WO2020157789A1 - Analysis device - Google Patents

Analysis device Download PDF

Info

Publication number
WO2020157789A1
WO2020157789A1 PCT/JP2019/002654 JP2019002654W WO2020157789A1 WO 2020157789 A1 WO2020157789 A1 WO 2020157789A1 JP 2019002654 W JP2019002654 W JP 2019002654W WO 2020157789 A1 WO2020157789 A1 WO 2020157789A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
flow path
path member
measurement
unit
Prior art date
Application number
PCT/JP2019/002654
Other languages
French (fr)
Japanese (ja)
Inventor
佃 康郎
崇英 平松
俊郎 木村
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to PCT/JP2019/002654 priority Critical patent/WO2020157789A1/en
Publication of WO2020157789A1 publication Critical patent/WO2020157789A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices

Definitions

  • the present disclosure relates to an analysis device.
  • Patent Document 1 Japanese Patent No. 4645739
  • Patent Document 2 Japanese Patent No. 4853518
  • the measurement device It is also possible to install the measurement device with the liquid sample held in the pipette and perform the measurement without dropping the liquid sample collected with a pipette etc. on the sample stage, but the liquid sample is placed on the optical path of the measurement device. It is difficult to accurately arrange the parts of. Furthermore, when a small amount of liquid sample of 1 ⁇ L or less is collected, the liquid sample is retained near the tip of the pipette. Since the liquid sample held near the tip of the pipette comes into direct contact with the external space open to the outside air, the solvent of the sample is likely to volatilize. It becomes difficult to analyze the liquid sample.
  • the present disclosure has been made in view of the above problems, and an object of the present disclosure is to provide an analyzer that can accurately analyze a trace amount of liquid that is even less than 1 ⁇ L.
  • the analysis device of the present disclosure includes a liquid collecting tool configured to collect a very small amount of liquid, and a device main body part having an installation part for detachably installing the liquid collecting tool.
  • the apparatus main body section internally includes a measurement unit for analyzing the liquid collected by the liquid collecting tool.
  • the liquid collecting tool has one end and the other end, and is provided so as to communicate with a flow path member in which a flow path through which the liquid can flow is formed and from the one end side of the flow path member to the flow path.
  • the device body is provided with an insertion hole for inserting the flow path member into the device body. With the liquid collecting tool installed in the installation section, the other end of the flow path member is inserted into the apparatus main body section through the insertion hole.
  • the device body further includes a moving mechanism that moves the measurement unit along the flow path member inserted inside the device body.
  • a small amount of liquid is sucked into the flow path member that constitutes a part of the liquid collecting tool, and the air is formed between the air layers formed on both end sides of the flow path. It can hold a very small amount of liquid. This makes it possible to hold a small amount of liquid at a position apart from the other end of the flow path that is in direct contact with the outside air, and suppress evaporation of the liquid (especially highly volatile solvent). As a result, it is possible to suppress fluctuations in the volume and concentration of the liquid held in the flow path member.
  • the position where the small amount of liquid is held may vary within the flow path.
  • the liquid sampling tool is installed in the installation part in a state where the other end of the flow path member is inserted into the apparatus main body part in which the measurement unit is provided, the liquid is held at a position displaced from the target position. Things can happen.
  • the liquid sample can be measured by the measurement unit in a state in which the fluctuation of the volume and the concentration of the liquid is suppressed, and as a result, a minute amount of the liquid sample can be accurately measured.
  • the measurement unit the irradiation unit for irradiating the measurement light toward the flow path member inserted into the inside of the apparatus main body
  • the measurement light is irradiated
  • One of the flow path member which forms a passage for at least the measurement light and which receives the light from the flow path member, and inserts the measurement light emitted from the irradiation unit into the inside of the apparatus main body. It is preferable to include an optical system for guiding to a partial region.
  • the light receiving section can be composed of a photodiode or an image sensor.
  • the moving mechanism includes the irradiation unit so that the liquid held in the flow path member inserted inside the device main body is irradiated with the measurement light. It is preferable that the measurement unit is moved along the flow path member while being irradiated with the measurement light. In this case, it is preferable that the measurement unit measures the optical characteristic distribution including the optical characteristics of the liquid in the range of the flow path member irradiated with the measurement light while the measurement unit is moving.
  • the analysis device of the present disclosure preferably specifies the position of the liquid based on the optical characteristic distribution.
  • the above-mentioned optical characteristic distribution includes the optical characteristic obtained from the portion of the flow path member where the liquid is not held and the optical characteristic obtained from the portion where the liquid is held.
  • the position (range) where the liquid exists can be specified from the difference in each optical characteristic.
  • the analysis device of the present disclosure may include a storage unit that stores the signal obtained by the light receiving unit.
  • the signal obtained by the light receiving unit is stored in the storage unit at a position where the measurement light is not applied to the liquid.
  • the recording unit records the signal about the optical characteristic distribution measured at the position where the liquid is not held and the liquid is not irradiated with the measurement. It Therefore, it is possible to prevent the measurement from being completed while the optical characteristics of the liquid are being measured, and to reliably measure the optical characteristics of the liquid.
  • the analyzer of the present disclosure may further include a data processing unit that calculates the concentration of the specific component contained in the liquid based on the optical characteristic distribution.
  • the concentration of the characteristic component contained in the liquid can be calculated from the optical characteristic distribution including the measured optical characteristic of the liquid.
  • the measurement unit is arranged on the optical path of the measurement light from the irradiation unit toward the flow path member, and selectively transmits the light in the first wavelength band. It may include a wavelength selection element.
  • the wavelength of the measurement light with which the liquid is irradiated can be set to a desired wavelength band effective for measurement.
  • the measurement unit is arranged on the optical path of the light traveling from the flow path member to the light receiving unit, and emits light in the second wavelength band different from the first wavelength band. It may include a second wavelength selection element that selectively passes through.
  • the wavelength of the light received by the light receiving unit can be set to the second wavelength band different from the first wavelength band included in the measurement light with which the liquid is irradiated. Accordingly, it is possible to receive light having a desired wavelength band in which measurement light is not mixed, and it is possible to improve measurement accuracy.
  • the optical system may include a diaphragm portion provided with an opening that defines an irradiation region of the measurement light with which the flow path member is irradiated.
  • the opening width of the opening along the flow path is preferably shorter than the length of the liquid held in the flow path member along the flow path.
  • the device body may be provided with a guide that extends in the insertion direction of the flow path member and guides the insertion of the flow path member.
  • the flow path member can be guided to the measurement position on the optical path of the measurement light.
  • the guide is configured such that the flow path member can be inserted therein, and the first cylinder is arranged side by side in the insertion direction so that the cylinder axis is parallel to the insertion direction. It may include a tubular portion and a second tubular portion. In this case, a gap is formed between the first tubular portion and the second tubular portion in the insertion direction, and the measurement light is emitted to the flow path member through the gap. Areas may be defined.
  • the number of parts can be reduced by configuring as described above and providing the guide for guiding the insertion of the flow path member with a throttle function.
  • the irradiation unit may be a light emitting diode (LED: Light Emitting Diode).
  • LED Light Emitting Diode
  • the liquid may include a liquid sample containing nucleic acid and an additive for fluorescently labeling the nucleic acid.
  • the operation of mixing the sample and the reagent on the analyzer side can be omitted by collecting and measuring the premixed mixed solution.
  • an analysis device capable of performing accurate analysis regardless of the position where a trace amount of liquid held in a flow path member exists.
  • FIG. 3 is a perspective view showing the appearance of the analyzer according to the first embodiment.
  • 1 is a schematic configuration diagram showing a configuration of an analysis device according to a first embodiment.
  • FIG. 3 is a schematic diagram showing a measuring unit and a moving mechanism included in the analyzer according to the first embodiment.
  • FIG. 3 is a schematic plan view showing the measurement unit according to the first embodiment.
  • FIG. 5 is a schematic side view of the measurement unit viewed from the direction of arrow V shown in FIG. 4.
  • FIG. 6 is a diagram showing movement of measurement light when moving and measuring the measurement unit according to the first embodiment.
  • FIG. 3 is a diagram showing an optical characteristic distribution measured by the measuring unit according to the first embodiment.
  • FIG. 9 is a diagram showing a measurement unit and a moving mechanism in the analysis device according to the second embodiment. It is a schematic sectional drawing which shows the guide shown by the measurement unit shown in FIG.
  • FIG. 1 is a perspective view showing the external appearance of the analyzer according to the first embodiment.
  • FIG. 2 is a schematic configuration diagram showing the configuration of the analyzer according to the first embodiment. An analyzer 1 according to the first embodiment will be described with reference to FIGS. 1 and 2.
  • the analyzer 1 is, for example, an apparatus that analyzes the quantification and/or concentration of nucleic acids such as RNA and DNA involved in protein synthesis.
  • the analysis device 1 includes a liquid sampling tool 10, a device body portion 20, and a data processing device 30.
  • the liquid collecting tool 10 is configured to collect a small amount of liquid L of about 1 nL to 100 nL.
  • the liquid L collected by the liquid collecting tool 10 is, for example, a mixed liquid in which a sample containing a nucleic acid and a fluorescent reagent for fluorescently labeling the nucleic acid are mixed. By collecting and measuring the premixed mixed solution, the operation of mixing the sample and the reagent on the analyzer 1 side can be omitted.
  • Fluorescent reagents are appropriately selected according to the sample to be analyzed.
  • the fluorescent reagent one containing a fluorescent dye such as PicoGreen (registered trademark) and SYBR Green (registered trademark) can be used.
  • the liquid collecting tool 10 includes a main body portion 11, a flow channel member 12, a flow channel member mounting portion 13, and a suction mechanism 14.
  • the main body portion 11 accommodates therein the suction mechanism 14, the flow path member attachment portion 13, and a part of the flow path member 12.
  • the flow path member 12 has one end 12a and the other end 12b.
  • the flow path member 12 is formed with a flow path 12c through which the liquid L can flow.
  • the flow path 12c is formed from one end 12a of the flow path member 12 to the other end 12b.
  • the flow path member 12 is provided, for example, in a linear shape.
  • the flow path member 12 is composed of a light-transmissive tubular member.
  • the inner diameter (flow passage diameter) of the tubular member is 2.0 mm or less, for example, about 0.2 mm.
  • the one end 12 a of the flow path member 12 is attached to the flow path member attachment portion 13 inside the main body 11.
  • the flow channel member mounting portion 13 connects the flow channel member 12 and the suction mechanism 14 so that they can communicate with each other.
  • the flow path member mounting portion 13 is provided with a through hole 13a that connects the flow path 12c of the flow path member 12 and the suction mechanism 14 to each other.
  • the suction mechanism 14 is provided so as to communicate with the flow path 12c from the one end 12a side of the flow path member 12.
  • the suction mechanism 14 is a mechanism for sucking the liquid L into the flow path 12c from the other end 12b side of the flow path member 12.
  • the suction mechanism 14 sucks the liquid L so that the liquid L is held in the flow path 12c.
  • the suction mechanism 14 has an actuator provided with a piezoelectric element and a diaphragm driven by the piezoelectric element.
  • the suction mechanism 14 can suck the liquid L so that the liquid L is held in the flow path 12c by increasing or decreasing the pressure in the flow path 12c by the actuator.
  • a piezoelectric element for example, can be used as the piezoelectric element.
  • the liquid collecting tool 10 collects the liquid L so that the liquid L is held between the air layers formed on both ends of the flow path 12c. As a result, it is possible to prevent the liquid L from being retained near the other end 12b of the flow path member 12 that has an opening surface that is in contact with the outside air outside the flow path member 12. As a result, it is possible to prevent the liquid L from evaporating from the opening surface to the outside air, and it is possible to suppress the variation in the concentration of the liquid L held in the flow path member 12.
  • the liquid L is prevented from being held at the one end 12a of the flow path member 12. Therefore, as will be described later, when the channel member 12 is inserted from the insertion hole 22 into the inside of the apparatus main body 20 during measurement, the length of the channel member 12 to be inserted can be shortened.
  • the liquid collecting tool 10 may collect two kinds of liquids of a sample and a fluorescent reagent in order, and mix the collected two kinds of liquids in the channel.
  • the liquid collecting tool 10 retains the sample and the fluorescent reagent in the flow channel 12c by the suction mechanism 14 and repeatedly pressurizes and depressurizes the flow channel 12c, whereby the sample is collected. And it is preferable to mix the above fluorescent reagents.
  • the mixed liquid can be prepared by controlling the operation of the suction mechanism 14.
  • the operation of the suction mechanism 14 is controlled by, for example, the suction mechanism control unit 23 provided inside the apparatus main body unit 20.
  • the suction mechanism 14 is connected to the suction mechanism control unit 23 by a wire 24.
  • the suction mechanism control unit 23 may be provided in the main body 11 of the liquid sampling tool 10, and in this case, the wiring 24 and the power feeding unit may also be provided in the main body 11.
  • the device body 20 includes a measurement unit 40 and a moving mechanism 50 inside.
  • the measuring unit 40 is a unit for measuring the liquid L collected by the liquid collecting tool 10.
  • the moving mechanism 50 is a mechanism for moving the measurement unit along the flow path member 12 inserted in the apparatus main body 20. The configurations of the measuring unit 40 and the moving mechanism 50 will be described later with reference to FIGS. 3 to 5.
  • the apparatus body 20 is provided with an installation section 21 for detachably installing the liquid collection tool 10. As shown by the broken line in FIG. 1, the liquid collecting tool 10 is detached from the apparatus main body 20 when collecting the liquid L. The liquid collecting tool 10 is installed in the apparatus main body 20 when measuring the collected liquid L.
  • the device body 20 is provided with an insertion hole 22 for inserting the flow path member 12 of the liquid collecting tool 10 into the device body 20.
  • the other end 12 b side of the flow path member 12 is inserted into the insertion hole 22 and the main body part 11 is fixed to the installation part 21.
  • the other end 12b side of the flow path member 12 is inserted into the inside of the apparatus main body section 20.
  • the liquid L held in the flow path member 12 is arranged at the measurement position in the measurement unit 40.
  • the data processing device 30 is equipped with a predetermined control program for executing various types of control and processing, and is connected to the device body 20.
  • the data processing device 30 includes a display unit 31, an operation unit 32, a control unit 33, and a storage unit 36.
  • the display unit 31 displays information for measurement, measurement results, and the like.
  • the operation unit 32 is for setting various parameters related to measurement and instructing various processes.
  • the control unit 33 includes a measurement control unit 34 and a data processing unit 35.
  • the measurement control unit 34 controls the operation of the measurement unit 40 and the operation of the moving mechanism 50.
  • the data processing unit 35 executes various kinds of arithmetic processing for analyzing the liquid L based on the signal received from the measurement unit 40.
  • the storage unit 36 stores the signal received from the measurement unit 40, the processing result of the data processing unit 35, and the like.
  • the storage unit 36 stores the signal received from the measurement unit, the execution result of the data processing unit 35, and the like.
