WO2020158392A1 - Image generation device, display processing device, image generation method, control program, and recording medium - Google Patents

Image generation device, display processing device, image generation method, control program, and recording medium Download PDF

Info

Publication number
WO2020158392A1
WO2020158392A1 PCT/JP2020/001072 JP2020001072W WO2020158392A1 WO 2020158392 A1 WO2020158392 A1 WO 2020158392A1 JP 2020001072 W JP2020001072 W JP 2020001072W WO 2020158392 A1 WO2020158392 A1 WO 2020158392A1
Authority
WO
WIPO (PCT)
Prior art keywords
model
depth information
reproduction
depth
camera
Prior art date
Application number
PCT/JP2020/001072
Other languages
French (fr)
Japanese (ja)
Inventor
恭平 池田
山本 智幸
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2020158392A1 publication Critical patent/WO2020158392A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/10Constructive solid geometry [CSG] using solid primitives, e.g. cylinders, cubes

Definitions

  • One embodiment of the present invention relates to an image generation device, a display processing device, an image generation method, a control program, and a recording medium.
  • the present application claims priority based on Japanese Patent Application No. 2019-14233 filed in Japan on January 30, 2019, the content of which is incorporated herein by reference.
  • AR Augmented Reality
  • VR Virtual Reality
  • Holoportation As a conventional technique, a technique called Holoportation is known.
  • the Hollocation it is possible to reproduce a 3D model in a remote AR space by delivering a colorless model and a plurality of texture images and integrating them at the receiving side.
  • KinectFusion a technology based on KinectFusion that builds a 3D model by integrating depth maps is being considered.
  • KinectFusion it becomes possible to construct a precise 3D model from a low-resolution depth map in real time.
  • the above-described conventional technology has a problem that the traffic volume in data transmission tends to increase because the 3D model to be displayed is directly transmitted.
  • a 3D model is reproduced by delivering a depth map, there is a problem that a defect area called a hole is likely to occur in the 3D model due to the influence of occlusion and depth integration.
  • a technology for filling holes based on a 3D model real-time performance is lost because the processing takes time.
  • One aspect of the present invention has been made in view of the above problems. Based on the 3D model, a 3D model in which the occurrence of holes is suppressed in real time is constructed while suppressing an increase in traffic volume in transmission. The purpose is to generate possible transmission data.
  • a depth information generation device and a 3D model reproduction device include the following means.
  • (First means) Depth information generation means for generating depth information based on camera information based on a reference model, 3D model reproduction means for reproducing the reproduction model by integrating the depth information, and the reproduction model with reference to the reference model.
  • Depth information generating means for estimating the hole area existing in the hole and extracting it as a hole extraction model, and camera information setting means for setting the camera information based on the hole extraction model. ..
  • Auxiliary model generation means for extracting a fine area and a hole area in the reference model as an auxiliary model, and camera information setting means for generating an auxiliary model by extracting a fine area and a hole area in the hole extraction model are further provided.
  • the depth information generating means according to the first means further comprising an auxiliary model added to the reproduction model when the reproduction model is reproduced.
  • the depth information generating means according to the first means, further comprising: an auxiliary TSDF generating means for generating the auxiliary TSDF at, and adding the auxiliary TSDF after integrating the depth information at the time of reproducing the reproduction model.
  • an auxiliary TSDF generating means for generating the auxiliary TSDF at, and adding the auxiliary TSDF after integrating the depth information at the time of reproducing the reproduction model.
  • the depth information generation according to the first, second or third means characterized in that, when the depth information is integrated in the 3D model reproducing means, depth values near a contour of an object reflected in the depth information are not integrated. means.
  • the depth information generating means according to the first, second or third means, wherein a filter for interpolating the TSDF value is added after the depth information is integrated in the 3D model reproducing means.
  • the depth information according to the first, second or third means wherein the number of meshes with which the nearest vertex of the reference model is adjacent is used to detect the hole area of the reproduction model in the hole detecting means.
  • Generating means Depth images are added one by one to the depth information based on the camera information generated by the camera information setting means, and the added depth image is removed from the depth information when the accuracy of the reproduction model is improved and the level is not satisfied each time it is added.
  • the depth information generating means according to the first, second or third means wherein the depth information generating means generates the depth information based on a sub model instead of a reference model.
  • the reference model is further provided with a subdivision means 15 for subjecting the reference model to a 3D model having a uniform distribution, and the accuracy of the reproduction model is evaluated for each grid divided by the hole detecting means, resulting in poor evaluation.
  • Depth information generating means according to the first, second or third means, wherein camera parameters corresponding to the grid are preferentially added to the camera information.
  • 3D model reproduction means for integrating the depth information generated by the depth information generation means and reproducing the reproduction model, the 3D model reproduction means.
  • the 3D model reproducing means according to the tenth means further comprising: an auxiliary model integrating means for adding an auxiliary model to the reproduction model to make a new reproduction model, and restoring a fine area of the reproduction model.
  • the 3D model reproducing means according to the tenth means further comprising: 3D model generating means for adding the auxiliary TSDF by integrating the depth information, and restoring a fine area of the reproduction model.
  • a depth information generation device that generates depth information and that can construct a 3D model in which the generation of holes is suppressed while suppressing the traffic volume.
  • FIG. 3 is a functional block diagram of the depth information generation device according to the first embodiment.
  • FIG. 3 is a functional block diagram of the 3D model reproduction device according to the first embodiment.
  • FIG. 6 is a flowchart showing a flow of processing according to the first embodiment.
  • 7 is a functional block diagram of a depth information generation device according to a second modification of the first embodiment.
  • FIG. 9 is a functional block diagram of a depth information generation device according to a modified example 3 of the first embodiment.
  • FIG. 7 is a functional block diagram of a depth information generation device according to the second embodiment.
  • FIG. 7 is a functional block diagram of a 3D model reproduction device according to a second embodiment.
  • FIG. 9 is a flowchart showing a flow of processing according to the second embodiment.
  • FIG. 9 is a functional block diagram of a depth information generation device according to a third embodiment.
  • FIG. 9 is a functional block diagram of a 3D model reproduction device according to a third embodiment.
  • 9 is a flowchart showing a flow of processing according to the third embodiment.
  • FIG. 13 is a functional block diagram of a depth information generation device according to a modified example of the third embodiment.
  • the depth information generation device 1 that generates depth information performs a process of generating depth information based on an input reference model.
  • the depth information generation device 1 is a device that generates depth information based on an input reference model.
  • the above-mentioned reference model is a 3D model that is a source of generating depth information and is a target to be reproduced based on the depth information in the 3D model reproducing device 2 described later.
  • the reference model is a 3D model that is converted into depth information in the depth information generation device 1 and reproduced by the 3D model reproduction device 2.
  • the reference model is, for example, a 3D model including vertices or meshes.
  • the reference model may be a 3D model that has been subjected to subdivision processing in advance and has a uniform vertex distribution. As a result, it becomes possible to perform uniform evaluation of the reference in the accuracy evaluation of the model described later.
  • the depth information described above is a set of depth images when the reference model is viewed from multiple or single cameras placed at specific positions.
  • the depth image is information in which the depth information when the subject (reference model) is viewed from the camera is recorded in an image format, and is, for example, a depth map in which the information is represented by the brightness of a monochrome image.
  • the camera in the present invention is assumed to be a virtual camera that is virtually reproduced in software, but it may be an existing camera. Further, the virtual camera may be a virtual camera of a format other than the above.
  • the depth information does not necessarily have to include a plurality of depth images, and may be composed of a single depth image.
  • the depth information may be, for example, an image format in which depth images are arranged so as not to overlap each other.
  • the depth information may be an image generated by tiling the depth image.
  • the depth information may be information obtained by grouping depth images.
  • Camera information is attached to the depth information.
  • the camera information is, for example, a set of camera parameters of the camera that records the depth image included in the depth information. The camera parameters and camera information will be described later.
  • the above-mentioned camera parameter is information indicating the parameter of the camera that records the depth image.
  • the camera parameters include at least information on the position of the camera when the corresponding depth image was captured, the direction in which the camera is facing, the focal length, and the resolution of the depth image to be recorded.
  • the above-mentioned camera information is information attached to the depth information, and is a set of camera parameters corresponding to the depth image included in the depth information.
  • the camera information includes information indicating which depth image in the depth information is the depth image corresponding to the camera parameter included in the camera information.
  • the information indicating the corresponding depth image is information indicating which area in the depth information is the depth image corresponding to the camera parameter when the depth information is an image format in which a plurality of depth images are arranged. For example, the information indicating the coordinates of the origin of the corresponding depth image and the information indicating the number of pixels of the corresponding depth image.
  • the depth information corresponding to the camera parameter is information indicating which depth image.
  • FIG. 1 is a functional block diagram of the depth information generation device 1 according to this embodiment.
  • the depth information generation device 1 includes a depth information generation unit 11, a 3D model reproduction unit 12, a hole detection unit 13, and a camera information setting unit 14.
  • the depth information generation unit 11 generates depth information based on the input reference model and camera information.
  • the 3D model reproduction unit 12 generates a reproduction model based on the input depth information.
  • the reproduction model described above is a model generated based on the depth information, and is, for example, a 3D model including vertices and triangular meshes.
  • the hole detection unit 13 detects a hole area based on the input reference model and reproduction model, and outputs a vertex or a mesh corresponding to the hole area of the reference model as a hole extraction model.
  • the above-mentioned hole area is a specific area in the 3D model.
  • the reference model is an area in which holes do not exist in the area of the reference model and holes exist in the area in the reproduction model corresponding to the area.
  • a hole that should not exist in the reference model has been generated in the corresponding part of the reproduction model.
  • An object of the present invention is to suppress the hole area in the reproduction model described above. In the following description, the process of suppressing or removing the hole region will be referred to as filling the hole or compensating the hole.
  • the above-mentioned hole extraction model is, for example, a 3D model in which the vertices or meshes in the reference model corresponding to the hole area are extracted.
  • the camera information setting unit 14 clusters the input hole extraction models, generates camera parameters for each cluster, and collects the camera parameters to generate camera information.
  • the generated camera information is input to the depth information generation unit 11.
  • a voxel is a distribution obtained by dividing a 3D space into a grid shape, and holds a TSDF value and a weight value for each voxel.
  • a set of voxels existing in the 3D space is called a voxel space.
  • the TSDF (Truncated Signed Distance Function) value and the weight value of the voxel are both 0.
  • the TSDF value here represents a distance from the voxel to the surface of the 3D model, and is a signed numerical value meaning that the smaller the TSDF value, the closer to the surface.
  • the TSDF value means, for example, a positive TSDF value means a voxel closer to the camera than the surface, and a negative TSDF value means a voxel located deeper than the surface.
  • the weight value is a numerical value indicating the reliability of the corresponding TSDF value, and the minimum value is 0.
  • the TSDF value and weight value of the voxel described above are calculated for the voxels that are included in the camera parameters and are arranged at the positions and orientations of the cameras, and the voxels on the corresponding depth image that pass through each pixel.
  • the voxel TSDF value is the distance from the voxel position to the surface of the 3D model on the ray (the depth value of the corresponding pixel).
  • the weight value is, for example, the inner product of the normal line of the pixel of the depth image on the ray and the ray. Here, only weight values of 0 and positive values are considered.
  • the weighted average in which the corresponding weight is the weight is calculated for the existing TSDF value and the new TSDF value, and the average value is Overwrite the TSDF value of the voxel as a new TSDF value.
  • the weight value overwrites the weight value of the voxel with a new weight value that is the sum of the existing weight value and the new weight value.
  • the voxel space in which the TSDF value is recorded is converted into a 3D model with a mesh structure by the Marching Cubes method.
  • the calculation time may be shortened by skipping the calculation of the voxel whose recorded weight is 0.
  • a 3D model is generated from the depth image.
  • the configuration of the 3D model playback device 2 according to the present embodiment will be described based on FIG.
  • the 3D model reproduction device 2 is a device that generates a reproduction model based on the input depth information.
  • the above-mentioned reproduction model is a model generated based on the depth information in the 3D model reproduction device 2.
  • the reproduction model is, for example, a 3D model including vertices or meshes.
  • FIG. 2 is a functional block diagram of the 3D model playback device 2 according to the present embodiment. As shown in FIG. 2, the 3D model reproduction device 2 includes a 3D model reproduction unit 12.
  • the function of the 3D model reproduction unit 12 is the same as that of the 3D model reproduction unit 12 included in the depth information generation device 1.
  • FIG. 3 is a flowchart showing the flow of processing according to this embodiment. Note that steps S101 to S104 are processes in the depth information generation device 1, and steps S105 to S106 are processes in the 3D model reproduction device 2.
  • step S101 the depth information generation unit 11 generates depth information based on the input reference model. Specifically, the depth images when the reference model is viewed are acquired from the cameras arranged based on the camera information, and the depth information is generated based on those depth images. At this time, the depth information generation unit 11 holds the information of the camera information used to generate the depth information.
  • the process of the depth information generation unit 11 differs depending on whether or not camera information is input to the depth information generation unit 11 from the camera information setting unit 14.
  • the camera parameters included in the camera information are It is set arbitrarily.
  • the camera parameter has a position and orientation of the camera that positions the camera so as to surround the center of gravity of the reference model, and a position and focal length that allows the entire reference model to be seen.
  • the structure may be such that an important area in the reference model is shot by a large number of cameras or high resolution cameras.
  • the above-mentioned important part is, for example, the head or face of a human when the reference model includes the human. Further, for example, when the reference model includes a numerical value, this is an area in which the numerical value is drawn. In any case, the method of detecting the important area does not matter. In addition, the above-mentioned important part may be set arbitrarily. With the above-described configuration, it is possible to obtain the effect of accurately reproducing the important area in the 3D model reproduction device 2.
  • the depth image is divided into a foreground part that is a pixel in which the reference model is recorded and a background part that is a pixel in which the reference model is not imaged.
  • the foreground part described above contributes to the reproduction of the reproduction model.
  • the resolution of the depth image added to the depth information is lower than the resolution of the depth image added in the first processing of step S101 described above. Is also good.
  • the depth image added in the first processing described above needs to have a resolution sufficient to maintain the detail of the reproduction model, but the depth image added in the second and subsequent processings is required to compensate for the hole area. For the purpose, it is not necessary to maintain the height of the detail, and there is no problem even if the resolution is lower than the depth image added in the first processing.
  • the depth information may be generated based on the priority. Specifically, the depth image is generated based on the camera parameter in order from the camera parameter with the highest priority of the camera, and the depth image is added to the depth information.
  • the depth information is an image format in which a plurality of depth images are arranged, the image resolution of the depth information may be limited. That is, it is not always possible to add depth images for all camera parameters that are added. Therefore, by attaching the information of the priority of the camera to the parameter of the camera and adding the depth image to the depth information based on the priority of the camera, the depth image to be added with priority is added with priority. To do.
  • the camera parameter having a priority equal to or lower than the priority associated with the camera parameter recording the depth image may be ignored. In other words, it is not necessary to add a camera parameter having a priority lower than the camera parameter when the depth information is added to the depth information in order from the depth image with the highest priority and the depth image does not fit in the depth information.
  • the initial camera information in S101 may be another example.
  • the camera information included in the depth information output from the depth information generation device 1 in the previous frame is included in the camera information when the processing of the depth information generation unit 11 is performed for the first time after the processing is started. May be set.
  • the camera information calculated in the previous frame may be set as the initial camera information in the current frame, and the process of step S101 may be performed.
  • the camera information may be initialized. That is, the camera information of the previous frame may be discarded and the process may be restarted from step S101.
  • step S102 the 3D model reproduction unit 12 generates a reproduction model based on the input depth information.
  • the depth information input first is divided into depth images based on the camera information.
  • a filter is added to the depth image.
  • the filter is, for example, a smoothing filter represented by a bilateral filter.
  • the process of adding the filter described above is not essential, and it is not always necessary to add the filter to the depth image.
  • the depth image is integrated based on the camera parameters corresponding to the depth image to generate a 3D model, and the 3D model is input to the hole detection unit as a reproduction model.
  • the procedure for generating a 3D model by integrating the depth images may be in accordance with the above-described 3D model generation method.
  • step S102 the method of generating the 3D model described above calculates the TSDF value and the weight value for the voxels on the rays of the camera, but in step S102, both values are calculated.
  • the TSDF value and the weight value are calculated for a voxel located on the normal line of the pixel and located at an arbitrary distance from the pixel.
  • the TSDF value and the weight value are calculated for all the pixels included in the depth image, but in step S102, the pixels corresponding to the background portion in the depth image are determined. , May be excluded from the calculation. With the above-described configuration, the calculation that does not contribute to the generation of the reproduction model is skipped, so that the calculation speed can be improved.
  • pixels near the contour of the object shown in the depth image may be excluded from the calculation.
  • the contour of the object described above refers to, for example, a pixel at the boundary between the foreground part and the background part in the depth image. In addition, for example, it refers to a pixel in the depth image, which has a larger difference from the depth value of an adjacent pixel than an arbitrary value.
  • a process of filtering the voxel space may be added before the process of generating the 3D model by the MarchingCubes method.
  • the filter described above is, for example, a filter that interpolates TSDF values. Specifically, a non-zero negative TSDF value and a weight value are given to a voxel adjacent to a voxel holding a negative TSDF value and a non-zero weight value and holding a TSDF value and a weight value of zero. It is a filter.
  • the TSDF value given to the voxel may be, for example, an average value of the TSDF values of adjacent voxels holding a negative TSDF value and a non-zero weight.
  • the weight value is set to the lowest value other than 0.
  • a weight whose calculation is not skipped in the Marching Cubes method and which is the lowest non-zero weight value that can be given.
  • the hole area generated in the reproduction model can be filled, and the effect of improving the accuracy of the reproduction model can be obtained.
  • a filter that is applied after applying the above-described filter is adjacent to a voxel to which a TSDF value and a weight are given by the above-described filter, and is adjacent to a voxel that holds a positive TSDF value and a non-zero weight.
  • the TSDF value given to the voxel may be, for example, an average value of the TSDF values of adjacent voxels holding a positive TSDF value and a non-zero weight.
  • the TSDF value and the TSDF value of the voxel to which the weight is given by the above-mentioned filter may be a value in which the signs are exchanged.
  • the weight value is set to the lowest value other than 0.
  • the voxel space calculated by integrating the depth information can be interpolated in the 3D model reproduction unit 12.
  • a negative TSDF value can be given to a voxel corresponding to the hole area, which is adjacent to a voxel having a positive TSDF and has a weight of 0. That is, the hole area generated in the reproduction model can be further filled, and the effect of improving the accuracy of the reproduction model can be obtained.
  • the above two types of filters may be filters in which the signs of TSDF values are exchanged.
  • a filter that replaces the TSDF value and the weight value with 0.
  • the depth integrated calculation may be performed using the maximum value of different weight values for each depth image included in the depth information.
  • the depth image added to the depth information in the first process in step S101 and the depth image added to the depth information in the second and subsequent processes are identified and used when the former depth image is integrated.
  • the latter depth image is integrated using a lower weight value than the existing weight value.
  • the former depth image is given a weight of 1
  • the latter depth image is given a weight of 1/10 to calculate the depth integration.
  • the lowest weight other than 0 is used.
  • the depth image added in the second and subsequent processes weakens the effect on depth integration, so it affects the areas other than the hole area. Is suppressed. As a result, it is possible to obtain the effect of preventing the accuracy of the reproduction model from decreasing.
  • the weight value of the low resolution depth image may be smaller than the weight value of the high resolution depth image.
  • the depth image having a resolution of 1280 ⁇ 960 is given a weight of 1 ⁇
  • the depth image having a resolution of 640 ⁇ 480 is given a weight of 1 ⁇ 4 to calculate the depth integration.
  • the depth integrated calculation may be performed for voxels in different ranges for each depth image included in the depth information. Specifically, when the depth image added to the depth information in the first process in step S101 and the depth image added to the depth information in the second and subsequent processes are identified and the former depth image is integrated, The TSDF value and the weight value are calculated for a wide range of voxels, and when the latter depth images are integrated, the TSDF value and the weight value are calculated for a narrow range of voxels.
  • the TSDF value and weight value are calculated for the range of 3 voxels from the corresponding surface, and for the latter depth image, the TSDF value and weight value are similarly calculated for the range of 1 voxel.
  • step S103 the hole detection unit 13 generates a hole extraction model based on the input reference model and reproduction model. Specifically, first, the hole detection unit 13 estimates the hole area by comparing the input reference model and the reproduction model. Next, based on the estimated hole area, a hole extraction model is extracted from the reference model and input to the camera information setting unit 14.
  • the method of estimating the hole area does not matter. For example, a distance between a vertex in the reference model and a vertex in the reproduction model that is the closest to the vertex is calculated. If the distance is a certain value or more, the vertex of the reference model corresponds to the hole area. You can judge that it is. In this case, not only the area where the hole actually exists, but also the area where the difference in shape between the reference model and the reproduction model is large is determined as the hole area. With the above-described configuration, it is possible to obtain the effect of correcting the above-described region having a large difference in shape by adding the camera parameter described later.
  • the vertex of the reference model is A method of determining that it corresponds to the hole area may be used.
  • KinectFusion since the TSDF value and the weight value are recorded by the Marching Cubes method, a reproduction model is created based on the voxel space. At this time, the number of meshes in the reproduction model to which the vertices not adjacent to the hole region belong is usually within the range of 4 to 8 when the reproduction model is composed of triangular meshes.
  • the vertex in the reproduction model belongs is 3 or less, it can be determined that the vertex is adjacent to the hole area. Therefore, it is determined that the vertex in the reference model corresponds to the hole area. Is also good.
  • the hole extraction model is generated by extracting the vertices or meshes of the reference model determined to be the hole area from the reference model.
  • step S104 the camera information setting unit 14 generates camera information based on the input hole extraction model. Specifically, first, the input hole extraction model is clustered and decomposed into a plurality of clusters. Hereinafter, the hole extraction model decomposed into clusters is called a sub model. Next, for each sub-model, the optimum camera parameters for recording the sub-model are estimated, and these camera parameters are put together as camera information and input to the depth information generation unit 11.
  • the method of clustering the hole extraction model does not matter.
  • a method may be used in which a vertex that is close to the vertex and has a normal line close to the normal line of the vertex is assigned to the same cluster as the vertex with an appropriate vertex as a reference.
  • vertices that have similar normal directions and are gathered at close positions can be grouped as a sub model.
  • Optimal camera parameters for recording a submodel include, for example, the position, orientation, and focal length of the camera such that the inner product of the normal line of the vertices included in the submodel and the deflection angle formed by the rays of the camera is large. It is a camera parameter to have.
  • a camera parameter that has a position and orientation that captures the center of gravity of the submodel on the optical axis of the camera.
  • it is a camera parameter that has a position, orientation, and focal length that fits the entire sub-model within the screen, but that fills the screen with the sub-model.
  • the depth images included in the depth information are added by looping the processing of steps S101 to S104.
  • the camera information generated by the processing of steps S103 and S104 is a camera parameter for viewing a hole area existing in the reproduction model generated by integrating the depth information, and is therefore added after the second loop.
  • the depth image is an image that fills the hole area described above. Therefore, the depth image added after the second loop has an effect of filling the hole area existing in the reproduction model generated by integrating the depth images added in the first loop. Therefore, by repeating the above loop, it is possible to obtain the effect that the 3D model reproduction unit 12 can generate the reproduction model in which the hole area is filled. In other words, a reproduction model closer to the reference model can be generated.
  • step S104 it is not always necessary to generate camera parameters for all submodels, and it is not necessary to generate camera parameters for submodels having specific conditions.
  • the specific condition is, for example, that the total area of the meshes included in the sub model is below an arbitrary value.
  • the camera parameters do not have to be generated for the sub-model in which the area of the corresponding hole region falls below an arbitrary value.
  • the camera parameters generated in step S104 may be accompanied by camera priority information.
  • the camera priority described above is information set for each sub-cluster, and is used by the depth information generation unit 11 to represent the order in which depth images are added to the depth information.
  • the method of setting the priority of the camera may be, for example, a method of calculating the total value of the mesh area for each submodel and setting the priority in descending order of the total value.
  • step S104 After the processing of step S104 is completed, the next processing branches based on the loop end condition.
  • step S105 the depth information is output from the depth information generation device 1, and the process ends. If the loop end condition is not satisfied, the camera information generated by the camera information setting unit 14 is input to the depth information generation unit 11, and the process proceeds to step S101.
  • the loop end condition described above is a condition determined during the processing of steps S101 to S104. For example, when the processing of step S101 is repeated any number of times in step S101, it is determined that the loop end condition is satisfied. You may judge. In other words, when the loop ends an arbitrary number of times, it may be determined that the loop end condition is satisfied.
  • step S101 when the depth image cannot be added to the depth information, in other words, when the depth information is full, it may be determined that the loop end condition is satisfied.
  • step S102 when the accuracy of the generated reproduction model exceeds an arbitrary value, it may be determined that the loop end condition is satisfied.
  • the accuracy of the model will be described later.
  • step S103 if the area of the detected hole region is less than an arbitrary value, it may be determined that the loop termination condition is satisfied.
  • step S102 if the accuracy of the generated reproduction model is lower than the accuracy of the reproduction model generated in the previous loop, it may be determined that the loop end condition is satisfied.
  • the depth information output from the depth information generation device 1 may be the depth information of the previous loop.
  • steps S101 to S104 when the loop termination condition is satisfied, the processing until the termination of S104 may be skipped. For example, if the loop end condition is satisfied in step S102, the processes in steps S103 and S104 may be skipped and the depth information generation device 1 may output the depth information.
  • the accuracy of the reproduction model described above is an index indicating how close the reproduction model generated in the 3D model reproduction unit 12 is to the reference model.
  • the accuracy of the reproduction model is calculated, for example, by averaging the distances between the vertices of the reference model and the vertices of the reproduction model, which are the nearest vertices. Further, for example, it is the RMSE value of the reproduction model viewed from the reference model. Also, for example, the accuracy between images such as PSNR is calculated between the depth image when the reference model is viewed with a camera having arbitrary camera parameters and the depth image when the playback model is viewed, and the accuracy is reproduced. It may be treated as the accuracy of the model.
