WO2020156213A1 - 一种半导体晶体生长装置 - Google Patents

一种半导体晶体生长装置 Download PDF

Info

Publication number
WO2020156213A1
WO2020156213A1 PCT/CN2020/072522 CN2020072522W WO2020156213A1 WO 2020156213 A1 WO2020156213 A1 WO 2020156213A1 CN 2020072522 W CN2020072522 W CN 2020072522W WO 2020156213 A1 WO2020156213 A1 WO 2020156213A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
crystal growth
semiconductor crystal
heat shield
crystal
Prior art date
Application number
PCT/CN2020/072522
Other languages
English (en)
French (fr)
Inventor
沈伟民
王刚
邓先亮
Original Assignee
上海新昇半导体科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海新昇半导体科技有限公司 filed Critical 上海新昇半导体科技有限公司
Priority to JP2021544802A priority Critical patent/JP7295252B2/ja
Priority to DE112020000646.8T priority patent/DE112020000646T5/de
Priority to US17/427,765 priority patent/US20220106703A1/en
Priority to KR1020217027936A priority patent/KR102505546B1/ko
Publication of WO2020156213A1 publication Critical patent/WO2020156213A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/007Pulling on a substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1032Seed pulling
    • Y10T117/1068Seed pulling including heating or cooling details [e.g., shield configuration]