  • the execution result and the like stored in the storage unit 36 may be configured to be retrieved from the data processing device 30 in order to perform processing and data management in an external computer.
  • FIG. 3 is a schematic diagram showing a measurement unit and a moving mechanism included in the analyzer according to the first embodiment.
  • the moving mechanism 50 according to the first embodiment will be described with reference to FIG.
  • the moving mechanism 50 includes a base portion 51, a moving body 52, and a guide rail 53.
  • the base portion 51 holds the measurement unit 40.
  • the base portion 51 is provided so as not to interfere with the flow path member 12 inserted in the apparatus body portion 20.
  • the base portion 51 is provided with a through hole, and the flow path member 12 is inserted into the apparatus main body portion 20 so as to penetrate the through hole.
  • the base portion 51 is fixed to the moving body 52.
  • the moving body 52 is provided so as to be movable along the guide rail 53, as shown by an arrow DR1.
  • the moving body 52 is moved by a drive source such as a motor.
  • the guide rail 53 extends in a direction parallel to the inserted flow path member 12. That is, the guide rail 53 extends along the insertion direction of the flow path member 12.
  • the insertion direction of the flow path member 12 is a direction perpendicular to the opening surface of the insertion hole 22, and is, for example, the vertical direction.
  • the base portion 51 fixed to the moving body 52 also moves along the guide rail 53.
  • the measurement unit 40 held by the base portion 51 moves along the inserted flow path member 12.
  • FIG. 4 is a schematic plan view showing the measurement unit according to the first embodiment.
  • FIG. 5 is a schematic side view of the measurement unit as seen from the direction of arrow V shown in FIG.
  • the measurement unit 40 will be described with reference to FIGS. 4 and 5.
  • the measurement unit 40 includes an irradiation unit 41, a light receiving unit 42, an optical system 43, a first wavelength selection element 44, a second wavelength selection element 45, and a diaphragm unit 46.
  • the irradiation unit 41 irradiates the measurement light MB toward the liquid L held in the flow path member 12.
  • the irradiation unit 41 emits light including a wavelength band that excites the fluorescent dye contained in the liquid L (mixed liquid) to be analyzed.
  • the irradiation unit 41 emits blue visible light having a main wavelength in the vicinity of 470 nm, for example.
  • an LED can be used as the irradiation unit 41.
  • the measurement light is turned on for a predetermined time before the measurement is started to reach the heat parallel.
  • the measurement light MB emitted from the irradiation unit 41 travels toward the first wavelength selection element 44.
  • the first wavelength selection element 44 is arranged on the optical path of the measurement light MB from the irradiation unit 41 toward the flow path member 12.
  • the first wavelength selection element 44 selectively passes light in the first wavelength band.
  • the first wavelength selection element is, for example, a bandpass filter.
  • the first wavelength band is a wavelength band that excites the fluorescent dye contained in the liquid L (mixed liquid) to be analyzed.
  • the measurement light MB that has passed through the first wavelength selection element 44 is guided by the optical system 43.
  • the optical system 43 forms at least a passage for the measurement light MB and guides the measurement light MB emitted from the irradiation unit 41 to the flow path member 12.
  • the optical system 43 includes, for example, a condenser lens such as a ball lens, and guides the measurement light MB passing through the first wavelength selection element 44 to the flow path member 12 while condensing the measurement light MB.
  • the measurement light MB condensed by the optical system 43 has its optical range limited by the diaphragm 46 before reaching the flow path member 12.
  • the throttle portion 46 is arranged near the flow path member 12 inserted inside the apparatus main body portion 20.
  • the narrowed portion 46 has, for example, a plate shape.
  • the diaphragm 46 has an opening 46a that defines an irradiation region of the measurement light MB with which the flow path member is irradiated.
  • the liquid L held in the flow path member 12 extends along the flow path 12c, and the opening width L2 of the opening 46a along the flow path 12c is the flow of the liquid L held in the flow path member 12. It is shorter than the length L1 along the path 12c.
  • the length of the liquid L along the flow path 12c when a small amount of the liquid L is held in the flow path 12c is approximately 2 mm to 3 mm, depending on the flow path diameter of the flow path member 12.
  • the measurement light MB can be applied only to the region on the optical path where the liquid L exists. It will be possible.
  • the measurement light MB has the first wavelength band that excites the fluorescent dye contained in the liquid L. Therefore, when the liquid L held in the flow path member 12 is irradiated with the measurement light MB, fluorescence is emitted from the fluorescent dye excited by the measurement light MB.
  • the light receiving section 42 is arranged at a position rotated about 90 degrees with respect to the irradiation section 41 around the central axis of the flow path member 12.
  • the light receiving unit 42 receives the light from the flow path member 12 irradiated with the measurement light MB.
  • the second wavelength selection element 45 is arranged on the optical path of the light traveling from the flow path member to the light reception section 42, and the light reception section 42 receives the light that has passed through the second wavelength selection element 45.
  • the second wavelength selection element 45 selectively passes light in the second wavelength band different from the first wavelength band.
  • the second wavelength selection element 45 is, for example, a bandpass filter.
  • the second wavelength band is a wavelength range of the fluorescence emitted from the fluorescent dye. Therefore, the measurement light MB is blocked by the second wavelength selection element 45. Accordingly, the light receiving unit 42 can receive light having a desired wavelength band in which the measurement light MB is not mixed, and the measurement accuracy can be improved.
  • the trace amount of the liquid L in the flow channel member 12 is retained between the air layers formed on both end sides of the flow channel 12c, and thus the trace amount retained in the flow channel 12c.
  • the position of the liquid L may vary. In this case, when the liquid sampling tool 10 is installed in the installation section 21 with the other end 12b of the flow path member 12 inserted in the apparatus main body section 20 in which the measurement unit 40 is provided, it is displaced from the target position. It is possible that the liquid is held at the position, that is, the liquid L is not held on the optical path of the measurement light MB.
  • the moving mechanism 50 that moves the measurement unit 40 is provided, and the measurement unit is moved along the flow path member 12 that is inserted into the inside of the apparatus main body portion 20. It is possible to reliably measure the liquid L held in.
  • FIG. 6 is a diagram showing the movement of the measurement light MB when the measurement unit according to the first embodiment is moved to perform measurement. The movement of the measurement light MB when the measurement unit 40 is moved to perform measurement will be described with reference to FIG.
  • the moving mechanism 50 irradiates the measurement light MB from the irradiation unit 41 so that the liquid L held in the flow path member 12 inserted inside the apparatus main body 20 is irradiated with the measurement light MB. 40 is moved along the flow path member 12.
  • the measurement light MB moves along the flow path member 12 as shown by the arrow AR1 in FIG. 6, and includes both a portion where the liquid L is not held and a portion where the liquid L is held. Is irradiated.
  • the measurement unit 40 measures the optical characteristic distribution including the optical characteristic of the liquid L in the range of the flow path member 12 irradiated with the measurement light MB during movement.
  • the optical characteristic for example, light intensity is measured.
  • FIG. 7 is a diagram showing an optical characteristic distribution measured by the measurement unit according to the first embodiment.
  • the optical characteristic distribution measured by the measurement unit according to the first embodiment will be described with reference to FIG. 7.
  • the liquid L held in the flow path member 12 is irradiated with the measurement light MB, the liquid L and a part of the measurement light MB whose optical path is changed by the flow path member, and the liquid L The emitted fluorescence goes toward the light receiving unit 42.
  • the measurement light MB is irradiated to the portion of the flow path member 12 in which the liquid L is not held, part of the measurement light MB whose optical path has been changed by the flow path member 12 is directed to the light receiving unit 42.
  • the light traveling toward the light receiving unit 42 passes through the second wavelength selection element 45, so that the light blocked by the measurement light MB is introduced into the light receiving unit 42.
  • the optical characteristics obtained from that portion become large.
  • the optical characteristic obtained from that portion is small and the optical characteristic distribution is flat.
  • the measured optical characteristic distribution is transmitted to the storage unit 36 as a signal obtained by the light receiving unit, and is stored in association with the moving distance of the moving mechanism 50.
  • the optical characteristics of the liquid held in the movable range of the moving mechanism 50 can be measured.
  • a signal regarding the measured optical characteristic distribution is transmitted from the light receiving unit 42 to the data processing unit 35.
  • the data processing unit 35 calculates the concentration of the specific component (nucleic acid) contained in the liquid L from the above optical characteristic distribution and the optical characteristic obtained by measuring the liquid having a known specific concentration. Further, the data processing unit 35 specifies the position of the liquid L based on the value Em at which the optical characteristic has a peak and the moving distance. In this case, the measurement unit 40 may be moved so that the specified position of the liquid L is irradiated with the measurement light MB, and the measurement may be performed again. As a result, the measurement light MB is surely applied to the liquid L, and the measurement at the position where the light from the liquid L is guided to the light receiving unit 42 becomes possible. Furthermore, it is possible to perform evaluation by the peak value Em of the light intensity, or evaluation by the product of the light intensity and the moving distance, and by using the calculated optical characteristic value per volume L of the liquid, it is possible to perform analysis with higher accuracy. Become.
  • the variation rate of the optical characteristics of the light received from the flow path member 12 in the portion where the liquid L is not held is calculated, and the variation rate is multiplied by the optical characteristics of the liquid. You may. In this case, by measuring the optical characteristics of a portion (particularly the side near the one end 12a of the flow path member 12) where the liquid L does not adhere even when sucked into the flow path member 12, the optical characteristics are measured. It is possible to correct the fluctuation factors of the optical characteristics that occur.
  • the suction mechanism 14 is driven by using the liquid collecting tool 10 including the flow channel member 12 in which the flow channel 12c is formed as described above and the suction mechanism 14. It is possible to hold a small amount of the liquid L between the air layers formed on both ends of the flow path 12c while sucking the small amount of the liquid L into the flow path member 12. This makes it possible to hold a small amount of the liquid L at a position apart from the other end of the flow path 12c that is in direct contact with the outside air opened to the external space, and prevent the liquid L from volatilizing. As a result, fluctuations in the concentration of the liquid L held in the flow path member 12 can be suppressed.
  • the liquid sampling tool 10 is installed in a state where the other end of the flow path member 12 is inserted into the apparatus main body 20 in which the measuring unit 40 is provided. Even when the liquid L is held at a position deviated from the target position when the measurement unit 40 is installed at 21, the measurement unit 40 is moved along the flow path member 12 inserted inside the apparatus main body 20. Thereby, the liquid L held in the flow path member 12 can be measured reliably. As a result, the optical characteristics of the liquid L can be measured while suppressing changes in the volume and concentration of the liquid L, and as a result, a very small amount of the liquid L can be accurately measured.
  • FIG. 8 is a diagram showing a measuring unit and a moving mechanism in the analyzer according to the second embodiment. Note that FIG. 8 illustrates the measurement unit 40A and the moving mechanism 50A when the irradiation unit 41 is viewed from the front side, and for convenience, the first wavelength selection element and the optical system included in the measurement unit 40A are omitted. There is.
  • the analyzer according to the second embodiment will be described with reference to FIG.
  • the analyzer according to the second embodiment is different from the analyzer according to the first embodiment in the configuration of the moving mechanism 50A and the configuration of the measurement unit 40A, and other configurations are the same. , Is almost the same.
  • the measurement unit 40A differs from the measurement unit 40 according to the first embodiment in that a guide 47 is provided.
  • the guide 47 extends in the insertion direction of the flow path member 12 and guides the insertion of the flow path member 12.
  • the guide 47 has a first tubular portion 471 and a second tubular portion 472.
  • the moving mechanism 50A is different from the moving mechanism 50 according to the first embodiment in the configuration of the base portion 51A. Other configurations are almost the same.
  • the base portion 51A includes a first plate portion 511 and a second plate portion 512 that are arranged apart from each other in the insertion direction (vertical direction) of the flow path member 12.
  • the first plate portion 511 and the second plate portion 512 are integrally fixed so as not to affect the measurement by the measurement unit 40A.
  • the first plate portion 511 and the second plate portion 512 are provided with a through hole 511a and a through hole 512a.
  • the guide 47 is held by the through hole 511a and the through hole 512a.
  • the first tubular portion 471 is inserted and held in the through hole 511a
  • the second tubular portion 472 is inserted and held in the through hole 512a.
  • FIG. 9 is a schematic sectional view showing a guide included in the measuring unit shown in FIG.
  • the above-described first tubular portion 471 and second tubular portion 472 included in the guide 47 will be described with reference to FIG. 9.
  • the first tubular portion 471 and the second tubular portion 472 are arranged side by side in the insertion direction so that the tubular axes are parallel to the insertion direction of the flow path member 12.
  • the first tubular portion 471 is arranged such that the flow path member 12 is inserted before the second tubular portion 472.
  • the first tubular portion 471 has a guiding portion 471a for guiding the other end 12b of the flow path member 12 into the guide path 471b.
  • the guide portion 471a is formed so that the inner diameter becomes smaller toward the guide path 471b.
  • the guide path 471b is linearly formed along the insertion direction.
  • the second tubular portion 472 has a guide passage 472b facing the guide passage 471b of the first tubular portion 471.
  • the other end 12b of the flow path member 12 guided into the guiding portion 471a is further inserted to enter the guide path 472b through the guide path 471b.
  • the diameter of the guide passage 472b is larger than the diameter of the guide passage 471a, thereby preventing the other end 12b of the flow path member 12 from interfering with each other when entering the second tubular portion 472.
  • a gap GP is formed between the first tubular portion 471 and the second tubular portion 472 in the insertion direction.
  • the size of the gap GP in the insertion direction is shorter than the length of the liquid L held in the flow path member 12 along the flow path 12c.
  • the gap corresponds to the opening 46a of the first embodiment, and the gap defines the irradiation area with which the flow path member is irradiated. Further, the light from the flow path member 12 irradiated with the measurement light MB travels from the gap GP to the light receiving section 42.
  • the analysis device according to the second embodiment can obtain substantially the same effect as that of the first embodiment.
  • the provision of the guide 47 facilitates disposing the flow path member 12 at the measurement position on the optical path of the measurement light MB.
  • the number of parts can be reduced by forming the narrowed portion with the guide 47.
  • the guide 47 is configured by two tubular portions that are separated from each other has been described as an example, but the present invention is not limited to this, and the guide 47 is configured by one tubular portion. It may be configured. In this case, it is preferable that the peripheral wall of the tubular portion be provided with an opening that defines the irradiation area of the measurement light MB and a window that allows the light from the irradiated flow path member to pass through.
  • the present invention is not limited to this.
  • the light receiving section may be arranged on the optical path through which the measurement light MB passes through the sample. Also in this case, the light receiving section can receive the light from the liquid L (the measurement light MB transmitted through the liquid L), and measures the transmittance of the liquid L and the absorbance of the liquid L at the wavelength of the measurement light MB ( Absorbance analysis).

