WO2020155088A1 - 耳机降噪方法、智能蓝牙耳机及计算机可读存储介质 - Google Patents

耳机降噪方法、智能蓝牙耳机及计算机可读存储介质 Download PDF

Info

Publication number
WO2020155088A1
WO2020155088A1 PCT/CN2019/074374 CN2019074374W WO2020155088A1 WO 2020155088 A1 WO2020155088 A1 WO 2020155088A1 CN 2019074374 W CN2019074374 W CN 2019074374W WO 2020155088 A1 WO2020155088 A1 WO 2020155088A1
Authority
WO
WIPO (PCT)
Prior art keywords
earphone
headset
noise reduction
terminal
sub
Prior art date
Application number
PCT/CN2019/074374
Other languages
English (en)
French (fr)
Inventor
侯田
邓超
Original Assignee
深圳傲智天下信息科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳傲智天下信息科技有限公司 filed Critical 深圳傲智天下信息科技有限公司
Publication of WO2020155088A1 publication Critical patent/WO2020155088A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones

Definitions

  • This application relates to the technical field of wearable devices, and in particular to a method for noise reduction of earphones, a smart Bluetooth earphone and a computer-readable storage medium.
  • TWS earphone true wireless stereo earphone
  • This kind of TWS earphone housing does not require a wired connection, and there are two left and right earphones.
  • the headset forms a stereo system via Bluetooth.
  • TWS earphones have no external wires, which provides convenience for users to wear TWS earphones; users can also wear TWS earphones during sleep without worrying about entanglement of earphone wires during sleep.
  • the noise reduction function will not be added to the TWS headphones; if the noise reduction function is added to the TWS headphones, the TWS headphones will be increased when the noise reduction function is turned on Power consumption, thereby reducing the battery life of TWS.
  • the main purpose of this application is to provide an earphone noise reduction method, a smart Bluetooth earphone, and a computer-readable storage medium, aiming to solve the technical problem of high noise reduction power consumption of existing TWS earphones.
  • the present application provides a method for noise reduction of earphones.
  • the method for earphone noise reduction is applied to a smart Bluetooth earphone.
  • the smart Bluetooth earphone includes a microphone and a sensor.
  • the earphone noise reduction method includes:
  • the step of determining the user's sleep state according to the headset state information, and determining the corresponding noise reduction strategy according to the sleep state includes:
  • the method further includes:
  • the smart Bluetooth headset includes a low-power Bluetooth module, and also includes a basic rate/enhanced rate Bluetooth module,
  • the earphone noise reduction method further includes:
  • the basic rate/enhanced rate Bluetooth module receives the terminal audio signal sent by the target terminal based on the voice control signal, and plays it according to the terminal audio signal.
  • the smart Bluetooth headset includes a true wireless stereo TWS headset
  • the true wireless stereo TWS headset includes a first sub-earphone and a second sub-earphone
  • the method further includes:
  • the first sub-earphone and the second sub-earphone establish an ear-to-ear connection
  • the step of connecting with the corresponding target terminal according to the terminal connection instruction includes:
  • the first sub-earphone When a terminal connection instruction is received, the first sub-earphone is used as the main headset to connect to the corresponding target terminal according to the terminal connection instruction, so that the first sub-earphone and the target terminal perform data interaction.
  • the step of receiving the terminal audio signal sent by the target terminal based on the voice control signal through the basic rate/enhanced rate Bluetooth module, and playing according to the terminal audio signal includes:
  • the first sub-earphone receives the terminal audio signal sent by the target terminal based on the voice control signal through the basic rate/enhanced rate Bluetooth module;
  • the first earphone sends the terminal audio signal to the second earphone, so that the first earphone and the second earphone play according to the terminal audio signal.
  • the first sub-earphone sends the terminal audio signal to the second sub-earphone, so that the first sub-earphone and the second sub-earphone play according to the terminal audio signal After that, it also includes:
  • the The second earphone is used as a main earphone to connect with the target terminal, so that the second earphone and the target terminal perform data interaction, and the connection between the first earphone and the target terminal is disconnected.
  • the first sub-headset is used as the main headset to connect to the corresponding target terminal according to the terminal connection instruction, so that the first sub-headset is connected to the target terminal.
  • the terminal performs the data interaction step, it also includes:
  • the second sub earphone When it is detected that the connection between the first sub earphone and the target terminal is disconnected, the second sub earphone is used as the main earphone to connect to the target terminal, so that the second sub earphone is connected to the target terminal.
  • the terminal performs data interaction.
  • the method before the step of collecting ambient audio signals through the microphone when entering the noise reduction mode, and detecting the headset status information of the smart Bluetooth headset through the sensor, the method further includes:
  • the present application also provides a smart Bluetooth headset.
  • the smart Bluetooth headset includes a microphone, a sensor, a processor, a memory, and a memory that is stored on the memory and can be executed by the processor.
  • the earphone noise reduction program wherein when the earphone noise reduction program is executed by the processor, the following steps are implemented:
  • the present application also provides a computer-readable storage medium on which a headphone noise reduction program is stored.
  • the headphone noise reduction program is executed by a processor, the following steps are implemented :
  • the smart Bluetooth headset When the smart Bluetooth headset enters the noise reduction mode, collect ambient audio signals through the microphone of the smart Bluetooth headset, and detect the headset status information of the smart Bluetooth headset through the sensor of the smart Bluetooth headset;
  • This application adds a noise reduction function to the smart Bluetooth headset.
  • the user’s sleep state is indirectly determined by detecting the state information of the headset, and the noise reduction strategy is determined according to the user’s sleep state, and then according to the noise reduction strategy and The environmental sound performs noise reduction operation, so as to achieve noise reduction and sleep aid, it can also save the power consumption of the earphone noise reduction, extend the battery life, and help improve the user experience.
  • FIG. 1 is a schematic flowchart of the first embodiment of the earphone noise reduction method of the present application
  • Fig. 2 is a schematic flow chart of a second embodiment of the earphone noise reduction method of the present application.
  • the earphone noise reduction method involved in the embodiments of the present application is mainly applied to smart Bluetooth earphones.
  • the smart Bluetooth headset may include a processor; wherein, the processor may be implemented by a highly integrated chip, which combines Bluetooth, MCU (Microcontroller Unit, micro control unit) and DSP (Digital Signal Processing, digital signal processing) functions are integrated (of course, other functions can also be integrated); for the Bluetooth part, including dual-mode Bluetooth, that is, the basic rate/enhanced rate Bluetooth module (BR/EDR) and low energy Bluetooth module ( BLE); MCU is mainly used for headphone control function, DSP is mainly used for digital signal processing.
  • the smart Bluetooth headset also includes a memory; as a computer-readable storage medium, the memory may also include an operating system, a network communication module, and a headset noise reduction program.
  • the network communication module is mainly used to connect to and communicate with the terminal. .
  • the smart Bluetooth headset further includes an audio collection device (such as a microphone), a battery part, a touch part, an LED part, a sensor Gensor part, and a speaker part.
  • an audio collection device such as a microphone
  • each headset is equipped with two microphones.
  • One microphone is a call microphone, and the collected audio signal is used to realize the call function, and the other microphone is a noise reduction microphone.
  • the collected audio signal is used to realize the noise reduction function; for the Battery part, it is mainly used for powering the smart Bluetooth headset; for the Touch part, it is used to realize the touch function, and its function is to replace the buttons and give users a better operating experience;
  • the LED part it is used to prompt the working status of Bluetooth, such as boot prompt, charging prompt, terminal connection prompt, etc.; for the Gensor part, it can include a gravity acceleration sensor, a vibration sensor, a gyroscope, etc., to detect the status of the headset, thereby Determine the body motion state of the user currently wearing the smart Bluetooth headset; for the speaker part, it can include more than two speakers.
  • each headset is equipped with two speakers, one is a moving coil speaker and the other is a moving iron speaker.
  • the dynamic speaker has a better response in the middle and low frequencies, and the moving iron speaker has a better response in the middle and high frequencies. Two speakers are used at the same time.
  • the moving iron speaker is connected in parallel to the dynamic speaker through the frequency division function of the processor, so that the human ear can hear The entire audio frequency band has a relatively complete response.
  • the hardware structure of the above-mentioned smart Bluetooth headset does not constitute a limitation to the present application.
  • the smart Bluetooth headset may include more or less components than the listed examples, or a combination of certain components, or different components. Component arrangement.
  • the processor of the smart Bluetooth headset can call the headset noise reduction program stored in the memory and perform the following operations:
  • the step of determining the user's sleep state according to the headset state information, and determining the corresponding noise reduction strategy according to the sleep state includes:
  • the processor may also call the earphone noise reduction program stored in the memory and perform the following operations:
  • the smart Bluetooth headset includes a low-power Bluetooth module, and also includes a basic rate/enhanced rate Bluetooth module, and the processor can also call a headset noise reduction program stored in a memory, and perform the following operations:
  • the basic rate/enhanced rate Bluetooth module receives the terminal audio signal sent by the target terminal based on the voice control signal, and plays it according to the terminal audio signal.
  • the smart bluetooth headset includes a true wireless stereo TWS headset
  • the true wireless stereo TWS headset includes a first sub-earphone and a second sub-earphone
  • the processor can also call the earphone noise reduction program stored in the memory, and Do the following:
  • the first sub-earphone and the second sub-earphone establish an ear-to-ear connection
  • the step of connecting with the corresponding target terminal according to the terminal connection instruction includes:
  • the first sub-earphone When a terminal connection instruction is received, the first sub-earphone is used as the main headset to connect to the corresponding target terminal according to the terminal connection instruction, so that the first sub-earphone and the target terminal perform data interaction.
  • the step of receiving the terminal audio signal sent by the target terminal based on the voice control signal through the basic rate/enhanced rate Bluetooth module, and playing according to the terminal audio signal includes:
  • the first sub-earphone receives the terminal audio signal sent by the target terminal based on the voice control signal through the basic rate/enhanced rate Bluetooth module;
  • the first earphone sends the terminal audio signal to the second earphone, so that the first earphone and the second earphone play according to the terminal audio signal.