  • step S105 the 3D model reproduction unit 12 generates a reproduction model based on the input depth information and outputs the reproduction model from the 3D model reproduction device, as in step S102.
  • the depth image is filtered in the process of step S102, it is desirable that the same filter be applied in the process of step S105. The same applies when the filter is not applied.
  • the 3D model generation device 2 can generate a reproduction model based on the depth information by the same method as the 3D model generation unit 12 of the depth information generation device 1.
  • the 3D model generation is performed.
  • the device 2 can also reproduce the reproduction model in which the hole area is filled. That is, it is possible to obtain the effect that a reproduction model close to the reference model can be generated.
  • the data amount of the depth information is smaller than that of the 3D model. Therefore, by generating the reproduction model from the transmitted depth information, it is possible to obtain the effect of suppressing the traffic volume while generating the reproduction model close to the reference model as compared with the case of directly transmitting the reference model.
  • the depth information generation unit 11 adds any one of the camera parameters to the camera information when the input camera information includes a plurality of camera parameters. I do.
  • all the added camera parameters are added to the existing camera information, but in the present modification, only one camera parameter is added.
  • the 3D model reproduction unit 12 first generates a reproduction model in the process corresponding to step S102 of the first embodiment, as in the first embodiment. Next, the accuracy of the generated reproduction model is calculated and compared with the accuracy of the reproduction model generated using the camera information before the camera parameter is added. At this time, if the accuracy is not improved more than an arbitrary value, it is determined that the camera parameter does not contribute to the accuracy improvement of the reproduction model, and the camera parameter is removed from the camera information.
  • the depth information generation unit 11 With the configuration described above, among the camera parameters input to the depth information generation unit 11, only the camera parameters that contribute to the improvement of the accuracy of the reproduction model can be added to the existing camera information. As a result, the number of depth images included in the depth information can be suppressed, so that the effect of suppressing the traffic amount can be obtained.
  • the purpose of this modified example is to record a depth image that is not affected by the self-occlusion of the reference model in the depth information generation unit 11a. It is desirable that each depth image generated by the depth information generation unit 11 of the first embodiment shows the entire corresponding sub-model. However, depending on the clustering method in the camera information setting unit 14, camera parameters may be generated such that a part or the whole of the sub model is shielded by a region that is not the sub model of the reference model. In this case, there arises a problem that the hole area corresponding to the occluded sub model in the reproduction model is not filled with the addition of the depth image.
  • the camera information setting unit 14a inputs the sub-model to the depth information generating unit 11a in addition to the camera information in the process corresponding to step S104 of the first embodiment. At this time, the camera parameter included in the camera information and the sub model are associated with each other.
  • the depth information generation unit 11a performs the process corresponding to step S101 of the first embodiment.
  • a depth image is generated based on the input reference model and added to the depth information.
  • the depth image is generated based on the sub-model corresponding to the camera parameter included in the input camera information and added to the depth information.
  • the depth image generated by the depth information generation unit 11a does not include a region that is not a submodel of the reference model, so that the depth image that is not affected by the self-occlusion of the reference model can be recorded. it can. As a result, it is possible to obtain the effect that the hole region described above can be filled.
  • the second modification may be used in combination with the first embodiment.
  • the camera parameter for which it is determined that the above-described self-occlusion occurs may be subjected to the process of the second modification, and if not so, the process of the first embodiment may be performed.
  • the depth information generation device 1b includes a subdivision unit 15b, a depth information generation unit 11, a 3D model reproduction unit 12, and a hole detection unit 13b.
  • the purpose of this modification is to detect a hole area by a method different from that of the first embodiment in the processing of the hole detection unit 13b.
  • the subdivision unit 15b according to the present modification has a uniform distribution generated by adding subdivision processing to the input reference model in the processing performed before step S101 of the first embodiment.
  • a 3D model having vertices is input to the depth information generation unit 11 and the hole detection unit 13b as a new reference model is generated. Note that the process added to the reference model does not have to be the subdivision process as long as the process can be corrected to a 3D model having vertices with a uniform distribution.
  • the hole detection unit 13b estimates a hole area in the reproduction model based on the input reproduction model and reference model, generates camera information corresponding to the hole area, and inputs the camera information to the depth information generation unit 11. To do.
  • the 3D space in which the input reference model exists is divided into grids of arbitrary width.
  • the evaluation value of each grid is calculated based on the input reference model and reproduction model. Specifically, first, with respect to the vertices of the reference model included in the grid, the distances between the vertices and the vertices of the nearest reproduction model are calculated. The above calculation is performed for all the vertices of the reference model included in the grid, and the total value of those distances is set as the evaluation value of the grid. That is, it can be said that the higher the evaluation value, the lower the accuracy of the region of the reproduction model corresponding to the grid. The same calculation is performed for all grids.
  • the camera parameter is generated for a grid whose evaluation value is higher than an arbitrary value. That is, the optimum camera parameter is generated for the grid whose accuracy of the reproduction model in the grid is out of the allowable range, and the optimum camera parameter is input to the depth information generation unit 11.
  • the optimal camera parameter is, for example, a camera parameter that has a position, orientation, and focal length of the camera such that the inner product of the normal of the vertex of the reference model in the grid and the declination created by the ray of the camera is large Is. Further, for example, it is a camera parameter having a position and orientation that captures the center of gravity of the grid on the optical axis of the camera.
  • the camera parameters generated are collected into camera information and input to the depth information generation unit 11.
  • This modification may be combined with modification 1. That is, only the camera parameter regarding the grid with the worst evaluation is input to the depth information generation unit 11, and only when the accuracy of the reproduction model is improved, the depth image corresponding to the camera parameter may be added to the depth information. ..
  • the depth information generation device 3 that generates depth information performs a process of generating an auxiliary model in addition to the process of the first embodiment.
  • members having the same functions as the members described in the above embodiment will be designated by the same reference numerals, and the description thereof will be omitted.
  • the depth information generation device 3 is a device that generates depth information and an auxiliary model based on an input reference model. The purpose of this embodiment is to extract a part of the vertices or meshes included in the reference model and send them to the 3D model reproduction device 4.
  • the above-mentioned auxiliary model is information obtained by extracting a part of the input reference model, and is, for example, a 3D model composed of vertices or meshes.
  • the auxiliary model is used for the purpose of compensating the hole area of the reproduction model by adding it to the reproduction model generated by the 3D model reproduction device 4.
  • FIG. 6 is a functional block diagram of the depth information generation device 3 according to this embodiment.
  • the depth information generation device 3 includes an auxiliary model generation unit 31, a depth information generation unit 11, a 3D model reproduction unit 12, a hole detection unit 13, and a camera information setting unit 32.
  • the functions of the depth information generation unit 11, the 3D model reproduction unit 12, and the hole detection unit 13 in the present embodiment are the same as those of the same name block included in the depth information generation device 1 in the first embodiment.
  • the auxiliary model generation unit 31 generates an auxiliary model and a reference model based on the input reference model.
  • the reference model generated by the auxiliary model generation unit 31 is a model obtained by removing the auxiliary model from the input reference model.
  • the generated reference model is input to the depth information generation unit 11 and the hole detection unit 13.
  • the camera information setting unit 32 in the present embodiment clusters the input hole extraction models, and generates camera information and auxiliary models in which camera parameters related to each cluster are summarized.
  • the generated camera information is input to the depth information generation unit 11. Further, the generated auxiliary model is input to the 3D model reproduction device 4.
  • the configuration of the 3D model playback device 4 according to the present embodiment will be described based on FIG. 7.
  • the 3D model reproduction device 4 is a device that generates a reproduction model based on the input depth information and the auxiliary model.
  • FIG. 7 is a functional block diagram of the 3D model playback device 4 according to the present embodiment.
  • the 3D model reproduction device 4 includes a 3D model reproduction unit 12 and an auxiliary model integration unit 41.
  • the function of the 3D model reproduction unit 12 in this embodiment is the same as that of the model with the same name included in the 3D model reproduction device 2 in the first embodiment.
  • the auxiliary model integration unit 41 generates a new 3D model by adding the auxiliary model to the reproduction model based on the input reproduction model and the auxiliary model, and the 3D model is used as a new reproduction model. Output from 4.
  • FIG. 8 is a flowchart showing the flow of processing according to this embodiment. Note that steps S201 to S204 are processes in the depth information generating device 3, and steps S105 to S206 are processes in the 3D model reproducing device 4.
  • step S201 the auxiliary model generation unit 31 generates a new reference model and a new auxiliary model based on the input reference model. Specifically, first, an auxiliary model is generated by extracting vertices or meshes that satisfy specific conditions from the input reference model. Next, the vertices or meshes satisfying the above conditions are removed from the reference model, a new reference model is generated, and the new reference model is input to the depth information generation unit 11 and the hole detection unit 13. In other words, a new reference model is generated by removing the auxiliary model from the reference model.
  • the vertices or meshes that satisfy the above-described specific conditions are, for example, vertices or meshes that correspond to regions that are difficult to reproduce in the processing of the 3D model reproduction unit 12.
  • the auxiliary model is generated by extracting the vertices or meshes in the reference model, which have details smaller than the voxel size described above.
  • steps S101 to S103 the same processing as that of the first embodiment is performed.
  • step S204 the camera information setting unit 32 generates additional camera information and an auxiliary model based on the input hole extraction model. That is, in step S204, an auxiliary model is generated in addition to the same processing as step S104 of the first embodiment.
  • the auxiliary model is generated by extracting the vertices or meshes satisfying a specific condition from the sub model while performing the same processing as step S104 of the first embodiment.
  • the vertices or meshes satisfying the above-described specific conditions are, for example, vertices or meshes included in a sub model whose total area of meshes included in one sub model is less than an arbitrary value. In other words, it is a sub model in which the area of the hole region is below an arbitrary value. In the case of a small hole area, the hole area may be filled with vertices or meshes having a smaller amount of information than the depth image added to fill the hole area.
  • the depth information generation device 3 can generate an auxiliary model in addition to the depth information generated by the depth information generation device 1 of the first embodiment.
  • the above-described auxiliary model corresponds to a 3D model obtained by extracting a reference model corresponding to a small area of the reference model and a small hole area of the reproduction model generated in the 3D model reproduction unit 12.
  • the auxiliary model is selected and generated so that the data amount of the auxiliary model corresponding to the above-described small hole area is smaller than the data amount of the depth image having an effect of filling the hole area. Since the information for filling the small hole area can be transmitted in the form of the auxiliary model, which has less information amount than the depth image, the effect of suppressing the traffic amount can be obtained.
  • vertices or meshes included in the auxiliary model may be removed from the sub model or reference model.
  • the 3D model obtained by removing the auxiliary model from the sub model or reference model may be used as the new sub model or reference model.
  • auxiliary model generated in step S201 and step S204 is held inside the depth information generation device 3, and the depth information generation device 3 outputs the depth information, and at the same time, the depth information generation device 3 outputs the depth information.
  • the auxiliary models generated by the auxiliary model generation unit 31 and the camera information setting unit 32 may be integrated into one auxiliary model.
  • step S201 and step S204 in the present embodiment only one of the steps may be processed. That is, the auxiliary model may be generated by either one of the functional blocks of the auxiliary model generation unit 31 and the camera information setting unit 32. When the auxiliary model is not generated in step S204, the process of step S204 is the same as step S104 of the first embodiment.
  • the auxiliary model does not necessarily have to be the 3D model that has been extracted from the reference model or the sub model, and may be a model in which the number of vertices or meshes is reduced after extracting from the sub model. ..
  • an auxiliary model having a smaller amount of data can be used as compared with the case where an auxiliary model is used without changing the sub-model, so that an effect of suppressing the traffic amount can be obtained.
  • step S105 the same processing as that of the first embodiment is performed.
  • step S206 the auxiliary model integration unit 41 generates a new reproduction model based on the input reproduction model and auxiliary model. Specifically, by integrating the reproduction model and the auxiliary model, a new reproduction model is generated and output from the 3D model reproduction device 4.
  • the above-mentioned integration of the reproduction model and the auxiliary model refers to a process of replacing the 3D model obtained by adding the vertices or meshes of both with each other as a new reproduction model.
  • the 3D model generation device 4 can output a 3D model in which an auxiliary model is added to the reproduction model generated by integrating the depth information in the 3D model reproduction unit 12. Accordingly, by adding the auxiliary model generated by the camera information setting unit 32 of the depth information generation device 3 to the above-described reproduction model, it is possible to generate the reproduction model in which the hole area is filled. In addition, by adding the auxiliary model generated by the auxiliary model generation unit 31 of the depth information generation device 3 to the above-described reproduction model, it is not possible to reproduce by depth integration in which the detail of the 3D model is limited by the voxel size. A reproduction model with details can be generated. By the above-described processing, it is possible to obtain the effect of generating a reproduction model close to the reference model.
  • the apex may be displayed in a size that fills the hole area.
  • the depth information generation device 5 that generates depth information further performs a process of generating auxiliary TSDF information.
  • members having the same functions as the members described in the above embodiment will be designated by the same reference numerals, and the description thereof will be omitted.
  • the depth information generation device 3 is a device that generates depth information and auxiliary TSDF based on an input reference model.
  • the purpose of this embodiment is to generate a supplementary TSDF by comparing the reproduction voxel space generated from the depth information with the reference voxel space generated based on the reference model, and to transmit the auxiliary TSDF to the 3D model reproduction device 6. ..
  • the playback voxel space described above is a voxel space in which the TSDF value and the weight value are recorded, which are generated by the 3D model playback unit 51 based on the depth information.
  • the reference voxel space described above is a voxel space in which the TSDF value and the weight value are recorded, which are generated by the reference voxel space generation unit 52 based on the reference model. Note that the reproduction voxel space and the reference voxel space have the same voxel resolution. In other words, both voxels have the same number, and there is a one-to-one corresponding voxel.
  • the above-mentioned auxiliary TSDF is information in which the auxiliary TSDF generation unit 53 generates the coordinates of the voxel and the TSDF value of the voxel, which is generated based on the reproduction voxel space and the reference voxel space.
  • the auxiliary TSDF has at least the coordinates of the original voxel and the TSDF value of the voxel.
  • the auxiliary TSDF is used in the 3D model reproduction unit 61 of the 3D model reproduction device 6 for the purpose of improving the accuracy of the reproduction model generated in the 3D model reproduction unit 61 by being added to the voxel space generated from the depth information.
  • FIG. 9 is a functional block diagram of the depth information generation device 5 according to this embodiment.
  • the depth information generation device 5 includes a depth information generation unit 11, a 3D model reproduction unit 51, a reference voxel space generation unit 52, and an auxiliary TSDF generation unit 53.
  • the function of the depth information generation unit 11 in this embodiment is the same as that of the same name block included in the depth information generation device 1 in the first embodiment.
  • the 3D model playback unit 51 performs a depth integration process based on the input depth information to generate a playback voxel space.
  • the reference voxel space generation unit 52 generates a reference voxel space based on the input reference model.
  • the auxiliary TSDF generation unit generates the auxiliary TSDF by comparing the reproduction voxel space and the reference voxel space based on the input reproduction voxel space and reference voxel space.
  • the configuration of the 3D model playback device 6 according to the present embodiment will be described based on FIG.
  • the 3D model reproduction device 6 is a device that generates a reproduction model based on the input depth information and the auxiliary TSDF.
  • FIG. 10 is a functional block diagram of the 3D model playback device 6 according to the present embodiment. As shown in FIG. 10, the 3D model playback device 6 includes a 3D model playback unit 61.
  • the 3D model reproduction unit 61 generates a reproduction model based on the input depth information and auxiliary TSDF.
  • FIG. 11 is a flowchart showing the flow of processing according to this embodiment. Note that steps S101 to S303 are processes in the depth information generation device 5, and steps S304 to S106 are processes in the 3D model reproduction device 6.
  • step S101 the same processing as that of the first embodiment is performed.
  • step S301 the 3D model reproduction unit 51 generates a reproduction voxel space based on the input depth information.
  • the depth information is integrated, the processes up to the calculation of the TSDF value and the weight value of the voxel are performed, and the TSDF value of the voxel is extracted to reproduce the voxel space. Is generated and input to the auxiliary TSDF generation unit 53.
  • the TSDF value and the weight value are calculated for the pixels in the depth pixel and for the voxels in the normal direction of the pixel.
  • the reference voxel space generation unit 52 generates a reference voxel space based on the input reference model. Specifically, for all vertices included in the reference model, the reference voxel space is generated by calculating the TSDF value and weight for the voxels in the normal direction of the vertices, and the auxiliary TSDF generation unit 53 is generated. input. ..
  • the TSDF value here represents the distance from the voxel to the vertex of the reference model, and is a signed numerical value meaning that the smaller the TSDF value, the closer to the vertex.
  • a positive TSDF value means a voxel whose normal line is on the positive side when viewed from the apex
  • a negative TSDF value means a voxel whose normal line is on the negative side when viewed from the apex.
  • the TSDF value is calculated for voxels in a narrower range than the calculation of the TSDF value in the 3D model reproduction unit 51.
  • the TSDF value is calculated in the range of 3 voxels from the corresponding surface
  • the TSDF value in the reference voxel space generating unit 52 1 voxel from the corresponding vertex. Calculate the TSDF value for the range.
  • step S303 the auxiliary TSDF generation unit 53 generates the auxiliary TSDF based on the input reproduction voxel space and reference voxel space. Specifically, the input reproduction voxel space and the reference voxel space are compared, an auxiliary TSDF is generated, and the auxiliary TSDF is output from the depth information generating device 6.
  • the comparison between the reproduction voxel space and the reference voxel space described above is, for example, for all voxels existing in the reproduction voxel space and for the voxels in the reference voxel space corresponding to the voxel, whether or not the weight value is 0 is determined. Processing.
  • a voxel with a weight value of 0 indicates a voxel for which the TSDF value has never been calculated.
  • a voxel in the reference voxel space in which the weight value of the voxel in the reproduction voxel space is 0 and the weight value of the voxel in the reference voxel space is not 0 is extracted. That is, a voxel in which the TSDF value is calculated in the reference voxel space but the TSDF value is not calculated in the reproduction voxel space is extracted from the reference voxel space.
  • the voxels satisfying the above conditions correspond to the hole area in the reproduction model.
  • the TSDF values of all voxels in the reproduction voxel space whose weight values are not 0 and the voxels of the reference voxel space whose weight value is not 0 corresponding to the voxels are significantly different. Processing. Specifically, the difference between the TSDF value of the voxel in the reproduction voxel space and the TSDF value of the voxel in the reference voxel space is calculated, and the voxel in the reference voxel space at which the difference in the TSDF value becomes a certain value or more is extracted. ..
  • the voxels satisfying the above conditions correspond to regions in the reproduction model that deviate from the reference model.
  • the TSDF value of the voxel in the playback voxel space described above is compared with the code of the TSDF value of the voxel in the reference voxel space, and if the codes do not match, the voxel in the reference voxel space is extracted.
  • the voxels satisfying the above conditions correspond to regions in the reproduction model that deviate from the reference model.
  • the auxiliary TSDF is generated by putting together the coordinates of the voxel and the TSDF values of the voxels at the coordinates in the reference model.
  • a specific example of the auxiliary TSDF is information having information (per voxel X coordinate, voxel Y coordinate, voxel Z coordinate, TSDF value) per one voxel.
  • the reproduction voxel space generated by integrating the depth information generated by the depth information generation unit 11 and the reference voxel space generated based on the reference model are compared.
  • An auxiliary TSDF can be generated and output. It can be said that the auxiliary TSDF has a TSDF value that is not in the reproduction voxel space based on the depth information but in the reference voxel space. In other words, the area of the reference model, which cannot be reproduced only by the depth information output from the depth information generation unit 11, can be reproduced by the auxiliary TSDF.
  • the 3D model generation device 6 it is possible to obtain the effect of generating a reproduction model that is closer to the reference model. Further, by transmitting the information for filling the small hole area of the reproduction model in the form of the auxiliary TSDF, which has a smaller information amount than the depth image, an effect of suppressing the traffic amount can be obtained.
  • step S304 the 3D model reproduction unit 61 generates a reproduction model based on the input depth information and auxiliary TSDF. Specifically, first, in the process of step S301, the processes of integrating the depth information and calculating the TSDF value and the weight value of the voxel space are performed. Next, the auxiliary TSDF is added to the voxel space calculated by the 3D model reproduction unit 61. Next, a reproduction model is generated and output based on the voxel space to which the auxiliary TSDF is added. The method of generating the reproduction model from the voxel space is the same as the processing performed by the 3D model reproduction unit according to the first embodiment.
  • the method of adding the auxiliary TSDF to the voxel space is, for example, a method of overwriting the TSDF value of the voxel existing at the coordinates recorded in the auxiliary TSDF in the voxel space with the TSDF value recorded in the auxiliary TSDF.
  • the weight value of the voxel is replaced with the lowest non-zero value regardless of whether or not the voxel has a weight value.
  • the TSDF value of the auxiliary TSDF is added to the voxel space calculated by integrating the depth information in the 3D model reproduction unit 61.
  • the auxiliary TSDF it is possible to obtain the effect that the holes existing in the reproduction model generated by integrating only the depth information described above can be filled with the auxiliary TSDF.
  • a region which is difficult to reproduce by the method of integrating the depth information such as a sharp region in the reference model, can be reproduced by adding the auxiliary TSDF.
  • the purpose of this modification is to use the first and third embodiments together in the depth information generation device 5a.
  • the 3D model playback unit 51a according to the present modification generates a playback model as well as the playback voxel space, as in step S102 of the first embodiment.
  • step S101 to step S104 of the first embodiment is looped.
  • the processing of the 3D model reproducing unit 12 is carried out by the 3D model reproducing unit 51a.
  • the depth information is generated and output, and the loop is ended.
  • step S301 to step S303 of the third embodiment is performed to generate the auxiliary TSDF, which is output from the depth information generation device 5a.
  • the depth information input to the 3D model reproduction unit 51a is the depth information generated by the above-described processing.
  • the process of comparing the voxel space of step S304 in this modification with the reference voxel space and the reproduction voxel space generated based on the depth information generated in the first embodiment can be performed.
  • the large hole area can be filled with the depth image added in the first embodiment, and the small hole area can be filled with the auxiliary TSDF generated in the third embodiment.
  • the effect of suppressing the traffic volume can be obtained.
  • an effect that a reproduction model close to the reference model can be generated is obtained.
  • control blocks of the depth information generation devices 1 and 1a and 3 and 5 and 5a and the 3D model reproduction devices 2 and 4 and 6 are realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like. It may be realized by software.
  • the depth information generation devices 1 and 1a and 3 and 5 and 5a, and the 3D model reproduction devices 2 and 4 and 6 are equipped with a computer that executes the instructions of a program that is software that realizes each function.
  • the computer includes, for example, at least one processor (control device) and at least one computer-readable recording medium that stores the program. Then, in the computer, the processor reads the program from the recording medium and executes the program to achieve the object of the present invention.
  • a CPU Central Processing Unit
  • a "non-transitory tangible medium” such as a ROM (Read Only Memory), a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used.
  • a RAM Random Access Memory
  • the program may be supplied to the computer via any transmission medium (communication network, broadcast wave, etc.) capable of transmitting the program.
  • any transmission medium communication network, broadcast wave, etc.
  • one aspect of the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the program is embodied by electronic transmission.
  • a depth information generation device is a depth information generation unit that generates depth information based on camera information based on a reference model, and a 3D model reproduction unit that reproduces a reproduction model by integrating the depth information.
  • a hole detection unit that estimates a hole area existing in the reproduction model by referring to the reference model and extracts the hole region as a hole extraction model; and a camera information setting unit that sets the camera information based on the hole extraction model, Is provided.
  • the depth information generation device is the depth information generation device according to the first aspect, wherein an auxiliary model generation unit that extracts a fine area and a hole area in the reference model as an auxiliary model, and a fine area in the hole extraction model A camera information setting unit that generates an auxiliary model by extracting a hole area may be further included.
  • a depth information generation device is a depth information generation unit that generates depth information based on camera information based on a reference model, and a 3D model reproduction that integrates the depth information to generate a reproduction voxel space.
  • a reference voxel space generation unit that generates a reference voxel space based on the reference model, and an auxiliary TSDF generation unit that generates an auxiliary TSDF by comparing the reproduction voxel space and the reference voxel space.
  • the depth information generation device is the depth information generation device according to any one of aspects 1 to 3 above, wherein when the depth information is integrated in the 3D model reproduction unit, the depth information is displayed in the vicinity of the contour of the object reflected in the depth information.
  • the depth values may not be integrated.
  • the depth information generation device may be configured such that, in any of the above-described first to third aspects, a filter that interpolates the TSDF value is added after the depth information is integrated in the 3D model reproduction unit.
  • the nearest vertices of the reference model are adjacent to each other in order to detect the hole area of the reproduction model in the hole detection unit. It may be configured to use the number of meshes.
  • the depth information generation device is the depth information generation device according to any one of aspects 1 to 3 above, in which depth images are added one by one to the depth information based on the camera information generated by the camera information setting unit.
  • the added depth image may be removed from the depth information.
  • the depth information generation device may be configured to generate the depth information based on a sub-model instead of the reference model in the depth information generation section in any of the above-described first to third aspects.
  • the depth information generation device is the depth information generation device according to any one of aspects 1 to 3 above, further including a subdivision unit that performs subdivision processing on the reference model to form a 3D model having a uniform distribution,
  • the accuracy of the reproduction model may be evaluated for each grid divided by the hole detection unit, and the camera parameter corresponding to the poorly evaluated grid may be preferentially added to the camera information.
  • a 3D model reproduction device comprises the 3D model reproduction unit configured to integrate the depth information generated by the depth information generation unit and reproduce the reproduction model. is there.
  • a 3D model reproduction device is the same as the aspect 10 described above, further including an auxiliary model generation unit that adds an auxiliary model to the reproduction model to create a new reproduction model, and stores a detailed region of the reproduction model. It may be configured to restore.
  • a 3D model playback device is the aspect 10 described above, comprising a 3D model generation unit that adds an auxiliary TSDF to the top by integrating the depth information, and restores a fine region of the playback model. It may be configured to.
  • the depth information generation devices 1, 1a, 1b, 3, 5, 5a and the 3D model generation devices 2, 4, 6 may be realized by a computer.
  • the depth information generation devices 1, 1a, 1b, 3, 5 and 5 are operated by operating the information generation devices 1, 1a, 1b, 3, 5 and 5a and the respective units (software elements) included in the 3D model generation devices 2, 4 and 6.
  • 5a and 3D model generation devices 2, 4 and 6 realized by computer, depth information generation devices 1, 1a, 1b, 3, 5, 5a and control programs of 3D model generation devices 2, 4 and 6, and recording them
  • the computer-readable recording medium described above also falls within the scope of the present invention.