Abstract

An analysis device (1) comprises a liquid collection tool (10) and a device body part (20) having a mounting part for removably mounting the liquid collection tool (10). The device body part (20) comprises a measurement unit (40) on the inside of the device body part (20). The liquid collection tool (10) comprises a flow path member (12) having a flow path (12c) formed therein and a suction mechanism (23) for sucking a liquid into the flow path (12c). The suction mechanism (23) sucks in the liquid such that the same is held between air layers formed at both ends of the flow path (12c). When the liquid collection tool (10) is mounted in the mounting part, the flow path member (12) is inserted inside the device body part (20) from an insertion hole. The device body part (20) further comprises a movement mechanism (50) for moving the measurement unit (40) along the flow path member (12) inserted inside the device body part (20).

Description

分析装置Analysis equipment
 本開示は、分析装置に関する。 The present disclosure relates to an analysis device.
 従来の分析装置として、数μL程度の微量の液体を測定可能な分析装置が特許第4645739号公報(特許文献1)および特許第4853518号公報(特許文献2)に開示されている。 As a conventional analyzer, an analyzer capable of measuring a small amount of liquid of about several μL is disclosed in Japanese Patent No. 4645739 (Patent Document 1) and Japanese Patent No. 4853518 (Patent Document 2).
 特許文献1および特許文献2に開示の分析装置にあっては、液体(液体試料)を分析するにあたり、滴下装置の下方に位置する滴下位置に試料台を配置し、液体試料を当該試料台に滴下する。続いて、滴下された液体試料を押さえ部と試料台との間に挟み込み、測定光の光路上に液体試料が位置するように試料台を移動させる。液体試料を通過した測定光を受光し、液体試料を分析する。 In the analyzers disclosed in Patent Document 1 and Patent Document 2, when analyzing a liquid (liquid sample), a sample stage is arranged at a dropping position below the dropping device, and the liquid sample is placed on the sample stage. Drop it. Then, the dropped liquid sample is sandwiched between the pressing portion and the sample table, and the sample table is moved so that the liquid sample is located on the optical path of the measurement light. The measurement light passing through the liquid sample is received and the liquid sample is analyzed.
特許第4645739号公報Japanese Patent No. 4645739 特許第4853518号公報Japanese Patent No. 4853518
 しかしながら、特許文献1および特許文献2にあっては、液体試料を滴下する構成であるため、分析したい微量の液体試料が1μLをさらに下回る微量の液体試料(例えば1nL~100nL)程度である場合には、滴下の制御が困難となる。また、滴下に適した量を確保するために液体試料を希釈した場合には、液体試料の濃度が小さくなりすぎてしまう。このように、精度よく分析することが困難であった。 However, in Patent Document 1 and Patent Document 2, since the liquid sample is dropped, when the trace liquid sample to be analyzed is a trace liquid sample of less than 1 μL (for example, 1 nL to 100 nL). Makes it difficult to control the dropping. In addition, when the liquid sample is diluted in order to secure an amount suitable for dropping, the concentration of the liquid sample becomes too small. Thus, it was difficult to analyze with high accuracy.
 ピペット等により採取した液体試料を試料台に滴下せずに、ピペットに液体試料が保持された状態で測定装置を設置して測定を実施することも考えられるが、測定装置の光路上に液体試料の部分を的確に配置することは困難である。さらに、1μL以下の微量の液体試料を採取した場合には、ピペットの先端付近に液体試料が保持されてしまう。ピペットの先端付近に保持された液体試料は外気に開放された外部空間に直接接してしまうため、試料の溶媒が揮発しやすく、この場合には、採取された試料の濃度が変動し、精度よく液体試料を分析することが困難となる。 It is also possible to install the measurement device with the liquid sample held in the pipette and perform the measurement without dropping the liquid sample collected with a pipette etc. on the sample stage, but the liquid sample is placed on the optical path of the measurement device. It is difficult to accurately arrange the parts of. Furthermore, when a small amount of liquid sample of 1 μL or less is collected, the liquid sample is retained near the tip of the pipette. Since the liquid sample held near the tip of the pipette comes into direct contact with the external space open to the outside air, the solvent of the sample is likely to volatilize. It becomes difficult to analyze the liquid sample.
 本開示は、上記のような問題に鑑みてなされたものであり、本開示の目的は、1μLをさらに下回る微量の液体を精度よく分析することができる分析装置を提供することにある。 The present disclosure has been made in view of the above problems, and an object of the present disclosure is to provide an analyzer that can accurately analyze a trace amount of liquid that is even less than 1 μL.
 本開示の分析装置は、微量の液体を採取可能に構成された液体採取具と、上記液体採取具を着脱可能に設置する設置部を有する装置本体部と、を備える。上記装置本体部は、上記液体採取具によって採取された上記液体を分析するための測定ユニットを内部に含む。上記液体採取具は、一端および他端を有し、上記液体が流動可能な流路が形成された流路部材と、上記流路部材の上記一端側から上記流路に連通するように設けられ、上記流路部材の上記他端側から上記流路内に上記液体を吸引するための吸引機構とを含む。上記吸引機構は、上記流路内において上記流路の両端側に形成された空気層の間に上記液体が保持されるように上記液体を吸引する。上記装置本体部には、上記流路部材を上記装置本体部の内部に挿入するための挿入孔が設けられている。上記液体採取具が上記設置部に設置された状態において、上記流路部材の上記他端側が上記挿入孔から上記装置本体部の内部に挿入されている。上記装置本体部は、上記装置本体部の内部に挿入された上記流路部材に沿って上記測定ユニットを移動させる移動機構をさらに含む。 The analysis device of the present disclosure includes a liquid collecting tool configured to collect a very small amount of liquid, and a device main body part having an installation part for detachably installing the liquid collecting tool. The apparatus main body section internally includes a measurement unit for analyzing the liquid collected by the liquid collecting tool. The liquid collecting tool has one end and the other end, and is provided so as to communicate with a flow path member in which a flow path through which the liquid can flow is formed and from the one end side of the flow path member to the flow path. A suction mechanism for sucking the liquid into the flow channel from the other end side of the flow channel member. The suction mechanism sucks the liquid so that the liquid is retained between air layers formed on both ends of the flow channel in the flow channel. The device body is provided with an insertion hole for inserting the flow path member into the device body. With the liquid collecting tool installed in the installation section, the other end of the flow path member is inserted into the apparatus main body section through the insertion hole. The device body further includes a moving mechanism that moves the measurement unit along the flow path member inserted inside the device body.
 上記構成によれば、吸引機構を制御することによって、液体採取具の一部を構成する流路部材内に微量の液体を吸引しつつ、流路の両端側に形成された空気層の間に微量の液体を保持することができる。これにより、外気に直接接触する流路の他端から離れた位置で微量の液体を保持することができ、液体(特に揮発性の高い溶媒)が揮発することを抑制することができる。この結果、流路部材に保持された液体の体積や濃度の変動を抑制することができる。 According to the above configuration, by controlling the suction mechanism, a small amount of liquid is sucked into the flow path member that constitutes a part of the liquid collecting tool, and the air is formed between the air layers formed on both end sides of the flow path. It can hold a very small amount of liquid. This makes it possible to hold a small amount of liquid at a position apart from the other end of the flow path that is in direct contact with the outside air, and suppress evaporation of the liquid (especially highly volatile solvent). As a result, it is possible to suppress fluctuations in the volume and concentration of the liquid held in the flow path member.
 流路の両端側に形成された空気層の間に微量の液体を保持する場合には、流路内で微量の液体の保持される位置がばらついてしまう場合がある。この場合においては、測定ユニットが設けられた装置本体部内に流路部材の他端を挿入した状態で液体採取具を設置部に設置した際に、目標位置からずれた位置に液体が保持されることが起こり得る。 When holding a small amount of liquid between the air layers formed on both ends of the flow path, the position where the small amount of liquid is held may vary within the flow path. In this case, when the liquid sampling tool is installed in the installation part in a state where the other end of the flow path member is inserted into the apparatus main body part in which the measurement unit is provided, the liquid is held at a position displaced from the target position. Things can happen.
 このような場合であっても、測定ユニットを移動させる移動機構を設け、装置本体部の内部に挿入された流路部材に沿って測定ユニットを移動させることにより、確実に液体試料を測定することができる。以上のように、液体の体積や濃度の変動を抑制した状態で、液体試料を測定ユニットにて測定することができ、この結果、微量の液体試料を精度よく測定することができる。 Even in such a case, it is possible to reliably measure the liquid sample by providing a moving mechanism that moves the measurement unit and moving the measurement unit along the flow path member inserted inside the apparatus main body. You can As described above, the liquid sample can be measured by the measurement unit in a state in which the fluctuation of the volume and the concentration of the liquid is suppressed, and as a result, a minute amount of the liquid sample can be accurately measured.
 上記本開示の分析装置にあっては、上記測定ユニットは、上記装置本体部の内部に挿入された上記流路部材に向けて測定光を照射する照射部と、上記測定光が照射された上記流路部材から光を受光する受光部と、少なくとも上記測定光の通過経路を形成し、上記照射部から照射された上記測定光を上記装置本体部の内部に挿入された上記流路部材の一部の領域に導く光学系と、を含むことが好ましい。 In the analysis apparatus of the present disclosure, the measurement unit, the irradiation unit for irradiating the measurement light toward the flow path member inserted into the inside of the apparatus main body, the measurement light is irradiated One of the flow path member, which forms a passage for at least the measurement light and which receives the light from the flow path member, and inserts the measurement light emitted from the irradiation unit into the inside of the apparatus main body. It is preferable to include an optical system for guiding to a partial region.
 上記のように構成することにより、測定対象の液体が微量であっても、液体の測定光に対する光学特性を受光部によって測定することができる。受光部は、フォトダイオードやイメージセンサで構成することができる。 With the above configuration, even if the liquid to be measured is a small amount, the optical characteristics of the liquid with respect to the measuring light can be measured by the light receiving unit. The light receiving section can be composed of a photodiode or an image sensor.
 上記本開示の分析装置にあっては、上記移動機構は、上記装置本体部の内部に挿入された上記流路部材に保持された上記液体に上記測定光が照射されるように、上記照射部から上記測定光を照射した状態で上記測定ユニットを上記流路部材に沿って移動させることが好ましい。この場合には、上記測定ユニットは、上記測定ユニットの移動中に上記測定光が照射された上記流路部材の範囲において、上記液体の光学特性を含む光学特性分布を測定することが好ましい。 In the analysis device of the present disclosure, the moving mechanism includes the irradiation unit so that the liquid held in the flow path member inserted inside the device main body is irradiated with the measurement light. It is preferable that the measurement unit is moved along the flow path member while being irradiated with the measurement light. In this case, it is preferable that the measurement unit measures the optical characteristic distribution including the optical characteristics of the liquid in the range of the flow path member irradiated with the measurement light while the measurement unit is moving.
 上述のように、測定光を照射した状態で測定ユニットを流路部材に沿って移動させ、測定光が照射された範囲において、液体の光学特性を含む光学特性分布を測定することにより、液体の光学特性を確実に得ることができる。 As described above, by moving the measurement unit along the flow path member in the state of being irradiated with the measurement light, and measuring the optical characteristic distribution including the optical characteristics of the liquid in the range irradiated with the measurement light, Optical characteristics can be reliably obtained.
 上記本開示の分析装置は、上記光学特性分布に基づき、上記液体の位置を特定することが好ましい。 The analysis device of the present disclosure preferably specifies the position of the liquid based on the optical characteristic distribution.
 上記構成によれば、上述の光学特性分布は、流路部材内の液体が保持されていない部分から得られる光学特性と、液体が保持されている部分から得られる光学特性とを含んでいるため、各光学特性の違いから液体が存在する位置(範囲)を特定することができる。特定された位置に測定ユニットを移動させ再度測定を行なうことにより、精度を高めて、液体の分析をすることができる。移動機構による測定ユニットの移動の速度を変えて測定することで、目的に応じた精度を得る測定を効率よく行うことができる。 According to the above configuration, the above-mentioned optical characteristic distribution includes the optical characteristic obtained from the portion of the flow path member where the liquid is not held and the optical characteristic obtained from the portion where the liquid is held. The position (range) where the liquid exists can be specified from the difference in each optical characteristic. By moving the measurement unit to the specified position and performing the measurement again, it is possible to improve the accuracy and analyze the liquid. By changing the moving speed of the measuring unit by the moving mechanism and performing the measurement, it is possible to efficiently perform the measurement with accuracy according to the purpose.
 上記本開示の分析装置は、上記受光部に得られた信号を記憶する記憶部を備えていてもよい。この場合には、上記液体に上記測定光が照射されない位置で、上記受光部によって得られた信号が上記記憶部に記憶されることが好ましい。 The analysis device of the present disclosure may include a storage unit that stores the signal obtained by the light receiving unit. In this case, it is preferable that the signal obtained by the light receiving unit is stored in the storage unit at a position where the measurement light is not applied to the liquid.
 上記構成によれば、液体が存在する範囲に測定光が照射された後に、液体が保持されておらず液体に測定が照射されない位置において測定された光学特性分布についての信号を記録部によって記録される。このため、液体の光学特性の測定している途中で測定が終了することが防止され、確実に液体の光学特性を測定することができる。 According to the above configuration, after the measurement light is irradiated to the range where the liquid is present, the recording unit records the signal about the optical characteristic distribution measured at the position where the liquid is not held and the liquid is not irradiated with the measurement. It Therefore, it is possible to prevent the measurement from being completed while the optical characteristics of the liquid are being measured, and to reliably measure the optical characteristics of the liquid.
 上記本開示の分析装置は、上記光学特性分布に基づき、上記液体に含まれる特定成分の濃度を算出するデータ処理部をさらに備えていてもよい。 The analyzer of the present disclosure may further include a data processing unit that calculates the concentration of the specific component contained in the liquid based on the optical characteristic distribution.
 このようなデータ処理部を備えることにより、測定された液体の光学特性を含む光学特性分布から液体に含まれる特性成分の濃度を算出することができる。 By providing such a data processing unit, the concentration of the characteristic component contained in the liquid can be calculated from the optical characteristic distribution including the measured optical characteristic of the liquid.
 上記本開示の分析装置にあっては、上記測定ユニットは、上記照射部から上記流路部材に向かう上記測定光の光路上に配置され、第1波長帯域の光を選択的に通過させる第1波長選択素子を含んでいてもよい。 In the analysis device of the present disclosure, the measurement unit is arranged on the optical path of the measurement light from the irradiation unit toward the flow path member, and selectively transmits the light in the first wavelength band. It may include a wavelength selection element.
 上記構成によれば、液体に照射される測定光が有する波長を測定に有効な所望の波長帯域にすることができる。 According to the above configuration, the wavelength of the measurement light with which the liquid is irradiated can be set to a desired wavelength band effective for measurement.
 上記本開示の分析装置にあっては、上記測定ユニットは、上記流路部材から上記受光部に向かう上記光の光路上に配置され、上記第1波長帯域とは異なる第2波長帯域の光を選択的に通過させる第2波長選択素子を含んでいてもよい。 In the analyzer of the present disclosure, the measurement unit is arranged on the optical path of the light traveling from the flow path member to the light receiving unit, and emits light in the second wavelength band different from the first wavelength band. It may include a second wavelength selection element that selectively passes through.
 上記構成によれば、受光部によって受光する光の波長を液体に照射される測定光が有する上記第1波長帯域と異なる第2波長帯域とすることができる。これにより、測定光が混在しない所望の波長帯域を有する光を受光することができ、測定精度を向上させることができる。 According to the above configuration, the wavelength of the light received by the light receiving unit can be set to the second wavelength band different from the first wavelength band included in the measurement light with which the liquid is irradiated. Accordingly, it is possible to receive light having a desired wavelength band in which measurement light is not mixed, and it is possible to improve measurement accuracy.
 上記本開示の分析装置にあっては、上記光学系は、上記流路部材に照射される上記測定光の照射領域を規定する開口部が設けられた絞り部を有していてもよい。この場合には、上記流路に沿った上記開口部の開口幅は、上記流路部材に保持された上記液体の上記流路に沿った長さよりも短いことが好ましい。 In the analysis device of the present disclosure, the optical system may include a diaphragm portion provided with an opening that defines an irradiation region of the measurement light with which the flow path member is irradiated. In this case, the opening width of the opening along the flow path is preferably shorter than the length of the liquid held in the flow path member along the flow path.
