WO2020161906A1 - ユーザ装置 - Google Patents

ユーザ装置 Download PDF

Info

Publication number
WO2020161906A1
WO2020161906A1 PCT/JP2019/004698 JP2019004698W WO2020161906A1 WO 2020161906 A1 WO2020161906 A1 WO 2020161906A1 JP 2019004698 W JP2019004698 W JP 2019004698W WO 2020161906 A1 WO2020161906 A1 WO 2020161906A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
sftd
station device
cell
cells
Prior art date
Application number
PCT/JP2019/004698
Other languages
English (en)
French (fr)
Inventor
高橋 秀明
天楊 閔
徹 内野
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to US17/426,807 priority Critical patent/US20220124530A1/en
Priority to JP2020570331A priority patent/JP7273861B2/ja
Priority to PCT/JP2019/004698 priority patent/WO2020161906A1/ja
Priority to KR1020217021187A priority patent/KR20210122773A/ko
Priority to EP19914472.6A priority patent/EP3923621A4/en
Priority to CN201980091246.5A priority patent/CN113412641B/zh
Publication of WO2020161906A1 publication Critical patent/WO2020161906A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0219Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave where the power saving management affects multiple terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • H04W76/16Involving different core network technologies, e.g. a packet-switched [PS] bearer in combination with a circuit-switched [CS] bearer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a user device in a wireless communication system.
  • NR New Radio
  • LTE Long Term Evolution
  • LTE-NR dual connectivity Similar to the dual connectivity in the LTE system, data is divided between the base station (eNB) of the LTE system and the base station (gNB) of the NR system, and the data is simultaneously transmitted and received by these base stations.
  • MR-DC Multi Radio Access Technology
  • the user equipment measures the SFN (System Frame Number) and the subframe timing difference between the eNB that is the master node and the gNB that is the secondary node, and reports the SFTD (SFTD) to the network.
  • SFN and Frame Timing Difference is supported (for example, Non-Patent Document 3).
  • the gNB is a master node
  • a frame, a slot, or a gNB that is a master node and an eNB or gNB that is a secondary node are used. Since it is unknown how much the symbol timing difference is, it is necessary for the user equipment to perform the measurement on the cell of the eNB or the gNB. However, the procedure for the measurement has not been established.
  • the present invention has been made in view of the above points, and an object of the present invention is to allow a user apparatus to measure a timing difference in dual connectivity executed in a wireless communication system using a plurality of RATs.
  • a first base station device that is a master node in an NR (New Radio) wireless communication system and a second base station that is a secondary node in an E-UTRA (Evolved Universal Terrestrial Radio Access) wireless communication system
  • a communication unit that communicates with a device, a reception unit that receives an instruction to measure a SFTD (SFN and frame timing difference) indicating a difference between cells of a system frame number and frame timing from the first base station device, and
  • a control unit that measures SFTD of the cell of the first base station apparatus and the cell of the second base station apparatus based on an instruction to measure SFTD; and a measurement result including the measured SFTD
  • a user equipment having a transmitter for transmitting to one base station equipment.
  • the user apparatus can execute the measurement of the timing difference in the dual connectivity executed in the wireless communication system using a plurality of RATs.
  • FIG. 6 is a sequence diagram for explaining an operation example in the embodiment of the present invention.
  • 7 is a flowchart for explaining a first operation example in the embodiment of the present invention.
  • 6 is a flowchart for explaining a second operation example according to the embodiment of the present invention.
  • It is an example of specification change according to an operation example in the embodiment of the present invention.
  • It is a specification change example (1) according to the first operation example in the embodiment of the present invention.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced and subsequent schemes (eg, NR) unless otherwise specified.
  • SS Synchronization signal
  • PSS Primary SS
  • SSS Secondary SS
  • PBCH Physical broadcast channel
  • PRACH Physical Random access channel
  • the duplex system may be a TDD (Time Division Duplex) system, an FDD (Frequency Division Duplex) system, or other (for example, Flexible Duplex). May be used.
  • “configuring” a wireless parameter or the like may mean that a predetermined value is set in advance (Pre-configure), or the base station device 10 Alternatively, the wireless parameter notified from the user device 20 may be set.
  • FIG. 1 is a diagram showing a configuration example of a network architecture in the embodiment of the present invention.
  • the wireless network architecture according to the embodiment of the present invention includes 4G-CU, 4G-RU (Remote Unit, remote wireless station), EPC (Evolved Packet Core), etc. on the LTE-Advanced side.
  • the wireless network architecture in the embodiment of the present invention includes 5G-CU, 5G-DU, etc. on the 5G side.
  • 4G-CU includes RRC (Radio Resource Control), PDCP (Packet Data Convergence Protocol), RLC (Radio Link Control), MAC (Medium Access Control), L1 (Layer 1, PHY layer or It includes layers up to the physical layer) and is connected to 4G-RU via CPRI (Common Public Radio Interface).
  • RRC Radio Resource Control
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • L1 Layer 1, PHY layer or It includes layers up to the physical layer
  • CPRI Common Public Radio Interface
  • the 5G-CU includes the RRC layer and is connected to the 5G-DU via the FH (Flonthaul) interface, and the 5GC (5G Core Network) and the NG interface (NG interface). Further, the 5G-CU is connected to the 4G-CU by an X2 interface.
  • the PDCP layer in 4G-CU serves as a coupling or separation point when performing 4G-5G DC (Dual Connectivity), that is, EN-DC (E-UTRA-NR Dual Connectivity).
  • a network node including 5G-CU and 5G-DU is called gNB.
  • 5G-CU may be referred to as gNB-CU and 5G-DU may be referred to as gNB-DU.
  • CA Carrier Aggregation
  • DC is performed between 4G-RU and 5G-DU.
  • a UE User Equipment
  • a UE User Equipment
  • FIG. 1 shows a wireless network architecture in LTE-NR DC, that is, EN-DC (E-UTRA-NR Dual Connectivity).
  • EN-DC E-UTRA-NR Dual Connectivity
  • a similar wireless network architecture may be used when separating 4G-CU into CU-DU or when operating NR standalone.
  • the functions related to the RRC layer and the PDCP layer may be moved to the 4G-CU, and the layers below the RLC layer may be included in the 4G-DU.
  • the CPRI data rate may be reduced by the CU-DU separation.
  • a plurality of 5G-DU may be connected to the 5G-CU.
  • NR-DC NR-NR Dual Connectivity
  • NR-DC may be performed by connecting the UE to multiple 5G-CUs, and the UE may connect to multiple 5G-DUs and a single 5G-CU.
  • NR-DC may be performed by.
  • FIG. 2 is a diagram showing a configuration example of a wireless communication system according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing a wireless communication system at the time of MR-DC (Multi-RAT Dual Connectivity).
  • the user apparatus 20 includes a base station apparatus 10A provided by the NR system and a base station apparatus 10B provided by the NR system (hereinafter, when the base station apparatus 10A and the base station apparatus 10B are not distinguished from each other). It may be referred to as “base station device 10 ”). Further, the user apparatus 20 uses the base station apparatus 10A as a master node (hereinafter also referred to as “MN”) and the base station apparatus 10B as a secondary node (hereinafter also referred to as “SN”) NR-NR dual connectivity, That is, it supports NR-DC.
  • MN master node
  • SN secondary node
  • the user apparatus 20 simultaneously uses a plurality of component carriers provided by the base station apparatus 10A that is a master node and the base station apparatus 10B that is a secondary node, and the base station apparatus 10A that is a master node and the base that is a secondary node. It is possible to perform simultaneous transmission or simultaneous reception with the station device 10B.
  • the user equipment 20 may communicate with the base station equipment 10A provided by the LTE system and the base station equipment 10B provided by the NR system. Furthermore, the user apparatus 20 may support LTE-NR dual connectivity, that is, EN-DC, in which the base station apparatus 10A is the MN and the base station apparatus 10B is the SN.
  • the user apparatus 20 simultaneously uses a plurality of component carriers provided by the base station apparatus 10A that is a master node and the base station apparatus 10B that is a secondary node, and the base station apparatus 10A that is a master node and the base that is a secondary node. It is possible to perform simultaneous transmission or simultaneous reception with the station device 10B.
  • the user equipment 20 may communicate with the base station equipment 10A provided by the NR system and the base station equipment 10B provided by the LTE system. Furthermore, the user equipment 20 may support NR-LTE dual connectivity, that is, NE-DC (NR-E-UTRA Dual Connectivity) in which the base station apparatus 10A is the MN and the base station apparatus 10B is the SN.
  • the user apparatus 20 simultaneously uses a plurality of component carriers provided by the base station apparatus 10A that is a master node and the base station apparatus 10B that is a secondary node, and the base station apparatus 10A that is a master node and the base that is a secondary node. It is possible to perform simultaneous transmission or simultaneous reception with the station device 10B.
  • NR-NR dual connectivity NR-LTE dual connectivity
  • LTE-NR dual connectivity NR-NR dual connectivity
  • the user equipment 20 is limited to the above-mentioned dual connectivity.
  • the present invention is applicable to dual connectivity between a plurality of wireless communication systems using different RATs, that is, MR-DC.
  • FIG. 3 is a sequence diagram for explaining an operation example in the embodiment of the present invention.
  • the base station apparatus 10 transmits RRCConnectionReconfiguration including the information element measConfig to the user apparatus 20 via an RRC message.
  • the measConfig includes information about the setting of the measurement performed by the user device 20. For example, the information regarding the intra-frequency measurement, the inter-frequency measurement, the inter-RAT mobility measurement, the measurement gap setting, and the like may be included.
  • RRCConnectionReconfiguration is an example, and the measConfig may be notified by another RRC message. For example, the measConfig may be transmitted to the user device 20 via the RRCConnectionResume.
  • step S2 the user device 20 executes the measurement based on the setting by the measConfig received in step S1.
  • the required measurements are performed for LTE cells or NR cells.
  • the user equipment 20 mainly performs the SFTD measurement.
  • asynchronous DC is performed between the NR master node and the NR or LTE secondary node.
  • asynchronous DC it is unknown how much the radio frame, slot or symbol timing difference is between the master node and the secondary node.
  • the user apparatus 20 measures the SFN and frame timing between the master node (corresponding to “PCell (Primary Cell)”) and the secondary node (corresponding to “PSCell (Primary Secondary Cell)”). Then, the SFTD measurement reported to the base station apparatus 10 is supported. By executing the SFTD measurement, for example, the active period of DRX (Discontinuous reception) can be synchronized between the master node and the secondary node.
  • SFTD measurement in NR the user apparatus 20 measures the SFN offset between the PCell and the PSCell and the frame boundary offset, and reports it to the base station apparatus 10.
  • step S3 the user device 20 transmits the measurement result executed in step S2 to the base station device 10 via the RRC message MeasurementReport.
  • the base station device 10 refers to the received measurement result and performs the setting and scheduling of the radio resources required for the user device 20.
  • FIG. 4 is a flow chart for explaining the first operation example in the embodiment of the present invention.
  • Step S12 is the same as step S12 shown in FIG.
  • the flowchart shown in FIG. 4 is executed by the user device 20 that performs communication by NR-DC or NE-DC.
  • the master node is gNB and the secondary node is gNB or eNB.
  • step S121a the user apparatus 20 determines whether or not the PSCell measurement of the E-UTRA related to SFTD or the adjacent cell measurement is set. If the measurement is set (YES in S121a), the process proceeds to step S122a. If the measurement is not set (NO in S121a), the process proceeds to step S124a.
  • the user apparatus 20 performs SFTD measurement on the SFTD measurement target cell and the NR PCell. Furthermore, the user apparatus 20 may measure RSRP (Reference Signal Received Power), RSRQ (Reference Signal Received Quality) or RS-SINR (Reference Signal-Signal to Noise Interference plus Noise Power Ratio) of the SFTD measurement target cell.
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • RS-SINR Reference Signal-Signal to Noise Interference plus Noise Power Ratio
  • step S123a the user device 20 stores the SFTD measurement result in an IE (Information Element) for NE-DC, sets the measurement result in measResults, and proceeds to step S124a.
  • IE Information Element
  • measResults is an IE included in the MeasurementReport.
  • step S124a the user apparatus 20 determines whether the PSCell measurement of the NR related to SFTD or the adjacent cell measurement is set. If the measurement is set (YES in S124a), the process proceeds to step S125a. If the measurement is not set (NO in S124a), the flow ends.
  • step S125a the user apparatus 20 performs SFTD measurement on the SFTD measurement target cell and the NR PCell. Further, the user equipment 20 may measure the RSRP of the SFTD measurement target cell. When the SFTD measurement target cell is an adjacent cell and no cell is designated, the top three cells having a good reception environment may be set as the SFTD measurement target cell.
  • step S126a the user device 20 stores the SFTD measurement result in the IE for EN-DC, sets the measurement result in measResults, and ends the flow. Note that steps S122a and S123a and steps S125a and S126a may be performed at different times, or may be performed in parallel.
  • FIG. 5 is a flow chart for explaining the second operation example in the embodiment of the present invention.
  • Step S12 is the same as step S12 shown in FIG.
  • the flowchart shown in FIG. 5 is executed by the user equipment 20 that performs communication by NR-DC or NE-DC.
  • the master node is gNB and the secondary node is gNB or eNB.
  • step S121b the user apparatus 20 determines whether or not the PSCell measurement of E-UTRA or the adjacent cell measurement related to SFTD is set. If the measurement is set (YES in S121b), the process proceeds to step S122b, and if the measurement is not set (NO in S121b), the process proceeds to step S124b.
  • step S122b the user apparatus 20 executes SFTD measurement on the SFTD measurement target cell and the NR PCell. Furthermore, the user apparatus 20 may measure RSRP, RSRQ, or RS-SINR of the SFTD measurement target cell. When the SFTD measurement target cell is an adjacent cell and no cell is designated, the top three cells having a good reception environment may be set as the SFTD measurement target cell.
  • step S123b the user apparatus 20 stores the SFTD measurement result in the IE for NE-DC or NR-DC, sets the measurement result in measResults, and proceeds to step S124b.
  • step S124b the user apparatus 20 determines whether the PSCell measurement of the NR related to SFTD or the adjacent cell measurement is set. If the measurement is set (YES in S124b), the process proceeds to step S125b, and if the measurement is not set (NO in S124b), the flow ends.
  • step S125b the user apparatus 20 performs SFTD measurement on the SFTD measurement target cell and the NR PCell. Furthermore, the user apparatus 20 may measure RSRP, RSRQ, or SINR of the SFTD measurement target cell.
  • the SFTD measurement target cell is an adjacent cell and no cell is designated, the top three cells having a good reception environment may be set as the SFTD measurement target cell.
  • step S126b the user device 20 stores the SFTD measurement result in the IE for NE-DC or NR-DC, sets the measurement result in measResults, and ends the flow.
  • the steps S122b and S123b and the steps S125b and S126b may be performed at different times, or may be performed in parallel.
  • FIG. 6 is an example of specification change according to an operation example in the embodiment of the present invention. As shown in FIG. 6, it is specified to measure the SFTD of PCell and PSCell in MR-DC.
  • MR-DC includes EN-DC, NE-DC and NR-DC.
  • FIG. 7 is a specification modification example (1) according to the first operation example in the embodiment of the present invention.
  • the information element reportSFTD-MeasNEDC sets the SFTD measurement reporting in the NE-DC.
  • the information element reportSFTD-MeasNRDC is set to report the SFTD measurement in the NR-DC.
  • FIG. 8 is a specification modification example (2) according to the first operation example in the embodiment of the present invention. As shown in FIG. 8, the operation is defined when a measObject including other than the information element cellsForWhichToReportSFTD-NEDC or the information element cellsForWhichToReportSFTD-NRDC is received.
  • FIG. 9 is a specification modification example (3) according to the first operation example in the embodiment of the present invention.
  • the information element reportSFTD-MeasNEDC when the information element reportSFTD-MeasNEDC is set in the PSCell, the SFTD of the PCell of NR and the PSCell of E-UTRA is reported.
  • the information element reportSFTD-MeasNEDC when the information element reportSFTD-MeasNEDC is set in the adjacent cell, the SFTD between the PCell of NR and one or more adjacent cells at the designated frequency of E-UTRA is reported.
  • FIG. 10 is a specification modification example (4) according to the first operation example in the embodiment of the present invention.
  • the NR PSCell becomes the SFTD measurement target cell (applicable cell).
  • the cell included in the information element cellsForWhichToReportSFTD-NRDC becomes the SFTD measurement target cell, or the information element cellsForWhichToReportSFTD-NRDC at the frequency specified by NR is included in the cell.
  • the top three cells with a good reception environment are the SFTD measurement target cells.
  • the PSCell of E-UTRA becomes the SFTD measurement target cell.
  • the cell included in the information element cellsForWhichToReportSFTD-NEDC becomes the SFTD measurement target cell, or the information element cellsForWhichToReDCTFD included in the E-UTRA specified frequency is included.
  • the cell becomes the SFTD measurement target cell, or among the cells not included in the information element blackCellsToAddModList at the designated frequency of E-UTRA, the upper three cells having a good reception environment become the SFTD measurement target cell.
  • FIG. 11 is a specification modification example (5) according to the first operation example in the embodiment of the present invention. As shown in FIG. 11, the maximum delay of SFTD reporting between the PCell and the cell of E-UTRA is set. Also, the maximum delay of SFTD reporting between PCell and NR cells is set.
  • FIG. 12 shows a specification modification example (6) according to the first operation example in the embodiment of the present invention.
  • the physical cell ID of the E-UTRA of the measurement target cell is set in the information element physCellIdEUTRA.
  • the measurement result acquired from the lower layer is set in the information element sfn-OffsetResult and the information element frameBoundaryOffsetResult.
  • RSRP of the measurement target cell is set in rsrp of the information element measResultsEUTRA.
  • the RSRQ of the measurement target cell is set in rsrq of the information element measResultsEUTRA.
  • the RS-SINR of the measurement target cell is set in sinr of the information element measResultsEUTRA.
  • the NR physical cell ID of the measurement target cell is set in the information element physCellId.
  • the measurement result acquired from the lower layer is set in the information element sfn-OffsetResult and the information element frameBoundaryOffsetResult.
  • RSRP of the measurement target cell is set in the information element rsrpResult.
  • FIG. 13 is a specification modification example (7) according to the first operation example in the embodiment of the present invention.
  • the information element MeasResultCellSFTD-NEDC is an information element physCellIdEUTRA in which the physical cell ID of E-UTRA is set, an information element sfn-OffsetResult in which an SFN offset is set, and information in which a frame boundary offset is set. It includes an information element measResultEUTRA in which one or more of the elements frameBoundaryOffsetResult, RSRP, RSRQ, and RS-SINR are set.
  • FIG. 14 is a specification modification example (8) according to the first operation example in the embodiment of the present invention.
  • the SFN offset is set in the information element sfn-OffsetResult.
  • a frame boundary offset is set in the information element frameBoundaryOffsetResult.
  • One or more of RSRP, RSRQ, and RS-SINR is set in the information element measResultEUTRA.
  • An NR physical cell ID is set in the information element physCellId.
  • the physical cell ID of E-UTRA is set in the information element physCellIdEUTRA.
  • FIG. 15 is a specification modification example (9) according to the first operation example in the embodiment of the present invention.
  • the information element reporterSFTD-MeasNEDC sets the PSCell of E-UTRA or the adjacent cell as the measurement target cell.
  • the adjacent cell is set, the cell is directly specified or the top three cells having a good reception environment are the measurement target cells.
  • FIG. 16 is a specification modification example (10) according to the first operation example in the embodiment of the present invention.
  • the information element reportrSFTD-MeasNRDC sets the NR PSCell or the adjacent cell as the measurement target cell.
  • the adjacent cell is set, the cell is directly specified or the top three cells having a good reception environment are the measurement target cells.
  • FIG. 17 is a specification modification example (1) according to the second operation example in the embodiment of the present invention.
  • the physical cell ID of the E-UTRA of the measurement target cell is set in the information element physCellIdEUTRA.
  • the measurement result acquired from the lower layer is set in the information element sfn-OffsetResult and the information element frameBoundaryOffsetResult.
  • RSRP of the measurement target cell is set in rsrp of the information element measQuantityResultsEUTRA.
  • the RSRQ of the measurement target cell is set in rsrq of the information element measQuantityResultsEUTRA.
  • the RS-SINR of the measurement target cell is set in sinr of the information element measQuantityResultsEUTRA.
  • the NR physical cell ID of the measurement target cell is set in the information element physCellId.
  • the measurement result acquired from the lower layer is set in the information element sfn-OffsetResult and the information element frameBoundaryOffsetResult.
  • RSRP of the measurement target cell is set in the information element measQuantityResults.
  • rsrq is set in the information element reportQuantityCell
  • the RSRQ of the measurement target cell is set in rsrq of the information element measQuantityResults.
  • the SINR of the measurement target cell is set in sinr of the information element measQuantityResults.
  • FIG. 18 is a specification modification example (2) according to the second operation example in the embodiment of the present invention.
  • the information element MeasResultCellSFTD-r15 is an information element PhysCellID in which the physical cell ID of E-UTRA is set or an information element PhysCellID in which the physical cell ID of NR is set, and information in which SFN offset is set.
  • Element sfn-OffsetResult information element frameBoundaryOffsetResult in which a frame boundary offset is set, information element measQuantityResultsEUTRA or RSRP, RSRQ and SINR in which one or more of RSRP, RSRQ, and RS-SINR are set are set. It includes the information element measQuantityResults. That is, the information element MeasResultCellSFTD-r15 is an information element capable of supporting both the SFTD measurement result in NE-DC and the SFTD measurement result in NR-DC.
  • FIG. 19 is a specification modification example (3) according to the second operation example in the embodiment of the present invention.
  • the SFN offset is set in the information element sfn-OffsetResult.
  • a frame boundary offset is set in the information element frameBoundaryOffsetResult.
  • one or more of RSRP, RSRQ and RS-SINR of E-UTRA is set, or one or more of RSRP, RSRQ and SINR of NR is set.
  • An NR physical cell ID is set in the information element physCellId.
  • the physical cell ID of E-UTRA is set in the information element physCellIdEUTRA.
  • the user equipment 20 performs SFTD measurement of the cell to be measured of E-UTRA or NR and the PCell of NR, and if necessary, the SFTD measurement result including RSRP, RSRQ, and SINR measurement results.
  • the report can be sent to the base station device 10.
  • the user equipment can execute the measurement of the timing difference in the dual connectivity executed in the wireless communication system using a plurality of RATs.
  • the base station device 10 and the user device 20 include a function for implementing the above-described embodiment. However, each of the base station device 10 and the user device 20 may have only some of the functions in the embodiment.
  • FIG. 20 is a diagram showing an example of a functional configuration of the base station device 10 in the embodiment of the present invention.
  • the base station device 10 includes a transmission unit 110, a reception unit 120, a setting unit 130, and a control unit 140.
  • the functional configuration shown in FIG. 20 is merely an example. As long as the operation according to the embodiment of the present invention can be executed, the function classification and the names of the function units may be any names.
  • the transmitting unit 110 includes a function of generating a signal to be transmitted to the user device 20 side and wirelessly transmitting the signal. Further, the transmission unit 110 transmits the inter-network node message to another network node.
  • the receiving unit 120 includes a function of receiving various signals transmitted from the user device 20 and acquiring, for example, information of a higher layer from the received signals. Further, the transmission unit 110 has a function of transmitting NR-PSS, NR-SSS, NR-PBCH, DL/UL control signals, etc. to the user apparatus 20. In addition, the receiving unit 120 receives a message between network nodes from another network node.
  • the setting unit 130 stores preset setting information and various setting information to be transmitted to the user device 20.
  • the content of the setting information is, for example, information used for setting various measurements in the user device 20.
  • control unit 140 performs control related to generation of information used for setting measurement performed in the user device 20 and control related to processing of measurement result received from the user device 20. ..
  • the functional unit related to signal transmission in the control unit 140 may be included in the transmission unit 110, and the functional unit related to signal reception in the control unit 140 may be included in the reception unit 120.
  • FIG. 21 is a diagram showing an example of a functional configuration of the user device 20 in the embodiment of the present invention.
  • the user device 20 includes a transmission unit 210, a reception unit 220, a setting unit 230, and a control unit 240.
  • the functional configuration shown in FIG. 21 is merely an example. As long as the operation according to the embodiment of the present invention can be executed, the function classification and the names of the function units may be any names.
  • the transmitting unit 210 creates a transmission signal from the transmission data and wirelessly transmits the transmission signal.
  • the reception unit 220 wirelessly receives various signals and acquires signals of higher layers from the received physical layer signals. Further, the receiving unit 220 has a function of receiving NR-PSS, NR-SSS, NR-PBCH, DL/UL/SL control signals and the like transmitted from the base station apparatus 10.
  • the transmission unit 210 performs P2CH communication to other user apparatuses 20 by using PSCCH (Physical Sidelink Control Channel), PSSCH (Physical Sidelink Shared Channel), PSDCH (Physical Sidelink Discovery Channel), and PSBCH (Physical Sidelink Broadcast Channel). ) Etc., and the receiving part 120 receives PSCCH, PSSCH, PSDCH, PSBCH, etc. from the other user apparatus 20.
  • PSCCH Physical Sidelink Control Channel
  • PSSCH Physical Sidelink Shared Channel
  • PSDCH Physical Sidelink Discovery Channel
  • PSBCH Physical Sidelink Broadcast Channel
  • the setting unit 230 stores various setting information received from the base station device 10 by the receiving unit 220.
  • the setting unit 230 also stores preset setting information.
  • the content of the setting information is, for example, information related to the setting for executing the measurement.
  • the control unit 240 controls the execution and reporting of the measurement in the user device 20, as described in the embodiment.
  • the functional unit related to signal transmission in the control unit 240 may be included in the transmission unit 210, and the functional unit related to signal reception in the control unit 240 may be included in the reception unit 220.
  • each functional block may be realized by using one device physically or logically coupled, or directly or indirectly (for example, two or more devices physically or logically separated). , Wired, wireless, etc.) and may be implemented using these multiple devices.
  • the functional block may be realized by combining the one device or the plurality of devices with software.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, observation, Broadcasting, notifying, communicating, forwarding, configuration, reconfiguring, allocating, mapping, assigning, etc., but not limited to these.
  • I can't.
  • functional blocks (components) that function transmission are called a transmitting unit and a transmitter.
  • the implementation method is not particularly limited.
  • the base station device 10, the user device 20, and the like according to the embodiment of the present disclosure may function as a computer that performs the process of the wireless communication method of the present disclosure.
  • FIG. 22 is a diagram illustrating an example of a hardware configuration of the base station device 10 and the user device 20 according to the embodiment of the present disclosure.
  • the base station device 10 and the user device 20 described above are physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. May be done.
  • the word “apparatus” can be read as a circuit, device, unit, or the like.
  • the hardware configurations of the base station device 10 and the user device 20 may be configured to include one or a plurality of each device illustrated in the figure, or may be configured not to include some devices.
  • Each function in the base station device 10 and the user device 20 causes a predetermined software (program) to be loaded onto hardware such as the processor 1001, the storage device 1002, etc., so that the processor 1001 performs an arithmetic operation and the communication by the communication device 1004. It is realized by controlling and/or controlling at least one of reading and writing of data in the storage device 1002 and the auxiliary storage device 1003.
  • the processor 1001 operates an operating system to control the entire computer, for example.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, a calculation device, a register, and the like.
  • CPU central processing unit
  • the control unit 140 and the control unit 240 described above may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), software module, data, or the like from at least one of the auxiliary storage device 1003 and the communication device 1004 into the storage device 1002, and executes various processes according to these.
  • a program that causes a computer to execute at least part of the operations described in the above-described embodiments is used.
  • the control unit 140 of the base station device 10 illustrated in FIG. 20 may be realized by a control program stored in the storage device 1002 and operated by the processor 1001.
  • the control unit 240 of the user device 20 illustrated in FIG. 21 may be realized by a control program stored in the storage device 1002 and operated by the processor 1001.
  • the various processes described above are executed by one processor 1001, they may be executed simultaneously or sequentially by two or more processors 1001.
  • the processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from the network via an electric communication line.
  • the storage device 1002 is a computer-readable recording medium, and is, for example, at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), and the like. It may be configured.
  • the storage device 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the storage device 1002 can store an executable program (program code), a software module, or the like for implementing the communication method according to the embodiment of the present disclosure.
  • the auxiliary storage device 1003 is a computer-readable recording medium, and is, for example, an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu disk). -Ray disk), smart card, flash memory (eg card, stick, key drive), floppy disk, magnetic strip, etc.
  • the above-mentioned storage medium may be, for example, a database including at least one of the storage device 1002 and the auxiliary storage device 1003, a server, or another appropriate medium.
  • the communication device 1004 is hardware (transmission/reception device) for performing communication between computers via at least one of a wired network and a wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of a frequency division duplex (FDD: Frequency Division Duplex) and a time division duplex (TDD: Time Division Duplex). May be composed of
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the transmitter/receiver may be implemented by physically or logically separating the transmitter and the receiver.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • each device such as the processor 1001 and the storage device 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the base station device 10 and the user device 20 include a microprocessor, a digital signal processor (DSP: Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field Programmable Gate Array), and the like. It may be configured to include hardware, and the hardware may implement some or all of the functional blocks. For example, the processor 1001 may be implemented using at least one of these hardware.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the first base station device and the E-UTRA (Evolved Universal Terrestrial Radio Access) wireless communication system which are master nodes in the NR (New Radio) wireless communication system.
  • a communication unit that communicates with the second base station device, which is a secondary node, and SFTD (SFN and frame timing difference) indicating the difference between the system frame number and the cell of the frame timing from the first base station device.
  • a receiving unit that receives the instruction, a control unit that measures the SFTD of the cell of the first base station apparatus and the cell of the second base station apparatus based on the instruction to measure the SFTD, and the measurement.
  • a user equipment having a transmission unit for transmitting a measurement result including the SFTD obtained to the first base station apparatus.
  • the user apparatus 20 can execute SFTD measurement of the measurement target cell of E-UTRA and the PCell of NR, and report the SFTD measurement result to the base station apparatus 10. That is, the user apparatus can perform the measurement of the timing difference in dual connectivity, which is performed in the wireless communication system using a plurality of RATs.
  • the instruction to measure the SFTD includes information indicating which of the PSCell (Primary Secondary Cell) of the second base station device or the adjacent cell of the second base station device is the target cell for measuring the SFTD. May be included. With this configuration, the user apparatus 20 can switch the SFTD measurement target cell between the PSCell and the adjacent cell depending on the situation.
  • PSCell Primary Secondary Cell
  • the information indicating which of the cells is the target cell of SFTD measurement indicates the adjacent cell of the second base station device, which of the adjacent cells of the second base station device is to be measured is determined.
  • Information indicating may be included in the instruction to measure the SFTD.
  • the instruction for measuring the SFTD is the second base.
  • the upper three cells having a good reception environment among the adjacent cells of the second base station device may be used as the target cell of SFTD measurement. Good.
  • the control unit measures the SFTD when the instruction to measure the SFTD includes an instruction to measure RSRP (Reference Signal Received Power), RSRQ (Reference Signal Received Quality) or SINR (Signal to Interference plus Noise Power Ratio). You may measure RSRP, RSRQ, or SINR of the cell which is the target.
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • SINR Signal to Interference plus Noise Power Ratio
  • the transmitter performs both the SFTD measurement when the master node is the NR wireless communication system and the secondary node is the LTE wireless communication system, and the SFTD measurement when both the master node and the secondary node are the NR wireless communication system.
  • Corresponding information elements may be used.
  • the user equipment 20 can efficiently report the SFTD measurement result of the NE-DC and the NR-DC measurement result using the common information element to the base station device 10.
  • the operation of the plurality of functional units may be physically performed by one component, or the operation of one functional unit may be physically performed by the plurality of components.
  • the order of processing may be changed as long as there is no contradiction.
  • the base station apparatus 10 and the user apparatus 20 are described using functional block diagrams for convenience of processing description, such an apparatus may be realized by hardware, software, or a combination thereof.
  • the software operated by the processor included in the base station device 10 according to the embodiment of the present invention and the software operated by the processor included in the user device 20 according to the embodiment of the present invention are respectively a random access memory (RAM), a flash memory, and a read memory. It may be stored in a dedicated memory (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server, or any other suitable storage medium.
  • the notification of information is not limited to the mode/embodiment described in the present disclosure, and may be performed using another method.
  • information is notified by physical layer signaling (for example, DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling, It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof, and RRC signaling may be called an RRC message, for example, RRC message. It may be a connection setup (RRC Connection Setup) message, an RRC connection reconfiguration message, or the like.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • FRA Fluture Radio Access
  • NR new Radio
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB Universal Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • IEEE 802.20 UWB (Ultra-WideBand
  • Bluetooth registered trademark
  • It may be applied to at least one of the next-generation systems. Further, a plurality of systems may be combined and applied (for example, a combination of at least one of LTE and LTE-A and 5G).
  • the specific operation that is performed by the base station device 10 in this specification may be performed by its upper node in some cases.
  • various operations performed for communication with the user device 20 are other than the base station device 10 and the base station device 10. It is clear that it can be performed by at least one of the network nodes of (for example, but not limited to, MME or S-GW, etc.).
  • the other network node may be a combination of a plurality of other network nodes (for example, MME and S-GW). Good.
  • Information, signals, etc. described in the present disclosure may be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input/output may be performed via a plurality of network nodes.
  • Information that has been input and output may be stored in a specific location (for example, memory), or may be managed using a management table. Information that is input/output may be overwritten, updated, or added. The output information and the like may be deleted. The input information and the like may be transmitted to another device.
  • the determination according to the present disclosure may be performed based on a value (0 or 1) represented by 1 bit, may be performed based on a boolean value (Boolean: true or false), and may be performed by comparing numerical values (for example, , Comparison with a predetermined value).
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the software uses a wired technology (coaxial cable, optical fiber cable, twisted pair, digital subscriber line (DSL: Digital Subscriber Line), etc.) and/or wireless technology (infrared, microwave, etc.) websites, When sent from a server, or other remote source, at least one of these wired and wireless technologies are included within the definition of transmission medium.
  • wired technology coaxial cable, optical fiber cable, twisted pair, digital subscriber line (DSL: Digital Subscriber Line), etc.
  • wireless technology infrared, microwave, etc.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description include voltage, current, electromagnetic waves, magnetic fields or magnetic particles, optical fields or photons, or any of these. May be represented by a combination of
  • At least one of the channel and the symbol may be a signal (signaling).
  • the signal may also be a message.
  • a component carrier CC:Component Carrier
  • CC Component Carrier
  • system and “network” used in this disclosure are used interchangeably.
  • the information, parameters, etc. described in the present disclosure may be represented by using an absolute value, may be represented by using a relative value from a predetermined value, or by using other corresponding information. May be represented.
  • the radio resources may be those indicated by the index.
  • base station Base Station
  • radio base station base station
  • base station device fixed station
  • NodeB NodeB
  • eNodeB eNodeB
  • GNB nodeB
  • Access point access point
  • transmission point transmission point
  • reception point transmission/reception point
  • cell cell
  • vector Terms such as “cell group”, “carrier”, “component carrier” may be used interchangeably.
  • a base station may be referred to by terms such as macro cell, small cell, femto cell, and pico cell.
  • a base station can accommodate one or more (eg, three) cells.
  • the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (RRH: Communication service can also be provided by Remote Radio Head.
  • RRH small indoor base station
  • the term "cell” or “sector” means a part or the whole of the coverage area of at least one of the base station and the base station subsystem that perform communication service in this coverage. Refers to.
  • MS Mobile Station
  • UE User Equipment
  • Mobile stations are defined by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmission device, a reception device, a communication device, or the like.
  • at least one of the base station and the mobile station may be a device mounted on a mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ).
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be replaced by the user terminal.
  • the communication between the base station and the user terminal is replaced with communication between a plurality of user devices 20 (eg, may be referred to as D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.)
  • a plurality of user devices 20 eg, may be referred to as D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.
  • the user device 20 may have the function of the base station device 10 described above.
  • the words such as “up” and “down” may be replaced with the words corresponding to the communication between terminals (for example, “side”).
  • the uplink channel and the downlink channel may be replaced with the side channel.
  • the user terminal in the present disclosure may be replaced by the base station.
  • the base station may have the function of the above-mentioned user terminal.
  • determining and “determining” as used in this disclosure may encompass a wide variety of actions.
  • “Judgment” and “decision” are, for example, judgment, calculating, computing, processing, deriving, investigating, and looking up, search, inquiry. (Eg, searching in a table, a database, or another data structure), considering ascertaining as “judging” or “deciding” may be included.
  • “decision” and “decision” include receiving (eg, receiving information), transmitting (eg, transmitting information), input (input), output (output), access (accessing) (for example, accessing data in a memory) may be regarded as “judging” and “deciding”.
  • judgment and “decision” are considered to be “judgment” and “decision” when things such as resolving, selecting, selecting, establishing, establishing, and comparing are done. May be included. That is, the “judgment” and “decision” may include considering some action as “judgment” and “decision”. In addition, “determination (decision)” may be read as “assuming,” “expecting,” “considering,” and the like.
  • connection means any direct or indirect connection or coupling between two or more elements, and It may include the presence of one or more intermediate elements between two elements that are “connected” or “coupled”.
  • the connections or connections between the elements may be physical, logical, or a combination thereof.
  • connection may be read as “access”.
  • two elements are in the radio frequency domain, with at least one of one or more wires, cables and printed electrical connections, and as some non-limiting and non-exhaustive examples. , Can be considered to be “connected” or “coupled” to each other, such as with electromagnetic energy having wavelengths in the microwave and light (both visible and invisible) regions.
  • the reference signal may be abbreviated as RS (Reference Signal), or may be referred to as a pilot (Pilot) depending on the applied standard.
  • RS Reference Signal
  • Pilot pilot
  • the phrase “based on” does not mean “based only on,” unless expressly specified otherwise. In other words, the phrase “based on” means both "based only on” and “based at least on.”
  • references to elements using the designations “first,” “second,” etc. as used in this disclosure does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements may be employed, or that the first element must precede the second element in any way.
  • a radio frame may be composed of one or more frames in the time domain. Each frame or frames in the time domain may be referred to as a subframe. A subframe may also be composed of one or more slots in the time domain. The subframe may have a fixed time length (for example, 1 ms) that does not depend on numerology.
  • Numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
  • Numerology includes, for example, subcarrier spacing (SCS: SubCarrier Spacing), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI: Transmission Time Interval), number of symbols per TTI, radio frame configuration, transceiver At least one of a specific filtering process performed in the frequency domain and a specific windowing process performed by the transceiver in the time domain may be shown.
  • a slot may be composed of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain.
  • a slot may be a time unit based on numerology.
  • a slot may include multiple minislots. Each minislot may be composed of one or more symbols in the time domain. The minislot may also be called a subslot. Minislots may be configured with a smaller number of symbols than slots.
  • a PDSCH (or PUSCH) transmitted in a time unit larger than a minislot may be referred to as PDSCH (or PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
  • Radio frame, subframe, slot, minislot, and symbol all represent the time unit for signal transmission. Radio frames, subframes, slots, minislots, and symbols may have different names corresponding to them.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI means, for example, a minimum time unit of scheduling in wireless communication.
  • the base station performs scheduling to allocate radio resources (frequency bandwidth that can be used in each user device 20, transmission power, etc.) to each user device 20 in units of TTI.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, a codeword, or a processing unit such as scheduling or link adaptation.
  • transport block channel-encoded data packet
  • code block code block
  • codeword codeword
  • processing unit such as scheduling or link adaptation.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling.
  • the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • a TTI shorter than the normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • a long TTI (eg, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and a short TTI (eg, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers included in the RB may be the same regardless of the numerology, and may be 12, for example.
  • the number of subcarriers included in the RB may be determined based on numerology.
  • the time domain of RB may include one or more symbols, and may be one slot, one minislot, one subframe, or one TTI in length.
  • Each 1 TTI, 1 subframe, etc. may be configured with one or a plurality of resource blocks.
  • one or more RBs are a physical resource block (PRB: Physical RB), subcarrier group (SCG: Sub-Carrier Group), resource element group (REG: Resource Element Group), PRB pair, RB pair, etc. May be called.
  • PRB Physical resource block
  • SCG Sub-Carrier Group
  • REG Resource Element Group
  • PRB pair RB pair, etc. May be called.
  • the resource block may be composed of one or more resource elements (RE: Resource Element).
  • RE Resource Element
  • one RE may be a radio resource area of one subcarrier and one symbol.
  • a bandwidth part (may be called a partial bandwidth) may represent a subset of consecutive common RBs (common resource blocks) for a certain numerology in a certain carrier.
  • the common RB may be specified by the index of the RB based on the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • One or more BWPs may be configured in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE does not have to expect to send and receive a given signal/channel outside the active BWP.
  • “cell”, “carrier”, and the like in the present disclosure may be read as “BWP”.
  • the structure of the radio frame, subframe, slot, minislot, symbol, etc. described above is merely an example.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, and included in RBs The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP: Cyclic Prefix) length, and the like can be variously changed.
  • the term “A and B are different” may mean “A and B are different from each other”.
  • the term may mean that “A and B are different from C”.
  • the terms “remove”, “coupled” and the like may be construed as “different” as well.
  • the notification of the predetermined information (for example, the notification of “being X”) is not limited to the explicit notification, and is performed implicitly (for example, the notification of the predetermined information is not performed). Good.
  • the transmission unit 210 and the reception unit 220 are examples of the communication unit.
  • base station device 110 transmission unit 120 reception unit 130 setting unit 140 control unit 20 user device 210 transmission unit 220 reception unit 230 setting unit 240 control unit 1001 processor 1002 storage device 1003 auxiliary storage device 1004 communication device 1005 input device 1006 output device

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

ユーザ装置は、NR(New Radio)無線通信システムにおけるマスタノードである第1の基地局装置及びE-UTRA(Evolved Universal Terrestrial Radio Access)無線通信システムにおけるセカンダリノードである第2の基地局装置と通信を行う通信部と、前記第1の基地局装置からシステムフレームナンバ及びフレームタイミングのセル間の差分を示すSFTD(SFN and frame timing difference)を測定する指示を受信する受信部と、前記SFTDを測定する指示に基づいて、前記第1の基地局装置のセルと前記第2の基地局装置のセルとのSFTDを測定する制御部と、前記測定されたSFTDを含む測定結果を前記第1の基地局装置に送信する送信部とを有する。

Description

ユーザ装置
 本発明は、無線通信システムにおけるユーザ装置に関する。
 LTE(Long Term Evolution)の後継システムであるNR(New Radio)(「5G」ともいう。)においては、要求条件として、大容量のシステム、高速なデータ伝送速度、低遅延、多数の端末の同時接続、低コスト、省電力等を満たす技術が検討されている(例えば非特許文献1)。
 NRシステムでは、LTEシステムにおけるデュアルコネクティビティと同様に、LTEシステムの基地局(eNB)とNRシステムの基地局(gNB)との間でデータを分割し、これらの基地局によってデータを同時送受信する、LTE-NRデュアルコネクティビティ、NR-NRデュアルコネクテビティ又はマルチRAT(Multi Radio Access Technology)デュアルコネクティビティ(以下、「MR-DC」という。)と呼ばれる技術が導入されている(例えば非特許文献2)。また、LTE-NRデュアルコネクティビティにおいては、マスタノードであるeNBとセカンダリノードであるgNBとの間のSFN(System Frame Number)及びサブフレームタイミングの差をユーザ装置が測定し、ネットワークに報告するSFTD(SFN and Frame Timing Difference)がサポートされている(例えば非特許文献3)。
3GPP TS 38.300 V15.4.0(2018-12) 3GPP TS 37.340 V15.4.0(2018-12) 3GPP TS 38.215 V15.4.0(2018-12)
 gNBがマスタノードであるNR-LTEデュアルコネクティビティ又はNR-NRデュアルコネクテビティにおいて、非同期のデュアルコネクティビティを行う場合、マスタノードであるgNBとセカンダリノードであるeNB又はgNBとの間でフレーム、スロット又はシンボルタイミング差がどれくらいあるかが不明であるため、ユーザ装置がeNB又はgNBのセルに対して測定を実行する必要がある。しかしながら、当該測定の手順が確立されていなかった。
 本発明は上記の点に鑑みてなされたものであり、複数のRATを利用する無線通信システムで実行されるデュアルコネクティビティにおけるタイミング差の測定をユーザ装置が実行することを目的とする。
 開示の技術によれば、NR(New Radio)無線通信システムにおけるマスタノードである第1の基地局装置及びE-UTRA(Evolved Universal Terrestrial Radio Access)無線通信システムにおけるセカンダリノードである第2の基地局装置と通信を行う通信部と、前記第1の基地局装置からシステムフレームナンバ及びフレームタイミングのセル間の差分を示すSFTD(SFN and frame timing difference)を測定する指示を受信する受信部と、前記SFTDを測定する指示に基づいて、前記第1の基地局装置のセルと前記第2の基地局装置のセルとのSFTDを測定する制御部と、前記測定されたSFTDを含む測定結果を前記第1の基地局装置に送信する送信部とを有するユーザ装置が提供される。
 開示の技術によれば、複数のRATを利用する無線通信システムで実行されるデュアルコネクティビティにおけるタイミング差の測定をユーザ装置が実行することができる。
本発明の実施の形態におけるネットワークアーキテクチャの構成例を示す図である。 本発明の実施の形態における無線通信システムの構成例を示す図である。 本発明の実施の形態における動作例を説明するためのシーケンス図である。 本発明の実施の形態における第1の動作例を説明するためのフローチャートである。 本発明の実施の形態における第2の動作例を説明するためのフローチャートである。 本発明の実施の形態におけるの動作例に係る仕様変更例である。 本発明の実施の形態における第1の動作例に係る仕様変更例(1)である。 本発明の実施の形態における第1の動作例に係る仕様変更例(2)である。 本発明の実施の形態における第1の動作例に係る仕様変更例(3)である。 本発明の実施の形態における第1の動作例に係る仕様変更例(4)である。 本発明の実施の形態における第1の動作例に係る仕様変更例(5)である。 本発明の実施の形態における第1の動作例に係る仕様変更例(6)である。 本発明の実施の形態における第1の動作例に係る仕様変更例(7)である。 本発明の実施の形態における第1の動作例に係る仕様変更例(8)である。 本発明の実施の形態における第1の動作例に係る仕様変更例(9)である。 本発明の実施の形態における第1の動作例に係る仕様変更例(10)である。 本発明の実施の形態における第2の動作例に係る仕様変更例(1)である。 本発明の実施の形態における第2の動作例に係る仕様変更例(2)である。 本発明の実施の形態における第2の動作例に係る仕様変更例(3)である。 本発明の実施の形態における基地局装置10の機能構成の一例を示す図である。 本発明の実施の形態におけるユーザ装置20の機能構成の一例を示す図である。 本発明の実施の形態における基地局装置10又はユーザ装置20のハードウェア構成の一例を示す図である。
 以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例であり、本発明が適用される実施の形態は、以下の実施の形態に限られない。
 本発明の実施の形態の無線通信システムの動作にあたっては、適宜、既存技術が使用される。ただし、当該既存技術は、例えば既存のLTEであるが、既存のLTEに限られない。また、本明細書で使用する用語「LTE」は、特に断らない限り、LTE-Advanced、及び、LTE-Advanced以降の方式(例:NR)を含む広い意味を有するものとする。
 また、以下で説明する本発明の実施の形態では、既存のLTEで使用されているSS(Synchronization signal)、PSS(Primary SS)、SSS(Secondary SS)、PBCH(Physical broadcast channel)、PRACH(Physical random access channel)、等の用語を使用する。これは記載の便宜上のためであり、これらと同様の信号、機能等が他の名称で呼ばれてもよい。また、NRにおける上述の用語は、NR-SS、NR-PSS、NR-SSS、NR-PBCH、NR-PRACH等に対応する。ただし、NRに使用される信号であっても、必ずしも「NR-」と明記しない。
 また、本発明の実施の形態において、複信(Duplex)方式は、TDD(Time Division Duplex)方式でもよいし、FDD(Frequency Division Duplex)方式でもよいし、又はそれ以外(例えば、Flexible Duplex等)の方式でもよい。
 また、本発明の実施の形態において、無線パラメータ等が「設定される(Configure)」とは、所定の値が予め設定(Pre-configure)されることであってもよいし、基地局装置10又はユーザ装置20から通知される無線パラメータが設定されることであってもよい。
 図1は、本発明の実施の形態におけるネットワークアーキテクチャの構成例を示す図である。図1に示されるように、本発明の実施の形態における無線ネットワークアーキテクチャは、LTE-Advanced側において、4G-CU、4G-RU(Remote Unit、リモート無線局)、EPC(Evolved Packet Core)等を含む。本発明の実施の形態における無線ネットワークアーキテクチャは、5G側において、5G-CU、5G-DU等を含む。
 図1に示されるように、4G-CUは、RRC(Radio Resource Control)、PDCP(Packet Data Convergence Protocol)、RLC(Radio Link Control)、MAC(Medium Access Control)、L1(レイヤ1、PHY層又は物理層)までのレイヤを含み、CPRI(Common Public Radio Interface)を介して4G-RUと接続されている。4G-CU及び4G-RUを含むネットワークノードをeNBという。
 一方、5G側において、図1に示されるように、5G-CUは、RRCレイヤを含み、5G-DUとFH(Flonthaul)インタフェースを介して接続され、5GC(5G Core Network)とNGインタフェース(NG interface)を介して接続されている。また、5G-CUは、4G-CUとX2インタフェースで接続されている。4G-CUにおけるPDCPレイヤが、4G-5GのDC(Dual Connectivity)すなわちEN-DC(E-UTRA-NR Dual Connectivity)を行う場合の結合又は分離ポイントとなる。5G-CU及び5G-DUを含むネットワークノードをgNBという。また、5G-CUをgNB-CU、5G-DUをgNB-DUと呼んでもよい。
 また、図1に示されるように、4G-RU間において、CA(Carrier Aggregation)が行われ、4G-RUと5G-DUとで、DCが行われる。なお図示しないが、UE(User Equipment)が、4G-RU又は5G-DUのRFを介して無線接続され、パケットを送受信する。
 なお、図1は、LTE-NRのDCすなわちEN-DC(E-UTRA-NR Dual Connectivity)時の無線ネットワークアーキテクチャを示している。しかしながら、4G-CUをCU-DUに分離する場合、又はNRスタンドアロン運用する場合も、同様の無線ネットワークアーキテクチャが使用されてよい。4G-CUをCU-DUに分離する場合、RRCレイヤ及びPDCPレイヤに係る機能を4G-CUに移し、RLCレイヤ以下を4G-DUに含める構成としてもよい。なお、CU-DU分離によって、CPRIのデータレートが低減されてもよい。
 なお、5G-CUに、複数の5G-DUが接続されていてもよい。また、複数の5G-CUにUEが接続することによって、NR-DC(NR-NR Dual Connectivity)が行われてもよく、複数の5G-DU及び単一の5G-CUにUEが接続することによってNR-DCが行われてもよい。
 図2は、本発明の実施の形態に係る無線通信システムの構成例を示す図である。図2はMR-DC(Multi-RAT Dual Connectivity)時の無線通信システムを示す概略図である。
 図2に示されるように、ユーザ装置20は、NRシステムによって提供される基地局装置10A、NRシステムによって提供される基地局装置10B(以降、基地局装置10Aと基地局装置10Bを区別しない場合「基地局装置10」として参照されてもよい。)と通信する。さらにユーザ装置20は、基地局装置10Aをマスタノード(以下、「MN」ともいう。)とし、基地局装置10Bをセカンダリノード(以下、「SN」ともいう。)とするNR-NRデュアルコネクティビティ、すなわちNR-DCをサポートする。ユーザ装置20は、マスタノードである基地局装置10A及びセカンダリノードである基地局装置10Bにより提供される複数のコンポーネントキャリアを同時に利用して、マスタノードである基地局装置10A及びセカンダリノードである基地局装置10Bと同時送信又は同時受信を実行することが可能である。
 また、図2に示されるように、ユーザ装置20は、LTEシステムによって提供される基地局装置10A、NRシステムによって提供される基地局装置10Bと通信してもよい。さらにユーザ装置20は、基地局装置10AをMNとし、基地局装置10BをSNとするLTE-NRデュアルコネクティビティ、すなわちEN-DCをサポートしてもよい。ユーザ装置20は、マスタノードである基地局装置10A及びセカンダリノードである基地局装置10Bにより提供される複数のコンポーネントキャリアを同時に利用して、マスタノードである基地局装置10A及びセカンダリノードである基地局装置10Bと同時送信又は同時受信を実行することが可能である。
 また、図2に示されるように、ユーザ装置20は、NRシステムによって提供される基地局装置10A、LTEシステムによって提供される基地局装置10Bと通信してもよい。さらにユーザ装置20は、基地局装置10AをMNとし、基地局装置10BをSNとするNR-LTEデュアルコネクティビティ、すなわちNE-DC(NR-E-UTRA Dual Connectivity)をサポートしてもよい。ユーザ装置20は、マスタノードである基地局装置10A及びセカンダリノードである基地局装置10Bにより提供される複数のコンポーネントキャリアを同時に利用して、マスタノードである基地局装置10A及びセカンダリノードである基地局装置10Bと同時送信又は同時受信を実行することが可能である。
 なお、以下の実施例は、NR-NRデュアルコネクティビティ、NR-LTEデュアルコネクティビティ又はLTE-NRデュアルコネクティビティに関して説明されるが、本発明の実施の形態に係るユーザ装置20は、上記のデュアルコネクティビティに限定されず、異なるRATを利用した複数の無線通信システムの間のデュアルコネクティビティ、すなわち、MR-DCに適用可能である。
 図3は、本発明の実施の形態における動作例を説明するためのシーケンス図である。ステップS1において、基地局装置10は、RRCメッセージを介して、情報要素measConfigを含むRRCConnectionReconfigurationをユーザ装置20に送信する。measConfigには、ユーザ装置20が実行する測定の設定に関する情報が含まれる。例えば、intra-frequency測定、inter-frequency測定、inter-RAT mobility測定及び測定ギャップ設定等に関する情報が含まれてよい。なお、RRCConnectionReconfigurationは一例であり、他のRRCメッセージによってmeasConfigは通知されてもよく、例えば、RRCConnectionResumeを介してユーザ装置20にmeasConfigは送信されてもよい。
 ステップS2において、ユーザ装置20は、ステップS1で受信したmeasConfigによる設定に基づいて測定を実行する。LTEセル又はNRセルに対して、必要な測定が実行される。本発明の実施の形態では、ユーザ装置20は主にSFTDの測定を実行する。
 NRのマスタノードとNR又はLTEのセカンダリノードとで、非同期のDCが行われる場合を想定する。非同期のDCにおいては、マスタノードとセカンダリノードとの間で、無線フレーム、スロット又はシンボルタイミング差がどれくらいであるかが不明である。DCにおいては、マスタノード(「PCell(Primary Cell)」に対応する。)とセカンダリノード(「PSCell(Primary Secondary Cell)」に対応する。)との間のSFN及びフレームタイミングをユーザ装置20は測定して、基地局装置10に報告するSFTD測定がサポートされる。SFTD測定を実行することによって、例えば、マスタノードとセカンダリノード間において、DRX(Discontinuous reception)のアクティブ期間を同期させることができる。NRにおけるSFTD測定は、 PCellとPSCell間のSFNオフセット、フレーム境界オフセットをユーザ装置20は測定し、基地局装置10に報告する。
 ステップS3において、ユーザ装置20は、ステップS2で実行した測定結果をRRCメッセージMeasurementReportを介して基地局装置10に送信する。基地局装置10は、受信した測定結果を参照して、ユーザ装置20に必要な無線リソースの設定及びスケジューリング等を実行する。
 図4は、本発明の実施の形態における第1の動作例を説明するためのフローチャートである。ステップS12は、図3に示されるステップS12と同様である。図4に示されるフローチャートは、NR-DC又はNE-DCによる通信を行うユーザ装置20によって実行される。マスタノードはgNBであり、セカンダリノードはgNB又はeNBである。
 ステップS121aにおいて、ユーザ装置20は、SFTDに係るE-UTRAのPSCell測定又は隣接セル測定が設定されているか否かを判定する。当該測定が設定されている場合(S121aのYES)、ステップS122aに進み、当該測定が設定されていない場合(S121aのNO)、ステップS124aに進む。
 ステップS122aにおいて、ユーザ装置20は、SFTD測定対象セルと、NRのPCellとのSFTD測定を実行する。さらに、ユーザ装置20は、SFTD測定対象セルのRSRP(Reference Signal Received Power)、RSRQ(Reference Signal Received Quality)又はRS-SINR(Reference Signal - Signal to Interference plus Noise power Ratio)を測定してもよい。なお、SFTD測定対象セルが隣接セルであって、かつセルが指定されない場合、受信環境が良い上位3つのセルをSFTD測定対象セルとしてもよい。
 ステップS123aにおいて、ユーザ装置20は、SFTD測定結果をNE-DC用のIE(Information Element)に格納し、測定結果をmeasResultsに設定し、ステップS124aに進む。measResultsは、MeasurementReportに含まれるIEである。
 ステップS124aにおいて、ユーザ装置20は、SFTDに係るNRのPSCell測定又は隣接セル測定が設定されているか否かを判定する。当該測定が設定されている場合(S124aのYES)、ステップS125aに進み、当該測定が設定されていない場合(S124aのNO)、フローを終了する。
 ステップS125aにおいて、ユーザ装置20は、SFTD測定対象セルと、NRのPCellとのSFTD測定を実行する。さらに、ユーザ装置20は、SFTD測定対象セルのRSRPを測定してもよい。なお、SFTD測定対象セルが隣接セルであって、かつセルが指定されない場合、受信環境が良い上位3つのセルをSFTD測定対象セルとしてもよい。
 ステップS126aにおいて、ユーザ装置20は、SFTD測定結果をEN-DC用のIEに格納し、測定結果をmeasResultsに設定し、フローを終了する。なお、ステップS122a及びS123aと、ステップS125a及びS126aとは、実行される時間が前後してもよいし、並行して実行されてもよい。
 図5は、本発明の実施の形態における第2の動作例を説明するためのフローチャートである。ステップS12は、図3に示されるステップS12と同様である。図5に示されるフローチャートは、NR-DC又はNE-DCによる通信を行うユーザ装置20によって実行される。マスタノードはgNBであり、セカンダリノードはgNB又はeNBである。
 ステップS121bにおいて、ユーザ装置20は、SFTDに係るE-UTRAのPSCell測定又は隣接セル測定が設定されているか否かを判定する。当該測定が設定されている場合(S121bのYES)、ステップS122bに進み、当該測定が設定されていない場合(S121bのNO)、ステップS124bに進む。
 ステップS122bにおいて、ユーザ装置20は、SFTD測定対象セルと、NRのPCellとのSFTD測定を実行する。さらに、ユーザ装置20は、SFTD測定対象セルのRSRP、RSRQ又はRS-SINRを測定してもよい。なお、SFTD測定対象セルが隣接セルであって、かつセルが指定されない場合、受信環境が良い上位3つのセルをSFTD測定対象セルとしてもよい。
 ステップS123bにおいて、ユーザ装置20は、SFTD測定結果をNE-DC又はNR-DC用のIEに格納し、測定結果をmeasResultsに設定し、ステップS124bに進む。
 ステップS124bにおいて、ユーザ装置20は、SFTDに係るNRのPSCell測定又は隣接セル測定が設定されているか否かを判定する。当該測定が設定されている場合(S124bのYES)、ステップS125bに進み、当該測定が設定されていない場合(S124bのNO)、フローを終了する。
 ステップS125bにおいて、ユーザ装置20は、SFTD測定対象セルと、NRのPCellとのSFTD測定を実行する。さらに、ユーザ装置20は、SFTD測定対象セルのRSRP、RSRQ又はSINRを測定してもよい。なお、SFTD測定対象セルが隣接セルであって、かつセルが指定されない場合、受信環境が良い上位3つのセルをSFTD測定対象セルとしてもよい。
 ステップS126bにおいて、ユーザ装置20は、SFTD測定結果をNE-DC又はNR-DC用のIEに格納し、測定結果をmeasResultsに設定し、フローを終了する。なお、ステップS122b及びS123bと、ステップS125b及びS126bとは、実行される時間が前後してもよいし、並行して実行されてもよい。
 図6は、本発明の実施の形態における動作例に係る仕様変更例である。図6に示されるように、MR-DCにおけるPCellとPSCellとのSFTDを測定することが規定されている。MR-DCは、EN-DC、NE-DC及びNR-DCを含む。
 図7は、本発明の実施の形態における第1の動作例に係る仕様変更例(1)である。図7に示されるように、情報要素reportSFTD-MeasNEDCによって、NE-DCにおけるSFTD測定の報告に係る設定が行われる。また、情報要素reportSFTD-MeasNRDCによって、NR-DCにおけるSFTD測定の報告に科kる設定が行われる。
 図8は、本発明の実施の形態における第1の動作例に係る仕様変更例(2)である。図8に示されるように、情報要素cellsForWhichToReportSFTD-NEDC又は情報要素cellsForWhichToReportSFTD-NRDC以外を含むmeasObjectを受信した場合の動作が規定されている。
 図9は、本発明の実施の形態における第1の動作例に係る仕様変更例(3)である。図9に示されるように、情報要素reportSFTD-MeasNEDCがPSCellに設定されている場合、NRのPCellとE-UTRAのPSCellとのSFTDが報告される。一方、情報要素reportSFTD-MeasNEDCが隣接セルに設定されている場合、NRのPCellとE-UTRAの指定された周波数における1又は複数の隣接セルとのSFTDが報告される。
 また、図9に示されるように、情報要素reportSFTD-MeasNRDCがPSCellに設定されている場合、NRのPCellとNRのPSCellとのSFTDが報告される。一方、情報要素reportSFTD-MeasNRDCが隣接セルに設定されている場合、NRのPCellとNRの指定された周波数における1又は複数の隣接セルとのSFTDが報告される。
 図10は、本発明の実施の形態における第1の動作例に係る仕様変更例(4)である。図10に示されるように、情報要素reportSFTD-MeasNRDCがPSCellに設定されている場合、NRのPSCellが、SFTD測定対象セル(applicable cell)となる。情報要素reportSFTD-MeasNRDCが隣接セルに設定されている場合、情報要素cellsForWhichToReportSFTD-NRDCに含まれるセルがSFTD測定対象セルとなるか、NRの指定された周波数における情報要素cellsForWhichToReportSFTD-NRDCに含まれるセルがSFTD測定対象セルとなるか、又はNRの指定された周波数において情報要素blackCellsToAddModListに含まれないセルのうち受信環境が良い上位3つのセルがSFTD測定対象セルとなる。
 また、図10に示されるように、情報要素reportSFTD-MeasNEDCがPSCellに設定されている場合、E-UTRAのPSCellが、SFTD測定対象セルとなる。情報要素reportSFTD-MeasNEDCが隣接セルに設定されている場合、情報要素cellsForWhichToReportSFTD-NEDCに含まれるセルがSFTD測定対象セルとなるか、E-UTRAの指定された周波数における情報要素cellsForWhichToReportSFTD-NEDCに含まれるセルがSFTD測定対象セルとなるか、又はE-UTRAの指定された周波数において情報要素blackCellsToAddModListに含まれないセルのうち受信環境が良い上位3つのセルがSFTD測定対象セルとなる。
 図11は、本発明の実施の形態における第1の動作例に係る仕様変更例(5)である。図11に示されるように、PCellとE-UTRAのセルとのSFTD報告の最大遅延が設定される。また、PCellとNRのセルとのSFTD報告の最大遅延が設定される。
 図12は、本発明の実施の形態における第1の動作例に係る仕様変更例(6)である。図12に示されるように、E-UTRAの隣接セル又はPSCellが測定対象セルである場合、情報要素physCellIdEUTRAに測定対象セルのE-UTRAの物理セルIDが設定される。情報要素sfn-OffsetResultと情報要素frameBoundaryOffsetResultに下位レイヤから取得した測定結果が設定される。情報要素reportQuantityにrsrpが設定されている場合、情報要素measResultsEUTRAのrsrpに測定対象セルのRSRPが設定される。情報要素reportQuantityにrsrqが設定されている場合、情報要素measResultsEUTRAのrsrqに測定対象セルのRSRQが設定される。情報要素reportQuantityにsinrが設定されている場合、情報要素measResultsEUTRAのsinrに測定対象セルのRS-SINRが設定される。
 また、図12に示されるように、NRの隣接セル又はPSCellが測定対象セルである場合、情報要素physCellIdに測定対象セルのNRの物理セルIDが設定される。情報要素sfn-OffsetResultと情報要素frameBoundaryOffsetResultに下位レイヤから取得した測定結果が設定される。情報要素reportQuantityCellにrsrpが設定されている場合、情報要素rsrpResultに測定対象セルのRSRPが設定される。
 図13は、本発明の実施の形態における第1の動作例に係る仕様変更例(7)である。図13に示されるように、情報要素MeasResultCellSFTD-NEDCは、E-UTRAの物理セルIDが設定される情報要素physCellIdEUTRA、SFNオフセットが設定される情報要素sfn-OffsetResult、フレーム境界オフセットが設定される情報要素frameBoundaryOffsetResult、RSRP、RSRQ及びRS-SINRのいずれか又は複数が設定される情報要素measResultEUTRAを含む。
 図14は、本発明の実施の形態における第1の動作例に係る仕様変更例(8)である。図14に示されるように、情報要素sfn-OffsetResultは、SFNオフセットが設定される。情報要素frameBoundaryOffsetResultには、フレーム境界オフセットが設定される。情報要素measResultEUTRAには、RSRP、RSRQ及びRS-SINRのいずれか又は複数が設定される。情報要素physCellIdには、NRの物理セルIDが設定される。情報要素physCellIdEUTRAには、E-UTRAの物理セルIDが設定される。
 図15は、本発明の実施の形態における第1の動作例に係る仕様変更例(9)である。図15に示されるように、情報要素reporSFTD-MeasNEDCは、測定対象セルとしてE-UTRAのPSCell又は隣接セルを設定する。隣接セルが設定された場合、セルが直接指定されるか又は受信環境が良い上位3つのセルが測定対象セルとなる。
 図16は、本発明の実施の形態における第1の動作例に係る仕様変更例(10)である。図16に示されるように、情報要素reporSFTD-MeasNRDCは、測定対象セルとしてNRのPSCell又は隣接セルを設定する。隣接セルが設定された場合、セルが直接指定されるか又は受信環境が良い上位3つのセルが測定対象セルとなる。
 図17は、本発明の実施の形態における第2の動作例に係る仕様変更例(1)である。図17に示されるように、E-UTRAの隣接セル又はPSCellが測定対象セルである場合、情報要素physCellIdEUTRAに測定対象セルのE-UTRAの物理セルIDが設定される。情報要素sfn-OffsetResultと情報要素frameBoundaryOffsetResultに下位レイヤから取得した測定結果が設定される。情報要素reportQuantityにrsrpが設定されている場合、情報要素measQuantityResultsEUTRAのrsrpに測定対象セルのRSRPが設定される。情報要素reportQuantityにrsrqが設定されている場合、情報要素measQuantityResultsEUTRAのrsrqに測定対象セルのRSRQが設定される。情報要素reportQuantityにsinrが設定されている場合、情報要素measQuantityResultsEUTRAのsinrに測定対象セルのRS-SINRが設定される。
 また、図17に示されるように、NRの隣接セル又はPSCellが測定対象セルである場合、情報要素physCellIdに測定対象セルのNRの物理セルIDが設定される。情報要素sfn-OffsetResultと情報要素frameBoundaryOffsetResultに下位レイヤから取得した測定結果が設定される。情報要素reportQuantityCellにrsrpが設定されている場合、情報要素measQuantityResultsに測定対象セルのRSRPが設定される。情報要素reportQuantityCellにrsrqが設定されている場合、情報要素measQuantityResultsのrsrqに測定対象セルのRSRQが設定される。情報要素reportQuantityCellにsinrが設定されている場合、情報要素measQuantityResultsのsinrに測定対象セルのSINRが設定される。
 図18は、本発明の実施の形態における第2の動作例に係る仕様変更例(2)である。図18に示されるように、情報要素MeasResultCellSFTD-r15は、E-UTRAの物理セルIDが設定される情報要素physCellIdEUTRA又はNRの物理セルIDが設定される情報要素PhysCellID、SFNオフセットが設定される情報要素sfn-OffsetResult、フレーム境界オフセットが設定される情報要素frameBoundaryOffsetResult、RSRP、RSRQ及びRS-SINRのいずれか又は複数が設定される情報要素measQuantityResultsEUTRA又はRSRP、RSRQ及びSINRのいずれか又は複数が設定される情報要素measQuantityResultsを含む。すなわち、情報要素MeasResultCellSFTD-r15は、NE-DCにおけるSFTD測定結果とNR-DCにおけるSFTD測定結果の双方の報告に対応することができる情報要素である。
 図19は、本発明の実施の形態における第2の動作例に係る仕様変更例(3)である。図19に示されるように、情報要素sfn-OffsetResultは、SFNオフセットが設定される。情報要素frameBoundaryOffsetResultには、フレーム境界オフセットが設定される。情報要素measResultsには、E-UTRAのRSRP、RSRQ及びRS-SINRのいずれか又は複数が設定されるか、NRのRSRP、RSRQ及びSINRのいずれか又は複数が設定される。情報要素physCellIdには、NRの物理セルIDが設定される。情報要素physCellIdEUTRAには、E-UTRAの物理セルIDが設定される。
 上述の実施例により、ユーザ装置20は、E-UTRA又はNRの測定対象セルと、NRのPCellとのSFTD測定を実行し、必要に応じてRSRP、RSRQ、SINR測定結果を含むSFTD測定結果の報告を基地局装置10にすることができる。
 すなわち、複数のRATを利用する無線通信システムで実行されるデュアルコネクティビティにおけるタイミング差の測定をユーザ装置が実行することができる。
 (装置構成)
 次に、これまでに説明した処理及び動作を実行する基地局装置10及びユーザ装置20の機能構成例を説明する。基地局装置10及びユーザ装置20は上述した実施例を実施する機能を含む。ただし、基地局装置10及びユーザ装置20はそれぞれ、実施例の中の一部の機能のみを備えることとしてもよい。
 <基地局装置10>
 図20は、本発明の実施の形態における基地局装置10の機能構成の一例を示す図である。図20に示されるように、基地局装置10は、送信部110と、受信部120と、設定部130と、制御部140とを有する。図20に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
 送信部110は、ユーザ装置20側に送信する信号を生成し、当該信号を無線で送信する機能を含む。また、送信部110は、ネットワークノード間メッセージを他のネットワークノードに送信する。受信部120は、ユーザ装置20から送信された各種の信号を受信し、受信した信号から、例えばより上位のレイヤの情報を取得する機能を含む。また、送信部110は、ユーザ装置20へNR-PSS、NR-SSS、NR-PBCH、DL/UL制御信号等を送信する機能を有する。また、受信部120は、ネットワークノード間メッセージを他のネットワークノードから受信する。
 設定部130は、予め設定される設定情報、及び、ユーザ装置20に送信する各種の設定情報を格納する。設定情報の内容は、例えば、ユーザ装置20における各種測定の設定に使用する情報等である。
 制御部140は、実施例において説明したように、ユーザ装置20において実行される測定の設定に使用される情報の生成に係る制御、及びユーザ装置20から受信した測定結果の処理に係る制御を行う。制御部140における信号送信に関する機能部を送信部110に含め、制御部140における信号受信に関する機能部を受信部120に含めてもよい。
 <ユーザ装置20>
 図21は、本発明の実施の形態におけるユーザ装置20の機能構成の一例を示す図である。図21に示されるように、ユーザ装置20は、送信部210と、受信部220と、設定部230と、制御部240とを有する。図21に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
 送信部210は、送信データから送信信号を作成し、当該送信信号を無線で送信する。受信部220は、各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する。また、受信部220は、基地局装置10から送信されるNR-PSS、NR-SSS、NR-PBCH、DL/UL/SL制御信号等を受信する機能を有する。また、例えば、送信部210は、D2D通信として、他のユーザ装置20に、PSCCH(Physical Sidelink Control Channel)、PSSCH(Physical Sidelink Shared Channel)、PSDCH(Physical Sidelink Discovery Channel)、PSBCH(Physical Sidelink Broadcast Channel)等を送信し、受信部120は、他のユーザ装置20から、PSCCH、PSSCH、PSDCH又はPSBCH等を受信する。
 設定部230は、受信部220により基地局装置10から受信した各種の設定情報を格納する。また、設定部230は、予め設定される設定情報も格納する。設定情報の内容は、例えば、測定を実行するための設定に係る情報等である。
 制御部240は、実施例において説明したように、ユーザ装置20における測定の実行及び報告に係る制御を行う。制御部240における信号送信に関する機能部を送信部210に含め、制御部240における信号受信に関する機能部を受信部220に含めてもよい。
 (ハードウェア構成)
 上記実施形態の説明に用いたブロック図(図20及び図21)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施の形態における基地局装置10、ユーザ装置20等は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図22は、本開示の一実施の形態に係る基地局装置10及びユーザ装置20のハードウェア構成の一例を示す図である。上述の基地局装置10及びユーザ装置20は、物理的には、プロセッサ1001、記憶装置1002、補助記憶装置1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニット等に読み替えることができる。基地局装置10及びユーザ装置20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 基地局装置10及びユーザ装置20における各機能は、プロセッサ1001、記憶装置1002等のハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、記憶装置1002及び補助記憶装置1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタ等を含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述の制御部140、制御部240等は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータ等を、補助記憶装置1003及び通信装置1004の少なくとも一方から記憶装置1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、図20に示した基地局装置10の制御部140は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。また、例えば、図21に示したユーザ装置20の制御部240は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
 記憶装置1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)等の少なくとも1つによって構成されてもよい。記憶装置1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)等と呼ばれてもよい。記憶装置1002は、本開示の一実施の形態に係る通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュール等を保存することができる。
 補助記憶装置1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)等の光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップ等の少なくとも1つによって構成されてもよい。上述の記憶媒体は、例えば、記憶装置1002及び補助記憶装置1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、送受信アンテナ、アンプ部、送受信部、伝送路インターフェース等は、通信装置1004によって実現されてもよい。送受信部は、送信部と受信部とで、物理的に、または論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ等)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ等)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001及び記憶装置1002等の各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局装置10及びユーザ装置20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)等のハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
 (実施の形態のまとめ)
 以上、説明したように、本発明の実施の形態によれば、NR(New Radio)無線通信システムにおけるマスタノードである第1の基地局装置及びE-UTRA(Evolved Universal Terrestrial Radio Access)無線通信システムにおけるセカンダリノードである第2の基地局装置と通信を行う通信部と、前記第1の基地局装置からシステムフレームナンバ及びフレームタイミングのセル間の差分を示すSFTD(SFN and frame timing difference)を測定する指示を受信する受信部と、前記SFTDを測定する指示に基づいて、前記第1の基地局装置のセルと前記第2の基地局装置のセルとのSFTDを測定する制御部と、前記測定されたSFTDを含む測定結果を前記第1の基地局装置に送信する送信部とを有するユーザ装置が提供される。
 上記の構成により、ユーザ装置20は、E-UTRAの測定対象セルと、NRのPCellとのSFTD測定を実行し、SFTD測定結果の報告を基地局装置10にすることができる。すなわち、複数のRATを利用する無線通信システムで実行されるデュアルコネクティビティにおけるタイミング差の測定をユーザ装置が実行することができる。
 前記SFTDを測定する指示は、前記第2の基地局装置のPSCell(Primary Secondary Cell)又は前記第2の基地局装置の隣接セルのいずれがSFTDを測定する対象のセルであるかを示す情報を含んでもよい。当該構成により、ユーザ装置20は、状況に応じて、SFTD測定対象セルを、PSCellと隣接セルとで切り替えることができる。
 前記いずれがSFTDを測定する対象のセルであるかを示す情報が、前記第2の基地局装置の隣接セルを示す場合、前記第2の基地局装置の隣接セルのうちいずれを測定するかを示す情報が前記SFTDを測定する指示に含まれてもよい。当該構成により、ユーザ装置20は、SFTD測定対象セルである隣接セルを指定することにより、効率良くSFTD測定を実行することができる。
 前記制御部は、前記いずれがSFTDを測定する対象のセルであるかを示す情報が前記第2の基地局装置の隣接セルを示す場合、かつ、前記SFTDを測定する指示が前記第2の基地局装置の隣接セルのうちいずれを測定するかを示す情報を含まない場合、前記第2の基地局装置の隣接セルのうち受信環境が良い上位3つのセルをSFTDを測定する対象のセルとしてもよい。当該構成により、ユーザ装置20は、SFTD測定対象セルである上位3つの隣接セルを測定することにより、効率良くSFTD測定を実行することができる。
 前記制御部は、前記SFTDを測定する指示が、RSRP(Reference Signal Received Power)、RSRQ(Reference Signal Received Quality)又はSINR(Signal to Interference plus Noise power Ratio)を測定する指示を含む場合、SFTDを測定する対象のセルのRSRP、RSRQ又はSINRを測定してもよい。当該構成により、ユーザ装置20は、必要に応じてRSRP、RSRQ、SINR測定結果を含むSFTD測定結果の報告を基地局装置10にすることができる。
 前記送信部は、マスタノードがNR無線通信システムでありセカンダリノードがLTE無線通信システムである場合のSFTD測定と、マスタノード及びセカンダリノードが共にNR無線通信システムである場合のSFTD測定との双方に対応する情報要素を使用してもよい。当該構成により、ユーザ装置20は、NE-DCのSFTD測定結果と、NR-DCの測定結果とを基地局装置10に共通の情報要素を用いて効率良く報告することができる。
 (実施形態の補足)
 以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、基地局装置10及びユーザ装置20は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従って基地局装置10が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従ってユーザ装置20が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
 また、情報の通知は、本開示で説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、報知情報(MIB(Master Information Block)、SIB(System Information Block))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージ等であってもよい。
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、NR(new Radio)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャート等は、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本明細書において基地局装置10によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局装置10を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、ユーザ装置20との通信のために行われる様々な動作は、基地局装置10及び基地局装置10以外の他のネットワークノード(例えば、MME又はS-GW等が考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局装置10以外の他のネットワークノードが1つである場合を例示したが、他のネットワークノードは、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
 本開示において説明した情報又は信号等は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
 本開示における判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「基地局装置」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head)によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ装置20間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局装置10が有する機能をユーザ装置20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末が有する機能を基地局が有する構成としてもよい。
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。サブフレームは更に時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジ(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ニューメロロジは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル等)で構成されてもよい。スロットは、ニューメロロジに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ装置20に対して、無線リソース(各ユーザ装置20において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジに基づいて決定されてもよい。
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジ用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 なお、本開示において、送信部210及び受信部220は、通信部の一例である。
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
10    基地局装置
110   送信部
120   受信部
130   設定部
140   制御部
20    ユーザ装置
210   送信部
220   受信部
230   設定部
240   制御部
1001  プロセッサ
1002  記憶装置
1003  補助記憶装置
1004  通信装置
1005  入力装置
1006  出力装置

Claims (6)

  1.  NR(New Radio)無線通信システムにおけるマスタノードである第1の基地局装置及びE-UTRA(Evolved Universal Terrestrial Radio Access)無線通信システムにおけるセカンダリノードである第2の基地局装置と通信を行う通信部と、
     前記第1の基地局装置からシステムフレームナンバ及びフレームタイミングのセル間の差分を示すSFTD(SFN and frame timing difference)を測定する指示を受信する受信部と、
     前記SFTDを測定する指示に基づいて、前記第1の基地局装置のセルと前記第2の基地局装置のセルとのSFTDを測定する制御部と、
     前記測定されたSFTDを含む測定結果を前記第1の基地局装置に送信する送信部とを有するユーザ装置。
  2.  前記SFTDを測定する指示は、前記第2の基地局装置のPSCell(Primary Secondary Cell)又は前記第2の基地局装置の隣接セルのいずれがSFTDを測定する対象のセルであるかを示す情報を含む請求項1記載のユーザ装置。
  3.  前記いずれがSFTDを測定する対象のセルであるかを示す情報が、前記第2の基地局装置の隣接セルを示す場合、前記第2の基地局装置の隣接セルのうちいずれを測定するかを示す情報が前記SFTDを測定する指示に含まれる請求項2記載のユーザ装置。
  4.  前記制御部は、前記いずれがSFTDを測定する対象のセルであるかを示す情報が前記第2の基地局装置の隣接セルを示す場合、かつ、前記SFTDを測定する指示が前記第2の基地局装置の隣接セルのうちいずれを測定するかを示す情報を含まない場合、前記第2の基地局装置の隣接セルのうち受信環境が良い上位3つのセルをSFTDを測定する対象のセルとする請求項2記載のユーザ装置。
  5.  前記制御部は、前記SFTDを測定する指示が、RSRP(Reference Signal Received Power)、RSRQ(Reference Signal Received Quality)又はSINR(Signal to Interference plus Noise power Ratio)を測定する指示を含む場合、SFTDを測定する対象のセルのRSRP、RSRQ又はSINRを測定する請求項2記載のユーザ装置。
  6.  前記送信部は、マスタノードがNR無線通信システムでありセカンダリノードがLTE無線通信システムである場合のSFTD測定と、マスタノード及びセカンダリノードが共にNR無線通信システムである場合のSFTD測定との双方に対応する情報要素を使用する請求項1記載のユーザ装置。
PCT/JP2019/004698 2019-02-08 2019-02-08 ユーザ装置 WO2020161906A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US17/426,807 US20220124530A1 (en) 2019-02-08 2019-02-08 User apparatus
JP2020570331A JP7273861B2 (ja) 2019-02-08 2019-02-08 端末、通信方法、及び無線通信システム
PCT/JP2019/004698 WO2020161906A1 (ja) 2019-02-08 2019-02-08 ユーザ装置
KR1020217021187A KR20210122773A (ko) 2019-02-08 2019-02-08 유저장치
EP19914472.6A EP3923621A4 (en) 2019-02-08 2019-02-08 USER EQUIPMENT
CN201980091246.5A CN113412641B (zh) 2019-02-08 2019-02-08 用户装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/004698 WO2020161906A1 (ja) 2019-02-08 2019-02-08 ユーザ装置

Publications (1)

Publication Number Publication Date
WO2020161906A1 true WO2020161906A1 (ja) 2020-08-13

Family

ID=71948190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004698 WO2020161906A1 (ja) 2019-02-08 2019-02-08 ユーザ装置

Country Status (6)

Country Link
US (1) US20220124530A1 (ja)
EP (1) EP3923621A4 (ja)
JP (1) JP7273861B2 (ja)
KR (1) KR20210122773A (ja)
CN (1) CN113412641B (ja)
WO (1) WO2020161906A1 (ja)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101405978B1 (ko) * 2011-07-01 2014-06-12 엘지전자 주식회사 셀 측정 방법 및 단말
JP6397016B2 (ja) * 2014-06-17 2018-09-26 株式会社Nttドコモ ユーザ装置
WO2016020000A1 (en) * 2014-08-07 2016-02-11 Nokia Solutions And Networks Oy Signalling of system frame number offset
JP6169057B2 (ja) * 2014-08-27 2017-07-26 株式会社Nttドコモ ユーザ装置、及びオフセット報告方法
US10588040B2 (en) * 2015-05-14 2020-03-10 Apple Inc. Measurement gap configuration in dual connectivity enhancement
WO2017034604A1 (en) * 2015-08-27 2017-03-02 Intel IP Corporation An apparatus and method for reporting system frame number (sfn) and subframe offset in dual connectivity (dc) enhancement
US11206563B2 (en) * 2018-01-10 2021-12-21 Mediatek Inc. Apparatuses and methods for extending use of SFN (system frame number) and frame timing difference (SFTD) measurements

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
3GPP TS 37.340, December 2018 (2018-12-01)
3GPP TS 38.215, December 2018 (2018-12-01)
3GPP TS 38.300, December 2018 (2018-12-01)
HUAWEI ET AL.: "on supporting SFTD mesurements for NE-DC", 3GPP TSG-RAN WG2 MEETING#104 R2-1817993, 2 November 2018 (2018-11-02), XP051557501, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/TSG_RAN/WG2_RL2/TSGR2_104/Docs/R2-1817993.zip> [retrieved on 20190222] *
QUALCOMM INCORPORATED: "Remaining issues of measurement in NE-DC", 3GPP TSG-RAN WG2 MEETING#104 R2-1816569, 2 November 2018 (2018-11-02), XP051480516, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/TSG_RAN/WG2_RL2/TSGR2_104/Docs/R2-1816569.zip> [retrieved on 20190222] *
QUALCOMM INCORPORATED: "Remaining issues of measurement in NR-DC", 3GPP TSG-RAN WG2 MEETING#104 R2-1816570, 2 November 2018 (2018-11-02), XP051480517, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/TSG_RAN/WG2_RL2/TSGR2_104/Docs/R2-1816570.zip> [retrieved on 20190222] *
See also references of EP3923621A4
ZTE CORPORATION ET AL.: "Clarification on measObjectNR of SFTD between PCell and PSCell", 3GPP TSG-RAN WG2 MEETING #104 R2-1816665, 2 November 2018 (2018-11-02), XP051480610, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/TSG_RAN/WG2_RL2/TSGR2_104/Docs/R2-1816665.zip> [retrieved on 20190222] *

Also Published As

Publication number Publication date
US20220124530A1 (en) 2022-04-21
EP3923621A4 (en) 2022-09-14
EP3923621A1 (en) 2021-12-15
CN113412641B (zh) 2024-05-17
CN113412641A (zh) 2021-09-17
JP7273861B2 (ja) 2023-05-15
KR20210122773A (ko) 2021-10-12
JPWO2020161906A1 (ja) 2021-12-09

Similar Documents

Publication Publication Date Title
WO2020090098A1 (ja) ユーザ装置及び基地局装置
JP7241172B2 (ja) ユーザ装置及び基地局装置
WO2020170405A1 (ja) ユーザ装置及び基地局装置
WO2021001946A1 (ja) 端末
WO2021019737A1 (ja) 基地局、通信方法及び情報処理装置
WO2020166020A1 (ja) ユーザ装置及び基地局装置
WO2020235318A1 (ja) ユーザ装置及び基地局装置
WO2021199415A1 (ja) 端末及び通信方法
EP4096311A1 (en) Terminal
US12047822B2 (en) Base station, radio communication method, and radio communication system for MR-DC
WO2020100559A1 (ja) ユーザ装置及び基地局装置
WO2020100379A1 (ja) ユーザ装置及び基地局装置
WO2020166030A1 (ja) ネットワークノード
US11895523B2 (en) User apparatus
JP7325507B2 (ja) 端末、通信方法及び通信システム
WO2020171182A1 (ja) ユーザ装置及び基地局装置
WO2020157987A1 (ja) ユーザ装置及び基地局装置
WO2020174552A1 (ja) ユーザ装置及び通信方法
WO2020166028A1 (ja) ネットワークノード
WO2020170445A1 (ja) ユーザ装置及び基地局装置
JP7273861B2 (ja) 端末、通信方法、及び無線通信システム
JP7422163B2 (ja) 端末、基地局、及び通信方法
JP7427687B2 (ja) 端末、通信システム、及び通信方法
JP7478171B2 (ja) 端末及び通信方法
WO2020161912A1 (ja) ネットワークノード

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19914472

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020570331

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019914472

Country of ref document: EP

Effective date: 20210908