Abstract

The present invention realizes a depth information generation device for reducing a traffic amount and improving the quality of a 3D model to reproduce. The depth information generation device comprises a depth information generation unit for generating depth information from a 3D model, a 3D model reproduction unit for reproducing a reproduction model from the depth information, a hole detection unit for detecting a hole area of the reproduction model, and a camera information setting unit for generating camera information on the basis of the hole area.

Description

画像生成装置、表示処理装置、画像生成方法、制御プログラム、及び記録媒体Image generation device, display processing device, image generation method, control program, and recording medium
 本発明の一態様は、画像生成装置、表示処理装置、画像生成方法、制御プログラム及び記録媒体に関する。
 本願は、2019年1月30日に日本で出願された特願2019-14233号に基づき優先権を主張し、その内容をここに援用する。
One embodiment of the present invention relates to an image generation device, a display processing device, an image generation method, a control program, and a recording medium.
The present application claims priority based on Japanese Patent Application No. 2019-14233 filed in Japan on January 30, 2019, the content of which is incorporated herein by reference.
 近年、AR(Augmented Reality)及びVR(Virtual Reality)技術が注目されている。また技術の発展に伴い、AR及びVRのコンテンツに係るリアルタイム配信の技術への関心も高まっている。 In recent years, AR (Augmented Reality) and VR (Virtual Reality) technologies have attracted attention. In addition, with the development of technology, interest in technology for real-time distribution of AR and VR contents is also increasing.
 従来技術では、Holoportationという技術が公知である。Holoportationでは、色のないモデルと複数のテクスチャ画像を配信し、受信側でそれらを統合することで、3Dモデルを遠隔地のAR空間上に再現することが可能である。 As a conventional technique, a technique called Holoportation is known. In the Hollocation, it is possible to reproduce a 3D model in a remote AR space by delivering a colorless model and a plurality of texture images and integrating them at the receiving side.
 また、3DCGの分野では、KinectFusionをベースとした、デプスマップを統合することで3Dモデルを構築するという技術が検討されている。KinectFusionを利用することで、リアルタイムに、低解像度のデプスマップから精密な3Dモデルを構築することが可能となる。これを利用すれば、デプスマップを配信することで上記と同様に3Dモデルを再現することが可能となる。 Also, in the field of 3DCG, a technology based on KinectFusion that builds a 3D model by integrating depth maps is being considered. By using KinectFusion, it becomes possible to construct a precise 3D model from a low-resolution depth map in real time. By utilizing this, it becomes possible to reproduce the 3D model as described above by distributing the depth map.
 しかしながら、上述のような従来技術は、表示対象となる3Dモデルを直接送信するために、データの伝送におけるトラフィック量が増大しやすいという問題がある。また、デプスマップを配信することで3Dモデルを再現する場合、オクルージョンやデプス統合の影響で、3Dモデルにホールと呼ばれる欠損領域が発生しやすいという問題がある。3Dモデルを元にホールを埋める技術は存在するが、処理に時間がかかるためリアルタイム性が失われる。 However, the above-described conventional technology has a problem that the traffic volume in data transmission tends to increase because the 3D model to be displayed is directly transmitted. In addition, when a 3D model is reproduced by delivering a depth map, there is a problem that a defect area called a hole is likely to occur in the 3D model due to the influence of occlusion and depth integration. Although there is a technology for filling holes based on a 3D model, real-time performance is lost because the processing takes time.
 本発明の一態様は、上記の問題に鑑みてなされたものであり、3Dモデルを元に、伝送におけるトラフィック量の増大を抑制しつつ、リアルタイムに、ホールの発生が抑制された3Dモデルを構築可能な、伝送データを生成することを目的とする。 One aspect of the present invention has been made in view of the above problems. Based on the 3D model, a 3D model in which the occurrence of holes is suppressed in real time is constructed while suppressing an increase in traffic volume in transmission. The purpose is to generate possible transmission data.
 上記の課題を解決するために、本発明の一態様に係るデプス情報生成装置及び3Dモデル再生装置は、以下の手段を備える。
(第1の手段)
 参照モデルを元にカメラ情報に基づいたデプス情報を生成するデプス情報生成手段と、上記デプス情報を統合して再生モデルを再生する3Dモデル再生手段と、上記参照モデルを参照して、上記再生モデルに存在するホール領域を推定し、ホール抽出モデルとして抽出するホール検出手段と、上記ホール抽出モデルに基づき、上記カメラ情報を設定するカメラ情報設定手段と、を備えることを特徴とするデプス情報生成手段。
(第2の手段)
 上記参照モデル中の細かい領域及びホール領域を抜き出し補助モデルとする補助モデル生成手段と、上記ホール抽出モデル中の細かい領域及びホール領域を抜き出すことで補助モデルを生成するカメラ情報設定手段と、をさらに備え、再生モデルの再生時に補助モデルを再生モデルに加えることを特徴とする第1の手段に記載のデプス情報生成手段。
(第3の手段)
 上記デプス情報を統合して再生ボクセル空間を生成する3Dモデル再生手段と、上記参照モデルに基づき参照ボクセル空間を生成する参照ボクセル空間生成手段と、上記再生ボクセル空間と上記参照ボクセル空間を比較することで補助TSDFを生成する補助TSDF生成手段と、をさらに備え、再生モデルの再生時にデプス情報を統合した上に補助TSDFを加えることを特徴とする第1の手段に記載のデプス情報生成手段。
(第4の手段)
 上記3Dモデル再生手段において上記デプス情報を統合する際に上記デプス情報に映された物体の輪郭近辺のデプス値を統合しないことを特徴とする第1又は2又は3の手段に記載のデプス情報生成手段。
(第5の手段)
 上記3Dモデル再生手段において上記デプス情報を統合した後にTSDF値を補間するフィルタを加えることを特徴とする第1又は2又は3の手段に記載のデプス情報生成手段。
(第6の手段)
 上記ホール検出手段において上記再生モデルのホール領域を検出するために上記参照モデルの最近傍頂点が隣接するメッシュの数を利用することを特徴とする第1又は2又は3の手段に記載のデプス情報生成手段。
(第7の手段)
 上記カメラ情報設定手段が生成した上記カメラ情報に基づきデプス画像を一つずつ上記デプス情報に加え、加える度に上記再生モデルの精度を図り水準を満たさない場合、追加したデプス画像をデプス情報から取り除くことを特徴とする第1又は2又は3の手段に記載のデプス情報生成手段。
(第8の手段)
 上記デプス情報生成手段において参照モデルに代わりサブモデルを元に上記デプス情報を生成することを特徴とする第1又は2又は3の手段に記載のデプス情報生成手段。
(第9の手段)
 上記参照モデルにサブディビジョン処理を施し一様な分布を持つ3Dモデルとするサブディビジョン手段15を更に備え、上記ホール検出手段において分割されたグリッド毎に上記再生モデルの精度を評価し、評価の悪いグリッドに対応するカメラパラメータを優先的にカメラ情報に加えることを特徴とする第1又は2又は3の手段に記載のデプス情報生成手段。
(第10の手段)
 上記デプス情報生成手段で生成された上記デプス情報を統合し上記再生モデルを再生する上記3Dモデル再生手段と、を備えることを特徴とする3Dモデル再生手段。
(第11の手段)
 上記再生モデルに補助モデルを加え新たな再生モデルとする補助モデル統合手段と、をさらに備え、上記再生モデルの細かい領域を復元することを特徴とする第10の手段に記載の3Dモデル再生手段。
(第12の手段)
 上記デプス情報を統合することで上に補助TSDFを加える3Dモデル生成手段と、を備え、上記再生モデルの細かい領域を復元することを特徴とする第10の手段に記載の3Dモデル再生手段。
In order to solve the above problems, a depth information generation device and a 3D model reproduction device according to an aspect of the present invention include the following means.
(First means)
Depth information generation means for generating depth information based on camera information based on a reference model, 3D model reproduction means for reproducing the reproduction model by integrating the depth information, and the reproduction model with reference to the reference model. Depth information generating means for estimating the hole area existing in the hole and extracting it as a hole extraction model, and camera information setting means for setting the camera information based on the hole extraction model. ..
(Second means)
Auxiliary model generation means for extracting a fine area and a hole area in the reference model as an auxiliary model, and camera information setting means for generating an auxiliary model by extracting a fine area and a hole area in the hole extraction model are further provided. The depth information generating means according to the first means, further comprising an auxiliary model added to the reproduction model when the reproduction model is reproduced.
(Third means)
Comparing the 3D model reproduction means for generating the reproduction voxel space by integrating the depth information, the reference voxel space generation means for generating the reference voxel space based on the reference model, and the reproduction voxel space and the reference voxel space. 6. The depth information generating means according to the first means, further comprising: an auxiliary TSDF generating means for generating the auxiliary TSDF at, and adding the auxiliary TSDF after integrating the depth information at the time of reproducing the reproduction model.
(Fourth means)
The depth information generation according to the first, second or third means characterized in that, when the depth information is integrated in the 3D model reproducing means, depth values near a contour of an object reflected in the depth information are not integrated. means.
(Fifth means)
The depth information generating means according to the first, second or third means, wherein a filter for interpolating the TSDF value is added after the depth information is integrated in the 3D model reproducing means.
(Sixth means)
The depth information according to the first, second or third means, wherein the number of meshes with which the nearest vertex of the reference model is adjacent is used to detect the hole area of the reproduction model in the hole detecting means. Generating means.
(Seventh means)
Depth images are added one by one to the depth information based on the camera information generated by the camera information setting means, and the added depth image is removed from the depth information when the accuracy of the reproduction model is improved and the level is not satisfied each time it is added. The depth information generating means according to the first, second or third means.
(Eighth means)
The depth information generating means according to the first, second or third means, wherein the depth information generating means generates the depth information based on a sub model instead of a reference model.
(Ninth means)
The reference model is further provided with a subdivision means 15 for subjecting the reference model to a 3D model having a uniform distribution, and the accuracy of the reproduction model is evaluated for each grid divided by the hole detecting means, resulting in poor evaluation. Depth information generating means according to the first, second or third means, wherein camera parameters corresponding to the grid are preferentially added to the camera information.
(Tenth means)
3D model reproduction means for integrating the depth information generated by the depth information generation means and reproducing the reproduction model, the 3D model reproduction means.
(Eleventh means)
The 3D model reproducing means according to the tenth means, further comprising: an auxiliary model integrating means for adding an auxiliary model to the reproduction model to make a new reproduction model, and restoring a fine area of the reproduction model.
(Twelfth means)
The 3D model reproducing means according to the tenth means, further comprising: 3D model generating means for adding the auxiliary TSDF by integrating the depth information, and restoring a fine area of the reproduction model.
 本発明の一態様によれば、トラフィック量を抑制しつつ、ホールの発生が抑制された3Dモデルを構築可能な、デプス情報を生成するデプス情報生成装置を実現できる。 According to an aspect of the present invention, it is possible to realize a depth information generation device that generates depth information and that can construct a 3D model in which the generation of holes is suppressed while suppressing the traffic volume.
実施形態1に係るデプス情報生成装置の機能ブロック図である。3 is a functional block diagram of the depth information generation device according to the first embodiment. FIG. 実施形態1に係る3Dモデル再生装置の機能ブロック図である。3 is a functional block diagram of the 3D model reproduction device according to the first embodiment. FIG. 実施形態1に係る処理の流れを示すフローチャートである。6 is a flowchart showing a flow of processing according to the first embodiment. 実施形態1の変形例2に係るデプス情報生成装置の機能ブロック図である。7 is a functional block diagram of a depth information generation device according to a second modification of the first embodiment. FIG. 実施形態1の変形例3に係るデプス情報生成装置の機能ブロック図である。9 is a functional block diagram of a depth information generation device according to a modified example 3 of the first embodiment. FIG. 実施形態2に係るデプス情報生成装置の機能ブロック図である。7 is a functional block diagram of a depth information generation device according to the second embodiment. FIG. 実施形態2に係る3Dモデル再生装置の機能ブロック図である。7 is a functional block diagram of a 3D model reproduction device according to a second embodiment. FIG. 実施形態2に係る処理の流れを示すフローチャートである。9 is a flowchart showing a flow of processing according to the second embodiment. 実施形態3に係るデプス情報生成装置の機能ブロック図である。9 is a functional block diagram of a depth information generation device according to a third embodiment. FIG. 実施形態3に係る3Dモデル再生装置の機能ブロック図である。FIG. 9 is a functional block diagram of a 3D model reproduction device according to a third embodiment. 実施形態3に係る処理の流れを示すフローチャートである。9 is a flowchart showing a flow of processing according to the third embodiment. 実施形態3の変形例に係るデプス情報生成装置の機能ブロック図である。FIG. 13 is a functional block diagram of a depth information generation device according to a modified example of the third embodiment.
 本発明の実施形態について図1~図3に基づいて説明すれば以下の通りである。 An embodiment of the present invention will be described below with reference to FIGS. 1 to 3.
 〔実施形態1〕
 以下、本発明の一実施形態について、図1~図3に基づいて説明する。
[Embodiment 1]
An embodiment of the present invention will be described below with reference to FIGS. 1 to 3.
 本実施形態においては、デプス情報を生成するデプス情報生成装置1において、入力される参照モデルに基づき、デプス情報を生成する処理を行う構成について説明する。 In the present embodiment, a configuration will be described in which the depth information generation device 1 that generates depth information performs a process of generating depth information based on an input reference model.
 〔1.デプス情報生成装置1の構成〕
 図1に基づいて本実施形態に係るデプス情報生成装置1の構成について説明する。
[1. Configuration of depth information generation device 1]
The configuration of the depth information generation device 1 according to the present embodiment will be described based on FIG.
 デプス情報生成装置1は、入力される参照モデルに基づき、デプス情報を生成する装置である。 The depth information generation device 1 is a device that generates depth information based on an input reference model.
 上述した参照モデルとは、デプス情報を生成する元となり、後述する3Dモデル再生装置2においてデプス情報に基づき再生される対象となる3Dモデルである。言い変えると、参照モデルは、デプス情報生成装置1においてデプス情報に変換され、3Dモデル再生装置2で再生される対象となる3Dモデルである。参照モデルは、例えば頂点若しくはメッシュからなる3Dモデルである。 The above-mentioned reference model is a 3D model that is a source of generating depth information and is a target to be reproduced based on the depth information in the 3D model reproducing device 2 described later. In other words, the reference model is a 3D model that is converted into depth information in the depth information generation device 1 and reproduced by the 3D model reproduction device 2. The reference model is, for example, a 3D model including vertices or meshes.
 なお、参照モデルは、事前にサブディビジョン処理を施され、均一な頂点分布を持つ3Dモデルとされても良い。これにより、後述のモデルの精度の評価において、基準の均一な評価を行うことが可能となる。 Note that the reference model may be a 3D model that has been subjected to subdivision processing in advance and has a uniform vertex distribution. As a result, it becomes possible to perform uniform evaluation of the reference in the accuracy evaluation of the model described later.
 上述したデプス情報とは、特定の位置に置かれた複数または単一のカメラから参照モデルを見た時のデプス画像の集合である。デプス画像とは、カメラから被写体(参照モデル)を見た時の奥行き情報を、画像形式で記録した情報であり、例えば、当該情報を白黒画像の明暗で表したデプスマップである。なお、本発明におけるカメラとは、ソフトウェア内でバーチャルに再現される仮想カメラを想定しているが、実在するカメラであっても構わない。また、仮想カメラは、上記以外の形式の仮想カメラであっても構わない。 The depth information described above is a set of depth images when the reference model is viewed from multiple or single cameras placed at specific positions. The depth image is information in which the depth information when the subject (reference model) is viewed from the camera is recorded in an image format, and is, for example, a depth map in which the information is represented by the brightness of a monochrome image. Note that the camera in the present invention is assumed to be a virtual camera that is virtually reproduced in software, but it may be an existing camera. Further, the virtual camera may be a virtual camera of a format other than the above.
 デプス情報は、必ずしも複数のデプス画像を含む必要はなく、単一のデプス画像により構成されても良い。デプス情報は、例えば、デプス画像を重ならない様に並べた画像形式であっても良い。言い替えると、デプス情報は、デプス画像をタイリングすることで生成される画像であっても良い。また、デプス情報は、デプス画像をグループ化した情報であっても良い。デプス情報には、カメラ情報が付随される。カメラ情報とは、例えば、デプス情報に含まれるデプス画像を記録したカメラの、カメラパラメータの集合である。カメラパラメータ及びカメラ情報については後述する。 -The depth information does not necessarily have to include a plurality of depth images, and may be composed of a single depth image. The depth information may be, for example, an image format in which depth images are arranged so as not to overlap each other. In other words, the depth information may be an image generated by tiling the depth image. Further, the depth information may be information obtained by grouping depth images. Camera information is attached to the depth information. The camera information is, for example, a set of camera parameters of the camera that records the depth image included in the depth information. The camera parameters and camera information will be described later.
 上述したカメラパラメータとは、デプス画像を記録するカメラのパラメータを示す情報である。カメラパラメータには、少なくとも、対応するデプス画像を撮影した時のカメラの位置、向いている方向、焦点距離、記録するデプス画像の解像度の情報が含まれる。 The above-mentioned camera parameter is information indicating the parameter of the camera that records the depth image. The camera parameters include at least information on the position of the camera when the corresponding depth image was captured, the direction in which the camera is facing, the focal length, and the resolution of the depth image to be recorded.
 上述したカメラ情報とは、デプス情報に付随される情報であり、デプス情報に含まれるデプス画像に対応するカメラパラメータの集合である。カメラ情報には、カメラ情報に含まれるカメラパラメータに対応するデプス画像が、デプス情報の内のいずれのデプス画像であるか示す情報が含まれる。対応するデプス画像を示す情報とは、デプス情報が、デプス画像を複数並べた画像形式である場合、デプス情報中のどの領域が、該カメラパラメータに対応するデプス画像であるかを示す情報であり、例えば、対応するデプス画像の原点の座標を示す情報と、対応するデプス画像の画素数を示す情報である。また例えば、デプス情報がグループ化されたデプス画像である場合、該カメラパラメータが対応するデプス画像が、いずれのデプス画像であるかを示す情報である。 The above-mentioned camera information is information attached to the depth information, and is a set of camera parameters corresponding to the depth image included in the depth information. The camera information includes information indicating which depth image in the depth information is the depth image corresponding to the camera parameter included in the camera information. The information indicating the corresponding depth image is information indicating which area in the depth information is the depth image corresponding to the camera parameter when the depth information is an image format in which a plurality of depth images are arranged. For example, the information indicating the coordinates of the origin of the corresponding depth image and the information indicating the number of pixels of the corresponding depth image. In addition, for example, when the depth information is a grouped depth image, the depth information corresponding to the camera parameter is information indicating which depth image.
 図1は、本実施形態に係るデプス情報生成装置1の機能ブロック図である。図1に示す通り、デプス情報生成装置1は、デプス情報生成部11、3Dモデル再生部12、ホール検出部13及びカメラ情報設定部14を備えている。 FIG. 1 is a functional block diagram of the depth information generation device 1 according to this embodiment. As shown in FIG. 1, the depth information generation device 1 includes a depth information generation unit 11, a 3D model reproduction unit 12, a hole detection unit 13, and a camera information setting unit 14.
 デプス情報生成部11は、入力される参照モデル及びカメラ情報に基づき、デプス情報を生成する。 The depth information generation unit 11 generates depth information based on the input reference model and camera information.
 3Dモデル再生部12は、入力されるデプス情報に基づき、再生モデルを生成する。上述した再生モデルとは、デプス情報に基づき生成されるモデルであり、例えば頂点及び三角メッシュからなる3Dモデルである。 The 3D model reproduction unit 12 generates a reproduction model based on the input depth information. The reproduction model described above is a model generated based on the depth information, and is, for example, a 3D model including vertices and triangular meshes.
 ホール検出部13は、入力される参照モデル及び再生モデルに基づきホール領域を検出し、参照モデルのホール領域に相当する頂点若しくはメッシュを、ホール抽出モデルとして出力する。 The hole detection unit 13 detects a hole area based on the input reference model and reproduction model, and outputs a vertex or a mesh corresponding to the hole area of the reference model as a hole extraction model.
 上述したホール領域とは、3Dモデル中の特定の領域である。参照モデルを例にとって説明すると、参照モデルの該領域にホールが存在せず、該領域に対応する再生モデル中の領域にホールの存在する領域である。言い替えると、参照モデルには存在しないはずのホールが、再生モデルの対応する箇所に発生してしまっている領域である。本発明の目的は、上述した再生モデル中のホール領域を抑制することにある。以降の説明において、ホール領域を抑制もしくは取り除く処理を指して、ホールを埋める若しくはホールを補償する等と示す。 The above-mentioned hole area is a specific area in the 3D model. Explaining the reference model as an example, it is an area in which holes do not exist in the area of the reference model and holes exist in the area in the reproduction model corresponding to the area. In other words, a hole that should not exist in the reference model has been generated in the corresponding part of the reproduction model. An object of the present invention is to suppress the hole area in the reproduction model described above. In the following description, the process of suppressing or removing the hole region will be referred to as filling the hole or compensating the hole.
 また、上述したホール抽出モデルとは、例えば、ホール領域に対応する、参照モデル中の頂点若しくはメッシュを抜き出した3Dモデルである。 The above-mentioned hole extraction model is, for example, a 3D model in which the vertices or meshes in the reference model corresponding to the hole area are extracted.
 カメラ情報設定部14は、入力されるホール抽出モデルをクラスタリングし、個々のクラスタに係るカメラパラメータを生成し、それらのカメラパラメータをまとめることで、カメラ情報を生成する。生成されたカメラ情報は、デプス情報生成部11に入力される。 The camera information setting unit 14 clusters the input hole extraction models, generates camera parameters for each cluster, and collects the camera parameters to generate camera information. The generated camera information is input to the depth information generation unit 11.
 (3Dモデルの生成方法)
 以下、KinectFusionに代表される、デプス画像を統合することで3Dモデルを生成する工程の一例を、簡単に解説する。
(3D model generation method)
Hereinafter, an example of a process of generating a 3D model by integrating depth images, which is represented by KinectFusion, will be briefly described.
 (1)デプス画像及びカメラパラメータに基づき、ボクセルの中身を計算する。
ボクセルとは、3D空間をグリッド状に分割した分布であり、ボクセル毎に、TSDF値及びウェイト値を保持する。ここでは、該3D空間に存在するボクセルの集合をボクセル空間と呼ぶ。初期状態では、ボクセルの持つTSDF(Truncated signed distance function)値及びウェイト値はいずれも0である。ここでのTSDF値は、ボクセルから3Dモデルの面までの距離を表し、TSDF値が小さい程、面に近いことを意味する符号付きの数値である。TSDF値は、例えば、正のTSDF値は面よりもカメラ側にボクセルを意味し、負のTSDF値は、面よりも奥にあるボクセルを意味する。また、ウェイト値は、対応するTSDF値の信頼度を表す数値であり、最小値は0である。
(1) The content of voxels is calculated based on the depth image and camera parameters.
A voxel is a distribution obtained by dividing a 3D space into a grid shape, and holds a TSDF value and a weight value for each voxel. Here, a set of voxels existing in the 3D space is called a voxel space. In the initial state, the TSDF (Truncated Signed Distance Function) value and the weight value of the voxel are both 0. The TSDF value here represents a distance from the voxel to the surface of the 3D model, and is a signed numerical value meaning that the smaller the TSDF value, the closer to the surface. The TSDF value means, for example, a positive TSDF value means a voxel closer to the camera than the surface, and a negative TSDF value means a voxel located deeper than the surface. The weight value is a numerical value indicating the reliability of the corresponding TSDF value, and the minimum value is 0.
 上述したボクセルのTSDF値及びウェイト値を、デプス画像と、該デプス画像に対応したカメラパラメータに基づき、計算する。具体的には、カメラパラメータに含まれる、カメラの位置及び向きに配置されたカメラと、対応するデプス画像の、各画素を通る光線上にあるボクセルについて、TSDF値及びウェイト値を計算する。ただし、光線上の全てのボクセルについて両値を計算する必要は無く、カメラから見て、光線上にある3Dモデルの面(対応する画素のデプス値)までの間に存在するボクセルと、同面から奥にある任意の数のボクセルについて、両値を計算すれば良い。 Calculating the TSDF value and weight value of the voxel described above based on the depth image and the camera parameters corresponding to the depth image. Specifically, the TSDF value and the weight value are calculated for the voxels that are included in the camera parameters and are arranged at the positions and orientations of the cameras, and the voxels on the corresponding depth image that pass through each pixel. However, it is not necessary to calculate both values for all voxels on the ray, and as seen from the camera, the voxels existing up to the surface of the 3D model on the ray (the depth value of the corresponding pixel) and the same surface Both values may be calculated for any number of voxels in the back from.
 ボクセルのTSDF値は、ボクセルの位置から、光線上にある3Dモデルの面(対応する画素のデプス値)までの距離である。またウェイト値は、例えば、光線上にあるデプス画像の画素の法線と、該光線の内積である。ここでは、ウェイト値は0及び正の値のみを考える。なお、ボクセルが0でないTSDF値及びウェイト値を保持している場合は、既存のTSDF値と、新たなTSDF値について、対応するウェイトが重みである重み付き平均を計算し、該平均値を、新たなTSDF値として該ボクセルのTSDF値に上書きする。また、ウェイト値は、既存のウェイト値と新たなウェイト値を合計した数値を新たなウェイト値として、該ボクセルのウェイト値に上書きする。以上の計算を、全てのデプス画像の、全ての画素について順に行う。本発明においては、デプス情報に含まれる、全てのデプス画像の、全ての画素について計算する。以下の説明では、上記した計算を、デプス画像の統合、若しくはデプス統合とも呼ぶ。 The voxel TSDF value is the distance from the voxel position to the surface of the 3D model on the ray (the depth value of the corresponding pixel). The weight value is, for example, the inner product of the normal line of the pixel of the depth image on the ray and the ray. Here, only weight values of 0 and positive values are considered. When the voxel holds the TSDF value and the weight value which are not 0, the weighted average in which the corresponding weight is the weight is calculated for the existing TSDF value and the new TSDF value, and the average value is Overwrite the TSDF value of the voxel as a new TSDF value. In addition, the weight value overwrites the weight value of the voxel with a new weight value that is the sum of the existing weight value and the new weight value. The above calculation is sequentially performed for all pixels of all depth images. In the present invention, calculation is performed for all pixels of all depth images included in the depth information. In the following description, the above calculation is also referred to as depth image integration or depth integration.
 (2)MarchingCubes法により、TSDF値が記録されたボクセル空間を、メッシュ構造の3Dモデルに変換する。上記の変換において、記録されたウェイトが0であるボクセルの計算をスキップすることで、計算時間を短縮しても構わない。以上の処理により、デプス画像から3Dモデルを生成する。 (2) The voxel space in which the TSDF value is recorded is converted into a 3D model with a mesh structure by the Marching Cubes method. In the above conversion, the calculation time may be shortened by skipping the calculation of the voxel whose recorded weight is 0. Through the above processing, a 3D model is generated from the depth image.
 〔2.3Dモデル再生装置2の構成〕
 図2に基づいて本実施形態に係る3Dモデル再生装置2の構成について説明する。3Dモデル再生装置2は、入力されるデプス情報に基づき、再生モデルを生成する装置である。
[2.3 Configuration of 3D Model Playback Device 2]