 上記のように構成することにより、採取する液体の量が変動した場合であっても液体が存在する部分のみに測定光を照射することが可能となる。 With the above configuration, it is possible to irradiate the measuring light only to the part where the liquid exists even when the amount of the collected liquid changes.
 上記本開示の分析装置にあっては、上記装置本体部には、上記流路部材の挿入方向に延在して上記流路部材の挿入を案内するガイドが設けられていてもよい。 In the analysis device of the present disclosure, the device body may be provided with a guide that extends in the insertion direction of the flow path member and guides the insertion of the flow path member.
 上記のように構成することにより、測定光の光路上の測定位置に流路部材を案内することができる。 With the above configuration, the flow path member can be guided to the measurement position on the optical path of the measurement light.
 上記本開示の分析装置にあっては、上記ガイドは、上記流路部材が挿入可能に構成され、筒軸が上記挿入方向に平行となるように上記挿入方向に並んで配置された第1筒状部および第2筒状部を含んでいてもよい。この場合には、上記挿入方向における上記第1筒状部と上記第2筒状部との間には、隙間が形成されており、当該隙間によって上記流路部材に照射される測定光の照射領域が規定されてもよい。 In the analyzer of the present disclosure, the guide is configured such that the flow path member can be inserted therein, and the first cylinder is arranged side by side in the insertion direction so that the cylinder axis is parallel to the insertion direction. It may include a tubular portion and a second tubular portion. In this case, a gap is formed between the first tubular portion and the second tubular portion in the insertion direction, and the measurement light is emitted to the flow path member through the gap. Areas may be defined.
 上記のように構成し、流路部材の挿入を案内するガイドに絞り機能を持たせることにより、部品の点数を削減することができる。 The number of parts can be reduced by configuring as described above and providing the guide for guiding the insertion of the flow path member with a throttle function.
 上記本開示の分析装置にあっては、上記照射部は、発光ダイオード(LED:Light Emitting Diode)であってもよい。上記のように構成されることにより、安価な光源を使用することができ、光源部の構造を簡素化することができ、測定ユニットにより移動される重量を軽減することができる。 In the analysis device of the present disclosure, the irradiation unit may be a light emitting diode (LED: Light Emitting Diode). With the above configuration, an inexpensive light source can be used, the structure of the light source unit can be simplified, and the weight moved by the measurement unit can be reduced.
 上記本開示の分析装置にあっては、上記液体は、核酸を含む液体試料および上記核酸を蛍光標識する添加剤を含んでいてもよい。 In the analyzer of the present disclosure, the liquid may include a liquid sample containing nucleic acid and an additive for fluorescently labeling the nucleic acid.
 上記のように構成されることにより、予め混合された混合液を採取して測定することにより、分析装置側で試料と試薬とを混合する操作を省略することができる。 With the above configuration, the operation of mixing the sample and the reagent on the analyzer side can be omitted by collecting and measuring the premixed mixed solution.
 本開示によれば、流路部材に保持された微量の液体が存在する位置によらず、精度よく分析することができる分析装置を提供することができる。 According to the present disclosure, it is possible to provide an analysis device capable of performing accurate analysis regardless of the position where a trace amount of liquid held in a flow path member exists.
実施の形態1に係る分析装置の外観を示す斜視図である。FIG. 3 is a perspective view showing the appearance of the analyzer according to the first embodiment. 実施の形態1に係る分析装置の構成を示す概略構成図である。1 is a schematic configuration diagram showing a configuration of an analysis device according to a first embodiment. 実施の形態1に係る分析装置に具備される測定ユニットと移動機構とを示す概略図である。FIG. 3 is a schematic diagram showing a measuring unit and a moving mechanism included in the analyzer according to the first embodiment. 実施の形態1に係る測定ユニットを示す概略平面図である。FIG. 3 is a schematic plan view showing the measurement unit according to the first embodiment. 図4に示す矢印V方向から見た測定ユニットの概略側面図である。FIG. 5 is a schematic side view of the measurement unit viewed from the direction of arrow V shown in FIG. 4. 実施の形態1に係る測定ユニットを移動させて測定する際の測定光の動きを示す図である。FIG. 6 is a diagram showing movement of measurement light when moving and measuring the measurement unit according to the first embodiment. 実施の形態1に係る測定ユニットによって測定された光学特性分布を示す図である。FIG. 3 is a diagram showing an optical characteristic distribution measured by the measuring unit according to the first embodiment. 実施の形態2に係る分析装置において測定ユニットおよび移動機構を示す図である。FIG. 9 is a diagram showing a measurement unit and a moving mechanism in the analysis device according to the second embodiment. 図8に示す測定ユニットに示されるガイドを示す概略断面図である。It is a schematic sectional drawing which shows the guide shown by the measurement unit shown in FIG.
 以下、本開示の実施の形態について、図を参照して詳細に説明する。なお、以下に示す実施の形態においては、同一のまたは共通する部分について図中同一の符号を付し、その説明は繰り返さない。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. In the embodiments described below, the same or common parts are designated by the same reference numerals in the drawings, and the description thereof will not be repeated.
 (実施の形態1)
 図1は、実施の形態1に係る分析装置の外観を示す斜視図である。図2は、実施の形態1に係る分析装置の構成を示す概略構成図である。図1および図2を参照して、実施の形態1に係る分析装置1について説明する。
(Embodiment 1)
FIG. 1 is a perspective view showing the external appearance of the analyzer according to the first embodiment. FIG. 2 is a schematic configuration diagram showing the configuration of the analyzer according to the first embodiment. An analyzer 1 according to the first embodiment will be described with reference to FIGS. 1 and 2.
 分析装置1は、たとえば、タンパク質合成に関与するRNAおよびDNA等の核酸の定量および/または濃度等を分析する装置である。 The analyzer 1 is, for example, an apparatus that analyzes the quantification and/or concentration of nucleic acids such as RNA and DNA involved in protein synthesis.
 図1および図2に示すように、実施の形態1に係る分析装置1は、液体採取具10と、装置本体部20と、データ処理装置30とを備える。 As shown in FIGS. 1 and 2, the analysis device 1 according to the first embodiment includes a liquid sampling tool 10, a device body portion 20, and a data processing device 30.
 液体採取具10は、1nL~100nL程度の微量の液体Lを採取可能に構成されている。液体採取具10によって採取される液体Lは、たとえば、核酸を含む試料および核酸を蛍光標識する蛍光試薬が混合された混合液である。予め混合された混合液を採取して測定することにより、分析装置1側で試料と試薬とを混合する操作を省略することができる。 The liquid collecting tool 10 is configured to collect a small amount of liquid L of about 1 nL to 100 nL. The liquid L collected by the liquid collecting tool 10 is, for example, a mixed liquid in which a sample containing a nucleic acid and a fluorescent reagent for fluorescently labeling the nucleic acid are mixed. By collecting and measuring the premixed mixed solution, the operation of mixing the sample and the reagent on the analyzer 1 side can be omitted.
 蛍光試薬は、分析する試料に応じて適宜選択される。蛍光試薬としては、PicoGreen(登録商標)およびSYBR Green(登録商標)等の蛍光色素を含むものと用いることができる。 Fluorescent reagents are appropriately selected according to the sample to be analyzed. As the fluorescent reagent, one containing a fluorescent dye such as PicoGreen (registered trademark) and SYBR Green (registered trademark) can be used.
 液体採取具10は、本体部11、流路部材12、流路部材取付部13、および吸引機構14を含む。本体部11は、内部に吸引機構14、流路部材取付部13、および流路部材12の一部を収容する。 The liquid collecting tool 10 includes a main body portion 11, a flow channel member 12, a flow channel member mounting portion 13, and a suction mechanism 14. The main body portion 11 accommodates therein the suction mechanism 14, the flow path member attachment portion 13, and a part of the flow path member 12.
 流路部材12は、一端12aおよび他端12bを有する。流路部材12には、液体Lが流動可能な流路12cが形成されている。流路12cは、流路部材12の一端12aから他端12bに亘って形成されている。 The flow path member 12 has one end 12a and the other end 12b. The flow path member 12 is formed with a flow path 12c through which the liquid L can flow. The flow path 12c is formed from one end 12a of the flow path member 12 to the other end 12b.
 流路部材12は、たとえば直線状に設けられている。流路部材12は、透光性を有する筒状部材によって構成されている。筒状部材の内径(流路径)は、2.0mm以下、たとえば、0.2mm程度である。流路部材12としては、たとえばガラスキャピラリを採用することができる。取り扱う量がnLレベルであるため、流路に保持した液体が流路に沿って、測定のために適度な液長を有するように、筒状部材の内径は細い方が好ましい。 The flow path member 12 is provided, for example, in a linear shape. The flow path member 12 is composed of a light-transmissive tubular member. The inner diameter (flow passage diameter) of the tubular member is 2.0 mm or less, for example, about 0.2 mm. As the flow path member 12, for example, a glass capillary can be adopted. Since the amount to be handled is at the nL level, it is preferable that the tubular member has a small inner diameter so that the liquid held in the channel has a suitable liquid length for measurement along the channel.
 流路部材12の一端12aは、本体部11の内部において流路部材取付部13に取り付けられている。 The one end 12 a of the flow path member 12 is attached to the flow path member attachment portion 13 inside the main body 11.
 流路部材取付部13は、流路部材12と吸引機構14とを連通可能に接続する。流路部材取付部13には、流路部材12の流路12cと吸引機構14とを連通させる貫通孔13aが設けられている。 The flow channel member mounting portion 13 connects the flow channel member 12 and the suction mechanism 14 so that they can communicate with each other. The flow path member mounting portion 13 is provided with a through hole 13a that connects the flow path 12c of the flow path member 12 and the suction mechanism 14 to each other.
 吸引機構14は、流路部材12の一端12a側から流路12cに連通するように設けられている。吸引機構14は、流路部材12の他端12b側から流路12c内に液体Lを吸引するための機構である。吸引機構14は、流路12c内で液体Lが保持されるように液体Lを吸引する。 The suction mechanism 14 is provided so as to communicate with the flow path 12c from the one end 12a side of the flow path member 12. The suction mechanism 14 is a mechanism for sucking the liquid L into the flow path 12c from the other end 12b side of the flow path member 12. The suction mechanism 14 sucks the liquid L so that the liquid L is held in the flow path 12c.
 吸引機構14は、圧電素子と当該圧電素子によって駆動される振動板とが設けられたアクチュエータを有する。当該アクチュエータによって、流路12c内を加減圧することにより、吸引機構14は、流路12c内で液体Lが保持されるように液体Lを吸引することが可能となる。なお、圧電素子としては、たとえばピエゾ素子を用いることができる。 The suction mechanism 14 has an actuator provided with a piezoelectric element and a diaphragm driven by the piezoelectric element. The suction mechanism 14 can suck the liquid L so that the liquid L is held in the flow path 12c by increasing or decreasing the pressure in the flow path 12c by the actuator. A piezoelectric element, for example, can be used as the piezoelectric element.
 液体採取具10は、流路12cの両端側に形成された空気層の間に液体Lが保持されるように液体Lを採取する。これにより、流路部材12の外側の外気に接する開口面を有する流路部材12の他端12b付近に液体Lが保持されることが防止することができる。この結果、開口面から液体Lが外気へ揮発していくことを抑制することができ、流路部材12に保持された液体Lの濃度の変動を抑制することができる。 The liquid collecting tool 10 collects the liquid L so that the liquid L is held between the air layers formed on both ends of the flow path 12c. As a result, it is possible to prevent the liquid L from being retained near the other end 12b of the flow path member 12 that has an opening surface that is in contact with the outside air outside the flow path member 12. As a result, it is possible to prevent the liquid L from evaporating from the opening surface to the outside air, and it is possible to suppress the variation in the concentration of the liquid L held in the flow path member 12.
 また、流路部材12の一端12aに液体Lが保持されることが防止される。このため、後述するように、測定時に、挿入孔22から装置本体20内部に流路部材12を挿入する際に、流路部材12を挿入する長さを短くすることができる。 Further, the liquid L is prevented from being held at the one end 12a of the flow path member 12. Therefore, as will be described later, when the channel member 12 is inserted from the insertion hole 22 into the inside of the apparatus main body 20 during measurement, the length of the channel member 12 to be inserted can be shortened.
 上述の例では、液体採取具10によって、予め試料と蛍光試薬とが混合された混合液を採取する場合を例示して説明したが、これに限定されない。液体採取具10は、試料および蛍光試薬の2種類の液体を順に採取し、採取された2種類の液体を流路内で混合してもよい。この場合には、液体採取具10は、吸引機構14によって、上記試料および上記蛍光試薬を上記流路12c内に保持しつつ上記流路12c内を繰り返して加圧および減圧することにより、上記試料および上記蛍光試薬を混合することが好ましい。 In the above example, the case where the liquid collecting tool 10 collects the mixed liquid in which the sample and the fluorescent reagent are mixed in advance has been described as an example, but the present invention is not limited to this. The liquid collecting tool 10 may collect two kinds of liquids of a sample and a fluorescent reagent in order, and mix the collected two kinds of liquids in the channel. In this case, the liquid collecting tool 10 retains the sample and the fluorescent reagent in the flow channel 12c by the suction mechanism 14 and repeatedly pressurizes and depressurizes the flow channel 12c, whereby the sample is collected. And it is preferable to mix the above fluorescent reagents.
 このような場合には、液体採取具10による採取前に予め試料と蛍光試薬とを混合した混合液を作成すること省略することができる。また、吸引機構14の動作を制御することで混合液を作成することができる。 In such a case, it is possible to omit the preparation of the mixed liquid in which the sample and the fluorescent reagent are mixed in advance before the collection by the liquid collecting tool 10. Further, the mixed liquid can be prepared by controlling the operation of the suction mechanism 14.
 吸引機構14の動作は、たとえば、装置本体部20の内部に設けられた吸引機構制御部23によって制御される。吸引機構14は、配線24によって吸引機構制御部23と接続されている。なお、吸引機構制御部23は、液体採取具10の本体部11内に設けられていてもよく、この場合には、配線24および給電部も本体部11内に設けられていてもよい。 The operation of the suction mechanism 14 is controlled by, for example, the suction mechanism control unit 23 provided inside the apparatus main body unit 20. The suction mechanism 14 is connected to the suction mechanism control unit 23 by a wire 24. The suction mechanism control unit 23 may be provided in the main body 11 of the liquid sampling tool 10, and in this case, the wiring 24 and the power feeding unit may also be provided in the main body 11.
 装置本体部20は、内部に測定ユニット40および移動機構50を含む。測定ユニット40は、液体採取具10によって採取された液体Lを測定するためユニットである。移動機構50は、装置本体部20に挿入された流路部材12に沿って測定ユニットを移動させるための機構である。なお、測定ユニット40および移動機構50の構成については、図3から図5を用いて後述する。 The device body 20 includes a measurement unit 40 and a moving mechanism 50 inside. The measuring unit 40 is a unit for measuring the liquid L collected by the liquid collecting tool 10. The moving mechanism 50 is a mechanism for moving the measurement unit along the flow path member 12 inserted in the apparatus main body 20. The configurations of the measuring unit 40 and the moving mechanism 50 will be described later with reference to FIGS. 3 to 5.
 装置本体部20には、液体採取具10を着脱可能に設置するための設置部21が設けられている。液体採取具10は、図1中破線で示すように、液体Lを採取する際には装置本体部20から取り外される。液体採取具10は、採取した液体Lを測定する際には装置本体部20に設置される。 The apparatus body 20 is provided with an installation section 21 for detachably installing the liquid collection tool 10. As shown by the broken line in FIG. 1, the liquid collecting tool 10 is detached from the apparatus main body 20 when collecting the liquid L. The liquid collecting tool 10 is installed in the apparatus main body 20 when measuring the collected liquid L.
 装置本体部20には、液体採取具10の流路部材12を装置本体部20の内部に挿入するための挿入孔22が設けられている。液体採取具10を設置部21に設置する際には、流路部材12の他端12b側を挿入孔22に挿入し、本体部11を設置部21に固定する。これにより、液体採取具10が設置部21に設置された設置状態においては、流路部材12の他端12b側は、装置本体部20の内部に挿入された状態となる。また、設置状態においては、流路部材12に保持された液体Lは、測定ユニット40における測定位置に配置される。 The device body 20 is provided with an insertion hole 22 for inserting the flow path member 12 of the liquid collecting tool 10 into the device body 20. When installing the liquid collecting tool 10 in the installation part 21, the other end 12 b side of the flow path member 12 is inserted into the insertion hole 22 and the main body part 11 is fixed to the installation part 21. As a result, in the installed state where the liquid sampling tool 10 is installed in the installation section 21, the other end 12b side of the flow path member 12 is inserted into the inside of the apparatus main body section 20. Further, in the installed state, the liquid L held in the flow path member 12 is arranged at the measurement position in the measurement unit 40.
 データ処理装置30は、各種の制御・処理を実行するための所定の制御プログラムを搭載し、装置本体部20に接続される。 The data processing device 30 is equipped with a predetermined control program for executing various types of control and processing, and is connected to the device body 20.
 データ処理装置30は、表示部31、操作部32、制御部33、および記憶部36を備える。表示部31は、測定のための情報および測定結果等を表示するものである。操作部32は、測定に関連する各種パラメータの設定、各種処理の指示を行なうためのものである。 The data processing device 30 includes a display unit 31, an operation unit 32, a control unit 33, and a storage unit 36. The display unit 31 displays information for measurement, measurement results, and the like. The operation unit 32 is for setting various parameters related to measurement and instructing various processes.