Definitions

  • the present invention relates to the field of semiconductor manufacturing, in particular to a semiconductor crystal growth device.
  • the Czochralski method is an important method for preparing silicon single crystals for semiconductors and solar energy.
  • the high-purity silicon material placed in the crucible is heated by a thermal field composed of carbon materials to melt it, and then the seed crystal is immersed in it.
  • a series of (seeding, shoulder setting, equal diameter, finishing, cooling) processes are carried out to obtain a single crystal rod.
  • a heat shield device such as a diversion tube (or reflective screen) is often set around the produced silicon crystal rod.
  • a heat shield device such as a diversion tube (or reflective screen)
  • it is used to isolate the quartz crucible and the silicon melt in the crucible against the crystal during the crystal growth process.
  • the heat radiation generated on the surface increases the axial temperature gradient of the crystal rod, and the radial temperature distribution is as balanced as possible, so that the growth rate of the crystal rod is controlled within an appropriate range, while controlling the internal defects of the crystal;
  • the inert gas introduced from the upper part of the crystal growth furnace is guided to pass through the surface of the silicon-silicon melt at a relatively large flow rate to achieve the effect of controlling the oxygen content and impurity content in the silicon ingot crystal.
  • the distance between the heat shield device and the liquid surface of the silicon melt and the crystal rod it is often necessary to consider the distance between the heat shield device and the liquid surface of the silicon melt and the crystal rod to control the axial temperature gradient and radial temperature distribution of the crystal rod.
  • the liquid surface distance Drm the minimum distance between the liquid surface of the heat shield device
  • the crystal rod distance Drc the minimum distance between the heat shield device and the crystal rod
  • Drm controls the stable growth of silicon crystals between the crystal pulling liquid levels
  • Drc controls the temperature gradient of the silicon crystal rods in the axial direction.
  • Japanese Patent Application No. JP2000160405 discloses a method and device for growing semiconductor crystals.
  • a heat shielding device is arranged around single crystal silicon, and the distance from the ground surface of the heat shielding device to the surface of the silicon melt is defined and the single crystal is pulled out.
  • the pulling speed of silicon controls the formation of defective crystal regions in the single crystal silicon when the single crystal silicon is pulled out.
  • the heat shield device is fixed, the shape and position of the guide tube are fixed.
  • the diameter of the silicon crystal rod is fixed, it is difficult to further reduce the Drc to achieve a large axial temperature gradient of the silicon crystal.
  • the control of the heat shield device itself is realized.
  • the present invention provides a semiconductor crystal growth device, which includes:
  • a crucible the crucible is arranged inside the furnace body for containing silicon melt;
  • a pulling device is arranged on the top of the furnace body for pulling out the silicon ingot from the silicon melt;
  • a heat shield device the heat shield device includes a diversion tube, the diversion tube is barrel-shaped and arranged around the silicon crystal rod, used to rectify and adjust the argon gas input from the top of the furnace body The thermal field distribution between the silicon crystal rod and the liquid surface of the silicon melt; wherein, the heat shield device further includes an adjustment device arranged inside the lower end of the guide tube to adjust the heat shield device and The minimum distance between the silicon crystal rods.
  • the adjusting device includes an annular device arranged around the inner side of the guide tube.
  • the annular device is formed by splicing at least two arc-shaped parts.
  • the adjustment device is detachably connected to the guide tube.
  • the diversion tube includes an inner tube, an outer tube, and a heat insulation material, wherein the bottom of the outer tube extends below the bottom of the inner tube and is closed with the bottom of the inner tube so that the inner tube and the outer tube A cavity is formed between the cylinders, and the heat insulating material is arranged in the cavity.
  • the adjusting device includes an inserting part and a protruding part, and the inserting part is inserted into the bottom of the outer cylinder and extends to a position between the bottom of the inner cylinder and the bottom of the inner cylinder.
  • the cross section of the adjusting device is an inverted L shape or a T shape rotated 90° counterclockwise.
  • the protruding portion is arranged in an inverted triangle or a shape protruding to one side of the silicon crystal rod.
  • the protrusion extends downwardly beyond the bottom of the deflector.
  • the shape of the protrusion extending downward beyond the bottom of the guide tube includes an inner concave curved surface or an outer convex curved surface
  • the material of the adjusting device includes a material with low thermal conductivity.
  • the material of the adjusting device includes single crystal silicon, graphite, quartz, high melting point metal or a combination of the foregoing materials.
  • the side of the protrusion facing the silicon crystal rod is provided with a low thermal emissivity layer to further change the radiative heat transfer between the adjustment device and the surface of the silicon crystal rod.
  • the heat shield device in the design of the heat shield device, by providing an adjustment device inside the lower end of the guide tube, the heat shield device and the crystal rod can be reduced without changing the shape and position of the guide tube.
  • the minimum distance between the two increases the axial temperature gradient of the silicon crystal rod, thereby increasing the crystal growth speed; at the same time, the difference in the axial temperature gradient between the center and the edge of the crystal rod is reduced, which is conducive to the stable growth of crystals. .
  • adjusting the device through the minimum distance Drc between the heat shield device and the crystal rod can change the flow rate of the argon gas flowing to the silicon melt liquid surface through the deflector and the gas flow rate expanding from the silicon melt liquid surface in the radial direction, and adjust the crystal content.
  • the amount of oxygen further improves the pulling quality.
  • FIG. 1 is a schematic structural diagram of a semiconductor crystal growth apparatus according to an embodiment of the present invention.
  • Figure 2 is a structural schematic diagram of an adjusting device installed on a deflector according to an embodiment of the present invention
  • 3A-3C are respectively structural schematic diagrams of an adjusting device according to an embodiment of the present invention.
  • the present invention provides a semiconductor crystal growth device, which includes:
  • a crucible the crucible is arranged inside the furnace body for containing silicon melt;
  • a pulling device is arranged on the top of the furnace body for pulling out the silicon ingot from the silicon melt;
  • a heat shield device the heat shield device includes a diversion tube, the diversion tube is barrel-shaped and arranged around the silicon crystal rod, used to rectify and adjust the argon gas input from the top of the furnace body The thermal field distribution between the silicon crystal rod and the liquid surface of the silicon melt; wherein, the heat shield device further includes an adjustment device arranged inside the lower end of the guide tube to adjust the heat shield device and The minimum distance between the silicon crystal rods.
  • FIG. 1 is a structural schematic diagram of a semiconductor crystal growth device according to an embodiment of the present invention
  • FIG. 2 is a diagram according to the present invention.
