be expressed as measIdleDuration.
  • MeasConfigSIB may be expressed as MeasInactiveConfigSIB
  • measCarrierList may be expressed as measInactiveCarrierList
  • MeasConfigDedicated may be expressed as MeasInactiveConfigDedicated
  • measDuration may be expressed as measInactiveDuration.
  • measCarrierList can be applied to EUTRA (denoted as measCarrierListEUTRA) or NR (denoted as measCarrierListNR).
  • the first indication information may be carried in measConfigDedicated, and further, the first indication information may be carried in measCarrierList in measConfigDedicated.
  • the first indication information may be carried in MeasConfigSIB, and further, the first indication information may be carried in measCarrierList in MeasConfigSIB.
  • 9(b) adds the first indication information (Relaxed requirement Indicator) to measCarrierList based on Figure 9(a).
  • the first indication information (Relaxed requirement Indicator) is added to the IE of measCarrierList.
  • the technical solution of the embodiment of the present application is not limited to this.
  • an IE can be added to the measConfigDedicated or MeasConfigSIB, and the content of the newly added IE is the first An indication information (Relaxed requirement Indicator), the newly added IE is independent of the measCarrierList IE.
  • the first indication information is used to determine a measurement parameter of a specified measurement frequency point, the measurement parameter of the specified measurement frequency point is a first measurement parameter or a second measurement parameter, and the first measurement parameter is greater than the first measurement parameter.
  • Measurement parameters may also be expressed as a relaxed measurement parameter (or called a relaxed requirement), and the second measurement parameter may also be expressed as an existing measurement parameter (or called an existing measurement parameter). The normal requirement), relax the existing measurement parameters to get the relaxed measurement parameters.
  • relaxation means increasing the existing measurement parameters.
  • the first indication information includes at least one of the following indication fields:
  • a first indication field where the first indication field is used to indicate the first measurement parameter or the second measurement parameter.
  • 1bit is used to indicate whether to use the first measurement parameter or the second measurement parameter.
  • a value of 0 for 1 bit represents the use of the second measurement parameter (ie, an existing measurement parameter)
  • a value of 1 for 1 bit represents the use of the first measurement parameter (ie, a relaxed measurement parameter).
  • a second indication field which is used to indicate the scaling factor of the first measurement parameter.
  • the terminal determines the first measurement parameter based on the second measurement parameter and the scaling factor of the first measurement parameter.
  • different measurement parameters share the same scaling factor; or, different measurement parameters correspond to independent scaling factors; or, some measurement parameters share the same scaling factor, and measurement parameters other than the partial measurement parameters correspond to independent scaling factor.
  • the scaling factor includes one scaling parameter or multiple scaling parameters.
  • the second indication field includes an integer number, and the integer number is configured as a scaling factor (scaling factor) corresponding to the first measurement parameter; if the integer number is a default value, the second measurement parameter is adopted.
  • the third indication field is used to indicate the index information of the first measurement parameter.
  • the index information of the first measurement parameter is indicated by 2 bits.
  • the terminal determines the measurement parameter of the specified measurement frequency point according to the protocol configuration.
  • the relationship between the measurement frequency and the serving cell frequency is divided into:
  • the measured parameters are divided into the following according to the relationship between measurement frequency and serving cell frequency:
  • the first measurement parameter includes at least one of the following: in-band measurement measurement parameters, inter-band measurement measurement parameters, and inter-standard measurement parameters.
  • the second measurement parameter includes at least one of the following: in-band measurement measurement parameters, inter-band measurement measurement parameters, and inter-standard measurement parameters.
  • the first measurement parameter includes at least one of the following parameters: detection time (Tdetect), measurement time (Tmeasure), and evaluation time (Tevaluate); similarly, the second measurement parameter includes at least one of the following parameters: Detection time (Tdetect), measurement time (Tmeasure), evaluation time (Tevaluate).
  • Tdetect detection time
  • Tmeasure measurement time
  • Tevaluate evaluation time
  • the terminal determines the measurement parameter of the target frequency point based on the first indication information.
  • the following describes how to determine the measurement parameters of the target frequency in combination with the target frequency in different situations.
  • the measurement parameter of the target frequency point is the second measurement parameter, where the high priority target frequency point refers to a frequency point with a higher priority than the serving cell.
  • the measurement parameter of the target frequency point is the second measurement parameter
  • the measurement parameter of the target frequency point is the second measurement parameter.
  • the high-priority target frequency point is the frequency point for starting the measurement.
  • the measurement parameter of the target frequency point is the measurement parameter determined based on the first indication information or the second indication
  • the measurement parameter determined by the information, the second indication information is used to determine the measurement parameter of the target frequency point, where the target frequency point with a high priority refers to a frequency point with a higher priority than a serving cell.
  • the high-priority target frequency point is the frequency point for starting the measurement.
  • the measurement parameter of the target frequency point is the measurement parameter determined based on the first indication information, wherein ,
  • the target frequency with the same priority or low priority refers to the frequency with the priority not higher than the serving cell.
  • the target frequency points of the same priority or low priority are target frequency points for which measurement is not started.
  • the target frequency point does not start measurement, among which, the target frequency point of the same priority or low priority Refers to the frequency point whose priority is not higher than the serving cell.
  • FIG. 10 is a second schematic flowchart of a terminal measurement method provided by an embodiment of this application. As shown in FIG. 10, the terminal measurement method includes the following steps:
  • Step 1001 The base station sends RRC dedicated signaling to the terminal, where the RRC dedicated signaling includes measurement configuration information, and the measurement configuration information includes first indication information.
  • the first indication information is used to determine a measurement parameter of a designated measurement frequency point (CA or DC frequency point), and the measurement parameter of the designated measurement frequency point is a relaxed measurement parameter or an existing measurement parameter.
  • the RRC dedicated signaling may be an RRC Release message. In this way, the terminal enters the idle state after receiving the RRC Release message.
  • the RRC dedicated signaling may be a Release with suspend message. In this way, the terminal enters the inactive state after receiving the Release with suspend message.
  • Step 1002 The terminal performs cell measurement based on the measurement configuration information.
  • cell measurement includes measurement of designated measurement frequency points.
  • Step 1003 The terminal sends an RRC setup message or an RRC recovery message to the base station.
  • the terminal if the terminal receives an RRC Release message, the terminal sends an RRC setup message to the base station. If the terminal receives a Release with suspend message, the terminal sends an RRC resume message to the base station.
  • Step 1004 The base station establishes CA or DC.
  • the terminal receives the dedicated measurement configuration information on the network side in the RRC Release message (or Release with suspend message), and retains the measurement configuration information after returning to the idle state (or inactive state).
  • the terminal in the idle state (or inactive state) expects the frequency point established in the DC or CA connection, but does not meet the frequency point of the neighbor cell measurement parameter (such as low priority) Level frequency points), define and adopt one or more sets of measurement parameters that are different from the frequency points (such as high priority frequency points) that are not only in the desired frequency point but also meet the measurement parameters of the adjacent cell, and enable the adjacent cell frequency point ( From the measurement detection of dedicated signaling configuration or SIB configuration when the connection is released.
  • the above-mentioned new measurement parameters can ensure fewer measurement times and lower power consumption; the UE reports the measurement results to achieve the purpose of reducing neighboring cell measurement after state transition and quickly establishing a CA/DC connection.
  • the relationship between the frequency points that the UE needs to measure includes at least one of the following relationships: intra-frequency, inter-frequency, and inter-RAT.
  • CA or DC frequency -Specified frequency
  • the measCarrierList in the measurement configuration information contains these frequency points, and the specific UE1 is notified.
  • UE1 in a serving cell (Serving Cell: f1)
  • measurement is performed according to the cell reselection measurement priority criterion. Assuming that the priority of frequency ⁇ f3,f4 ⁇ is higher than f1, the UE always starts the measurement of frequency ⁇ f3,f4 ⁇ ; the priority of frequency ⁇ f2,f5 ⁇ is lower than f1, and the RSRP value of the serving cell is greater than SnonIntraSearchP , So the measurement on frequency points f2 and f5 is not started.
  • the embodiment of the present application does not change the measurement priority, and uses different measurement parameters for frequency points with different priorities.
  • the measurement parameters corresponding to the existing measurement parameters include N0 cycles
  • the measurement parameters corresponding to the relaxed measurement parameters include N1 cycles
  • the above scheme is also applicable to other UE2 in the serving cell.
  • the cycle can be DRX cycle.
  • the cycle can be eDRX cycle.
  • the measurement parameters are configured in the form of a table through the agreement, and the specific measurement parameters are constants. It should be noted that this example takes intra-frequency as an example, and the cases of inter-frequency and inter-rat are also applicable to the solution in this example.
  • Table 1 is a table corresponding to the existing measurement parameters (normal requirement).
  • Table 2 is a table corresponding to the relaxed requirement (relaxed requirement). Comparing Table 2 and Table 1, it can be seen that the measurement parameters (such as Tdetect, EUTRAN_Intra, Tmeasure, EUTRAN_Intra, Tevaluate, E-UTRAN_intra) are increased in Table 2.
  • the network side uses RRC dedicated signaling to configure the measurement parameters of the DC/CA frequency list of UE1 in a certain serving cell; or, the network side uses SIB signaling to configure the DC/CA frequency list of all UEs in a certain serving cell
  • the measurement parameters the difference between SIB signaling and RRC dedicated signaling is that the DC/CA frequency list configured by SIB signaling is for all UEs in the cell and is applicable to all UEs.
  • this example takes intra-frequency as an example, and the cases of inter-frequency and inter-rat are also applicable to the solution in this example.
  • the scaling factor (Scaling Factor) carried in the first indication information includes a scaling parameter, that is, on the basis of the measurement parameter of the normal requirement, multiplied by the scaling parameter to obtain the measurement parameter of the relaxed requirement.
  • a scaling parameter that is, on the basis of the measurement parameter of the normal requirement, multiplied by the scaling parameter to obtain the measurement parameter of the relaxed requirement.
  • S1, S2, ... can be unified values, that is, the configuration signaling is independent of the DRX cycle, and only one IE; S1, S2, ... can also be different, that is, the configuration signaling corresponds to different DRX cycles. Or the same IE.
  • the scaling factor (Scaling Factor) carried in the first indication information includes multiple scaling parameters, N, M,..., that is, on the basis of the measurement parameter of the normal requirement, multiplied by N and M...there are the measurement parameters of the relaxed requirement, As shown in Table 4.
  • the scaling factor (ScalingFactor) carried in the first indication information includes a scaling parameter, that is, on the basis of the measurement parameter of the normal requirement, plus the scaling parameter is the measurement parameter of the relaxed requirement.
  • the scaling factor (Scaling Factor) carried in the first indication information includes multiple scaling parameters, N, M,..., that is, on the basis of the measurement parameter of the normal requirement, plus N and M...that is, the measurement parameter of the relaxed requirement.
  • the configuration parameters are a combination of the above.
  • the first indication information does not exclude obtaining through other pre-configuration information, such as the cell frequency list reserved when the UE releases the connection, the UE or The default frequency combination of the network.
  • the technical solutions of the embodiments of the present application are applicable to un-license systems, such as NR-unlicensed (NR-U) and License Assisted Access (LAA).
  • NR-U NR-unlicensed
  • LAA License Assisted Access
  • NR-U NR-unlicensed
  • LAA License Assisted Access
  • Both protocol pre-configuration or RRC dedicated signaling configuration methods can be supported, that is, configuring several sets of tables or scaling parameters with different relaxation levels.
  • the embodiment of this application provides a method for optimizing UE measurement in idle state/inactive state.
  • RRC dedicated signaling or SIB signaling can be used to indicate designated frequency points (CA or DC frequency), flexibly adjust the measurement time and cycle of the idle state/inactive state UE on different frequency points, report and provide effective measurement results for the network side, and ensure that the network side can quickly configure and activate CA or DC. While ensuring the mobility of the terminal, it reduces the power loss of the idle state and inactive state UE.
  • FIG. 12 is a schematic structural composition diagram of a terminal measurement device provided by an embodiment of the application. As shown in FIG. 12, the device includes:
  • the obtaining unit 1201 is configured to obtain first indication information, where the first indication information is used to determine a measurement parameter of a specified measurement frequency point, and the measurement parameter of the specified measurement frequency point is a first measurement parameter and/or a second measurement parameter , The first measurement parameter is greater than the first measurement parameter.
  • the first indication information is configured by the network side using RRC dedicated signaling; or,
  • the first indication information is configured by the network side using SIB signaling; or,
  • the first indication information is configured by the protocol.
  • the first indication information is carried in measurement configuration information.
  • the measurement configuration information includes a list of designated measurement frequency points, and the first indication information is carried in the list of designated measurement frequency points.
  • the designated measurement frequency point list includes a DC frequency point list or a CA frequency point list.
  • the first indication information includes a first indication field, and the first indication field is used to indicate the first measurement parameter or the second measurement parameter.
  • the first indication information includes a second indication field, and the second indication field is used to indicate a scaling factor of the first measurement parameter.
  • the device further includes: a first determining unit 1202, configured to determine the first measurement parameter based on the second measurement parameter and a scaling factor of the first measurement parameter.
  • different measurement parameters share the same scaling factor; or,
  • Some measurement parameters share the same scaling factor, and measurement parameters other than the partial measurement parameters correspond to independent scaling factors.
  • the scaling factor includes one scaling parameter or multiple scaling parameters.
  • the first indication information includes a third indication field, and the third indication field is used to indicate index information of the first measurement parameter.
  • the terminal determines the measurement parameter of the specified measurement frequency according to the protocol configuration.
  • the first measurement parameter includes at least one of the following: in-band measurement measurement parameters, inter-band measurement measurement parameters, and inter-standard measurement parameters.
  • the second measurement parameter includes at least one of the following: in-band measurement measurement parameters, inter-band measurement measurement parameters, and inter-standard measurement parameters.
  • the first measurement parameter includes at least one of the following parameters: detection duration, measurement duration, and evaluation duration;
  • the second measurement parameter includes at least one of the following parameters: detection duration, measurement duration, and evaluation duration.
  • the device further includes:
  • the second determining unit 1203 is configured to determine the measurement parameter of the target frequency point based on the first indication information.
  • the second determining unit 1203 is configured to determine a target frequency point with a high priority and start measurement, and the measurement parameter of the target frequency point is the second measurement parameter, wherein the target frequency with high priority Point refers to the frequency point with higher priority than the serving cell.
  • the second determining unit 1203 is configured to determine a high priority target frequency point, and the target frequency point belongs to the designated measurement frequency point, and the measurement parameter of the target frequency point is the second measurement parameter Or, for a high-priority target frequency point, and the target frequency point does not belong to the designated measurement frequency point, the measurement parameter of the target frequency point is the second measurement parameter.
  • the second determining unit 1203 is configured to determine a high priority target frequency point, and the target frequency point does not belong to the designated measurement frequency point, and the measurement parameter of the target frequency point is based on the The measurement parameter determined by the first indication information or the measurement parameter determined based on the second indication information, where the second indication information is used to determine the measurement parameter of the target frequency point, where the high priority target frequency point refers to The priority is higher than the frequency of the serving cell.
  • the high-priority target frequency point is the frequency point for starting measurement.
  • the second determining unit 1203 is configured to determine target frequency points of the same priority or low priority, and the target frequency point belongs to the designated measurement frequency point, and the measurement parameter of the target frequency point is The measurement parameter determined based on the first indication information, wherein the target frequency point with the same priority or low priority refers to a frequency point with a priority not higher than the serving cell.
  • the target frequency points of the same priority or low priority are target frequency points for which measurement is not started.
  • the second determining unit 1203 is configured to determine that the target frequency point is not activated for the target frequency point of the same priority or low priority, and the target frequency point does not belong to the designated measurement frequency point Measurement, where the target frequency points with the same priority or low priority refer to the frequency points with the priority not higher than the serving cell.
  • the terminal is a terminal in an idle state or an inactive state.
  • FIG. 13 is a schematic structural diagram of a communication device 600 provided by an embodiment of the present application.
  • the communication device may be a terminal.
  • the communication device 600 shown in FIG. 13 includes a processor 610, and the processor 610 may call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620.
  • the processor 610 may call and run a computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610, or may be integrated in the processor 610.
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 600 may specifically be a network device in an embodiment of the present application, and the communication device 600 may implement the corresponding process implemented by the network device in each method of the embodiment of the present application. For brevity, details are not repeated here. .
  • the communication device 600 may specifically be a mobile terminal/terminal according to an embodiment of the application, and the communication device 600 may implement the corresponding procedures implemented by the mobile terminal/terminal in each method of the embodiments of the application. For the sake of brevity, This will not be repeated here.
  • FIG. 14 is a schematic structural diagram of a chip of an embodiment of the present application.
  • the chip 700 shown in FIG. 14 includes a processor 710, and the processor 710 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 700 may further include a memory 720.
  • the processor 710 may call and run a computer program from the memory 720 to implement the method in the embodiment of the present application.
  • the memory 720 may be a separate device independent of the processor 710, or may be integrated in the processor 710.
  • the chip 700 may further include an input interface 730.
  • the processor 710 may control the input interface 730 to communicate with other devices or chips, and specifically, may obtain information or data sent by other devices or chips.
  • the chip 700 may further include an output interface 740.
  • the processor 710 can control the output interface 740 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the network device in the various methods of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the network device in the various methods of the embodiment of the present application.
  • the chip can be applied to the mobile terminal/terminal in the embodiment of the present application, and the chip can implement the corresponding process implemented by the mobile terminal/terminal in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the mobile terminal/terminal in each method of the embodiment of the present application.
  • it will not be omitted here. Repeat.
  • the chip mentioned in the embodiment of the present application may also be referred to as a system-level chip, a system-on-chip, a system-on-chip, or a system-on-chip, etc.
  • FIG. 15 is a schematic block diagram of a communication system 900 according to an embodiment of the present application. As shown in FIG. 15, the communication system 900 includes a terminal 910 and a network device 920.
  • the terminal 910 may be used to implement the corresponding functions implemented by the terminal in the foregoing method
  • the network device 920 may be used to implement the corresponding functions implemented by the network device in the foregoing method.
  • details are not described herein again.
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous DRAM (SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is to say, the memory in the embodiment of the present application is intended to include but not limited to these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium may be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer-readable storage medium may be applied to the mobile terminal/terminal in the embodiments of the present application, and the computer program causes the computer to execute the corresponding processes implemented by the mobile terminal/terminal in the various methods of the embodiments of the present application, for It’s concise and will not be repeated here.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product may be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program product can be applied to the mobile terminal/terminal in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding procedures implemented by the mobile terminal/terminal in the various methods of the embodiments of the present application, for the sake of brevity , I won’t repeat it here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program runs on the computer, the computer is caused to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the computer program can be applied to the mobile terminal/terminal in the embodiments of the present application.
  • the computer program runs on the computer, the computer can execute the corresponding methods implemented by the mobile terminal/terminal in the various methods of the embodiments of the present application. For the sake of brevity, the process is not repeated here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Telephone Function (AREA)

Abstract

本申请实施例提供一种终端的测量方法及装置、终端,包括:终端获取第一指示信息,所述第一指示信息用于确定指定测量频点的测量参数,所述指定测量频点的测量参数为第一测量参数和/或第二测量参数,所述第一测量参数大于所述第一测量参数。

Description

一种终端的测量方法及装置、终端 技术领域
本申请实施例涉及移动通信技术领域,具体涉及一种终端的测量方法及装置、终端。
背景技术
终端获取空闲状态或非激活状态的测量配置后,保存该测量配置。当终端进入空闲状态或非激活状态时,基于所保存的测量配置执行小区测量;然后,终端通过上行消息向网络侧指示存在测量结果,并基于基站请求的方式进行测量结果的上报。
终端执行小区测量时,如果按照现有的测量要求,终端在连续的时长内评估出不满足小区选择准备条件或小区重选准备条件,那么终端将不再参考当前的测量准则,终端会对服务小区配置的所有邻区频点进行测量。另一方面,对于终端配置的指定测量频点,终端执行小区测量时,如果按照现有的测量要求,很可能检测完指定测量频点后不会启动该指定测量频点的测量,这部分指定测量频点的检测会消耗终端额外的功率。
发明内容
本申请实施例提供一种终端的测量方法及装置、终端。
本申请实施例提供的终端的测量方法,包括:
终端获取第一指示信息,所述第一指示信息用于确定指定测量频点的测量参数,所述指定测量频点的测量参数为第一测量参数和/或第二测量参数,所述第一测量参数大于所述第一测量参数。
本申请实施例提供的终端的测量装置,所述装置包括:
获取单元,用于获取第一指示信息,所述第一指示信息用于确定指定测量频点的测量参数,所述指定测量频点的测量参数为第一测量参数和/或第二测量参数,所述第一测量参数大于所述第一测量参数。
本申请实施例提供的终端,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的终端的测量方法。
本申请实施例提供的芯片,用于实现上述的终端的测量方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的终端的测量方法。
本申请实施例提供的计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的终端的测量方法。
本申请实施例提供的计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的终端的测量方法。
本申请实施例提供的计算机程序,当其在计算机上运行时,使得计算机执行上述的终端的测量方法。
通过上述技术方案,在不改变终端的现有测量准则的前提下,对指定频点或频段采用不同的测量参数,以稀疏终端对这部分专用测量的频次,从而降低终端功耗,与此同时,为网络侧提供快速配置CA和DC所需的邻区测量结果。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请实施例提供的一种通信系统架构的示意性图;
图2为本申请实施例提供的RRC状态转换的示意图;
图3为本申请实施例提供的UE处于RRC_INACTIVE状态下的RNA的示意;
图4(a)为本申请实施例提供的非连续性载波聚合的一种示意图;
图4(b)为本申请实施例提供的连续性载波聚合的一种示意图;
图5为本申请实施例提供的idle测量配置的示意图;
图6为本申请实施例提供的EN-DC的网络部署和组网架构图;
图7为本申请实施例提供的测量参数的示意图;
图8为本申请实施例提供的终端的测量方法的流程示意图一;
图9(a)为本申请实施例提供的测量配置信息的示意图一;
图9(b)为本申请实施例提供的测量配置信息的示意图二;
图10为本申请实施例提供的终端的测量方法的流程示意图二;
图11为本申请实施例提供的应用示例一的场景示意图;
图12为本申请实施例提供的终端的测量装置的结构组成示意图;
图13为本申请实施例提供的一种通信设备示意性结构图;
图14为本申请实施例的芯片的示意性结构图;
图15为本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统或5G系统等。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端进行通信。可选地,该网络设备110可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端120。作为在此使用的“终端”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无 绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端或者未来演进的PLMN中的终端等。
可选地,终端120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图1示例性地示出了一个网络设备和两个终端,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端120,网络设备110和终端120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,以下相关技术与本申请实施例的技术方案的任意结合均属于本申请实施例的保护范围。
随着人们对速率、延迟、高速移动性、能效的追求以及未来生活中业务的多样性、复杂性,为此第三代合作伙伴计划(3 rd Generation Partnership Project,3GPP)国际标准组织开始研发5G。5G的主要应用场景为:增强移动超宽带(enhanced Mobile Broadband,eMBB)、低时延高可靠通信(Ultra-Reliable Low-Latency Communications,URLLC)、大规模机器类通信(massive Machine-Type Communications,mMTC)。
一方面,eMBB仍然以用户获得多媒体内容、服务和数据为目标,其需求增长十分迅速。另一方面,由于eMBB可能部署在不同的场景中,例如室内,市区,农村等,其能力和需求的差别也比较大,所以不能一概而论,必须结合具体的部署场景详细分析。URLLC的典型应用包括:工业自动化,电力自动化,远程医疗操作(手术),交通安全保障等。mMTC的典型特点包括:高连接密度,小数据量,时延不敏感业务,模块的低成本和长使用寿命等。
5G为了降低空口信令和快速恢复无线连接,快速恢复数据业务的目的,定义了一个新的无线资源控制(Radio Resource Control,RRC)状态,即RRC非激活(RRC_INACTIVE)状态。这种状态有别于RRC空闲(RRC_IDLE)状态和RRC激活(RRC_ACTIVE)状态。其中,
1)RRC_IDLE状态(简称为空闲(idle)状态):移动性为基于UE的小区选择重选,寻呼由核心网(Core Network,CN)发起,寻呼区域由CN配置。基站侧不存在UE上下文,不存在RRC连接。
2)RRC_CONNECTED状态(简称为连接(connected)状态):存在RRC连接,基站侧和UE侧存在UE上下文。网络侧知道UE的位置是具体小区级别的。移动性是网络侧控制的移动性。UE和基站之间可以传输单播数据。
3)RRC_INACTIVE状态(简称为非激活(inactive)状态):移动性为基于UE的小区选择重选,存在CN-NR之间的连接,UE上下文存在某个基站上,寻呼由RAN触发,基于RAN的寻呼区域由RAN管理,网络侧知道UE的位置是基于RAN的寻呼区域级别的。
网络侧可以控制UE的RRC状态转换,如图2所示,具体地:
1)RRC_CONNECTED状态与RRC_INACTIVE状态
一方面,网络侧可以通过释放并悬挂RRC连接控制UE从RRC_CONNECTED状态转换到RRC_INACTIVE状态;
另一方面,网络侧可以通过恢复RRC连接控制UE从RRC_INACTIVE状态转换到RRC_CONNECTED状态。
2)RRC_CONNECTED状态与RRC_IDLE状态
一方面,网络侧可以通过释放RRC连接控制UE从RRC_CONNECTED状态转换到RRC_IDLE状态;
另一方面,网络侧可以通过建立RRC连接控制UE从RRC_IDLE状态转换到RRC_CONNECTED状态。
3)RRC_INACTIVE状态与RRC_IDLE状态
网络侧可以通过释放RRC连接控制UE从RRC_INACTIVE状态转换到RRC_IDLE状态。
UE处于RRC_INACTIVE状态的情况下,可以通过以下事件中的任意一种事件可以触发UE自主回到RRC_IDLE状态:
-接收到CN初始的寻呼消息;
-发起RRC恢复请求时,启动定时器T319,如果定时器T319超时超;
-MSG4完整性保护验证失败;
-小区重选到其他无线接入技术(Radio Access Technology,RAT);
-进入驻留到任意小区(camp on any cell)的状态。
UE处于RRC_INACTIVE状态的情况下,具有如下特征:
-RAN和CN之间的连接是保持的;
-UE和至少一个基站保存AS上下文;
-UE对于RAN侧来说是可达的,相关参数由RAN配置;
-当UE在RAN配置的RNA内移动时不需要通知网络侧,但当移动出RNA时需要通知网络侧;
-UE在RNA内移动按照小区选择重选方式。
当UE处于RRC_INACTIVE状态,网络侧会通过RRC释放(RRCRelease)专用信令给UE配置RRC_INACTIVE状态的参数,主要参数包括:I-RNTI,用于标识UE在基站侧的inactive状态对应的上下文,I-RNTI在基站内唯一。RNA,用于控制UE在inactive状态下进行小区选择重选的区域,也是RAN初始寻呼的寻呼范围区域。RAN非连续接收周期(RAN DRX cycle),用于计算RAN初始寻呼的寻呼时机。RNAU周期(RNAU periodicity),用于控制UE执行周期性RAN位置更新的周期。NCC,用于RRC连接恢复过程中使用的秘钥。
图3为UE处于RRC_INACTIVE状态下的RNA的示意图,基站1至基站5覆盖的小区范围为RNA,当UE在RNA内移动时不用通知网络侧,遵循idle状态下移动性行为,即小区选择重选原则。当UE移动出RAN配置的寻呼区域时,会触发UE恢复RRC连接并重新获取RAN配置的寻呼区域。当UE有下行数据到达时,为UE保持RAN和CN之间连接的gNB会触发RAN寻呼区域内的所有小区发送寻呼消息给UE,使得inactive状态的UE能够恢复RRC连接,进行数据接收。处于inactive状态的UE,配置了RAN寻呼区域,在该区域内为了保证UE的可达性,UE需要按照网络配置的周期进行周期性位置更新。
所以UE从inactive状态进入connected状态,有三种情况:
一是,UE有下行数据到达,网络侧发起RAN初始的寻呼,促使UE进入连接状态;
二是,UE自身发起RAN位置区域更新,例如周期性RAN位置更新或者跨区域位置更新。
三是,UE有上行数据发送需求,促使UE进入连接状态。
idle状态和inactive状态下的UE的邻区测量行为受系统广播消息中的相关参数约束。例如:
对于同频测量的启动,当服务小区Srxlev>SIntraSearchP而且服务小区Squal>SIntraSearchQ时,不启动同频邻区测量,否则启动同频邻区测量。
对于同优先级或者低优先级的异频测量,当服务小区Srxlev>SnonIntraSearchP而且服务小区Squal>SnonIntraSearchQ时,不启动同优先级或者低优先级的异频测量,否则启动。
对于高优先级的异频测量,总是启动对其的测量。
为了满足高速率的需求,5G中也支持载波聚合(Carrier Aggregation,CA)技术。载波聚合(Carrier Aggregation,CA),即通过联合调度和使用多个成员载波(Component Carrier,CC)上的资源,使得NR系统可以支持更大的带宽,从而能够实现更高的系统峰值速率。根据所聚合载波的在频谱上的连续性可以分为,连续性载波聚合和非连续性载波聚合,图4(a)为非连续性载波聚合的一种示意图,图4(b)为连续性载波聚合的一种示意图;根据聚合的载波所在的频段(band)是否相同,分为频段内(Intra-band)载波聚合和频段间(inter-band)载波聚合。
在CA中,有且只有一个主载波(Primary Cell Component,PCC),PCC提供RRC信令连接,非接入层(Non-Access Stratrum,NAS)功能,安全等。物理上行控制信道(Physical Uplink Control Channel,PUCCH)在PCC上且只在PCC上存在。在CA中,可以有一个或多个辅载波(Secondary Cell Component,SCC),SCC只提供额外的无线资源。PCC和SCC同称为服务小区,其中,PCC 上的小区为主小区(Pcell),SCC上的小区为辅小区(Scell)。标准上还规定聚合的载波最多支持5个,即聚合后的最大带宽为100MHZ,并且聚合载波属于同一个基站。所有的聚合载波使用相同的小区无线网络临时标识(Cell-Radio Network Temporary Identifier,C-RNTI),基站实现保证C-RNTI在每个载波所在的小区不发生冲突。由于支持不对称载波聚合和对称载波聚合两种,所以要求聚合的载波一定有下行载波,可以没有上行载波。而且对于主载波小区来说一定有本小区的物理下行控制信道(Physical Downlink Control Channel,PDCCH)和PUCCH,而且只有主载波小区有PUCCH,其他辅载波小区可能有PDCCH。
Scell通过RRC专用信令进行配置,初始配置的状态为非激活状态,该状态下不能进行数据收发。然后通过媒体接入控制控制单元(Media Access Control Control Element,MAC CE)进行Scell的激活才能进行数据收发。从Scell配置和激活的时延的角度看,这个架构不是一个最优的架构。而这个时延又降低了CA使用和无线资源的效率,特别是小小区部署场景。在密集小小区部署场景,每个Scell的信令负荷也很大,特别是每个Scell需要单独配置情况下。因此当前CA架构引入了额外的延迟,限制了CA的使用,降低了CA负荷分担的增益。
为此,LTE R15对CA进行了优化,主要优化功能如下:
UE在空闲态下的测量(UE measurements during IDLE mode):RRC释放消息(该RRC释放消息即RRC专用信令)中可以配置idle状态的测量配置(该测量配置即专用的测量配置),系统广播SIB5也可以配置idle下的测量配置。如果UE有专用的测量配置则使用专用的测量配置,否则使用SIB5中的测量配置。这里,SIB5中的测量配置没有有效时间限制,RRC专用信令中配置专用测量配置时,同时也配置该专用测量配置的有效时间,即T331(measIdleDuration)。T331超时或者停止,则释放专用信令中配置的测量配置,UE是否继续使用SIB5中的测量配置,取决于UE的实现。
UE获取idle状态的测量配置(简称idle测量配置)后,UE执行测量,通过在上行消息中指示网络侧存在idle状态的测量结果(简称idle测量结果),然后基于基站请求方式进行上报。同时小区在SIB2中也会广播是否支持idle测量结果的上报。
idle测量配置如图5所示,系统广播SIB5中的idle测量配置(MeasIdleConfigSIB)包括载波列表(measIdleCarrierListEUTRA),RRC专用信令中的idle测量配置(MeasIdleConfigDedicated)包括载波列表(measIdleCarrierListEUTRA)和有效时间(measIdleDuration)。进一步,对于measIdleCarrierListEUTRA而言,包括carrierFreq、allowedMeasBandwidth、validityArea、reportQuantities以及qualityThreshold。其中,carrierFreq和allowedMeasBandwidth指示了测量的频点和测量带宽;validityArea指示了idle测量配置的有效范围,是一个cell list。如果UE重选到一个该validityArea之外的小区,则停止定时器T331。measCellList给出测量配置上报的小区,其他小区不用上报,如果该measCellList没有配置,则UE上报满足qualityThreshold的最多maxCellMeasIdle个小区的测量上报。上报的测量通过reportQuantities指定。
Scell休眠状态(Dormant Scell state):Scell的状态分为激活状态和非激活状态,为了快速小区恢复,定义了一个新的小区状态,即休眠(dormant)状态。在dormant状态下,UE测量和上报信道质量指示(Channel Quality Indicator,CQI)和/或无线资源管理(Radio Resource Management,RRM)测量结果,但是不解码PDCCH。同时新定义一个MAC CE控制dormant状态转换,具体地,通过新定义的MAC CE控制激活状态和dormant状态之间的转换,将MAC CE设置为1表示dormant状态,设置为0表示激活状态。
直接Scell状态配置(Direct Scell state configuration):RRC信令可以配置Scell的状态为激活状态或者dormant状态,默认为非激活状态。
短CQI上报(Short CQI reporting):Scell处于激活状态,UE也许被配置了另一个短的CQI上报周期,允许UE快速指示CQI在Scell激活之后。经过一定的时间周期后,UE转换到常规的CQI配置中。
公共Scell配置(Common Scell configuration):定义一个Scell组来给UE提供common的配置信息来优化信令。每个Scell专用的配置参数可以覆盖common里面的参数。
在NR早期部署时,完整的NR覆盖很难获取,所以典型的网络覆盖是广域的LTE覆盖和NR的孤岛覆盖模式。而且大量的LTE部署在6GHz以下,可用于5G的6GHz以下频谱很少。所以NR必须研究6GHz以上的频谱应用,而高频段覆盖有限、信号衰落快。同时为了保护移动运营商前期在LTE投资,提出了LTE和NR之间紧耦合(tight interworking)的工作模式。
为了能够尽快实现5G网络部署和商业应用,3GPP在2017年12底前首先完成第一个5G版 本,即EN-DC(LTE-NR Dual Connectivity)。在EN-DC中,LTE基站(eNB)作为主节点(Master Node,MN),NR基站(gNB或en-gNB)作为辅节点(Secondary Node,SN),EN-DC的网络部署和组网架构如图6所示,其中,演进的通用无线接入网(Evolved Universal Terrestrial Radio Access Networ,E-UTRAN)代表接入网部分,演进型分组核心网(Evolved Packet Core network,EPC)代表核心网部分,接入网部分由至少一个eNB(图6中示意出两个eNB)和至少一个en-gNB(图6中示意出两个en-gNB)组成,其中,eNB作为MN,en-gNB作为SN,MN和SN均连接到EPC。在R15后期,将支持其他DC模式,即NE-DC,5GC-EN-DC,NR DC。对于EN-DC,接入网络连接的核心网是EPC,而其他DC模式连接的核心网是5GC。
无论针对CA的配置还是DC的配置,都需要降低Scell的配置和激活以及SCG的配置和激活时延,来满足特别是小小区部署场景下的小区容量提升。
UE在SA模式下idle状态下的移动性,将小区重选的测量要求按照测量频率与服务小区频率的关系分为:
·服务小区测量(Measurement and evaluation of serving cell)
·带内测量(Measurements of intra-frequency cells)
·带间测量(Measurements of inter-frequency cells)
·制式间测量(Measurements of inter-RAT cells)
UE的测量涉及到三个测量参数,分别为检测时长(Tdetect),测量时长(Tmeasure),评估时长(Tevaluate)。关于Tdetect,Tmeasure,Tevaluate的定义,如图7所示,以带内测量为例,其他类型的测量与带内测量类似:
1)UE识别新带内小区(new intra-frequency cells)并测量指定频点的同步信号参考信号接收功率(Synchronization Signal-Reference Signal Received Power,SS-RSRP)和同步信号参考信号接收质量(Synchronization Signal-Reference Signal Received Quality,SS-RSRQ);
2)UE评估新检测到的带内小区(a newly detectable intra-frequency cell)是否满足小区重选准则,检测时长为Tdetect;
3)UE根据测量准则来测量带内小区(intra-frequency cells)的SS-RSRP and SS-RSRQ,测量时长为Tmeasure;
4)已经被检测(detected)但还没有重选到的intra-frequency cell,UE应在Tevaluate时间内来评估这个小区的测量数据以供筛选(filtering)。
5)UE筛选(filter)每个测量过的intra-frequency cell的SS-RSRP and SS-RSRQ(至少2组),至少的两组测量应至少间隔Tmeasure/2。
6)如果服务小区指示(在测量控制系统信息中)小区重选的UE不做邻区测量,UE不考虑邻区的频点测量。
idle状态或inactive状态的UE按照现有的测量要求在连续的数个DRX cycles里评估不满足小区选择准备或小区重选准备,UE将不再参考当前的测量准则,开始对服务小区配置的所有邻区频点进行测量。这里,不论UE是否配置DRX cycles,UE以上行为是一样的。
另一方面,为idle状态的UE配置专用测量用于快速CA配置,会影响UE的耗电性能。例如,配置的专用测量频点如果在系统信息中对应的频点优先级相对较低,那么按照现有的测量行为UE很可能不会启动该频点的测量。另外,UE在idle状态下的驻留时间不可预测,即UE何时离开idle状态进入connected状态在释放链接的时候是无法确定的。如果长时间UE不需要建立或恢复RRC连接,那么这部分专用测量将不能为网络可用并会消耗UE额外的功率。需要说明的是,上述关于idle状态的UE的描述同样适用于inactive状态的UE,此处不再赘述。
本申请实施例提出以下技术方案,可以实现终端进行快速小区选择或小区重选,以及节省终端耗电。
图8为本申请实施例提供的终端的测量方法的流程示意图一,如图8所示,所述终端的测量方法包括以下步骤:
步骤801:终端获取第一指示信息,所述第一指示信息用于确定指定测量频点的测量参数,所述指定测量频点的测量参数为第一测量参数和/或第二测量参数,所述第一测量参数大于所述第一测量参数。
本申请实施例中,所述终端可以是手机、平板电脑、笔记本、车载终端、可穿式设备等任意能够与网络进行通信的设备。
本申请实施例中,所述终端为处于空闲状态或非激活状态下的终端。
本申请实施例中,所述终端可以通过以下方式获取第一指示信息:
方式一:所述第一指示信息为网络侧采用RRC专用信令配置的。
基于此,终端接收基站发送的RRC专用信令,通过该RRC专用信令获取第一指示信息。
这里,RRC专用信令例如是RRC释放(RRC Release)消息。
方式二:所述第一指示信息为网络侧采用SIB信令配置的。
基于此,终端接收基站发送的SIB信令,通过该SIB信令获取第一指示信息。
这里,SIB信令例如是SIB5信令。
方式三:所述第一指示信息为协议配置的。
基于此,终端根据协议获取第一指示信息。
本申请实施例中,网络侧采用RRC专用信令或SIB信令配置某个服务小区内的一个或多个终端的指定测量频点(如DC/CA频点)的测量参数。
需要说明的是,所述指定测量频点的个数可以为一个或多个,对于某一个指定测量频点,所述指定测量频点的测量参数为第一测量参数或第二测量参数。对于多个指定测量频点,所述多个指定测量频点的测量参数可能都是第一测量参数,或者都是第二参数参数,或者部分是第一测量参数另一部分是第二测量参数。
本申请实施例中,所述第一指示信息携带在测量配置信息中。进一步,所述测量配置信息包括指定测量频点列表,所述第一指示信息携带在所述指定测量频点列表中。进一步,所述指定测量频点列表包括DC频点列表或CA频点列表。
参照图9(a),SIB信令中的测量配置信息(MeasConfigSIB)包括指定测量频点列表(measCarrierList),RRC专用信令中的测量配置信息(MeasConfigDedicated)包括measCarrierList和有效时间(measDuration)。进一步,对于measCarrierList而言,包括carrierFreq、allowedMeasBandwidth、validityArea、reportQuantities以及qualityThreshold等等。其中,carrierFreq和allowedMeasBandwidth指示了测量的频点和测量带宽;validityArea指示了测量配置的有效范围,是一个cell list。measCellList给出测量配置上报的小区,其他小区不用上报,如果该measCellList没有配置,则UE上报满足qualityThreshold的最多maxCellMeasIdle个小区的测量上报。上报的测量通过reportQuantities指定。
上述方案中,measCarrierList用于快速实现CA或DC。
需要说明的是,对于idle状态,MeasConfigSIB可表示为MeasIdleConfigSIB,measCarrierList可表示为measIdleCarrierList,MeasConfigDedicated可表示为MeasIdleConfigDedicated,measDuration可表示为measIdleDuration。对于inactive状态,MeasConfigSIB可表示为MeasInactiveConfigSIB,measCarrierList可表示为measInactiveCarrierList,MeasConfigDedicated可表示为MeasInactiveConfigDedicated,measDuration可表示为measInactiveDuration。
需要说明的是,上述measCarrierList可以适用于EUTRA(表示为measCarrierListEUTRA),也可以适用于NR(表示为measCarrierListNR)。
在一种实施方式中,可以在measConfigDedicated中携带第一指示信息,进一步,可以在measConfigDedicated中的measCarrierList中携带第一指示信息。
在另一种实施方式中,可以在MeasConfigSIB中携带第一指示信息,进一步,可以在MeasConfigSIB中的measCarrierList中携带第一指示信息。
参照图9(b),9(b)在图9(a)的基础上在measCarrierList中增加了第一指示信息(Relaxed requirement Indicator),需要说明的是,图9(b)所示的例子是在measCarrierList这个IE内增加了第一指示信息(Relaxed requirement Indicator),本申请实施例的技术方案不局限于此,例如可以在measConfigDedicated或MeasConfigSIB中增加一个IE,该新增加的IE的内容即为第一指示信息(Relaxed requirement Indicator),该新增加的IE与measCarrierList这个IE相互独立。进一步,所述第一指示信息用于确定指定测量频点的测量参数,所述指定测量频点的测量参数为第一测量参数或第二测量参数,所述第一测量参数大于所述第一测量参数。这里,所述第一测量参数也可表示成放松的测量参数(或者称为放松的测量要求,relaxed requirement),所述第二测量参数也可以表示成现有的测量参数(或者称为现有的测量要求,normal requirement),对现有的测量参数进行放松便得到放松的测量参数。这里,放松的意思是指将现有的测量参数增大。进一步,所述第一指示信息包括以下至少一种指示域:
1)第一指示域,所述第一指示域用于指示第一测量参数或第二测量参数。
举个例子:通过1bit指示是采用第一测量参数还是采用第二测量参数。例如1bit的取值为0 代表采用第二测量参数(即现有的测量参数),1bit的取值为1代表采用第一测量参数(即放松的测量参数)。
2)第二指示域,所述第二指示域用于指示第一测量参数的缩放因子。
基于此,所述终端基于所述第二测量参数和所述第一测量参数的缩放因子,确定所述第一测量参数。
进一步,不同的测量参数共享相同的缩放因子;或者,不同的测量参数对应独立的缩放因子;或者,部分测量参数共享相同的缩放因子,除所述部分测量参数之外的测量参数对应独立的缩放因子。
进一步,所述缩放因子包括一个缩放参数或多个缩放参数。
具体实现时,第二指示域包括整型数,该整型数配置为第一测量参数对应的缩放因子(scaling factor);如果该整型数为缺省值,则采用第二测量参数。
3)第三指示域,所述第三指示域用于指示第一测量参数的索引信息。
举个例子:通过2bit指示第一测量参数的索引信息。
4)所述第一指示信息为缺省值的情况下,所述终端按照协议配置确定指定测量频点的测量参数。
本申请实施例中,测量频率与服务小区频率的关系分为:
·服务小区测量(Measurement and evaluation of serving cell)
·带内测量(Measurements of intra-frequency cells)
·带间测量(Measurements of inter-frequency cells)
·制式间测量(Measurements of inter-RAT cells)。
基于此,将测参数按照测量频率与服务小区频率的关系分为:
1)所述第一测量参数包括以下至少之一:带内测量的测量参数、带间测量的测量参数,制式间测量的测量参数。
2)所述第二测量参数包括以下至少之一:带内测量的测量参数、带间测量的测量参数,制式间测量的测量参数。
上述方案中,所述第一测量参数包括以下至少一种参数:检测时长(Tdetect)、测量时长(Tmeasure)、评估时长(Tevaluate);同样,所述第二测量参数包括以下至少一种参数:检测时长(Tdetect)、测量时长(Tmeasure)、评估时长(Tevaluate)。关于Tdetect,Tmeasure,Tevaluate的定义,如图7所示,此处不再赘述。
本申请实施例中,所述终端基于所述第一指示信息,确定目标频点的测量参数。以下结合不同情况的目标频点对如何确定目标频点的测量参数进行描述。
1)对于高优先级的目标频点,该目标频点的测量参数为第二测量参数,其中,高优先级的目标频点是指优先级高于服务小区的频点。
进一步,对于高优先级的目标频点,且该目标频点属于所述指定测量频点,该目标频点的测量参数为第二测量参数;或者,
进一步,对于高优先级的目标频点,且该目标频点不属于所述指定测量频点,该目标频点的测量参数为第二测量参数。
这里,所述高优先级的目标频点为启动测量的频点。
2)对于高优先级的目标频点,且该目标频点不属于所述指定测量频点,该目标频点的测量参数为基于所述第一指示信息所确定的测量参数或者基于第二指示信息所确定的测量参数,所述第二指示信息用于确定所述目标频点的测量参数,其中,高优先级的目标频点是指优先级高于服务小区的频点。
这里,所述高优先级的目标频点为启动测量的频点。
3)对于同优先级或低优先级的目标频点,且该目标频点属于所述指定测量频点,该目标频点的测量参数为基于所述第一指示信息所确定的测量参数,其中,同优先级或低优先级的目标频点是指优先级不高于服务小区的频点。
这里,所述同优先级或低优先级的目标频点为未启动测量的目标频点。
4)对于同优先级或低优先级的目标频点,且该目标频点不属于所述指定测量频点,该目标频点不启动测量,其中,同优先级或低优先级的目标频点是指优先级不高于服务小区的频点。
图10为本申请实施例提供的终端的测量方法的流程示意图二,如图10所示,所述终端的测量方法包括以下步骤:
步骤1001:基站向终端发送RRC专用信令,该RRC专用信令包括测量配置信息,所述测量配置信息包括第一指示信息。
这里,所述第一指示信息用于确定指定测量频点(CA或DC频点)的测量参数,所述指定测量频点的测量参数为放松的测量参数或现有的测量参数。
在一种实施方式中,RRC专用信令可以是RRC Release消息,如此,终端收到该RRC Release消息后进入idle状态。
在另一种实施方式中,RRC专用信令可以是Release with suspend消息,如此,终端收到该Release with suspend消息后进入inactive状态。
步骤1002:终端基于测量配置信息进行小区测量。
这里,小区测量包括对指定测量频点的测量。
步骤1003:终端向基站发送RRC建立消息或RRC恢复消息。
这里,如果终端接收到的是RRC Release消息,则终端向基站发送RRC建立消息。如果终端接收到的是Release with suspend消息,则终端向基站发送RRC恢复消息。
步骤1004:基站进行CA或DC的建立。
本申请实施例中,终端在RRC Release消息(或Release with suspend消息)中收到网络侧的专用测量配置信息,回到idle状态(或inactive状态)后保留该测量配置信息,在执行基于小区重选频点优先级机制的邻区测量过程中,对于idle状态(或inactive状态)下的终端期望在DC或CA连接中建立的频点,而不满足邻区测量参数的频点(如低优先级频点),定义并采用一套或多套,不同于既在期望频点中又满足邻区测量参数的频点(如高优先级频点)的测量参数,使能邻区频点(来自连接释放时专用信令配置或SIB配置)的测量检测。同时上述新的测量参数又可以保证更少的测量次数、更低的功耗;UE上报测量结果,以达到状态转换后减少邻区测量,快速建立CA/DC连接的目的。
以下结合具体应用示例对本申请实施例的技术方案进行举例说明。
应用示例一
-服务小区的频点:f1;
-idle状态或inactive状态下UE需要测量的频点:{f1,…,f5};
这里,UE需要测量的频点之间的关系包括以下至少一种关系:intra-frequency、inter-frequency、inter-RAT。
-指定频点(CA或DC频点):{f1,f2,f3}。
这里,测量配置信息中的measCarrierList中包含这些频点,并通知特定的UE1。
参照图11,对于服务小区(Serving Cell:f1)内的UE1,按照小区重选测量优先级准则进行测量。假设{f3,f4}的频点优先级高于f1,则UE一直启动频点{f3,f4}的测量;频点{f2,f5}的优先级低于f1,且服务小区RSRP值大于SnonIntraSearchP,因此频点f2和f5上的测量没有启动。本申请实施例不改变测量优先级,对于不同优先级的频点采用不同的测量参数。
-对于高优先级且基于小区重选准则已启动测量的频点(如f3),仍按照现有的测量参数;
-对于低优先级且基于小区重选准则未启动测量的频点,但同时属于目标频点的频点(如f2),采用放松的测量参数1,相比于现有测量参数放松测量的时间窗口;
-对于高优先级且基于小区重选准则已启动测量的频点,但不属于目标频点的频点(如f4),仍按照现有测量参数,或者采用放松的测量参数2。
-对于其他低优先级且基于小区重选准则未启动测量的频点,但不属于目标频点的频点(如f5等),不启动测量。
其中,假设现有的测量参数对应的测量参数包括N0个cycle,放松的测量参数对应的测量参数包括N1个cycle,那么有N1>N0。
此外,对于服务小区内的其他UE2等同样适用于上述方案。
本申请实施例的系统包括但不局限于:
E-UTRA系统,相应地,cycle可以为DRX cycle。
NR系统,相应地,cycle可以为eDRX cycle。
应用示例二
通过协议以表格的方式配置测量参数,具体的测量参数为常数。需要说明的是,本示例是以intra-frequency为例,对于inter-frequency和inter-rat的情况同样适用于本示例中的方案。
表1为现有的测量参数(normal requirement)对应的表格。表2为放松的测量参数(relaxed  requirement)对应的表格。对比表2和表1可以看出,测量参数(如Tdetect,EUTRAN_Intra,Tmeasure,EUTRAN_Intra,Tevaluate,E-UTRAN_intra)在表2中被增大。
Figure PCTCN2019075200-appb-000001
表1
Figure PCTCN2019075200-appb-000002
表2
应用示例三
网络侧采用RRC专用信令配置某个服务小区内的UE1的DC/CA频点列表的测量参数;或者,网络侧采用SIB信令配置某个服务小区内的所有UE的DC/CA频点列表的测量参数。这里,SIB信令与RRC专用信令的区别在于,SIB信令配置的DC/CA频点列表是面向小区内所有的UE的,所有UE均适用。需要说明的是,本示例是以intra-frequency为例,对于inter-frequency和inter-rat的情况同样适用于本示例中的方案。
-第一指示信息携带的缩放因子(Scaling Factor)包括一个缩放参数,即在normal requirement的测量参数的基础上,乘以缩放参数即为relaxed requirement的测量参数。以表3为例,S1,S2,…可以为统一数值,即配置信令与DRX cycle独立,仅为一个IE;S1,S2,…也可以不同,即配置信令对应不同的DRX cycle有不同或相同的IE。
Figure PCTCN2019075200-appb-000003
表3
-第一指示信息携带的缩放因子(Scaling Factor)包括多个缩放参数,N、M,…,即在normal requirement的测量参数的基础上,乘以N和M…即为relaxed requirement的测量参数,如表4所示。
Figure PCTCN2019075200-appb-000004
表4
-第一指示信息携带的缩放因子(Scaling Factor)包括一个缩放参数,即在normal requirement的测量参数的基础上,加上缩放参数即为relaxed requirement的测量参数。
-第一指示信息携带的缩放因子(Scaling Factor)包括多个缩放参数,N、M,…,即在normal requirement的测量参数的基础上,加上N和M…即为relaxed requirement的测量参数。
-配置参数为以上几种的组合。
进一步,增加考虑不同的频率范围(Frequency Range)的缩放参数的加权的作用,如表5所示:
Figure PCTCN2019075200-appb-000005
表5
本申请实施例的技术方案中,A)第一指示信息(或者携带第一指示信息的测量配置信息)不排除通过其他预配置信息获取,如UE释放连接时预留的cell frequency list、UE或网络默认的频点组合。B)本申请实施例的技术方案适用于免授权(un-license)系统,如NR免授权(NR-U)、辅助授权接入(License Assisted Access,LAA)。C)对于指定频点列表,可以配置不同的cycles。协议预配置或RRC专用信令配置的方法,均可以支持,即配置几套不同放松等级的表格或scaling参数。本申请实施例提供了一种优化idle状态/inactive状态UE测量的方法,对不同的频点采用不同的测量参数,可以采用预配置、RRC专用信令或SIB信令指示指定频点(CA或DC频点),灵活调整idle状态/inactive状态UE在不同频点上的测量时间和周期,为网络侧上报和提供有效的测量结果,并保证网络侧可以快速配置并激活CA或DC。在保证终端移动性的同时,降低idle状态和inactive状态UE的功率损耗。
图12为本申请实施例提供的终端的测量装置的结构组成示意图,如图12所示,所述装置包括:
获取单元1201,用于获取第一指示信息,所述第一指示信息用于确定指定测量频点的测量参数,所述指定测量频点的测量参数为第一测量参数和/或第二测量参数,所述第一测量参数大于所述第一测量参数。
在一实施方式中,所述第一指示信息为网络侧采用RRC专用信令配置的;或者,
所述第一指示信息为网络侧采用SIB信令配置的;或者,
所述第一指示信息为协议配置的。
在一实施方式中,所述第一指示信息携带在测量配置信息中。
在一实施方式中,所述测量配置信息包括指定测量频点列表,所述第一指示信息携带在所述指定测量频点列表中。
在一实施方式中,所述指定测量频点列表包括DC频点列表或CA频点列表。
在一实施方式中,所述第一指示信息包括第一指示域,所述第一指示域用于指示第一测量参数或第二测量参数。
在一实施方式中,所述第一指示信息包括第二指示域,所述第二指示域用于指示第一测量参数的缩放因子。
在一实施方式中,所述装置还包括:第一确定单元1202,用于基于所述第二测量参数和所述第一测量参数的缩放因子,确定所述第一测量参数。
在一实施方式中,不同的测量参数共享相同的缩放因子;或者,
不同的测量参数对应独立的缩放因子;或者,
部分测量参数共享相同的缩放因子,除所述部分测量参数之外的测量参数对应独立的缩放因子。
在一实施方式中,所述缩放因子包括一个缩放参数或多个缩放参数。
在一实施方式中,所述第一指示信息包括第三指示域,所述第三指示域用于指示第一测量参 数的索引信息。
在一实施方式中,所述第一指示信息为缺省值的情况下,所述终端按照协议配置确定指定测量频点的测量参数。
在一实施方式中,所述第一测量参数包括以下至少之一:带内测量的测量参数、带间测量的测量参数,制式间测量的测量参数。
在一实施方式中,所述第二测量参数包括以下至少之一:带内测量的测量参数、带间测量的测量参数,制式间测量的测量参数。
在一实施方式中,所述第一测量参数包括以下至少一种参数:检测时长、测量时长、评估时长;
所述第二测量参数包括以下至少一种参数:检测时长、测量时长、评估时长。
在一实施方式中,所述装置还包括:
第二确定单元1203,用于基于所述第一指示信息,确定目标频点的测量参数。
在一实施方式中,所述第二确定单元1203,用于对于高优先级且已启动测量的目标频点,该目标频点的测量参数为第二测量参数,其中,高优先级的目标频点是指优先级高于服务小区的频点。
在一实施方式中,所述第二确定单元1203,用于对于高优先级的目标频点,且该目标频点属于所述指定测量频点,该目标频点的测量参数为第二测量参数;或者,对于高优先级的目标频点,且该目标频点不属于所述指定测量频点,该目标频点的测量参数为第二测量参数。
在一实施方式中,所述第二确定单元1203,用于对于高优先级的目标频点,且该目标频点不属于所述指定测量频点,该目标频点的测量参数为基于所述第一指示信息所确定的测量参数或者基于第二指示信息所确定的测量参数,所述第二指示信息用于确定所述目标频点的测量参数,其中,高优先级的目标频点是指优先级高于服务小区的频点。
在一实施方式中,所述高优先级的目标频点为启动测量的频点。
在一实施方式中,所述第二确定单元1203,用于对于同优先级或低优先级的目标频点,且该目标频点属于所述指定测量频点,该目标频点的测量参数为基于所述第一指示信息所确定的测量参数,其中,同优先级或低优先级的目标频点是指优先级不高于服务小区的频点。
在一实施方式中,所述同优先级或低优先级的目标频点为未启动测量的目标频点。
在一实施方式中,所述第二确定单元1203,用于对于同优先级或低优先级的目标频点,且该目标频点不属于所述指定测量频点,确定该目标频点不启动测量,其中,同优先级或低优先级的目标频点是指优先级不高于服务小区的频点。
在一实施方式中,所述终端为处于空闲状态或非激活状态下的终端。
本领域技术人员应当理解,本申请实施例的上述终端的测量装置的相关描述可以参照本申请实施例的终端的测量方法的相关描述进行理解。
图13是本申请实施例提供的一种通信设备600示意性结构图。该通信设备可以是终端,图13所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图13所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图13所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600具体可为本申请实施例的移动终端/终端,并且该通信设备600可以实现本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
图14是本申请实施例的芯片的示意性结构图。图14所示的芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图14所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720 中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图15是本申请实施例提供的一种通信系统900的示意性框图。如图15所示,该通信系统900包括终端910和网络设备920。
其中,该终端910可以用于实现上述方法中由终端实现的相应的功能,以及该网络设备920可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (53)

  1. 一种终端的测量方法,所述方法包括:
    终端获取第一指示信息,所述第一指示信息用于确定指定测量频点的测量参数,所述指定测量频点的测量参数为第一测量参数和/或第二测量参数,所述第一测量参数大于所述第一测量参数。
  2. 根据权利要求1所述的方法,其中,
    所述第一指示信息为网络侧采用无线资源控制RRC专用信令配置的;或者,
    所述第一指示信息为网络侧采用系统信息块SIB信令配置的;或者,
    所述第一指示信息为协议配置的。
  3. 根据权利要求1或2所述的方法,其中,所述第一指示信息携带在测量配置信息中。
  4. 根据权利要求3所述的方法,其中,所述测量配置信息包括指定测量频点列表,所述第一指示信息携带在所述指定测量频点列表中。
  5. 根据权利要求4所述的方法,其中,所述指定测量频点列表包括双连接DC频点列表或载波聚合CA频点列表。
  6. 根据权利要求1至5任一项所述的方法,其中,所述第一指示信息包括第一指示域,所述第一指示域用于指示第一测量参数或第二测量参数。
  7. 根据权利要求1至6任一项所述的方法,其中,所述第一指示信息包括第二指示域,所述第二指示域用于指示第一测量参数的缩放因子。
  8. 根据权利要求7所述的方法,其中,所述方法还包括:
    所述终端基于所述第二测量参数和所述第一测量参数的缩放因子,确定所述第一测量参数。
  9. 根据权利要求8所述的方法,其中,
    不同的测量参数共享相同的缩放因子;或者,
    不同的测量参数对应独立的缩放因子;或者,
    部分测量参数共享相同的缩放因子,除所述部分测量参数之外的测量参数对应独立的缩放因子。
  10. 根据权利要求8或9所述的方法,其中,所述缩放因子包括一个缩放参数或多个缩放参数。
  11. 根据权利要求1至10任一项所述的方法,其中,所述第一指示信息包括第三指示域,所述第三指示域用于指示第一测量参数的索引信息。
  12. 根据权利要求1至11任一项所述的方法,其中,所述第一指示信息为缺省值的情况下,所述终端按照协议配置确定指定测量频点的测量参数。
  13. 根据权利要求1至12任一项所述的方法,其中,所述第一测量参数包括以下至少之一:带内测量的测量参数、带间测量的测量参数,制式间测量的测量参数。
  14. 根据权利要求1至13任一项所述的方法,其中,所述第二测量参数包括以下至少之一:带内测量的测量参数、带间测量的测量参数,制式间测量的测量参数。
  15. 根据权利要求1至14任一项所述的方法,其中,
    所述第一测量参数包括以下至少一种参数:检测时长、测量时长、评估时长;
    所述第二测量参数包括以下至少一种参数:检测时长、测量时长、评估时长。
  16. 根据权利要求1至15任一项所述的方法,其中,所述方法还包括:
    所述终端基于所述第一指示信息,确定目标频点的测量参数。
  17. 根据权利要求16所述的方法,其中,所述终端基于所述第一指示信息,确定目标频点的测量参数,包括:
    对于高优先级的目标频点,该目标频点的测量参数为第二测量参数,其中,高优先级的目标频点是指优先级高于服务小区的频点。
  18. 根据权利要求17所述的方法,其中,所述对于高优先级的目标频点,该目标频点的测量参数为第二测量参数,包括:
    对于高优先级的目标频点,且该目标频点属于所述指定测量频点,该目标频点的测量参数为第二测量参数;或者,
    对于高优先级的目标频点,且该目标频点不属于所述指定测量频点,该目标频点的测量参数为第二测量参数。
  19. 根据权利要求16所述的方法,其中,所述终端基于所述第一指示信息,确定目标频点的测量参数,包括:
    对于高优先级的目标频点,且该目标频点不属于所述指定测量频点,该目标频点的测量参数为基于所述第一指示信息所确定的测量参数或者基于第二指示信息所确定的测量参数,所述第二指示信息用于确定所述目标频点的测量参数,其中,高优先级的目标频点是指优先级高于服务小区的频点。
  20. 根据权利要求17至19任一项所述的方法,其中,所述高优先级的目标频点为启动测量的频点。
  21. 根据权利要求16所述的方法,其中,所述终端基于所述第一指示信息,确定目标频点的测量参数,包括:
    对于同优先级或低优先级的目标频点,且该目标频点属于所述指定测量频点,该目标频点的测量参数为基于所述第一指示信息所确定的测量参数,其中,同优先级或低优先级的目标频点是指优先级不高于服务小区的频点。
  22. 根据权利要求21所述的方法,其中,所述同优先级或低优先级的目标频点为未启动测量的目标频点。
  23. 根据权利要求16所述的方法,其中,所述终端基于所述第一指示信息,确定目标频点的测量参数,包括:
    对于同优先级或低优先级的目标频点,且该目标频点不属于所述指定测量频点,该目标频点不启动测量,其中,同优先级或低优先级的目标频点是指优先级不高于服务小区的频点。
  24. 根据权利要求1至23任一项所述的方法,其中,所述终端为处于空闲状态或非激活状态下的终端。
  25. 一种终端的测量装置,所述装置包括:
    获取单元,用于获取第一指示信息,所述第一指示信息用于确定指定测量频点的测量参数,所述指定测量频点的测量参数为第一测量参数和/或第二测量参数,所述第一测量参数大于所述第一测量参数。
  26. 根据权利要求25所述的装置,其中,
    所述第一指示信息为网络侧采用RRC专用信令配置的;或者,
    所述第一指示信息为网络侧采用SIB信令配置的;或者,
    所述第一指示信息为协议配置的。
  27. 根据权利要求25或26所述的装置,其中,所述第一指示信息携带在测量配置信息中。
  28. 根据权利要求27所述的装置,其中,所述测量配置信息包括指定测量频点列表,所述第一指示信息携带在所述指定测量频点列表中。
  29. 根据权利要求28所述的装置,其中,所述指定测量频点列表包括DC频点列表或CA频点列表。
  30. 根据权利要求25至29任一项所述的装置,其中,所述第一指示信息包括第一指示域,所述第一指示域用于指示第一测量参数或第二测量参数。
  31. 根据权利要求25至30任一项所述的装置,其中,所述第一指示信息包括第二指示域,所述第二指示域用于指示第一测量参数的缩放因子。
  32. 根据权利要求31所述的装置,其中,所述装置还包括:第一确定单元,用于基于所述第二测量参数和所述第一测量参数的缩放因子,确定所述第一测量参数。
  33. 根据权利要求32所述的装置,其中,
    不同的测量参数共享相同的缩放因子;或者,
    不同的测量参数对应独立的缩放因子;或者,
    部分测量参数共享相同的缩放因子,除所述部分测量参数之外的测量参数对应独立的缩放因子。
  34. 根据权利要求32或33所述的装置,其中,所述缩放因子包括一个缩放参数或多个缩放参数。
  35. 根据权利要求25至34任一项所述的装置,其中,所述第一指示信息包括第三指示域,所述第三指示域用于指示第一测量参数的索引信息。
  36. 根据权利要求25至35任一项所述的装置,其中,所述第一指示信息为缺省值的情况下,所述终端按照协议配置确定指定测量频点的测量参数。
  37. 根据权利要求25至36任一项所述的装置,其中,所述第一测量参数包括以下至少之一:带内测量的测量参数、带间测量的测量参数,制式间测量的测量参数。
  38. 根据权利要求25至37任一项所述的装置,其中,所述第二测量参数包括以下至少之一:带内测量的测量参数、带间测量的测量参数,制式间测量的测量参数。
  39. 根据权利要求25至38任一项所述的装置,其中,
    所述第一测量参数包括以下至少一种参数:检测时长、测量时长、评估时长;
    所述第二测量参数包括以下至少一种参数:检测时长、测量时长、评估时长。
  40. 根据权利要求25至39任一项所述的装置,其中,所述装置还包括:
    第二确定单元,用于基于所述第一指示信息,确定目标频点的测量参数。
  41. 根据权利要求40所述的装置,其中,所述第二确定单元,用于对于高优先级且已启动测量的目标频点,该目标频点的测量参数为第二测量参数,其中,高优先级的目标频点是指优先级高于服务小区的频点。
  42. 根据权利要求41所述的装置,其中,所述第二确定单元,用于对于高优先级的目标频点,且该目标频点属于所述指定测量频点,该目标频点的测量参数为第二测量参数;或者,对于高优先级的目标频点,且该目标频点不属于所述指定测量频点,该目标频点的测量参数为第二测量参数。
  43. 根据权利要求40所述的装置,其中,所述第二确定单元,用于对于高优先级的目标频点,且该目标频点不属于所述指定测量频点,该目标频点的测量参数为基于所述第一指示信息所确定的测量参数或者基于第二指示信息所确定的测量参数,所述第二指示信息用于确定所述目标频点的测量参数,其中,高优先级的目标频点是指优先级高于服务小区的频点。
  44. 根据权利要求41至43任一项所述的装置,其中,所述高优先级的目标频点为启动测量的频点。
  45. 根据权利要求40所述的装置,其中,所述第二确定单元,用于对于同优先级或低优先级的目标频点,且该目标频点属于所述指定测量频点,该目标频点的测量参数为基于所述第一指示信息所确定的测量参数,其中,同优先级或低优先级的目标频点是指优先级不高于服务小区的频点。
  46. 根据权利要求45所述的装置,其中,所述同优先级或低优先级的目标频点为未启动测量的目标频点。
  47. 根据权利要求40所述的装置,其中,所述第二确定单元,用于对于同优先级或低优先级的目标频点,且该目标频点不属于所述指定测量频点,确定该目标频点不启动测量,其中,同优先级或低优先级的目标频点是指优先级不高于服务小区的频点。
  48. 根据权利要求25至47任一项所述的装置,其中,所述终端为处于空闲状态或非激活状态下的终端。
  49. 一种终端,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至24中任一项所述的方法。
  50. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至24中任一项所述的方法。
  51. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至24中任一项所述的方法。
  52. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至24中任一项所述的方法。
  53. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至24中任一项所述的方法。
PCT/CN2019/075200 2019-02-15 2019-02-15 一种终端的测量方法及装置、终端 WO2020164101A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020217029356A KR20210127212A (ko) 2019-02-15 2019-02-15 단말의 측정 방법 및 장치, 단말
CN201980077036.0A CN113170364A (zh) 2019-02-15 2019-02-15 一种终端的测量方法及装置、终端
PCT/CN2019/075200 WO2020164101A1 (zh) 2019-02-15 2019-02-15 一种终端的测量方法及装置、终端
EP19914876.8A EP3917207B1 (en) 2019-02-15 2019-02-15 Terminal measurement method and apparatus
CN202110918894.2A CN113709833B (zh) 2019-02-15 2019-02-15 一种终端的测量方法及装置、终端
JP2021547389A JP7323628B2 (ja) 2019-02-15 2019-02-15 端末のための測定方法及び装置、並びに端末
US17/400,642 US11582661B2 (en) 2019-02-15 2021-08-12 Terminal measurement method and apparatus, and terminal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/075200 WO2020164101A1 (zh) 2019-02-15 2019-02-15 一种终端的测量方法及装置、终端

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/400,642 Continuation US11582661B2 (en) 2019-02-15 2021-08-12 Terminal measurement method and apparatus, and terminal

Publications (1)

Publication Number Publication Date
WO2020164101A1 true WO2020164101A1 (zh) 2020-08-20

Family

ID=72043844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/075200 WO2020164101A1 (zh) 2019-02-15 2019-02-15 一种终端的测量方法及装置、终端

Country Status (6)

Country Link
US (1) US11582661B2 (zh)
EP (1) EP3917207B1 (zh)
JP (1) JP7323628B2 (zh)
KR (1) KR20210127212A (zh)
CN (2) CN113170364A (zh)
WO (1) WO2020164101A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11711862B1 (en) 2021-07-15 2023-07-25 T-Mobile Usa, Inc. Dual connectivity and carrier aggregation band selection
EP4250816A4 (en) * 2020-11-23 2024-05-29 Guangdong Oppo Mobile Telecommunications Corp., Ltd. CELL MEASUREMENT METHOD, RADIO COMMUNICATION APPARATUS AND STORAGE MEDIUM

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220116802A1 (en) * 2019-04-01 2022-04-14 Electronics And Telecommunications Research Institute Method and device for measuring channel quality in communication system
CN111800800B (zh) * 2019-08-15 2022-02-08 维沃移动通信有限公司 测量方法、终端设备和网络设备
WO2021066422A1 (en) * 2019-10-02 2021-04-08 Samsung Electronics Co., Ltd. Method and apparatus for performing radio resource management (rrm) measurement in wireless communication system
CN116349310A (zh) * 2020-10-08 2023-06-27 苹果公司 用于用户装备功率节省的信令特性评估放宽
CN113891371B (zh) * 2021-11-10 2023-09-26 Oppo广东移动通信有限公司 频点测量方法及相关产品
US20230189033A1 (en) * 2021-12-14 2023-06-15 Qualcomm Incorporated Techniques for measurement order for carrier aggregation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1565020A1 (en) * 2004-02-12 2005-08-17 M-Stack Limited Method and apparatus for applying information elements in a defined order
CN102547881A (zh) * 2012-01-20 2012-07-04 中兴通讯股份有限公司 一种用户设备控制方法、用户设备和网络侧设备
CN104350776A (zh) * 2014-07-17 2015-02-11 华为技术有限公司 一种调整信号测量周期的方法、无线通信器件及终端
CN105379324A (zh) * 2013-11-01 2016-03-02 Lg电子株式会社 用于发送小区受访历史的方法及其无线设备
CN108738083A (zh) * 2017-04-14 2018-11-02 中国移动通信有限公司研究院 一种触发终端同频测量的方法、装置、终端及基站

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101520706B1 (ko) * 2009-02-10 2015-05-15 엘지전자 주식회사 네트워크 구성 정보 수신 방법
US9220041B2 (en) * 2011-09-30 2015-12-22 Nokia Technologies Oy Mobility enhancement for fast moving user equipment in a heterogenous network environment
CN104186011A (zh) 2012-03-06 2014-12-03 三星电子株式会社 用于最小化用户设备在小区检测期间的耗电的方法和系统
WO2013176481A1 (en) 2012-05-22 2013-11-28 Samsung Electronics Co., Ltd. A method and system for minimizing power consumption of user equipment during cell detection
WO2014153756A1 (en) 2013-03-28 2014-10-02 Nokia Siemens Networks Oy Scaled inter-frequency measurement for cell reselection
US9635574B2 (en) 2014-11-19 2017-04-25 Intel IP Corporation Systems and methods for signaling in an increased carrier monitoring wireless communication environment
US10893428B2 (en) * 2016-01-08 2021-01-12 Telefonaktiebolaget Lm Ericsson (Publ) Methods for adapting UE measurement period to conditions
US11395228B2 (en) * 2018-04-06 2022-07-19 Telefonaktiebolaget Lm Ericsson (Publ) Methods for reducing user equipment power consumption in presence of wake-up signal
CN108882293B (zh) * 2018-06-11 2020-10-13 Oppo广东移动通信有限公司 一种小区切换方法、终端及计算机可读存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1565020A1 (en) * 2004-02-12 2005-08-17 M-Stack Limited Method and apparatus for applying information elements in a defined order
CN102547881A (zh) * 2012-01-20 2012-07-04 中兴通讯股份有限公司 一种用户设备控制方法、用户设备和网络侧设备
CN105379324A (zh) * 2013-11-01 2016-03-02 Lg电子株式会社 用于发送小区受访历史的方法及其无线设备
CN104350776A (zh) * 2014-07-17 2015-02-11 华为技术有限公司 一种调整信号测量周期的方法、无线通信器件及终端
CN108738083A (zh) * 2017-04-14 2018-11-02 中国移动通信有限公司研究院 一种触发终端同频测量的方法、装置、终端及基站

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3917207A4 *
VIVO: "On UE Power Consumption Reduction in RRM Measurements", 3GPP TSG RAN WG1 MEETING #94BIS, R1-1810415, 11 December 2018 (2018-12-11), XP051517824, DOI: 20191030142325X *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4250816A4 (en) * 2020-11-23 2024-05-29 Guangdong Oppo Mobile Telecommunications Corp., Ltd. CELL MEASUREMENT METHOD, RADIO COMMUNICATION APPARATUS AND STORAGE MEDIUM
US11711862B1 (en) 2021-07-15 2023-07-25 T-Mobile Usa, Inc. Dual connectivity and carrier aggregation band selection

Also Published As

Publication number Publication date
CN113709833A (zh) 2021-11-26
US20210377829A1 (en) 2021-12-02
JP2022525588A (ja) 2022-05-18
EP3917207A1 (en) 2021-12-01
CN113709833B (zh) 2023-05-30
US11582661B2 (en) 2023-02-14
EP3917207A4 (en) 2022-01-26
KR20210127212A (ko) 2021-10-21
EP3917207B1 (en) 2023-05-03
CN113170364A (zh) 2021-07-23
JP7323628B2 (ja) 2023-08-08

Similar Documents

Publication Publication Date Title
WO2020164101A1 (zh) 一种终端的测量方法及装置、终端
WO2020154870A1 (zh) 无线通信方法、终端设备和网络设备
TW202021394A (zh) 一種通道監聽方法及裝置、終端設備、網路設備
WO2020237594A1 (zh) 一种bwp的管理方法及装置、终端
WO2020154869A1 (zh) 无线通信方法、终端设备和网络设备
WO2020118726A1 (zh) 一种参数配置方法及装置、网络设备、终端
WO2021087678A1 (zh) 一种小区状态管理方法及装置、终端设备、网络设备
WO2021232245A1 (zh) 一种测量方法及装置、终端设备、网络设备
TW202002695A (zh) 一種下行控制通道的檢測方法及裝置、終端設備
WO2021226761A1 (zh) 测量放松的方法及装置、终端设备、网络设备
WO2021196007A1 (zh) 一种无线资源管理测量方法、电子设备及存储介质
US20210392595A1 (en) Method for information configuration, terminal, and non-transitory computer-readable storage medium
WO2020082248A1 (zh) 一种控制终端移动性的方法及装置、终端
WO2019241969A1 (zh) 配置测量信息的方法、终端设备和网络设备
WO2022006879A1 (zh) 一种寻呼指示的传输方法、电子设备及存储介质
WO2021174427A1 (zh) 测量方法和终端设备
WO2019036933A1 (zh) 小区重选的方法和终端设备
WO2023010362A1 (zh) 收发信号的方法、装置和通信系统
WO2022236835A1 (zh) 确定终端设备行为的方法及装置、终端设备、网络设备
WO2022109955A1 (zh) 一种信息指示方法及装置、终端设备、网络设备
CN113994733B (zh) 一种控制测量的方法、电子设备及存储介质
WO2021212283A1 (zh) 一种请求系统广播信息的方法及装置、终端设备
WO2021203239A1 (zh) 一种下行同步方法、电子设备及存储介质
WO2021142661A1 (zh) 控制小区状态的方法及装置、终端设备、网络设备
WO2021046812A1 (zh) 无线通信方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19914876

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021547389

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019914876

Country of ref document: EP

Effective date: 20210823

ENP Entry into the national phase

Ref document number: 20217029356

Country of ref document: KR

Kind code of ref document: A