  • the processor may also call the earphone noise reduction program stored in the memory, and perform the following operations:
  • the The second earphone is used as a main earphone to connect with the target terminal, so that the second earphone and the target terminal perform data interaction, and the connection between the first earphone and the target terminal is disconnected.
  • the processor may also call the earphone noise reduction program stored in the memory, and perform the following operations:
  • the second sub earphone When it is detected that the connection between the first sub earphone and the target terminal is disconnected, the second sub earphone is used as the main earphone to connect to the target terminal, so that the second sub earphone is connected to the target terminal.
  • the terminal performs data interaction.
  • the processor may also call the earphone noise reduction program stored in the memory, and perform the following operations:
  • This application provides a noise reduction method for earphones.
  • FIG. 1 is a schematic flowchart of a first embodiment of a noise reduction method for earphones according to the present application.
  • the earphone noise reduction method in this embodiment is applied to a smart Bluetooth headset, the smart Bluetooth earphone includes a microphone and a sensor, and the earphone noise reduction method includes:
  • Step S10 when entering the noise reduction mode, collect environmental audio signals through the microphone, and detect the headset status information of the smart Bluetooth headset through the sensor;
  • TWS earphone true wireless stereo earphone
  • This kind of TWS earphone housing does not require a wired connection, and there are two left and right earphones.
  • the headset forms a stereo system via Bluetooth.
  • TWS earphones have no external wires, which provides convenience for users to wear TWS earphones; users can also wear TWS earphones during sleep without worrying about entanglement of earphone wires during sleep.
  • this implementation proposes a headset noise reduction method, adding noise reduction function to the smart Bluetooth headset, and in the noise reduction process, by detecting and determining the user's sleep state, and adjusting the noise reduction according to the user's sleep state Strategies to save the noise reduction power consumption of the headset, thereby extending the battery life.
  • the smart Bluetooth headset of this embodiment is described by taking a true wireless stereo headset (TWS headset) as an example; the outer casing of this TWS headset does not require a wired connection, and two sub-earphones (left and right headsets) form a stereo system through Bluetooth.
  • the TWS headset in this embodiment also has a noise reduction function. Since the TWS headset has no external wires, the user can wear the TWS headset during sleep and activate the noise reduction function, so that the TWS headset enters the noise reduction mode for noise reduction and sleep aid.
  • the user can touch the noise reduction function button on the TWS headset shell to trigger the corresponding noise reduction command; when the TWS headset receives the noise reduction command, it can be The noise reduction command enters the noise reduction mode.
  • the noise reduction mode can also be that the user sends related voice control information to the TWS headset by voice, for example, the user says "enter noise reduction mode” or other control keywords to the microphone of the TWS headset; when the TWS headset passes the microphone
  • the control voice of “entering noise reduction mode” or other control keywords
  • the noise reduction mode can also be a way to enter regularly.
  • the user can set a sleep period for the TWS headset in advance (such as 23:00 to 7:00 the next morning), and the TWS headset detects that it is currently in the During sleep period, it will automatically enter the noise reduction mode.
  • TWS headphones can also enter the noise reduction mode in other ways.
  • the current ambient audio signal will be collected through the microphone (audio collection device) of the TWS headset.
  • the ambient audio signal collected by the microphone of the TWS headset can be considered to reflect the ambient sound that the user can hear, and the location of the TWS headset is also It is the position to be reduced.
  • the collection of the environmental audio signal can be performed in a preset interval, for example It is collected every 3 minutes to further reduce the power consumption of TWS headsets.
  • the TWS headset While collecting environmental audio signals, the TWS headset will also detect the headset status information of the TWS headset through the sensor, that is, determine the use status of the headset. For example, the TWS headset detects the gravitational acceleration value of the TWS in a certain period of time through the gravitational acceleration sensor, so as to determine whether the TWS headset is currently in a stationary state according to the value of the gravitational acceleration during this period of time. It is worth noting that, because the user needs to breathe even if he is still while wearing the headset, and the breathing process will produce a certain acceleration of gravity on the headset; accordingly, when the change in the acceleration of gravity of the headset during a certain period of time does not exceed At a certain threshold, it can also be considered to be in a static state. Of course, in practice, TWS headsets can also detect headset status information through sensors such as vibration sensors and gyroscopes.
  • Step S20 Determine the sleep state of the user according to the headset state information, and determine a corresponding noise reduction strategy according to the sleep state;
  • the headset status information reflects the user's action status information to a certain extent, in other words ,
  • the user’s sleep state can be determined according to the headset state information.
  • the headset status information includes the value of the acceleration of gravity detected in a certain period of time
  • the TWS headset also presets 3 intervals of the difference of the acceleration of gravity, denoted as 0 ⁇ x ⁇ a, a ⁇ x ⁇ b, b ⁇ x, where x is the maximum acceleration difference among the gravitational acceleration values detected in the time period, a and b are a preset parameter, and 0 ⁇ a ⁇ b; when 0 ⁇ x ⁇ a, it can be considered that the user is currently In a deep sleep state, breathing is relatively relaxed, and there will be no other actions; when a ⁇ x ⁇ b, the user can be considered to be in a light sleep state, and the breathing tends to ease; when b ⁇ x, the user can be considered not yet When you fall asleep, you have a large breathing range, and you may roll over or perform other actions, so the acceleration of gravity changes greatly.
  • the determination of the gravitational acceleration difference interval or the user's sleep state can be set in other ways; and if other
  • the TWS headset when the user's sleep state is determined, the TWS headset will determine the corresponding noise reduction strategy according to the user's sleep state. Specifically, when the user is in a deep sleep state, it can be considered that the user is not easily affected by noise. At this time, the noise reduction strategy can be adjusted to the direction of light noise reduction; and when the user is in a light sleep state or not When falling asleep, it can be considered that the user is more susceptible to noise. At this time, the noise reduction strategy can be adjusted to the direction of heavy noise reduction. Of course, the noise reduction strategy can be continuously and dynamically adjusted during the user's sleep. For example, the noise reduction strategy can include a silent strategy, a general strategy, and a depth strategy.
  • the corresponding noise reduction depth is increased in turn. That is, the noise reduction effect is increased in sequence; in the time period from 24 o'clock (0 o'clock) to 1 o'clock, the TWS headset determines that the user is in a light sleep state according to the headset status information, then the TWS headset can determine that the current noise reduction strategy is a general strategy; During the time period from 1 to 2 o’clock, the TWS headset determines that the user is in a deep sleep state according to the headset status information, then the TWS headset can determine that the current noise reduction strategy is a silent strategy; during the time period from 2 to 3 o’clock, the TWS headset The headset status information determines that the user is in a light sleep state, and the TWS headset can determine that the current noise reduction strategy is a general strategy.
  • Step S30 Generate a corresponding noise-reduction frequency signal based on the noise reduction strategy and the environmental audio signal, and play the noise-reduction frequency signal.
  • the TWS headset when it determines the noise reduction strategy, it can generate the corresponding noise reduction frequency signal according to the noise reduction strategy and the ambient audio signal obtained in step S10.
  • the ambient audio signal is collected through a microphone, and then the collected ambient audio signal is converted into a frequency domain signal, and then the energy distribution of the frequency domain signal is used to find the highest energy frequency band as the deepest noise reduction Frequency band; DSP sets filter parameters according to this frequency band, and then processes the collected environmental audio signal through the filter to generate a noise-reduction frequency signal whose signal amplitude is basically equal to the noise amplitude, and the phase is basically opposite, and according to the noise reduction
  • the audio signal drives the speaker, and most of the noise can be cancelled after the speaker emits sound.
  • noise reduction is not only performed according to the ambient audio signal, but also according to the noise reduction strategy.
  • the noise reduction strategy can be considered as the depth of noise reduction, that is, to offset the external noise.
  • the depth of the noise (how many decibels have been reduced by the external noise). For example, under the general strategy, the external noise that needs to be cancelled is 20 decibels, and if the initial external environmental sound is 30 decibels, the external noise that the user can hear after cancellation will be reduced to 10 decibels; under the depth strategy, the external noise to be cancelled The external noise is 30 decibels, and if the initial external environmental sound is 35 decibels, the external noise that the user can hear after cancellation will be reduced to 5 decibels.
  • the noise reduction mode when it is determined that the user is in a deep sleep state according to the headset status information, since the deep sleep state is generally not easily affected by noise, the noise reduction mode can be directly exited at this time, or even turned off by itself. Reduce power consumption.
  • the noise reduction strategy may be determined as a silent strategy; when the silent strategy is determined, the TWS headset will exit the noise reduction mode according to the silent strategy , Or directly shut down according to the silent strategy to reduce power consumption.
  • the ambient audio signal is collected through a microphone, and the headset state information of the smart Bluetooth headset is detected through a sensor; the sleep state of the user is determined according to the headset state information, And determine the corresponding noise reduction strategy according to the sleep state; generate a corresponding noise reduction frequency signal based on the noise reduction strategy and the environmental audio signal, and play the noise reduction frequency signal.
  • this embodiment adds a noise reduction function to the smart Bluetooth headset.
  • the user’s sleep state is indirectly determined by detecting the state information of the headset, and the noise reduction strategy is determined according to the user’s sleep state. Perform noise reduction operations according to the noise reduction strategy and ambient sound, so as to achieve noise reduction and sleep aid, while saving the power consumption of the earphone noise reduction, extending the battery life, and improving the user experience.
  • FIG. 2 is a schematic flowchart of a second embodiment of a noise reduction method for earphones of this application.
  • the smart Bluetooth headset includes a low-power Bluetooth module, and also includes a basic rate/enhanced rate Bluetooth module, and the headset noise reduction method further includes:
  • Step S40 when receiving the terminal connection instruction, connect with the corresponding target terminal according to the terminal connection instruction;
  • the TWS headset can be a noise-reduction signal generated by the processor of the headset itself, and can also be connected to the target terminal and perform data interaction, so that the user can send related voices to the target terminal by voice from the TWS headset
  • the control signal realizes voice control of the target terminal.
  • the target terminal in this embodiment is described by taking a mobile phone as an example.
  • the target terminal may also be a terminal such as a tablet computer and a notebook computer.
  • the user can touch the relevant area of the TWS headset to trigger the corresponding terminal connection instruction; when the TWS headset receives the terminal adjacency instruction, it can perform a Bluetooth connection with the corresponding mobile phone according to the terminal connection instruction, thereby connecting with The mobile phone performs data interaction.
  • the terminal connection instruction can also be set to be automatically triggered when the TWS headset is turned on, for example, the terminal connection instruction can be automatically triggered when the TWS headset is turned on; it can also be set to trigger automatically according to the time, for example, when the TWS headset is turned on and the current time is preset During the connection period, the terminal connection instruction is automatically triggered.
  • Step S50 Receive the voice control signal sent by the user through the microphone, and send the voice control signal to the target terminal through the Bluetooth low energy module, so that the target terminal can control the voice Signal analysis and processing;
  • the TWS LED light flashes or a prompt tone can be used to prompt that the connection with the target terminal is currently established.
  • the user can speak the relevant control voice to the microphone of the TWS headset; when the TWS headset receives the voice control signal sent by the user through the microphone, it will send the voice control signal to the mobile phone by way of Bluetooth communication, so as to voice the mobile phone control.
  • TWS headsets it can also be set to a form of dual microphones, one of which is a noise reduction microphone and one is a call microphone; the noise reduction microphone is used to collect ambient sound when noise is reduced; The microphone is used to collect and control voice during voice control.
  • the mobile phone When the mobile phone receives the voice control signal, it will analyze the voice control signal to determine the meaning of the user's speech, and then perform corresponding processing according to the meaning, or perform corresponding operations, such as answering the call, changing a certain setting of the mobile phone , Play a certain song, control home appliances, etc.
  • the process of analyzing the voice control signal by the mobile phone may be that the mobile phone sends the voice control signal to the cloud, and the analysis result is returned to the mobile phone after the cloud analysis is completed, and the mobile phone performs corresponding operations according to the analysis result.
  • the TWS headset in this embodiment adopts dual-mode Bluetooth, which includes a basic rate/enhanced rate Bluetooth module (BR/EDR) and a low-power Bluetooth module (BLE); while the TWS headset is When the mobile phone sends a voice control signal, since the data volume of the voice control signal is generally small, it can be sent through the BLE module, thereby reducing the power consumption of the headset and extending the battery life.
  • the TWS headset in this embodiment can also implement the Internet of Things function, that is, perform voice interactive control on other devices other than mobile phones. Specifically, while the mobile phone is connected to the TWS headset, it can also be connected to other devices (such as home appliances).
  • the other devices are described with an air conditioner as an example; when the user wants to adjust the cooling temperature of the air conditioner, Speak the relevant air-conditioning control voice to the microphone of the TWS headset; when the TWS headset receives the voice control signal sent by the user through the microphone, it will send the voice control signal to the mobile phone via Bluetooth communication; the mobile phone receives the voice control signal
  • the voice control signal can be analyzed (send the voice control signal to the cloud, and the analysis result will be returned to the mobile phone after the cloud analysis is completed).
  • the mobile phone When the analysis is completed, the mobile phone will send the corresponding cooling to the air conditioner based on the analysis result. Temperature adjustment command to adjust the cooling temperature of the air conditioner.
  • Step S60 Receive the terminal audio signal sent by the target terminal based on the voice control signal by the basic rate/enhanced rate Bluetooth module, and play according to the terminal audio signal.
  • the mobile phone may need to send (return) relevant terminal audio signals to the TWS headset after parsing and processing based on the voice control signal.
  • the control voice spoken by the user to the TWS headset is "Play Y song”.
  • the mobile phone After analyzing and processing the corresponding voice control signal, the mobile phone will send the corresponding terminal audio signal (that is, the relevant audio signal of the Y song) to the TWS headset.
  • the TWS headset receives the terminal audio signal sent by the mobile phone based on the voice control signal, it will play correspondingly according to the terminal audio signal, such as playing Y songs.
  • the TWS headset will receive the terminal audio signal sent by the mobile phone through the BR/EDR module, thus Improve the data transmission rate, ensure the smoothness of TWS headsets when playing audio, and improve the user experience.
  • step S40 the method further includes:
  • the first sub-earphone and the second sub-earphone establish an ear-to-ear connection
  • the TWS headset for the convenience of description, its two sub-earphones can be called the first sub-earphone and the second sub-earphone, for example, the left earphone is called the first sub-earphone, and the right earphone is called the second sub-earphone. Headphones: There is no need for wire connection between the first sub-earphone and the second sub-earphone, and the two are relatively independent. In this regard, when the TWS headset is turned on, the first sub-earphone and the second sub-earphone will first establish an ear-to-ear connection, thereby forming an acoustic system as a whole.
  • the step S40 includes:
  • the first sub-earphone When a terminal connection instruction is received, the first sub-earphone is used as the main headset to connect to the corresponding target terminal according to the terminal connection instruction, so that the first sub-earphone and the target terminal perform data interaction.
  • the first earphone and the second earphone when the first earphone and the second earphone are successfully connected to the ear, they can work as a whole; it is worth noting that because the first earphone and the second earphone are relatively independent, Therefore, when performing data interaction with the target terminal, only one sub-headset may perform the interaction.
  • the first sub headset can be set as the main headset by default (of course, it can also be set by the user); when the terminal connection instruction is received, the first sub headset will be used as the main headset and will be connected to the mobile phone; when the connection is successful
  • the first earphone can interact with the mobile phone for data, for example, the first earphone sends the voice control signal collected by the microphone to the mobile phone through the BLE module.
  • the step S50 includes:
  • the first sub-earphone receives the terminal audio signal sent by the target terminal through the basic rate/enhanced rate Bluetooth module;
  • the first sub-earphone when used as the main earphone to connect to the mobile phone, it can also receive the terminal audio signal sent by the mobile phone through the BR/EDR module.
  • the first earphone sends the terminal audio signal to the second earphone, so that the first earphone and the second earphone play according to the terminal audio signal.
  • the first earphone when the first earphone receives the terminal audio signal sent by the mobile phone, it will send the terminal audio signal to the second earphone, so that both earphones can get the terminal audio signal, and then the two earphones can simultaneously Play according to the terminal audio signal to realize the dual-sided true wireless Bluetooth playback function.
  • the smart Bluetooth headset in this embodiment can interact with the target terminal in Bluetooth mode through only one sub-headset, thereby reducing data transmission power consumption; and for the terminal audio sent by the target terminal to the smart Bluetooth headset The main earphone will share it with other earphones to ensure that both earphones can play according to the terminal audio signal, realizing the bilateral true wireless Bluetooth playback function.
  • the first earphone sends the terminal audio signal to the second earphone, so that the first earphone and the second earphone are based on the terminal audio signal. After the signal is played, it also includes:
  • the The second earphone is used as a main earphone to connect with the target terminal, so that the second earphone and the target terminal perform data interaction, and the connection between the first earphone and the target terminal is disconnected.
  • the two sub-earphones when the two sub-earphones are working, they will also detect their own power status.
  • the main The headset function role is switched to the second sub-headset, and the second sub-headset is used as the main headset to connect to the mobile phone; when the connection is successful, the second sub-headset can interact with the mobile phone, and at the same time, the first sub-headset will be disconnected from the mobile phone. Open the connection to reduce the power consumption of the first sub-earphone, maximize the use of battery power, and extend the overall battery life of the headset.
  • the first sub-earphone when the terminal connection instruction is received, the first sub-earphone is used as the main headset to connect to the corresponding target terminal according to the terminal connection instruction, so that the first sub-earphone is connected to After the step of the target terminal performing data interaction, it further includes:
  • the second sub earphone When it is detected that the connection between the first sub earphone and the target terminal is disconnected, the second sub earphone is used as the main earphone to connect to the target terminal, so that the second sub earphone is connected to the target terminal.
  • the terminal performs data interaction.
  • the function role of the main earphone can also be switched to the second sub-earphone.
  • the second sub-earphone is used as the main earphone to connect to the mobile phone; when the connection is successful, the second sub-earphone can interact with the mobile phone and send the received terminal audio signal to the first sub-earphone, thereby passing the main earphone function role.
  • the switching method enables the data interaction between the headset and the terminal to be restored in time when the connection between the first sub-earphone and the mobile phone is abnormal, to ensure the normal progress of the data interaction, and to improve the user experience.
  • this application also provides a computer-readable storage medium.
  • a headphone noise reduction program is stored on the computer-readable storage medium of the present application, and when the headphone noise reduction program is executed by a processor, the steps of the above-mentioned headphone noise reduction method are implemented.
  • the method implemented when the earphone noise reduction program is executed can refer to the various embodiments of the earphone noise reduction method of the present application, which will not be repeated here.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Telephone Function (AREA)

Abstract

本申请公开了一种耳机降噪方法、智能蓝牙耳机和计算机可读存储介质,所述耳机降噪方法包括:在进入降噪模式时,通过麦克风采集环境音频信号,并通过传感器检测所述智能蓝牙耳机的耳机状态信息;根据所述耳机状态信息确定用户的睡眠状态,并根据所述睡眠状态确定对应的降噪策略;基于所述降噪策略和所述环境音频信号生成对应的降噪音频信号,并播放所述降噪音频信号。

Description

耳机降噪方法、智能蓝牙耳机及计算机可读存储介质
本申请要求于2019年1月29日提交中国专利局、申请号为201910090022.4、发明名称为“耳机降噪方法、智能蓝牙耳机及计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在申请中。
技术领域
本申请涉及可穿戴设备技术领域,尤其涉及一种耳机降噪方法、智能蓝牙耳机及计算机可读存储介质。
背景技术
随着技术的不断进步,可穿戴设备市场得到迅猛发展,耳机的种类也层出不穷,其中即包括了一种真无线立体声耳机(TWS耳机);这种TWS耳机外壳体不需要有线连接,左右2个耳机通过蓝牙组成立体声系统。TWS耳机无外部线材的特点,为用户佩戴TWS耳机提供了方便;用户还可以在睡眠过程中佩戴TWS耳机,不必担心睡眠过程缠绕耳机线材。但是,对于目前市面上的TWS耳机,由于其电池容量的问题,并不会在TWS耳机中加入降噪功能;若在TWS耳机加入降噪功能,则在开启该降噪功能时会提高TWS耳机的功耗,从而降低TWS的续航时间。
发明内容
本申请的主要目的在于提供一种耳机降噪方法、智能蓝牙耳机及计算机可读存储介质,旨在解决现有TWS耳机降噪功耗高的技术问题。
为实现上述目的,本申请提供一种耳机降噪方法,所述耳机降噪方法应用于智能蓝牙耳机,所述智能蓝牙耳机包括麦克风、传感器,所述耳机降噪方法包括:
在进入降噪模式时,通过所述麦克风采集环境音频信号,并通过所述传感器检测所述智能蓝牙耳机的耳机状态信息;
根据所述耳机状态信息确定用户的睡眠状态,并根据所述睡眠状态确定对应的降噪策略;
基于所述降噪策略和所述环境音频信号生成对应的降噪音频信号,并播放所述降噪音频信号。
可选地,所述根据所述耳机状态信息确定用户的睡眠状态,并根据所述睡眠状态确定对应的降噪策略的步骤包括:
当根据所述耳机状态信息确定所述用户处于深度睡眠状态时,将所述降噪策略确定为静默策略;
所述根据所述耳机状态信息确定用户的睡眠状态,并根据所述睡眠状态确定对应的降噪策略的步骤之后,还包括:
根据所述静默策略退出所述降噪模式,或根据所述静默策略关机。
可选地,所述智能蓝牙耳机包括低功耗蓝牙模块,还包括基础速率/增强速率蓝牙模块,
所述耳机降噪方法还包括:
在接收到终端连接指令时,根据所述终端连接指令与对应的目标终端进行连接;
通过所述麦克风接收所述用户发送的语音控制信号,并通过所述低功耗蓝牙模块将所述语音控制信号发送至所述目标终端,以供所述目标终端对所述语音控制信号进行解析和处理;
通过所述基础速率/增强速率蓝牙模块接收所述目标终端基于所述语音控制信号发送的终端音频信号,并根据所述终端音频信号进行播放。
可选地,所述智能蓝牙耳机包括真无线立体声TWS耳机,所述真无线立体声TWS耳机包括第一子耳机和第二子耳机,
所述在接收到终端连接指令时,根据所述终端连接指令与对应的目标终端进行连接的步骤之前,还包括:
在所述真无线立体声TWS耳机开机时,所述第一子耳机与所述第二子耳机建立对耳连接;
所述在接收到终端连接指令时,根据所述终端连接指令与对应的目标终端进行连接的步骤包括:
在接收到终端连接指令时,根据所述终端连接指令将所述第一子耳机作为主耳机与对应的目标终端进行连接,以使所述第一子耳机与所述目标终端进行数据交互。
可选地,所述通过所述基础速率/增强速率蓝牙模块接收所述目标终端基于所述语音控制信号发送的终端音频信号,并根据所述终端音频信号进行播放的步骤包括:
所述第一子耳机通过所述基础速率/增强速率蓝牙模块接收所述目标终端基于所述语音控制信号发送的终端音频信号;
所述第一子耳机将所述终端音频信号发送至所述第二子耳机,以使所述第一子耳机和所述第二子耳机根据所述终端音频信号进行播放。
可选地,所述第一子耳机将所述终端音频信号发送至所述第二子耳机,以使所述第一子耳机和所述第二子耳机根据所述终端音频信号进行播放的步骤之后,还包括:
在检测到所述第一子耳机的第一电量低于所述第二子耳机的第二电量、且所述第一电量与所述第二电量的电量差大于预设差值时,将所述第二子耳机作为主耳机与所述目标终端进行连接,以使所述第二子耳机与所述目标终端进行数据交互,并断开所述第一子耳机与所述目标终端的连接。
可选地,所述在接收到终端连接指令时,根据所述终端连接指令将所述第一子耳机作为主耳机与对应的目标终端进行连接,以使所述第一子耳机与所述目标终端进行数据交互的步骤之后,还包括:
在检测到所述第一子耳机与所述目标终端的连接断开时,将所述第二子耳机作为主耳机与所述目标终端进行连接,以使所述第二子耳机与所述目标终端进行数据交互。
可选地,所述在进入降噪模式时,通过所述麦克风采集环境音频信号,并通过所述传感器检测所述智能蓝牙耳机的耳机状态信息的步骤之前,还包括:
在处于开机状态时,获取当前时间,并判断所述当前时间是否处于预设睡眠时段;
若所述当前时间处于所述预设睡眠时段,则进入所述降噪模式。
此外,为实现上述目的,本申请还提供一种智能蓝牙耳机,所述智能蓝牙耳机包括麦克风、传感器,还包括处理器、存储器、以及存储在所述存储器上并可被所述处理器执行的耳机降噪程序,其中所述耳机降噪程序被所述处理器执行时,实现如下步骤:
在进入降噪模式时,通过所述麦克风采集环境音频信号,并通过所述传感器检测所述智能蓝牙耳机的耳机状态信息;
根据所述耳机状态信息确定用户的睡眠状态,并根据所述睡眠状态确定对应的降噪策略;
基于所述降噪策略和所述环境音频信号生成对应的降噪音频信号,并播放所述降噪音频信号。
此外,为实现上述目的,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有耳机降噪程序,其中所述耳机降噪程序被处理器执行时,实现如下步骤:
智能蓝牙耳机在进入降噪模式时,通过所述智能蓝牙耳机的麦克风采集环境音频信号,并通过所述智能蓝牙耳机的传感器检测所述智能蓝牙耳机的耳机状态信息;
根据所述耳机状态信息确定用户的睡眠状态,并根据所述睡眠状态确定对应的降噪策略;
基于所述降噪策略和所述环境音频信号生成对应的降噪音频信号,并播放所述降噪音频信号。
本申请在智能蓝牙耳机中添加降噪功能,同时在进行降噪过程中,通过检测耳机的状态信息间接确定用户的睡眠状态,并根据用户的睡眠状态确定降噪策略,再根据降噪策略以及环境音进行降噪操作,从而在实现降噪助眠的同时,还可节约耳机降噪的功耗,延长了续航时间,有利于提高用户的使用体验。
附图说明
图1是本申请耳机降噪方法第一实施例的流程示意图;
图2是本申请耳机降噪方法第二实施例的流程示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请实施例涉及的耳机降噪方法主要应用于智能蓝牙耳机。
本申请实施例中,智能蓝牙耳机可以包括处理器;其中,该处理器可以是通过高度集成的芯片实现,将蓝牙、MCU(Microcontroller Unit,微控制单元)和DSP(Digital Signal Processing,数字信号处理)的功能集成在一起(当然还可以集成其它的功能);对于该蓝牙部分包括双模蓝牙,即基础速率/增强速率蓝牙模块(BR/EDR)和低功耗蓝牙模块(BLE);MCU主要用于耳机控制功能,DSP主要用于实现数字信号处理。进一步的,智能蓝牙耳机还包括存储器;作为一种计算机可读存储介质的存储器则还可以包括操作系统、网络通信模块以及耳机降噪程序,网络通信模块主要用于连接终端,并与终端数据通信。
可选地,该智能蓝牙耳机还包括音频采集装置(如麦克风)、电池Battery部分、触碰Touch部分、LED部分、传感器Gensor部分和喇叭部分。对于音频采集装置(如麦克风)可以设置两个以上,例如每只耳机均设置两个麦克风,其中一路麦克风为通话麦克风,其采集的音频信号用来实现通话功能,另一路麦克风为降噪麦克风,其采集的音频信号用来实现降噪功能;对于Battery部分则主要用于给智能蓝牙耳机供电;对于Touch部分,用于实现触控功能,其作用是代替按键,给用户更好的操作体验;对于LED部分,则用于提示蓝牙的工作状态,如开机提示、充电提示、终端连接提示等;对于Gensor部分,可以包括重力加速度传感器、振动传感器、陀螺仪等,用于检测耳机的状态,从而判断当前佩戴该智能蓝牙耳机的用户的身体动作状态;对于喇叭部分,可以包括可以设置两个以上的喇叭,例如每只耳机均设置两个喇叭,一个为动圈喇叭,一个为动铁喇叭,动圈喇叭在中低频频率响应较好,动铁喇叭在中高频部分响应比较好,两个喇叭同时使用,通过处理器的分频功能把动铁喇叭并联在动圈喇叭上,使得人耳听到的整个音频频段响应比较完整。
本领域技术人员可以理解,上述的智能蓝牙耳机硬件结构并不构成对本申请的限定,在实际中智能蓝牙耳机可以包括比上市举例更多或更少的部件,或者组合某些部件,或者不同的部件布置。
进一步的,智能蓝牙耳机的处理器可以调用存储器中存储的耳机降噪程序,并执行以下操作:
在进入降噪模式时,通过所述麦克风采集环境音频信号,并通过所述传感器检测所述智能蓝牙耳机的耳机状态信息;
根据所述耳机状态信息确定用户的睡眠状态,并根据所述睡眠状态确定对应的降噪策略;
基于所述降噪策略和所述环境音频信号生成对应的降噪音频信号,并播放所述降噪音频信号。
进一步的,所述根据所述耳机状态信息确定用户的睡眠状态,并根据所述睡眠状态确定对应的降噪策略的步骤包括:
当根据所述耳机状态信息确定所述用户处于深度睡眠状态时,将所述降噪策略确定为静默策略;
所述处理器还可调用存储器中存储的耳机降噪程序,并执行以下操作:
根据所述静默策略退出所述降噪模式,或根据所述静默策略关机。
进一步的,所述智能蓝牙耳机包括低功耗蓝牙模块,还包括基础速率/增强速率蓝牙模块,所述处理器还可调用存储器中存储的耳机降噪程序,并执行以下操作:
在接收到终端连接指令时,根据所述终端连接指令与对应的目标终端进行连接;
通过所述麦克风接收所述用户发送的语音控制信号,并通过所述低功耗蓝牙模块将所述语音控制信号发送至所述目标终端,以供所述目标终端对所述语音控制信号进行解析和处理;
通过所述基础速率/增强速率蓝牙模块接收所述目标终端基于所述语音控制信号发送的终端音频信号,并根据所述终端音频信号进行播放。
进一步的,所述智能蓝牙耳机包括真无线立体声TWS耳机,所述真无线立体声TWS耳机包括第一子耳机和第二子耳机,所述处理器还可调用存储器中存储的耳机降噪程序,并执行以下操作:
在所述真无线立体声TWS耳机开机时,所述第一子耳机与所述第二子耳机建立对耳连接;
所述在接收到终端连接指令时,根据所述终端连接指令与对应的目标终端进行连接的步骤包括:
在接收到终端连接指令时,根据所述终端连接指令将所述第一子耳机作为主耳机与对应的目标终端进行连接,以使所述第一子耳机与所述目标终端进行数据交互。
进一步的,所述通过所述基础速率/增强速率蓝牙模块接收所述目标终端基于所述语音控制信号发送的终端音频信号,并根据所述终端音频信号进行播放的步骤包括:
所述第一子耳机通过所述基础速率/增强速率蓝牙模块接收所述目标终端基于所述语音控制信号发送的终端音频信号;
所述第一子耳机将所述终端音频信号发送至所述第二子耳机,以使所述第一子耳机和所述第二子耳机根据所述终端音频信号进行播放。
进一步的,所述处理器还可调用存储器中存储的耳机降噪程序,并执行以下操作:
在检测到所述第一子耳机的第一电量低于所述第二子耳机的第二电量、且所述第一电量与所述第二电量的电量差大于预设差值时,将所述第二子耳机作为主耳机与所述目标终端进行连接,以使所述第二子耳机与所述目标终端进行数据交互,并断开所述第一子耳机与所述目标终端的连接。
进一步的,所述处理器还可调用存储器中存储的耳机降噪程序,并执行以下操作:
在检测到所述第一子耳机与所述目标终端的连接断开时,将所述第二子耳机作为主耳机与所述目标终端进行连接,以使所述第二子耳机与所述目标终端进行数据交互。
进一步的,所述处理器还可调用存储器中存储的耳机降噪程序,并执行以下操作:
在处于开机状态时,获取当前时间,并判断所述当前时间是否处于预设睡眠时段;
若所述当前时间处于所述预设睡眠时段,则进入所述降噪模式。
基于上述智能蓝牙耳机的硬件结构,提出本申请耳机降噪方法的各个实施例。
本申请提供一种耳机降噪方法。
参照图1,图1为本申请耳机降噪方法第一实施例的流程示意图。
本实施例中的耳机降噪方法应用于智能蓝牙耳机,所述智能蓝牙耳机包括麦克风、传感器,所述耳机降噪方法包括:
步骤S10,在进入降噪模式时,通过所述麦克风采集环境音频信号,并通过所述传感器检测所述智能蓝牙耳机的耳机状态信息;
随着技术的不断进步,可穿戴设备市场得到迅猛发展,耳机的种类也层出不穷,其中即包括了一种真无线立体声耳机(TWS耳机);这种TWS耳机外壳体不需要有线连接,左右2个耳机通过蓝牙组成立体声系统。TWS耳机无外部线材的特点,为用户佩戴TWS耳机提供了方便;用户还可以在睡眠过程中佩戴TWS耳机,不必担心睡眠过程缠绕耳机线材。但是,对于目前市面上的TWS耳机,由于其电池容量的问题,并不会在TWS耳机中加入降噪功能;若在TWS耳机加入降噪功能,则在开启该降噪功能时会提高TWS耳机的功耗,从而降低TWS的续航时间。对此,本实施中提出一种耳机降噪方法,在智能蓝牙耳机中添加降噪功能,同时在进行降噪过程中,通过检测和判定用户的睡眠状态,并根据用户的睡眠状态调节降噪策略,从而节约耳机的降噪功耗,进而延长续航时间。
具体的,本实施例的智能蓝牙耳机以真无线立体声耳机(TWS耳机)为例进行说明;这种TWS耳机外壳体不需要有线连接,两个子耳机(左右耳机)通过蓝牙的方式组成立体声系统,且本实施例中的TWS耳机还具有降噪功能。由于TWS耳机无外部线材的特点,用户可以在睡眠过程中佩戴TWS耳机,并启动降噪功能,从而使该TWS耳机进入降噪模式进行降噪助眠。对于该降噪模式的进入,可以是用户以触碰的方式触碰TWS耳机外壳上的降噪功能按键,从而触发对应的降噪指令;当TWS耳机接收到到降噪指令时,即可根据该降噪指令进入降噪模式。该降噪模式,还可以是用户以语音的方式向TWS耳机发出相关的语音控制信息,例如用户对TWS耳机的麦克风说出“进入降噪模式”或其它的控制关键字;当TWS耳机通过麦克风检测到该“进入降噪模式”(或其它控制关键字)的控制语音时,即可认为接收到降噪指令,并根据该降噪指令进入降噪模式。此外,该降噪模式还可以是定时进入的方式,例如用户可以预先为TWS耳机设置睡眠时段(如每日晚上23点至次日早晨的7点),TWS耳机在开机状态检测到当前处于该睡眠时段时,将自动进入降噪模式。当然,除了上述举例,TWS耳机还可以是以其它方式进入降噪模式。
本实施例中,TWS耳机在进入到降噪模式时,将会通过TWS耳机的麦克风(音频采集装置)采集当前的环境音频信号。值得说明的是,由于TWS耳机一般是佩戴在用户的耳朵处,因此TWS耳机的麦克风所采集到的环境音频信号,可认为是反映用户所能听到的环境音,而TWS耳机的所在位置也正是待降噪位置。进一步的,由于用户睡眠时,环境噪音在一段时间内一般会保持一定的稳定性(不会发生太大的变化),因此该环境音频信号的采集可以是以预设间隔时间的方式进行,例如每3分钟采集一次,从而进一步降低TWS耳机的功耗。在采集环境音频信号的同时,TWS耳机还将通过传感器检测TWS耳机的耳机状态信息,也即确定耳机的使用状态。例如TWS耳机通过重力加速度传感器检测TWS在某一时间段的重力加速度值,从而根据这一时间段的重力加速度值判断TWS耳机当前是否处于静止状态。值得说明的是,因为用户在佩戴耳机时,即使静止不动也需要呼吸,而呼吸过程也会对耳机产生一定的重力加速度;据此,当某一时间段的耳机的重力加速度的变化不超过一定阈值时,也可认为当前处于静止状态。当然在实际中,TWS耳机还可通过振动传感器、陀螺仪等传感器检测耳机状态信息。
步骤S20,根据所述耳机状态信息确定所述用户的睡眠状态,并根据所述睡眠状态确定对应的降噪策略;
本实施例中,TWS耳机在得到耳机状态信息时,正如上述,由于用户在睡眠时时将TWS耳机佩戴在耳朵处,因此该耳机状态信息在一定程度上反应用户的动作状态信息,换而言之,可根据该耳机状态信息确定用户的睡眠状态。例如,耳机状态信息包括在某一时间段检测到的重力加速度值,而TWS耳机中还预先设置有3个重力加速度差值区间,分别记为0≤x<a、a≤x<b、b≤x,其中x为该时间段检测到的重力加速度值中的最大加速度差值,a、b为一预设参数,且0<a<b;当0≤x<a时,可认为用户当前处于深度睡眠状态,呼吸比较缓和,且不会有其它动作;当a≤x<b时,可认为用户当前处于轻度睡眠状态,呼吸趋于缓和;而当b≤x时,可认为用户尚未入睡,呼吸幅度较大,还可能进行翻身或其它动作,因而重力加速度值的变化幅度较大。当然在实际中,该重力加速度差值区间或是用户睡眠状态的确定可以是设置为其它方式;而若采用其它的传感器时也可以根据实际情况进行相应调整。
本实施例中,当确定用户的睡眠状态时,TWS耳机将根据用户的睡眠状态确定对应的降噪策略。具体的,当用户处于深度睡眠状态时,可认为用户不容易受到噪音的影响,此时可将降噪策略向着轻度降噪的方向调整;而当用户处于轻度睡眠状态、或是并未入睡时,可认为用户较容易受到噪音的影响,此时可将降噪策略向着重度降噪的方向调整。当然,对于该降噪策略,可以是在用户睡眠过程中不断动态调整的,例如,该降噪策略可以包括静默策略、一般策略、深度策略,其对应的降噪深度(力度)依次提升,也即降噪效果依次提升;在24点(0点)到1点的时间段内,TWS耳机根据耳机状态信息确定用户处于轻度睡眠状态,则TWS耳机可确定当前降噪策略为一般策略;在1点到2点的时间段内,TWS耳机根据耳机状态信息确定用户处于深度睡眠状态,则TWS耳机可确定当前降噪策略为静默策略;在2点到3点的时间段内,TWS耳机根据耳机状态信息确定用户处于轻度睡眠状态,则TWS耳机可确定当前降噪策略为一般策略。
步骤S30,基于所述降噪策略和所述环境音频信号生成对应的降噪音频信号,并播放所述降噪音频信号。
本实施例中,TWS耳机在确定降噪策略时,即可根据该降噪策略以及步骤S10中获得的环境音频信号生成对应的降噪音频信号。对于该降噪音频信号的降噪过程,通过麦克风采集环境音频信号,然后把采集到的环境音频信号转换为频域信号,再通过频域信号能量的分布情况,找到能量最高频段作为降噪最深的频段;DSP根据该频段设置滤波器参数,再把采集到环境音频信号通过滤波器处理后,生成信号幅值与噪声幅值基本相等、相位基本相反的降噪音频信号,并根据该降噪音频信号驱动喇叭,喇叭发出声音后即可抵消大部分噪音。值得说明的是,本实施例在进行降噪时,不仅是根据环境音频信号进行降噪,将根据降噪策略进行降噪,该降噪策略可认为是降噪深度,也即用以抵消外部噪音的深度(把外接噪音降了多少分贝)。例如一般策略下,需要抵消的外部噪音为20分贝,而若初始的外部环境音为30分贝,则抵消后用户所能听到的外部噪音将被降噪为10分贝;深度策略下要抵消的外部噪音的30分贝,而若初始的外部环境音为35分贝,则抵消后用户所能听到的外部噪音将被降噪为5分贝。
进一步的,本实施例中,当根据耳机状态信息确定用户处于深度睡眠状态时,由于深度睡眠状态下一般不容易受到噪音的影响,此时还可直接退出降噪模式,甚至是自行关闭,从而降低功耗。具体的,在步骤S20中,当根据耳机状态信息确定用户处于深度睡眠状态时,可将降噪策略确定为静默策略;在确定静默策略时,TWS耳机将根据该静默策略退出所述降噪模式,或直接根据该静默策略关机,从而降低功耗。
本实施例中,智能蓝牙耳机在进入降噪模式时,通过麦克风采集环境音频信号,并通过传感器检测所述智能蓝牙耳机的耳机状态信息;根据所述耳机状态信息确定所述用户的睡眠状态,并根据所述睡眠状态确定对应的降噪策略;基于所述降噪策略和所述环境音频信号生成对应的降噪音频信号,并播放所述降噪音频信号。通过以上方式,本实施例在智能蓝牙耳机中添加降噪功能,同时在进行降噪过程中,通过检测耳机的状态信息间接确定用户的睡眠状态,并根据用户的睡眠状态确定降噪策略,再根据降噪策略以及环境音进行降噪操作,从而在实现降噪助眠的同时,还可节约耳机降噪的功耗,延长了续航时间,有利于提高用户的使用体验。
参照图2,图2为本申请耳机降噪方法第二实施例的流程示意图。
基于上述图1所示实施例,本实施例中,所述智能蓝牙耳机包括低功耗蓝牙模块,还包括基础速率/增强速率蓝牙模块,所述耳机降噪方法还包括:
步骤S40,在接收到终端连接指令时,根据所述终端连接指令与对应的目标终端进行连接;
本实施例中,TWS耳机可以是通过耳机本身的处理器生成的降噪音频信号,还可以与目标终端进行连接并进行数据交互,从而用户可从TWS耳机处以语音的方式向目标终端发送相关语音控制信号,实现对目标终端进行语音控制。为了说明方便,本实施例中的目标终端以手机为例进行说明,当然在实际中该目标终端还可与是平板电脑、笔记本电脑等终端。
本实施例中,用户可通过触碰TWS耳机的相关区域,触发对应的终端连接指令;TWS耳机在接收到该终端邻接指令时,可根据该终端连接指令与对应的手机进行蓝牙连接,从而与该手机进行数据交互。当然,该终端连接指令,也可以设置为开机自动触发,例如当TWS耳机开机时,自动触发该终端连接指令;还可以是设置为根据时间自行触发,例如当TWS耳机开机且当前时间处于预设连接时间段时,自动触发该终端连接指令。
步骤S50,通过所述麦克风接收所述用户发送的语音控制信号,并通过所述低功耗蓝牙模块将所述语音控制信号发送至所述目标终端,以供所述目标终端对所述语音控制信号进行解析和处理;
本实施例中,当TWS耳机与手机连接成功时,可以通过TWS的LED灯闪烁或是提示音的方式提示当前已与目标终端建立连接。此时用户可对TWS耳机的麦克风说出相关的控制语音;TWS耳机通过麦克风接收到用户发送的语音控制信号时,将以蓝牙通信的方式将该语音控制信号发送至手机,从而对手机进行语音控制。值得说明的是,对于TWS耳机而言,其还可以是设置为双麦克风的形式,其中一个为降噪麦克风,一个为通话麦克风;降噪麦克风是在降噪时采集环境音所用;而在通话麦克风则是在语音控制时采集控制语音所用。手机在接收到该语音控制信号时,将对该语音控制信号进行解析,判断用户说话的含义,然后根据该含义进行相应的处理,或是执行相应操作,例如接听来电,改变手机的某个设置,播放某首歌,控制家电等。其中,手机对语音控制信号的解析过程,可以是手机将该语音控制信号发送至云端,由云端解析完成后再将该解析结果返回至手机,手机再根据该解析结果执行相应操作。值得说明的是,本实施例中的TWS耳机,采用了双模蓝牙的方式,即包括基础速率/增强速率蓝牙模块(BR/EDR)和低功耗蓝牙模块(BLE);而TWS耳机在向手机发送语音控制信号时,由于该语音控制信号的数据量一般较小,因而可以是通过BLE模块进行发送,从而降低耳机功耗,延长续航时间。此外,本实施例中的TWS耳机还可实现到物联网功能,也即对手机以外的其他设备进行语音交互控制。具体的,手机在与TWS耳机连接的同时,还可与其他的设备(如家电)进行连接,为描述方便,该其他设备以空调为例进行说明;当用户希望调整空调的制冷温度时,可对TWS耳机的麦克风说出相关的空调控制语音;TWS耳机通过麦克风接收到用户发送的语音控制信号时,将以蓝牙通信的方式将该语音控制信号发送至手机;手机在接收到该语音控制信号时,可向对该语音控制信号进行解析(将该语音控制信号发送至云端,云端解析完成后再将解析结果返回手机),在解析完成时,手机将根据该解析结果向空调发送对应的制冷温度调整指令,从而调整空调的制冷温度。
步骤S60,通过所述基础速率/增强速率蓝牙模块接收所述目标终端基于所述语音控制信号发送终端音频信号,并根据所述终端音频信号进行播放。
本实施例中,手机在基于语音控制信号进行解析和处理后,可能会需要向TWS耳机发送(返回)相关的终端音频信号,例如用户向TWS耳机说出的控制语音为“播放Y歌曲”,则手机在根据对应的语音控制信号进行解析和处理后,将向TWS耳机发送对应的终端音频信号(即该Y歌曲的相关音频信号)。TWS耳机在接收手机基于该语音控制信号发送的终端音频信号时,将根据该终端音频信号进行相应播放,如播放Y歌曲等。值得说明的是,由于手机向TWS耳机发送的终端音频信号的数据量一般要大于步骤S50的语音控制信号的数据量,此时TWS耳机将通过BR/EDR模块接收手机发送的终端音频信号,从而提高数据传输的速率,保证TWS耳机播放音频时的流畅性,提高用户的使用体验。
进一步的,本实施例中,步骤S40之前还包括:
在所述真无线立体声TWS耳机开机时,所述第一子耳机与所述第二子耳机建立对耳连接;
本实施例中,对于TWS耳机而言,为了描述方便,其两个子耳机可分别称为第一子耳机和第二子耳机,例如左耳机称为第一子耳机,右耳机称为第二子耳机;第一子耳机和第二子耳机之间不需要线材连接,两者具有相对独立性。对此,当TWS耳机开机时,第一子耳机与第二子耳机之间首先将建立对耳连接,从而形成一个声学系统整体。
所述步骤S40包括:
在接收到终端连接指令时,根据所述终端连接指令将所述第一子耳机作为主耳机与对应的目标终端进行连接,以使所述第一子耳机与所述目标终端进行数据交互。
本实施例中,第一子耳机与第二子耳机对耳连接成功时,即可作为一个整体进行工作;值得说明的是,由于第一子耳机和第二子耳机之间具有相对独立性,因此在与目标终端进行数据交互时,可以是仅由一个子耳机进行交互。具体的,第一子耳机可默认设置为主耳机(当然也可以是由用户自行进行设置);在接收到终端连接指令时,第一子耳机作为主耳机、将与手机进行连接;当连接成功时,第一子耳机即可与手机进行数据交互,例如由第一子耳机通过BLE模块将麦克风采集到的语音控制信号发送至手机。
所述步骤S50包括:
所述第一子耳机通过所述基础速率/增强速率蓝牙模块接收所述目标终端发送终端音频信号;
本实施例中,第一子耳机作为主耳机与手机进行连接时,还可通过BR/EDR模块接收手机发送的终端音频信号。
所述第一子耳机将所述终端音频信号发送至所述第二子耳机,以使所述第一子耳机和所述第二子耳机根据所述终端音频信号进行播放。
本实施例中,第一子耳机在接收到手机发送的终端音频信号时,会将该终端音频信号发送至第二子耳机,这样两个子耳机均能得到终端音频信号,然后两个子耳机可同时根据该终端音频信号进行播放,实现双边真无线蓝牙播放功能。通过以上方式,本实施例中的智能蓝牙耳机可以是仅通过一个子耳机与目标终端以蓝牙的方式进行数据交互,从而降低了数据传输功耗;而对于目标终端向智能蓝牙耳机发送的终端音频信号,主耳机会将其共享至其它耳机,从而保证两个耳机均可根据终端音频信号进行播放,实现双边真无线蓝牙播放功能。
再进一步的,本实施例中,所述第一子耳机将所述终端音频信号发送至所述第二子耳机,以使所述第一子耳机和所述第二子耳机根据所述终端音频信号进行播放的步骤之后,还包括:
在检测到所述第一子耳机的第一电量低于所述第二子耳机的第二电量、且所述第一电量与所述第二电量的电量差大于预设差值时,将所述第二子耳机作为主耳机与所述目标终端进行连接,以使所述第二子耳机与所述目标终端进行数据交互,并断开所述第一子耳机与所述目标终端的连接。
本实施例中,两个子耳机在工作时,还将会对自身的电量情况进行检测。在检测到第一子耳机的第一电量低于第二子耳机的第二电量,且两者的电量差大于预设差值时,为了延长第一子耳机的续航时间,此时可将主耳机功能角色切换至第二子耳机,由第二子耳机作为主耳机与手机进行连接;当连接成功时,第二子耳机即可与手机进行数据交互,同时,第一子耳机将与手机断开连接,以减少第一子耳机的电量损耗,最大化利用电池电量,延长耳机整体续航时间。
此外,本实施例中,所述在接收到终端连接指令时,根据所述终端连接指令将所述第一子耳机作为主耳机与对应的目标终端进行连接,以使所述第一子耳机与所述目标终端进行数据交互的步骤之后,还包括:
在检测到所述第一子耳机与所述目标终端的连接断开时,将所述第二子耳机作为主耳机与所述目标终端进行连接,以使所述第二子耳机与所述目标终端进行数据交互。
本实施例中,在第一子耳机作为主耳机与手机进行数据交互的过程中,若检测到第一子耳机与手机断开连接,也可将主耳机功能角色切换至第二子耳机,由第二子耳机作为主耳机与手机进行连接;当连接成功时,第二子耳机即可与手机进行数据交互,并将接收到的终端音频信号发送至第一子耳机,从而通过主耳机功能角色切换的方式、使得在第一子耳机与手机连接异常的情况下能够及时恢复耳机与终端之间数据交互,保证数据交互的正常进行,有利于提高用户的体验。
此外,本申请还提供一种计算机可读存储介质。
本申请计算机可读存储介质上存储有耳机降噪程序,其中所述耳机降噪程序被处理器执行时,实现如上述的耳机降噪方法的步骤。
其中,耳机降噪程序被执行时所实现的方法可参照本申请耳机降噪方法的各个实施例,此处不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上所述的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (20)

  1. 一种耳机降噪方法,其中,所述耳机降噪方法应用于智能蓝牙耳机,所述智能蓝牙耳机包括麦克风、传感器,所述耳机降噪方法包括:
    在进入降噪模式时,通过所述麦克风采集环境音频信号,并通过所述传感器检测所述智能蓝牙耳机的耳机状态信息;
    根据所述耳机状态信息确定用户的睡眠状态,并根据所述睡眠状态确定对应的降噪策略;
    基于所述降噪策略和所述环境音频信号生成对应的降噪音频信号,并播放所述降噪音频信号。
  2. 如权利要求1所述的耳机降噪方法,其中,所述根据所述耳机状态信息确定用户的睡眠状态,并根据所述睡眠状态确定对应的降噪策略的步骤包括:
    当根据所述耳机状态信息确定所述用户处于深度睡眠状态时,将所述降噪策略确定为静默策略;
    所述根据所述耳机状态信息确定用户的睡眠状态,并根据所述睡眠状态确定对应的降噪策略的步骤之后,还包括:
    根据所述静默策略退出所述降噪模式,或根据所述静默策略关机。
  3. 如权利要求1所述的耳机降噪方法,其中,所述智能蓝牙耳机包括低功耗蓝牙模块,还包括基础速率/增强速率蓝牙模块,
    所述耳机降噪方法还包括:
    在接收到终端连接指令时,根据所述终端连接指令与对应的目标终端进行连接;
    通过所述麦克风接收所述用户发送的语音控制信号,并通过所述低功耗蓝牙模块将所述语音控制信号发送至所述目标终端,以供所述目标终端对所述语音控制信号进行解析和处理;
    通过所述基础速率/增强速率蓝牙模块接收所述目标终端基于所述语音控制信号发送的终端音频信号,并根据所述终端音频信号进行播放。
  4. 如权利要求3所述的耳机降噪方法,其中,所述智能蓝牙耳机包括真无线立体声TWS耳机,所述真无线立体声TWS耳机包括第一子耳机和第二子耳机,
    所述在接收到终端连接指令时,根据所述终端连接指令与对应的目标终端进行连接的步骤之前,还包括:
    在所述真无线立体声TWS耳机开机时,所述第一子耳机与所述第二子耳机建立对耳连接;
    所述在接收到终端连接指令时,根据所述终端连接指令与对应的目标终端进行连接的步骤包括:
    在接收到终端连接指令时,根据所述终端连接指令将所述第一子耳机作为主耳机与对应的目标终端进行连接,以使所述第一子耳机与所述目标终端进行数据交互。
  5. 如权利要求4所述的耳机降噪方法,其中,所述通过所述基础速率/增强速率蓝牙模块接收所述目标终端基于所述语音控制信号发送的终端音频信号,并根据所述终端音频信号进行播放的步骤包括:
    所述第一子耳机通过所述基础速率/增强速率蓝牙模块接收所述目标终端基于所述语音控制信号发送的终端音频信号;
    所述第一子耳机将所述终端音频信号发送至所述第二子耳机,以使所述第一子耳机和所述第二子耳机根据所述终端音频信号进行播放。
  6. 如权利要求5所述的耳机降噪方法,其中,所述第一子耳机将所述终端音频信号发送至所述第二子耳机,以使所述第一子耳机和所述第二子耳机根据所述终端音频信号进行播放的步骤之后,还包括:
    在检测到所述第一子耳机的第一电量低于所述第二子耳机的第二电量、且所述第一电量与所述第二电量的电量差大于预设差值时,将所述第二子耳机作为主耳机与所述目标终端进行连接,以使所述第二子耳机与所述目标终端进行数据交互,并断开所述第一子耳机与所述目标终端的连接。
  7. 如权利要求4所述的耳机降噪方法,其中,所述在接收到终端连接指令时,根据所述终端连接指令将所述第一子耳机作为主耳机与对应的目标终端进行连接,以使所述第一子耳机与所述目标终端进行数据交互的步骤之后,还包括:
    在检测到所述第一子耳机与所述目标终端的连接断开时,将所述第二子耳机作为主耳机与所述目标终端进行连接,以使所述第二子耳机与所述目标终端进行数据交互。
  8. 如权利要求1所述的耳机降噪方法,其中,所述在进入降噪模式时,通过所述麦克风采集环境音频信号,并通过所述传感器检测所述智能蓝牙耳机的耳机状态信息的步骤之前,还包括:
    在处于开机状态时,获取当前时间,并判断所述当前时间是否处于预设睡眠时段;
    若所述当前时间处于所述预设睡眠时段,则进入所述降噪模式。
  9. 一种智能蓝牙耳机,其中,所述智能蓝牙耳机包括麦克风、传感器,还包括处理器、存储器、以及存储在所述存储器上并可被所述处理器执行的耳机降噪程序,其中所述耳机降噪程序被所述处理器执行时,实现如下步骤:
    在进入降噪模式时,通过所述麦克风采集环境音频信号,并通过所述传感器检测所述智能蓝牙耳机的耳机状态信息;
    根据所述耳机状态信息确定用户的睡眠状态,并根据所述睡眠状态确定对应的降噪策略;
    基于所述降噪策略和所述环境音频信号生成对应的降噪音频信号,并播放所述降噪音频信号。
  10. 如权利要求9所述的智能蓝牙耳机,其中,所述根据所述耳机状态信息确定用户的睡眠状态,并根据所述睡眠状态确定对应的降噪策略的步骤包括:
    当根据所述耳机状态信息确定所述用户处于深度睡眠状态时,将所述降噪策略确定为静默策略;
    所述耳机降噪程序被所述处理器执行时,还实现如下步骤:
    根据所述静默策略退出所述降噪模式,或根据所述静默策略关机。
  11. 如权利要求9所述的智能蓝牙耳机,其中,所述智能蓝牙耳机包括低功耗蓝牙模块,还包括基础速率/增强速率蓝牙模块,所述耳机降噪程序被所述处理器执行时,还实现如下步骤:
    在接收到终端连接指令时,根据所述终端连接指令与对应的目标终端进行连接;
    通过所述麦克风接收所述用户发送的语音控制信号,并通过所述低功耗蓝牙模块将所述语音控制信号发送至所述目标终端,以供所述目标终端对所述语音控制信号进行解析和处理;
    通过所述基础速率/增强速率蓝牙模块接收所述目标终端基于所述语音控制信号发送的终端音频信号,并根据所述终端音频信号进行播放。
  12. 如权利要求11所述的智能蓝牙耳机,其中,所述智能蓝牙耳机包括真无线立体声TWS耳机,所述真无线立体声TWS耳机包括第一子耳机和第二子耳机,所述耳机降噪程序被所述处理器执行时,还实现如下步骤:
    在所述真无线立体声TWS耳机开机时,所述第一子耳机与所述第二子耳机建立对耳连接;
    所述在接收到终端连接指令时,根据所述终端连接指令与对应的目标终端进行连接的步骤包括:
    在接收到终端连接指令时,根据所述终端连接指令将所述第一子耳机作为主耳机与对应的目标终端进行连接,以使所述第一子耳机与所述目标终端进行数据交互。
  13. 如权利要求12所述的智能蓝牙耳机,其中,所述通过所述基础速率/增强速率蓝牙模块接收所述目标终端基于所述语音控制信号发送的终端音频信号,并根据所述终端音频信号进行播放的步骤包括:
    所述第一子耳机通过所述基础速率/增强速率蓝牙模块接收所述目标终端基于所述语音控制信号发送的终端音频信号;
    所述第一子耳机将所述终端音频信号发送至所述第二子耳机,以使所述第一子耳机和所述第二子耳机根据所述终端音频信号进行播放。
  14. 如权利要求13所述的智能蓝牙耳机,其中,所述耳机降噪程序被所述处理器执行时,还实现如下步骤:
    在检测到所述第一子耳机的第一电量低于所述第二子耳机的第二电量、且所述第一电量与所述第二电量的电量差大于预设差值时,将所述第二子耳机作为主耳机与所述目标终端进行连接,以使所述第二子耳机与所述目标终端进行数据交互,并断开所述第一子耳机与所述目标终端的连接。
  15. 如权利要求12所述的智能蓝牙耳机,其中,所述耳机降噪程序被所述处理器执行时,还实现如下步骤:
    在检测到所述第一子耳机与所述目标终端的连接断开时,将所述第二子耳机作为主耳机与所述目标终端进行连接,以使所述第二子耳机与所述目标终端进行数据交互。
  16. 如权利要求9所述的智能蓝牙耳机,其中,所述耳机降噪程序被所述处理器执行时,还实现如下步骤:
    在处于开机状态时,获取当前时间,并判断所述当前时间是否处于预设睡眠时段;
    若所述当前时间处于所述预设睡眠时段,则进入所述降噪模式。
  17. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有耳机降噪程序,其中所述耳机降噪程序被处理器执行时,实现如下步骤:
    智能蓝牙耳机在进入降噪模式时,通过所述智能蓝牙耳机的麦克风采集环境音频信号,并通过所述智能蓝牙耳机的传感器检测所述智能蓝牙耳机的耳机状态信息;
    根据所述耳机状态信息确定用户的睡眠状态,并根据所述睡眠状态确定对应的降噪策略;
    基于所述降噪策略和所述环境音频信号生成对应的降噪音频信号,并播放所述降噪音频信号。
  18. 如权利要求17所述的计算机可读存储介质,其中,所述根据所述耳机状态信息确定用户的睡眠状态,并根据所述睡眠状态确定对应的降噪策略的步骤包括:
    当根据所述耳机状态信息确定所述用户处于深度睡眠状态时,将所述降噪策略确定为静默策略;
    所述耳机降噪程序被所述处理器执行时,还实现如下步骤:
    根据所述静默策略退出所述降噪模式,或根据所述静默策略关机。
  19. 如权利要求17所述的计算机可读存储介质,其中,所述智能蓝牙耳机包括低功耗蓝牙模块,还包括基础速率/增强速率蓝牙模块,所述耳机降噪程序被所述处理器执行时,还实现如下步骤:
    在接收到终端连接指令时,根据所述终端连接指令与对应的目标终端进行连接;
    通过所述麦克风接收所述用户发送的语音控制信号,并通过所述低功耗蓝牙模块将所述语音控制信号发送至所述目标终端,以供所述目标终端对所述语音控制信号进行解析和处理;
    通过所述基础速率/增强速率蓝牙模块接收所述目标终端基于所述语音控制信号发送的终端音频信号,并根据所述终端音频信号进行播放。
  20. 如权利要求19所述的智能蓝牙耳机,其中,所述智能蓝牙耳机包括真无线立体声TWS耳机,所述真无线立体声TWS耳机包括第一子耳机和第二子耳机,所述耳机降噪程序被所述处理器执行时,还实现如下步骤:
    在所述真无线立体声TWS耳机开机时,所述第一子耳机与所述第二子耳机建立对耳连接;
    所述在接收到终端连接指令时,根据所述终端连接指令与对应的目标终端进行连接的步骤包括:
    在接收到终端连接指令时,根据所述终端连接指令将所述第一子耳机作为主耳机与对应的目标终端进行连接,以使所述第一子耳机与所述目标终端进行数据交互。
PCT/CN2019/074374 2019-01-29 2019-02-01 耳机降噪方法、智能蓝牙耳机及计算机可读存储介质 WO2020155088A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910090022.4A CN109788388A (zh) 2019-01-29 2019-01-29 耳机降噪方法、智能蓝牙耳机及计算机可读存储介质
CN201910090022.4 2019-01-29

Publications (1)

Publication Number Publication Date
WO2020155088A1 true WO2020155088A1 (zh) 2020-08-06

Family

ID=66503707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/074374 WO2020155088A1 (zh) 2019-01-29 2019-02-01 耳机降噪方法、智能蓝牙耳机及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN109788388A (zh)
WO (1) WO2020155088A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112566004A (zh) * 2020-12-25 2021-03-26 百度在线网络技术(北京)有限公司 无线耳机、工作状态监测方法、装置及存储介质

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111182597B (zh) * 2019-12-31 2021-10-22 联想(北京)有限公司 一种处理方法及装置
CN112383856A (zh) * 2020-11-06 2021-02-19 刘智矫 一种用于智能耳机的声场检测、音频过滤方法及系统
CN112689219A (zh) * 2021-01-15 2021-04-20 上海闻泰信息技术有限公司 管理睡眠的方法、装置、无线耳机和计算机可读存储介质
CN112911449B (zh) * 2021-03-04 2022-08-16 歌尔科技有限公司 一种tws蓝牙耳机
CN113223508B (zh) * 2021-03-29 2023-08-04 深圳市芯中芯科技有限公司 一种双模tws蓝牙耳机的管理方法
CN113096677B (zh) * 2021-03-31 2024-04-26 深圳市睿耳电子有限公司 一种智能降噪的方法及相关设备
CN113521485B (zh) * 2021-06-25 2024-05-17 荣耀终端有限公司 一种睡眠辅助方法、电子设备和真无线立体声耳机
CN115988380B (zh) * 2023-03-21 2023-06-20 东莞市云仕电子有限公司 一种具有促进睡眠功能的儿童无线耳机及方法
CN117294985B (zh) * 2023-10-27 2024-07-02 深圳市迪斯声学有限公司 一种tws蓝牙耳机控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101385385A (zh) * 2006-04-01 2009-03-11 沃福森微电子股份有限公司 环境降噪控制系统
US8322485B1 (en) * 2011-08-31 2012-12-04 Eric Gold Systems and methods for reduction of noise during sleep
CN204887366U (zh) * 2015-07-19 2015-12-16 段太发 可监听环境音的蓝牙耳机
CN109068221A (zh) * 2018-09-07 2018-12-21 歌尔科技有限公司 一种蓝牙耳机的降噪方法
CN109151648A (zh) * 2018-10-30 2019-01-04 歌尔科技有限公司 一种耳机音量的动态调节方法、装置及无线耳机

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102423752B1 (ko) * 2015-01-28 2022-07-22 삼성전자주식회사 수면 중인 대상체의 쾌면을 유도하는 방법 및 이를 위한 쾌면 유도 장치
US9602906B1 (en) * 2015-05-05 2017-03-21 Diaetta Heyward Manning Ear plugs for use while sleeping
CN105792050A (zh) * 2016-04-20 2016-07-20 青岛歌尔声学科技有限公司 一种蓝牙耳机及基于该蓝牙耳机的通信方法
CN107105359B (zh) * 2017-06-02 2019-10-18 歌尔科技有限公司 一种切换耳机工作模式方法和一种耳机
CN107820155A (zh) * 2017-11-08 2018-03-20 深圳市沃特沃德股份有限公司 无线耳机的控制方法、装置和无线耳机
CN108696784B (zh) * 2018-06-06 2019-12-31 歌尔科技有限公司 一种无线耳机角色切换的方法、无线耳机及tws耳机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101385385A (zh) * 2006-04-01 2009-03-11 沃福森微电子股份有限公司 环境降噪控制系统
US8322485B1 (en) * 2011-08-31 2012-12-04 Eric Gold Systems and methods for reduction of noise during sleep
CN204887366U (zh) * 2015-07-19 2015-12-16 段太发 可监听环境音的蓝牙耳机
CN109068221A (zh) * 2018-09-07 2018-12-21 歌尔科技有限公司 一种蓝牙耳机的降噪方法
CN109151648A (zh) * 2018-10-30 2019-01-04 歌尔科技有限公司 一种耳机音量的动态调节方法、装置及无线耳机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112566004A (zh) * 2020-12-25 2021-03-26 百度在线网络技术(北京)有限公司 无线耳机、工作状态监测方法、装置及存储介质

Also Published As

Publication number Publication date
CN109788388A (zh) 2019-05-21

Similar Documents

Publication Publication Date Title
WO2020155088A1 (zh) 耳机降噪方法、智能蓝牙耳机及计算机可读存储介质
WO2020215373A1 (zh) 健康监护方法、系统及计算机可读存储介质
WO2020155089A1 (zh) 蓝牙耳机的控制方法、蓝牙耳机及计算机可读存储介质
CN110089129B (zh) 使用听筒麦克风的个人声音设备的头上/头外检测
WO2021003955A1 (zh) 耳机播放状态的控制方法、装置、移动终端及存储介质
WO2014044064A1 (zh) 一种自动控制手机双麦克风消噪的方法及手机
WO2012102464A1 (ko) 이어마이크로폰 및 이어마이크로폰용 전압 제어 장치
WO2020204611A1 (en) Method for detecting wearing of acoustic device and acoustic device supporting the same
WO2017026568A1 (ko) 음질 개선을 위한 방법 및 헤드셋
WO2018205413A1 (zh) 音频音量的调整方法、终端及计算机可读存储介质
WO2013020380A1 (zh) 一种通信耳机的语音增强方法、装置及降噪通信耳机
WO2018076434A1 (zh) 声音信号的输出方法及装置、耳机状态的检测方法及装置
JPH07506947A (ja) 骨伝導形式のイヤー・マイクロフォン及び方法
WO2020107604A1 (zh) 一种无线播放设备及其播放控制方法和装置
WO2014021670A1 (en) Mobile apparatus and control method thereof
WO2020019820A1 (zh) 麦克风堵孔检测方法及相关产品
CN109121048B (zh) 真无线立体声耳机及其待机管理方法和装置
WO2022080612A1 (ko) 휴대용 음향기기
WO2022154546A1 (ko) 자동 음량 제어를 수행하는 웨어러블 장치
WO2016119106A1 (zh) 一种耳机降噪方法及装置
WO2018164440A1 (ko) 노이즈 캔슬링 베개에서 소음을 차단하는 방법 및 노이즈 캔슬링 베개
WO2021103265A1 (zh) 一种复合耳机
WO2020032363A1 (ko) 외부 전자 장치와의 거리에 기반하여 스피커의 출력 세기를 조정하기 위한 방법 및 전자 장치
WO2010087632A2 (en) Portable terminal and sound detector, which both communicate using body area network, and data controlling method therefor
WO2017010609A1 (ko) 헤드셋의 하울링 및 에코 제거 방법 및 컴퓨터 프로그램

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19912386

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19912386

Country of ref document: EP

Kind code of ref document: A1