  • FIGS. 3A to 3C are respectively structural schematic diagrams of an adjusting device according to an embodiment of the present invention.
  • the Czochralski method is an important method for preparing silicon single crystals for semiconductors and solar energy.
  • the high-purity silicon material placed in the crucible is heated by a thermal field composed of carbon materials to melt it, and then the seed crystal is immersed in it.
  • a series of (seeding, shoulder setting, equal diameter, finishing, cooling) processes are carried out to obtain a single crystal rod.
  • the semiconductor crystal growth device includes a furnace body 1 in which a crucible 11 is arranged, a heater 12 for heating the crucible 11 is arranged outside the crucible 11, and a silicon melt 13 is contained in the crucible 11.
  • a pulling device 14 is provided on the top of the furnace body 1. Under the driving of the pulling device 14, the seed crystal pulls the silicon crystal rod 10 from the liquid surface of the silicon melt, and at the same time, a heat shield device is arranged around the silicon crystal rod 10.
  • the heat shield device includes a diversion cylinder 16, which is set in a conical barrel shape, which serves as a heat shield device to isolate the quartz crucible and the crucible during the crystal growth process.
  • the heat radiation generated by the silicon melt on the crystal surface increases the cooling rate and axial temperature gradient of the crystal rod, and increases the number of crystal growth. On the other hand, it affects the thermal field distribution on the surface of the silicon melt and avoids the center and the crystal rod.
  • the axial temperature gradient difference at the edge is too large to ensure the stable growth between the crystal rod and the liquid surface of the silicon melt; at the same time, the diversion cylinder is also used to divert the inert gas introduced from the upper part of the crystal growth furnace to make it more The large flow rate passes through the surface of the silicon melt to achieve the effect of controlling the oxygen content and impurity content in the crystal.
  • the minimum distance between the bottom of the diversion cylinder 16 and the liquid level of the silicon melt 13 is used as the minimum distance between the heat shield device and the silicon melt, which is called the liquid level distance, which is represented by Drm; 16
  • the minimum distance from the silicon crystal rod closest to the silicon crystal rod 10 is used as the minimum distance between the heat shield device and the silicon crystal rod, which is called the crystal rod distance, which is represented by Drc.
  • a driving device 15 for driving the crucible 11 to rotate and move up and down is also provided at the bottom of the furnace body 1.
  • the driving device 15 drives the crucible 11 to keep rotating during the crystal pulling process to reduce the heat of the silicon melt.
  • the asymmetry of the silicon crystal column makes the silicon crystal column grow in the same diameter;
  • the driving device 15 drives the crucible to move up and down to control the liquid surface distance Drm within a reasonable range, and to maintain the thermal radiation stability of the silicon melt liquid surface to meet the requirements of the silicon crystal rod.
  • the driving device 15 drives the crucible to move up and down to control the liquid surface distance Drm between 20 mm and 80 mm.
  • an adjustment device 17 is provided at the lower end of the flow guide tube 16, so that the adjustment device 17 and the flow guide tube 16 together serve as a heat shield device for the silicon melt liquid level Adjust the thermal field distribution between the crystal rod and the crystal rod.
  • an adjustment device is provided on the inner side of the lower end of the flow guide tube.
  • the minimum distance Drc between the heat shield device and the silicon crystal rod is The initial minimum distance between the guide tube and the crystal rod changes to the minimum distance between the adjustment device and the crystal rod, so that the minimum distance Drc between the heat shield device and the crystal rod is reduced, and the heat shield device can be aligned again.
  • the radiant energy between the silicon crystal rod and the heat shield device, between the heat shield device and the silicon melt liquid level is adjusted, and then the heat flux intensity and distribution on the crystal surface are adjusted to make the center and edge of the silicon crystal rod axially
  • the increase in temperature gradient effectively increases the crystal growth rate; at the same time, the difference in the axial temperature gradient between the center and the edge decreases, which is beneficial to the stable growth of crystals on the liquid surface of the silicon melt.
  • the adjustment device also reduces the size of the channel through which the argon gas flows to the silicon melt surface through the deflector, so as to adjust the gas flow rate of the argon gas from the silicon melt surface in the radial direction, and adjust the oxygen content of the grown crystals. Further improve the quality of crystal pulling.
  • the minimum distance Drc between the heat shield device and the silicon ingot is reduced, so that the radiative heat transfer of the silicon melt liquid to the ingot is reduced, and the axial temperature gradient of the ingot is increased. It is beneficial to increase the growth rate of crystals, and at the same time can reduce the power consumption of the heater for crystal growth; setting an adjustment device between the guide tube and the crystal rod can also reduce the radiation heat transfer from the guide tube to the crystal rod. Thereby, the difference of the axial temperature gradient between the center and the edge of the crystal rod is reduced, the process window (pulling speed range) of crystal growth is widened, and the yield of the product is improved.
  • the guide tube is barrel-shaped and is arranged around the silicon crystal rod.
  • the adjustment device 17 is arranged as an annular device surrounding the inner side of the guide tube.
  • the adjustment device is detachably connected to the guide tube.
  • the annular device is formed by splicing at least two arc-shaped components. Since the crystal pulling process is in a high-temperature environment, in order to avoid the adjustment device from expanding in a high-temperature environment, the installation and coordination with the deflector cylinder is unstable, the annular adjustment device is set in a multi-segment arc shape, and the gap between the multi-segment arcs is set This effectively avoids the problem of instability between the adjustment device and the guide tube due to expansion, and at the same time, setting the ring-shaped adjustment device into a multi-segment arc shape can further simplify the process of installing the adjustment device on the guide tube.
  • the deflector cylinder 16 includes an inner cylinder 161, an outer cylinder 162, and an insulating material 163 arranged between the inner cylinder 161 and the outer cylinder 162, wherein the bottom of the outer cylinder 162 It extends below the bottom of the inner tube 161 and is closed with the bottom of the inner tube 161 to form a cavity containing the insulating material 163 between the inner tube 161 and the outer tube 162.
  • the guide tube is arranged as a structure including an inner tube, an outer tube and a heat insulating material, which can simplify the installation of the guide tube.
  • the material of the inner cylinder and the outer cylinder is set to graphite, and the heat insulation material includes glass fiber, asbestos, rock wool, silicate, aerogel felt, vacuum board and the like.
  • the adjusting device 17 in the form of the guide tube 16 including an inner tube 161, an outer tube 162, and an insulating material 163 provided between the inner tube 161 and the outer tube 162, the adjusting device 17 includes a protrusion 171 and an insert
  • the insertion portion 172 is configured to be inserted into a position between the bottom of the outer cylinder 162 and the bottom of the inner cylinder 161 and the bottom of the inner cylinder 161.
  • the adjustment device is installed on the deflector in an inserted form, without the need to modify the deflector, the installation of the adjustment device can be realized, and the manufacturing and installation cost of the adjustment device and the deflector can be further simplified.
  • the insertion part is inserted between the bottom of the outer cylinder and the bottom of the inner cylinder, which effectively reduces the heat transfer from the outer cylinder to the inner cylinder, reduces the temperature of the inner cylinder, and further reduces the radiation heat transfer from the inner cylinder to the crystal rod.
  • the difference in the axial temperature gradient between the center and the periphery of the silicon crystal rod is reduced, and the quality of the crystal pulling is improved.
  • the adjusting device is configured as a material with low thermal conductivity.
  • the exemplary low thermal conductivity material includes a material with a thermal conductivity less than 5-10 W/m*K.
  • the material of the adjustment device is set to SiC ceramic, quartz, single crystal silicon, graphite, quartz, high melting point metal, or a combination of the foregoing materials.
  • the adjustment device is set to be detachably installed on the deflector, on the one hand to realize the installation and separate manufacturing between the two, simplify the manufacturing process, and reduce the manufacturing cost; on the other hand,
  • the adjustment device can also be individually replaced, and the adjustment device can be processed and used as a consumable part, so that the adjustment device can be formed into a series of products, shorten the research and development cycle, and reduce the development cost.
  • setting the adjustment device to be integrally manufactured with the inner tube of the flow guide tube is also suitable for the present invention.
  • the cross section of the adjusting device is in an inverted L shape or a T shape rotated 90° counterclockwise.
  • the section of the adjusting device 17 is a T-shape rotated 90° counterclockwise, in which the inserting portion 172 is inserted into the bottom of the outer cylinder 162 and extends to a position between the bottom of the inner cylinder 161 and the bottom of the inner cylinder 161.
  • 171 is an inverted triangle to reduce the minimum distance between the crystal rod and the heat shield.
  • the setting of the protrusions as inverted triangles is only exemplary, and it can also be provided in any shape protruding to the side of the silicon crystal rod, and any shape that can reduce the minimum distance between the crystal rod and the heat shield device.
  • the settings are applicable to the present invention.
  • the protrusion 171 is provided in a shape protruding to the side of the crystal rod. As shown in FIGS. 3A-3C, the protrusion 171 extends downwardly beyond the bottom of the guide tube, as shown by the arrow P in the figure. As shown in Figure 2, the protruding part extends downwards from the bottom of the guide tube. Without changing the size and position of the guide tube, the minimum distance Drm between the heat shield device and the liquid level of the silicon melt is determined by the bottom of the guide tube.
  • the minimum distance from the liquid surface of the silicon melt becomes the minimum distance between the lower end of the protrusion of the adjustment device and the liquid surface of the silicon cylinder, so that the minimum distance Drm between the heat shield device and the liquid surface of the silicon melt is reduced, thereby Change the flow rate of the argon gas flowing to the silicon melt surface through the deflector and expand in the radial direction from the silicon melt liquid surface, control the oxygen concentration inside the silicon melt near the periphery of the silicon crystal, and adjust the oxygen content of the crystal. Further improve the quality of crystal pulling.
  • the shape of the protrusion 171 extending downward beyond the bottom of the guide tube includes a concave curved surface (as shown in FIG. 3B) or a convex curved surface (as shown in FIG. 3C).
  • the shape of the protrusion extending downward beyond the bottom of the guide tube is set as a concave curved surface or a convex curved surface.
  • the surface of the silicon crystal rod and the silicon melt can be further adjusted by adjusting the relative shape between the device and the liquid surface of the silicon melt.
  • the radiative heat transfer between the body fluid level and the adjusting device adjusts the direction of the crystal surface along the axial direction, and the change of the heat flux released by the crystal to the outside reduces the difference in the axial temperature gradient between the center and the edge to achieve the crystal
  • the shape of the interface with the melt is flatter, reducing the effect of the radial difference of the crystal.
  • the side of the protrusion facing the silicon crystal rod is provided with a low thermal emissivity (high reflection coefficient) layer, so as to further reduce the radiation heat transfer between the deflector and the surface of the silicon crystal rod.
  • the material of the adjustment device is graphite, and the surface of the graphite is subjected to surface treatment to form a SiC coating and/or a thermally decomposed carbon coating.
  • the thickness of the coating is between 10 ⁇ m and 100 ⁇ m, wherein the thermally decomposed
  • the surface of the carbon coating has high compactness, high heat reflection coefficient at high temperature, and surface treatment methods include chemical vapor deposition.
  • coating is applied to the shape and surface of the protrusion of the adjusting device to form a high reflectance (low thermal emissivity) layer on the surface, and to change the surface of the silicon crystal rod, the liquid level and the gap between the adjusting device Radiation heat transfer, adjust the direction of the crystal surface along the axial direction, and the change of the heat flux released by the crystal to the outside, so that the difference in the axial temperature gradient between the center and the edge is reduced, so as to achieve a flatter interface between the crystal and the melt. , To reduce the effect of the radial difference of the crystal.
  • the semiconductor crystal growth apparatus according to the present invention has been exemplarily introduced above. It should be understood that the limitation on the shape, mounting method and material of the adjustment device in the semiconductor crystal growth apparatus in this embodiment is only Exemplarily, any adjustment device that can reduce the minimum distance between the crystal rod and the heat shield device is suitable for the present invention.
  • the semiconductor crystal growth device of the present invention by providing an adjustment device inside the lower end of the flow guide tube, the gap between the heat shield device and the crystal rod is reduced without changing the shape and position of the flow guide tube.
  • the minimum distance increases the axial temperature gradient of the silicon crystal rod, thereby increasing the crystal growth speed; at the same time, the difference in the axial temperature gradient between the center and the edge is reduced, which is beneficial to the stable growth of the crystal.
  • adjusting the minimum distance between the device and the crystal rod through the heat shield device reduces the channel size of the argon gas flowing from the deflector to the silicon melt liquid surface, and can change the flow of argon to the silicon melt liquid surface through the deflector and
  • the gas flow rate spreading from the silicon melt liquid to the radial direction controls the oxygen concentration in the silicon melt near the periphery of the silicon crystal, adjusts the oxygen content of the crystal, and further improves the quality of the crystal pulling.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种半导体晶体生长装置,所述装置包括:炉体(1);坩埚(11),所述坩埚(11)设置在所述炉体(1)内部,用以容纳硅熔体(13);提拉装置(14),所述提拉装置(14)设置在所述炉体(1)顶部,用以从所述硅熔体(13)内提拉出硅晶棒(10);以及热屏装置,所述热屏装置包括导流筒(16),所述导流筒(16)呈桶状并绕所述硅晶棒(10)四周设置,用以对所述炉体(1)顶部输入的氩气进行整流并调整所述硅晶棒(10)和所述硅熔体(13)液面之间的热场分布;其中,所述热屏装置还包括在所述导流筒(16)下端内侧设置的调整装置(17),用以调整所述热屏装置与所述硅晶棒(10)之间的最小距离(Drc)。通过在导流筒(16)下端内侧设置调整装置(17),在不改变导流筒形状、位置的情况下调整硅晶棒(10)和与其靠近热屏装置之间的距离(Drc),提升了晶体生长速度和质量。

Description

一种半导体晶体生长装置
说明书
技术领域
本发明涉及半导体制造领域,具体而言涉及一种半导体晶体生长装置。
背景技术
直拉法(Cz)是制备半导体及太阳能用硅单晶的一种重要方法,通过碳素材料组成的热场对放入坩埚的高纯硅料进行加热使之熔化,之后通过将籽晶浸入熔体当中并经过一系列(引晶、放肩、等径、收尾、冷却)工艺过程,最终获得单晶棒。
在拉晶过程中,往往在产生的硅晶棒四周设置热屏装置,如导流筒(或反射屏),一方面用以在晶体生长过程中隔离石英坩埚以及坩埚内的硅熔体对晶体表面产生的热辐射,使晶棒的轴向温度梯度加大,径向温度分布尽可能均衡,使晶棒的生长速度控制在合适的范围内,同时控制晶体的内部缺陷等;另一方面用以对从晶体生长炉上部导入的惰性气体进行导流,使之以较大的流速通过硅硅熔体表面,达到控制硅晶棒晶体内氧含量和杂质含量的效果。
在半导体晶体生长装置的设计过程中,往往需要考虑热屏装置与硅熔体液面和晶棒之间的距离,以控制晶棒的轴向温度梯度和径向温度分布。具体的,在设计过程中,往往需要考虑热屏装置液面的最小距离(以下称液面距Drm)和热屏装置和晶棒之间的最小距离(以下称晶棒距Drc)这两个重要参数。其中,Drm控制硅晶体在拉晶液面之间的稳定生长,Drc控制硅晶棒在轴向方向上的温度梯度。为了实现硅晶棒和硅熔体液面之间的硅晶体的稳定生长,往往通过控制坩埚的上升速度以控制Drm稳定在合适的范围内。例如,申请号为JP2000160405的日本专利公开了一种半导体晶体的生长方法和装置,围绕单晶硅设置热屏蔽装置,通过限定热屏蔽装置的地表面到硅熔体表面的距离和拉出单晶硅时的提拉速度,控制拉出单 晶硅时单晶硅中的缺陷晶体区域的形成。然而,在热屏装置固定的情况下,导流筒形状和位置固定,在硅晶棒的直径一定的情况下,要进一步减小Drc以实现硅晶体较大的轴向温度梯度却很难通过热屏装置本身的控制实现。
为此,有必要提出一种新的半导体晶体生长装置,用以解决现有技术中的问题。
发明内容
在发明内容部分中引入了一系列简化形式的概念,这将在具体实施方式部分中进一步详细说明。本发明的发明内容部分并不意味着要试图限定出所要求保护的技术方案的关键特征和必要技术特征,更不意味着试图确定所要求保护的技术方案的保护范围。
本发明提供了一种半导体晶体生长装置,所述装置包括:
炉体;
坩埚,所述坩埚设置在所述炉体内部,用以容纳硅熔体;
提拉装置,所述提拉装置设置在所述炉体顶部,用以从所述硅熔体内提拉出硅晶棒;以及
热屏装置,所述热屏装置包括导流筒,所述导流筒呈桶状并绕所述硅晶棒四周设置,用以对从所述炉体顶部输入的氩气进行整流并调整所述硅晶棒和所述硅熔体液面之间的热场分布;其中,所述热屏装置还包括在所述导流筒下端内侧设置的调整装置,用以调整所述热屏装置与所述硅晶棒之间的最小距离。
示例性地,所述调整装置包括环绕所述导流筒内侧设置的环形装置。
示例性地,所述环形装置由至少两个弧形部件拼接而成。
示例性地,所述调整装置与所述导流筒可拆卸地连接。
示例性地,所述导流筒包括内筒、外筒以及隔热材料,其中,所述外筒的底部延伸至所述内筒底部下方并与所述内筒底部闭合以在内筒和外筒之间形成空腔,所述隔热材料设置在所述空腔内。
示例性地,所述调整装置包括插入部和突出部,所述插入部插入所述外筒底部延伸至所述内筒底部下方的部分与所述内筒底部之间的位置。
示例性地,所述调整装置的截面呈倒L型或逆时针旋转90°的T型。
示例性地,所述突出部设置为倒三角形或者向所述硅晶棒一侧突出的形状。
示例性地,所述突出部向下延伸超出所述导流筒底部。
示例性地,所述突出部向下延伸超出所述导流筒底部的形状包括内凹型曲面或外凸型曲面
示例性地,所述调整装置的材料包括低导热系数材料。
示例性地,所述调整装置的材料包括单晶硅、石墨、石英、高熔点金属或者前述材料的组合。
示例性地,所述突出部面向所述硅晶棒的一侧设置有低热辐射系数层,以进一步改变所述调整装置与所述硅晶棒表面之间的辐射传热。
根据本发明的半导体晶体生长装置,在热屏装置设计中,通过在导流筒下端内侧设置调整装置,可以实现在不改变导流筒形状、位置的情况下,减小热屏装置与晶棒之间的最小距离,提高了硅晶棒的轴向温度梯度,从而提升了晶体生长速度;与此同时,晶棒中心和边缘的轴向温度梯度的差值减小,有利于晶体的稳定生长。同时调整装置通过热屏装置与晶棒之间的最小距离Drc可以改变氩气通过导流筒流向硅熔体液面及其从硅熔体液面向径向方向展开的气体流速,调节晶体的含氧量,进一步提升了拉晶质量。
附图说明
本发明的下列附图在此作为本发明的一部分用于理解本发明。附图中示出了本发明的实施例及其描述,用来解释本发明的原理。
附图中:
图1为根据本发明的一个实施例的一种半导体晶体生长装置的结构示意图;
图2为根据本发明的一个实施例的一种调整装置安装在导流筒上的结构示意图;
图3A-图3C分别为根据本发明的一个实施例的一种调整装置的结构示意图。
具体实施方式
在下文的描述中,给出了大量具体的细节以便提供对本发明更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本发明可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本发明发生混淆,对于本领域公知的一些技术特征未进行描述。
为了彻底理解本发明,将在下列的描述中提出详细的描述,以说明本发明所述的半导体晶体生长装置。显然,本发明的施行并不限于半导体领域的技术人员所熟习的特殊细节。本发明的较佳实施例详细描述如下,然而除了这些详细描述外,本发明还可以具有其他实施方式。
应予以注意的是,这里所使用的术语仅是为了描述具体实施例,而非意图限制根据本发明的示例性实施例。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式。此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在所述特征、整体、步骤、操作、元件和/或组件,但不排除存在或附加一个或多个其他特征、整体、步骤、操作、元件、组件和/或它们的组合。
现在,将参照附图更详细地描述根据本发明的示例性实施例。然而,这些示例性实施例可以多种不同的形式来实施,并且不应当被解释为只限于这里所阐述的实施例。应当理解的是,提供这些实施例是为了使得本发明的公开彻底且完整,并且将这些示例性实施例的构思充分传达给本领域普通技术人员。在附图中,为了清楚起见,夸大了层和区域的厚度,并且使用相同的附图标记表示相同的元件,因而将省略对它们的描述。
为了解决现有技术中的技术问题,本发明提供了一种半导体晶体生长装置,所述装置包括:
炉体;
坩埚,所述坩埚设置在所述炉体内部,用以容纳硅熔体;
提拉装置,所述提拉装置设置在所述炉体顶部,用以从所述硅熔体内提拉出硅晶棒;以及
热屏装置,所述热屏装置包括导流筒,所述导流筒呈桶状并绕所述硅晶棒四周设置,用以对从所述炉体顶部输入的氩气进行整流并调整所述硅晶棒和所述硅熔体液面之间的热场分布;其中,所述热屏装置还包括在所述导流 筒下端内侧设置的调整装置,用以调整所述热屏装置与所述硅晶棒之间的最小距离。
下面参看图1和图2对本发明所提出的一种半导体晶体生长装置进行示例性说明,图1为根据本发明的一个实施例的一种半导体晶体生长装置的结构示意图;图2为根据本发明的一个实施例的一种调整装置安装在导流筒上的结构示意图;图3A-图3C分别为根据本发明的一个实施例的一种调整装置的结构示意图。
直拉法(Cz)是制备半导体及太阳能用硅单晶的一种重要方法,通过碳素材料组成的热场对放入坩埚的高纯硅料进行加热使之熔化,之后通过将籽晶浸入熔体当中并经过一系列(引晶、放肩、等径、收尾、冷却)工艺过程,最终获得单晶棒。
参看图1,其示出了根据本发明的一个实施例的半导体晶体生长装置。半导体晶体生长装置包括炉体1,炉体1内设置有坩埚11,坩埚11外侧设置有对其进行加热的加热器12,坩埚11内容纳有硅熔体13。
在炉体1顶部设置有提拉装置14,在提拉装置14的带动下,籽晶从硅熔体液面提拉拉出硅晶棒10,同时环绕硅晶棒10四周设置热屏装置,示例性的,如图1所示,热屏装置包括有导流筒16,导流筒16设置为圆锥桶型,其作为热屏装置一方面用以在晶体生长过程中隔离石英坩埚以及坩埚内的硅熔体对晶体表面产生的热辐射,提升晶棒的冷却速度和轴向温度梯度,增加晶体生长数量,另一方面,影响硅熔体表面的热场分布,而避免晶棒的中心和边缘的轴向温度梯度差异过大,保证晶棒与硅熔体液面之间的稳定生长;同时导流筒还用以对从晶体生长炉上部导入的惰性气体进行导流,使之以较大的流速通过硅熔体表面,达到控制晶体内氧含量和杂质含量的效果。继续参看图1,导流筒16底部与硅熔体13液面之间的最小距离作为热屏装置与硅熔体之间的最小距离,称为液面面距,以Drm表示;导流筒16最靠近硅晶棒10处距离硅晶棒的最小距离作为热屏装置与硅晶棒之间的最小距离称为晶棒距,以Drc表示。
为了实现硅晶棒的稳定增长,在炉体1底部还设置有驱动坩埚11旋转和上下移动的驱动装置15,驱动装置15驱动坩埚11在拉晶过程中保持旋转是 为了减少硅熔体的热的不对称性,使硅晶柱等径生长;驱动装置15驱动坩埚上下移动是为了控制液面距Drm在合理的范围内,保持硅熔体液面的热辐射稳定性,以满足硅晶棒稳定生长的要求。示例性的,驱动装置15驱动坩埚上下移动将液面距Drm控制在20mm至80mm之间。
然而在热屏装置固定的情况下,导流筒形状和位置固定,在硅晶棒形状一定的情况下,要进一步减小Drc以实现硅晶棒较大的轴向温度梯度却很难通过装置本身的控制实现。
为此,参看图2,在本发明的半导体晶体生长装置中,在导流筒16的下端设置有调整装置17,使调整装置17和导流筒16一起作为热屏装置对硅熔体液面和晶棒之间的热场分布进行调整。具体的,在导流筒下端内侧设置调整装置,在不调整导流筒尺寸和位置的情况下,相较于未安装调整装置的情形,使得热屏装置与硅晶棒之间的最小距离Drc由初始的导流筒与晶棒之间的最小距离变化为调整装置与晶棒之间的最小距离,从而使热屏装置与晶棒之间的最小距离Drc减小,使热屏装置重新对硅晶棒和热屏装置之间,热屏装置和硅熔体液面之间的辐射能量进行调整,进而对晶体表面的热流束强度和分布进行调整,使硅晶棒中心和边缘的轴向温度梯度增加,有效提高了晶体生长速度;与此同时,中心和边缘的轴向温度梯度的差值减小,有利于晶体在硅熔体液面上的稳定生长。同时调整装置还减小了氩气通过导流筒流向硅熔体液面的通道尺寸,从而调整氩气从硅熔体液面径向方向展开的气体流速,调节生长的晶体的含氧量,进一步提升了拉晶质量。
进一步,设置调整装置的情况下,使得热屏装置与硅晶棒之间的最小距离Drc减小,使得硅熔体液面向晶棒辐射传热减小,增加了晶棒的轴向温度梯度,有利于提高晶体的生长速度,与此同时还可以降低晶体生长的加热器的功率消耗;在导流筒和晶棒之间设置调整装置,还能够减少导流筒向晶棒的辐射传热,从而减少晶棒中心和边缘的轴向温度梯度的差值,使得晶体生长的工艺窗口(拉速范围)变宽,提高制品的良率。
所述导流筒呈桶状、绕所述硅晶棒四周设置,示例性的,所述调整装置17设置为环绕所述导流筒内侧的环形装置。
示例性的,所述调整装置与所述导流筒可拆卸的连接。
进一步,示例性的,所述环形装置由至少两个弧形部件拼接而成。由于 拉晶过程处于高温环境,为了避免在调整装置在高温环境下膨胀,而导致与导流筒安装配合不稳定,采用将环形的调整装置设置为多段弧形,多段弧形之间的缝隙设置有效避免因为膨胀导致的调整装置与导流筒配合不稳定的问题,同时,将环形的调整装置设置为多段弧形也可以进一步简化调整装置安装到导流筒上的过程。
继续参看图2,根据本发明的一个实施例,导流筒16包括内筒161、外筒162以及设置在内筒161和外筒162之间的隔热材料163,其中,外筒162的底部延伸至内筒161的底部下方并与内筒161的底部闭合以在内筒161和外筒162之间形成容纳隔热材料163的空腔。将导流筒设置为包括内筒、外筒和隔热材料的结构,可以简化导流筒的安装。示例性的,内筒和外筒的材料设置为石墨,隔热材料包括玻璃纤维、石棉、岩棉、硅酸盐、气凝胶毡、真空板等。
继续参看图2,在导流筒16设置为包括内筒161、外筒162以及设置在内筒161和外筒162之间的隔热材料163的形式下,调整装置17包括突出部171和插入部172,所述插入部172设置为插入外筒162底部延伸至内筒161底部下方的部分与内筒161底部之间的位置。将调整装置以插入的形式安装在导流筒上,而不需要对导流筒进行改造,就可实现调整装置的安装,进一步简化调整装置与导流筒的制造和安装成本。同时,插入部插入外筒底部和内筒底部之间的位置,有效减小了外筒向内筒的热传导,降低了内筒的温度,进一步减少了内筒向晶棒的辐射传热,有效减小了硅晶棒中心和外周的轴向温度梯度的差值,提升了拉晶质量。
示例性的,所述调整装置设置为低热导系数材料。进一步,示例性的所述低热传导系数材料包括热导系数小于5-10W/m*K的材料。示例性的,所述调整装置的材料设置为SiC陶瓷、石英、单晶硅、石墨、石英、高熔点金属或者前述材料的组合等。
需要理解的是,本实施例中将调整装置设置为可拆卸的安装在导流筒上,一方面是为了实现两者之间的安装和分别制造,简化制造过程,减少制造成本;另一方面还能够对调整装置进行单独更换,将调整装置作为耗材部件进行加工和使用,使调整装置形成系列化产品,缩短研发周期,降低开发成本。本领域技术人员应当理解,将调整装置设置为与导流筒内筒一体制造,也适 用于与本发明。
示例性的,所述调整装置截面呈倒L型或逆时针旋转90°的T型。继续参看图2,调整装置17的截面呈逆时针旋转90°的T型,其中插入部172插入外筒162底部延伸至内筒161底部下方的部分与内筒161底部之间的位置,突出部171呈倒三角形使晶棒与热屏装置之间的最小距离减小。
需要理解的是,突出部设置为倒三角形仅仅是示例性的,其还可以设置为向硅晶棒一侧突出的任何形状,任何能够减小晶棒与热屏装置之间的最小距离的形状设置均适用于本发明。
参看图3A-图3C,其中示出了突出部171设置为向晶棒一侧突出的形状。如图3A-图3C所示,突出部171向下延伸超出所述导流筒底部,如图中箭头P示出的部分。如图2所示,突出部向下伸出导流筒底部,在不改变导流筒尺寸和位置的情况下,热屏装置与硅熔体液面之间的最小距离Drm由导流筒底部与硅熔体液面之间的最小距离变为调整装置突出部下端与硅筒体液面之间的最小距离,从而使热屏装置与硅熔体液面之间的最小距离Drm减小,从而改变氩气通过导流筒流向硅熔体液面以及从硅熔体液面向径向方向展开的气体流速,控制在硅晶体周边附近的硅熔体内部的氧浓度,调节晶体的含氧量,进一步提升了拉晶质量。
示例性地,所述突出部171的向下延伸超出所述导流筒底部的形状包括内凹型曲面(如图3B所示)或外凸型曲面(如图3C所示)。将突出部向下延长超出所述导流筒底部的形状设置为内凹型曲面或者外凸型曲面,通过调整装置与硅熔体液面之间相对的形状可以进一步调整硅晶棒表面、硅熔体液面和调整装置之间的辐射传热,调整晶体表面沿轴向的方向,晶体向外部释放的热流束的变化,使得中心和边缘的轴向温度梯度的差值减小,以达到晶体和熔体间的界面形状更加平坦,减小晶体的径向差异的效果。
示例性的,所述突出部面向硅晶棒的一侧设置有低热辐射系数(高反射系数)层,以进一步减少导流筒与硅晶棒表面的辐射传热。所述热辐射系数e在0-1之间(反射系数p=1-e)。示例性的,所述低辐射系数材料的热辐射系统e<0.5。在一个示例中,所述突出部采用抛光的不锈钢,其中,抛光的不锈钢表面,其中热辐射系数e=0.2-0.3。
示例性的,所述调整装置的材料设置为石墨,在所述石墨表面进行表面 处理形成SiC涂层和/或热分解碳涂层,其涂层的厚度在10μm-100μm之间,其中热分解碳涂层的表面致密性高,高温的热反射系数较高,表面处理的方式包括化学气相沉积等。
示例性地,在所述调整装置的突出部的形状和表面施以涂层处理,以形成表面的高反射系数(低热辐射系数)层,改变硅晶棒表面,液面和调整装置之间的辐射传热,调整晶体表面沿轴向的方向,晶体向外部释放的热流束的变化,使得中心和边缘的轴向温度梯度的差值减小,以达到晶体和熔体间的界面形状更加平坦,减小晶体的径向差异的效果。
上面已经对根据本发明的一种半导体晶体生长装置进行了示例性的介绍,需要理解的是,本实施例中对半导体晶体生长装置中的调整装置的形状、安装方式材料等的限定,仅仅是示例性的,任何能够减小晶棒与热屏装置之间的最小距离的调整装置均适用于本发明。
综上所示,根据本发明的半导体晶体生长装置,通过在导流筒下端内侧设置调整装置,在不改变导流筒形状、位置的情况下,减小了热屏装置与晶棒之间的最小距离,提高了硅晶棒的轴向温度梯度,从而调高了晶体生长速度;与此同时,中心和边缘的轴向温度梯度的差值减小,有利于晶体的稳定生长。同时调整装置通过热屏装置与晶棒之间的最小距离,减小了氩气从导流筒流向硅熔体液面的通道尺寸,可以改变氩气通过导流筒流向硅熔体液面以及从硅熔体液面向径向方向展开的气体流速,控制在硅晶体周边附近的硅熔体内部的氧浓度,调节晶体的含氧量,进一步提升了拉晶质量。
本发明已经通过上述实施例进行了说明,但应当理解的是,上述实施例只是用于举例和说明的目的,而非意在将本发明限制于所描述的实施例范围内。此外本领域技术人员可以理解的是,本发明并不局限于上述实施例,根据本发明的教导还可以做出更多种的变型和修改,这些变型和修改均落在本发明所要求保护的范围以内。本发明的保护范围由附属的权利要求书及其等效范围所界定。

Claims (13)

  1. 一种半导体晶体生长装置,其特征在于,包括:
    炉体;
    坩埚,所述坩埚设置在所述炉体内部,用以容纳硅熔体;
    提拉装置,所述提拉装置设置在所述炉体顶部,用以从所述硅熔体内提拉出硅晶棒;以及
    热屏装置,所述热屏装置包括导流筒,所述导流筒呈桶状并绕所述硅晶棒四周设置,用以对从所述炉体顶部输入的氩气进行整流并调整所述硅晶棒和所述硅熔体液面之间的热场分布;其中,所述热屏装置还包括在所述导流筒下端内侧设置的调整装置,用以调整所述热屏装置与所述硅晶棒之间的最小距离。
  2. 根据权利要求1所述的半导体晶体生长装置,其特征在于,所述调整装置包括环绕所述导流筒内侧设置的环形装置。
  3. 根据权利要求2所述的半导体晶体生长装置,其特征在于,所述环形装置由至少两个弧形部件拼接而成。
  4. 根据权利要求1所述的半导体晶体生长装置,其特征在于,所述调整装置与所述导流筒可拆卸地连接。
  5. 根据权利要求1所述的半导体晶体生长装置,其特征在于,所述导流筒包括内筒、外筒以及隔热材料,其中,所述外筒的底部延伸至所述内筒底部下方并与所述内筒底部闭合以在内筒和外筒之间形成空腔,所述隔热材料设置在所述空腔内。
  6. 根据权利要求5所述的半导体晶体生长装置,其特征在于,所述调整装置包括插入部和突出部,所述插入部插入所述外筒底部延伸至所述内筒底部下方的部分与所述内筒底部之间的位置。
  7. 根据权利要求6所述的半导体晶体生长装置,其特征在于,所述调整装置的截面呈倒L型或逆时针旋转90°的T型。
  8. 根据权利要求6所述的半导体晶体生长装置,其特征在于,所述突出部设置为倒三角形或者向所述硅晶棒一侧突出的形状。
  9. 根据权利要求8所述半导体晶体生长装置,其特征在于,所述突出部向下延伸超出所述导流筒底部。
  10. 根据权利要求8所述半导体晶体生长装置,其特征在于,所述突出 部向下延伸超出所述导流筒底部的形状包括内凹型曲面或外凸型曲面。
  11. 根据权利要求1所述的半导体晶体生长装置,其特征在于,所述调整装置的材料包括低导热系数材料。
  12. 根据权利要求10所述的半导体晶体生长装置,其特征在于,所述调整装置的材料包括单晶硅、石墨、石英、高熔点金属或者前述材料的组合。
  13. 根据权利要求9所述的半导体晶体生长装置,其特征在于,所述突出部面向所述硅晶棒的一侧设置有低热辐射系数层,以进一步改变所述调整装置与所述硅晶棒表面之间的辐射传热。
PCT/CN2020/072522 2019-02-01 2020-01-16 一种半导体晶体生长装置 WO2020156213A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021544802A JP7295252B2 (ja) 2019-02-01 2020-01-16 半導体結晶成長装置
DE112020000646.8T DE112020000646T5 (de) 2019-02-01 2020-01-16 Einrichtung zum Halbleiterkristallwachstum
US17/427,765 US20220106703A1 (en) 2019-02-01 2020-01-16 Semiconductor crystal growth device
KR1020217027936A KR102505546B1 (ko) 2019-02-01 2020-01-16 반도체 결정 성장 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910104706.5A CN111519241B (zh) 2019-02-01 2019-02-01 一种半导体晶体生长装置
CN201910104706.5 2019-02-01

Publications (1)

Publication Number Publication Date
WO2020156213A1 true WO2020156213A1 (zh) 2020-08-06

Family

ID=71840835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072522 WO2020156213A1 (zh) 2019-02-01 2020-01-16 一种半导体晶体生长装置

Country Status (7)

Country Link
US (1) US20220106703A1 (zh)
JP (1) JP7295252B2 (zh)
KR (1) KR102505546B1 (zh)
CN (1) CN111519241B (zh)
DE (1) DE112020000646T5 (zh)
TW (1) TWI730594B (zh)
WO (1) WO2020156213A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112877776A (zh) * 2021-01-08 2021-06-01 上海新昇半导体科技有限公司 长晶炉
CN115058772A (zh) * 2022-07-13 2022-09-16 昆明理工大学 一种导流筒装置和拉晶炉

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114197034B (zh) * 2020-09-02 2024-08-16 西安奕斯伟材料科技股份有限公司 一种单晶炉的组合套筒及单晶炉
CN114592238A (zh) * 2020-12-02 2022-06-07 中国科学院上海微系统与信息技术研究所 带移动保温的单晶生长设备及单晶生长方法
CN113337880A (zh) * 2021-04-19 2021-09-03 上海新昇半导体科技有限公司 一种可调节导流筒及半导体晶体生长装置
CN115074829B (zh) * 2022-07-13 2024-01-26 西安奕斯伟材料科技股份有限公司 拉晶炉
CN116084007A (zh) * 2023-04-07 2023-05-09 安徽联效科技有限公司 一种单晶体生长炉的热屏装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080127886A1 (en) * 2004-10-26 2008-06-05 Sumco Corporation Heat Shield Member and Single Crystal Pulling Device
CN102011181A (zh) * 2010-12-24 2011-04-13 温州神硅电子有限公司 一种直拉法生长太阳能用8吋硅单晶的热场装置
CN104060321A (zh) * 2013-09-27 2014-09-24 上海申和热磁电子有限公司 用于单晶炉的石英销
CN110387577A (zh) * 2018-04-20 2019-10-29 胜高股份有限公司 单晶硅提拉装置的热屏蔽部件

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0388794A (ja) * 1989-08-31 1991-04-15 Nippon Steel Corp シリコン単結晶の引上げ方法および装置
JP4097729B2 (ja) * 1996-05-22 2008-06-11 Sumco Techxiv株式会社 半導体単結晶製造装置
JP3428625B2 (ja) * 1998-06-25 2003-07-22 三菱住友シリコン株式会社 シリコン単結晶の引上げ装置及びその引上げ方法
JP2000160405A (ja) 1998-11-30 2000-06-13 Color Fastener Kogyo Kk 整形具および該整形具の製造方法
JP3709494B2 (ja) * 1999-02-26 2005-10-26 株式会社Sumco シリコン単結晶引上げ装置の熱遮蔽部材
JP2000247775A (ja) * 1999-02-26 2000-09-12 Mitsubishi Materials Silicon Corp シリコン単結晶引上げ装置のカバー付熱遮蔽部材
JP3709493B2 (ja) * 1999-02-26 2005-10-26 株式会社Sumco シリコン単結晶の引上げ装置
KR100786878B1 (ko) * 2000-01-31 2007-12-20 신에쯔 한도타이 가부시키가이샤 단결정 육성장치, 그 장치를 이용한 단결정 제조방법 및단결정
KR100411571B1 (ko) * 2000-11-27 2003-12-18 주식회사 실트론 단결정 잉곳의 제조장치
JP4193500B2 (ja) * 2002-10-07 2008-12-10 株式会社Sumco シリコン単結晶の引上げ装置及びその引上げ方法
JP4168725B2 (ja) * 2002-10-16 2008-10-22 株式会社Sumco シリコン単結晶引上げ装置の不活性ガスの流速制御装置及びその流速制御方法
JP4206809B2 (ja) * 2003-04-28 2009-01-14 株式会社Sumco 熱遮蔽部材およびこれを用いた単結晶引上げ装置
JP2007191353A (ja) * 2006-01-19 2007-08-02 Toshiba Ceramics Co Ltd 輻射シールド及びそれを具備する単結晶引上装置
US8152921B2 (en) * 2006-09-01 2012-04-10 Okmetic Oyj Crystal manufacturing
JP5545799B2 (ja) * 2009-06-08 2014-07-09 住友化学株式会社 オレフィン重合反応装置、ポリオレフィン製造システム、及び、ポリオレフィン製造方法
CN102352530B (zh) * 2011-11-09 2014-04-16 内蒙古中环光伏材料有限公司 用于直拉硅单晶炉的热屏装置
KR101530274B1 (ko) * 2013-08-27 2015-06-23 주식회사 엘지실트론 잉곳성장장치 및 잉곳성장방법
CN104419978A (zh) * 2013-08-28 2015-03-18 常州华腾合金材料有限公司 单晶炉的导流筒
CN105239150A (zh) * 2015-09-10 2016-01-13 上海超硅半导体有限公司 单晶硅生长炉用导流筒及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080127886A1 (en) * 2004-10-26 2008-06-05 Sumco Corporation Heat Shield Member and Single Crystal Pulling Device
CN102011181A (zh) * 2010-12-24 2011-04-13 温州神硅电子有限公司 一种直拉法生长太阳能用8吋硅单晶的热场装置
CN104060321A (zh) * 2013-09-27 2014-09-24 上海申和热磁电子有限公司 用于单晶炉的石英销
CN110387577A (zh) * 2018-04-20 2019-10-29 胜高股份有限公司 单晶硅提拉装置的热屏蔽部件

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112877776A (zh) * 2021-01-08 2021-06-01 上海新昇半导体科技有限公司 长晶炉
CN115058772A (zh) * 2022-07-13 2022-09-16 昆明理工大学 一种导流筒装置和拉晶炉
CN115058772B (zh) * 2022-07-13 2023-01-31 昆明理工大学 一种导流筒装置和拉晶炉

Also Published As

Publication number Publication date
DE112020000646T5 (de) 2021-11-11
KR20210127182A (ko) 2021-10-21
KR102505546B1 (ko) 2023-03-03
JP2022518858A (ja) 2022-03-16
JP7295252B2 (ja) 2023-06-20
CN111519241B (zh) 2021-12-17
TW202030384A (zh) 2020-08-16
TWI730594B (zh) 2021-06-11
CN111519241A (zh) 2020-08-11
US20220106703A1 (en) 2022-04-07

Similar Documents

Publication Publication Date Title
WO2020156213A1 (zh) 一种半导体晶体生长装置
TWI738352B (zh) 一種半導體晶體生長裝置
TWI746400B (zh) 拉晶裝置
JP7101224B2 (ja) 半導体結晶成長装置
JPWO2020156213A5 (zh)
TWI745973B (zh) 一種半導體晶體生長裝置
JP7101225B2 (ja) 半導体結晶成長装置
CN113337880A (zh) 一种可调节导流筒及半导体晶体生长装置
JP3835063B2 (ja) 単結晶引上装置
TWI749560B (zh) 一種半導體晶體生長裝置
JP2710433B2 (ja) 単結晶引上装置
KR20240015067A (ko) 단결정 제조장치
JP2022092442A (ja) 単結晶製造装置
JPH06206789A (ja) 半導体単結晶の製造方法
JPH03271187A (ja) シリコン単結晶の製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20748028

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021544802

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217027936

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20748028

Country of ref document: EP

Kind code of ref document: A1