 制御部33は、測定制御部34、およびデータ処理部35を含む。測定制御部34は、測定ユニット40の動作および移動機構50の動作を制御する。データ処理部35は、測定ユニット40から受信した信号に基づいて、液体Lを分析するための各種の演算処理を実行する。記憶部36は、測定ユニット40から受信した信号、およびデータ処理部35の処理結果等を記憶する。記憶部36は、測定ユニットから受信した信号、およびデータ処理部35の実行結果等を記憶する。記憶部36に記憶した実行結果等は、外部のコンピュータでの処理やデータの管理を行うために、データ処理装置30から取り出せるように構成してもよい。 The control unit 33 includes a measurement control unit 34 and a data processing unit 35. The measurement control unit 34 controls the operation of the measurement unit 40 and the operation of the moving mechanism 50. The data processing unit 35 executes various kinds of arithmetic processing for analyzing the liquid L based on the signal received from the measurement unit 40. The storage unit 36 stores the signal received from the measurement unit 40, the processing result of the data processing unit 35, and the like. The storage unit 36 stores the signal received from the measurement unit, the execution result of the data processing unit 35, and the like. The execution result and the like stored in the storage unit 36 may be configured to be retrieved from the data processing device 30 in order to perform processing and data management in an external computer.
 図3は、実施の形態1に係る分析装置に具備される測定ユニットと移動機構とを示す概略図である。図3を参照して、実施の形態1に係る移動機構50について説明する。 FIG. 3 is a schematic diagram showing a measurement unit and a moving mechanism included in the analyzer according to the first embodiment. The moving mechanism 50 according to the first embodiment will be described with reference to FIG.
 図3に示すように、移動機構50は、ベース部51、移動体52、およびガイドレール53を含む。ベース部51は、測定ユニット40を保持する。ベース部51は、装置本体部20内に挿入された流路部材12に干渉しないように設けられている。具体的には、ベース部51には、貫通孔が設けられており、流路部材12は、当該貫通孔を貫通するように装置本体部20内に挿入される。ベース部51は、移動体52に固定されている。 As shown in FIG. 3, the moving mechanism 50 includes a base portion 51, a moving body 52, and a guide rail 53. The base portion 51 holds the measurement unit 40. The base portion 51 is provided so as not to interfere with the flow path member 12 inserted in the apparatus body portion 20. Specifically, the base portion 51 is provided with a through hole, and the flow path member 12 is inserted into the apparatus main body portion 20 so as to penetrate the through hole. The base portion 51 is fixed to the moving body 52.
 移動体52は、矢印DR1に示すように、ガイドレール53に沿って移動可能に設けられている。移動体52は、モータ等の駆動源によって移動する。ガイドレール53は、挿入された流路部材12に平行な方向に延在する。すなわち、ガイドレール53は、流路部材12の挿入方向に沿って延在する。なお、流路部材12の挿入方向は、挿入孔22の開口面に垂直な方向であり、たとえば、上下方向である。 The moving body 52 is provided so as to be movable along the guide rail 53, as shown by an arrow DR1. The moving body 52 is moved by a drive source such as a motor. The guide rail 53 extends in a direction parallel to the inserted flow path member 12. That is, the guide rail 53 extends along the insertion direction of the flow path member 12. The insertion direction of the flow path member 12 is a direction perpendicular to the opening surface of the insertion hole 22, and is, for example, the vertical direction.
 移動体52が移動することにより、移動体52に固定されたベース部51もガイドレール53に沿って移動する。これにより、ベース部51に保持された測定ユニット40が、挿入された流路部材12に沿って移動する。 When the moving body 52 moves, the base portion 51 fixed to the moving body 52 also moves along the guide rail 53. As a result, the measurement unit 40 held by the base portion 51 moves along the inserted flow path member 12.
 図4は、実施の形態1に係る測定ユニットを示す概略平面図である。図5は、図4に示す矢印V方向から見た測定ユニットの概略側面図である。図4および図5を参照して、測定ユニット40について説明する。 FIG. 4 is a schematic plan view showing the measurement unit according to the first embodiment. FIG. 5 is a schematic side view of the measurement unit as seen from the direction of arrow V shown in FIG. The measurement unit 40 will be described with reference to FIGS. 4 and 5.
 図3および図4に示すように、測定ユニット40は、照射部41、受光部42、光学系43、第1波長選択素子44、第2波長選択素子45、および絞り部46を有する。 As shown in FIGS. 3 and 4, the measurement unit 40 includes an irradiation unit 41, a light receiving unit 42, an optical system 43, a first wavelength selection element 44, a second wavelength selection element 45, and a diaphragm unit 46.
 照射部41は、流路部材12に保持された液体Lに向けて測定光MBを照射する。照射部41は、分析する液体L(混合液)に含まれる蛍光色素を励起する波長帯域を含む光を出射する。照射部41は、たとえば、主波長を470nm付近とする青色可視光を出射する。照射部41としては、たとえばLEDを利用することができる。照射部41から照射される測定光を安定させるために、測定の開始前に所定の時間点灯させ、熱平行に到達させることが好ましい。照射部41から照射された測定光MBは、第1波長選択素子44に向かう。 The irradiation unit 41 irradiates the measurement light MB toward the liquid L held in the flow path member 12. The irradiation unit 41 emits light including a wavelength band that excites the fluorescent dye contained in the liquid L (mixed liquid) to be analyzed. The irradiation unit 41 emits blue visible light having a main wavelength in the vicinity of 470 nm, for example. As the irradiation unit 41, for example, an LED can be used. In order to stabilize the measurement light emitted from the irradiation unit 41, it is preferable that the measurement light is turned on for a predetermined time before the measurement is started to reach the heat parallel. The measurement light MB emitted from the irradiation unit 41 travels toward the first wavelength selection element 44.
 第1波長選択素子44は、照射部41から流路部材12に向かう測定光MBの光路上に配置されている。第1波長選択素子44は、第1波長帯域の光を選択的に通過させる。第1波長選択素子は、たとえばバンドパスフィルタである。また、第1波長帯域は、分析する液体L(混合液)に含まれる蛍光色素を励起させる波長帯域である。第1波長選択素子44を通過した測定光MBは、光学系43によって導光される。 The first wavelength selection element 44 is arranged on the optical path of the measurement light MB from the irradiation unit 41 toward the flow path member 12. The first wavelength selection element 44 selectively passes light in the first wavelength band. The first wavelength selection element is, for example, a bandpass filter. The first wavelength band is a wavelength band that excites the fluorescent dye contained in the liquid L (mixed liquid) to be analyzed. The measurement light MB that has passed through the first wavelength selection element 44 is guided by the optical system 43.
 光学系43は、少なくとも測定光MBの通過経路を形成し、照射部41から照射された測定光MBを流路部材12に導く。光学系43は、たとえばボールレンズ等の集光レンズを含み、第1波長選択素子44を通過した測定光MBを集光しつつ、上記流路部材12に導く。 The optical system 43 forms at least a passage for the measurement light MB and guides the measurement light MB emitted from the irradiation unit 41 to the flow path member 12. The optical system 43 includes, for example, a condenser lens such as a ball lens, and guides the measurement light MB passing through the first wavelength selection element 44 to the flow path member 12 while condensing the measurement light MB.
 光学系43によって集光された測定光MBは、流路部材12に到達する前に絞り部46によって光域が制限される。絞り部46は、装置本体部20の内部に挿入された流路部材12の近傍に配置されている。絞り部46は、たとえば板状形状を有する。 The measurement light MB condensed by the optical system 43 has its optical range limited by the diaphragm 46 before reaching the flow path member 12. The throttle portion 46 is arranged near the flow path member 12 inserted inside the apparatus main body portion 20. The narrowed portion 46 has, for example, a plate shape.
 絞り部46は、上記流路部材に照射される測定光MBの照射領域を規定する開口部46aを有する。流路部材12に保持された液体Lは流路12cに沿って延在しており、流路12cに沿った開口部46aの開口幅L2は、流路部材12に保持された液体Lの流路12cに沿った長さL1よりも短くなっている。なお、微量の液体Lを流路12cに保持した際の流路12cに沿った液体Lの長さは、流路部材12の流路径にもよるが略2mm~3mm程度である。 The diaphragm 46 has an opening 46a that defines an irradiation region of the measurement light MB with which the flow path member is irradiated. The liquid L held in the flow path member 12 extends along the flow path 12c, and the opening width L2 of the opening 46a along the flow path 12c is the flow of the liquid L held in the flow path member 12. It is shorter than the length L1 along the path 12c. The length of the liquid L along the flow path 12c when a small amount of the liquid L is held in the flow path 12c is approximately 2 mm to 3 mm, depending on the flow path diameter of the flow path member 12.
 このように開口幅を規定する場合には、目標値から採取する液体Lの量が変動した場合であっても液体Lが存在する部分の光路上の領域にのみ測定光MBを照射することが可能となる。 In the case of defining the opening width in this way, even if the amount of the liquid L to be sampled changes from the target value, the measurement light MB can be applied only to the region on the optical path where the liquid L exists. It will be possible.
 上述のように測定光MBは、当該液体Lに含まれる蛍光色素を励起する第1波長帯域を有する。このため、流路部材12に保持された液体Lに測定光MBが照射された場合には、測定光MBによって励起された蛍光色素から蛍光が発光される。 As described above, the measurement light MB has the first wavelength band that excites the fluorescent dye contained in the liquid L. Therefore, when the liquid L held in the flow path member 12 is irradiated with the measurement light MB, fluorescence is emitted from the fluorescent dye excited by the measurement light MB.
 流路部材12に保持された液体Lに測定光MBが照射された場合には、液体Lおよび流路部材によって光路を変更された測定光MBの一部、ならびに発光された蛍光が受光部42に向かう。一方、液体Lが保持されていない部分の流路部材12に測定光MBが照射された場合には、流路部材によって光路を変更された測定光MBの一部が受光部42に向かう。 When the liquid L held in the flow path member 12 is irradiated with the measurement light MB, a part of the measurement light MB whose optical path is changed by the liquid L and the flow path member and the emitted fluorescence are received by the light receiving unit 42. Head to. On the other hand, when the measurement light MB is irradiated to the portion of the flow path member 12 where the liquid L is not held, part of the measurement light MB whose optical path has been changed by the flow path member is directed to the light receiving unit 42.
 受光部42は、流路部材12の中心軸まわりに照射部41に対して略90度回転させた位置に配置されている。受光部42は、測定光MBが照射された流路部材12からの光を受光する。流路部材から受光部42に向かう光の光路上には、第2波長選択素子45が配置されており、受光部42は、第2波長選択素子45を通過した光を受光する。 The light receiving section 42 is arranged at a position rotated about 90 degrees with respect to the irradiation section 41 around the central axis of the flow path member 12. The light receiving unit 42 receives the light from the flow path member 12 irradiated with the measurement light MB. The second wavelength selection element 45 is arranged on the optical path of the light traveling from the flow path member to the light reception section 42, and the light reception section 42 receives the light that has passed through the second wavelength selection element 45.
 第2波長選択素子45は、第1波長帯域とは異なる第2波長帯域の光を選択的に通過させる。第2波長選択素子45は、たとえばバンドパスフィルタである。また、第2波長帯域とは、上記蛍光色素から発せられる蛍光が有する波長域である。このため、第2波長選択素子45によって測定光MBは遮断される。これにより、受光部42は、測定光MBが混在しない所望の波長帯域を有する光を受光することができ、測定精度を向上させることができる。 The second wavelength selection element 45 selectively passes light in the second wavelength band different from the first wavelength band. The second wavelength selection element 45 is, for example, a bandpass filter. The second wavelength band is a wavelength range of the fluorescence emitted from the fluorescent dye. Therefore, the measurement light MB is blocked by the second wavelength selection element 45. Accordingly, the light receiving unit 42 can receive light having a desired wavelength band in which the measurement light MB is not mixed, and the measurement accuracy can be improved.
 ここで、上述のように、流路部材12内の微量の液体Lは、流路12cの両端側に形成された空気層の間に保持されているため、流路12c内で保持される微量の液体Lの位置がばらついてしまう場合がある。この場合においては、測定ユニット40が設けられた装置本体部20内に流路部材12の他端12bを挿入した状態で液体採取具10を設置部21に設置した際に、目標位置からずれた位置に液体が保持される、すなわち、測定光MBの光路上に液体Lが保持されないことが起こり得る。 Here, as described above, the trace amount of the liquid L in the flow channel member 12 is retained between the air layers formed on both end sides of the flow channel 12c, and thus the trace amount retained in the flow channel 12c. The position of the liquid L may vary. In this case, when the liquid sampling tool 10 is installed in the installation section 21 with the other end 12b of the flow path member 12 inserted in the apparatus main body section 20 in which the measurement unit 40 is provided, it is displaced from the target position. It is possible that the liquid is held at the position, that is, the liquid L is not held on the optical path of the measurement light MB.
 本実施の形態1においては、測定ユニット40を移動させる移動機構50を設け、装置本体部20の内部に挿入された流路部材12に沿って測定ユニットを移動させることにより、流路部材12内に保持される液体Lを確実に測定することができるようになっている。 In the first embodiment, the moving mechanism 50 that moves the measurement unit 40 is provided, and the measurement unit is moved along the flow path member 12 that is inserted into the inside of the apparatus main body portion 20. It is possible to reliably measure the liquid L held in.
 図6は、実施の形態1に係る測定ユニットを移動させて測定する際の測定光MBの動きを示す図である。図6を参照して、測定ユニット40を移動させて測定する際の測定光MBの動きについて説明する。 FIG. 6 is a diagram showing the movement of the measurement light MB when the measurement unit according to the first embodiment is moved to perform measurement. The movement of the measurement light MB when the measurement unit 40 is moved to perform measurement will be described with reference to FIG.
 移動機構50は、装置本体部20の内部に挿入された流路部材12に保持された液体Lに測定光MBが照射されるように、照射部41から測定光MBを照射した状態で測定ユニット40を流路部材12に沿って移動させる。 The moving mechanism 50 irradiates the measurement light MB from the irradiation unit 41 so that the liquid L held in the flow path member 12 inserted inside the apparatus main body 20 is irradiated with the measurement light MB. 40 is moved along the flow path member 12.
 なお、予め流路部材12に保持される液体Lのばらつく範囲が観測されており、観測された範囲に測定光MBが照射されるように測定ユニット40を移動させる。 Note that the range in which the liquid L held in the flow path member 12 varies has been observed in advance, and the measurement unit 40 is moved so that the measurement light MB is irradiated to the observed range.
 これにより、測定光MBは、図6の矢印AR1に示すように、流路部材12に沿って移動し、液体Lが保持されていない部分および液体Lが保持されている部分の双方を含む範囲に照射される。 As a result, the measurement light MB moves along the flow path member 12 as shown by the arrow AR1 in FIG. 6, and includes both a portion where the liquid L is not held and a portion where the liquid L is held. Is irradiated.
 これにより、測定ユニット40は、移動中に測定光MBが照射された流路部材12の範囲において、液体Lの光学特性を含む光学特性分布を測定する。光学特性としては、たとえば光強度が測定される。 Thereby, the measurement unit 40 measures the optical characteristic distribution including the optical characteristic of the liquid L in the range of the flow path member 12 irradiated with the measurement light MB during movement. As the optical characteristic, for example, light intensity is measured.
 図7は、実施の形態1に係る測定ユニットによって測定された光学特性分布を示す図である。図7を参照して、実施の形態1に係る測定ユニットによって測定された光学特性分布について説明する。 FIG. 7 is a diagram showing an optical characteristic distribution measured by the measurement unit according to the first embodiment. The optical characteristic distribution measured by the measurement unit according to the first embodiment will be described with reference to FIG. 7.
 上述のように、流路部材12に保持された液体Lに測定光MBが照射された場合には、液体Lおよび流路部材によって光路を変更された測定光MBの一部、ならびに液体Lから発光された蛍光が受光部42に向かう。一方、液体Lが保持されていない部分の流路部材12に測定光MBが照射された場合には、流路部材12によって光路を変更された測定光MBの一部が受光部42に向かう。受光部42に向かう光は、第2波長選択素子45を通過するため、測定光MBが遮断させた光が受光部42に導入される。 As described above, when the liquid L held in the flow path member 12 is irradiated with the measurement light MB, the liquid L and a part of the measurement light MB whose optical path is changed by the flow path member, and the liquid L The emitted fluorescence goes toward the light receiving unit 42. On the other hand, when the measurement light MB is irradiated to the portion of the flow path member 12 in which the liquid L is not held, part of the measurement light MB whose optical path has been changed by the flow path member 12 is directed to the light receiving unit 42. The light traveling toward the light receiving unit 42 passes through the second wavelength selection element 45, so that the light blocked by the measurement light MB is introduced into the light receiving unit 42.
 このため、図7に示すように、液体Lに測定光MBが照射された範囲において、その部分から得られる光学特性が大きくなる。液体Lが保持されていない部分に測定光MBが照射された範囲においては、その部分から得られる光学特性が小さくなっており、光学特性分布がフラットになっている。測定光MBを照射した状態で測定ユニット40を流路部材12に沿って移動させることにより、流路部材12内における液体Lが存在する範囲にわたって光学特性を測定することができる。得られた光学特性が大きい範囲における移動距離は、流路部材12に保持した液体の液長に相当し、流路部材12の断面積は既知であるので、測定した液長から、流路部材12内に実際に採取した液体Lの体積を算出することもできる。 Therefore, as shown in FIG. 7, in the range in which the liquid L is irradiated with the measurement light MB, the optical characteristics obtained from that portion become large. In the range where the measurement light MB is irradiated to the portion where the liquid L is not held, the optical characteristic obtained from that portion is small and the optical characteristic distribution is flat. By moving the measurement unit 40 along the flow path member 12 in the state where the measurement light MB is irradiated, the optical characteristics can be measured over the range in which the liquid L exists in the flow path member 12. The moving distance in the range where the obtained optical characteristics are large corresponds to the liquid length of the liquid held in the flow path member 12, and the cross-sectional area of the flow path member 12 is known. It is also possible to calculate the volume of the liquid L actually collected in 12.
 測定された光学特性分布は、受光部によって得られた信号として、記憶部36に送信され、移動機構50による移動距離に対応付けて記憶される。移動機構50の可動範囲内に保持される液体の光学特性を測定することができる。 The measured optical characteristic distribution is transmitted to the storage unit 36 as a signal obtained by the light receiving unit, and is stored in association with the moving distance of the moving mechanism 50. The optical characteristics of the liquid held in the movable range of the moving mechanism 50 can be measured.
 また、測定された光学特性分布に関する信号は、受光部42からデータ処理部35に送信される。 Further, a signal regarding the measured optical characteristic distribution is transmitted from the light receiving unit 42 to the data processing unit 35.
 データ処理部35は、上記光学特性分布と、既知の特定濃度の液体を測定して得た光学特性とから液体Lに含まれる特定成分(核酸)の濃度を算出する。また、データ処理部35は、光学特性がピークとなる値Emと、移動距離に基づいて、液体Lの位置を特定する。この場合には、特定された液体Lの位置に測定光MBが照射されるように測定ユニット40を移動させ、再度測定を行なってもよい。これにより、液体Lに測定光MBが確実に照射され、液体Lからの光が受光部42へ導かれる位置での測定が可能となる。さらに光強度のピーク値Emによる評価、また、光強度と移動距離の積による評価が可能であり、算出した液体の体積L当たりの光学特性値とすることでより精度を高めた分析が可能となる。 The data processing unit 35 calculates the concentration of the specific component (nucleic acid) contained in the liquid L from the above optical characteristic distribution and the optical characteristic obtained by measuring the liquid having a known specific concentration. Further, the data processing unit 35 specifies the position of the liquid L based on the value Em at which the optical characteristic has a peak and the moving distance. In this case, the measurement unit 40 may be moved so that the specified position of the liquid L is irradiated with the measurement light MB, and the measurement may be performed again. As a result, the measurement light MB is surely applied to the liquid L, and the measurement at the position where the light from the liquid L is guided to the light receiving unit 42 becomes possible. Furthermore, it is possible to perform evaluation by the peak value Em of the light intensity, or evaluation by the product of the light intensity and the moving distance, and by using the calculated optical characteristic value per volume L of the liquid, it is possible to perform analysis with higher accuracy. Become.
 なお、データ処理部35による演算処理においては、液体Lが保持されていない部分の流路部材12から受光された光の光学特性の変動率を算出し、当該変動率を液体の光学特性に掛け算してもよい。この場合には、流路部材12への吸引時にも液体Lが付着することがない部分(特に流路部材12の一端12aに近い側)の光学特性を測定することで、分析装置側に起因する光学特性の変動要因を補正することができる。 In the calculation processing by the data processing unit 35, the variation rate of the optical characteristics of the light received from the flow path member 12 in the portion where the liquid L is not held is calculated, and the variation rate is multiplied by the optical characteristics of the liquid. You may. In this case, by measuring the optical characteristics of a portion (particularly the side near the one end 12a of the flow path member 12) where the liquid L does not adhere even when sucked into the flow path member 12, the optical characteristics are measured. It is possible to correct the fluctuation factors of the optical characteristics that occur.
 以上のように、実施の形態1においては、上記のように流路12cが形成された流路部材12と吸引機構14とを含む液体採取具10を用いることにより、吸引機構14を駆動させて、流路部材12内に微量の液体Lを吸引しつつ、流路12cの両端側に形成された空気層の間に微量の液体Lを保持することができる。これにより、外部空間に開放された外気に直接接触する流路12cの他端から離れた位置で微量の液体Lを保持することができ、液体Lが揮発することを抑制することができる。この結果、流路部材12に保持された液体Lの濃度の変動を抑制することができる。 As described above, in the first embodiment, the suction mechanism 14 is driven by using the liquid collecting tool 10 including the flow channel member 12 in which the flow channel 12c is formed as described above and the suction mechanism 14. It is possible to hold a small amount of the liquid L between the air layers formed on both ends of the flow path 12c while sucking the small amount of the liquid L into the flow path member 12. This makes it possible to hold a small amount of the liquid L at a position apart from the other end of the flow path 12c that is in direct contact with the outside air opened to the external space, and prevent the liquid L from volatilizing. As a result, fluctuations in the concentration of the liquid L held in the flow path member 12 can be suppressed.
 さらに、測定ユニット40を移動させる移動機構50が設けられているため、測定ユニット40が設けられた装置本体部20内に流路部材12の他端を挿入した状態で液体採取具10を設置部21に設置した際に、目標位置からずれた位置に液体Lが保持された場合であっても、装置本体部20の内部に挿入された流路部材12に沿って測定ユニット40を移動させることにより、流路部材12内に保持された液体Lを確実に測定することができる。これにより、液体Lの体積・濃度の変動を抑制した状態で、液体Lの光学特性を測定することができ、この結果、微量の液体Lを精度よく測定することができる。 Further, since the moving mechanism 50 for moving the measuring unit 40 is provided, the liquid sampling tool 10 is installed in a state where the other end of the flow path member 12 is inserted into the apparatus main body 20 in which the measuring unit 40 is provided. Even when the liquid L is held at a position deviated from the target position when the measurement unit 40 is installed at 21, the measurement unit 40 is moved along the flow path member 12 inserted inside the apparatus main body 20. Thereby, the liquid L held in the flow path member 12 can be measured reliably. As a result, the optical characteristics of the liquid L can be measured while suppressing changes in the volume and concentration of the liquid L, and as a result, a very small amount of the liquid L can be accurately measured.
 (実施の形態2)
 図8は、実施の形態2に係る分析装置において測定ユニットおよび移動機構を示す図である。なお、図8は、照射部41を正面側からみた場合の測定ユニット40Aおよび移動機構50Aを図示しており、便宜上のため測定ユニット40Aに含まれる第1波長選択素子および光学系を省略している。図8を参照して、実施の形態2に係る分析装置について説明する。
(Embodiment 2)
FIG. 8 is a diagram showing a measuring unit and a moving mechanism in the analyzer according to the second embodiment. Note that FIG. 8 illustrates the measurement unit 40A and the moving mechanism 50A when the irradiation unit 41 is viewed from the front side, and for convenience, the first wavelength selection element and the optical system included in the measurement unit 40A are omitted. There is. The analyzer according to the second embodiment will be described with reference to FIG.
 図8に示すように、実施の形態2に係る分析装置は、実施の形態1に係る分析装置と比較して、移動機構50Aの構成と測定ユニット40Aの構成が相違し、その他の構成については、ほぼ同様である。 As shown in FIG. 8, the analyzer according to the second embodiment is different from the analyzer according to the first embodiment in the configuration of the moving mechanism 50A and the configuration of the measurement unit 40A, and other configurations are the same. , Is almost the same.
 図8に示すように、測定ユニット40Aは、実施の形態1に係る測定ユニット40と比較した場合に、ガイド47を備える点において相違する。ガイド47は、流路部材12の挿入方向に延在して、流路部材12の挿入を案内する。ガイド47は、第1筒状部471および第2筒状部472を有する。 As shown in FIG. 8, the measurement unit 40A differs from the measurement unit 40 according to the first embodiment in that a guide 47 is provided. The guide 47 extends in the insertion direction of the flow path member 12 and guides the insertion of the flow path member 12. The guide 47 has a first tubular portion 471 and a second tubular portion 472.
 移動機構50Aは、実施の形態1に係る移動機構50と比較して、ベース部51Aの構成が相違する。その他の構成については、ほぼ同様である。 The moving mechanism 50A is different from the moving mechanism 50 according to the first embodiment in the configuration of the base portion 51A. Other configurations are almost the same.
 ベース部51Aは、流路部材12の挿入方向(上下方向)に互いに離間して配置された第1プレート部511および第2プレート部512を含む。第1プレート部511および第2プレート部512は、測定ユニット40Aによる測定に影響を与えないように一体に固定されている。 The base portion 51A includes a first plate portion 511 and a second plate portion 512 that are arranged apart from each other in the insertion direction (vertical direction) of the flow path member 12. The first plate portion 511 and the second plate portion 512 are integrally fixed so as not to affect the measurement by the measurement unit 40A.
 第1プレート部511および第2プレート部512には、貫通孔511aおよび貫通孔512aが設けられている。当該貫通孔511aおよび貫通孔512aによってガイド47が保持されている。具体的には、第1筒状部471が貫通孔511aに挿入保持されており、第2筒状部472が貫通孔512aに挿入保持されている。 The first plate portion 511 and the second plate portion 512 are provided with a through hole 511a and a through hole 512a. The guide 47 is held by the through hole 511a and the through hole 512a. Specifically, the first tubular portion 471 is inserted and held in the through hole 511a, and the second tubular portion 472 is inserted and held in the through hole 512a.
 図9は、図8に示す測定ユニットに具備されるガイドを示す概略断面図である。図9を参照して、ガイド47に含まれる上述の第1筒状部471および第2筒状部472について説明する。 FIG. 9 is a schematic sectional view showing a guide included in the measuring unit shown in FIG. The above-described first tubular portion 471 and second tubular portion 472 included in the guide 47 will be described with reference to FIG. 9.
 第1筒状部471および第2筒状部472は、筒軸が流路部材12の挿入方向に平行となるように挿入方向に並んで配置されている。第1筒状部471は、第2筒状部472よりも先に流路部材12が挿入されるように配置されている。 The first tubular portion 471 and the second tubular portion 472 are arranged side by side in the insertion direction so that the tubular axes are parallel to the insertion direction of the flow path member 12. The first tubular portion 471 is arranged such that the flow path member 12 is inserted before the second tubular portion 472.
 第1筒状部471は、流路部材12の他端12bを案内路471bに誘い込むための誘い込み部471aを有する。誘い込み部471aは、案内路471bに向かうにつれて内径が小さくなるように形成されている。案内路471bは、挿入方向に沿って直線状に形成されている。 The first tubular portion 471 has a guiding portion 471a for guiding the other end 12b of the flow path member 12 into the guide path 471b. The guide portion 471a is formed so that the inner diameter becomes smaller toward the guide path 471b. The guide path 471b is linearly formed along the insertion direction.
 第2筒状部472は、第1筒状部471の案内路471bに対向する案内路472bを有する。 The second tubular portion 472 has a guide passage 472b facing the guide passage 471b of the first tubular portion 471.
 誘い込み部471aに誘い込まれた流路部材12の他端12bは、さらに挿入されることで、案内路471bを通って案内路472b内に進入する。案内路472bの径が、案内路471aの径よりも大きくなっていることで、流路部材12の他端12bが第2筒状部472に進入するときに干渉することを防いでいる。 The other end 12b of the flow path member 12 guided into the guiding portion 471a is further inserted to enter the guide path 472b through the guide path 471b. The diameter of the guide passage 472b is larger than the diameter of the guide passage 471a, thereby preventing the other end 12b of the flow path member 12 from interfering with each other when entering the second tubular portion 472.
 挿入方向における第1筒状部471と第2筒状部472との間には、隙間GPが形成されている。挿入方向における隙間GPの大きさは、流路部材12に保持された液体Lの流路12cに沿った長さよりも短くなっている。当該隙間は、実施の形態1の開口部46aに相当するものであり、当該隙間によって流路部材に照射される照射領域が規定される。また、測定光MBが照射された流路部材12からの光は、当該隙間GPから受光部42に向かう。 A gap GP is formed between the first tubular portion 471 and the second tubular portion 472 in the insertion direction. The size of the gap GP in the insertion direction is shorter than the length of the liquid L held in the flow path member 12 along the flow path 12c. The gap corresponds to the opening 46a of the first embodiment, and the gap defines the irradiation area with which the flow path member is irradiated. Further, the light from the flow path member 12 irradiated with the measurement light MB travels from the gap GP to the light receiving section 42.
 以上のように構成される場合であっても、実施の形態2に係る分析装置は、実施の形態1とほぼ同様の効果が得られる。加えて、ガイド47が設けられることにより、測定光MBの光路上の測定位置に流路部材12を配置しやすくなる。さらに、ガイド47によって絞り部を構成することにより、部品点数を削減することができる。 Even in the case of the above configuration, the analysis device according to the second embodiment can obtain substantially the same effect as that of the first embodiment. In addition, the provision of the guide 47 facilitates disposing the flow path member 12 at the measurement position on the optical path of the measurement light MB. Furthermore, the number of parts can be reduced by forming the narrowed portion with the guide 47.
 なお、上述した実施の形態2においては、ガイド47が互いに離間した2つの筒状部によって構成される場合を例示して説明したが、これに限定されず、ガイド47が1つの筒状部によって構成されていてもよい。この場合には、筒状部の周壁部に、測定光MBの照射領域を規定する開口部、および、照射された流路部材からの光を通過させる窓部を設けることが好ましい。 In the second embodiment described above, the case where the guide 47 is configured by two tubular portions that are separated from each other has been described as an example, but the present invention is not limited to this, and the guide 47 is configured by one tubular portion. It may be configured. In this case, it is preferable that the peripheral wall of the tubular portion be provided with an opening that defines the irradiation area of the measurement light MB and a window that allows the light from the irradiated flow path member to pass through.
 上述した実施の形態1および2においては、蛍光試薬を用いて蛍光標識した試料からの蛍光を受光することで試料を分析する場合(蛍光分析)を例示して説明したが、これに限定されず、測定光MBが試料を通過する光路上に受光部を配置するように構成されていてもよい。この場合においても、受光部は液体Lからの光(液体Lを透過した測定光MB)を受光することができ、測定光MBの波長における液体Lの透過率、液体Lの吸光度を測定する(吸光度分析)ことができる。 In the above-described first and second embodiments, the case where the sample is analyzed by receiving the fluorescence from the sample fluorescently labeled with the fluorescent reagent (fluorescence analysis) has been described as an example, but the present invention is not limited to this. Alternatively, the light receiving section may be arranged on the optical path through which the measurement light MB passes through the sample. Also in this case, the light receiving section can receive the light from the liquid L (the measurement light MB transmitted through the liquid L), and measures the transmittance of the liquid L and the absorbance of the liquid L at the wavelength of the measurement light MB ( Absorbance analysis).
 以上、今回開示された実施の形態はすべての点で例示であって制限的なものではない。本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。 Above, the embodiments disclosed this time are exemplifications in all respects, and are not restrictive. The scope of the present invention is shown by the claims, and includes meanings equivalent to the claims and all modifications within the scope.
 1 分析装置、10 液体採取具、11 本体部、12a 一端、12b 他端、13 流路部材取付部、13a 貫通孔、14 吸引機構、20 装置本体部、21 設置部、22 挿入孔、23 吸引機構制御部、24 配線、30 データ処理装置、31 表示部、32 操作部、33 制御部、34 測定制御部、35 データ処理部、36 記憶部、40,40A 測定ユニット、41 照射部、42 受光部、43 光学系、44 第1波長選択素子、45 第2波長選択素子、46 絞り部、46a 開口部、47 ガイド、50,50A 移動機構、51,51A ベース部、52 移動体、53 ガイドレール、471 第1筒状部、471a 誘い込み部、471b 案内路、472 第2筒状部、472b 案内路、511 第1プレート部、511a 貫通孔、512 第2プレート部、512a 貫通孔。 1 analyzer, 10 liquid sampling tool, 11 body part, 12a one end, 12b other end, 13 flow path member mounting part, 13a through hole, 14 suction mechanism, 20 device body part, 21 installation part, 22 insertion hole, 23 suction Mechanism control unit, 24 wiring, 30 data processing device, 31 display unit, 32 operation unit, 33 control unit, 34 measurement control unit, 35 data processing unit, 36 storage unit, 40, 40A measurement unit, 41 irradiation unit, 42 light reception Section, 43 optical system, 44 first wavelength selecting element, 45 second wavelength selecting element, 46 diaphragm section, 46a opening section, 47 guide, 50, 50A moving mechanism, 51, 51A base section, 52 moving body, 53 guide rail , 471 first tubular portion, 471a guiding portion, 471b guideway, 472 second tubular portion, 472b guideway, 511 first plate portion, 511a through hole, 512 second plate portion, 512a through hole.

Claims (13)

  1.  微量の液体を採取可能に構成された液体採取具と、
     前記液体採取具を着脱可能に設置する設置部を有する装置本体部と、を備え、
     前記装置本体部は、前記液体採取具によって採取された前記液体を測定するための測定ユニットを内部に含み、
     前記液体採取具は、一端および他端を有し、前記液体が流動可能な流路が形成された流路部材と、前記流路部材の前記一端側から前記流路に連通するように設けられ、前記流路部材の前記他端側から前記流路内に前記液体を吸引するための吸引機構とを含み、
     前記吸引機構は、前記流路内において前記流路の両端側に形成された空気層の間に前記液体が保持されるように前記液体を吸引し、
     前記装置本体部には、前記流路部材を前記装置本体部の内部に挿入するための挿入孔が設けられており、
     前記液体採取具が前記設置部に設置された状態において、前記流路部材の前記他端側が前記挿入孔から前記装置本体部の内部に挿入されており、
     前記装置本体部は、前記装置本体部の内部に挿入された前記流路部材に沿って前記測定ユニットを移動させる移動機構をさらに含む、分析装置。
    A liquid collecting tool configured to collect a small amount of liquid,
    An apparatus main body having an installation part for detachably installing the liquid collecting tool,
    The device body includes a measuring unit inside for measuring the liquid collected by the liquid collecting tool,
    The liquid collecting tool has one end and the other end, and is provided so as to communicate with a flow channel member in which a flow channel in which the liquid can flow is formed and from the one end side of the flow channel member to the flow channel. A suction mechanism for sucking the liquid into the flow channel from the other end side of the flow channel member,
    The suction mechanism sucks the liquid so that the liquid is held between air layers formed on both end sides of the flow channel in the flow channel,
    The device body is provided with an insertion hole for inserting the flow path member into the device body,
    In a state where the liquid collecting tool is installed in the installation section, the other end side of the flow path member is inserted into the inside of the apparatus main body section from the insertion hole,
    The analyzer body further includes a moving mechanism that moves the measurement unit along the flow path member inserted inside the apparatus body part.
  2.  前記測定ユニットは、前記装置本体部の内部に挿入された前記流路部材に向けて測定光を照射する照射部と、前記測定光が照射された前記流路部材からの光を受光する受光部と、少なくとも前記測定光の通過経路を形成し、前記照射部から照射された前記測定光を前記装置本体部の内部に挿入された前記流路部材の一部の領域に導く光学系と、を含む、請求項1に記載の分析装置。 The measurement unit includes an irradiation unit that emits measurement light toward the flow channel member that is inserted inside the apparatus main body, and a light receiving unit that receives light from the flow channel member that is irradiated with the measurement light. And an optical system that forms at least a passage for the measurement light and guides the measurement light emitted from the irradiation unit to a partial region of the flow path member inserted inside the apparatus main body. The analysis device according to claim 1, comprising:
  3.  前記移動機構は、前記装置本体部の内部に挿入された前記流路部材に保持された前記液体に前記測定光が照射されるように、前記照射部から前記測定光を照射した状態で前記測定ユニットを前記流路部材に沿って移動させ、
     前記測定ユニットは、前記測定ユニットの移動中に前記測定光が照射された前記流路部材の範囲において、前記液体の光学特性を含む光学特性分布を測定する、請求項2に記載の分析装置。
    The moving mechanism performs the measurement in a state in which the measuring light is irradiated from the irradiation unit so that the liquid held in the flow path member inserted inside the apparatus main body is irradiated with the measuring light. Moving the unit along the flow path member,
    The analyzer according to claim 2, wherein the measurement unit measures an optical characteristic distribution including an optical characteristic of the liquid in a range of the flow path member irradiated with the measurement light while the measurement unit is moving.
  4.  前記光学特性分布に基づき、前記液体の位置を特定する、請求項3に記載の分析装置。 The analysis device according to claim 3, wherein the position of the liquid is specified based on the optical characteristic distribution.
  5.  前記受光部に得られた信号を記憶する記憶部を備え、
     前記液体に前記測定光が照射されない位置で、前記受光部によって得られた信号が前記記憶部に記憶される、請求項3または4に記載の分析装置。
    A storage unit for storing the signal obtained in the light receiving unit,
    The analysis device according to claim 3, wherein the signal obtained by the light receiving unit is stored in the storage unit at a position where the measurement light is not applied to the liquid.
  6.  前記光学特性分布に基づき、前記液体に含まれる特定成分の濃度を算出するデータ処理部をさらに備える、請求項3に記載の分析装置。 The analyzer according to claim 3, further comprising a data processing unit that calculates a concentration of a specific component contained in the liquid based on the optical characteristic distribution.
  7.  前記測定ユニットは、前記照射部から前記流路部材に向かう前記測定光の光路上に配置され、第1波長帯域の光を選択的に通過させる第1波長選択素子を含む、請求項2に記載の分析装置。 The said measurement unit is arrange|positioned on the optical path of the said measurement light which goes to the said flow path member from the said irradiation part, and contains the 1st wavelength selection element which selectively lets the light of a 1st wavelength band pass. Analyzer.
  8.  前記測定ユニットは、前記流路部材から前記受光部に向かう前記光の光路上に配置され、前記第1波長帯域とは異なる第2波長帯域の光を選択的に通過させる第2波長選択素子を含む、請求項7に記載の分析装置。 The measurement unit includes a second wavelength selection element that is disposed on an optical path of the light traveling from the flow path member to the light receiving unit and that selectively transmits light in a second wavelength band different from the first wavelength band. The analysis device according to claim 7, which comprises:
  9.  前記光学系は、前記流路部材に照射される前記測定光の照射領域を規定する開口部が設けられた絞り部を有し、
     前記流路に沿った前記開口部の開口幅は、前記流路部材に保持された前記液体の前記流路に沿った長さよりも短い、請求項2に記載の分析装置。
    The optical system has a diaphragm provided with an opening that defines an irradiation region of the measurement light with which the flow path member is irradiated,
    The analyzer according to claim 2, wherein an opening width of the opening along the flow path is shorter than a length of the liquid held by the flow path member along the flow path.
  10.  前記照射部は、LEDである、請求項2に記載の分析装置。 The analysis device according to claim 2, wherein the irradiation unit is an LED.
  11.  前記装置本体部には、前記流路部材の挿入方向に延在して前記流路部材の挿入を案内するガイドが設けられている、請求項1に記載の分析装置。 The analyzer according to claim 1, wherein the apparatus main body part is provided with a guide extending in the insertion direction of the flow path member and guiding the insertion of the flow path member.
  12.  前記ガイドは、前記流路部材が挿入可能に構成され、筒軸が前記挿入方向に平行となるように前記挿入方向に並んで配置された第1筒状部および第2筒状部を含み、
     前記挿入方向における前記第1筒状部と前記第2筒状部との間には、隙間が形成されており、
     当該隙間によって前記流路部材に照射される測定光の照射領域が規定される、請求項11に記載の分析装置。
    The guide includes a first tubular portion and a second tubular portion that are configured such that the flow path member is insertable and that are arranged side by side in the insertion direction so that a tubular axis is parallel to the insertion direction,
    A gap is formed between the first tubular portion and the second tubular portion in the insertion direction,
    The analyzer according to claim 11, wherein an irradiation region of the measurement light with which the flow path member is irradiated is defined by the gap.
  13.  前記液体は、核酸を含む液体試料および前記核酸を蛍光標識する添加剤を含む、請求項1に記載の分析装置。 The analyzer according to claim 1, wherein the liquid contains a liquid sample containing nucleic acid and an additive for fluorescently labeling the nucleic acid.
PCT/JP2019/002654 2019-01-28 2019-01-28 Analysis device WO2020157789A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/002654 WO2020157789A1 (en) 2019-01-28 2019-01-28 Analysis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/002654 WO2020157789A1 (en) 2019-01-28 2019-01-28 Analysis device

Publications (1)

Publication Number Publication Date
WO2020157789A1 true WO2020157789A1 (en) 2020-08-06

Family

ID=71840161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002654 WO2020157789A1 (en) 2019-01-28 2019-01-28 Analysis device

Country Status (1)

Country Link
WO (1) WO2020157789A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62144073A (en) * 1985-12-18 1987-06-27 Hitachi Ltd Distributor
JP2000235037A (en) * 1999-02-16 2000-08-29 Hitachi Ltd Sample analyzing device
US20050169816A1 (en) * 2003-12-15 2005-08-04 Kirshner Brian M. Automated oligomer synthesis
WO2005106433A1 (en) * 2004-04-30 2005-11-10 Precision System Science Co., Ltd. Optical information reader
JP2006349638A (en) * 2005-06-20 2006-12-28 Fujifilm Holdings Corp Method and apparatus for homogenizing trace quantity of liquid
JP2016524124A (en) * 2013-03-15 2016-08-12 ハイコア バイオメディカル インコーポレイテッド Apparatus and related methods for performing luminescence and fluorescence measurements of samples

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62144073A (en) * 1985-12-18 1987-06-27 Hitachi Ltd Distributor
JP2000235037A (en) * 1999-02-16 2000-08-29 Hitachi Ltd Sample analyzing device
US20050169816A1 (en) * 2003-12-15 2005-08-04 Kirshner Brian M. Automated oligomer synthesis
WO2005106433A1 (en) * 2004-04-30 2005-11-10 Precision System Science Co., Ltd. Optical information reader
JP2006349638A (en) * 2005-06-20 2006-12-28 Fujifilm Holdings Corp Method and apparatus for homogenizing trace quantity of liquid
JP2016524124A (en) * 2013-03-15 2016-08-12 ハイコア バイオメディカル インコーポレイテッド Apparatus and related methods for performing luminescence and fluorescence measurements of samples

Similar Documents

Publication Publication Date Title
US11693019B2 (en) Automated liquid-phase immunoassay apparatus
EP2490814B1 (en) Pipette, apparatus and kit for light measurement and method
JP2007139770A (en) System and method for examining liquid sample
BRPI0710105A2 (en) DEVICE AND METHOD FOR DETECTION OF BIOLOGICAL COMPONENTS MARKED BY FLUORESCENCE
EP3779441B1 (en) Automated liquid-phase immunoassay apparatus and method therefor
US20130047711A1 (en) Sample analyzer
EP4092421A1 (en) In vitro diagnostic apparatus
KR20150056479A (en) Station for test device with integrated reaction and detection means
EP3153845A1 (en) Surface-plasmon enhanced fluorescence measurement method, surface-plasmon enhanced fluorescence measurement device, and analytical chip
WO2005106433A1 (en) Optical information reader
US20220187334A1 (en) Specimen processing apparatus and specimen processing method
US20130299686A1 (en) Luminometer and methods of operation
WO2020157789A1 (en) Analysis device
JP7064217B2 (en) Analytical equipment, analytical method, trace liquid sampling device, and trace liquid sampling method
JPS62299769A (en) Dispenser
US20180078931A1 (en) Pipette Comprising Light Source and Detector
JPS61231461A (en) Apparatus for dripping specimen
EP4234677A1 (en) Analysis apparatus
US20230330664A1 (en) Three-dimensional sample scanning system
KR20230059663A (en) Liquid Immunoassay Device using Magnetic Beads
JP2007003350A (en) Perforating implement for dispensing device
JPS61164162A (en) Specimen analyzing method
JPS62276440A (en) Chemical analyzer
JP2003075452A (en) Biochemical analyzer and specimen adaptor
JPS62274263A (en) Automatic stop sticking device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19913686

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19913686

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP