WO2020159167A1 - Method for recovering amide-based compounds - Google Patents
Method for recovering amide-based compounds Download PDFInfo
- Publication number
- WO2020159167A1 WO2020159167A1 PCT/KR2020/001208 KR2020001208W WO2020159167A1 WO 2020159167 A1 WO2020159167 A1 WO 2020159167A1 KR 2020001208 W KR2020001208 W KR 2020001208W WO 2020159167 A1 WO2020159167 A1 WO 2020159167A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- amide
- inorganic salt
- recovering
- waste solution
- waste liquid
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D207/00—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D207/02—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D207/18—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member
- C07D207/22—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D207/24—Oxygen or sulfur atoms
- C07D207/26—2-Pyrrolidones
- C07D207/263—2-Pyrrolidones with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms
- C07D207/267—2-Pyrrolidones with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to the ring nitrogen atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C231/00—Preparation of carboxylic acid amides
- C07C231/22—Separation; Purification; Stabilisation; Use of additives
- C07C231/24—Separation; Purification
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C233/00—Carboxylic acid amides
- C07C233/01—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
- C07C233/02—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
- C07C233/03—Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with carbon atoms of carboxamide groups bound to hydrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D223/00—Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom
- C07D223/02—Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom not condensed with other rings
- C07D223/06—Heterocyclic compounds containing seven-membered rings having one nitrogen atom as the only ring hetero atom not condensed with other rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D223/08—Oxygen atoms
- C07D223/10—Oxygen atoms attached in position 2
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D233/00—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
- C07D233/04—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
- C07D233/28—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D233/30—Oxygen or sulfur atoms
Definitions
- the present invention efficiently recovers amide-based compounds such as N-methyl-2-pyrrolidone from waste liquids containing amide-based compounds such as N-methyl-2-pyrrolidone generated in the polyarylene sulfide production process. It's about how.
- Polyarylene sulfide typified by polyphenylene sulfide (PPS)
- PPS polyphenylene sulfide
- PPS resin it is one of the Super EPs, and because it has good fluidity, it is advantageous to use as a compound by kneading with fillers or reinforcing agents such as glass fibers.
- NMP N-methyl pyrrolidone
- NMP N-methyl-2-pyrrolidone
- Amide-based compounds such as N-methyl-2-pyrrolidone used in this way are not only more expensive than conventional organic solvents, but are also known to be the main cause of environmental pollution when discharged in aqueous solutions, and are generally recovered and purified to recycle. Is becoming.
- amide-based compounds such as N-methyl-2-pyrrolidone have excellent compatibility with water as they have high organic solubility, so they are infinitely mixed with water, and a large amount of inorganic salts are dissolved, such as effluent from the PAS manufacturing process. If it is, it is difficult to distill as it is, various recovery methods have been tried.
- a process for removing fine powder is added by using a general batch centrifuge, but there is a problem in that it is difficult to remove salts smaller than the mesh size because the inorganic salt is dissolved in water along with a problem in which the fine powder is removed.
- the present invention to minimize clogging of the distillation column in the distillation process for treating the waste liquid generated in the conventional polyarylene sulfide production process and clogging of the filter in the front of the waste liquid tank and deterioration of efficiency, a specific centrifuge before the distillation process of the waste liquid
- an amide compound such as N-methyl-2-pyrrolidone
- a specific centrifuge before the distillation process of the waste liquid By using, an amide compound such as N-methyl-2-pyrrolidone can be efficiently recovered from a waste solution containing an amide compound such as N-methyl-2-pyrrolidone generated in the polyarylene sulfide production process. It is possible to provide a method for recovering an amide-based compound.
- the present invention is to provide a method for improving the recovery effect of the amide-based compound by lowering the water content of the fine powder such as inorganic salts that may be included in the waste solution.
- the step of recovering the waste solution containing water, amide-based compounds and inorganic salts generated in the polyarylene sulfide manufacturing process
- first and second are used to describe various components, and the terms are used only for the purpose of distinguishing one component from other components.
- the step of recovering the waste solution containing water, amide-based compounds and inorganic salts generated in the polyarylene sulfide manufacturing process Removing the inorganic salt in the waste solution by supplying the waste solution to a decanter centrifuge; And collecting the waste liquid from which the inorganic salt has been removed into a storage tank, and then recovering the amide compound from the waste liquid using a distillation column.
- the present invention relates to a method for recovering an amide compound such as N-methyl-2-pyrrolidone used as a solvent from waste liquid generated after washing the reaction mixture after polyarylene sulfide polymerization.
- the waste solution also contains various inorganic salts and impurities generated from a polyarylene sulfide (PAS) manufacturing process.
- the inorganic salt may include a halide of an alkali metal, and may further include finely divided PPS. More specifically, the inorganic salt contains a halide of an alkali metal having a particle size of 5 to 30um, such as brine containing fine PPS ( ⁇ 100um) and sodium chloride (NaCl) generated in the polymerization process of polyarylene sulfide. .
- a filter is installed at the front end of the waste liquid storage tank or a general centrifuge is used, but the filter of the front end tube of the storage tank for collecting the waste liquid may be blocked, and a solid material may be accumulated under the storage tank to block the discharge port.
- a general centrifugal separator since solids are accumulated for each batch, there is a problem in that it must be continuously removed, which is inefficient.
- the solid material of the inorganic salt contained in the waste liquid is removed before distilling the waste liquid by using a decanter centrifuge, and the amide compound contained in the waste liquid is increased by preventing the clogging of the distillation column and increasing distillation efficiency. It can increase the separation efficiency.
- the inorganic salt can be removed and separated from the waste solution more efficiently than in the prior art, thereby improving processability.
- a small amount of impurities can be removed.
- the waste liquid supplied to the decanter-type centrifugal separator may be waste liquid generated in the process of synthesizing and washing polyarylene sulfide.
- the present invention proceeds to a solvent recovery process after separation of the waste liquid, which is separately discharged after polymerization, so that the separation process of inorganic salts such as fine PPS and NaCl can be performed more efficiently than before.
- the method for recovering the amide-based compound may be performed according to the process shown in FIG. 1.
- the present invention does not perform a distillation process to recover the amide-based compound by collecting the waste solution generated in the manufacturing process of polyarylene sulfide directly into the storage tank, decanter type before collecting into the storage tank Using a centrifuge (Decanter type centrifuge), it is characterized in that to remove the solid material, such as inorganic salts from the waste liquid.
- the solid material may include finely divided polyarylene sulfide.
- a step of removing the inorganic salt in the waste liquid by supplying a waste liquid containing water, an amide-based compound and an inorganic salt generated in a polyarylene sulfide manufacturing process to a decanter type centrifuge .
- the waste solution containing water and the amide compound is transferred to a storage tank for collection.
- a step of recovering the amide-based compound from the waste liquid is performed using a distillation column. Through this, 99% or more of the amide compound can be recovered from the waste solution, and the recovered amide compound can be recycled to the polymerization process.
- the reaction mixture after polymerization in the polyarylene sulfide production process is subjected to a process of separating the main reactant, polyarylene sulfide, by washing and filtering in a conventional manner, and waste liquid is generated in this process.
- the washing and filtration process is a step of washing with one or more of amide-based compounds and water to remove impurities such as an oligomer generated after polymerization in a reaction product or an alkali metal halide such as sodium chloride (NaCl). to be.
- the filter size used (for example, 300 um) has very low removal efficiency.
- the filter size (for example, 75 um) has very low efficiency or clogging, and solids are only accumulated under the centrifuge. As a result, the continuous process is impossible as a one-time operation.
- the present invention is characterized in that the separation and removal of inorganic salts from the waste liquid by using a decanter-type centrifugal separator that performs a specific horizontal rotation.
- the step of removing the inorganic salt in the waste solution about 25% by weight or more or about 25 to 40% by weight of the inorganic salt may be removed based on the total weight of the waste solution.
- the inorganic salt separated in the step of removing the inorganic salt in the waste solution may have a water content of 45% or less or 30 to 45% calculated by the following Equation 1.
- Moisture content (%) [(Weight before drying of separated inorganic salt-weight after drying of separated inorganic salt)/ Weight before drying of separated inorganic salt] ⁇ 100
- the present invention is a polyarylene sulfide after the polymerization reaction mixture of the polyarylene sulfide in a general method after the polymerization process of the polyarylene sulfide in the polymerization reactor (1) And it is possible to obtain a waste solution containing an inorganic salt. Then, the waste liquid (2) is supplied to the decanter-type centrifuge (3) through the separation process, inorganic salts such as NaCl can be removed through the stream (4).
- the waste liquid from which the inorganic salt has been removed may be supplied to the storage tank 6 through the stream 5, and the waste liquid discharged from the storage tank may be supplied to the distillation column 8 through the stream 7.
- This process can be performed continuously, unlike the batch process of a typical centrifuge. Therefore, by using the above method, it is not necessary to periodically remove inorganic salts including finely divided solid materials such as NaCl, and the efficiency of a filter or mesh used as a filtering means for the conventional inorganic salts when a certain operation is performed Falling shortcomings can be overcome.
- the distillation column 8 may also overcome the clogging phenomenon due to inorganic salts such as finely divided NaCl or the limit of distillation efficiency.
- the decanter-type centrifuge used in the present invention to remove the inorganic salt in the liquid, by using a centrifugal force, by creating a solid and liquid layer on the wall surface of the decanter-type centrifuge, it is possible to separate and remove the solid Device.
- the decanter-type centrifugal separator may have a structure in which a cylindrical cylinder and a conical cylinder are combined to provide a horizontally installed bowl and a screw conveyor in which shafts and screws are coupled.
- a pipe for supplying the waste liquid to be separated is provided inside the shaft, and can be connected to a device that performs a washing process.
- the decanter-type centrifugal separator may be separately provided with an outlet for removing inorganic salts from the waste liquid and an outlet from which the inorganic salts have been removed.
- the bowl and the screw conveyor rotate at different speeds, and the solid having a high specific gravity and a liquid having a small specific gravity can be separated by the action of the centrifugal force due to the speed difference. Therefore, when the decanter-type centrifugal separator is used, a solid substance (solid content) containing inorganic salt in the waste liquid may be sedimented and discharged through a separate outlet after being settled to the lower portion inside the bowl.
- the liquid having a small specific gravity separated from the decanter-type centrifuge can be discharged through a separate line and transferred to a storage tank.
- an amide compound and a small amount of polyarylene sulfide may be included, and then the amide compound can be separated and recovered through a distillation process.
- the operating conditions of the decanter type centrifuge can be used by operating for 30 seconds to 5 minutes or 30 seconds to 2 minutes at 1500G to 3100G.
- the speed is 1500 G or less, the separation speed becomes slower and the operation time becomes longer, and if it is 3100 G or more, even if the water content reaches a threshold value and increases the gravitational acceleration, the water content does not decrease.
- G in the speed of the centrifuge may mean G-force, and may be used that is adjusted within the range according to the radius of the rotor of the decanter type centrifuge.
- the step of removing the inorganic salt in the waste solution is preferably performed at room temperature and atmospheric pressure of 20 °C to 25 °C.
- the present invention does not operate a decanter type centrifuge under high temperature and high pressure conditions by supplying a waste liquid to a general extraction column or a batch centrifugal separator, so that processability can be improved.
- a decanter type centrifugal separator after the above-described waste liquid is introduced into a decanter type centrifugal separator, and performed under normal temperature and normal pressure, process equipment under high temperature and high pressure conditions is unnecessary.
- the amide-based compound in the waste liquid is separated and recovered from the bottom of the distillation column in a series of distillation processes, and the recovered amide-based compound (10) is re-polymerized through the circulation pump (11) (1) And can be reused.
- water 9 may be separated and discharged to the top of the distillation column.
- the specific type of distillation column that can be used in the recovery process of the amide-based compound is not particularly limited.
- a general compressor, reboiler, and condenser may be included in the distillation process.
- the distillation column may include a column including an extraction region and a distillation region.
- the manufacturing process of the polyarylene sulfide may be performed according to a method well known in the art, and after the polymerization of the polyarylene sulfide is completed, a washing process may be performed to collect waste liquid.
- the fine liquid of the polyarylene sulfide is removed from the reaction mixture of the polyarylene sulfide production process through a pre-treatment process using a filtration means.
- the filtration means may be performed according to methods well known in the art, and the method is not limited.
- the present invention effectively separates amide compounds such as N-methyl-2-pyrrolidone from waste liquids containing various inorganic salts and impurities generated from a process for manufacturing polyarylene sulfide (PAS).
- PAS polyarylene sulfide
- the composition of the waste liquid introduced into the distillation column through the decanter-type centrifuge and the storage tank may include a composition in which inorganic salts and impurities, which are halides of alkali metals, are removed.
- the impurity may include fine powders such as polyarylene sulfide.
- the waste solution may further include at least one selected from the group consisting of a small amount of alkali metal hydrosulfide, alkali metal sulfide, dihalogenated aromatic compound, and polyarylene sulfide together with water and an amide compound.
- the waste solution is o-dichlorobenzene (o-DCB), m-dichlorobenzene (m-DCB), p-dichlorobenzene (p-DCB), sodium hydrogen sulfide (NaSH), sulfide together with water and amide compounds It may also include one or more selected from the group consisting of sodium (Na 2 S), and polyphenylene sulfide (PPS).
- the composition of the waste solution after washing in the polyarylene sulfide production process includes, as described above, an amide-based compound such as NMP from about 20% to about 70% by weight, or from about 30% to about 60% by weight
- the composition of brine containing sodium chloride (NaCl) may include about 30% to about 80% by weight, or about 40% to about 70% by weight.
- the waste solution may further include p-DCB, NaSH, Na 2 S and other impurities including dispersed PPS microparticles within about 10% by weight, or within about 5% by weight, based on the total weight of the solution medium. have.
- impurities include 2-pyrrolidinone, 1-methyl-2,5-pyrrolidione (1-methyl-2,5-pyrrolidione) and 3-chloro-N-methylaniline (3-Chloro- N-Methylaniline) and the like, and may be one or more of them.
- the composition of the waste liquid collected in the storage tank contains an amide-based compound such as NMP from about 15% to about 65% by weight, or from about 20% to about 60% by weight, of sodium chloride (NaCl)-free water.
- the composition may be up to about 25% by weight or from about 20% to about 30% by weight.
- the waste solution may further include p-DCB, NaSH, Na 2 S, and other impurities including dispersed PPS microparticles within about 5% by weight, or within about 3% by weight, based on the total weight of the solution medium. have.
- amide compounds include amide compounds such as N,N-dimethylformamide or N,N-dimethylacetamide; Pyrrolidone compounds such as N-methyl-2-pyrrolidone (NMP) or N-cyclohexyl-2-pyrrolidone; Caprolactam compounds such as N-methyl- ⁇ -caprolactam; Imidazolidinone compounds such as 1,3-dialkyl-2-imidazolidinone; Urea compounds such as tetramethyl urea; Or a phosphoric acid amide compound, such as hexamethylphosphate triamide, etc. are mentioned, It can be one or more of these.
- Pyrrolidone compounds such as N-methyl-2-pyrrolidone (NMP) or N-cyclohexyl-2-pyrrolidone
- Caprolactam compounds such as N-methyl- ⁇ -caprolactam
- Imidazolidinone compounds such as 1,3-dialkyl-2-imidazolidinone
- Urea compounds such
- the specific production method of the polyarylene sulfide and the specific separation and recovery method of the amide compound may refer to Examples described later.
- the method for producing polyarylene sulfide or the method for separating and recovering an amide-based compound is not limited to the contents described herein, and the method for preparing and separating and recovering is generally employed in the technical field to which the present invention pertains.
- the step(s) of the above-described manufacturing method and separation and recovery method may be changed by the step(s), which is usually changeable.
- the present invention by removing the inorganic salt from the waste liquid generated in the polymerization process of polyarylene sulfide using a decanter centrifuge, clogging phenomenon caused by fine inorganic salts that may occur during the distillation process or It is possible to recover the high-purity amide-based compound by improving the performance of separation efficiency of the amide-based compound such as N-methyl-2-pyrrolidone from the waste liquid generated in the polyarylene sulfide production process by preventing a decrease in distillation efficiency.
- FIG. 1 is a schematic view showing a process for recovering an amide-based compound from the waste solution generated in the polymerization process of polyarylene sulfide according to an embodiment of the present invention.
- Figure 2 is a schematic diagram showing a conventional process for recovering an amide-based compound from the waste solution generated in the polymerization process of polyarylene sulfide according to Comparative Example 1.
- Figure 3 is a schematic diagram showing a conventional process for recovering an amide-based compound from the waste solution generated in the polymerization process of polyarylene sulfide according to Comparative Example 2.
- Sodium sulfide was prepared by mixing 1 equivalent of 70% sodium hydrogen sulfide (NaSH) and 1.05 equivalent of sodium hydroxide (NaOH) (ie 1:1.05 ratio) to make a PPS polymer. At this time, 0.4 equivalents of sodium acetate (CH 3 COONa) powder, 1.65 equivalents of N-methyl-2-pyrrolidone (NMP), and 4.72 equivalents of deionized water (DI water) were added to the reactor. Here, equivalent weight means molar equivalent weight (eq/mol). At this time, the solid reagent was first added and then added in the order of NMP and deionized water. Then, the reactor was stirred at about 150 rpm, and dehydrated by heating to 190° C.
- NaSH 70% sodium hydrogen sulfide
- NaOH sodium hydroxide
- DI water deionized water
- reaction mixture was heated to 230°C to react for 2 hours, heated to 255°C to react for 2 hours, and then 3 equivalents of distilled water was added and stirred for 5 minutes to obtain a reaction mixture containing PPS polymer.
- the waste solution after washing contained NMP-containing aqueous medium, brine (NaCl aqueous solution), wherein the composition of NMP was 5 to 40% by weight and the composition of brine containing NaCl was 1 to 15% by weight, water 20 to 95% by weight was included.
- the waste solution contains about 10 weights of other impurities including microparticles such as p-DCB, NaSH, Na 2 S, differential PPS, and 2-pyrrolidinone, relative to the total weight of the solvent of NMP and brine. %.
- Sodium sulfide was prepared by mixing 1 equivalent of 70% sodium hydrogen sulfide (NaSH) and 1.05 equivalent of sodium hydroxide (NaOH) (ie 1:1.05 ratio) to make a PPS polymer. At this time, 0.4 equivalents of sodium acetate (CH 3 COONa) powder, 1.65 equivalents of N-methyl-2-pyrrolidone (NMP), and 4.72 equivalents of deionized water (DI water) were added to the reactor. Here, equivalent weight means molar equivalent weight (eq/mol). At this time, the solid reagent was first added and then added in the order of NMP and deionized water. Then, the reactor was stirred at about 150 rpm, and dehydrated by heating to 190° C.
- NaSH 70% sodium hydrogen sulfide
- NaOH sodium hydroxide
- DI water deionized water
- reaction mixture was heated to 230°C to react for 2 hours, heated to 255°C to react for 2 hours, and then 3 equivalents of distilled water was added and stirred for 10 minutes to obtain a reaction mixture containing PPS polymer.
- p-DCB para-dichlorobenzene
- NMP N-methyl-2-pyrrolidone
- the waste solution after washing contained NMP-containing aqueous medium, brine (NaCl aqueous solution), wherein the composition of NMP was 5 to 40% by weight and the composition of brine containing NaCl was 1 to 15% by weight, water 20 to 95% by weight was included.
- the waste solution contains about 10 weights of other impurities including microparticles such as p-DCB, NaSH, Na 2 S, differential PPS, and 2-pyrrolidinone, relative to the total weight of the solvent of NMP and brine. %.
- the waste solution obtained from the washing process after the PPS polymerization of Preparation Example 1 is supplied to a decanter-type centrifuge (3) before collecting it into a storage tank for distillation, as shown in FIG. 1, and the waste solution containing solids such as NaCl and PPS is used as a waste solution. Removed from. This process was performed as a continuous process.
- the liquid obtained from the decanter-type centrifuge contained 20% by weight of NMP and 80% by weight of water, and the mixed solution of this composition was collected into a storage tank (6), and then introduced into a distillation column through a stream (7), N
- the separation and purification recovery process of -methyl-2-pyrrolidone (NMP) was performed. That is, at a flow rate of 700 kg/hr, stream 7 was introduced into the mixed liquid supply port located at the first stage of the distillation column having 15 theoretical stages to perform the NMP separation process. In the distillation process, the temperature at the top of the column was 134°C and the temperature at the bottom of the column was performed at 183°C.
- the NMP recovered from the waste liquid was 99.9% by weight or more of pure (99.9%) NMP with respect to all components.
- Example 2 When removing solids including fine powders such as NaCl and PPS, except that the operating time of the decanter centrifuge was changed from 120sec to 30sec, in the same manner as in Example 1, the waste solution obtained from the washing process after PPS polymerization was treated. , N-methyl-2-pyrrolidone was separated and recovered using the process of FIG. 1. The characteristics of each stream in Example 2 are also the same as in Example 1.
- the NMP recovered from the waste liquid was 99.9% by weight or more of pure (99.9%) NMP with respect to all components.
- the waste solution obtained from the washing process after the PPS polymerization of Preparation Example 1 is supplied to a decanter-type centrifugal separator (3) before being collected into a storage tank for distillation as shown in FIG. 1, and the solid solution containing fine powders such as NaCl and PPS is used as a waste solution. Removed from. This process was performed as a continuous process.
- Moisture content (%) [(Weight before drying of separated inorganic salt-weight after drying of separated inorganic salt)/ Weight before drying of separated inorganic salt] ⁇ 100
- the inorganic salt may contain a trace amount of finely divided PSS.
- the total amount of NaCl and finely divided PPS separated in 50 ml of the waste liquid was 1 ml or less, and solids observable in the waste liquid were still present.
- the waste solution obtained from the washing process after the PPS polymerization of Preparation Example 1 was removed by using a general centrifugal separator that proceeds in a batch operation before collecting it into a storage tank for distillation as shown in FIG. 3 to remove solids including fine powders such as NaCl and PPS. .
- the reaction mixture obtained after the PPS polymerization was filtered and washed with NMP, and then 50 ml of the resulting waste liquid was collected in a conical tube, and treated at 4000 rpm (about 1500 G) at room temperature and pressure for 3 minutes with a centrifuge.
- the total amount of NaCl and fine PPS separated in 50 ml of waste liquid was 11.3 ml, and the waste liquid was 38.7 ml.
- solid matters accumulated in the centrifuge must be removed each time, continuous operation was impossible and processability was deteriorated.
- the waste solution obtained from the washing process after the PPS polymerization of Preparation Example 2 was attempted to remove solids including fine powders such as NaCl and PPS using a general filter before collecting the waste solution obtained in the storage tank for distillation as shown in FIG. 2.
- reaction mixture obtained after the PPS polymerization was filtered and washed with NMP, and then 50 ml of the resulting waste liquid was collected in a conical tube, and treated at a room temperature and a normal pressure in a batch centrifuge at 7000 rpm for 10 minutes.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
Abstract
The present invention provides a method for recovering amide-based compounds, wherein, before a distillation step for separating and recovering amide-based compounds from waste liquid including amide-based compounds such as N-methyl-2-pyrrolidone generated in a polyarylene sulfide polymerization process and inorganic salts, the inorganic salts are removed from the waste liquid by using a decanter-type centrifuge at room temperature and normal pressure, and thus the occurrence of clogging by fine PPS powder, which may be generated in the distillation step, and the inorganic salts or distillation efficiency deterioration is prevented, and accordingly, amide-based compounds such as N-methyl-2-pyrrolidone in the waste liquid are efficiently recovered.
Description
관련 출원(들)과의 상호 인용Cross-citation with relevant application(s)
본 출원은 2019년 1월 28일자 한국특허출원 제 10-2019-0010742호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2019-0010742 filed on January 28, 2019, and all contents disclosed in the documents of the Korean patent applications are included as part of this specification.
본 발명은 폴리아릴렌 설파이드 제조공정에서 발생된 N-메틸-2-피롤리돈 등의 아미드계 화합물을 포함하는 폐액으로부터 N-메틸-2-피롤리돈 등의 아미드계 화합물을 효율적으로 회수하는 방법에 관한 것이다.The present invention efficiently recovers amide-based compounds such as N-methyl-2-pyrrolidone from waste liquids containing amide-based compounds such as N-methyl-2-pyrrolidone generated in the polyarylene sulfide production process. It's about how.
폴리페닐렌설파이드(Polyphenylene sulfide; PPS)로 대표되는 폴리아릴렌 설파이드(Polyarylene sulfide, PAS)는 우수한 강도, 내열성, 난연성 및 가공성으로 인해 자동자, 전기ㆍ전자 제품, 기계류 등에서 금속, 특히 알루미늄이나 아연과 같은 다이캐스팅(die casting) 금속을 대체하는 소재로 폭 넓게 사용되고 있다. 특히, PPS 수지의 경우, Super EP 중 하나이며, 유동성이 좋기 때문에 유리섬유 등의 필러나 보강제와 혼련하여 컴파운드로 사용하기에 유리하다.Polyarylene sulfide (PAS), typified by polyphenylene sulfide (PPS), is used in metals, especially aluminum or zinc, in automobiles, electrical and electronic products, machinery, etc. due to its excellent strength, heat resistance, flame retardancy, and processability. It is widely used as a material to replace the same die casting metal. Particularly, in the case of PPS resin, it is one of the Super EPs, and because it has good fluidity, it is advantageous to use as a compound by kneading with fillers or reinforcing agents such as glass fibers.
일반적으로 PAS 중합 공정에서 N-메틸 피롤리돈(NMP)과 같은 아미드계 화합물을 용매로 사용하는 방법이 공업적으로 널리 알려져 있다. 또한, PAS를 중합한 후에도, 잔류하는 미반응 물질을 N-메틸-2-피롤리돈(NMP)과 같은 아미드계 화합물이나 물로 세척하여 제거하고 있다. 이렇게 사용된 N-메틸-2-피롤리돈 등의 아미드계 화합물은 통상의 유기 용매보다 고가일 뿐만 아니라, 수용액으로 배출했을 경우 환경 오염의 주원인이 되는 것으로 알려져 있어, 일반적으로 회수 정제하여 순환 재이용되고 있다. In general, a method of using an amide compound such as N-methyl pyrrolidone (NMP) as a solvent in a PAS polymerization process is widely known in the industry. Further, even after polymerizing the PAS, residual unreacted substances are removed by washing with an amide compound such as N-methyl-2-pyrrolidone (NMP) or water. Amide-based compounds such as N-methyl-2-pyrrolidone used in this way are not only more expensive than conventional organic solvents, but are also known to be the main cause of environmental pollution when discharged in aqueous solutions, and are generally recovered and purified to recycle. Is becoming.
그러나, N-메틸-2-피롤리돈 등의 아미드계 화합물은 유기물 용해성이 높은 만큼 물과의 상용성도 우수하여 물과 무한대로 혼합하고, 또한 PAS 제조 공정으로부터의 유출액과 같이 무기 염이 다량 용해되어 있을 경우에는 그대로 증류하는 것도 어렵기 때문에 다양한 회수 방법이 시도되어 왔다.However, amide-based compounds such as N-methyl-2-pyrrolidone have excellent compatibility with water as they have high organic solubility, so they are infinitely mixed with water, and a large amount of inorganic salts are dissolved, such as effluent from the PAS manufacturing process. If it is, it is difficult to distill as it is, various recovery methods have been tried.
예를 들어, PAS 중합 후 남아있는 미반응 물질은 NMP나 물로 세척하여 제거하고 있다. 이때, 사용된 NMP는 대부분 증류 공정을 통해 회수하였다. For example, unreacted material remaining after PAS polymerization is removed by washing with NMP or water. At this time, most of the NMP used was recovered through a distillation process.
또, 상기 PAS 중합 후 생성되는 NaCl과 같은 입자를 제거하기 위해, 현재는 폐액 저장조 전단에 필터를 설치하는 방법이 이용되고 있다. 그러나, 상기 방법은 NaCl과 같은 무기염 입자와 미분 등이 저장조 전단에 설치된 필터 구멍을 막아 수시로 정비가 필요하며 필터 메시보다 작은 사이즈의 염이나 물에 녹아 있는 염은 제거하기 어려운 문제가 있다. In addition, in order to remove particles such as NaCl generated after the PAS polymerization, a method of installing a filter in front of a waste liquid storage tank is currently used. However, the above method requires frequent maintenance by blocking filter holes in which inorganic salt particles such as NaCl and fine powder are installed in the front of the storage tank, and it is difficult to remove salts smaller than the filter mesh or salts dissolved in water.
또 다른 방법으로, 일반적인 회분식 원심분리기를 이용해 미분을 제거하는 공정을 추가하고 있으나, 미분 제거 효율이 떨어지는 문제와 함께 무기염이 물에 녹아 있어 메시 사이즈보다 작은 염은 제거하기 어려운 문제가 있다.As another method, a process for removing fine powder is added by using a general batch centrifuge, but there is a problem in that it is difficult to remove salts smaller than the mesh size because the inorganic salt is dissolved in water along with a problem in which the fine powder is removed.
따라서, 아미드계 화합물의 효과적인 회수 공정을 위해 무기염과 같은 미분을 제거하는 것이 필요하다.Therefore, it is necessary to remove fine powders such as inorganic salts in order to effectively recover the amide compound.
본 발명은 종래 폴리아릴렌 설파이드 제조 공정에서 발생된 폐액을 처리하는 증류 공정에서의 증류 컬럼의 막힘과 폐액 탱크 전단의 필터의 막힘 및 효율 저하를 최소화하기 위해, 폐액의 증류 공정 전에 특정 원심분리기를 사용함으로써, 폴리아릴렌 설파이드 제조공정에서 발생된 N-메틸-2-피롤리돈 등의 아미드계 화합물을 포함하는 폐액에서 N-메틸-2-피롤리돈 등의 아미드계 화합물을 효율적으로 회수할 수 있는, 아미드계 화합물의 회수 방법을 제공하고자 한다.The present invention to minimize clogging of the distillation column in the distillation process for treating the waste liquid generated in the conventional polyarylene sulfide production process and clogging of the filter in the front of the waste liquid tank and deterioration of efficiency, a specific centrifuge before the distillation process of the waste liquid By using, an amide compound such as N-methyl-2-pyrrolidone can be efficiently recovered from a waste solution containing an amide compound such as N-methyl-2-pyrrolidone generated in the polyarylene sulfide production process. It is possible to provide a method for recovering an amide-based compound.
또, 본 발명에서는 폐액 중 포함될 수 있는 무기염과 같은 미분의 함수율을 낮추어 아미드계 화합물의 회수효과를 향상시킬 수 있는 방법을 제공하는 것이다.In addition, the present invention is to provide a method for improving the recovery effect of the amide-based compound by lowering the water content of the fine powder such as inorganic salts that may be included in the waste solution.
본 명세서에서는, 폴리아릴렌 설파이드 제조공정에서 발생된 물, 아미드계 화합물 및 무기염을 포함한 폐액을 회수하는 단계;In this specification, the step of recovering the waste solution containing water, amide-based compounds and inorganic salts generated in the polyarylene sulfide manufacturing process;
상기 폐액을 디캔터형 원심분리기에 공급하여 상기 폐액 내 무기염을 제거하는 단계; 및Removing the inorganic salt in the waste solution by supplying the waste solution to a decanter centrifuge; And
상기 무기염이 제거된 폐액을 저장 탱크로 수집한 후 증류탑을 이용하여 폐액에서 아미드계 화합물을 회수하는 단계;Collecting the waste solution from which the inorganic salt has been removed into a storage tank, and then recovering the amide compound from the waste solution using a distillation column;
를 포함하는 아미드계 화합물의 회수 방법을 제공한다.
It provides a method for recovering an amide-based compound comprising a.
이하 발명의 구체적인 구현예에 따른 폴리아릴렌설파이드의 제조공정에서 발생된 폐액으로부터 아미드계 화합물을 회수하는 방법에 대하여 보다 상세하게 설명하기로 한다.Hereinafter, a method for recovering an amide-based compound from waste liquid generated in the process of manufacturing polyarylene sulfide according to a specific embodiment of the present invention will be described in more detail.
본 발명에서, 제1, 제2 등의 용어는 다양한 구성요소들을 설명하는 데 사용되며, 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다. In the present invention, terms such as first and second are used to describe various components, and the terms are used only for the purpose of distinguishing one component from other components.
또한, 본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.In addition, the terms used herein are only used to describe exemplary embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this specification, the terms “include”, “have” or “have” are intended to indicate the presence of implemented features, numbers, steps, elements, or combinations thereof, one or more other features or It should be understood that the existence or addition possibilities of numbers, steps, elements, or combinations thereof are not excluded in advance.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.The present invention can be applied to various changes and may have various forms, and specific embodiments will be illustrated and described in detail below. However, this is not intended to limit the present invention to a specific disclosure form, and it should be understood that all modifications, equivalents, and substitutes included in the spirit and scope of the present invention are included.
이하, 본 발명을 단계별로 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail step by step.
발명의 일 구현예에 따라, 폴리아릴렌 설파이드 제조공정에서 발생된 물, 아미드계 화합물 및 무기염을 포함한 폐액을 회수하는 단계; 상기 폐액을 디캔터형 원심분리기에 공급하여 상기 폐액 내 무기염을 제거하는 단계; 및 상기 무기염이 제거된 폐액을 저장 탱크로 수집한 후 증류탑을 이용하여 폐액에서 아미드계 화합물을 회수하는 단계;를 포함하는 아미드계 화합물의 회수 방법이 제공된다.According to one embodiment of the invention, the step of recovering the waste solution containing water, amide-based compounds and inorganic salts generated in the polyarylene sulfide manufacturing process; Removing the inorganic salt in the waste solution by supplying the waste solution to a decanter centrifuge; And collecting the waste liquid from which the inorganic salt has been removed into a storage tank, and then recovering the amide compound from the waste liquid using a distillation column.
본 발명은 폴리아릴렌 설파이드 중합후 반응 혼합물을 세척 후 발생된 폐액으로부터 용매로 사용된 N-메틸-2-피롤리돈 등의 아미드계 화합물을 회수하기 위한 방법에 관한 것이다.The present invention relates to a method for recovering an amide compound such as N-methyl-2-pyrrolidone used as a solvent from waste liquid generated after washing the reaction mixture after polyarylene sulfide polymerization.
기존 폴리아릴렌 설파이드의 제조 공정에서 폐액 중 아미드계 화합물의 회수 공정은, 폐액 내 포함된 무기물 등의 미분(고형분)이 효과적으로 제거되지 않아 증류 컬럼의 막힘 문제가 발생되었다. In the process of recovering the amide-based compound in the waste liquid in the conventional polyarylene sulfide production process, clogging problems of the distillation column occur because fines (solids) such as inorganic substances contained in the waste liquid are not effectively removed.
즉, 상기 폐액은 폴리아릴렌 설파이드(Polyarylene sulfide, PAS) 제조 공정으로부터 생성되는 다양한 무기 염과 불순물도 함께 포함되어 있다. 상기 무기염은 알칼리금속의 할로겐화물을 포함할 수 있고, 추가로 미분 PPS를 포함할 수 있다. 더 구체적으로, 상기 무기염은 폴리아릴렌 설파이드의 중합 공정에서 발생된 미분 PPS(<100um)와 염화나트륨(NaCl)이 포함된 브라인과 같은 입자크기 5 내지 30um정도의 알칼리금속의 할로겐화물을 포함한다. 따라서, 상기 폐액을 바로 증류할 경우, 상기 폐액내 포함된 무기염으로 인해 증류탑의 막힘 현상이 발생하여 증류 효율이 떨어지는 문제가 발생하여, 폐액으로부터 아미드계 화합물을 회수하는데 한계가 있다.That is, the waste solution also contains various inorganic salts and impurities generated from a polyarylene sulfide (PAS) manufacturing process. The inorganic salt may include a halide of an alkali metal, and may further include finely divided PPS. More specifically, the inorganic salt contains a halide of an alkali metal having a particle size of 5 to 30um, such as brine containing fine PPS (<100um) and sodium chloride (NaCl) generated in the polymerization process of polyarylene sulfide. . Accordingly, when the waste liquid is directly distilled, clogging of the distillation column occurs due to the inorganic salt contained in the waste liquid, resulting in a problem that distillation efficiency is reduced, and there is a limit to recovering the amide compound from the waste liquid.
또, 종래 방법에서 상기 폐액 저장조의 전단에 필터를 설치하거나 일반적인 원심분리기를 이용하였지만, 상기 폐액을 수집하기 위한 저장조의 전단 관의 필터가 막힐 수 있고, 저장조 하부로 고형물이 쌓여 토출구가 막힐 수 있다. 또한, 일반적인 원심분리기를 이용할 경우, 배치마다 고형물이 쌓이게 되므로, 이를 계속 제거해 주어야 하는 문제가 있어 비효율적이다.In addition, in the conventional method, a filter is installed at the front end of the waste liquid storage tank or a general centrifuge is used, but the filter of the front end tube of the storage tank for collecting the waste liquid may be blocked, and a solid material may be accumulated under the storage tank to block the discharge port. . In addition, when a general centrifugal separator is used, since solids are accumulated for each batch, there is a problem in that it must be continuously removed, which is inefficient.
또, 폐액에서 용매 회수시 고압 및 약 200도 이상의 고온 조건으로 원심분리기를 이용하는 경우가 있는데, 설비 추가로 인한 공정성 저하가 발생하여 비경제적일 수 있다.In addition, there is a case where a centrifugal separator is used under high pressure and a high temperature condition of about 200 degrees or more when recovering a solvent from the waste liquid, which may be uneconomical due to a decrease in processability due to the addition of equipment.
이에, 본 발명에서는 특정하게 디캔터형 원심분리기를 사용하여 상기 폐액을 증류하기 전에 폐액 내 포함된 무기염의 고체 물질을 제거하여, 증류탑의 막힘 발생을 방지하여 증류 효율 증가로 폐액내 포함된 아미드계 화합물의 분리 효율을 증가시킬 수 있다. 또한, 이러한 공정은 연속식으로 진행이 가능하므로, 종래보다 효율적으로 무기염을 폐액에서 제거 및 분리할 수 있는 바, 공정성을 개선할 수 있다. 또, 본 발명에서 상기 디캔터형 원심분리기를 이용할 경우, 소량의 불순물도 제거 가능하다. 상기 디캔터형 원심분리기에 공급되는 폐액은 폴리아릴렌 설파이드의 합성 및 세척 공정에서 생성되는 폐액일 수 있다.Thus, in the present invention, the solid material of the inorganic salt contained in the waste liquid is removed before distilling the waste liquid by using a decanter centrifuge, and the amide compound contained in the waste liquid is increased by preventing the clogging of the distillation column and increasing distillation efficiency. It can increase the separation efficiency. In addition, since these processes can be continuously performed, the inorganic salt can be removed and separated from the waste solution more efficiently than in the prior art, thereby improving processability. In addition, when using the decanter-type centrifuge in the present invention, a small amount of impurities can be removed. The waste liquid supplied to the decanter-type centrifugal separator may be waste liquid generated in the process of synthesizing and washing polyarylene sulfide.
이러한 본 발명은 중합 후 별도로 배출된 폐액 분리후 용매 회수 공정을 진행하는 바, 미분 PPS 및 NaCl과 같은 무기염의 분리공정을 종래보다 효율적으로 진행할 수 있다.The present invention proceeds to a solvent recovery process after separation of the waste liquid, which is separately discharged after polymerization, so that the separation process of inorganic salts such as fine PPS and NaCl can be performed more efficiently than before.
구체적으로는, 상기 아미드계 화합물의 회수 방법은, 도 1에 나타낸 바와 같은 공정에 따라 수행될 수 있다.Specifically, the method for recovering the amide-based compound may be performed according to the process shown in FIG. 1.
도 1에 도시된 바와 같이, 본 발명은 폴리아릴렌 설파이드의 제조공정에서 발생된 폐액을 바로 저장조로 수집하여 아미드계 화합물을 회수하기 위한 증류공정을 수행하지 않고, 상기 저장조로 수집하기 전에 디캔터형 원심분리기(Decanter type centrifuge)를 사용하여, 상기 폐액에서 무기염과 같은 고체물질을 제거하는 것을 특징으로 한다. 이때, 상기 고체물질은 미분 폴리아릴렌설파이드를 포함할 수 있다.As shown in Figure 1, the present invention does not perform a distillation process to recover the amide-based compound by collecting the waste solution generated in the manufacturing process of polyarylene sulfide directly into the storage tank, decanter type before collecting into the storage tank Using a centrifuge (Decanter type centrifuge), it is characterized in that to remove the solid material, such as inorganic salts from the waste liquid. At this time, the solid material may include finely divided polyarylene sulfide.
이러한 방법의 일 구현예에 따라, 폴리아릴렌 설파이드 제조공정에서 발생된 물, 아미드계 화합물 및 무기염을 포함한 폐액을, 디캔터형 원심분리기에 공급하여 상기 폐액 내 무기염을 제거하는 단계를 수행한다. According to one embodiment of this method, a step of removing the inorganic salt in the waste liquid by supplying a waste liquid containing water, an amide-based compound and an inorganic salt generated in a polyarylene sulfide manufacturing process to a decanter type centrifuge .
이어서, 상기 방법에서 무기염을 제거한 후, 물 및 아미드계 화합물을 포함한 폐액을 저장 탱크로 이송시켜 수집한다. 그런 다음, 증류탑을 이용하여 폐액에서 아미드계 화합물을 회수하는 단계를 수행한다. 이를 통해 폐액에서 아미드계 화합물의 99% 이상 회수될 수 있으며, 회수된 아미드계 화합물은 중합 공정으로 재순환될 수 있다.Subsequently, after removing the inorganic salt in the above method, the waste solution containing water and the amide compound is transferred to a storage tank for collection. Then, a step of recovering the amide-based compound from the waste liquid is performed using a distillation column. Through this, 99% or more of the amide compound can be recovered from the waste solution, and the recovered amide compound can be recycled to the polymerization process.
더 구체적으로, 상기 폴리아릴렌 설파이드 제조공정에서 중합 후 반응 혼합물은, 통상의 방법으로 세척 및 여과를 수행하여, 주요 반응물인 폴리아릴렌 설파이드를 분리하는 공정을 거치고, 이러한 과정에서 폐액이 발생된다. 상기 세척 및 여과 공정은 반응 생성물 중에서 중합 후 생성되는 올리고머(oligomer) 등이나 염화나트륨(NaCl)과 같은 알칼리금속 할로겐화물 등의 불순물 제거를 위하여 아미드계 화합물 및 물 중에서 1종 이상을 사용하여 세척하는 단계이다.More specifically, the reaction mixture after polymerization in the polyarylene sulfide production process is subjected to a process of separating the main reactant, polyarylene sulfide, by washing and filtering in a conventional manner, and waste liquid is generated in this process. . The washing and filtration process is a step of washing with one or more of amide-based compounds and water to remove impurities such as an oligomer generated after polymerization in a reaction product or an alkali metal halide such as sodium chloride (NaCl). to be.
상기 과정을 통해, 상기 알칼리금속 할로겐화물의 일부가 제거될 수 있으나, NaCl 같은 무기염의 입자 크기는 약 5 ~ 10 ㎛이고 미분 PPS나 미반응 알칼리 금속 할로겐화물 등은 100 ㎛이하 이기 때문에, 일반적으로 사용하는 필터 크기(예를 들면, 300um)로는 제거 효율이 매우 낮다. 또한, 필터 크기를 10um 이하로 사용할 경우에는, 관막힘 현상으로 인해 정기적인 케이크 제거 과정이 필요한 문제가 있다. 또, 일반적인 회분식 운전을 하는 원심분리기를 사용할 경우에도 필터 크기(예를 들면 75 um)로는 효율이 매우 낮거나 막힘 현상이 일어나며 고형분이 원심분리기 하부로만 쌓이게 되므로, 새로운 원심분리를 위해서는 이를 제거한 후 사용해야 하는 바, 1회성으로서 연속 공정이 불가하다.Through the above process, a part of the alkali metal halide may be removed, but since the particle size of the inorganic salt such as NaCl is about 5 to 10 μm and the fine PPS or unreacted alkali metal halide is 100 μm or less, it is generally The filter size used (for example, 300 um) has very low removal efficiency. In addition, when using a filter size of 10um or less, there is a problem that requires a regular cake removal process due to the clogging phenomenon. In addition, even when a centrifugal separator is used in general batch operation, the filter size (for example, 75 um) has very low efficiency or clogging, and solids are only accumulated under the centrifuge. As a result, the continuous process is impossible as a one-time operation.
따라서, 본 발명은 특정하게 수평적인 회전을 진행하는 디캔터형 원심분리기를 사용하여, 상기 폐액에서 무기염을 분리 및 제거하는 것을 특징으로 한다.Therefore, the present invention is characterized in that the separation and removal of inorganic salts from the waste liquid by using a decanter-type centrifugal separator that performs a specific horizontal rotation.
이에, 상기 폐액내 무기염을 제거하는 단계에서, 폐액의 총 중량을 기준으로 약 25 중량% 이상 혹은 약 25 내지 40 중량%의 무기염이 제거될 수 있다. Accordingly, in the step of removing the inorganic salt in the waste solution, about 25% by weight or more or about 25 to 40% by weight of the inorganic salt may be removed based on the total weight of the waste solution.
특히, 상기 폐액 내 무기염을 제거하는 단계에서 분리된 무기염은 하기 식 1에 의해 계산되는 함수율이 45% 이하 혹은 30 내지 45%일 수 있다.In particular, the inorganic salt separated in the step of removing the inorganic salt in the waste solution may have a water content of 45% or less or 30 to 45% calculated by the following Equation 1.
[식 1][Equation 1]
함수율 (%) = [(분리된 무기염의 건조 전 무게-분리된 무기염의 건조 후 무게)/ 분리된 무기염의 건조 전 무게] × 100Moisture content (%) = [(Weight before drying of separated inorganic salt-weight after drying of separated inorganic salt)/ Weight before drying of separated inorganic salt] × 100
상기 폐수에서 분리된 무기염과 같은 고형분의 함수율이 너무 높으면 원심분리기에 고형물이 늘러 붙어 제거 공정이 필요하고, 연속식 운전이 불가능할 수 있다.If the water content of solids such as inorganic salts separated from the wastewater is too high, solids may stick to the centrifuge and a removal process is necessary, and continuous operation may not be possible.
발명의 일 구현예에 따라, 본 발명은 중합 반응기(1)에서 폴리아릴렌 설파이드의 중합 공정을 거친 후, 일반적인 방법으로 상기 폴리아릴렌 설파이드의 중합 반응 혼합물을 세척 공정을 거쳐, 폴리아릴렌 설파이드 및 무기염을 포함한 폐액을 얻을 수 있다. 이후, 상기 폐액(2)은 디캔터형 원심분리기(3)로 공급되어 분리과정을 통해, NaCl과 같은 무기염이 스트림(4)을 통해 제거될 수 있다.According to an embodiment of the present invention, the present invention is a polyarylene sulfide after the polymerization reaction mixture of the polyarylene sulfide in a general method after the polymerization process of the polyarylene sulfide in the polymerization reactor (1) And it is possible to obtain a waste solution containing an inorganic salt. Then, the waste liquid (2) is supplied to the decanter-type centrifuge (3) through the separation process, inorganic salts such as NaCl can be removed through the stream (4).
그런 다음, 무기염이 제거된 폐액은 스트림(5)를 통해 저장조(6)로 공급되고, 저장조에서 배출된 폐액은 스트림 (7)을 통해 증류탑(8)으로 공급될 수 있다. Then, the waste liquid from which the inorganic salt has been removed may be supplied to the storage tank 6 through the stream 5, and the waste liquid discharged from the storage tank may be supplied to the distillation column 8 through the stream 7.
이러한 공정은 일반적인 원심분리기의 회분식 공정과는 다르게, 연속식으로 이루어질 수 있다. 따라서, 상기 방법을 이용하면, 종래와 같이 NaCl 등의 미분 고형물질을 포함한 무기염을 주기적으로 제거하지 않아도 되며, 어느 정도 운전이 이루어졌을 때 종래 무기염의 여과 수단으로 사용하는 필터나 메시의 효율이 떨어지는 단점을 극복할 수 있다.This process can be performed continuously, unlike the batch process of a typical centrifuge. Therefore, by using the above method, it is not necessary to periodically remove inorganic salts including finely divided solid materials such as NaCl, and the efficiency of a filter or mesh used as a filtering means for the conventional inorganic salts when a certain operation is performed Falling shortcomings can be overcome.
또, 상기 저장조에 모인 폐액에는 미분 NaCl이 없기 때문에, 저장조 전단 관에 필터 등의 막힘 현상과 저장조 하부에 고형물이 쌓여 토출구가 막히는 현상을 방지할 수 있다. 이와 더불어, 상기 증류탑(8)에서도 마찬가지로 미분 NaCl과 같은 무기염으로 인한 막힘 현상이나 증류 효율이 떨어지는 한계를 극복할 수 있다.In addition, since there is no fine NaCl in the waste liquid collected in the storage tank, it is possible to prevent a clogging phenomenon such as a filter in a pipe in the front end of the storage tank and a clogging of the discharge port due to the accumulation of solids under the storage tank. In addition, the distillation column 8 may also overcome the clogging phenomenon due to inorganic salts such as finely divided NaCl or the limit of distillation efficiency.
이때, 본 발명에서 상기 페액 내 무기염을 제거하기 위해 사용하는, 상기 디캔터형 원심분리기는 원심력을 이용하여, 디캔터형 원심분리기의 벽면에 고체 및 액체 층을 만듦으로써, 고체를 분리 및 제거할 수 있는 장치를 의미할 수 있다.At this time, the decanter-type centrifuge used in the present invention to remove the inorganic salt in the liquid, by using a centrifugal force, by creating a solid and liquid layer on the wall surface of the decanter-type centrifuge, it is possible to separate and remove the solid Device.
예를 들어 상기 디캔터형 원심분리기는 원통형 실린더와 원추형 실린더가 결합되어 수평으로 설치된 보울(bowl)과 그 내부에 사프트 및 스크류가 결합된 스크류 컨베이어가 구비된 구조일 수 있다. 또, 상기 샤프트 내부에는 분리하고자 하는 폐액을 공급하기 위한 파이프가 구비되어, 세척 공정을 진행하는 장치와 연결될 수 있다. 또, 상기 디캔터 타입 원심분리기는 폐액 내 무기염을 제거하기 위한 배출구 및 무기염이 제거된 폐액 배출구가 별도로 구비될 수 있다.For example, the decanter-type centrifugal separator may have a structure in which a cylindrical cylinder and a conical cylinder are combined to provide a horizontally installed bowl and a screw conveyor in which shafts and screws are coupled. In addition, a pipe for supplying the waste liquid to be separated is provided inside the shaft, and can be connected to a device that performs a washing process. In addition, the decanter-type centrifugal separator may be separately provided with an outlet for removing inorganic salts from the waste liquid and an outlet from which the inorganic salts have been removed.
상기 폐액이 디캔터형 원심분리기로 공급되면, 보울과 스크류 컨베이어가 다른 속도로 회전하면서, 상기 속도 차에 의해 원심력의 작용으로 비중이 큰 고체와 비중이 작은 액체를 분리할 수 있다. 따라서, 상기 디캔터형 원심분리기를 이용하면, 폐액 내 무기염을 포함한 고체 물질(고형분)이 보울 내부의 하부로 침강된 후 별도 배출구를 통해 분리 배출될 수 있다. 또, 동시에 상기 디캔터형 원심분리기에서 분리된 비중이 작은 액체는 별도 라인을 통해 배출되어 저장조로 이송될 수 있다. 상기 액체 내에는 아미드계 화합물 및 소량의 폴리아릴렌 설파이드 등이 포함될 수 있고, 이후 증류 공정을 통해 아미드계 화합물을 분리 및 회수할 수 있다.When the waste liquid is supplied to the decanter-type centrifuge, the bowl and the screw conveyor rotate at different speeds, and the solid having a high specific gravity and a liquid having a small specific gravity can be separated by the action of the centrifugal force due to the speed difference. Therefore, when the decanter-type centrifugal separator is used, a solid substance (solid content) containing inorganic salt in the waste liquid may be sedimented and discharged through a separate outlet after being settled to the lower portion inside the bowl. In addition, at the same time, the liquid having a small specific gravity separated from the decanter-type centrifuge can be discharged through a separate line and transferred to a storage tank. In the liquid, an amide compound and a small amount of polyarylene sulfide may be included, and then the amide compound can be separated and recovered through a distillation process.
이때, 상기 디캔터 타입 원심분리기의 운전조건은, 1500G 내지 3100G에서 30초 내지 5분 혹은 30초 내지 2분 동안 작동시켜 사용할 수 있다. 상기 운전조건에서 그 속도가 1500G 이하이면 분리속도가 늦어져 운전시간이 길어지며 3100G 이상이면, 함수율이 임계치에 도달하여 더 이상 중력가속도를 증가 시켜도 함수율은 감소하지 않는다. 또, 상기 원심분리기의 속도에서 "G"는 잘 알려진 바대로, G-force를 의미할 수 있고, 상기 디캔터 타입 원심분리기의 로터의 반지름에 따라 상기 범위 내로 조절된 것을 사용할 수 있다. 상기 디캔터 타입 원심분리기 사용시 30초 이내로 작동시키면 폐액 내 무기염이 제대로 분리 및 제거되지 않고, 작동 시간이 5분 이상이면 비효율적일 수 있다. At this time, the operating conditions of the decanter type centrifuge can be used by operating for 30 seconds to 5 minutes or 30 seconds to 2 minutes at 1500G to 3100G. Under the above operating conditions, if the speed is 1500 G or less, the separation speed becomes slower and the operation time becomes longer, and if it is 3100 G or more, even if the water content reaches a threshold value and increases the gravitational acceleration, the water content does not decrease. In addition, "G" in the speed of the centrifuge, as is well known, may mean G-force, and may be used that is adjusted within the range according to the radius of the rotor of the decanter type centrifuge. When using the decanter type centrifuge within 30 seconds, the inorganic salt in the waste liquid is not properly separated and removed, and if the operating time is 5 minutes or more, it may be inefficient.
또한, 디캔터 타입 원심분리기 사용시, 상기 폐액 내 무기염을 제거하는 단계는 20℃ 내지 25℃의 상온 및 상압에서 수행하는 것이 바람직하다. In addition, when using a decanter type centrifuge, the step of removing the inorganic salt in the waste solution is preferably performed at room temperature and atmospheric pressure of 20 ℃ to 25 ℃.
특히, 본 발명은 폐액을 일반 추출탑이나 회분식 원심분리기 등에 공급하여 고온 및 고압 조건에서, 디캔터 타입 원심분리기를 작동시키는 것이 아니라, 상온 및 상압하에 진행하므로, 공정성을 개선할 수 있다. 다시 말해, 본 발명에서는 상술한 폐액을 디캔터 타입 원심분리기에 투입 후, 상온 및 상압하에 수행하여, 고온 및 고압 조건의 공정설비가 불필요하다. Particularly, the present invention does not operate a decanter type centrifuge under high temperature and high pressure conditions by supplying a waste liquid to a general extraction column or a batch centrifugal separator, so that processability can be improved. In other words, in the present invention, after the above-described waste liquid is introduced into a decanter type centrifugal separator, and performed under normal temperature and normal pressure, process equipment under high temperature and high pressure conditions is unnecessary.
또, 상기 증류탑(8)에서는 일련의 증류 공정으로 증류탑의 탑저로 폐액 내 아미드계 화합물이 분리 및 회수되며, 회수된 아미드계 화합물(10)은 순환펌프(11)를 통해 다시 중합 반응기(1)로 공급되어 재사용될 수 있다. 또, 상기 증류탑의 탑정으로 물(9)이 분리 배출될 수 있다. In addition, in the distillation column (8), the amide-based compound in the waste liquid is separated and recovered from the bottom of the distillation column in a series of distillation processes, and the recovered amide-based compound (10) is re-polymerized through the circulation pump (11) (1) And can be reused. In addition, water 9 may be separated and discharged to the top of the distillation column.
상기 아미드계 화합물의 회수 공정에서 사용할 수 있는 증류탑의 구체적인 종류는 특별히 제한되지 않는다. 또, 상기 증류 공정에서는 일반적인 압축기, 재비기 및 응축기 등이 포함될 수 있다. 예를 들어, 상기 증류탑은 추출 영역 및 증류영역을 포함하는 컬럼을 포함할 수 있다.The specific type of distillation column that can be used in the recovery process of the amide-based compound is not particularly limited. In addition, in the distillation process, a general compressor, reboiler, and condenser may be included. For example, the distillation column may include a column including an extraction region and a distillation region.
한편, 상기 폴리아릴렌 설파이드의 제조 공정은 이 분야에 잘 알려진 방법에 따라 수행될 수 있으며, 폴리아릴렌 설파이드의 중합 완료 후, 세척 공정을 진행하여 폐액이 수집될 수 있다.Meanwhile, the manufacturing process of the polyarylene sulfide may be performed according to a method well known in the art, and after the polymerization of the polyarylene sulfide is completed, a washing process may be performed to collect waste liquid.
또한, 상기 폐액은 여과수단을 이용하는 전처리 과정을 통해 폴리아릴렌 설파이드 제조공정의 반응혼합물로부터 폴리아릴렌 설파이드의 미분이 제거된 것이 바람직하다. 또, 상기 여과 수단은 이 분야에 잘 알려진 방법에 따라 수행될 수 있는 바, 그 방법이 제한되지 않는다.In addition, it is preferable that the fine liquid of the polyarylene sulfide is removed from the reaction mixture of the polyarylene sulfide production process through a pre-treatment process using a filtration means. In addition, the filtration means may be performed according to methods well known in the art, and the method is not limited.
본 발명은 특히, 폴리아릴렌 설파이드(Polyarylene sulfide, PAS) 제조 공정으로부터 생성되는 다양한 무기 염과 불순물이 포함되어 있는 폐액으로부터, N-메틸-2-피롤리돈 등의 아미드계 화합물을 효율적으로 분리하고자 하는 것이다. 이에 따라, 상기 디캔터형 원심분리기와 저장조를 거쳐 증류탑 투입되는 폐액 조성에는 알칼리 금속의 할로겐화물인 무기염과 불순물이 제거된 조성을 포함할 수 있다. 상기 불순물은 폴리아릴렌 설파이드 등의 미분을 포함할 수 있다.In particular, the present invention effectively separates amide compounds such as N-methyl-2-pyrrolidone from waste liquids containing various inorganic salts and impurities generated from a process for manufacturing polyarylene sulfide (PAS). Is what you want. Accordingly, the composition of the waste liquid introduced into the distillation column through the decanter-type centrifuge and the storage tank may include a composition in which inorganic salts and impurities, which are halides of alkali metals, are removed. The impurity may include fine powders such as polyarylene sulfide.
상기 폐액은 물과 아미드계 화합물과 함께 소량의 알칼리 금속의 수황화물, 알칼리 금속의 황화물, 디할로겐화 방향족 화합물, 및 폴리아릴렌 설파이드로 이루어진 군에서 선택되는 1종 이상을 추가로 포함하는 것일 수 있다. 구체적으로, 상기 폐액은 물과 아미드계 화합물과 함께 o-디클로로벤젠(o-DCB), m-디클로로벤젠(m-DCB), p-디클로로벤젠(p-DCB), 황화수소 나트륨(NaSH), 황화나트륨(Na
2S), 및 폴리페닐렌 설파이드(PPS)로 이루어진 군에서 선택되는 1종 이상을 추가로 포함하는 것일 수도 있다. The waste solution may further include at least one selected from the group consisting of a small amount of alkali metal hydrosulfide, alkali metal sulfide, dihalogenated aromatic compound, and polyarylene sulfide together with water and an amide compound. . Specifically, the waste solution is o-dichlorobenzene (o-DCB), m-dichlorobenzene (m-DCB), p-dichlorobenzene (p-DCB), sodium hydrogen sulfide (NaSH), sulfide together with water and amide compounds It may also include one or more selected from the group consisting of sodium (Na 2 S), and polyphenylene sulfide (PPS).
일예로, 폴리아릴렌 설파이드 제조 공정에서 세척 후 폐액의 조성은 상술한 바대로, NMP 등의 아미드계 화합물을 약 20 중량% 내지 약 70 중량%, 또는 약 30 중량% 내지 약 60 중량%를 포함하며, 염화나트륨(NaCl)이 포함된 브라인의 조성은 약 30 중량% 내지 약 80 중량%, 또는 약 40 중량% 내지 약 70 중량%를 포함할 수 있다. 또한, 상기 폐액에는 p-DCB, NaSH, Na
2S 및 분산된 PPS 미세입자를 포함하는 기타 불순물을 상기 용액 매질의 총 중량 대비 약 10 중량% 이내, 또는 약 5 중량% 이내로 추가로 포함할 수 있다. 기타 불순물에는 2-피롤리디논 (2-pyrrolidinone), 1-메틸-2,5-피롤리디돈 (1-methyl-2,5-pyrrolidione) 그리고 3-클로로-N-메틸아닐린 (3-Chloro-N-Methylaniline) 등이 있고, 이들 중 하나 이상이 될 수 있다.In one example, the composition of the waste solution after washing in the polyarylene sulfide production process includes, as described above, an amide-based compound such as NMP from about 20% to about 70% by weight, or from about 30% to about 60% by weight And, the composition of brine containing sodium chloride (NaCl) may include about 30% to about 80% by weight, or about 40% to about 70% by weight. In addition, the waste solution may further include p-DCB, NaSH, Na 2 S and other impurities including dispersed PPS microparticles within about 10% by weight, or within about 5% by weight, based on the total weight of the solution medium. have. Other impurities include 2-pyrrolidinone, 1-methyl-2,5-pyrrolidione (1-methyl-2,5-pyrrolidione) and 3-chloro-N-methylaniline (3-Chloro- N-Methylaniline) and the like, and may be one or more of them.
이후, 상술한 디캔터형 원심분리기를 이용할 경우, 상술한 바대로, 폐액의 총 중량을 기준으로 약 25 내지 40 중량%의 무기염이 제거되어, 종래보다 더 효율적으로 무기염을 제거할 수 있다. 또, 상기 저장조로 수집되는 폐액 조성은 NMP 등의 아미드계 화합물을 약 15 중량% 내지 약 65 중량%, 또는 약 20 중량% 내지 약 60중량%를 포함하며, 염화나트륨(NaCl)이 포함되지 않은 물의 조성은 약 25중량% 이하 또는 약 20 중량% 내지 약 30 중량% 일수 있다. 또한, 상기 폐액에는 p-DCB, NaSH, Na
2S 및 분산된 PPS 미세입자를 포함하는 기타 불순물을 상기 용액 매질의 총 중량 대비 약 5 중량% 이내, 또는 약 3 중량% 이내로 추가로 포함할 수 있다.Then, when using the above-described decanter-type centrifugal separator, as described above, about 25 to 40% by weight of the inorganic salt is removed based on the total weight of the waste solution, and the inorganic salt can be removed more efficiently than before. In addition, the composition of the waste liquid collected in the storage tank contains an amide-based compound such as NMP from about 15% to about 65% by weight, or from about 20% to about 60% by weight, of sodium chloride (NaCl)-free water. The composition may be up to about 25% by weight or from about 20% to about 30% by weight. In addition, the waste solution may further include p-DCB, NaSH, Na 2 S, and other impurities including dispersed PPS microparticles within about 5% by weight, or within about 3% by weight, based on the total weight of the solution medium. have.
여기서, 상기 아미드계 화합물의 구체적인 예로는 N,N-디메틸포름아미드 또는 N,N-디메틸아세트아미드 등의 아미드 화합물; N-메틸-2-피롤리돈(NMP) 또는 N-시클로헥실-2-피롤리돈 등의 피롤리돈 화합물; N-메틸-ε-카프로락탐 등의 카프로락탐 화합물; 1,3-디알킬-2-이미다졸리디논 등의 이미다졸리디논 화합물; 테트라메틸 요소 등의 요소 화합물; 또는 헥사메틸인산 트리아미드 등의 인산 아미드 화합물 등을 들 수 있고, 이들 중 하나 이상이 될 수 있다. Here, specific examples of the amide compounds include amide compounds such as N,N-dimethylformamide or N,N-dimethylacetamide; Pyrrolidone compounds such as N-methyl-2-pyrrolidone (NMP) or N-cyclohexyl-2-pyrrolidone; Caprolactam compounds such as N-methyl-ε-caprolactam; Imidazolidinone compounds such as 1,3-dialkyl-2-imidazolidinone; Urea compounds such as tetramethyl urea; Or a phosphoric acid amide compound, such as hexamethylphosphate triamide, etc. are mentioned, It can be one or more of these.
상기 폴리아릴렌 설파이드의 구체적인 제조 방법 및 상기 아미드계 화합물의 구체적인 분리 회수 방법은 후술하는 실시예를 참고할 수 있다. 그러나, 폴리아릴렌 설파이드의 제조 방법이나 아미드계 화합물의 분리 회수 방법이 본 명세서에 기술한 내용에 한정되는 것은 아니며, 상기 제조 방법 및 분리 회수 방법은 본 발명이 속한 기술분야에서 통상적으로 채용하는 단계를 추가로 채용할 수 있고, 상기 제조 방법 및 분리 회수 방법의 단계(들)는 통상적으로 변경 가능한 단계(들)에 의하여 변경될 수 있다.The specific production method of the polyarylene sulfide and the specific separation and recovery method of the amide compound may refer to Examples described later. However, the method for producing polyarylene sulfide or the method for separating and recovering an amide-based compound is not limited to the contents described herein, and the method for preparing and separating and recovering is generally employed in the technical field to which the present invention pertains. In addition, the step(s) of the above-described manufacturing method and separation and recovery method may be changed by the step(s), which is usually changeable.
상술한 바와 같이, 본 발명에 따르면, 디캔터형 원심분리기에 이용하여 폴리아릴렌 설파이드의 중합 공정에서 발생된 폐액에서 무기염을 제거함으로써, 증류공정시 발생될 수 있는 미분 무기염에 의한 막힘 현상이나 증류 효율 저하를 방지하여 폴리아릴렌 설파이드 제조공정에서 발생된 폐액으로부터 N-메틸-2-피롤리돈 등의 아미드계 화합물의 분리 효율 성능을 향상시켜 고순도의 아미드계 화합물을 회수할 수 있다. As described above, according to the present invention, by removing the inorganic salt from the waste liquid generated in the polymerization process of polyarylene sulfide using a decanter centrifuge, clogging phenomenon caused by fine inorganic salts that may occur during the distillation process or It is possible to recover the high-purity amide-based compound by improving the performance of separation efficiency of the amide-based compound such as N-methyl-2-pyrrolidone from the waste liquid generated in the polyarylene sulfide production process by preventing a decrease in distillation efficiency.
도 1은 본 발명의 일 구현예에 따른 폴리아릴렌 설파이드의 중합 공정에서 발생된 폐액에서 아미드계 화합물을 회수하기 위한 공정을 예시적으로 보여주는 모식도이다.1 is a schematic view showing a process for recovering an amide-based compound from the waste solution generated in the polymerization process of polyarylene sulfide according to an embodiment of the present invention.
도 2는 비교예 1에 따른 폴리아릴렌 설파이드의 중합 공정에서 발생된 폐액에서 아미드계 화합물을 회수하는 종래의 공정을 예시적으로 보여주는 모식도이다.Figure 2 is a schematic diagram showing a conventional process for recovering an amide-based compound from the waste solution generated in the polymerization process of polyarylene sulfide according to Comparative Example 1.
도 3은 비교예 2에 따른 폴리아릴렌 설파이드의 중합 공정에서 발생된 폐액에서 아미드계 화합물을 회수하는 종래의 공정을 예시적으로 보여주는 모식도이다.Figure 3 is a schematic diagram showing a conventional process for recovering an amide-based compound from the waste solution generated in the polymerization process of polyarylene sulfide according to Comparative Example 2.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 이에 의해 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, preferred embodiments are provided to help understanding of the present invention. However, the following examples are provided only for easier understanding of the present invention, and the contents of the present invention are not limited thereby.
<폴리페닐렌설파이드의 제조><Production of polyphenylene sulfide>
제조예 1Preparation Example 1
폴리페닐렌 설파이드의 제조 공정Manufacturing process of polyphenylene sulfide
PPS 폴리머를 만들기 위해 1당량의 70% 황화수소 나트륨 (NaSH)과 1.05 당량의 수산화 나트륨 (NaOH)(즉 1:1.05 비율)을 혼합하여 황화 나트륨을 제조하였다. 이 때, 0.4 당량의 아세트산 나트륨(CH
3COONa) 분말 및 1.65 당량의 N-메틸-2-파이롤리돈(NMP), 4.72 당량의 탈이온수(DI water)를 반응기에 첨가하였다. 여기서, 당량은 몰 당량(eq/mol)을 의미한다. 이 때, 고체 시약을 먼저 넣고 NMP 및 탈이온수 순으로 투입하였다. 그리고나서, 반응기를 약 150 rpm으로 교반하고, 190℃까지 1시간 40분 동안 가열하여 탈수시켰다. 그 후, 175℃까지 온도를 하강시키고, 1.02 당량의 파라-디클로로벤젠(p-DCB)와 1.35 당량의 N-메틸-2-파이롤리돈(NMP)을 반응기에 첨가하였다. 이 후 반응 혼합물을 230℃까지 가열하여 2시간 동안 반응시키고, 다시 255℃까지 가열하여 2시간 반응시킨 후, 3당량의 증류수를 첨가한 후 5분간 교반하여 PPS 폴리머를 포함한 반응 혼합물을 얻었다.Sodium sulfide was prepared by mixing 1 equivalent of 70% sodium hydrogen sulfide (NaSH) and 1.05 equivalent of sodium hydroxide (NaOH) (ie 1:1.05 ratio) to make a PPS polymer. At this time, 0.4 equivalents of sodium acetate (CH 3 COONa) powder, 1.65 equivalents of N-methyl-2-pyrrolidone (NMP), and 4.72 equivalents of deionized water (DI water) were added to the reactor. Here, equivalent weight means molar equivalent weight (eq/mol). At this time, the solid reagent was first added and then added in the order of NMP and deionized water. Then, the reactor was stirred at about 150 rpm, and dehydrated by heating to 190° C. for 1 hour 40 minutes. Thereafter, the temperature was lowered to 175°C, and 1.02 equivalents of para-dichlorobenzene (p-DCB) and 1.35 equivalents of N-methyl-2-pyrrolidone (NMP) were added to the reactor. Thereafter, the reaction mixture was heated to 230°C to react for 2 hours, heated to 255°C to react for 2 hours, and then 3 equivalents of distilled water was added and stirred for 5 minutes to obtain a reaction mixture containing PPS polymer.
상기 중합 공정을 마친 후, 반응 생성물로부터 잔류하는 미반응 물질이나 부산물을 제거하기 위하여, 약 90 ℃의 DI water와 NMP를 이용하여 각각 한번씩 헹군 후 여과시켰다. 이러한 세척과 여과 과정을 두 차례 더 반복 실시하고, 최종 생성물인 선형 폴리페닐렌 설파이드(PPS) 및 상기 세척 후 폐액(NMP를 포함하는 수성 매질)을 회수하였다.After the polymerization process was completed, in order to remove residual unreacted substances or by-products from the reaction product, each was rinsed once with DI water and NMP at about 90° C. and filtered. This washing and filtration process was repeated twice more, and the final product, linear polyphenylene sulfide (PPS), and the waste solution (aqueous medium containing NMP) after the washing were recovered.
이 때, 상기 세척 후 폐액에는 NMP 함유의 수성매질인 브라인(NaCl 수용액)이 포함되어 있었으며, 여기서 NMP 조성이 5 내지 40 중량%이고 NaCl이 포함된 브라인의 조성이 1~15 중량%이고, 물 20 내지 95중량%가 포함되었다. 또한, 상기 폐액에는 NMP와 브라인의 용매 총 중량 대비 p-DCB, NaSH, Na
2S, 미분 PPS, 및 2-피롤리디논 (2-pyrrolidinone) 등의 미세입자를 포함하는 기타 불순물을 약 10 중량% 이내 포함하고 있었다.At this time, the waste solution after washing contained NMP-containing aqueous medium, brine (NaCl aqueous solution), wherein the composition of NMP was 5 to 40% by weight and the composition of brine containing NaCl was 1 to 15% by weight, water 20 to 95% by weight was included. In addition, the waste solution contains about 10 weights of other impurities including microparticles such as p-DCB, NaSH, Na 2 S, differential PPS, and 2-pyrrolidinone, relative to the total weight of the solvent of NMP and brine. %.
제조예 2Preparation Example 2
폴리페닐렌 설파이드의 제조 공정Manufacturing process of polyphenylene sulfide
PPS 폴리머를 만들기 위해 1당량의 70% 황화수소 나트륨 (NaSH)과 1.05 당량의 수산화 나트륨 (NaOH)(즉 1:1.05 비율)을 혼합하여 황화 나트륨을 제조하였다. 이 때, 0.4 당량의 아세트산 나트륨(CH
3COONa) 분말 및 1.65 당량의 N-메틸-2-파이롤리돈(NMP), 4.72 당량의 탈이온수(DI water)를 반응기에 첨가하였다. 여기서, 당량은 몰 당량(eq/mol)을 의미한다. 이 때, 고체 시약을 먼저 넣고 NMP 및 탈이온수 순으로 투입하였다. 그리고나서, 반응기를 약 150 rpm으로 교반하고, 190℃까지 1시간 40분 동안 가열하여 탈수시켰다. 그 후, 175℃까지 온도를 하강시키고, 1.02 당량의 파라-디클로로벤젠(p-DCB)와 1.35 당량의 N-메틸-2-파이롤리돈(NMP)을 반응기에 첨가하였다. 이 후 반응 혼합물을 230℃까지 가열하여 2시간 동안 반응시키고, 다시 255℃까지 가열하여 2시간 반응시킨 후, 3당량의 증류수를 첨가한 후 10분간 교반하여 PPS 폴리머를 포함한 반응 혼합물을 얻었다.Sodium sulfide was prepared by mixing 1 equivalent of 70% sodium hydrogen sulfide (NaSH) and 1.05 equivalent of sodium hydroxide (NaOH) (ie 1:1.05 ratio) to make a PPS polymer. At this time, 0.4 equivalents of sodium acetate (CH 3 COONa) powder, 1.65 equivalents of N-methyl-2-pyrrolidone (NMP), and 4.72 equivalents of deionized water (DI water) were added to the reactor. Here, equivalent weight means molar equivalent weight (eq/mol). At this time, the solid reagent was first added and then added in the order of NMP and deionized water. Then, the reactor was stirred at about 150 rpm, and dehydrated by heating to 190° C. for 1 hour 40 minutes. Thereafter, the temperature was lowered to 175°C, and 1.02 equivalents of para-dichlorobenzene (p-DCB) and 1.35 equivalents of N-methyl-2-pyrrolidone (NMP) were added to the reactor. Thereafter, the reaction mixture was heated to 230°C to react for 2 hours, heated to 255°C to react for 2 hours, and then 3 equivalents of distilled water was added and stirred for 10 minutes to obtain a reaction mixture containing PPS polymer.
상기 중합 공정을 마친 후, 반응 생성물로부터 잔류하는 미반응 물질이나 부산물을 제거하기 위하여, 약 90 ℃의 DI water와 NMP를 이용하여 각각 한번씩 헹군 후 여과시켰다. 이러한 세척과 여과 과정을 두 차례 더 반복 실시하고, 최종 생성물인 선형 폴리페닐렌 설파이드(PPS) 및 상기 세척 후 폐액(NMP를 포함하는 수성 매질)을 회수하였다.After the polymerization process was completed, in order to remove residual unreacted substances or by-products from the reaction product, each was rinsed once with DI water and NMP at about 90° C. and filtered. This washing and filtration process was repeated twice more, and the final product, linear polyphenylene sulfide (PPS), and the waste solution (aqueous medium containing NMP) after the washing were recovered.
이 때, 상기 세척 후 폐액에는 NMP 함유의 수성매질인 브라인(NaCl 수용액)이 포함되어 있었으며, 여기서 NMP 조성이 5 내지 40 중량%이고 NaCl이 포함된 브라인의 조성이 1~15 중량%이고, 물 20 내지 95중량%가 포함되었다. 또한, 상기 폐액에는 NMP와 브라인의 용매 총 중량 대비 p-DCB, NaSH, Na
2S, 미분 PPS, 및 2-피롤리디논 (2-pyrrolidinone) 등의 미세입자를 포함하는 기타 불순물을 약 10 중량% 이내 포함하고 있었다. At this time, the waste solution after washing contained NMP-containing aqueous medium, brine (NaCl aqueous solution), wherein the composition of NMP was 5 to 40% by weight and the composition of brine containing NaCl was 1 to 15% by weight, water 20 to 95% by weight was included. In addition, the waste solution contains about 10 weights of other impurities including microparticles such as p-DCB, NaSH, Na 2 S, differential PPS, and 2-pyrrolidinone, relative to the total weight of the solvent of NMP and brine. %.
<<
N-메틸-2-파이롤리돈의 분리 회수>Separation and recovery of N-methyl-2-pyrrolidone>
[실시예 1][Example 1]
폐액으로부터 아미드계 화합물 (NMP)의 회수 공정Recovery process of amide compound (NMP) from waste liquid
상기 제조예 1의 PPS 중합 후 세척 공정으로부터 얻어진 폐액을, 도 1과 같이 증류를 위한 저장조로 수집하기 전에, 디캔터형 원심분리기 (3)로 공급하여, NaCl 및 PPS등의 미분을 포함한 고형물을 폐액으로부터 제거하였다. 이러한 공정은 연속 공정으로 수행하였다.The waste solution obtained from the washing process after the PPS polymerization of Preparation Example 1 is supplied to a decanter-type centrifuge (3) before collecting it into a storage tank for distillation, as shown in FIG. 1, and the waste solution containing solids such as NaCl and PPS is used as a waste solution. Removed from. This process was performed as a continuous process.
즉, 상기 PPS 중합 후 얻은 반응 혼합물을 여과 및 NMP의 세척 공정을 거친 후 생성된 폐액 100g을 분취하고, 디켄터형 원심분리기(decanter type centrifuge)를 이용하여, 상온 및 상압에서 1500G, 50 ml를 30 sec로 처리하였다. 그 결과, 30sec동안 진행한 경우 50 ml 의 폐액 중 분리된 NaCl과 미분 PPS의 총량은 15.7 ml이고, 폐액은 34.3 ml이였다.That is, after filtering the reaction mixture obtained after the PPS polymerization and passing through a washing process of NMP, 100 g of the generated waste liquid is collected, and using a decanter type centrifuge, 1500 G and 50 ml at room temperature and normal pressure are 30 sec. As a result, when proceeding for 30 sec, the total amount of separated NaCl and fine PPS in 50 ml of waste liquid was 15.7 ml, and the waste liquid was 34.3 ml.
이후, 상기 디켄터형 원심분리기에서 얻은 액체는 NMP 20 중량% 및 물 80 중량%를 포함하였고, 이러한 조성의 혼합액을 저장조(6)로 수집한 다음, 스트림(7)을 통해 증류탑에 도입하여, N-메틸-2-파이롤리돈 (NMP)의 분리정제 회수 공정을 수행하였다. 즉, 700 kg/hr의 유량으로 이론단수가 15 단인 증류탑의 1단에 위치하는 혼합액 공급 포트로 스트림 7을 유입시켜 NMP의 분리 공정을 수행하였다. 증류 공정은 탑상부 온도를 134℃ 로 하고 탑 하부 온도를 183℃ 조건으로 수행하였다.Subsequently, the liquid obtained from the decanter-type centrifuge contained 20% by weight of NMP and 80% by weight of water, and the mixed solution of this composition was collected into a storage tank (6), and then introduced into a distillation column through a stream (7), N The separation and purification recovery process of -methyl-2-pyrrolidone (NMP) was performed. That is, at a flow rate of 700 kg/hr, stream 7 was introduced into the mixed liquid supply port located at the first stage of the distillation column having 15 theoretical stages to perform the NMP separation process. In the distillation process, the temperature at the top of the column was 134°C and the temperature at the bottom of the column was performed at 183°C.
상기 공정을 통해, 상기 폐액에서 회수된 NMP는 전체 성분에 대하여 99.9 중량% 이상으로 순수(99.9%) NMP임을 확인하였다. Through the above process, it was confirmed that the NMP recovered from the waste liquid was 99.9% by weight or more of pure (99.9%) NMP with respect to all components.
실시예 1에 따른 도 1의 스트림별 특성Characteristics for each stream of FIG. 1 according to Example 1 | |||
스트림 7 |
스트림 9Stream 9 | 스트림 10Stream 10 | |
NMP (%)NMP (%) | 2020 | >1>1 | 9999 |
물 (%)Water (%) | 8080 | 9999 | <1<1 |
총유량 (kg/hr)Total flow rate (kg/hr) | 700700 | 558558 | 142142 |
온도 (℃)Temperature (℃) | 2525 | 100100 | 176176 |
실시예 2Example 2
NaCl 및 PPS등의 미분을 포함한 고형물을 제거시, 디캔터형 원심분리기의 운전시간을 120sec에서 30sec로 변경한 것을 제외하고, 실시예 1과 동일한 방법으로, PPS 중합 후 세척 공정으로부터 얻어진 폐액을 처리하고, 도 1의 공정을 이용하여 N-메틸-2-파이롤리돈을 분리 및 회수하였다. 실시예 2의 스트림별 특성도 실시예 1과 같다.When removing solids including fine powders such as NaCl and PPS, except that the operating time of the decanter centrifuge was changed from 120sec to 30sec, in the same manner as in Example 1, the waste solution obtained from the washing process after PPS polymerization was treated. , N-methyl-2-pyrrolidone was separated and recovered using the process of FIG. 1. The characteristics of each stream in Example 2 are also the same as in Example 1.
즉, 상기 PPS 중합 후 얻은 반응 혼합물을 여과 및 NMP의 세척 공정을 거친 후 생성된 폐액 100g을 분취하고, 디켄터형 원심분리기(decanter type centrifuge)를 이용하여, 상온 및 상압에서 1500G, 50 ml를 120 sec로 처리하였다. 그 결과, 120 sec동안 진행한 경우 50 ml 의 폐액 중 분리된 NaCl과 미분 PPS의 총량은 20.7 ml이고, 폐액은 29.3 ml이였다.That is, after filtering the reaction mixture obtained after the PPS polymerization and undergoing a washing process of NMP, 100 g of the generated waste liquid is collected, and using decanter type centrifuge, 1500 G and 50 ml at room temperature and pressure are 120 sec. As a result, when proceeding for 120 sec, the total amount of NaCl and fine PPS separated in 50 ml of waste liquid was 20.7 ml, and the waste liquid was 29.3 ml.
상기 공정을 통해, 상기 폐액에서 회수된 NMP는 전체 성분에 대하여 99.9 중량% 이상으로 순수(99.9%) NMP임을 확인하였다. Through the above process, it was confirmed that the NMP recovered from the waste liquid was 99.9% by weight or more of pure (99.9%) NMP with respect to all components.
실시예 3Example 3
제조예 1의 상기 PPS 중합 후 세척 공정으로부터 얻어진 폐액을, 도 1과 같이 증류를 위한 저장조로 수집하기 전에, 디캔터형 원심분리기 (3)로 공급하여, NaCl 및 PPS등의 미분을 포함한 고형물을 폐액으로부터 제거하였다. 이러한 공정은 연속 공정으로 수행하였다.The waste solution obtained from the washing process after the PPS polymerization of Preparation Example 1 is supplied to a decanter-type centrifugal separator (3) before being collected into a storage tank for distillation as shown in FIG. 1, and the solid solution containing fine powders such as NaCl and PPS is used as a waste solution. Removed from. This process was performed as a continuous process.
즉, 상기 PPS 중합 후 얻은 반응 혼합물을 여과 및 NMP의 세척 공정을 거친 후 생성된 폐액 37.5ml를 분취하고, 디캔터형 원심분리기(decanter type centrifuge)에 투입하여, 상온 및 상압에서 1500G 및 120 sec 조건으로 운전시켰다.That is, after filtering the reaction mixture obtained after polymerization of the PPS and undergoing a washing process of NMP, 37.5 ml of the resulting waste liquid is collected and put into a decanter type centrifuge, under conditions of 1500 G and 120 sec at room temperature and pressure. Was driven by.
그 결과, 37.5ml 폐액 중 분리된 NaCl과 미분 PPS의 고형분의 총량(부피)은 5.5ml이고, 하기 식 1에 의한 무기염의 함수율은 43.53% 였다. (나머지 함량은 액체 폐액)As a result, the total amount (volume) of the solid content of NaCl separated from the 37.5 ml waste solution and the differential PPS was 5.5 ml, and the water content of the inorganic salt according to Equation 1 below was 43.53%. (The remaining content is liquid waste liquid)
[식 1][Equation 1]
함수율 (%) = [(분리된 무기염의 건조 전 무게-분리된 무기염분의 건조 후 무게)/ 분리된 무기염의 건조 전 무게] × 100Moisture content (%) = [(Weight before drying of separated inorganic salt-weight after drying of separated inorganic salt)/ Weight before drying of separated inorganic salt] × 100
이때, 상기 무기염은 미분 PSS가 미량 포함될 수 있다.At this time, the inorganic salt may contain a trace amount of finely divided PSS.
비교예 1Comparative Example 1
제조예 1의 PPS 중합 후 PPS 중합 후 세척 공정으로부터 얻어진 폐액을, 도 2와 같이 증류를 위한 저장조로 수집하기 전에 일반적인 필터를 이용하여, NaCl 및 PPS등의 미분을 포함한 고형물을 제거하고자 하였다.After the PPS polymerization of Preparation Example 1, the waste solution obtained from the washing process after the PPS polymerization was tried to remove solids including fine powders, such as NaCl and PPS, by using a general filter before collecting them into a storage tank for distillation as shown in FIG. 2.
즉, PPS 중합후 얻은 반응 혼합물을 여과 및 NMP의 세척 공정을 거친 후 생성된 폐액 100g을 분취하고, 25 mm 실린지 필터를 이용하여 상기 폐액을 여과하였다. 그 결과, 25 mm 실린지 필터를 사용한 경우, 입자크기 5 내지 30㎛인 NaCl이 필터를 통과하여, 폐액으로부터 무기염의 제거 효율이 매우 낮았다. That is, after filtering the reaction mixture obtained after the PPS polymerization and NMP washing process, 100 g of the generated waste liquid was collected, and the waste liquid was filtered using a 25 mm syringe filter. As a result, when a 25 mm syringe filter was used, NaCl having a particle size of 5 to 30 μm passed through the filter, and the removal efficiency of inorganic salts from the waste solution was very low.
그 결과, 50 ml 의 폐액 중 분리된 NaCl과 미분 PPS의 총량은 1 ml 이하이고, 폐액에는 여전히 육안으로 관찰가능 한 고형물이 존재하였다. As a result, the total amount of NaCl and finely divided PPS separated in 50 ml of the waste liquid was 1 ml or less, and solids observable in the waste liquid were still present.
비교예 2Comparative Example 2
0.45㎛ 실린지 필터를 사용한 것을 제외하고, 비교예 1과 동일한 방법으로 폐액에서 NMP를 제거하고자 하였다. 그러나, 0.45㎛ 실린지 필터를 사용한 경우, 필터가 막혀, 더 이상의 실험이 불가능하였다. 그 결과, 50 ml 의 폐액 중 분리된 여과된 폐액은 5 ml 이하이다.It was intended to remove NMP from the waste solution in the same manner as in Comparative Example 1, except that a 0.45 μm syringe filter was used. However, when a 0.45 μm syringe filter was used, the filter was clogged and further experiments were impossible. As a result, the separated filtered waste liquid in 50 ml of waste liquid was 5 ml or less.
비교예 3Comparative Example 3
제조예 1의 PPS 중합 후 세척 공정으로부터 얻어진 폐액을, 도 3과 같이 증류를 위한 저장조로 수집하기 전에 회분식 운전으로 진행하는 일반적인 원심분리기를 이용하여, NaCl 및 PPS등의 미분을 포함한 고형물을 제거하였다.The waste solution obtained from the washing process after the PPS polymerization of Preparation Example 1 was removed by using a general centrifugal separator that proceeds in a batch operation before collecting it into a storage tank for distillation as shown in FIG. 3 to remove solids including fine powders such as NaCl and PPS. .
즉, PPS 중합후 얻은 반응 혼합물을 여과 및 NMP의 세척 공정을 거친 후 생성된 폐액 50 ml을 Conical tube에 분취하여, 원심분리기로 상온 및 상압에서 4000rpm(약 1500G), 3분간 처리하였다. 그 결과, 50 ml 의 폐액 중 분리된 NaCl과 미분PPS의 총량은 11.3 ml이고, 폐액은 38.7 ml이다. 그러나, 상기 방법을 이용하는 경우, 원심분리기 내 쌓인 고형물을 사용시마다 제거해 주어야 하므로, 연속식 운전이 불가능 하였고 공정성을 저하시켰다.That is, the reaction mixture obtained after the PPS polymerization was filtered and washed with NMP, and then 50 ml of the resulting waste liquid was collected in a conical tube, and treated at 4000 rpm (about 1500 G) at room temperature and pressure for 3 minutes with a centrifuge. As a result, the total amount of NaCl and fine PPS separated in 50 ml of waste liquid was 11.3 ml, and the waste liquid was 38.7 ml. However, in the case of using the above method, since solid matters accumulated in the centrifuge must be removed each time, continuous operation was impossible and processability was deteriorated.
비교예 4Comparative Example 4
제조예 2의 PPS 중합 후 세척 공정으로부터 얻어진 폐액을, 도 2와 같이 증류를 위한 저장조로 수집하기 전에 일반적인 필터를 이용하여, NaCl 및 PPS등의 미분을 포함한 고형물을 제거하고자 하였다.The waste solution obtained from the washing process after the PPS polymerization of Preparation Example 2 was attempted to remove solids including fine powders such as NaCl and PPS using a general filter before collecting the waste solution obtained in the storage tank for distillation as shown in FIG. 2.
즉, PPS 중합후 얻은 반응 혼합물을 여과 및 NMP의 세척 공정을 거친 후 생성된 폐액 100g을 분취하고, 300 ㎛ 필터를 이용하여 상기 폐액을 여과하였다.That is, after filtering the reaction mixture obtained after polymerization of PPS and undergoing a washing process of NMP, 100 g of the generated waste liquid was collected, and the waste liquid was filtered using a 300 μm filter.
그 결과, 300㎛ 필터를 이용한 비교예 1의 경우 NaCl이 필터를 통과하였다. 따라서, 무기염을 포함한 고형분의 여과 효율이 낮아 폐액에는 여전히 육안으로 관찰 가능한 고형물이 존재하였다. As a result, in the case of Comparative Example 1 using a 300 μm filter, NaCl passed through the filter. Therefore, the filtration efficiency of the solid content including the inorganic salt was low, and the waste solution still contained solids observable with the naked eye.
비교예 5Comparative Example 5
제조예 2의 75㎛ 실린지 필터를 사용한 것을 제외하고, 비교예 4와 동일한 방법으로 폐액에서 NMP를 회수하고자 하였다. 그러나, 75㎛ 실린지 필터를 사용한 경우, 약 2분 후 필터가 막혀, 필터 효과가 없었고 더 이상의 실험이 불가능하였다. 즉, 100g의 폐액 중 필터로 분리 여과된 폐액은 5 ml 이하에 불과하였다.It was intended to recover NMP from the waste liquid in the same manner as in Comparative Example 4, except that the 75 µm syringe filter of Preparation Example 2 was used. However, when a 75 μm syringe filter was used, the filter was clogged after about 2 minutes, so there was no filter effect and further experiments were impossible. That is, the waste liquid separated and filtered with a filter in 100 g of the waste liquid was only 5 ml or less.
비교예 6Comparative Example 6
제조예 2의 PPS 중합 후 세척 공정으로부터 얻어진 폐액을, 도 3과 같이 증류를 위한 저장조로 수집하기 전에, 회분식 운전으로 진행하는 일반적인 원심분리기를 이용하여, NaCl 및 PPS등의 미분을 포함한 고형물을 제거하고자 하였다.After collecting the waste solution obtained from the washing process after the PPS polymerization of Preparation Example 2, as shown in FIG. 3, using a general centrifugal separator that proceeds in a batch operation, the solids including fine powders such as NaCl and PPS are removed. I wanted to.
즉, PPS 중합후 얻은 반응 혼합물을 여과 및 NMP의 세척 공정을 거친 후 생성된 폐액 50 ml을 Conical tube에 분취하여, 회분식 원심분리기에서 상온 및 상압에서 회전속도 7000rpm, 10분간 처리하였다. That is, the reaction mixture obtained after the PPS polymerization was filtered and washed with NMP, and then 50 ml of the resulting waste liquid was collected in a conical tube, and treated at a room temperature and a normal pressure in a batch centrifuge at 7000 rpm for 10 minutes.
그 결과, 50 ml 폐액 중 분리된 NaCl의 부피는 7.3ml이고, 상기 식 1에 의해 계산된 NaCl의 함수율은 85.47%였다.As a result, the volume of NaCl separated in 50 ml waste liquid was 7.3 ml, and the water content of NaCl calculated by Equation 1 was 85.47%.
상기 결과로부터, 비교예 3과 마찬가지로, 폐액 내 무기염인 NaCl이 제거되어도 제거 효율이 적으며, 함수율이 크고 회분식 원심분리기 고형물이 쌓일 때 제거가 어려웠다. 특히, 상기 방법을 이용하 원심분리기 내 쌓인 고형물을 사용시마다 제거해 주어야 하므로, 연속식 운전이 불가능 하였고 공정성을 저하시켰다.From the above results, as in Comparative Example 3, even if the inorganic salt in the waste liquid NaCl is removed, the removal efficiency is small, the water content is large, and it is difficult to remove when the batch centrifuge solids are accumulated. In particular, since the solid matters accumulated in the centrifuge must be removed each time using the above method, continuous operation was impossible and processability was deteriorated.
Claims (11)
- 폴리아릴렌 설파이드 제조공정에서 발생된 물, 아미드계 화합물 및 무기염을 포함한 폐액을 회수하는 단계;Recovering waste liquid containing water, amide compounds and inorganic salts generated in the polyarylene sulfide production process;상기 폐액을 디캔터형 원심분리기에 공급하여 상기 폐액 내 무기염을 제거하는 단계; 및Removing the inorganic salt in the waste solution by supplying the waste solution to a decanter centrifuge; And상기 무기염이 제거된 폐액을 저장 탱크로 수집한 후 증류탑을 이용하여 폐액에서 아미드계 화합물을 회수하는 단계;Collecting the waste solution from which the inorganic salt has been removed into a storage tank, and then recovering the amide compound from the waste solution using a distillation column;를 포함하는 아미드계 화합물의 회수 방법.Method for recovering an amide-based compound comprising a.
- 제1항에 있어서,According to claim 1,상기 무기염은 알칼리금속의 할로겐화물을 포함하는 아미드계 화합물의 회수 방법.The inorganic salt is a method for recovering an amide-based compound containing an alkali metal halide.
- 제1항에 있어서, 상기 폐액내 무기염을 제거하는 단계에서, 폐액의 총 중량을 기준으로 25 내지 40 중량%의 무기염이 제거되는 아미드계 화합물의 회수 방법.The method of claim 1, wherein in the step of removing the inorganic salt in the waste solution, 25 to 40% by weight of the inorganic salt is removed based on the total weight of the waste solution.
- 제1항 또는 제3항에 있어서, 상기 폐액 내 무기염을 제거하는 단계에서 분리된 무기염은 하기 식 1에 의해 계산되는 함수율이 45% 이하인 아미드계 화합물의 회수 방법.The method for recovering an amide-based compound according to claim 1 or 3, wherein the inorganic salt separated in the step of removing the inorganic salt in the waste solution has a water content of 45% or less calculated by Equation 1 below.[식 1][Equation 1]함수율 (%) = [(분리된 무기염의 건조 전 무게-분리된 무기염의 건조 후 무게)/ 분리된 무기염의 건조 전 무게] × 100Moisture content (%) = [(Weight before drying of separated inorganic salt-weight after drying of separated inorganic salt)/ Weight before drying of separated inorganic salt] × 100
- 제1항에 있어서, 상기 디캔터 타입 원심분리기의 운전조건은, 1500G 내지 3100G에서 30초 내지 2분 동안 작동시켜 사용하는 아미드계 화합물의 회수 방법.The method of claim 1, wherein the decanter-type centrifugal separator is operated at 1500G to 3100G for 30 seconds to 2 minutes.
- 제1항에 있어서, 상기 디캔터 타입 원심분리기는 폐액 내 무기염을 제거하기 위한 배출구 및 무기염이 제거된 폐액 배출구가 별도로 구비되어 있는 아미드계 화합물의 회수 방법.The method of claim 1, wherein the decanter type centrifuge is separately provided with an outlet for removing inorganic salts from the waste liquid and a waste liquid outlet from which the inorganic salts have been removed.
- 제1항에 있어서, 상기 폐액 내 무기염을 제거하는 단계는 20℃ 내지 25℃의 상온 및 상압에서 수행하는 아미드계 화합물의 회수 방법.The method of claim 1, wherein the step of removing the inorganic salt in the waste solution is performed at room temperature and atmospheric pressure of 20°C to 25°C.
- 제1항에 있어서,According to claim 1,상기 폐액 내 무기염을 제거하는 단계는 연속 공정인, 아미드계 화합물의 회수 방법. The step of removing the inorganic salt in the waste solution is a continuous process, a method for recovering an amide compound.
- 제1항에 있어서,According to claim 1,상기 폐액에서 아미드계 화합물을 회수하는 단계는 연속 공정인, 아미드계 화합물의 회수 방법.The step of recovering the amide-based compound from the waste solution is a continuous process, the method for recovering the amide-based compound.
- 제1항에 있어서,According to claim 1,상기 디캔터형 원심분리기에 공급되는 폐액은 폴리아릴렌 설파이드의 합성 및 세척 공정에서 생성되는 폐액인, 아미드계 화합물의 회수 방법. The waste solution supplied to the decanter-type centrifuge is a waste solution produced in the process of synthesizing and washing polyarylene sulfide, and a method for recovering an amide compound.
- 제1항에 있어서,According to claim 1,상기 아미드계 화합물은 N,N-디메틸포름아미드, N,N-디메틸아세트아미드, N-메틸-2-피롤리돈(NMP), N-시클로헥실-2-피롤리돈, N-메틸-ε-카프로락탐, 1,3-디알킬-2-이미다졸리디논, 및 테트라메틸 요소로 이루어진 군에서 선택되는 1종 이상인, 아미드계 화합물의 회수 방법. The amide compound is N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone (NMP), N-cyclohexyl-2-pyrrolidone, N-methyl-ε -Caprolactam, 1,3-dialkyl-2-imidazolidinone, and at least one member selected from the group consisting of tetramethyl urea, a method for recovering an amide compound.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2019-0010742 | 2019-01-28 | ||
KR1020190010742A KR102688627B1 (en) | 2019-01-28 | 2019-01-28 | Process for recovering amide compounds |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020159167A1 true WO2020159167A1 (en) | 2020-08-06 |
Family
ID=71841588
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2020/001208 WO2020159167A1 (en) | 2019-01-28 | 2020-01-23 | Method for recovering amide-based compounds |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR102688627B1 (en) |
TW (1) | TW202033641A (en) |
WO (1) | WO2020159167A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0593068A (en) * | 1991-09-05 | 1993-04-16 | Idemitsu Petrochem Co Ltd | Method for separating polyarylenesulfide oligomer |
JP2003275773A (en) * | 2002-03-22 | 2003-09-30 | Dainippon Ink & Chem Inc | Wastewater treatment method for polyphenylene sulfide |
KR20050087860A (en) * | 2002-12-27 | 2005-08-31 | 구레하 가가쿠 고교 가부시키가이샤 | Process for producing and method of cleaning polyarylene sulfide, and method of purifying organic solvent used for cleaning |
JP2011111548A (en) * | 2009-11-27 | 2011-06-09 | Toray Ind Inc | Method for continuously recovering alkali metal halide |
KR20130026454A (en) * | 2010-05-19 | 2013-03-13 | 가부시끼가이샤 구레하 | Process for production of polyarylene sulfides, and polyarylene sulfides |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102196506B1 (en) * | 2017-10-20 | 2020-12-29 | 주식회사 엘지화학 | Process for preparing polyarylene sulfide |
-
2019
- 2019-01-28 KR KR1020190010742A patent/KR102688627B1/en active IP Right Grant
-
2020
- 2020-01-23 WO PCT/KR2020/001208 patent/WO2020159167A1/en active Application Filing
- 2020-01-30 TW TW109102719A patent/TW202033641A/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0593068A (en) * | 1991-09-05 | 1993-04-16 | Idemitsu Petrochem Co Ltd | Method for separating polyarylenesulfide oligomer |
JP2003275773A (en) * | 2002-03-22 | 2003-09-30 | Dainippon Ink & Chem Inc | Wastewater treatment method for polyphenylene sulfide |
KR20050087860A (en) * | 2002-12-27 | 2005-08-31 | 구레하 가가쿠 고교 가부시키가이샤 | Process for producing and method of cleaning polyarylene sulfide, and method of purifying organic solvent used for cleaning |
JP2011111548A (en) * | 2009-11-27 | 2011-06-09 | Toray Ind Inc | Method for continuously recovering alkali metal halide |
KR20130026454A (en) * | 2010-05-19 | 2013-03-13 | 가부시끼가이샤 구레하 | Process for production of polyarylene sulfides, and polyarylene sulfides |
Also Published As
Publication number | Publication date |
---|---|
KR102688627B1 (en) | 2024-07-24 |
KR20200093357A (en) | 2020-08-05 |
TW202033641A (en) | 2020-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4794164A (en) | Process for producing a polyarylene sulfide of excellent handling property and a polyarylene sulfide produced by the process thereof | |
CN1234661C (en) | Method for purifying raw melt of at least one monomer by crystallization | |
EP0220490B1 (en) | Process for the separation of poly(arylene sulfide) | |
US7317072B2 (en) | Process for the production of polyarylene sulfide resins | |
WO2020130367A1 (en) | Method of recovering amide-based compounds | |
EP1228123B1 (en) | A process for producing poly(arylene sulfide) | |
CN1272291C (en) | Method for the production of a purified melt of at least one monomer | |
WO2020159167A1 (en) | Method for recovering amide-based compounds | |
WO2019132470A1 (en) | Method for separating unreacted monomer from mixed solution comprising unreacted monomer | |
EP0271253B1 (en) | Process for recovering a polyarylene sulfide | |
TWI795604B (en) | Separation and purification method of polyarylene sulfide and preparation method of polyarylene sulfide | |
WO2020067797A1 (en) | Method and apparatus for recovering amide-based compound | |
WO2020130264A1 (en) | Manufacturing method and device for aromatic vinyl compound-vinyl cyanide compound polymer | |
EP0104560B1 (en) | Granular poly(arylene sulfide) recovery using evaporation | |
WO2020080898A1 (en) | Method for separating and refining polyarylene sulfide | |
CA2101409A1 (en) | Production of poly(arylene sulfide) polymers containing reduced amounts of oligomers | |
WO2020080899A1 (en) | Method for separating and recovering polyarylene sulfide | |
JPH0593068A (en) | Method for separating polyarylenesulfide oligomer | |
WO2021066459A1 (en) | Method for separating organozinc catalyst from polyalkylene carbonate polymerization solution | |
KR102608800B1 (en) | Method for preparing polyphenylene sulfide and apparatus for preparing polyphenylene sulfide | |
EP3766867B1 (en) | Method for recovering amide-based compound | |
EP1226184B1 (en) | Methanol extraction of polar organic compounds and modifier compounds from poly(arylene sulfide) polymer and oligomer streams | |
TW202028306A (en) | Separation and recovery method of polyarylene sulfide and preparation method of polyarylene sulfide | |
WO2022255576A1 (en) | Method for preparing isopropyl alcohol | |
US5175249A (en) | Process for the isolation and purification of polyarylene sulphides |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20748179 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20748179 Country of ref document: EP Kind code of ref document: A1 |