The configuration of the 3D model playback device 2 according to the present embodiment will be described based on FIG. The 3D model reproduction device 2 is a device that generates a reproduction model based on the input depth information.
 上述した再生モデルとは、3Dモデル再生装置2において、デプス情報に基づき生成されるモデルである。再生モデルは、例えば、頂点若しくはメッシュからなる3Dモデルである。 The above-mentioned reproduction model is a model generated based on the depth information in the 3D model reproduction device 2. The reproduction model is, for example, a 3D model including vertices or meshes.
 図2は、本実施形態に係る3Dモデル再生装置2の機能ブロック図である。図2に示す通り、3Dモデル再生装置2は、3Dモデル再生部12を備えている。 FIG. 2 is a functional block diagram of the 3D model playback device 2 according to the present embodiment. As shown in FIG. 2, the 3D model reproduction device 2 includes a 3D model reproduction unit 12.
 3Dモデル再生部12の機能は、デプス情報生成装置1に含まれる3Dモデル再生部12と同様である。 The function of the 3D model reproduction unit 12 is the same as that of the 3D model reproduction unit 12 included in the depth information generation device 1.
 〔3.処理の流れ〕
 本実施形態に係る処理の例を図1~図3に基づいてステップごとに詳細に解説する。
[3. Processing flow]
An example of processing according to this embodiment will be described in detail step by step based on FIGS. 1 to 3.
 図3は、本実施形態に係る処理の流れを示すフローチャートである。なお、ステップS101からステップS104はデプス情報生成装置1、ステップS105からステップS106は3Dモデル再生装置2における処理である。 FIG. 3 is a flowchart showing the flow of processing according to this embodiment. Note that steps S101 to S104 are processes in the depth information generation device 1, and steps S105 to S106 are processes in the 3D model reproduction device 2.
 (S101)
 ステップS101において、デプス情報生成部11は、入力された参照モデルに基づき、デプス情報を生成する。具体的には、カメラ情報に基づいて配置されたカメラから、参照モデルを見た時のデプス画像を取得し、それらのデプス画像に基づき、デプス情報を生成する。この時、デプス情報生成部11には、デプス情報の生成に使用したカメラ情報の情報が保持される。
(S101)
In step S101, the depth information generation unit 11 generates depth information based on the input reference model. Specifically, the depth images when the reference model is viewed are acquired from the cameras arranged based on the camera information, and the depth information is generated based on those depth images. At this time, the depth information generation unit 11 holds the information of the camera information used to generate the depth information.
 デプス情報生成部11の処理は、デプス情報生成部11に、カメラ情報設定部14からカメラ情報が入力されたか否かによって異なる。 The process of the depth information generation unit 11 differs depending on whether or not camera information is input to the depth information generation unit 11 from the camera information setting unit 14.
 カメラ情報設定部14からカメラ情報が入力されない場合、言い替えると、デプス情報生成装置1の処理を開始してから、初めてデプス情報生成部11の処理を行う場合、カメラ情報に含まれるカメラパラメータは、任意に設定される。例えば、カメラパラメータは、参照モデルの重心を囲むようにカメラを配置するようなカメラの位置及び向きと、参照モデルの全体が映るような位置及び焦点距離を持つ。 When camera information is not input from the camera information setting unit 14, in other words, when processing of the depth information generation unit 11 is performed for the first time after starting the processing of the depth information generation device 1, the camera parameters included in the camera information are It is set arbitrarily. For example, the camera parameter has a position and orientation of the camera that positions the camera so as to surround the center of gravity of the reference model, and a position and focal length that allows the entire reference model to be seen.
 なお、カメラパラメータを設定する際、参照モデル中の重要な領域を、多数のカメラ若しくは高い解像度のカメラで撮影するような構造であっても良い。上述した重要な部分とは、例えば、参照モデルに人間が含まれている場合、該人間の頭部若しくは顔である。また例えば、参照モデルに数値が含まれている場合、該数値が描かれた領域である。いずれの場合でも、重要な領域を検出する方法は問わない。この他、上記した重要な部分は、任意に設定されても良い。上述の構成により、3Dモデル再生装置2において、該重要な領域を精度良く再現できる効果を得られる。 Note that when setting the camera parameters, the structure may be such that an important area in the reference model is shot by a large number of cameras or high resolution cameras. The above-mentioned important part is, for example, the head or face of a human when the reference model includes the human. Further, for example, when the reference model includes a numerical value, this is an area in which the numerical value is drawn. In any case, the method of detecting the important area does not matter. In addition, the above-mentioned important part may be set arbitrarily. With the above-described configuration, it is possible to obtain the effect of accurately reproducing the important area in the 3D model reproduction device 2.
 デプス情報生成部11に、カメラ情報設定部14からカメラ情報が入力される場合、言い替えると、2度目以降のデプス情報生成部11の処理では、まず、既存のカメラ情報に、入力される全てのカメラパラメータを追加したものを、新たなカメラ情報として置き換える。なお、この段階では、上記で追加されたカメラパラメータに係る、カメラパラメータに対応するデプス画像を示す情報は、カメラ情報に含まれなくとも良い。次に、新たなカメラ情報と参照モデルに基づき、デプス情報を生成する。新たにデプス情報に追加されるデプス画像は、3Dモデル再生部12において、再生モデルのホール領域を埋めるような働きをする。次に、上記で追加されたカメラパラメータに係る、カメラパラメータに対応するデプス画像を示す情報を、カメラ情報に追加する。 When camera information is input to the depth information generation unit 11 from the camera information setting unit 14, in other words, in the processing of the depth information generation unit 11 for the second time and thereafter, first, all the input camera information is input to the existing camera information. The camera information added is replaced with new camera information. At this stage, the information indicating the depth image corresponding to the camera parameter, which is related to the camera parameter added above, may not be included in the camera information. Next, depth information is generated based on the new camera information and the reference model. The depth image newly added to the depth information functions to fill the hole area of the reproduction model in the 3D model reproduction unit 12. Next, information indicating the depth image corresponding to the camera parameter, which is related to the camera parameter added above, is added to the camera information.
 なお、デプス画像は、参照モデルが記録された画素である前景部と、参照モデルが映されていない画素である背景部とに分けられる。後述のステップS102におけるデプス統合の際、上述した前景部が、再生モデルの再生に寄与する。 Note that the depth image is divided into a foreground part that is a pixel in which the reference model is recorded and a background part that is a pixel in which the reference model is not imaged. At the time of depth integration in step S102, which will be described later, the foreground part described above contributes to the reproduction of the reproduction model.
 なお、上述した二度目以降のステップS101の処理において、デプス情報に追加されるデプス画像の解像度は、上述した初めてのステップS101の処理で追加されるデプス画像の解像度に比べ、低い解像度であっても良い。上記初めての処理で追加されるデプス画像は、再生モデルのディティールを保つに十分な解像度を持つ必要があるが、上記二度目以降の処理で追加されるデプス画像は、ホール領域を補償することを目的とするため、ディティールの高さを保つ必要がなく、一度目の処理で追加されるデプス画像と比較して低い解像度であっても問題ない。上述の構成により、二度目以降の処理で追加されるデプス画像の解像度を減らすことで、デプス情報全体のデータ量を減らすことができ、送信するトラフィック量を抑制する効果を得られる。 In the processing of step S101 from the second time onward, the resolution of the depth image added to the depth information is lower than the resolution of the depth image added in the first processing of step S101 described above. Is also good. The depth image added in the first processing described above needs to have a resolution sufficient to maintain the detail of the reproduction model, but the depth image added in the second and subsequent processings is required to compensate for the hole area. For the purpose, it is not necessary to maintain the height of the detail, and there is no problem even if the resolution is lower than the depth image added in the first processing. With the above configuration, by reducing the resolution of the depth image added in the second and subsequent processes, the data amount of the entire depth information can be reduced, and the effect of suppressing the traffic amount to be transmitted can be obtained.
 なお、カメラ情報設定部14から入力されるカメラ情報に含まれるカメラパラメータに、後述するカメラの優先度の情報が付随されている場合、該優先度に基づいてデプス情報を生成しても良い。具体的には、カメラの優先度の高いカメラパラメータから順に、該カメラパラメータに基づいたデプス画像を生成し、該デプス画像をデプス情報に追加する。デプス情報が、複数のデプス画像を並べた画像形式である場合、該デプス情報が持つ画像解像度には制限が有り得る。即ち、必ずしも追加される全てのカメラパラメータについて、デプス画像を追加できるわけではないない。このため、カメラのパラメータにカメラの優先度の情報を付随し、該カメラの優先度に基づいてデプス画像をデプス情報に追加することで、優先して追加されるべきデプス画像を優先して追加する。また、デプス画像が、デプス情報に収まらなくなった場合、該デプス画像を記録したカメラパラメータに付随した優先度以下の優先度を持つカメラパラメータは、無視されても良い。言い替えると、優先度の高いデプス画像から順にデプス情報に追加し、デプス情報にデプス画像が収まらなくなった場合、該カメラパラメータよりも低い優先度を持つカメラパラメータを追加しなくとも良い。 If the camera parameter included in the camera information input from the camera information setting unit 14 is accompanied by camera priority information, which will be described later, the depth information may be generated based on the priority. Specifically, the depth image is generated based on the camera parameter in order from the camera parameter with the highest priority of the camera, and the depth image is added to the depth information. When the depth information is an image format in which a plurality of depth images are arranged, the image resolution of the depth information may be limited. That is, it is not always possible to add depth images for all camera parameters that are added. Therefore, by attaching the information of the priority of the camera to the parameter of the camera and adding the depth image to the depth information based on the priority of the camera, the depth image to be added with priority is added with priority. To do. Further, when the depth image does not fit in the depth information, the camera parameter having a priority equal to or lower than the priority associated with the camera parameter recording the depth image may be ignored. In other words, it is not necessary to add a camera parameter having a priority lower than the camera parameter when the depth information is added to the depth information in order from the depth image with the highest priority and the depth image does not fit in the depth information.
 なお、デプス情報生成装置1に入力される参照モデルが、時間的に連続したシーケンスの内の1フレームであって、デプス情報生成装置1に時間的に連続した参照モデルが入力される場合、ステップS101における、初期のカメラ情報は別の例であっても良い。具体的には、ステップS101において、処理を開始してから初めてデプス情報生成部11の処理を行う際のカメラ情報に、前フレームにおいてデプス情報生成装置1から出力されたデプス情報に含まれるカメラ情報を設定しても良い。言い替えると、前のフレームで計算したカメラ情報を、今のフレームにおける初期のカメラ情報に設定し、ステップS101の処理を行ってもよい。上述の構成により、フレーム毎に生成されるデプス情報を、映像形式でエンコードする場合、各デプス画像を見るカメラの位置を固定できるため、エンコード効率が向上し、トラフィック量を抑制する効果を得られる。 When the reference model input to the depth information generation device 1 is one frame in the temporally continuous sequence and the temporally continuous reference model is input to the depth information generation device 1, The initial camera information in S101 may be another example. Specifically, in step S101, the camera information included in the depth information output from the depth information generation device 1 in the previous frame is included in the camera information when the processing of the depth information generation unit 11 is performed for the first time after the processing is started. May be set. In other words, the camera information calculated in the previous frame may be set as the initial camera information in the current frame, and the process of step S101 may be performed. With the above configuration, when the depth information generated for each frame is encoded in the video format, the position of the camera that views each depth image can be fixed, so that the encoding efficiency is improved and the traffic volume can be suppressed. ..
 またこの時、上記のカメラ情報に基づき、3Dモデル再生部12において生成される再生モデルの精度が一定以下である場合、カメラ情報を初期化してもよい。即ち、前のフレームのカメラ情報を破棄し、ステップS101の処理からやり直しても良い。上述の処理により、時間変化により参照モデルが大きく変化し、ホールが発生する箇所が変わった場合であっても、余計なデプス画像を追加する必要がなくなる。 Further, at this time, if the accuracy of the reproduction model generated in the 3D model reproduction unit 12 is less than a certain level based on the above camera information, the camera information may be initialized. That is, the camera information of the previous frame may be discarded and the process may be restarted from step S101. By the processing described above, it is not necessary to add an extra depth image even when the reference model is largely changed due to the time change and the place where the hole is generated is changed.
 (S102)
 続いて、ステップS102において、3Dモデル再生部12は、入力されたデプス情報に基づき、再生モデルを生成する。具体的には、まず入力されるデプス情報を、カメラ情報に基づきデプス画像に分ける。次に、デプス画像にフィルタを加える。フィルタとは、例えば、バイラテラルフィルタに代表される平滑化フィルタである。上述したフィルタを加える処理は必須ではなく、必ずしもデプス画像にフィルタを加える必要はない。次に、デプス画像を、該デプス画像に対応するカメラパラメータに基づき統合することで、3Dモデルを生成し、該3Dモデルを再生モデルとしてホール検出部に入力する。デプス画像を統合することで3Dモデルを生成する手順は、上述した3Dモデルの生成方法に則っても良い。
(S102)
Then, in step S102, the 3D model reproduction unit 12 generates a reproduction model based on the input depth information. Specifically, the depth information input first is divided into depth images based on the camera information. Next, a filter is added to the depth image. The filter is, for example, a smoothing filter represented by a bilateral filter. The process of adding the filter described above is not essential, and it is not always necessary to add the filter to the depth image. Next, the depth image is integrated based on the camera parameters corresponding to the depth image to generate a 3D model, and the 3D model is input to the hole detection unit as a reproduction model. The procedure for generating a 3D model by integrating the depth images may be in accordance with the above-described 3D model generation method.
 なお、ステップS102の処理において、上述した3Dモデルの生成方法では、カメラの光線上にあるボクセルについて、TSDF値及びウェイト値を計算すると説明しているが、ステップS102においては、両値を計算するボクセルを別の方法で選んでも良い。例えば、デプス画素中の画素について、該画素の法線方向にあるボクセルについて、両値を計算する方法であっても良い。具体的には、該画素の法線上にあり、該画素から任意の距離にあるボクセルについて、TSDF値及びウェイト値を計算する。上述の構成により、少ない枚数のデプス画像を統合する場合であっても、再生モデルにおけるホール領域の発生を抑制する効果を得られる。 In the process of step S102, it is described that the method of generating the 3D model described above calculates the TSDF value and the weight value for the voxels on the rays of the camera, but in step S102, both values are calculated. You may choose the voxel in another way. For example, for a pixel in the depth pixel, both values may be calculated for voxels in the normal direction of the pixel. Specifically, the TSDF value and the weight value are calculated for a voxel located on the normal line of the pixel and located at an arbitrary distance from the pixel. With the above configuration, even when a small number of depth images are integrated, it is possible to obtain the effect of suppressing the generation of the hole area in the reproduction model.
 なお、上述した3Dモデルの生成方法では、デプス画像に含まれる全ての画素について、TSDF値及びウェイト値を計算すると説明したが、ステップS102においては、デプス画像中の、背景部に該当する画素を、計算から除外しても良い。上述の構成により、再生モデルの生成に寄与しない計算をスキップすることで、計算速度を向上する効果を得られる。 In the method of generating the 3D model described above, the TSDF value and the weight value are calculated for all the pixels included in the depth image, but in step S102, the pixels corresponding to the background portion in the depth image are determined. , May be excluded from the calculation. With the above-described configuration, the calculation that does not contribute to the generation of the reproduction model is skipped, so that the calculation speed can be improved.
 また、デプス画像に映された物体の輪郭付近の画素を、計算から除外しても良い。上述した物体の輪郭とは、例えば、デプス画像内の前景部と背景部の境界部分にある画素を指す。また例えば、デプス画像中の画素であり、隣接する画素が持つデプス値との差が任意の値よりも大きい画素を指す。デプス情報生成装置1で生成したデプス情報を送信する際、通常、該デプス情報に含まれるデプス画像は、符号化される。この時、デプス画像に映された物体の輪郭近辺のデプス値は、符号化による歪が強く出るため、ステップS102においてデプス画像を統合する際、再生モデルに悪影響を及ぼす可能性がある。例えば、再生モデルが歪み、モデルの精度が低下する。そこで、統合の際に該領域を統合から除外することが好ましい。 Also, pixels near the contour of the object shown in the depth image may be excluded from the calculation. The contour of the object described above refers to, for example, a pixel at the boundary between the foreground part and the background part in the depth image. In addition, for example, it refers to a pixel in the depth image, which has a larger difference from the depth value of an adjacent pixel than an arbitrary value. When transmitting the depth information generated by the depth information generating device 1, the depth image included in the depth information is usually encoded. At this time, since the depth value near the contour of the object shown in the depth image is strongly distorted by encoding, there is a possibility that the reproduction model is adversely affected when the depth images are integrated in step S102. For example, the reproduction model is distorted and the accuracy of the model is reduced. Therefore, it is preferable to exclude the region from the integration at the time of integration.
 上述の構成により、3Dモデル再生部12においてデプス情報を統合する際に、再生モデルに悪影響を与える可能性のある、デプス画像中の歪の強い領域を、統合から除外することできる。これにより、デプス画像の歪が与える影響を、再生モデルから取り除くことができるので、再生モデルの精度を向上させられる効果を得られる。 With the above configuration, when integrating the depth information in the 3D model playback unit 12, it is possible to exclude from the integration a region of strong distortion in the depth image that may adversely affect the playback model. As a result, the influence of the distortion of the depth image can be removed from the reproduction model, so that the accuracy of the reproduction model can be improved.
 なお、ステップS102の処理において、MarchingCubes法により3Dモデルを生成する処理の前に、ボクセル空間にフィルタをかける処理を加えられても良い。 In the process of step S102, a process of filtering the voxel space may be added before the process of generating the 3D model by the MarchingCubes method.
 上述したフィルタとは、例えば、TSDF値の補間を行うフィルタである。具体的には、負のTSDF値及び0でないウェイトを保持しているボクセルと隣接し、保持しているTSDF値及びウェイト値が0であるボクセルに、0でない負のTSDF値及びウェイト値を与えるフィルタである。該ボクセルに与えられるTSDF値は、例えば、隣接する、負のTSDF値及び0でないウェイトを保持しているボクセルのTSDF値の平均値であっても良い。また、ウェイト値は、0ではない最低の値に設定される。言い替えると、MarchingCubes法において計算がスキップされないウェイトであって、与えられうるウェイト値の0でない最低値である。上述の構成により、再生モデルに発生するホール領域を埋めることができ、再生モデルの精度を高める効果を得られる。
 また例えば、上述のフィルタをかけた後でかけられるフィルタであって、上述のフィルタによりTSDF値及びウェイトが与えられたボクセルと隣接し、正のTSDF値及び0でないウェイトを保持しているボクセルと隣接し、保持しているTSDF値及びウェイト値が0であるボクセルに、0でない正のTSDF値及びウェイト値を与えるフィルタである。該ボクセルに与えられるTSDF値は、例えば、隣接する、正のTSDF値及び0でないウェイトを保持しているボクセルのTSDF値の平均値であっても良い。また例えば、上述のフィルタによりTSDF値及びウェイトが与えられたボクセルのTSDF値の、符号を入れ変えた値であっても良い。また、ウェイト値は、0ではない最低の値に設定される。
The filter described above is, for example, a filter that interpolates TSDF values. Specifically, a non-zero negative TSDF value and a weight value are given to a voxel adjacent to a voxel holding a negative TSDF value and a non-zero weight value and holding a TSDF value and a weight value of zero. It is a filter. The TSDF value given to the voxel may be, for example, an average value of the TSDF values of adjacent voxels holding a negative TSDF value and a non-zero weight. Further, the weight value is set to the lowest value other than 0. In other words, it is a weight whose calculation is not skipped in the Marching Cubes method and which is the lowest non-zero weight value that can be given. With the above configuration, the hole area generated in the reproduction model can be filled, and the effect of improving the accuracy of the reproduction model can be obtained.
Further, for example, a filter that is applied after applying the above-described filter, is adjacent to a voxel to which a TSDF value and a weight are given by the above-described filter, and is adjacent to a voxel that holds a positive TSDF value and a non-zero weight. However, it is a filter that gives a positive TSDF value and weight value which are not 0 to the voxels whose TSDF value and weight value that are held are 0. The TSDF value given to the voxel may be, for example, an average value of the TSDF values of adjacent voxels holding a positive TSDF value and a non-zero weight. Further, for example, the TSDF value and the TSDF value of the voxel to which the weight is given by the above-mentioned filter may be a value in which the signs are exchanged. Further, the weight value is set to the lowest value other than 0.
 上述の構成により、3Dモデル再生部12において、デプス情報を統合することで計算されるボクセル空間を補間することができる。これにより、ホール領域に相当するボクセルであって、正のTSDFを持つボクセルと隣接しており、かつウェイトが0のボクセルに対し、負のTSDF値を与えることができる。即ち、再生モデルに発生するホール領域をさらに埋めることができ、再生モデルの精度を高める効果を得られる。 With the above configuration, the voxel space calculated by integrating the depth information can be interpolated in the 3D model reproduction unit 12. As a result, a negative TSDF value can be given to a voxel corresponding to the hole area, which is adjacent to a voxel having a positive TSDF and has a weight of 0. That is, the hole area generated in the reproduction model can be further filled, and the effect of improving the accuracy of the reproduction model can be obtained.
 上述の2種のフィルタは、TSDF値の符号を入れ変えたフィルタであっても構わない。 The above two types of filters may be filters in which the signs of TSDF values are exchanged.
 また例えば、任意の値よりも小さいウェイト値を持つボクセルについて、TSDF値及びウェイト値を0に置き換えるフィルタである。上述の構成により、信頼度の低いTSDF値を取り除くことで、再生モデルに発生するノイズを抑制することができ、再生モデルの精度を高める効果を得られる。 Also, for example, for a voxel having a weight value smaller than an arbitrary value, it is a filter that replaces the TSDF value and the weight value with 0. With the above configuration, by removing the TSDF value having low reliability, noise generated in the reproduction model can be suppressed, and the effect of improving the accuracy of the reproduction model can be obtained.
 なお、ステップS102の処理において、デプス情報に含まれるデプス画像毎に、異なるウェイト値の最大値を用いて、デプス統合計算を行っても構わない。具体的には、ステップS101における初めての処理においてデプス情報に追加されたデプス画像と、二度目以降の処理においてデプス情報に追加されたデプス画像を識別し、前者のデプス画像を統合する際に用いたウェイト値よりも、低いウェイト値を用いて、後者のデプス画像を統合する。例えば、前者のデプス画像には1倍のウェイトを与え、後者のデプス画像には1/10のウェイトを与え、デプス統合の計算を行う。また例えば、後者のデプス画像の統合には、0ではない最低値のウェイトを用いる。上述の構成により、初めての処理においてデプス情報に追加されたデプス画像に比べ、二度目以降の処理で追加されたデプス画像は、デプス統合への影響が弱まるため、ホール領域以外の領域に与える影響が抑制される。これにより、再生モデルの精度の低下を防ぐ効果を得られる。 Note that, in the process of step S102, the depth integrated calculation may be performed using the maximum value of different weight values for each depth image included in the depth information. Specifically, the depth image added to the depth information in the first process in step S101 and the depth image added to the depth information in the second and subsequent processes are identified and used when the former depth image is integrated. The latter depth image is integrated using a lower weight value than the existing weight value. For example, the former depth image is given a weight of 1 and the latter depth image is given a weight of 1/10 to calculate the depth integration. Further, for example, in the latter integration of the depth images, the lowest weight other than 0 is used. With the above configuration, compared to the depth image added to the depth information in the first process, the depth image added in the second and subsequent processes weakens the effect on depth integration, so it affects the areas other than the hole area. Is suppressed. As a result, it is possible to obtain the effect of preventing the accuracy of the reproduction model from decreasing.
 また、同様に、解像度の高いデプス画像のウェイト値よりも、解像度の低いデプス画像のウェイト値を小さくしても良い。例えば、1280x960の解像度を持つデプス画像には1倍のウェイトを与え、640x480の解像度を持つデプス画像には1/4倍のウェイトを与え、デプス統合の計算を行う。上述の構成により、デプス統合において、デプスの精度を信頼できる高解像度のデプス画像の影響を強めることができるため、再生モデルの精度を向上させる効果を得られる。 Similarly, the weight value of the low resolution depth image may be smaller than the weight value of the high resolution depth image. For example, the depth image having a resolution of 1280×960 is given a weight of 1×, and the depth image having a resolution of 640×480 is given a weight of ¼ to calculate the depth integration. With the above-described configuration, in depth integration, the influence of a high-resolution depth image with reliable depth accuracy can be strengthened, and thus the effect of improving the accuracy of the playback model can be obtained.
 なお、ステップS102の処理において、デプス情報に含まれるデプス画像毎に、異なる範囲のボクセルについて、デプス統合計算を行っても構わない。具体的には、ステップS101における初めての処理においてデプス情報に追加されたデプス画像と、二度目以降の処理においてデプス情報に追加されたデプス画像を識別し、前者のデプス画像を統合する際は、広い範囲のボクセルについてTSDF値及びウェイト値を計算し、後者のデプス画像を統合する際は、狭い範囲のボクセルについてTSDF値及びウェイト値を計算する。例えば、前者のデプス画像については、対応する面から3ボクセルの範囲についてTSDF値及びウェイト値を計算し、後者のデプス画像については同様に1ボクセルの範囲についてTSDF値及びウェイト値を計算する。上述の構成により、後者のデプス画像をデプス統合する際に、該デプス画像が、ホール領域の周辺に及ぼす影響を抑えられるため、該デプス画像を統合することで再生モデルに発生するノイズを抑制する効果を得られる。 Note that in the process of step S102, the depth integrated calculation may be performed for voxels in different ranges for each depth image included in the depth information. Specifically, when the depth image added to the depth information in the first process in step S101 and the depth image added to the depth information in the second and subsequent processes are identified and the former depth image is integrated, The TSDF value and the weight value are calculated for a wide range of voxels, and when the latter depth images are integrated, the TSDF value and the weight value are calculated for a narrow range of voxels. For example, for the former depth image, the TSDF value and weight value are calculated for the range of 3 voxels from the corresponding surface, and for the latter depth image, the TSDF value and weight value are similarly calculated for the range of 1 voxel. With the above configuration, when the latter depth image is depth-integrated, it is possible to suppress the influence of the depth image on the periphery of the hole area. Therefore, by integrating the depth image, noise generated in the reproduction model is suppressed. You can get the effect.
 (S103)
 続いて、ステップS103において、ホール検出部13は、入力された参照モデル及び再生モデルに基づき、ホール抽出モデルを生成する。具体的には、まずホール検出部13は、入力された参照モデルと再生モデルを比較することで、ホール領域を推定する。次に、推定したホール領域に基づき、参照モデルからホール抽出モデルを取り出し、カメラ情報設定部14に入力する。
(S103)
Subsequently, in step S103, the hole detection unit 13 generates a hole extraction model based on the input reference model and reproduction model. Specifically, first, the hole detection unit 13 estimates the hole area by comparing the input reference model and the reproduction model. Next, based on the estimated hole area, a hole extraction model is extracted from the reference model and input to the camera information setting unit 14.
 ホール領域を推定する方法は問わない。例えば、参照モデル中のある頂点と、該頂点と最近傍である再生モデル中の頂点までの距離を計算し、距離が一定値以上であれば、該参照モデルの頂点はホール領域に相当する頂点だと判断しても良い。なお、この場合、実際にホールが存在している領域に限らず、参照モデルと再生モデルの間で形状の差が大きい領域もホール領域と判断される。上述の構成により、上述した形状の差が大きい領域に関しても、後述するカメラパラメータの追加により修正する効果を得られる。 The method of estimating the hole area does not matter. For example, a distance between a vertex in the reference model and a vertex in the reproduction model that is the closest to the vertex is calculated. If the distance is a certain value or more, the vertex of the reference model corresponds to the hole area. You can judge that it is. In this case, not only the area where the hole actually exists, but also the area where the difference in shape between the reference model and the reproduction model is large is determined as the hole area. With the above-described configuration, it is possible to obtain the effect of correcting the above-described region having a large difference in shape by adding the camera parameter described later.
 また例えば、参照モデル中のある頂点と、該頂点と最近傍である再生モデル中の頂点について、該再生モデル中の頂点が所属するメッシュの数が一定以下であれば、該参照モデルの頂点はホール領域に相当すると判断する方法であっても良い。KinectFusionではMarchingCubes法によりTSDF値とウェイト値が記録されたからボクセル空間に基づき再生モデルを作成する。この時、再生モデル内の、ホール領域と隣接しない頂点が所属するメッシュの数は、再生モデルが三角メッシュにより構成されている場合、通常は4から8の範囲に収まる。故に、例えば、再生モデル内のある頂点が所属するメッシュの数が3以下であれば、ホール領域に隣接した頂点だと判断できるため、該参照モデル中の頂点はホール領域に相当すると判断しても良い。上述の構成により、上述したような最近傍頂点同士の距離では検出できないようなホール領域であっても検出することができる効果を得られる。また、上記の方法によるホール検出は複雑な計算を要しないため、リアルタイムのホール検出が可能となる効果を得られる。 Further, for example, for a certain vertex in the reference model and a vertex in the reproduction model closest to the vertex, if the number of meshes to which the vertex in the reproduction model belongs is less than a certain value, the vertex of the reference model is A method of determining that it corresponds to the hole area may be used. In KinectFusion, since the TSDF value and the weight value are recorded by the Marching Cubes method, a reproduction model is created based on the voxel space. At this time, the number of meshes in the reproduction model to which the vertices not adjacent to the hole region belong is usually within the range of 4 to 8 when the reproduction model is composed of triangular meshes. Therefore, for example, if the number of meshes to which a certain vertex in the reproduction model belongs is 3 or less, it can be determined that the vertex is adjacent to the hole area. Therefore, it is determined that the vertex in the reference model corresponds to the hole area. Is also good. With the above-described configuration, it is possible to obtain the effect of being able to detect even a hole area that cannot be detected by the distance between the nearest vertices as described above. Further, since the hole detection by the above method does not require complicated calculation, it is possible to obtain the effect that the hole detection can be performed in real time.
 以上の処理により、ホール領域と判断された参照モデルの頂点若しくはメッシュを、参照モデルから抜き出すことで、ホール抽出モデルを生成する。 By the above processing, the hole extraction model is generated by extracting the vertices or meshes of the reference model determined to be the hole area from the reference model.
 (S104)
 続いて、ステップS104において、カメラ情報設定部14は、入力されたホール抽出モデルに基づき、カメラ情報を生成する。具体的には、まず入力されたホール抽出モデルをクラスタリングし、複数のクラスタに分解する。以降は、クラスタに分解されたホール抽出モデルをサブモデルと呼ぶ。次に、個々のサブモデルについて、該サブモデルを記録するに最適なカメラパラメータを推定し、それらのカメラパラメータをまとめてカメラ情報とし、デプス情報生成部11に入力する。
(S104)
Subsequently, in step S104, the camera information setting unit 14 generates camera information based on the input hole extraction model. Specifically, first, the input hole extraction model is clustered and decomposed into a plurality of clusters. Hereinafter, the hole extraction model decomposed into clusters is called a sub model. Next, for each sub-model, the optimum camera parameters for recording the sub-model are estimated, and these camera parameters are put together as camera information and input to the depth information generation unit 11.
 ホール抽出モデルをクラスタリングする方法は問わない。例えば、適当な頂点を基準に、該頂点に近い頂点であり、かつ該頂点の法線と近い法線を持つ頂点を、該頂点と同じクラスタに振り分ける方法であっても良い。これにより、法線の向きが類似し、近い位置に集まっている頂点を、サブモデルとしてまとめられる。 The method of clustering the hole extraction model does not matter. For example, a method may be used in which a vertex that is close to the vertex and has a normal line close to the normal line of the vertex is assigned to the same cluster as the vertex with an appropriate vertex as a reference. As a result, vertices that have similar normal directions and are gathered at close positions can be grouped as a sub model.
 サブモデルを記録するに最適なカメラパラメータは、例えば、サブモデルに含まれる頂点の法線と、カメラの光線で作られる偏角の内積が大きくなるような、カメラの位置、向き及び焦点距離を持つカメラパラメータである。 Optimal camera parameters for recording a submodel include, for example, the position, orientation, and focal length of the camera such that the inner product of the normal line of the vertices included in the submodel and the deflection angle formed by the rays of the camera is large. It is a camera parameter to have.
 また例えば、サブモデルの重心をカメラの光軸に捉えるような位置及び向きを持つカメラパラメータである。 Also, for example, a camera parameter that has a position and orientation that captures the center of gravity of the submodel on the optical axis of the camera.
 また例えば、サブモデルの全体を画面内に収めつつ、画面いっぱいにサブモデルを写すような位置、向き及び焦点距離を持つカメラパラメータである。 Also, for example, it is a camera parameter that has a position, orientation, and focal length that fits the entire sub-model within the screen, but that fills the screen with the sub-model.
 上述の、ステップS101からステップS104の構成により、ステップS101からステップS104の処理をループすることで、デプス情報に含まれるデプス画像が追加されていく。ステップS103及びステップS104の処理により生成されるカメラ情報は、デプス情報を統合することで生成される再生モデルに存在するホール領域を見るようなカメラパラメータであるため、二度目のループ以降に追加されるデプス画像は、上述のホール領域を埋めるような画像となる。故に、二度目のループ以降に追加されるデプス画像は、一度目のループで追加されるデプス画像を統合することで生成される再生モデルに存在するホール領域を埋めるような効果を持つ。従って、上述のループを繰り返すことで、3Dモデル再生部12において、上述のホール領域を埋められた再生モデルを生成できる効果を得られる。言い替えると、より参照モデルに近い再生モデルを生成できる。 With the configuration of steps S101 to S104 described above, the depth images included in the depth information are added by looping the processing of steps S101 to S104. The camera information generated by the processing of steps S103 and S104 is a camera parameter for viewing a hole area existing in the reproduction model generated by integrating the depth information, and is therefore added after the second loop. The depth image is an image that fills the hole area described above. Therefore, the depth image added after the second loop has an effect of filling the hole area existing in the reproduction model generated by integrating the depth images added in the first loop. Therefore, by repeating the above loop, it is possible to obtain the effect that the 3D model reproduction unit 12 can generate the reproduction model in which the hole area is filled. In other words, a reproduction model closer to the reference model can be generated.
 なお、ステップS104において、必ずしも全てのサブモデルについてカメラパラメータを生成する必要はなく、特定の条件を持つサブモデルについて、カメラパラメータを生成しなくとも良い。特定の条件とは、例えば、サブモデルに含まれるメッシュの面積の合計が、任意の値を下回ることである。言い替えると、対応するホール領域の面積が、任意の値を下回るサブモデルについては、カメラパラメータを生成しなくとも良い。上述の構成により、小さいホール領域を埋めるためにデプス画像が追加されることがなくなり、デプス情報全体のデータ量を減らすことができ、送信するトラフィック量を抑制することが可能となる。 Note that in step S104, it is not always necessary to generate camera parameters for all submodels, and it is not necessary to generate camera parameters for submodels having specific conditions. The specific condition is, for example, that the total area of the meshes included in the sub model is below an arbitrary value. In other words, the camera parameters do not have to be generated for the sub-model in which the area of the corresponding hole region falls below an arbitrary value. With the above configuration, the depth image is not added to fill the small hole area, the data amount of the entire depth information can be reduced, and the traffic amount to be transmitted can be suppressed.
 なお、ステップS104において生成されるカメラパラメータには、カメラの優先度の情報が付随されても良い。上述のカメラの優先度とは、サブクラスタ毎に設定される情報であり、デプス情報生成部11において、デプス画像をデプス情報に追加する順序を表すために用いられる。 Note that the camera parameters generated in step S104 may be accompanied by camera priority information. The camera priority described above is information set for each sub-cluster, and is used by the depth information generation unit 11 to represent the order in which depth images are added to the depth information.
 カメラの優先度を設定する方法とは、例えば、サブモデル毎にメッシュの面積の合計値を計算し、合計値の高い順に、優先度を設定する方法であっても良い。 The method of setting the priority of the camera may be, for example, a method of calculating the total value of the mesh area for each submodel and setting the priority in descending order of the total value.
 (ループ終了判定)
 ステップS104の処理が完了した後、ループ終了条件に基づき、次の処理が分岐する。
(Loop end judgment)
After the processing of step S104 is completed, the next processing branches based on the loop end condition.
 ループ終了条件を満たしている場合、ステップS105の処理に進む。即ち、デプス情報生成装置1からデプス情報が出力され、処理が終了する。ループ終了条件を満たしていない場合、カメラ情報設定部14で生成されたカメラ情報がデプス情報生成部11に入力され、ステップS101の処理に進む。 If the loop end condition is satisfied, the process proceeds to step S105. That is, the depth information is output from the depth information generation device 1, and the process ends. If the loop end condition is not satisfied, the camera information generated by the camera information setting unit 14 is input to the depth information generation unit 11, and the process proceeds to step S101.
 上述したループ終了条件とは、ステップS101からステップS104の処理中に判定される条件であり、例えば、ステップS101において、任意の回数だけステップS101の処理が繰り返された場合、ループ終了条件を満たしたと判断しても良い。言い替えると、任意の回数のループが終了した場合、ループ終了条件を満たしたと判断しても良い。 The loop end condition described above is a condition determined during the processing of steps S101 to S104. For example, when the processing of step S101 is repeated any number of times in step S101, it is determined that the loop end condition is satisfied. You may judge. In other words, when the loop ends an arbitrary number of times, it may be determined that the loop end condition is satisfied.
 また例えば、ステップS101において、デプス画像がデプス情報に追加出来なくなった場合、言い替えるとデプス情報がいっぱいになった場合、ループ終了条件を満たしたと判断しても良い。 Further, for example, in step S101, when the depth image cannot be added to the depth information, in other words, when the depth information is full, it may be determined that the loop end condition is satisfied.
 また例えば、ステップS102において、生成された再生モデルの精度が任意の値を上回った場合、ループ終了条件を満たしたと判断しても良い。モデルの精度については後述する。 Further, for example, in step S102, when the accuracy of the generated reproduction model exceeds an arbitrary value, it may be determined that the loop end condition is satisfied. The accuracy of the model will be described later.
 また例えば、ステップS103において、検出されたホール領域の面積が任意の値を下回った場合、ループ終了条件を満たしたと判断しても良い。 Further, for example, in step S103, if the area of the detected hole region is less than an arbitrary value, it may be determined that the loop termination condition is satisfied.
 また例えば、ステップS102において、生成された再生モデルの精度が、前のループで生成された再生モデルの精度を下回った場合、ループ終了条件を満たしたと判断しても良い。この場合、デプス情報生成装置1から出力されるデプス情報は、前のループのデプス情報であっても良い。 Further, for example, in step S102, if the accuracy of the generated reproduction model is lower than the accuracy of the reproduction model generated in the previous loop, it may be determined that the loop end condition is satisfied. In this case, the depth information output from the depth information generation device 1 may be the depth information of the previous loop.
 なお、ステップS101からステップS104の処理において、ループ終了条件を満たした場合、S104が終了するまでの処理をスキップしても良い。例えば、ステップS102においてループ終了条件を満たした場合、ステップS103及びステップS104の処理をスキップし、デプス情報生成装置1からデプス情報を出力しても良い。 Note that in the processing of steps S101 to S104, when the loop termination condition is satisfied, the processing until the termination of S104 may be skipped. For example, if the loop end condition is satisfied in step S102, the processes in steps S103 and S104 may be skipped and the depth information generation device 1 may output the depth information.
 上述した再生モデルの精度とは、3Dモデル再生部12において生成される再生モデルが、参照モデルに対しどの程度近しいのかを表す指標である。再生モデルの精度は、例えば、参照モデルの頂点と再生モデルの頂点について、最近傍の頂点間の距離の平均で計算される。また例えば、参照モデルから見た再生モデルのRMSE値である。また例えば、任意のカメラパラメータを持つカメラで参照モデルを見た時のデプス画像と、再生モデルを見た時のデプス画像とで、PSNR等の画像間の精度を計算し、該精度を、再生モデルの精度として扱っても良い。 The accuracy of the reproduction model described above is an index indicating how close the reproduction model generated in the 3D model reproduction unit 12 is to the reference model. The accuracy of the reproduction model is calculated, for example, by averaging the distances between the vertices of the reference model and the vertices of the reproduction model, which are the nearest vertices. Further, for example, it is the RMSE value of the reproduction model viewed from the reference model. Also, for example, the accuracy between images such as PSNR is calculated between the depth image when the reference model is viewed with a camera having arbitrary camera parameters and the depth image when the playback model is viewed, and the accuracy is reproduced. It may be treated as the accuracy of the model.
 (S105)
 ステップS105において、3Dモデル再生部12は、ステップS102と同様に、入力されるデプス情報に基づき再生モデルを生成し、3Dモデル再生装置から出力する。ステップS102の処理においてデプス画像にフィルタが掛けられている場合、ステップS105の処理においても同様のフィルタが掛けられることが望ましい。フィルタが掛けられていない場合についても同様である。
(S105)
In step S105, the 3D model reproduction unit 12 generates a reproduction model based on the input depth information and outputs the reproduction model from the 3D model reproduction device, as in step S102. When the depth image is filtered in the process of step S102, it is desirable that the same filter be applied in the process of step S105. The same applies when the filter is not applied.
 上述の構成により、3Dモデル生成装置2は、デプス情報生成装置1の3Dモデル生成部12と同様の手法で、デプス情報に基づき再生モデルを生成できる。上述の様に、デプス情報生成装置1で生成されるデプス情報は、3Dモデル生成部12において、ホール領域を埋められた再生モデルを生成できるようなデプス画像を追加されているため、3Dモデル生成装置2においても、ホール領域を埋められた再生モデルを再生できる。即ち、参照モデルに近い再生モデルを生成できる効果を得られる。また、一般的に、3Dモデルに比べるとデプス情報のデータ量は少ない。故に、送信されるデプス情報から再生モデルを生成することで、参照モデルを直接送信する場合に比べ、参照モデルに近い再生モデルを生成しつつ、トラフィック量を抑制できる効果を得られる。 With the above configuration, the 3D model generation device 2 can generate a reproduction model based on the depth information by the same method as the 3D model generation unit 12 of the depth information generation device 1. As described above, since the depth information generated by the depth information generation device 1 is added with the depth image capable of generating the reproduction model in which the hole area is filled in the 3D model generation unit 12, the 3D model generation is performed. The device 2 can also reproduce the reproduction model in which the hole area is filled. That is, it is possible to obtain the effect that a reproduction model close to the reference model can be generated. Further, generally, the data amount of the depth information is smaller than that of the 3D model. Therefore, by generating the reproduction model from the transmitted depth information, it is possible to obtain the effect of suppressing the traffic volume while generating the reproduction model close to the reference model as compared with the case of directly transmitting the reference model.
 〔変形例1〕
 以下、実施形態1の変形例1について、図1~図3に基づいて説明する。本変形例においては、デプス情報生成部11が、デプス情報生成部11に複数のカメラパラメータを持つカメラ情報が入力される場合、それらのカメラパラメータを一括してカメラ情報に追加するのではなく、順に追加する構成について説明する。本変形例の目的は、デプス情報生成部11に入力されるカメラ情報の内、再生モデルの精度の改善に寄与するカメラパラメータを識別し、該カメラパラメータのみを、カメラ情報に追加することにある。なお便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、説明を省略する。本変形例においても図1に示す構成を用いる。ただし、デプス情報生成部11及び3Dモデル再生部12は、以下、本変形例において示す処理を行う機能を有する。
[Modification 1]
Hereinafter, a first modification of the first embodiment will be described with reference to FIGS. 1 to 3. In the present modification, when the depth information generation unit 11 inputs camera information having a plurality of camera parameters to the depth information generation unit 11, the depth information generation unit 11 does not collectively add those camera parameters to the camera information, The configuration to be added in order will be described. The purpose of this modification is to identify, from the camera information input to the depth information generation unit 11, a camera parameter that contributes to the improvement of the accuracy of the reproduction model, and add only the camera parameter to the camera information. .. For the sake of convenience, members having the same functions as the members described in the above embodiment will be designated by the same reference numerals, and the description thereof will be omitted. The configuration shown in FIG. 1 is also used in this modification. However, the depth information generation unit 11 and the 3D model reproduction unit 12 have the function of performing the processing shown in the present modification.
 本変形例においては、ステップS101及びステップS102の処理が、追加されるカメラパラメータの数だけ繰り返される構成を用いる。 In this modification, a configuration is used in which the processes of steps S101 and S102 are repeated for the number of camera parameters added.
 本変形例に係るデプス情報生成部11は、実施形態1のステップS101に相当する処理において、入力されるカメラ情報に複数のカメラパラメータが含まれる場合、いずれか一つをカメラ情報に追加する処理を行う。言い替えると、実施形態1のステップS101の処理では、追加されるカメラパラメータを全て既存のカメラ情報に追加するが、本変形例では、いずれか一つのカメラパラメータのみを追加する。 In the process corresponding to step S101 of the first embodiment, the depth information generation unit 11 according to the present modification adds any one of the camera parameters to the camera information when the input camera information includes a plurality of camera parameters. I do. In other words, in the process of step S101 of the first embodiment, all the added camera parameters are added to the existing camera information, but in the present modification, only one camera parameter is added.
 本変形例に係る3Dモデル再生部12は、実施形態1のステップS102に相当する処理において、まず実施形態1と同様に再生モデルを生成する。次に、生成された再生モデルの精度を計算し、該カメラパラメータが追加される以前のカメラ情報を利用して生成される再生モデルの精度と比較する。この時、任意の値以上の精度の向上が見られない場合、該カメラパラメータは再生モデルの精度向上に寄与しないと判断し、該カメラパラメータを、カメラ情報から取り除く。 The 3D model reproduction unit 12 according to the present modification first generates a reproduction model in the process corresponding to step S102 of the first embodiment, as in the first embodiment. Next, the accuracy of the generated reproduction model is calculated and compared with the accuracy of the reproduction model generated using the camera information before the camera parameter is added. At this time, if the accuracy is not improved more than an arbitrary value, it is determined that the camera parameter does not contribute to the accuracy improvement of the reproduction model, and the camera parameter is removed from the camera information.
 本変形例では、上述のステップS102が終わった後、ステップS101に処理を戻す。本変形例では、このループを、追加されるカメラパラメータの数だけ繰り返す。即ち、入力される全てのカメラ情報に含まれる全てのカメラパラメータについて、上述する処理を行う。 In this modification, the process is returned to step S101 after the above step S102 is completed. In this modification, this loop is repeated for the number of camera parameters to be added. That is, the above-described processing is performed for all camera parameters included in all input camera information.
 上述の構成により、デプス情報生成部11に入力されるカメラパラメータの内、再生モデルの精度の改善に寄与するカメラパラメータのみを、既存のカメラ情報に追加することが可能となる。これにより、デプス情報に含まれるデプス画像の枚数を抑えられるため、トラフィック量を抑制する効果を得られる。 With the configuration described above, among the camera parameters input to the depth information generation unit 11, only the camera parameters that contribute to the improvement of the accuracy of the reproduction model can be added to the existing camera information. As a result, the number of depth images included in the depth information can be suppressed, so that the effect of suppressing the traffic amount can be obtained.
 〔変形例2〕
 以下、実施形態1の変形例2について、図1~図4に基づいて説明する。本変形例においては、カメラ情報設定部14aからデプス情報生成部11aにカメラ情報が入力される場合、デプス情報生成部11aにおいて、参照モデルに代わりサブモデルに基づいてデプス情報を生成する構成について説明する。なお便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、説明を省略する。本変形例においては図4に示す構成を用いる。
[Modification 2]
Hereinafter, a second modification of the first embodiment will be described with reference to FIGS. 1 to 4. In the present modification, when camera information is input from the camera information setting unit 14a to the depth information generation unit 11a, the depth information generation unit 11a will generate depth information based on a sub model instead of a reference model. To do. For the sake of convenience, members having the same functions as the members described in the above embodiment will be designated by the same reference numerals, and the description thereof will be omitted. In this modification, the configuration shown in FIG. 4 is used.
 本変形例の目的は、デプス情報生成部11aにおいて、参照モデルのセルフオクルージョンの影響を受けないデプス画像を記録することにある。実施形態1のデプス情報生成部11で生成される各々のデプス画像には、対応するサブモデルの全体が映されていることが望ましい。しかし、カメラ情報設定部14におけるクラスタリングの手法によっては、サブモデルの一部若しくは全体が、参照モデルのサブモデルでない領域で遮蔽されてしまうようなカメラパラメータが生成されることがある。この場合、再生モデル中の、遮蔽されたサブモデルに対応するホール領域が、該デプス画像の追加では埋まらない問題が発生する。 The purpose of this modified example is to record a depth image that is not affected by the self-occlusion of the reference model in the depth information generation unit 11a. It is desirable that each depth image generated by the depth information generation unit 11 of the first embodiment shows the entire corresponding sub-model. However, depending on the clustering method in the camera information setting unit 14, camera parameters may be generated such that a part or the whole of the sub model is shielded by a region that is not the sub model of the reference model. In this case, there arises a problem that the hole area corresponding to the occluded sub model in the reproduction model is not filled with the addition of the depth image.
 本変形例に係るカメラ情報設定部14aは、実施形態1のステップS104に相当する処理において、カメラ情報に加え、サブモデルをデプス情報生成部11aに入力する。この時、カメラ情報に含まれるカメラパラメータと、サブモデルは、対応付けられる。 The camera information setting unit 14a according to the present modification inputs the sub-model to the depth information generating unit 11a in addition to the camera information in the process corresponding to step S104 of the first embodiment. At this time, the camera parameter included in the camera information and the sub model are associated with each other.
 本変形例に係るデプス情報生成部11aは、実施形態1のステップS101に相当する処理に行う。1度目の処理では、入力される参照モデルに基づきデプス画像を生成し、デプス情報に追加する。2度目以降の処理においては、入力されるカメラ情報に含まれるカメラパラメータと対応するサブモデルに基づきデプス画像を生成し、デプス情報に追加する。 The depth information generation unit 11a according to this modification performs the process corresponding to step S101 of the first embodiment. In the first process, a depth image is generated based on the input reference model and added to the depth information. In the second and subsequent processes, the depth image is generated based on the sub-model corresponding to the camera parameter included in the input camera information and added to the depth information.
 上述の構成により、デプス情報生成部11aで生成されるデプス画像に、参照モデルのサブモデルでない領域が映り込むことがなくなるため、参照モデルのセルフオクルージョンの影響を受けないデプス画像を記録することができる。これにより、上述のホール領域を埋めることが可能になる効果を得られる。 With the above-described configuration, the depth image generated by the depth information generation unit 11a does not include a region that is not a submodel of the reference model, so that the depth image that is not affected by the self-occlusion of the reference model can be recorded. it can. As a result, it is possible to obtain the effect that the hole region described above can be filled.
 なお、変形例2は、実施形態1と併用されても良い。例えば、ステップS104において、上述のセルフオクルージョンが発生すると判断されたカメラパラメータは変形例2の処理を行い、そうでない場合は実施形態1の処理を行う構成であっても良い。 The second modification may be used in combination with the first embodiment. For example, in step S104, the camera parameter for which it is determined that the above-described self-occlusion occurs may be subjected to the process of the second modification, and if not so, the process of the first embodiment may be performed.
 〔変形例3〕
 以下、実施形態1の変形例3について、図1~図3、及び図5に基づいて説明する。本変形例においては、ホール検出部13bにおいて、実施形態1と異なる方法でホールを検出すると共に、ホール検出部13bにおいてカメラ情報を生成する構成について説明する。なお便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、説明を省略する。
[Modification 3]
Hereinafter, a third modified example of the first embodiment will be described with reference to FIGS. 1 to 3 and 5. In the present modification, a configuration will be described in which the hole detection unit 13b detects a hole by a method different from that of the first embodiment, and the hole detection unit 13b generates camera information. For the sake of convenience, members having the same functions as the members described in the above embodiment will be designated by the same reference numerals, and the description thereof will be omitted.
 本変形例においては図5に示す構成を用いる。図5に示す通り、デプス情報生成装置1bは、サブディビジョン部15b、デプス情報生成部11、3Dモデル再生部12及びホール検出部13bを備えている。 In this modification, the configuration shown in FIG. 5 is used. As shown in FIG. 5, the depth information generation device 1b includes a subdivision unit 15b, a depth information generation unit 11, a 3D model reproduction unit 12, and a hole detection unit 13b.
 本変形例の目的は、ホール検出部13bの処理において、実施形態1と異なる方法でホール領域を検出することを目的とする。 The purpose of this modification is to detect a hole area by a method different from that of the first embodiment in the processing of the hole detection unit 13b.
 本変形例に係るサブディビジョン部15bは、実施形態1のステップS101よりも前に行われる処理において、入力される参照モデルに対し、サブディビジョン処理を加えることにより生成される、一様な分布の頂点を持つ3Dモデルを、新たな参照モデルを生成として、デプス情報生成部11及びホール検出部13bに入力する。なお、参照モデルに加える処理は、一様な分布の頂点を持つ3Dモデルに修正できる処理であれば、サブディビジョン処理でなくても構わない。 The subdivision unit 15b according to the present modification has a uniform distribution generated by adding subdivision processing to the input reference model in the processing performed before step S101 of the first embodiment. A 3D model having vertices is input to the depth information generation unit 11 and the hole detection unit 13b as a new reference model is generated. Note that the process added to the reference model does not have to be the subdivision process as long as the process can be corrected to a 3D model having vertices with a uniform distribution.
 本変形例に係るホール検出部13bは、入力される再生モデル及び参照モデルに基づき、再生モデル中のホール領域を推定し、ホール領域に対応するカメラ情報を生成し、デプス情報生成部11に入力する。 The hole detection unit 13b according to the present modification estimates a hole area in the reproduction model based on the input reproduction model and reference model, generates camera information corresponding to the hole area, and inputs the camera information to the depth information generation unit 11. To do.
 本変形例に係るホール検出部13bにおける、ホール検出の工程の一例を解説する。
(1)入力される参照モデルが存在する3D空間を、任意の幅のグリッドに分割する。
(2)入力される参照モデル及び再生モデルに基づき、各グリッドの評価値を計算する。
 具体的には、まず、グリッドに含まれる参照モデルの頂点について、該頂点と、該頂点と最近傍の再生モデルの頂点との距離を計算する。グリッドに含まれる全ての参照モデルの頂点について、上記の計算を行い、それらの距離の合計値を、グリッドの評価値に設定する。即ち、評価値が高い程、該グリッドに相当する再生モデルの領域は、精度が悪いと言える。同様の計算を全てのグリッドに対して行う。
(3)全てのグリッドの内、評価値が任意の値よりも高いグリッドについて、カメラパラメータを生成する。即ち、グリッド内の再生モデルの精度が、許容範囲外であるグリッドについて、最適なカメラパラメータを生成し、デプス情報生成部11に入力する。最適なカメラパラメータとは、例えば、グリッド内の参照モデルが持つ頂点の法線と、カメラの光線で作られる偏角の内積が大きくなるような、カメラの位置、向き及び焦点距離を持つカメラパラメータである。また例えば、グリッドの重心をカメラの光軸に捉えるような位置及び向きを持つカメラパラメータである。
An example of the hole detection process in the hole detection unit 13b according to this modification will be described.
(1) The 3D space in which the input reference model exists is divided into grids of arbitrary width.
(2) The evaluation value of each grid is calculated based on the input reference model and reproduction model.
Specifically, first, with respect to the vertices of the reference model included in the grid, the distances between the vertices and the vertices of the nearest reproduction model are calculated. The above calculation is performed for all the vertices of the reference model included in the grid, and the total value of those distances is set as the evaluation value of the grid. That is, it can be said that the higher the evaluation value, the lower the accuracy of the region of the reproduction model corresponding to the grid. The same calculation is performed for all grids.
(3) Of all the grids, the camera parameter is generated for a grid whose evaluation value is higher than an arbitrary value. That is, the optimum camera parameter is generated for the grid whose accuracy of the reproduction model in the grid is out of the allowable range, and the optimum camera parameter is input to the depth information generation unit 11. The optimal camera parameter is, for example, a camera parameter that has a position, orientation, and focal length of the camera such that the inner product of the normal of the vertex of the reference model in the grid and the declination created by the ray of the camera is large Is. Further, for example, it is a camera parameter having a position and orientation that captures the center of gravity of the grid on the optical axis of the camera.
 以上の工程により、生成したカメラパラメータをまとめてカメラ情報とし、デプス情報生成部11に入力する。 By the above process, the camera parameters generated are collected into camera information and input to the depth information generation unit 11.
 本変形例は、変形例1と組み合わせても良い。即ち、評価の最も悪いグリッドに関するカメラパラメータのみをデプス情報生成部11に入力し、再生モデルの精度が改善される場合のみ、該カメラパラメータに対応するデプス画像を、デプス情報に追加しても良い。上述の構成により、評価の悪いグリッドから順に、該グリッドを修正する様なデプス画像を追加することできる。即ち、デプス情報生成部11において、大きなホール領域や歪に対応したデプス画像を、取りこぼすことなく、優先的に追加することができる効果を得られる。 This modification may be combined with modification 1. That is, only the camera parameter regarding the grid with the worst evaluation is input to the depth information generation unit 11, and only when the accuracy of the reproduction model is improved, the depth image corresponding to the camera parameter may be added to the depth information. .. With the above-described configuration, it is possible to add depth images that modify the grid in order from the grid with the poorest evaluation. That is, in the depth information generation unit 11, it is possible to obtain an effect that the depth image corresponding to a large hole region or distortion can be preferentially added without missing.
 〔実施形態2〕
 本発明の第2の実施形態について、図1~図3、及び図6~図8に基づいて説明する。
[Embodiment 2]
A second embodiment of the present invention will be described with reference to FIGS. 1 to 3 and 6 to 8.
 本実施形態においては、デプス情報を生成するデプス情報生成装置3において、実施形態1の処理に加え、補助モデルを生成する処理を行う構成について説明する。なお便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、説明を省略する。 In the present embodiment, a configuration will be described in which the depth information generation device 3 that generates depth information performs a process of generating an auxiliary model in addition to the process of the first embodiment. For the sake of convenience, members having the same functions as the members described in the above embodiment will be designated by the same reference numerals, and the description thereof will be omitted.
 〔1.デプス情報生成装置3の構成〕
 図6に基づいて本実施形態に係るデプス情報生成装置3の構成について説明する。
[1. Configuration of depth information generation device 3]
The configuration of the depth information generation device 3 according to the present embodiment will be described based on FIG.
 デプス情報生成装置3は、入力される参照モデルに基づき、デプス情報及び補助モデルを生成する装置である。本実施形態の目的は、参照モデルに含まれる頂点若しくはメッシュの一部を抜き出し、3Dモデル再生装置4に送信することである。 The depth information generation device 3 is a device that generates depth information and an auxiliary model based on an input reference model. The purpose of this embodiment is to extract a part of the vertices or meshes included in the reference model and send them to the 3D model reproduction device 4.
 上述した補助モデルとは、入力される参照モデルの一部を抜き出した情報であり、例えば、頂点若しくはメッシュからなる3Dモデルである。補助モデルは、3Dモデル再生装置4で生成される再生モデルに付加することで、再生モデルのホール領域を補償する目的で用いられる。 The above-mentioned auxiliary model is information obtained by extracting a part of the input reference model, and is, for example, a 3D model composed of vertices or meshes. The auxiliary model is used for the purpose of compensating the hole area of the reproduction model by adding it to the reproduction model generated by the 3D model reproduction device 4.
 図6は、本実施形態に係るデプス情報生成装置3の機能ブロック図である。図6に示す通り、デプス情報生成装置3は、補助モデル生成部31、デプス情報生成部11、3Dモデル再生部12、ホール検出部13、カメラ情報設定部32を備えている。 FIG. 6 is a functional block diagram of the depth information generation device 3 according to this embodiment. As shown in FIG. 6, the depth information generation device 3 includes an auxiliary model generation unit 31, a depth information generation unit 11, a 3D model reproduction unit 12, a hole detection unit 13, and a camera information setting unit 32.
 本実施形態における、デプス情報生成部11、3Dモデル再生部12及びホール検出部13の機能は、実施形態1におけるデプス情報生成装置1に含まれる同名ブロックと同様である。 The functions of the depth information generation unit 11, the 3D model reproduction unit 12, and the hole detection unit 13 in the present embodiment are the same as those of the same name block included in the depth information generation device 1 in the first embodiment.
 補助モデル生成部31は、入力される参照モデルに基づき、補助モデル及び参照モデルを生成する。補助モデル生成部31で生成される参照モデルは、入力される参照モデルから補助モデルを取り除いたモデルである。生成された参照モデルは、デプス情報生成部11及びホール検出部13に入力される。 The auxiliary model generation unit 31 generates an auxiliary model and a reference model based on the input reference model. The reference model generated by the auxiliary model generation unit 31 is a model obtained by removing the auxiliary model from the input reference model. The generated reference model is input to the depth information generation unit 11 and the hole detection unit 13.
 本実施形態におけるカメラ情報設定部32は、入力されるホール抽出モデルをクラスタリングし、個々のクラスタに係るカメラパラメータをまとめたカメラ情報及び補助モデルを生成する。生成されたカメラ情報は、デプス情報生成部11に入力される。また、生成された補助モデルは3Dモデル再生装置4に入力される。 The camera information setting unit 32 in the present embodiment clusters the input hole extraction models, and generates camera information and auxiliary models in which camera parameters related to each cluster are summarized. The generated camera information is input to the depth information generation unit 11. Further, the generated auxiliary model is input to the 3D model reproduction device 4.
 〔2.3Dモデル再生装置4の構成〕
 図7に基づいて本実施形態に係る3Dモデル再生装置4の構成について説明する。3Dモデル再生装置4は、入力されるデプス情報及び補助モデルに基づき、再生モデルを生成する装置である。
[2.3 Configuration of 3D Model Playback Device 4]
The configuration of the 3D model playback device 4 according to the present embodiment will be described based on FIG. 7. The 3D model reproduction device 4 is a device that generates a reproduction model based on the input depth information and the auxiliary model.
 図7は、本実施形態に係る3Dモデル再生装置4の機能ブロック図である。図7に示す通り、3Dモデル再生装置4は、3Dモデル再生部12及び補助モデル統合部41を備えている。 FIG. 7 is a functional block diagram of the 3D model playback device 4 according to the present embodiment. As shown in FIG. 7, the 3D model reproduction device 4 includes a 3D model reproduction unit 12 and an auxiliary model integration unit 41.
 本実施形態における、3Dモデル再生部12の機能は、実施形態1における3Dモデル再生装置2に含まれる同名モデルと同様である。 The function of the 3D model reproduction unit 12 in this embodiment is the same as that of the model with the same name included in the 3D model reproduction device 2 in the first embodiment.
 補助モデル統合部41は、入力される再生モデル及び補助モデルに基づき、再生モデルに補助モデルを加えることで、新たな3Dモデルを生成し、該3Dモデルを新たな再生モデルとして、3Dモデル再生装置4から出力する。 The auxiliary model integration unit 41 generates a new 3D model by adding the auxiliary model to the reproduction model based on the input reproduction model and the auxiliary model, and the 3D model is used as a new reproduction model. Output from 4.
 〔3.処理の流れ〕
 本実施形態における処理の流れについて図1~図3、及び図6~図8に基づいてステップごとに説明する。図8は、本実施形態に係る処理の流れを示すフローチャートである。なお、ステップS201からステップS204までは、デプス情報生成装置3における処理であって、ステップS105からステップS206までは、3Dモデル再生装置4における処理である。
[3. Processing flow]
The process flow in this embodiment will be described step by step based on FIGS. 1 to 3 and 6 to 8. FIG. 8 is a flowchart showing the flow of processing according to this embodiment. Note that steps S201 to S204 are processes in the depth information generating device 3, and steps S105 to S206 are processes in the 3D model reproducing device 4.
 (S201)
 ステップS201において、補助モデル生成部31は、入力された参照モデルに基づき、新たな参照モデル及び補助モデルを生成する。具体的には、まず入力される参照モデルから、特定の条件を満たす頂点若しくはメッシュを抜き出すことで補助モデルを生成する。次に、参照モデルから上述の条件を満たす頂点若しくはメッシュを取り除き、新たな参照モデルを生成し、デプス情報生成部11及びホール検出部13に入力する。言い替えると、参照モデルから、補助モデルを取り除くことで、新たな参照モデルを生成する。
(S201)
In step S201, the auxiliary model generation unit 31 generates a new reference model and a new auxiliary model based on the input reference model. Specifically, first, an auxiliary model is generated by extracting vertices or meshes that satisfy specific conditions from the input reference model. Next, the vertices or meshes satisfying the above conditions are removed from the reference model, a new reference model is generated, and the new reference model is input to the depth information generation unit 11 and the hole detection unit 13. In other words, a new reference model is generated by removing the auxiliary model from the reference model.
 上述の特定の条件を満たす頂点若しくはメッシュとは、例えば、3Dモデル再生部12の処理において、再現されにくい領域に対応する頂点若しくはメッシュである。3Dモデル再生部12の処理においては、ボクセル単位でデプスマップの統合を行うため、参照モデル中のボクセルサイズよりも細かなディティールは再現されない。上述した問題を鑑み、上述したボクセルサイズよりも細かなディティールを持つ、参照モデル中の頂点若しくはメッシュを抜き出すことで、補助モデルを生成する。上述の構成により、参照モデルを直せる送信する場合に比べ、トラフィック量を抑制しつつ、3Dモデル再生装置4において、ボクセルサイズよりも細かなディティールを再現できる効果を得られる。 The vertices or meshes that satisfy the above-described specific conditions are, for example, vertices or meshes that correspond to regions that are difficult to reproduce in the processing of the 3D model reproduction unit 12. In the process of the 3D model reproduction unit 12, since the depth maps are integrated in voxel units, details smaller than the voxel size in the reference model are not reproduced. In view of the above-mentioned problem, the auxiliary model is generated by extracting the vertices or meshes in the reference model, which have details smaller than the voxel size described above. With the above-described configuration, it is possible to obtain the effect of reproducing details smaller than the voxel size in the 3D model reproduction device 4 while suppressing the traffic volume, as compared with the case where the reference model can be corrected.
 (S101、S102、S103)
 ステップS101からステップS103においては実施形態1と同様の処理を行う。
(S101, S102, S103)
In steps S101 to S103, the same processing as that of the first embodiment is performed.
 (S204)
 ステップS204において、カメラ情報設定部32は、入力されたホール抽出モデルに基づき、追加のカメラ情報及び補助モデルを生成する。即ち、ステップS204では、実施形態1のステップS104と同様の処理に加え、補助モデルを生成する。
(S204)
In step S204, the camera information setting unit 32 generates additional camera information and an auxiliary model based on the input hole extraction model. That is, in step S204, an auxiliary model is generated in addition to the same processing as step S104 of the first embodiment.
 具体的には、実施形態1のステップS104と同様の処理を行いつつ、特定の条件を満たす頂点若しくはメッシュを、サブモデルから抜き出すことで、補助モデルを生成する。上述の特定の条件を満たす頂点若しくはメッシュとは、例えば、一つのサブモデルに含まれるメッシュの面積の合計が、任意の値を下回ることであるサブモデルに含まれる、頂点若しくはメッシュである。言い替えると、ホール領域の面積が、任意の値を下回るサブモデルである。小さなホール領域であれば、該ホール領域を埋めるために追加されるデプス画像よりも、より少ない情報量の頂点若しくはメッシュでホール領域を埋められる場合がある。 Specifically, the auxiliary model is generated by extracting the vertices or meshes satisfying a specific condition from the sub model while performing the same processing as step S104 of the first embodiment. The vertices or meshes satisfying the above-described specific conditions are, for example, vertices or meshes included in a sub model whose total area of meshes included in one sub model is less than an arbitrary value. In other words, it is a sub model in which the area of the hole region is below an arbitrary value. In the case of a small hole area, the hole area may be filled with vertices or meshes having a smaller amount of information than the depth image added to fill the hole area.
 上述のステップS201からステップS204の構成により、デプス情報生成装置3は、実施形態1のデプス情報生成装置1で生成されるデプス情報に加え、補助モデルを生成できる。上述の補助モデルは、参照モデルの細かな領域、及び3Dモデル再生部12において生成される再生モデルの小さなホール領域に相当する参照モデルを抜き出した3Dモデルに相当する。上述の小さなホール領域に相当する補助モデルのデータ量が、該ホール領域を埋めるような効果を持つデプス画像のデータ量よりも少なくなるように、補助モデルを選択して生成することで、上述の小さなホール領域を埋めるための情報を、デプス画像よりも情報量の少ない補助モデルの形式で伝送できるため、トラフィック量を抑制する効果を得られる。 With the configuration of steps S201 to S204 described above, the depth information generation device 3 can generate an auxiliary model in addition to the depth information generated by the depth information generation device 1 of the first embodiment. The above-described auxiliary model corresponds to a 3D model obtained by extracting a reference model corresponding to a small area of the reference model and a small hole area of the reproduction model generated in the 3D model reproduction unit 12. The auxiliary model is selected and generated so that the data amount of the auxiliary model corresponding to the above-described small hole area is smaller than the data amount of the depth image having an effect of filling the hole area. Since the information for filling the small hole area can be transmitted in the form of the auxiliary model, which has less information amount than the depth image, the effect of suppressing the traffic amount can be obtained.
 なお、補助モデルに含まれる頂点若しくはメッシュは、サブモデル若しくは参照モデルから取り除かれても良い。言い替えると、サブモデル若しくは参照モデルから、補助モデルを取り除いた3Dモデルを、新たなサブモデル若しくは参照モデルとしても良い。 Note that vertices or meshes included in the auxiliary model may be removed from the sub model or reference model. In other words, the 3D model obtained by removing the auxiliary model from the sub model or reference model may be used as the new sub model or reference model.
 (補助モデルの補足)
 ステップS201及びステップS204で生成された補助モデルは、デプス情報生成装置3の内部に保持され、デプス情報生成装置3からデプス情報が出力されると同時に、デプス情報生成装置3から出力される。補助モデル生成部31及びカメラ情報設定部32で生成される補助モデルを、統合して一つの補助モデルとしても構わない。
(Supplementary model)
The auxiliary model generated in step S201 and step S204 is held inside the depth information generation device 3, and the depth information generation device 3 outputs the depth information, and at the same time, the depth information generation device 3 outputs the depth information. The auxiliary models generated by the auxiliary model generation unit 31 and the camera information setting unit 32 may be integrated into one auxiliary model.
 なお、本実施形態におけるステップS201とステップS204は、いずれか片方のステップのみが処理される構成であっても構わない。即ち、補助モデルは、補助モデル生成部31若しくはカメラ情報設定部32の、いずれか片方の機能ブロックで生成されても良い。ステップS204で補助モデルを生成しない場合、ステップS204の処理は実施形態1のステップS104と同等である。 Note that, in step S201 and step S204 in the present embodiment, only one of the steps may be processed. That is, the auxiliary model may be generated by either one of the functional blocks of the auxiliary model generation unit 31 and the camera information setting unit 32. When the auxiliary model is not generated in step S204, the process of step S204 is the same as step S104 of the first embodiment.
 また、補助モデルは、必ずしも参照モデル若しくはサブモデルから抜き出されたままの3Dモデルである必要は無く、サブモデルから抜き出した後で、頂点若しくはメッシュの数を減らされたモデルであっても良い。上述の構成により、サブモデルに変更を加えず補助モデルにする場合よりも、データ量の少ない補助モデルを利用できるので、トラフィック量を抑制できる効果を得られる。 Further, the auxiliary model does not necessarily have to be the 3D model that has been extracted from the reference model or the sub model, and may be a model in which the number of vertices or meshes is reduced after extracting from the sub model. .. With the configuration described above, an auxiliary model having a smaller amount of data can be used as compared with the case where an auxiliary model is used without changing the sub-model, so that an effect of suppressing the traffic amount can be obtained.
 (S105)
 ステップS105においては実施形態1と同様の処理を行う。
(S105)
In step S105, the same processing as that of the first embodiment is performed.
 (S206)
 ステップS206において、補助モデル統合部41は、入力された再生モデル及び補助モデルに基づき、新たな再生モデルを生成する。具体的には、再生モデルと補助モデルを統合することで、新たな再生モデルを生成し、3Dモデル再生装置4から出力する。上述の再生モデルと補助モデルの統合とは、両者の頂点若しくはメッシュを足し合わせた3Dモデルを、新たな再生モデルとして置き換える処理を指す。
(S206)
In step S206, the auxiliary model integration unit 41 generates a new reproduction model based on the input reproduction model and auxiliary model. Specifically, by integrating the reproduction model and the auxiliary model, a new reproduction model is generated and output from the 3D model reproduction device 4. The above-mentioned integration of the reproduction model and the auxiliary model refers to a process of replacing the 3D model obtained by adding the vertices or meshes of both with each other as a new reproduction model.
 上述の構成により、3Dモデル再生部12においてデプス情報を統合することで生成される再生モデルに、補助モデルを追加した3Dモデルを、3Dモデル生成装置4から出力できる。これにより、デプス情報生成装置3のカメラ情報設定部32で生成された補助モデルを、上述の再生モデルに加えることで、ホール領域が埋められた再生モデルを生成できる。また、デプス情報生成装置3の補助モデル生成部31で生成された補助モデルを、上述の再生モデルに加えることで、ボクセルの大きさで3Dモデルのディティールが制限されるデプス統合では再現できない様なディティールを持つ再生モデルを生成できる。上述した処理により、参照モデルに近い再生モデルを生成できる効果を得られる。 With the above configuration, the 3D model generation device 4 can output a 3D model in which an auxiliary model is added to the reproduction model generated by integrating the depth information in the 3D model reproduction unit 12. Accordingly, by adding the auxiliary model generated by the camera information setting unit 32 of the depth information generation device 3 to the above-described reproduction model, it is possible to generate the reproduction model in which the hole area is filled. In addition, by adding the auxiliary model generated by the auxiliary model generation unit 31 of the depth information generation device 3 to the above-described reproduction model, it is not possible to reproduce by depth integration in which the detail of the 3D model is limited by the voxel size. A reproduction model with details can be generated. By the above-described processing, it is possible to obtain the effect of generating a reproduction model close to the reference model.
 なお、ステップS206における処理の終了後、3Dモデル再生装置4から出力された再生モデルを表示する際、該頂点を、ホール領域を埋める様な大きさで表示しても良い。上述の構成により、再生モデルのホール領域を、より少ない頂点数の補助モデルで埋められるため、補助モデルのデータ量を削減でき、トラフィック量を抑制できる効果を得られる。 Note that when the reproduction model output from the 3D model reproduction device 4 is displayed after the processing in step S206 is completed, the apex may be displayed in a size that fills the hole area. With the above configuration, since the hole area of the reproduction model is filled with the auxiliary model having a smaller number of vertices, the data amount of the auxiliary model can be reduced and the traffic amount can be suppressed.
 〔実施形態3〕
 本発明の第3の実施形態について、図1~図3、及び図9~図11に基づいて説明する。
[Embodiment 3]
A third embodiment of the present invention will be described with reference to FIGS. 1 to 3 and 9 to 11.
 本実施形態においては、デプス情報を生成するデプス情報生成装置5において、さらに、補助TSDF情報を生成する処理を行う構成について説明する。なお便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、説明を省略する。 In the present embodiment, a configuration will be described in which the depth information generation device 5 that generates depth information further performs a process of generating auxiliary TSDF information. For the sake of convenience, members having the same functions as the members described in the above embodiment will be designated by the same reference numerals, and the description thereof will be omitted.
 〔1.デプス情報生成装置5の構成〕
 図9に基づいて本実施形態に係るデプス情報生成装置5の構成について説明する。
[1. Configuration of Depth Information Generation Device 5]
The configuration of the depth information generation device 5 according to this embodiment will be described based on FIG. 9.
 デプス情報生成装置3は、入力される参照モデルに基づき、デプス情報及び補助TSDFを生成する装置である。本実施形態の目的は、デプス情報から生成する再生ボクセル空間と、参照モデルに基づき生成される参照ボクセル空間を比較することで、補助TSDFを生成し、3Dモデル再生装置6に送信することである。 The depth information generation device 3 is a device that generates depth information and auxiliary TSDF based on an input reference model. The purpose of this embodiment is to generate a supplementary TSDF by comparing the reproduction voxel space generated from the depth information with the reference voxel space generated based on the reference model, and to transmit the auxiliary TSDF to the 3D model reproduction device 6. ..
 上述した再生ボクセル空間とは、3Dモデル再生部51において、デプス情報に基づき生成される、TSDF値及びウェイト値が記録されたボクセル空間である。 The playback voxel space described above is a voxel space in which the TSDF value and the weight value are recorded, which are generated by the 3D model playback unit 51 based on the depth information.
 上述した参照ボクセル空間とは、参照ボクセル空間生成部52において、参照モデルに基づき生成される、TSDF値が及びウェイト値が記録されたボクセル空間である。なお、再生ボクセル空間及び参照ボクセル空間は、等しいボクセル解像度を持つものとする。言い替えると、両者のボクセルの数は同じであり、一対一で対応するボクセルが存在する。 The reference voxel space described above is a voxel space in which the TSDF value and the weight value are recorded, which are generated by the reference voxel space generation unit 52 based on the reference model. Note that the reproduction voxel space and the reference voxel space have the same voxel resolution. In other words, both voxels have the same number, and there is a one-to-one corresponding voxel.
 上述した補助TSDFとは、補助TSDF生成部53において、再生ボクセル空間及び参照ボクセル空間に基づいて生成される、ボクセルの座標と、該ボクセルが持つTSDF値が記録された情報である。補助TSDFには、少なくとも、元となったボクセルの座標と、該ボクセルの持つTSDF値を持つ。補助TSDFは、3Dモデル再生装置6の3Dモデル再生部61において、デプス情報から生成されたボクセル空間に加えられることで、3Dモデル再生部61において生成される再生モデルの精度を向上する目的で用いられる。 The above-mentioned auxiliary TSDF is information in which the auxiliary TSDF generation unit 53 generates the coordinates of the voxel and the TSDF value of the voxel, which is generated based on the reproduction voxel space and the reference voxel space. The auxiliary TSDF has at least the coordinates of the original voxel and the TSDF value of the voxel. The auxiliary TSDF is used in the 3D model reproduction unit 61 of the 3D model reproduction device 6 for the purpose of improving the accuracy of the reproduction model generated in the 3D model reproduction unit 61 by being added to the voxel space generated from the depth information. To be
 図9は、本実施形態に係るデプス情報生成装置5の機能ブロック図である。図9に示す通り、デプス情報生成装置5は、デプス情報生成部11、3Dモデル再生部51、参照ボクセル空間生成部52、補助TSDF生成部53を備えている。本実施形態における、デプス情報生成部11の機能は、実施形態1におけるデプス情報生成装置1に含まれる同名ブロックと同様である。 FIG. 9 is a functional block diagram of the depth information generation device 5 according to this embodiment. As shown in FIG. 9, the depth information generation device 5 includes a depth information generation unit 11, a 3D model reproduction unit 51, a reference voxel space generation unit 52, and an auxiliary TSDF generation unit 53. The function of the depth information generation unit 11 in this embodiment is the same as that of the same name block included in the depth information generation device 1 in the first embodiment.
 3Dモデル再生部51は、入力されるデプス情報に基づき、デプス統合の処理を行い、再生ボクセル空間を生成する。 The 3D model playback unit 51 performs a depth integration process based on the input depth information to generate a playback voxel space.
 参照ボクセル空間生成部52は、入力される参照モデルに基づき、参照ボクセル空間を生成する。
 補助TSDF生成部は、入力される再生ボクセル空間及び参照ボクセル空間に基づき、再生ボクセル空間と参照ボクセル空間を比較することで、補助TSDFを生成する。
The reference voxel space generation unit 52 generates a reference voxel space based on the input reference model.
The auxiliary TSDF generation unit generates the auxiliary TSDF by comparing the reproduction voxel space and the reference voxel space based on the input reproduction voxel space and reference voxel space.
 〔2.3Dモデル再生装置6の構成〕
 図10に基づいて本実施形態に係る3Dモデル再生装置6の構成について説明する。3Dモデル再生装置6は、入力されるデプス情報及び補助TSDFに基づき、再生モデルを生成する装置である。
[2.3 Configuration of 3D Model Playback Device 6]
The configuration of the 3D model playback device 6 according to the present embodiment will be described based on FIG. The 3D model reproduction device 6 is a device that generates a reproduction model based on the input depth information and the auxiliary TSDF.
 図10は、本実施形態に係る3Dモデル再生装置6の機能ブロック図である。図10に示す通り、3Dモデル再生装置6は、3Dモデル再生部61を備えている。 FIG. 10 is a functional block diagram of the 3D model playback device 6 according to the present embodiment. As shown in FIG. 10, the 3D model playback device 6 includes a 3D model playback unit 61.
 3Dモデル再生部61は、入力されるデプス情報及び補助TSDFに基づき、再生モデルを生成する。 The 3D model reproduction unit 61 generates a reproduction model based on the input depth information and auxiliary TSDF.
 〔3.処理の流れ〕
 本実施形態における処理の流れについて図1~図3、及び図9~図11に基づいてステップごとに説明する。図11は、本実施形態に係る処理の流れを示すフローチャートである。なお、ステップS101からステップS303までは、デプス情報生成装置5における処理であって、ステップS304からステップS106までは、3Dモデル再生装置6における処理である。
[3. Processing flow]
The flow of processing in this embodiment will be described step by step based on FIGS. 1 to 3 and 9 to 11. FIG. 11 is a flowchart showing the flow of processing according to this embodiment. Note that steps S101 to S303 are processes in the depth information generation device 5, and steps S304 to S106 are processes in the 3D model reproduction device 6.
 (S101)
 ステップS101においては実施形態1と同様の処理を行う。
(S101)
In step S101, the same processing as that of the first embodiment is performed.
 (S301)
 続いて、ステップS301において、3Dモデル再生部51は、入力されたデプス情報に基づき、再生ボクセル空間を生成する。具体的には、実施形態1のステップS102の処理において、デプス情報を統合し、ボクセルのTSDF値及びウェイト値を計算するまでの処理を行い、該ボクセルのTSDF値を抜き出すことで、再生ボクセル空間を生成し、補助TSDF生成部53に入力する。
(S301)
Subsequently, in step S301, the 3D model reproduction unit 51 generates a reproduction voxel space based on the input depth information. Specifically, in the process of step S102 of the first embodiment, the depth information is integrated, the processes up to the calculation of the TSDF value and the weight value of the voxel are performed, and the TSDF value of the voxel is extracted to reproduce the voxel space. Is generated and input to the auxiliary TSDF generation unit 53.
 なお、ステップS301の処理において、TSDF値及びウェイト値の計算は、デプス画素中の画素について、該画素の法線方向にあるボクセルについて計算するものとする。 Note that, in the process of step S301, the TSDF value and the weight value are calculated for the pixels in the depth pixel and for the voxels in the normal direction of the pixel.
 (S302)
 続いて、ステップS302において、参照ボクセル空間生成部52は、入力された参照モデルに基づき、参照ボクセル空間を生成する。具体的には、参照モデルにふくまれる全ての頂点について、該頂点の法線方向にあるボクセルを対象にTSDF値及びウェイトを計算することで、参照ボクセル空間を生成し、補助TSDF生成部53に入力する。。ここでのTSDF値は、ボクセルから参照モデルの頂点までの距離を表し、TSDF値が小さい程、頂点に近いことを意味する符号付きの数値である。例えば、正のTSDF値は、頂点から見て法線が正の側にあるボクセルを意味し、負のTSDF値は、頂点から見て法線が負の側にあるボクセルを意味する。1つのボクセルに複数のTSDF値が入る場合、それらのボクセルのTSDF値の平均値を取るものとする。また、ウェイト値は0でない一律の値に設定される。
(S302)
Then, in step S302, the reference voxel space generation unit 52 generates a reference voxel space based on the input reference model. Specifically, for all vertices included in the reference model, the reference voxel space is generated by calculating the TSDF value and weight for the voxels in the normal direction of the vertices, and the auxiliary TSDF generation unit 53 is generated. input. .. The TSDF value here represents the distance from the voxel to the vertex of the reference model, and is a signed numerical value meaning that the smaller the TSDF value, the closer to the vertex. For example, a positive TSDF value means a voxel whose normal line is on the positive side when viewed from the apex, and a negative TSDF value means a voxel whose normal line is on the negative side when viewed from the apex. When a plurality of TSDF values are included in one voxel, the average value of the TSDF values of those voxels is taken. Further, the weight value is set to a non-zero uniform value.
 なお、参照ボクセル空間生成部52におけるTSDF値の計算では、3Dモデル再生部51におけるTSDF値の計算よりも、狭い範囲のボクセルについて、TSDF値の計算を行う。例えば、3Dモデル再生部51におけるTSDF値の計算においては、対応する面から3ボクセルの範囲についてTSDF値を計算し、参照ボクセル空間生成部52におけるTSDF値の計算においては、対応する頂点から1ボクセルの範囲についてTSDF値を計算する。 Note that in the calculation of the TSDF value in the reference voxel space generation unit 52, the TSDF value is calculated for voxels in a narrower range than the calculation of the TSDF value in the 3D model reproduction unit 51. For example, in the calculation of the TSDF value in the 3D model reproducing unit 51, the TSDF value is calculated in the range of 3 voxels from the corresponding surface, and in the calculation of the TSDF value in the reference voxel space generating unit 52, 1 voxel from the corresponding vertex. Calculate the TSDF value for the range.
 (S303)
 続いて、ステップS303において、補助TSDF生成部53は、入力された再生ボクセル空間及び参照ボクセル空間に基づき、補助TSDFを生成する。具体的には、入力される再生ボクセル空間と参照ボクセル空間を比較し、補助TSDFを生成し、デプス情報生成装置6から出力する。上述した再生ボクセル空間と参照ボクセル空間の比較とは、例えば、再生ボクセル空間中に存在する全てのボクセルと、該ボクセルに対応する参照ボクセル空間のボクセルについて、ウェイト値が0か否かを判定する処理である。ここで、ウェイト値が0であるボクセルは、一度もTSDF値の計算が行われていないボクセルを指す。具体的には、上述した再生ボクセル空間のボクセルのウェイト値が0であって、参照ボクセル空間のボクセルのウェイト値が0でない、参照ボクセル空間のボクセルを取り出す。即ち、参照ボクセル空間においてはTSDF値の計算が行われているが、再生ボクセル空間においてはTSDF値の計算が行われていないボクセルを、参照ボクセル空間から取り出す。上記の条件を満たすボクセルは、再生モデルにおけるホール領域に相当する。
(S303)
Subsequently, in step S303, the auxiliary TSDF generation unit 53 generates the auxiliary TSDF based on the input reproduction voxel space and reference voxel space. Specifically, the input reproduction voxel space and the reference voxel space are compared, an auxiliary TSDF is generated, and the auxiliary TSDF is output from the depth information generating device 6. The comparison between the reproduction voxel space and the reference voxel space described above is, for example, for all voxels existing in the reproduction voxel space and for the voxels in the reference voxel space corresponding to the voxel, whether or not the weight value is 0 is determined. Processing. Here, a voxel with a weight value of 0 indicates a voxel for which the TSDF value has never been calculated. Specifically, a voxel in the reference voxel space in which the weight value of the voxel in the reproduction voxel space is 0 and the weight value of the voxel in the reference voxel space is not 0 is extracted. That is, a voxel in which the TSDF value is calculated in the reference voxel space but the TSDF value is not calculated in the reproduction voxel space is extracted from the reference voxel space. The voxels satisfying the above conditions correspond to the hole area in the reproduction model.
 また例えば、再生ボクセル空間中に存在する、ウェイト値が0でない全てのボクセルと、該ボクセルに対応する、ウェイト値が0でない参照ボクセル空間のボクセルについて、TSDF値が大きく異なるか否かを判定する処理である。具体的には、上述した再生ボクセル空間のボクセルの持つTSDF値と、参照ボクセル空間のボクセルが持つTSDF値の差を計算し、TSDF値の差が一定以上になる、参照ボクセル空間のボクセルを取り出す。上記の条件を満たすボクセルは、再生モデルにおいて、参照モデルと乖離した領域に相当する。 Further, for example, it is determined whether or not the TSDF values of all voxels in the reproduction voxel space whose weight values are not 0 and the voxels of the reference voxel space whose weight value is not 0 corresponding to the voxels are significantly different. Processing. Specifically, the difference between the TSDF value of the voxel in the reproduction voxel space and the TSDF value of the voxel in the reference voxel space is calculated, and the voxel in the reference voxel space at which the difference in the TSDF value becomes a certain value or more is extracted. .. The voxels satisfying the above conditions correspond to regions in the reproduction model that deviate from the reference model.
 また例えば、再生ボクセル空間中に存在する、ウェイト値が0でない全てのボクセルと、該ボクセルに対応する、ウェイト値が0でない参照ボクセル空間のボクセルについて、TSDF値の符号が一致しているか否かを判定する処理である。具体的には、上述した再生ボクセル空間のボクセルの持つTSDF値と、参照ボクセル空間のボクセルが持ちTSDF値の符号を比較し、符号が一致していなければ、参照ボクセル空間のボクセルを取り出す。上記の条件を満たすボクセルは、再生モデルにおいて、参照モデルと乖離した領域に相当する。 Further, for example, whether all the voxels having a weight value other than 0 existing in the reproduction voxel space and the voxels of the reference voxel space having a weight value other than 0 corresponding to the voxels have the same TSDF value sign or not. Is a process for determining. Specifically, the TSDF value of the voxel in the playback voxel space described above is compared with the code of the TSDF value of the voxel in the reference voxel space, and if the codes do not match, the voxel in the reference voxel space is extracted. The voxels satisfying the above conditions correspond to regions in the reproduction model that deviate from the reference model.
 これにより取り出した全てのボクセルについて、該ボクセルの座標、及び参照モデル内の該座標にあるボクセルのTSDF値をまとめることで、補助TSDFを生成する。補助TSDFの具体例を挙げると、1つのボクセルに付き(ボクセルX座標、ボクセルY座標、ボクセルZ座標、TSDF値)という情報を持つ情報である。 -For all voxels extracted by this, the auxiliary TSDF is generated by putting together the coordinates of the voxel and the TSDF values of the voxels at the coordinates in the reference model. A specific example of the auxiliary TSDF is information having information (per voxel X coordinate, voxel Y coordinate, voxel Z coordinate, TSDF value) per one voxel.
 上述のステップS101からステップS303の構成により、デプス情報生成部11において生成されるデプス情報を統合することで生成される再生ボクセル空間と、参照モデルに基づき生成される参照ボクセル空間を比較することで、補助TSDFを生成し、出力することができる。補助TSDFは、デプス情報に基づく再生ボクセル空間になく、参照ボクセル空間にあるTSDF値を持っていると言える。言い替えると、デプス情報生成部11から出力されるデプス情報だけでは再現できないような、参照モデルの領域を、補助TSDFにより再現できる。これにより、3Dモデル生成装置6において、より参照モデルに近い再生モデルを生成できる効果を得られる。また、再生モデルの小さなホール領域を埋めるための情報を、デプス画像よりも情報量の少ない補助TSDFの形式で伝送することで、トラフィック量を抑制する効果を得られる。 With the configuration of steps S101 to S303 described above, the reproduction voxel space generated by integrating the depth information generated by the depth information generation unit 11 and the reference voxel space generated based on the reference model are compared. , An auxiliary TSDF can be generated and output. It can be said that the auxiliary TSDF has a TSDF value that is not in the reproduction voxel space based on the depth information but in the reference voxel space. In other words, the area of the reference model, which cannot be reproduced only by the depth information output from the depth information generation unit 11, can be reproduced by the auxiliary TSDF. As a result, in the 3D model generation device 6, it is possible to obtain the effect of generating a reproduction model that is closer to the reference model. Further, by transmitting the information for filling the small hole area of the reproduction model in the form of the auxiliary TSDF, which has a smaller information amount than the depth image, an effect of suppressing the traffic amount can be obtained.
 (S304)
 ステップS304において、3Dモデル再生部61は、入力されるデプス情報及び補助TSDFに基づき、再生モデルを生成する。具体的には、まず、ステップS301の処理において、デプス情報を統合し、ボクセル空間のTSDF値及びウェイト値を計算するまでの処理を行う。次に、3Dモデル再生部61において計算したボクセル空間に、補助TSDFを加える。次に、補助TSDFを加えたボクセル空間に基づき、再生モデルを生成し、出力する。ボクセル空間から再生モデルを生成する方法は、実施形態1の3Dモデル再生部で行われる処理と同様である。
(S304)
In step S304, the 3D model reproduction unit 61 generates a reproduction model based on the input depth information and auxiliary TSDF. Specifically, first, in the process of step S301, the processes of integrating the depth information and calculating the TSDF value and the weight value of the voxel space are performed. Next, the auxiliary TSDF is added to the voxel space calculated by the 3D model reproduction unit 61. Next, a reproduction model is generated and output based on the voxel space to which the auxiliary TSDF is added. The method of generating the reproduction model from the voxel space is the same as the processing performed by the 3D model reproduction unit according to the first embodiment.
 ボクセル空間に補助TSDFを加える方法は、例えば、ボクセル空間中の、補助TSDFに記録された座標に存在するボクセルのTSDF値を、補助TSDFに記録されたTSDF値で上書きする方法である。なお、TSDF値を上書きした場合、該ボクセルがウェイト値を持っているか否かに関わらず、該ボクセルのウェイト値は0でない最低値に置き換える。 The method of adding the auxiliary TSDF to the voxel space is, for example, a method of overwriting the TSDF value of the voxel existing at the coordinates recorded in the auxiliary TSDF in the voxel space with the TSDF value recorded in the auxiliary TSDF. When the TSDF value is overwritten, the weight value of the voxel is replaced with the lowest non-zero value regardless of whether or not the voxel has a weight value.
 上述の構成により、3Dモデル再生部61においてデプス情報を統合することで計算されるボクセル空間に、補助TSDFの持つTSDF値を加える。これにより、上述のデプス情報のみを統合することで生成される再生モデルに存在するホールを、補助TSDFにより埋めることができる効果を得られる。また、例えば、参照モデル中の尖った領域などの、デプス情報を統合する方法では再現の難しい領域を、補助TSDFを加えることにより再現できる効果を得られる。 With the above configuration, the TSDF value of the auxiliary TSDF is added to the voxel space calculated by integrating the depth information in the 3D model reproduction unit 61. As a result, it is possible to obtain the effect that the holes existing in the reproduction model generated by integrating only the depth information described above can be filled with the auxiliary TSDF. Further, for example, a region which is difficult to reproduce by the method of integrating the depth information, such as a sharp region in the reference model, can be reproduced by adding the auxiliary TSDF.
 〔実施形態3の変形例〕
 以下、実施形態3の変形例について、図1~図3、及び図9~12に基づいて説明する。本変形例においては、実施形態1及び実施形態3を併用する構成について説明する。なお便宜上、上記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、説明を省略する。本変形例においては図12に示す構成を用いる。
[Modification of Embodiment 3]
Hereinafter, a modified example of the third embodiment will be described with reference to FIGS. 1 to 3 and 9 to 12. In this modification, a configuration in which the first and third embodiments are used together will be described. For the sake of convenience, members having the same functions as the members described in the above embodiment are designated by the same reference numerals and the description thereof will be omitted. In this modification, the configuration shown in FIG. 12 is used.
 本変形例の目的は、デプス情報生成装置5aにおいて、実施形態1及び実施形態3を併用することを目的とする。 The purpose of this modification is to use the first and third embodiments together in the depth information generation device 5a.
 本変形例に係る3Dモデル再生部51aは、再生ボクセル空間に加え、実施形態1のステップS102と同様に、再生モデルも生成する。 The 3D model playback unit 51a according to the present modification generates a playback model as well as the playback voxel space, as in step S102 of the first embodiment.
 本変形例における処理では、まず、実施形態1のステップS101からステップS104までの処理をループする。ここでは、3Dモデル再生部12の処理を、3Dモデル再生部51aが担う。実施形態1に記載のループ終了判定の条件を満たした場合、デプス情報を生成し、出力し、ループを終了する。次に、実施形態3のステップS301からステップS303までの処理を行い、補助TSDFを生成し、デプス情報生成装置5aから出力する。ただし、ステップS301において、3Dモデル再生部51aに入力されるデプス情報は、上述の処理で生成したデプス情報である。 In the processing in this modification, first, the processing from step S101 to step S104 of the first embodiment is looped. Here, the processing of the 3D model reproducing unit 12 is carried out by the 3D model reproducing unit 51a. When the condition for the loop end determination described in the first embodiment is satisfied, the depth information is generated and output, and the loop is ended. Next, the processing from step S301 to step S303 of the third embodiment is performed to generate the auxiliary TSDF, which is output from the depth information generation device 5a. However, in step S301, the depth information input to the 3D model reproduction unit 51a is the depth information generated by the above-described processing.
 上述の構成により、参照ボクセル空間と、実施形態1で生成したデプス情報に基づいて生成される再生ボクセル空間とで、本変形例におけるステップS304のボクセル空間を比較する処理が行える。これにより、大きなホール領域を、実施形態1において追加されるデプス画像により埋めると共に、小さなホール領域を、実施形態3において生成される補助TSDFで埋めることができ、全体のデータ量を削減できるため、トラフィック量を抑制する効果を得られる。また、参照モデルに近い再生モデルを生成できる効果を得られる。 With the above-described configuration, the process of comparing the voxel space of step S304 in this modification with the reference voxel space and the reproduction voxel space generated based on the depth information generated in the first embodiment can be performed. As a result, the large hole area can be filled with the depth image added in the first embodiment, and the small hole area can be filled with the auxiliary TSDF generated in the third embodiment. The effect of suppressing the traffic volume can be obtained. In addition, an effect that a reproduction model close to the reference model can be generated is obtained.
 〔ソフトウェアによる実現例〕
 デプス情報生成装置1及び1a及び3及び5及び5a及び3Dモデル再生装置2及び4及び6の制御ブロックは、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、ソフトウェアによって実現してもよい。
[Example of software implementation]
Even if the control blocks of the depth information generation devices 1 and 1a and 3 and 5 and 5a and the 3D model reproduction devices 2 and 4 and 6 are realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like. It may be realized by software.
 後者の場合、デプス情報生成装置1及び1a及び3及び5及び5a及び3Dモデル再生装置2及び4及び6は、各機能を実現するソフトウェアであるプログラムの命令を実行するコンピュータを備えている。このコンピュータは、例えば少なくとも1つのプロセッサ(制御装置)を備えていると共に、上記プログラムを記憶したコンピュータ読み取り可能な少なくとも1つの記録媒体を備えている。そして、上記コンピュータにおいて、上記プロセッサが上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。上記プロセッサとしては、例えばCPU(Central Processing Unit)を用いることができる。上記記録媒体としては、「一時的でない有形の媒体」、例えば、ROM(Read Only Memory)等の他、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムを展開するRAM(Random Access Memory)などをさらに備えていてもよい。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明の一態様は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。 In the latter case, the depth information generation devices 1 and 1a and 3 and 5 and 5a, and the 3D model reproduction devices 2 and 4 and 6 are equipped with a computer that executes the instructions of a program that is software that realizes each function. The computer includes, for example, at least one processor (control device) and at least one computer-readable recording medium that stores the program. Then, in the computer, the processor reads the program from the recording medium and executes the program to achieve the object of the present invention. As the processor, for example, a CPU (Central Processing Unit) can be used. As the recording medium, a "non-transitory tangible medium" such as a ROM (Read Only Memory), a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used. Further, a RAM (Random Access Memory) for expanding the above program may be further provided. The program may be supplied to the computer via any transmission medium (communication network, broadcast wave, etc.) capable of transmitting the program. Note that one aspect of the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the program is embodied by electronic transmission.
 〔まとめ〕
 本発明の態様1に係るデプス情報生成装置は、参照モデルを元にカメラ情報に基づいたデプス情報を生成するデプス情報生成部と、前記デプス情報を統合して再生モデルを再生する3Dモデル再生部と、前記参照モデルを参照して前記再生モデルに存在するホール領域を推定しホール抽出モデルとして抽出するホール検出部と、前記ホール抽出モデルに基づき、前記カメラ情報を設定するカメラ情報設定部と、を備えることを特徴とする構成である。
[Summary]
A depth information generation device according to aspect 1 of the present invention is a depth information generation unit that generates depth information based on camera information based on a reference model, and a 3D model reproduction unit that reproduces a reproduction model by integrating the depth information. A hole detection unit that estimates a hole area existing in the reproduction model by referring to the reference model and extracts the hole region as a hole extraction model; and a camera information setting unit that sets the camera information based on the hole extraction model, Is provided.
 上記の構成によれば、トラフィック量を抑えると共に、3Dモデル再生装置において再生モデルの品質を向上させられるデプス情報を、生成するデプス情報生成装置を実現できる。 According to the above configuration, it is possible to realize a depth information generation device that generates depth information that can suppress the traffic volume and improve the quality of the reproduction model in the 3D model reproduction device.
 本発明の態様2に係るデプス情報生成装置は、上記の態様1において、前記参照モデル中の細かい領域及びホール領域を抜き出し補助モデルとする補助モデル生成部と、前記ホール抽出モデル中の細かい領域及びホール領域を抜き出すことで補助モデルを生成するカメラ情報設定部と、をさらに備える構成としても良い。 The depth information generation device according to the second aspect of the present invention is the depth information generation device according to the first aspect, wherein an auxiliary model generation unit that extracts a fine area and a hole area in the reference model as an auxiliary model, and a fine area in the hole extraction model A camera information setting unit that generates an auxiliary model by extracting a hole area may be further included.
 本発明の態様3に係るデプス情報生成装置は、参照モデルを元にカメラ情報に基づいたデプス情報を生成するデプス情報生成部と、前記デプス情報を統合して再生ボクセル空間を生成する3Dモデル再生部と、前記参照モデルに基づき参照ボクセル空間を生成する参照ボクセル空間生成部と、前記再生ボクセル空間と上記参照ボクセル空間を比較することで補助TSDFを生成する補助TSDF生成部と、を備えることを特徴とする構成である。 A depth information generation device according to aspect 3 of the present invention is a depth information generation unit that generates depth information based on camera information based on a reference model, and a 3D model reproduction that integrates the depth information to generate a reproduction voxel space. And a reference voxel space generation unit that generates a reference voxel space based on the reference model, and an auxiliary TSDF generation unit that generates an auxiliary TSDF by comparing the reproduction voxel space and the reference voxel space. This is a characteristic configuration.
 本発明の態様4に係るデプス情報生成装置は、上記の態様1から3のいずれかにおいて、前記3Dモデル再生部において前記デプス情報を統合する際に上記デプス情報に映された物体の輪郭近辺のデプス値を統合しない構成としても良い。 The depth information generation device according to aspect 4 of the present invention is the depth information generation device according to any one of aspects 1 to 3 above, wherein when the depth information is integrated in the 3D model reproduction unit, the depth information is displayed in the vicinity of the contour of the object reflected in the depth information. The depth values may not be integrated.
 本発明の態様5に係るデプス情報生成装置は、上記の態様1から3のいずれかにおいて、前記3Dモデル再生部において前記デプス情報を統合した後にTSDF値を補間するフィルタを加える構成としても良い。 The depth information generation device according to the fifth aspect of the present invention may be configured such that, in any of the above-described first to third aspects, a filter that interpolates the TSDF value is added after the depth information is integrated in the 3D model reproduction unit.
 本発明の態様6に係るデプス情報生成装置は、上記の態様1から3のいずれかにおいて、前記ホール検出部において前記再生モデルのホール領域を検出するために前記参照モデルの最近傍頂点が隣接するメッシュの数を利用する構成としても良い。 In the depth information generation device according to Aspect 6 of the present invention, in any one of Aspects 1 to 3 above, the nearest vertices of the reference model are adjacent to each other in order to detect the hole area of the reproduction model in the hole detection unit. It may be configured to use the number of meshes.
 本発明の態様7に係るデプス情報生成装置は、上記の態様1から3のいずれかにおいて、前記カメラ情報設定部が生成した前記カメラ情報に基づきデプス画像を一つずつ前記デプス情報に加え、加える度に前記再生モデルの精度を図り水準を満たさない場合、追加したデプス画像をデプス情報から取り除く構成としても良い。 The depth information generation device according to aspect 7 of the present invention is the depth information generation device according to any one of aspects 1 to 3 above, in which depth images are added one by one to the depth information based on the camera information generated by the camera information setting unit. When the accuracy of the reproduction model is not satisfied and the level is not satisfied each time, the added depth image may be removed from the depth information.
 本発明の態様8に係るデプス情報生成装置は、上記の態様1から3のいずれかにおいて、デプス情報生成部において参照モデルに代わりサブモデルを元に前記デプス情報を生成する構成としても良い。 The depth information generation device according to the eighth aspect of the present invention may be configured to generate the depth information based on a sub-model instead of the reference model in the depth information generation section in any of the above-described first to third aspects.
 本発明の態様9に係るデプス情報生成装置は、上記の態様1から3のいずれかにおいて、前記参照モデルにサブディビジョン処理を施し一様な分布を持つ3Dモデルとするサブディビジョン部を更に備え、ホール検出部において分割されたグリッド毎に前記再生モデルの精度を評価し、評価の悪いグリッドに対応するカメラパラメータを優先的にカメラ情報に加える構成としても良い。 The depth information generation device according to aspect 9 of the present invention is the depth information generation device according to any one of aspects 1 to 3 above, further including a subdivision unit that performs subdivision processing on the reference model to form a 3D model having a uniform distribution, The accuracy of the reproduction model may be evaluated for each grid divided by the hole detection unit, and the camera parameter corresponding to the poorly evaluated grid may be preferentially added to the camera information.
 本発明の態様10に係る3Dモデル再生装置は、前記デプス情報生成部で生成された前記デプス情報を統合し前記再生モデルを再生する上記3Dモデル再生部と、を備えることを特徴とする構成である。 A 3D model reproduction device according to aspect 10 of the present invention comprises the 3D model reproduction unit configured to integrate the depth information generated by the depth information generation unit and reproduce the reproduction model. is there.
 本発明の態様11に係る3Dモデル再生装置は、上記の態様10において、前記再生モデルに補助モデルを加え新たな再生モデルとする補助モデル生成部と、をさらに備え、前記再生モデルの細かい領域を復元する構成としても良い。 A 3D model reproduction device according to aspect 11 of the present invention is the same as the aspect 10 described above, further including an auxiliary model generation unit that adds an auxiliary model to the reproduction model to create a new reproduction model, and stores a detailed region of the reproduction model. It may be configured to restore.
 本発明の態様11に係る3Dモデル再生装置は、上記の態様10において、前記デプス情報を統合することで上に補助TSDFを加える3Dモデル生成部と、を備え、前記再生モデルの細かい領域を復元する構成としても良い。 A 3D model playback device according to aspect 11 of the present invention is the aspect 10 described above, comprising a 3D model generation unit that adds an auxiliary TSDF to the top by integrating the depth information, and restores a fine region of the playback model. It may be configured to.
 本発明の各態様に係るデプス情報生成装置1、1a、1b、3、5、5a及び3Dモデル生成装置2、4、6は、コンピュータによって実現してもよく、この場合には、コンピュータをデプス情報生成装置1、1a、1b、3、5、5a及び3Dモデル生成装置2、4、6が備える各部(ソフトウェア要素)として動作させることによりデプス情報生成装置1、1a、1b、3、5、5a及び3Dモデル生成装置2、4、6をコンピュータにて実現させるデプス情報生成装置1、1a、1b、3、5、5a及び3Dモデル生成装置2、4、6の制御プログラム、およびそれを記録したコンピュータ読み取り可能な記録媒体も、本発明の範疇に入る。 The depth information generation devices 1, 1a, 1b, 3, 5, 5a and the 3D model generation devices 2, 4, 6 according to the respective aspects of the present invention may be realized by a computer. The depth information generation devices 1, 1a, 1b, 3, 5 and 5 are operated by operating the information generation devices 1, 1a, 1b, 3, 5 and 5a and the respective units (software elements) included in the 3D model generation devices 2, 4 and 6. 5a and 3D model generation devices 2, 4 and 6 realized by computer, depth information generation devices 1, 1a, 1b, 3, 5, 5a and control programs of 3D model generation devices 2, 4 and 6, and recording them The computer-readable recording medium described above also falls within the scope of the present invention.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。

 
The present invention is not limited to the above-described embodiments, but various modifications can be made within the scope of the claims, and embodiments obtained by appropriately combining the technical means disclosed in the different embodiments Is also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.

Claims (6)

  1.  参照モデルを元にカメラ情報に基づいたデプス情報を生成するデプス情報生成部と、
     上記デプス情報を統合して再生モデルを再生する3Dモデル再生部と、
     上記参照モデルを参照して、上記再生モデルに存在するホール領域を推定し、ホール抽出モデルとして抽出するホール検出部と、
     上記ホール抽出モデルに基づき、上記カメラ情報を設定するカメラ情報設定部と、
     を備えることを特徴とするデプス情報生成装置。
    A depth information generation unit that generates depth information based on camera information based on the reference model,
    A 3D model reproduction unit for reproducing the reproduction model by integrating the depth information,
    With reference to the reference model, the hole area existing in the reproduction model is estimated, and a hole detection unit for extracting as a hole extraction model,
    A camera information setting unit that sets the camera information based on the hole extraction model;
    A depth information generation device comprising:
  2.  上記参照モデル中の細かい領域及びホール領域を抜き出し補助モデルとする補助モデル生成部と、
     上記ホール抽出モデル中の細かい領域及びホール領域を抜き出すことで補助モデルを生成するカメラ情報設定部と、
     をさらに備え、上記再生モデルの再生時に上記補助モデルを上記再生モデルに加える
     ことを特徴とする請求項1に記載のデプス情報生成装置。
    An auxiliary model generation unit that extracts a fine area and a hole area in the reference model as an auxiliary model,
    A camera information setting unit that generates an auxiliary model by extracting a fine area and a hole area in the hole extraction model,
    The depth information generating apparatus according to claim 1, further comprising: and adding the auxiliary model to the reproduction model when the reproduction model is reproduced.
  3.  上記デプス情報を統合して再生ボクセル空間を生成する3Dモデル再生部と、
     上記参照モデルに基づき参照ボクセル空間を生成する参照ボクセル空間生成部と、
     上記再生ボクセル空間と上記参照ボクセル空間を比較することで補助TSDFを生成する補助TSDF生成部と、
     をさらに備え、上記再生モデルの再生時に上記デプス情報を統合した上に補助TSDFを加える
     ことを特徴とする請求項1に記載のデプス情報生成装置。
    A 3D model reproduction unit that integrates the depth information to generate a reproduction voxel space;
    A reference voxel space generation unit that generates a reference voxel space based on the reference model,
    An auxiliary TSDF generator that generates an auxiliary TSDF by comparing the reproduction voxel space and the reference voxel space,
    The depth information generating device according to claim 1, further comprising: and further adding an auxiliary TSDF after integrating the depth information at the time of reproducing the reproduction model.
  4.  上記3Dモデル再生部において上記デプス情報を統合する際に上記デプス情報に映された物体の輪郭近辺のデプス値を統合しない
     ことを特徴とする請求項1又は2又は3に記載のデプス情報生成装置。
    The depth information generating apparatus according to claim 1, 2 or 3, wherein when integrating the depth information in the 3D model reproduction unit, depth values near a contour of an object reflected in the depth information are not integrated. ..
  5.  上記3Dモデル再生部において上記デプス情報を統合した後にTSDF値を補間するフィルタを加える
     ことを特徴とする請求項1又は2又は3に記載のデプス情報生成装置。
    The depth information generation device according to claim 1, 2 or 3, wherein a filter for interpolating a TSDF value is added after the depth information is integrated in the 3D model reproduction unit.
  6.  上記ホール検出部において上記再生モデルのホール領域を検出するために上記参照モデルの最近傍頂点が隣接するメッシュの数を利用する
     ことを特徴とする請求項1又は2又は3に記載のデプス情報生成装置。
     
    The depth information generation according to claim 1, 2 or 3, wherein the number of meshes with which the nearest vertex of the reference model is adjacent is used to detect the hole area of the reproduction model in the hole detection unit. apparatus.
PCT/JP2020/001072 2019-01-30 2020-01-15 Image generation device, display processing device, image generation method, control program, and recording medium WO2020158392A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019014233A JP2022049716A (en) 2019-01-30 2019-01-30 Image generating device, display processing device, image generating method, control program, and recording medium
JP2019-014233 2019-01-30

Publications (1)

Publication Number Publication Date
WO2020158392A1 true WO2020158392A1 (en) 2020-08-06

Family

ID=71842115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001072 WO2020158392A1 (en) 2019-01-30 2020-01-15 Image generation device, display processing device, image generation method, control program, and recording medium

Country Status (2)

Country Link
JP (1) JP2022049716A (en)
WO (1) WO2020158392A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009016808A1 (en) * 2007-07-27 2009-02-05 Techno Dream 21 Co., Ltd. Image processing device, image processing method, and program
WO2018070266A1 (en) * 2016-10-13 2018-04-19 ソニー株式会社 Image processing device and image processing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009016808A1 (en) * 2007-07-27 2009-02-05 Techno Dream 21 Co., Ltd. Image processing device, image processing method, and program
WO2018070266A1 (en) * 2016-10-13 2018-04-19 ソニー株式会社 Image processing device and image processing method

Also Published As

Publication number Publication date
JP2022049716A (en) 2022-03-30

Similar Documents

Publication Publication Date Title
US11348285B2 (en) Mesh compression via point cloud representation
US20200250798A1 (en) Three-dimensional model encoding device, three-dimensional model decoding device, three-dimensional model encoding method, and three-dimensional model decoding method
US9014462B2 (en) Depth information generating device, depth information generating method, and stereo image converter
JP6283108B2 (en) Image processing method and apparatus
US9135744B2 (en) Method for filling hole-region and three-dimensional video system using the same
US11902577B2 (en) Three-dimensional data encoding method, three-dimensional data decoding method, three-dimensional data encoding device, and three-dimensional data decoding device
CN103828359B (en) For producing the method for the view of scene, coding system and solving code system
EP0930585B1 (en) Image processing apparatus
KR101634562B1 (en) Method for producing high definition video from low definition video
US11557081B2 (en) Image processing apparatus, control method for an image processing apparatus, and medium
JPH06326987A (en) Method and equipment for representing picture accompanied by data compression
TW202037169A (en) Method and apparatus of patch segmentation for video-based point cloud coding
CN114208200A (en) Processing point clouds
EP0903695A1 (en) Image processing apparatus
CN113038123A (en) No-reference panoramic video quality evaluation method, system, terminal and medium
Bleyer et al. Temporally consistent disparity maps from uncalibrated stereo videos
JP7344988B2 (en) Methods, apparatus, and computer program products for volumetric video encoding and decoding
US11127141B2 (en) Image processing apparatus, image processing method, and a non-transitory computer readable storage medium
WO2020195767A1 (en) 3d model transmitting device and 3d model receiving device
CN113453012B (en) Encoding and decoding method and device and electronic equipment
KR20060111528A (en) Detection of local visual space-time details in a video signal
WO2020158392A1 (en) Image generation device, display processing device, image generation method, control program, and recording medium
JP2021157237A (en) Free viewpoint video generation method, device and program
CN115861145A (en) Image processing method based on machine vision
WO2022141222A1 (en) Virtual viewport generation method and apparatus, rendering and decoding methods and apparatuses, device and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20748163

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20748163

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP