WO2020152935A1 - 物体検知装置および物体検知方法 - Google Patents

物体検知装置および物体検知方法 Download PDF

Info

Publication number
WO2020152935A1
WO2020152935A1 PCT/JP2019/043143 JP2019043143W WO2020152935A1 WO 2020152935 A1 WO2020152935 A1 WO 2020152935A1 JP 2019043143 W JP2019043143 W JP 2019043143W WO 2020152935 A1 WO2020152935 A1 WO 2020152935A1
Authority
WO
WIPO (PCT)
Prior art keywords
wave
detection
index value
reliability
indirect
Prior art date
Application number
PCT/JP2019/043143
Other languages
English (en)
French (fr)
Inventor
力貴 江上
慎二 久富
雄樹 水瀬
大林 幹生
真澄 福万
Original Assignee
株式会社デンソー
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, トヨタ自動車株式会社 filed Critical 株式会社デンソー
Publication of WO2020152935A1 publication Critical patent/WO2020152935A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/87Combinations of sonar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes

Definitions

  • the present disclosure relates to an object detection device configured to detect an object existing outside a moving body. Further, the present disclosure relates to an object detection method for detecting an object existing outside a moving body.
  • An object detection device which is applied to a moving object having a plurality of object detecting sensors and detects an object existing around the moving object.
  • This object detection device detects an object existing around a moving body by receiving detection information of the object from an object detection sensor such as a distance measuring sensor.
  • the object detection device described in Patent Document 1 includes a first detection unit, a second detection unit, a position calculation unit, and a counter updating unit.
  • the first detection means detects an object by a direct wave.
  • the direct wave is a reflected wave received by the same object detection sensor as the object detection sensor that transmitted the exploration wave.
  • the second detection means detects the object by the indirect wave.
  • the indirect wave is a reflected wave received by an object detection sensor different from the object detection sensor that transmitted the exploration wave.
  • the position calculation means calculates the position information of the object based on the triangulation principle based on the detection results of the first detection means and the second detection means.
  • the counter updating means updates the value of the confidence level determination counter based on the number of times the object is detected based on the detection results of the first detecting means and the second detecting means.
  • the reliability level determination counter is an index indicating the reliability of the position information calculated by the position calculating means.
  • the value of the confidence level determination counter is updated to the side having higher reliability.
  • the value of the confidence level determination counter is updated on the side of decreasing the confidence level.
  • this kind of object detection device it is desired to further improve the object detection performance. Specifically, for example, it is desired to determine whether or not the detected object is an avoidance target or the like earlier or more reliably.
  • the present disclosure has been made in view of the above-exemplified circumstances and the like. That is, the present disclosure provides, for example, an object detection device and an object detection method in which the object detection performance is further improved as compared with the related art.
  • the object detection device is configured to detect an object existing outside a moving body equipped with a plurality of distance measuring sensors.
  • the distance measurement sensor is provided to output distance measurement information by transmitting a search wave toward the outside of the moving body and detecting a received wave including a reflected wave of the search wave by the object. ing.
  • the distance measurement information is information corresponding to the distance to the object around the moving body.
  • an object detection device includes: A direct wave resulting from the reflected wave of the search wave that is the received wave in the first distance measuring sensor that is one of the plurality of distance measuring sensors, and Of the indirect wave caused by the reflected wave of the exploration wave transmitted from the first distance measuring sensor, which is the received wave in the second distance measuring sensor which is another one of the plurality of distance measuring sensors , A detection state acquisition unit that acquires the detection state, A reliability calculation unit that calculates an index value corresponding to the detection reliability of the object based on the detection state acquired by the detection state acquisition unit; An object determination unit that determines the detection of the target object that is the object to be considered in the driving assistance control of the moving body, with the determination condition that the index value has reached the determination threshold corresponding to the high reliability. And, The reliability calculation unit updates the index value to the side of increasing the reliability when detection of only one of the direct wave and the indirect wave is continuous for the same object.
  • the object detection method detects an object existing outside a moving body equipped with a plurality of distance measuring sensors.
  • the distance measurement sensor is provided to output distance measurement information by transmitting a search wave toward the outside of the moving body and detecting a received wave including a reflected wave of the search wave by the object. ing.
  • the distance measurement information is information corresponding to the distance to the object around the moving body.
  • an object detection method includes the following steps.
  • the detection states of the direct wave and the indirect wave are acquired. Further, the index value corresponding to the reliability of the detection of the object is calculated based on the acquired detection state. Then, the detection of the target object is determined using the determination condition that the index value reaches the determination threshold corresponding to the high reliability.
  • Detecting only one of the direct and indirect waves may be continuous for the same object. In such a case, such an object is likely to be subsequently detected as the target object. Therefore, in the above configuration and method, in the calculation of the index value, the index value is updated on the side of increasing the reliability. As a result, the object detection performance can be improved further than ever before. Specifically, for example, the detection of the target object can be determined earlier.
  • FIG. 1 is a plan view showing a schematic configuration of a vehicle equipped with an object detection device according to an embodiment.
  • FIG. 2 is a block diagram showing a schematic functional configuration of the object detection device shown in FIG. 1.
  • 3 is a flowchart showing a first operation example of the object detection device shown in FIG. 2.
  • 3 is a flowchart showing a first operation example of the object detection device shown in FIG. 2.
  • 6 is a flowchart showing a second operation example of the object detection device shown in FIG. 2.
  • 6 is a flowchart showing a second operation example of the object detection device shown in FIG. 2.
  • 6 is a flowchart showing a second operation example of the object detection device shown in FIG. 2.
  • 7 is a flowchart showing a third operation example of the object detection device shown in FIG. 2.
  • 7 is a flowchart showing a third operation example of the object detection device shown in FIG. 2.
  • a vehicle 10 as a moving body is a so-called four-wheeled vehicle and includes a vehicle body 11 having a substantially rectangular shape in a plan view.
  • a virtual straight line that passes through the center of the vehicle 10 in the vehicle width direction and is parallel to the vehicle overall length direction of the vehicle 10 in a plan view is referred to as a vehicle center line LC.
  • the vehicle full length direction is a direction orthogonal to the vehicle width direction and orthogonal to the vehicle height direction.
  • the vehicle height direction is a direction that defines the vehicle height of the vehicle 10, and is a direction parallel to the gravity acting direction when the vehicle 10 is placed on a horizontal plane.
  • the vehicle full-length direction is the vertical direction in the figure
  • the vehicle width direction is the horizontal direction in the figure.
  • each part in “plan view” refers to the shape of each part as viewed from above the vehicle 10 with a line of sight parallel to the vehicle height direction.
  • a front bumper 12 is attached to the front end of the vehicle body 11.
  • a rear bumper 13 is attached to the rear end of the vehicle body 11.
  • a door panel 14 is attached to a side surface portion of the vehicle body 11. In the specific example shown in FIG. 1, two door panels 14 are provided on each of the left and right sides, for a total of four door panels 14.
  • a door mirror 15 is attached to each of the pair of left and right front door panels 14.
  • An object detection device 20 is mounted on the vehicle 10.
  • the vehicle 10 equipped with the object detection device 20 according to the present embodiment may be hereinafter referred to as “own vehicle”.
  • the object detection device 20 is configured to detect the object B existing outside the own vehicle by being mounted on the own vehicle.
  • the object detection device 20 includes a distance measurement sensor 21, a vehicle speed sensor 22, a shift position sensor 23, a steering angle sensor 24, a yaw rate sensor 25, a display unit 26, and an alarm sound generation unit 27. , And electronic control unit 30. Note that, for simplification of the drawing, the electrical connection relationship between the respective parts constituting the object detection device 20 is appropriately omitted in FIG. 1.
  • the distance-measuring sensor 21 is provided so as to output the distance-measuring information by transmitting the exploration wave toward the outside of the own vehicle and detecting the reception wave including the reflection wave of the exploration wave by the object B. There is.
  • the distance measurement information is information included in the output signal of the distance measurement sensor 21, and is information corresponding to the distance to the object B around the vehicle.
  • the distance measuring sensor 21 is a so-called ultrasonic sensor, and is configured to emit a search wave that is an ultrasonic wave and receive a received wave including an ultrasonic wave.
  • the “detection” of the received wave means to receive the received wave to the extent that the distance measurement information can be effectively acquired. For this reason, reception with weak reception intensity to the extent that distance measurement information cannot be effectively acquired is not treated as “detection” here. Therefore, the “detection” here can be restated as “reception at a threshold reception intensity or more”, “effective reception”, “good reception”, or simply “reception”.
  • a plurality of distance measuring sensors 21 are mounted on the vehicle. Each of the plurality of distance measuring sensors 21 is provided at a mutually different position in a plan view. Further, in the present embodiment, each of the plurality of distance measuring sensors 21 is arranged so as to be shifted from the vehicle center line LC to one side in the vehicle width direction.
  • the front bumper 12 is equipped with the first front sonar 211A, the second front sonar 211B, the third front sonar 211C, and the fourth front sonar 211D as the distance measuring sensor 21.
  • the rear bumper 13 is equipped with the first rear sonar 212A, the second rear sonar 212B, the third rear sonar 212C, and the fourth rear sonar 212D as the distance measuring sensor 21.
  • a first side sonar 213A, a second side sonar 213B, a third side sonar 213C, and a fourth side sonar 213D are mounted on the side surface portion of the vehicle body 11.
  • the expression "distance measuring sensor 21" is used.
  • Direct wave and “indirect wave” are defined as follows.
  • One of the plurality of distance measuring sensors 21 is referred to as a "first distance measuring sensor”, and the other one is referred to as a “second distance measuring sensor”.
  • the received wave which is the received wave at the first distance measuring sensor and which is caused by the reflected wave of the exploration wave transmitted from the first distance measuring sensor by the object B is referred to as "direct wave”.
  • the direct wave is typically the received wave when the first ranging sensor detects a reflected wave of the object B of the exploration wave transmitted from the first ranging sensor as a received wave. That is, the direct wave is the reception wave when the distance measurement sensor 21 that transmits the exploration wave and the distance measurement sensor 21 that detects the reflection wave of the exploration wave by the object B as the reception wave are the same. ..
  • the received wave at the second distance measuring sensor which is caused by the reflected wave by the object B of the exploration wave transmitted from the first distance measuring sensor, is called "indirect wave".
  • the indirect wave is typically the received wave when the second distance sensor detects the reflected wave of the object B of the exploration wave transmitted from the first distance sensor as the received wave. That is, the indirect wave is the received wave when the distance measurement sensor 21 that transmits the exploration wave and the distance measurement sensor 21 that detects the reflected wave of the exploration wave by the object B as the reception wave are different.
  • FIG. 1 shows the direct wave region RD and the indirect wave region RI of the two distance measuring sensors 21, taking the third front sonar 211C and the fourth front sonar 211D as examples.
  • the direct wave region RD is a region where the direct wave caused by the object B can be detected when the object B exists.
  • the indirect wave region RI is a region where an indirect wave caused by the object B can be detected when the object B is present. Specifically, the indirect wave region RI does not completely coincide with the region where the direct wave regions RD of the two distance measuring sensors 21 overlap each other, but most of them overlap.
  • the indirect wave region RI is treated as a region in which the direct wave regions RD of the two distance measuring sensors 21 substantially coincide with each other.
  • the first front sonar 211A is provided at the left end of the front surface of the front bumper 12 so as to transmit an exploration wave to the front left of the host vehicle.
  • the second front sonar 211B is provided on the right end portion of the front surface of the front bumper 12 so as to transmit an exploration wave to the front right of the host vehicle.
  • the first front sonar 211A and the second front sonar 211B are arranged symmetrically with respect to the vehicle center line LC.
  • the third front sonar 211C and the fourth front sonar 211D are arranged in the vehicle width direction at a position closer to the center on the front surface of the front bumper 12.
  • the third front sonar 211C is arranged between the first front sonar 211A and the vehicle center line LC in the vehicle width direction so as to transmit an exploration wave substantially in front of the host vehicle.
  • the fourth front sonar 211D is arranged between the second front sonar 211B and the vehicle center line LC in the vehicle width direction so as to transmit an exploration wave substantially in front of the host vehicle.
  • the third front sonar 211C and the fourth front sonar 211D are arranged symmetrically with respect to the vehicle center line LC.
  • the first front sonar 211A and the third front sonar 211C are arranged at different positions in a plan view. Further, the first front sonar 211A and the third front sonar 211C that are adjacent to each other in the vehicle width direction have a positional relationship such that the reflected wave of the exploration wave transmitted by one of the objects B can be detected as the received wave of the other. It is provided.
  • the first front sonar 211A is arranged so as to be able to detect both a direct wave corresponding to the exploration wave transmitted by itself and an indirect wave corresponding to the exploration wave transmitted by the third front sonar 211C.
  • the third front sonar 211C is arranged so as to be able to detect both a direct wave corresponding to the search wave transmitted by itself and an indirect wave corresponding to the search wave transmitted by the first front sonar 211A.
  • the third front sonar 211C and the fourth front sonar 211D are arranged at different positions in a plan view. Further, the third front sonar 211C and the fourth front sonar 211D which are adjacent to each other in the vehicle width direction are in a positional relationship such that the reflected wave of the exploration wave transmitted by one of the objects B is detectable as the received wave of the other. It is provided.
  • the second front sonar 211B and the fourth front sonar 211D are arranged at different positions in a plan view. Further, the second front sonar 211B and the fourth front sonar 211D that are adjacent to each other in the vehicle width direction are in a positional relationship such that the reflected wave of the exploration wave transmitted by one side from the object B can be detected as the received wave in the other side. It is provided.
  • the first rear sonar 212A is provided at the left end of the rear surface of the rear bumper 13 so as to transmit an exploration wave to the left rear of the host vehicle.
  • the second rear sonar 212B is provided at the right end portion on the rear surface of the rear bumper 13 so as to transmit an exploration wave to the right rear of the host vehicle.
  • the first rear sonar 212A and the second rear sonar 212B are symmetrically arranged with the vehicle center line LC interposed therebetween.
  • the third rear sonar 212C and the fourth rear sonar 212D are arranged in the vehicle width direction at a position closer to the center on the rear surface of the rear bumper 13.
  • the third rear sonar 212C is arranged between the first rear sonar 212A and the vehicle center line LC in the vehicle width direction so as to transmit a search wave substantially rearward of the host vehicle.
  • the fourth rear sonar 212D is arranged between the second rear sonar 212B and the vehicle center line LC in the vehicle width direction so as to transmit an exploration wave substantially rearward of the host vehicle.
  • the third rear sonar 212C and the fourth rear sonar 212D are arranged symmetrically with respect to the vehicle center line LC.
  • the first rear sonar 212A and the third rear sonar 212C are arranged at different positions in a plan view. Further, the first rear sonar 212A and the third rear sonar 212C which are adjacent to each other in the vehicle width direction are provided in such a positional relationship that a reflected wave of the exploration wave transmitted by one side from the object B can be detected as a received wave in the other side. ing.
  • the first rear sonar 212A is arranged to be able to detect both a direct wave corresponding to the exploration wave transmitted by itself and an indirect wave corresponding to the exploration wave transmitted by the third rear sonar 212C.
  • the third rear sonar 212C is arranged so as to be able to detect both a direct wave corresponding to the search wave transmitted by itself and an indirect wave corresponding to the search wave transmitted by the first rear sonar 212A.
  • the third rear sonar 212C and the fourth rear sonar 212D are arranged at different positions in a plan view. Further, the third rear sonar 212C and the fourth rear sonar 212D which are adjacent to each other in the vehicle width direction are provided in such a positional relationship that a reflected wave of the exploration wave transmitted by one side from the object B can be detected as a received wave in the other side. ing.
  • the second rear sonar 212B and the fourth rear sonar 212D are arranged at different positions in a plan view. Further, the second rear sonar 212B and the fourth rear sonar 212D which are adjacent to each other in the vehicle width direction are provided in such a positional relationship that a reflected wave of the exploration wave transmitted by one side from the object B can be detected as a received wave in the other side. ing.
  • the first side sonar 213A, the second side sonar 213B, the third side sonar 213C, and the fourth side sonar 213D are provided so as to transmit a search wave from the side surface of the vehicle body 11 to the side of the vehicle.
  • the first side sonar 213A and the second side sonar 213B are mounted on the front side portion of the vehicle body 11.
  • the first side sonar 213A and the second side sonar 213B are arranged symmetrically with respect to the vehicle center line LC.
  • the third side sonar 213C and the fourth side sonar 213D are mounted on the rear side portion of the vehicle body 11.
  • the third side sonar 213C and the fourth side sonar 213D are arranged symmetrically with respect to the vehicle center line LC.
  • the first side sonar 213A is arranged between the first front sonar 211A and the left side door mirror 15 in the front-rear direction so as to transmit an exploration wave to the left of the host vehicle.
  • the first side sonar 213A and the first front sonar 211A are provided in such a positional relationship that a reflected wave of the exploration wave transmitted by one side and reflected by the object B can be detected as a received wave in the other side.
  • the second side sonar 213B is arranged between the second front sonar 211B and the right side door mirror 15 in the front-rear direction so as to transmit an exploration wave to the right of the host vehicle.
  • the second side sonar 213B is provided in a positional relationship with the second front sonar 211B such that a reflected wave of the exploration wave transmitted by one side from the object B can be detected as a received wave in the other side.
  • the third side sonar 213C is arranged between the first rear sonar 212A and the left rear door panel 14 in the front-rear direction so as to transmit an exploration wave to the left of the host vehicle.
  • the third side sonar 213C is provided in a positional relationship with the first rear sonar 212A such that a reflected wave of the exploration wave transmitted by one side from the object B can be detected as a received wave in the other side.
  • the fourth side sonar 213D is arranged between the second rear sonar 212B and the right rear door panel 14 in the front-rear direction so as to transmit an exploration wave to the right of the host vehicle.
  • the fourth side sonar 213D is provided in a positional relationship with the second rear sonar 212B such that a reflected wave of the exploration wave transmitted by one side from the object B can be detected as a received wave in the other side.
  • Each of the plurality of distance measuring sensors 21 is electrically connected to the electronic control unit 30. That is, each of the plurality of distance measuring sensors 21 is provided so as to transmit and receive ultrasonic waves under the control of the electronic control device 30. Further, each of the plurality of distance measuring sensors 21 generates an output signal corresponding to the detection result of the received wave and transmits it to the electronic control unit 30.
  • the vehicle speed sensor 22, the shift position sensor 23, the steering angle sensor 24, and the yaw rate sensor 25 are electrically connected to the electronic control unit 30.
  • the vehicle speed sensor 22 is provided so as to generate a signal corresponding to the traveling speed of the host vehicle and transmit the signal to the electronic control unit 30.
  • vehicle speed the traveling speed of the host vehicle will be simply referred to as "vehicle speed”.
  • the shift position sensor 23 is provided so as to generate a signal corresponding to the shift position of the host vehicle and transmit the signal to the electronic control unit 30.
  • the steering angle sensor 24 is provided so as to generate a signal corresponding to the steering angle of the host vehicle and transmit it to the electronic control unit 30.
  • the yaw rate sensor 25 is provided so as to generate a signal corresponding to the yaw rate acting on the host vehicle and transmit the signal to the electronic control unit 30.
  • the display unit 26 and the alarm sound generating unit 27 are arranged inside the vehicle compartment of the own vehicle.
  • the display unit 26 is electrically connected to the electronic control unit 30 so as to perform a display accompanying the object detection operation under the control of the electronic control unit 30.
  • the alarm sound generator 27 is electrically connected to the electronic control device 30 so as to generate an alarm sound associated with the object detection operation under the control of the electronic control device 30.
  • the electronic control unit 30 is arranged inside the vehicle body 11.
  • the electronic control unit 30 executes a predetermined operation based on signals and information received from each of the plurality of distance measuring sensors 21, the vehicle speed sensor 22, the shift position sensor 23, the steering angle sensor 24, the yaw rate sensor 25, and the like.
  • the “predetermined operation” includes an object detection operation and a driving support operation of the own vehicle based on the object detection result.
  • the “driving support operation” includes, for example, a collision avoidance operation, a parking support operation, an automatic driving operation, and the like.
  • the electronic control unit 30 is a so-called in-vehicle microcomputer, which includes a CPU, a ROM, a RAM, a non-volatile RAM, and the like (not shown).
  • the non-volatile RAM is, for example, a flash ROM or the like.
  • the CPU, ROM, RAM and non-volatile RAM of the electronic control unit 30 will be simply referred to as “CPU”, “ROM”, “RAM” and “non-volatile RAM” below.
  • the electronic control unit 30 is configured such that various control operations can be realized by the CPU reading a program from the ROM or the non-volatile RAM and executing the program.
  • This program includes a program corresponding to a routine described later.
  • the ROM or the non-volatile RAM stores various data used in executing the program in advance.
  • Various types of data include, for example, initial values, lookup tables, maps, and the like.
  • the electronic control device 30 has a functional configuration including a distance measurement information acquisition unit 301, a position calculation unit 302, a reliability calculation unit 303, an object determination unit 304, and a driving condition.
  • the support control unit 305 is provided.
  • the functional configuration of the electronic control unit 30 shown in FIG. 2 will be described.
  • the distance measurement information acquisition unit 301 is provided so as to acquire the distance measurement information output from each of the plurality of distance measurement sensors 21. That is, the distance measurement information acquisition unit 301 is configured to temporarily store the distance measurement information received from each of the plurality of distance measurement sensors 21 in the RAM or the non-volatile RAM in time series for a predetermined period. Further, the distance measurement information acquisition unit 301 acquires or determines the detection state of the direct wave and the indirect wave in each of the plurality of distance measurement sensors 21 based on the acquired distance measurement information.
  • the position calculation unit 302 is provided so as to calculate the relative position of the object B with respect to the own vehicle.
  • object position P the relative position of the object B with respect to the host vehicle.
  • Triangulation may be possible when both direct and indirect waves are detected.
  • the position calculation unit 302 is configured to calculate the object position P based on the principle of triangulation using distance measurement information based on direct waves and distance measurement information based on indirect waves. That is, the position calculation unit 302 is configured to calculate the survey value of the object position P when the triangulation is established by detecting both the direct wave and the indirect wave for the same object.
  • the position calculation unit 302 is configured to calculate the estimated value of the object position P when both of the following conditions 1 and 2 are satisfied even if the triangulation is not satisfied.
  • Condition 1 Either one of a direct wave and an indirect wave is detected as a received wave.
  • Condition 2 The received wave is a reflected wave of the known object B, that is, the object B whose object position P has been calculated and stored.
  • the reliability calculation unit 303 is provided to calculate the index value N based on the detection states of the direct wave and the indirect wave acquired by the distance measurement information acquisition unit 301 as the detection state acquisition unit.
  • the index value N is a real number and is a value corresponding to the object detection reliability.
  • the index value N is, for example, an integer counter whose object detection reliability increases as the value increases.
  • the index value N corresponds to the “trust level determination counter” in Patent Document 1.
  • the index value N is set for each distance measuring sensor 21 as the first distance measuring sensor and for each object B.
  • the object detection reliability is the reliability of detection of the object B using the distance measuring sensor 21. That is, the object detection reliability is the detection reliability of the object B by the object detection device 20.
  • the object detection reliability can also correspond to the reliability or calculation accuracy of the calculated value of the object position P by the position calculation unit 302.
  • the object detection reliability can also correspond to the certainty that the target object exists around the own vehicle.
  • the “target object” is the object B to be considered in the driving support control of the own vehicle. Specifically, for example, the target object is an object whose collision should be avoided in the collision avoidance control or the automatic driving control. Alternatively, for example, the target object is an object around the target parking space in the parking assist control and is an object used to define the same space. Therefore, the “target object” may also be referred to as an “obstacle”.
  • the reliability calculation unit 303 is configured to calculate the index value N based on the number of times the distance measuring sensor 21 detects the same object B. Specifically, the reliability calculation unit 303 determines the update value V of the index value N according to the detection states of the direct wave and the indirect wave. Moreover, the reliability calculation unit 303 determines the update value V of the index value N according to the calculated object position P. Details of the specific operation of the reliability calculation unit 303 will be described later.
  • the object determination unit 304 is provided to determine the detection of the target object on the condition that the index value N has reached the determination threshold Nth.
  • the determination threshold Nth is a value corresponding to the object detection reliability being high to a predetermined degree.
  • the driving support control unit 305 is provided to execute the driving support operation control based on the calculation result by the position calculation unit 302 and the determination result by the object determination unit 304. Further, the driving support control unit 305 is adapted to appropriately operate the display unit 26 and/or the alarm sound generating unit 27 in response to the driving support operation.
  • the electronic control unit 30 acquires the vehicle movement state based on the outputs of the vehicle speed sensor 22, the shift position sensor 23, the steering angle sensor 24, the yaw rate sensor 25, and the like.
  • the vehicle moving state is the moving state of the host vehicle acquired by the vehicle speed sensor 22, the shift position sensor 23, the steering angle sensor 24, and the yaw rate sensor 25.
  • the vehicle moving state may also be referred to as a “running state”.
  • the vehicle moving state also includes a stopped state, that is, a state where the vehicle speed is 0 km/h.
  • the moving state of the vehicle includes the traveling direction of the host vehicle and the vehicle speed.
  • the traveling direction of the host vehicle is hereinafter referred to as "vehicle traveling direction".
  • the vehicle moving state corresponds to the moving state of each of the plurality of distance measuring sensors 21.
  • the electronic control device 30 determines the arrival of the object detection timing in a predetermined sensor combination at predetermined time intervals from the time when the operation condition of the object detection device 20 is established.
  • the "operating condition" includes, for example, that the vehicle speed is within a predetermined range, that the shift position is at a predetermined position, and the like.
  • the “predetermined sensor combination” is, when one of the plurality of distance measuring sensors 21 is selected as the first distance measuring sensor, the first distance measuring sensor and at least one other that can be the second distance measuring sensor. This is a combination with one distance measuring sensor 21. Specifically, for example, it is assumed that the third front sonar 211C is selected as the first distance measuring sensor. In this case, the "predetermined sensor combination” includes the third front sonar 211C as the first distance measuring sensor and the plurality of other distance measuring sensors 21 that can be the second distance measuring sensor. The "other plurality of distance measuring sensors 21" in this case are the first front sonar 211A, the second side sonar 213B, and the fourth front sonar 211D. The “predetermined sensor combination” may also be referred to as “selection of a predetermined first distance measuring sensor”.
  • Object detection timing is a specific point in time when the object position P is calculated using a predetermined sensor combination. That is, the object detection timing is the starting point of a routine for detecting the object B, which will be described later.
  • the object detection timing comes at intervals of a predetermined time T (for example, 200 msec) after the operation condition of the object detection device 20 is satisfied for each of the predetermined sensor combinations. That is, the electronic control unit 30 sequentially selects the first distance measuring sensor from the plurality of distance measuring sensors 21 in a predetermined time period T, and transmits the exploration wave by the selected first distance measuring sensor and the direct wave. And detection of indirect waves. Therefore, in the predetermined sensor combination, the object detection timing comes every predetermined time T.
  • the predetermined time T is also referred to as “calculation cycle”. Further, assuming that the number of distance measuring sensors 21 that can be the first distance measuring sensor is C, the object detection timing in the object detection device 20 comes every T/C.
  • the electronic control unit 30 executes an object detection operation. Specifically, the electronic control device 30 selects a predetermined one of the plurality of distance measuring sensors 21 as the first distance measuring sensor, and causes the selected first distance measuring sensor to transmit a search wave. Further, the electronic control unit 30 controls the operation of each of the plurality of distance measuring sensors 21 and receives the output signal including the distance measuring information from each of the plurality of distance measuring sensors 21. Then, the distance measurement information acquisition unit 301 acquires the distance measurement information output from each of the plurality of distance measurement sensors 21. That is, the distance measurement information acquisition unit 301 temporarily stores the distance measurement information received from each of the plurality of distance measurement sensors 21 in the RAM or the non-volatile RAM in time series for a predetermined period.
  • the position calculation unit 302 calculates the object position P based on the acquisition result of the distance measurement information by the distance measurement information acquisition unit 301. For example, both the direct wave and the indirect wave may be detected during the object detection operation using the first distance measuring sensor and the second distance measuring sensor. In this case, the position calculation unit 302 calculates the object position P based on the principle of triangulation using the distance measurement information based on the direct wave and the distance measurement information based on the indirect wave.
  • triangulation may fail while the object detection operation is being executed.
  • the object position P cannot be calculated based on the principle of triangulation.
  • only one of the direct wave and the indirect wave may be detected.
  • direct waves may be detected while indirect waves are not detected.
  • direct waves may not be detected while indirect waves may be detected.
  • the position calculation unit 302 calculates the estimated value of the object position P even if the triangulation is not established.
  • the distance measurement information acquisition unit 301 acquires the detection states of direct waves and indirect waves. That is, the ranging information acquisition unit 301 determines whether or not the direct wave is detected this time and whether or not the indirect wave is detected this time based on the acquisition result of the ranging information.
  • the reliability calculation unit 303 calculates the index value N based on the detection states of the direct wave and the indirect wave acquired by the distance measurement information acquisition unit 301. Specifically, the reliability calculation unit 303 calculates the index value N such that the index value N becomes larger as the number of times the same object is detected increases. Typically, the reliability calculation unit 303 updates the index value N to the side that increases the object detection reliability by detecting both the direct wave and the indirect wave of the same object.
  • the reliability of detection of the object B may vary depending on the object position P.
  • the object position P may be in the indirect wave region RI. In this case, it is highly likely that the object B is located at the object position P.
  • the object position P may be outside the indirect wave region RI and within the direct wave region RD of only one of the first distance measuring sensor and the second distance measuring sensor. In this case, the probability that the object B is located at the object position P is relatively low even when triangulation is in progress.
  • the reliability calculation unit 303 determines the update value V at the same timing according to the object detection timing in the predetermined sensor combination, that is, the object position P at the calculation timing of the index value N this time. Specifically, the reliability calculation unit 303 determines the update value V according to the positional relationship between the direct wave region RD and the indirect wave region RI and the object position P.
  • both the direct wave and the indirect wave may be detected, and the object position P calculated by these may be within the indirect wave region RI.
  • the reliability calculation unit 303 sets the update value V to a predetermined positive number ⁇ 1.
  • both the direct wave and the indirect wave may be detected, and the object position P calculated by these may be outside the indirect wave region RI and within the direct wave region RD.
  • the reliability calculation unit 303 sets the update value V to a predetermined positive number ⁇ 2. ⁇ 2 ⁇ 1.
  • the reliability calculation unit 303 updates the index value N calculated at the previous calculation timing with the update value V determined at this calculation timing. As a result, the index value N at the current calculation timing is calculated. Specifically, the reliability calculation unit 303 adds the update value V to the previous value of the index value N.
  • the object determination unit 304 determines the detection of the target object on the condition that the index value N has reached the determination threshold Nth.
  • the index value N does not increase even if only one of the direct wave and the indirect wave is continuously detected for the same object.
  • the index value N rises only during the establishment of triangulation, that is, during the detection of both the direct wave and the indirect wave.
  • Detecting only one of the direct and indirect waves may continue for the same object. Specifically, for example, while the object B is approaching the host vehicle, the following process may be followed. First, as shown in FIG. 1, the object B enters from the outside of the direct wave region RD and the indirect wave region RI into the outside edge of the direct wave region RD outside the indirect wave region RI. , Only direct waves are detected. Then, the state where only the direct wave is detected but the indirect wave is not detected continues for a predetermined period. Then, when the object B enters the indirect wave region RI, both the direct wave and the indirect wave are detected. As described above, the object B in which only one of the direct wave and the indirect wave is continuously detected is highly likely to be detected as the target object thereafter. Therefore, if the index value N is increased by a predetermined amount during the period in which only one of the direct wave and the indirect wave is continuously detected, the detection determination that the object B is the target object is established earlier. obtain. Thereby, more appropriate driving support can be realized.
  • the reliability calculation unit 303 increases the object detection reliability when the index value N is calculated and only one of the direct wave and the indirect wave is continuously detected for the same object.
  • the index value N is updated to the side that does.
  • the reliability calculation unit 303 updates the index value N to the side that increases the object detection reliability when the detection of only the direct wave or the detection of the indirect wave continues for the same object. Therefore, according to the object detection device 20 having such a configuration and the object detection method executed thereby, the detection of the target object can be judged earlier. That is, according to the above configuration and method, it is possible to determine earlier whether or not the detected object B is an object to be avoided. As described above, according to the above configuration and method, it is possible to further improve the object detection performance as compared with the related art.
  • the reliability calculation unit 303 resets the index value N to the reset value on the low reliability side when the non-detection of both the direct wave and the indirect wave continues for a predetermined amount. Specifically, the reliability calculation unit 303 resets the index value N when a state in which neither a direct wave nor an indirect wave is detected continues for a predetermined number of resets.
  • the reset value of the index value N is 0, for example.
  • the driving support operation performed by the driving support control unit 305 is assumed to be a collision avoidance operation when the vehicle is moving forward.
  • the object detection routine shown in FIG. 3A is activated for the first time when the operating condition of the object detecting device 20 is switched from unsatisfied to established, and thereafter, the object detecting timing is kept until the operating condition of the object detecting device 20 is not satisfied. It is repeatedly activated each time it arrives.
  • the CPU selects the first front sonar 211A as the first distance measurement sensor, and activates and executes the object detection routine shown in FIG. 3A.
  • the CPU selects the second front sonar 211B as the first distance measuring sensor and activates and executes the object detection routine shown in FIG. 3A.
  • the CPU selects the third front sonar 211C as the first distance measuring sensor and activates and executes the object detection routine shown in FIG. 3A.
  • the C distance measuring sensors 21 that can be selected as the first distance measuring sensor are selected once within the predetermined time T (for example, 200 msec).
  • the object detection timing using the first front sonar 211A as the first distance measuring sensor arrives again when the predetermined time T elapses from the arrival of the first object detection timing. Then, the CPU selects the first front sonar 211A again as the first distance measuring sensor, and activates and executes the object detection routine shown in FIG. 3A. When the next object detection timing arrives, the CPU again selects the second front sonar 211B as the first distance measuring sensor and activates and executes the object detection routine shown in FIG. 3A. Similarly, the CPU repeatedly activates and executes the object detection routine shown in FIG. 3A while sequentially changing the first distance measuring sensor until the operation condition of the object detection device 20 is not satisfied.
  • the CPU calculates the object position P for the object B detected this time based on the principle of triangulation using the direct wave distance and the indirect wave distance.
  • the direct wave distance corresponds to distance measurement information based on the direct wave detected this time.
  • the indirect wave distance corresponds to distance measurement information based on the indirect wave detected this time.
  • step 330 the CPU determines whether the object B detected this time is the same object as the previous time.
  • the “previous time” means a predetermined time T before, that is, one calculation cycle before by the same sensor combination as the current predetermined sensor combination.
  • the object position P(i) calculated this time and the object position P(i-1) calculated last time are used to determine whether or not they are the same object.
  • the CPU calculates ⁇ Px and ⁇ Py.
  • ⁇ Px is the difference in X coordinate between the object position P(i) and the object position P(i-1).
  • the X coordinate corresponds to the position in the vehicle width direction.
  • ⁇ Py is the difference in Y coordinate between the object position P(i) and the object position P(i-1).
  • the Y coordinate corresponds to the position in the vehicle length direction.
  • the CPU determines that they are the same object when ⁇ Px is smaller than the predetermined threshold ⁇ x and ⁇ Py is smaller than the predetermined threshold ⁇ y.
  • the CPU determines the update value V based on the object position P calculated this time.
  • the CPU updates the index value N using the update value V determined in step 332. Specifically, the CPU calculates the current value of the index value N by adding the update value V to the previous value of the index value N.
  • the CPU determines whether or not the latest index value N updated at step 333 has reached the determination threshold Nth.
  • the index value N has reached the determination threshold Nth does not only mean that the index value N has changed from a value smaller than the determination threshold Nth to the same value as the determination threshold Nth. That is, “the index value N has reached the determination threshold Nth” also includes that the index value N has changed from a value smaller than the determination threshold Nth to a value larger than the determination threshold Nth. Therefore, "the index value N has reached the determination threshold Nth" can be rephrased as "the index value N has reached the determination threshold Nth or more".
  • step 334 YES
  • the CPU advances the process to step 335.
  • the CPU skips the process of step 335 and once ends this routine.
  • step 335 the CPU determines whether or not the object B detected this time exists in the route of the vehicle.
  • the CPU executes the process of step 336, and then temporarily ends this routine.
  • the CPU skips the process of step 336 and ends the present routine tentatively.
  • the CPU determines that the object B detected this time is the target object. That is, the CPU detects the object B detected this time as the target object. In this case, the CPU executes the collision avoidance control of the own vehicle. Thereby, for example, steering angle control, deceleration control, notification to the driver using the display unit 26 and/or the alarm sound generation unit 27, and the like are executed.
  • step 310 NO
  • the triangulation is unsuccessful. Therefore, in this case, the CPU advances the process to step 340 shown in FIG. 3B.
  • the CPU determines whether the detection state of the received wave is the same as the previous state. Specifically, if only the direct wave is detected this time, the CPU determines whether the detection of the direct wave is continuous for the same object. On the other hand, if only the indirect wave is detected this time, the CPU determines whether the detection of only the indirect wave is continuous for the same object. The determination as to whether they are the same object is the same as above.
  • step 342 the CPU sets the update value V to the positive value +Vp.
  • Vp is 1, for example.
  • the calculated value of the index value N this time is a value obtained by adding +Vp to the previous value.
  • the processing after step 333 is similar to the above.
  • step 341 NO
  • the CPU executes the process of step 343 and then advances the process to step 333.
  • step 343 the CPU sets the update value V to 0.
  • the calculated value of the index value N this time becomes the same as the previous value.
  • the processing after step 333 is similar to the above.
  • step 344 the CPU determines whether the non-detection of both the direct wave and the indirect wave has continued for a predetermined number of resets.
  • step 345 the CPU sets the update value V to a negative value ⁇ Vn.
  • Vn is 1, for example.
  • the calculated value of the index value N this time is a value obtained by subtracting Vn from the previous value.
  • the processing after step 333 is similar to the above.
  • the relative position between the host vehicle and the object B may change from moment to moment.
  • the host vehicle is traveling in the steering state, that is, when the steering angle of the host vehicle is a non-zero predetermined amount, the horizontal orientation of the object B may change significantly.
  • the triangulation is not established.
  • object detection reliability is lower than when triangulation is established. Further, as described above, when the object position P is outside the indirect wave region RI, the reliability of detecting the object B is relatively low. Furthermore, when the triangulation changes from established to unestablished, the object B may have been lost. Therefore, in such a case, if the detection determination of the target object is performed by continuously detecting only one of the direct wave and the indirect wave, an erroneous determination may occur.
  • the object determination unit 304 determines the detection of the target object on the condition that the index value N reaches the determination threshold Nth1 during the detection of both the direct wave and the indirect wave. Has become. Specifically, the reliability calculation unit 303 guards the index value N so that the determination threshold value Nth1 is not reached while only one of the direct wave and the indirect wave is being detected. This improves the certainty of the determination. That is, it is possible to more reliably determine whether or not the detected object B is an object to be avoided.
  • the meaning of “the index value N has reached the determination threshold Nth” is the same as the above-mentioned “the index value N has reached the determination threshold Nth”.
  • FIGS. 3A and 3B are flowcharts corresponding to this operation example.
  • the start timing of the object detection routine shown in FIG. 4A is the same as that of the object detection routine shown in FIG. 3A. 4A to 4C, the same processing contents as the steps in FIGS. 3A and 3B can be referred to the description in the above operation example. Therefore, the description of these steps will be simplified as appropriate.
  • step 410 the CPU determines whether both the direct wave and the indirect wave have been detected.
  • the processing content of step 410 is similar to the processing content of step 310 in the object detection routine shown in FIG. 3A.
  • the CPU resets the non-detection counter M.
  • the non-detection counter M is an integer type counter for counting the number of times non-detection of both the direct wave and the indirect wave has continued.
  • the reset value of the non-detection counter M is 0.
  • the CPU calculates the object position P for the object B detected this time based on the principle of triangulation using the direct wave distance and the indirect wave distance.
  • the processing content of step 421 is the same as the processing content of step 320 in the object detection routine shown in FIG. 3A.
  • the triangulation flag F is a flag which is set when the triangulation is established and is reset when the triangulation is not established.
  • step 430 the CPU determines whether the object B detected this time is the same object as the previous time.
  • the processing content of step 430 is the same as the processing content of step 330 in the object detection routine shown in FIG. 3A.
  • the processing content of step 431 is the same as the processing content of step 331 in the object detection routine shown in FIG. 3A.
  • step 430 the CPU sequentially executes the processes of steps 432 to 434.
  • step 432 the CPU determines the update value V based on the object position P calculated this time.
  • step 433 the CPU updates the index value N using the update value V determined in step 432.
  • the processing contents of steps 432 and 433 are similar to the processing contents of steps 332 and 333 in the object detection routine shown in FIG. 3A.
  • the CPU determines whether or not the latest index value N updated at step 433 has reached the determination threshold Nth1.
  • the processing content of step 434 is the same as the processing content of step 334 in the object detection routine shown in FIG. 3A. That is, the determination threshold Nth1 in step 434 is the same as the determination threshold Nth in step 334.
  • step 434 YES
  • step 435 the CPU determines whether or not the object B detected this time exists in the course of the host vehicle.
  • step 436 the CPU determines that the object B detected this time is the target object.
  • the processing contents of steps 435 and 436 are similar to the processing contents of steps 335 and 336 in the object detection routine shown in FIG. 3A.
  • step 410 NO
  • the triangulation is unsuccessful. Therefore, in this case, the CPU advances the process to step 440 shown in FIG. 4B.
  • step 440 the CPU determines whether the direct wave is detected this time.
  • the CPU sequentially executes the processes of steps 451 to 453.
  • the CPU resets the non-detection counter M.
  • the CPU resets the indirect wave detection counter K.
  • the indirect wave detection counter K is an integer type counter for counting the number of continuous detections of only indirect waves.
  • the reset value of the indirect wave detection counter K is 0.
  • the CPU increments the direct wave detection counter D. That is, the CPU adds 1 to the value of the direct wave detection counter D.
  • the direct wave detection counter D is an integer type counter for counting the number of continuous detections of only direct waves. The reset value of the direct wave detection counter D is 0.
  • step 453 the CPU advances the processing to step 454.
  • step 454 the CPU determines whether the direct wave detection counter D exceeds 1. That is, the CPU determines whether the detection of only the direct wave is continuous two or more times.
  • step 454 NO
  • the CPU executes the process of step 459 and then advances the process to step 433.
  • step 459 the CPU sets the update value V to 0.
  • the calculated value of the index value N this time becomes the same as the previous value.
  • step 454 YES
  • the CPU advances the process to step 455.
  • step 455 the CPU determines whether the triangulation flag F has been reset.
  • the index value N is increased by continuous detection of only the direct wave, the value of the index value N reaches the determination threshold Nth1 while the triangulation is not established, and the target object detection is determined.
  • step 459 the CPU sets the update value V to 0.
  • step 433 the calculated value of the index value N this time becomes the same as the previous value.
  • step 455 YES
  • the CPU advances the process to step 456.
  • step 456 the CPU determines whether the object B detected by the direct wave this time is the same object as the previous time.
  • the contents of “previous” and “same object” in the process of step 456 are the same as the contents of step 330 in the object detection routine shown in FIG. 3A.
  • step 457 the CPU determines whether or not the value of the current index value N, that is, the calculated value of the previous index value N is smaller than the guard value Nth2.
  • the guard value Nth2 is a value near the determination threshold Nth1 and smaller than the determination threshold Nth1.
  • Vp1 and Vp2 have different values
  • ⁇ Nth is ⁇ times the larger absolute value of Vp1 and Vp2.
  • the CPU executes the process of step 459, and then advances the process to step 433.
  • the CPU sets the update value V to 0.
  • the calculated value of the index value N this time becomes the same as the previous value.
  • the index value N is guarded so as not to reach the determination threshold Nth1 during the detection of only the direct wave.
  • step 457 YES
  • the CPU executes the process of step 458 and then advances the process to step 433.
  • the CPU sets the update value V to the positive value +Vp1.
  • Vp1 is 1, for example.
  • the calculated value of the index value N this time is a value obtained by adding +Vp1 to the previous value.
  • step 410 NO
  • step 460 the CPU determines whether the indirect wave is detected this time.
  • the CPU sequentially executes the processes of steps 471 to 473.
  • the CPU resets the non-detection counter M.
  • the CPU resets the direct wave detection counter D.
  • the CPU increments the indirect wave detection counter K. That is, the CPU adds 1 to the value of the indirect wave detection counter K.
  • step 474 the CPU determines whether or not the indirect wave detection counter K exceeds 1. That is, the CPU determines whether or not the reception of only the indirect wave is continuous twice or more.
  • step 474 NO
  • the CPU executes the process of step 479 and then advances the process to step 433.
  • step 479 the CPU sets the update value V to 0.
  • the calculated value of the index value N this time becomes the same as the previous value.
  • step 474 YES
  • the CPU advances the process to step 475.
  • step 475 the CPU determines whether the triangulation flag F has been reset.
  • step 479 the CPU sets the update value V to 0. In this case, in step 433, the calculated value of the index value N this time becomes the same as the previous value.
  • step 475 the CPU advances the process to step 476.
  • step 476 the CPU determines whether the object B detected by the indirect wave this time is the same object as the previous time.
  • step 476 the CPU advances the process to step 477.
  • step 477 the CPU determines whether or not the value of the current index value N, that is, the calculated value of the previous index value N is smaller than the guard value Nth2.
  • step 479 the CPU sets the update value V to 0.
  • the calculated value of the index value N this time becomes the same as the previous value.
  • the index value N is guarded so as not to reach the determination threshold Nth1 during the detection of only the indirect wave.
  • step 477 YES
  • the CPU executes the process of step 478 and then advances the process to step 433.
  • step 478 the CPU sets the update value V to the positive value +Vp2.
  • Vp2 is 1, for example.
  • the calculated value of the index value N this time is a value obtained by adding +Vp2 to the previous value.
  • step 481 the CPU increments the non-detection counter M. That is, the CPU adds 1 to the value of the non-detection counter M.
  • step 482 the CPU determines whether the value of the non-detection counter M has exceeded the reset threshold Mth.
  • the CPU sets the update value V to a negative value ⁇ Vn.
  • Vn is 2, for example.
  • the calculated value of the index value N this time is a value obtained by subtracting Vn from the previous value.
  • step 482 YES
  • the CPU once ends the present routine after executing the processes of steps 484 and 485.
  • the CPU resets the index value N.
  • the reliability calculation unit 303 guards the index value N so that the determination threshold Nth1 is not reached while only one of the direct wave and the indirect wave is being detected.
  • another method replacing the guard of the index value N is adopted.
  • the reliability calculation unit 303 sets an upper limit on the number of times the index value N is updated when only one of the direct wave and the indirect wave is continuously detected for the same object. It was
  • FIGS. 4A, 5A, and 5B are flowcharts corresponding to this operation example.
  • FIG. 5A is a modification of FIG. 4B.
  • FIG. 5B is a modification of FIG. 4C. That is, this operation example is configured by FIGS. 4A, 5A, and 5B.
  • steps 540 to 556, 558, and 559 in FIG. 5A are the same as the processing contents of steps 440 to 456, 458, and 459 in FIG. 4B.
  • the processing contents of steps 560 to 576, 578 and 579 to 585 in FIG. 5B are the same as the processing contents of steps 460 to 476, 478 and 479 to 485 in FIG. 4C. The changes will be mainly described below.
  • step 556 the CPU determines whether the object B detected by the direct wave this time is the same object as the previous time.
  • the CPU advances the process to step 557.
  • step 557 the CPU determines whether the direct wave detection counter D is smaller than the limit value Dth.
  • step 558 the CPU sets the update value V to the positive value +Vp1.
  • the calculated value of the index value N this time is a value obtained by adding +Vp1 to the previous value.
  • step 559 the CPU executes the process of step 559 and then advances the process to step 433 shown in FIG. 4A. ..
  • step 559 the CPU sets the update value V to 0.
  • step 433 the calculated value of the index value N this time becomes the same as the previous value.
  • the number of times +Vp1 is added when the direct wave alone is continuously detected is limited to the predetermined upper limit number “Dth ⁇ 1”.
  • step 577 YES
  • the CPU executes the process of step 578 and then advances the process to step 433 shown in FIG. 4A.
  • step 578 the CPU sets the update value V to the positive value +Vp2.
  • the calculated value of the index value N this time is a value obtained by adding +Vp2 to the previous value.
  • step 579 the CPU sets the update value V to 0.
  • step 433 the calculated value of the index value N this time becomes the same as the previous value.
  • the number of times +Vp2 is added when the indirect wave alone is continuously detected is limited to the predetermined upper limit number “Kth ⁇ 1”.
  • the vehicle 10 is not limited to a four-wheeled vehicle.
  • the vehicle 10 may be a three-wheeled vehicle or a six-wheeled or eight-wheeled vehicle such as a cargo truck.
  • the “object” may be referred to as an “obstacle”. That is, the “object detection device” may also be referred to as an “obstacle detection device”.
  • the arrangement and number of the distance measuring sensors 21 are not limited to the above specific example. That is, for example, referring to FIG. 1, when the third front sonar 211C is arranged at the center position in the vehicle width direction, the fourth front sonar 211D is omitted. Similarly, when the third rear sonar 212C is arranged at the center position in the vehicle width direction, the fourth rear sonar 212D is omitted.
  • the distance measuring sensor 21 is not limited to the ultrasonic sensor. That is, for example, the distance measuring sensor 21 may be a laser radar sensor or a millimeter wave radar sensor. Acquisition of the vehicle moving state, that is, the running state is not limited to the mode using the vehicle speed sensor 22, the shift position sensor 23, the steering angle sensor 24, and the yaw rate sensor 25. That is, for example, the yaw rate sensor 25 may be omitted. Alternatively, for example, a sensor other than the above may be used when acquiring the vehicle movement state.
  • the electronic control unit 30 has a configuration in which the CPU reads the program from the ROM or the like and starts it.
  • the present disclosure is not limited to such a configuration. That is, for example, the electronic control device 30 may be a digital circuit configured to enable the above-described operation, for example, an ASIC such as a gate array.
  • ASIC is an abbreviation for APPLICATION SPECIFIC INTEGRATED CIRCUIT.
  • the electronic control unit 30 can be electrically connected to the vehicle speed sensor 22 and the like via an in-vehicle communication network.
  • the vehicle-mounted communication network is configured in compliance with vehicle-mounted LAN standards such as CAN (International registered trademark) and FlexRay (International registered trademark).
  • CAN International Registered Trademark
  • CAN International Registered Trademark
  • LAN is an abbreviation for Local Area Network.
  • Each of the first side sonar 213A, the second side sonar 213B, the third side sonar 213C, and the fourth side sonar 213D may be provided so that only direct waves can be detected.
  • the first side sonar 213A, the second side sonar 213B, the third side sonar 213C, and the fourth side sonar 213D may be omitted.
  • the present disclosure is not limited to the specific operation example and processing mode shown in the above embodiment.
  • the above-described operation outline and operation example correspond to the collision avoidance operation when the vehicle is moving forward.
  • the present disclosure is not limited to such an aspect. That is, the present disclosure can be similarly applied when the host vehicle moves backward.
  • the driving support operation is not limited to the collision avoidance operation, and may be a parking support operation or an automatic driving operation of level 1 or higher.
  • the first distance measuring sensor and the second distance measuring sensor are typically two distance measuring sensors 21 adjacent to each other.
  • the present disclosure is not limited to such an aspect. That is, for example, referring to FIG. 1, triangulation can be established by the second front sonar 211B and the third front sonar 211C. Therefore, the second front sonar 211B may be the first distance measuring sensor and the third front sonar 211C may be the second distance measuring sensor.
  • the functional block configuration shown in FIG. 2 is merely an example shown for convenience in order to briefly describe an embodiment of the present disclosure. Therefore, the present disclosure is not limited to such a functional block configuration. That is, the functional layout can be appropriately changed from the specific example shown in FIG.
  • the object B is described as a stationary object, but the present disclosure is not limited to such an aspect. That is, for example, when the object B is a moving object, it goes without saying that the mode of relative movement between the host vehicle and the object B is taken into consideration in each of the above processes.
  • an image sensor such as a CMOS sensor or a CCD sensor may be used as the sensor for acquiring the vehicle moving state.
  • CMOS is an abbreviation for Complementary MOS.
  • CCD is an abbreviation for Charge Coupled Device.
  • the reliability calculation unit 303 updates the index value N to the side that increases the object detection reliability when the detection of only the direct wave or the detection of the indirect wave continues for the same object. It was However, the present disclosure is not limited to such an aspect. That is, the reliability calculation unit 303 only needs to update the index value N to the side that increases the object detection reliability when the detection of only one of the direct wave and the indirect wave continues for the same object. ..
  • the method of determining whether or not they are the same object is not limited to the one based on the difference in coordinates as in the above specific example. That is, in the determination, other information such as a distance difference, reception intensity, frequency modulation state, etc. may be used instead of or in addition to the coordinate difference.
  • “Continuous” may be judged not by the number of times but by time. That is, the reliability calculation unit 303 updates the index value N to the side that increases the object detection reliability when the detection of only one of the direct wave and the indirect wave continues for the same object for a predetermined time. May be. Specifically, a timer may be used instead of the counter.
  • step 341 immediately before step 341, the same “object position P calculation” step as step 320 can be inserted.
  • the object position P is calculated as an estimated value.
  • step 454 the CPU may determine whether or not the detection of only the direct wave is continuous G times or more.
  • G is an integer of 2 or more, and is typically 2.
  • step 474 the CPU may determine whether or not the detection of only the indirect wave has continued H times or more.
  • H is an integer of 2 or more, and is typically 2. The same applies to step 574.
  • guard values may be set in step 457 and step 477.
  • different guard values may be set in step 557 and step 577.
  • step 455 and step 457 can be omitted.
  • steps 475 and 477 may be omitted.
  • steps 555 and 557 may be omitted.
  • steps 575 and 577 may be omitted.
  • the triangulation flag F is set when the triangulation is established for a certain object B. Then, until the flag is reset, detection of only one of the direct wave and the indirect wave may continue for another object. In this case, the reliability calculation unit 303 may reset the index value N on condition that the detection of the different object has continued a predetermined number of times.
  • the CPU determines whether or not the NO determination has continued a predetermined number of times. Then, when the NO determination continues for a predetermined number of times, the CPU resets the index value N and once ends the routine. At this time, the CPU may reset the triangulation flag F. On the other hand, when the number of consecutive NO determinations has not reached the predetermined number, the CPU advances the process to step 459. The same applies to the third operation example (that is, the determination in step 556).
  • step 476 determines whether or not the NO determination has continued a predetermined number of times. Then, when the NO determination continues for a predetermined number of times, the CPU resets the index value N and once ends the routine. At this time, the CPU may reset the triangulation flag F. On the other hand, when the number of consecutive NO determinations has not reached the predetermined number, the CPU advances the process to step 459. The same applies to the third operation example (that is, the determination in step 576).
  • Modifications are not limited to the above examples. Also, a plurality of modified examples can be combined with each other. Furthermore, all or part of the above-described embodiments and all or part of the modified examples may be combined with each other.
  • Each functional configuration and method described above may be realized by a dedicated computer provided by configuring a processor and a memory programmed to execute one or more functions embodied by a computer program. ..
  • each of the functional configurations and methods described above may be implemented by a dedicated computer provided by configuring a processor with one or more dedicated hardware logic circuits.
  • each of the functional configurations and methods described above is configured by a combination of a processor and a memory programmed to execute one or more functions and a processor configured by one or more hardware logic circuits. It may be realized by one or more dedicated computers.
  • the computer program may be stored in a computer-readable non-transition tangible recording medium as an instruction executed by the computer.

Abstract

物体検知装置(20)は、測距センサ(21)を複数搭載する移動体(10)の外側に存在する物体(B)を検知するように構成されている。この物体検知装置は、検知状態取得部(301)と、信頼度算出部(303)と、物体判定部(304)とを備える。検知状態取得部は、直接波および間接波の検知状態を取得する。信頼度算出部は、検知状態取得部により取得した検知状態に基づいて、物体の検知の信頼度に対応する指標値を算出する。信頼度算出部は、直接波および間接波のうちの一方のみの検知が同一物体について連続した場合に、信頼度を高くする側に前記指標値を更新する。物体判定部は、信頼度が高いことに対応する判定閾値に指標値が達したことを判定条件として、移動体の運転支援制御にて考慮すべき物体である対象物体の検知を判定する。

Description

物体検知装置および物体検知方法 関連出願への相互参照
 本出願は、2019年1月25日に出願された日本特許出願番号2019-11590号に基づくもので、ここにその記載内容が参照により組み入れられる。
 本開示は、移動体の外側に存在する物体を検知するように構成された物体検知装置に関する。また、本開示は、移動体の外側に存在する物体を検知する物体検知方法に関する。
 複数の物体検知センサを備える移動体に適用され、移動体の周囲に存在する物体を検知する物体検知装置が知られている。この物体検知装置は、測距センサ等の物体検知センサから物体の検知情報を受信することにより、移動体の周囲に存在する物体を検知する。
 例えば、特許文献1に記載の物体検知装置は、第一検知手段と、第二検知手段と、位置算出手段と、カウンタ更新手段とを備える。第一検知手段は、直接波により物体を検知する。直接波は、探査波を送信した物体検知センサと同一の物体検知センサが受信した反射波である。第二検知手段は、間接波により物体を検知する。間接波は、探査波を送信した物体検知センサとは異なる物体検知センサが受信した反射波である。位置算出手段は、第一検知手段および第二検知手段の検知結果に基づいて、三角測量の原理により物体の位置情報を算出する。カウンタ更新手段は、第一検知手段および第二検知手段の検知結果に基づく物体の検知回数に基づいて、信頼レベル判定カウンタの値を更新する。信頼レベル判定カウンタは、位置算出手段により算出した位置情報の信頼度を表す指標である。
 特許文献1に記載の物体検知装置においては、三角測量が成立した場合、信頼度を高くする側に信頼レベル判定カウンタの値が更新される。一方、三角測量が不成立である場合、信頼度を低くする側に信頼レベル判定カウンタの値が更新される。そして、信頼レベル判定カウンタが閾値を超えた場合、移動体の周囲に、接触回避制御における回避対象となる物体有りと確定する。これにより、接触回避制御の介入が許可される。
特開2016-80642号公報
 この種の物体検知装置において、物体検知性能をよりいっそう向上させることが望まれている。具体的には、例えば、検知した物体が回避対象等となるものであるか否かを、より早期に、あるいは、より確実に判定することが望まれている。
 本開示は、上記に例示した事情等に鑑みてなされたものである。すなわち、本開示は、例えば、物体検知性能が従来よりもよりいっそう向上した、物体検知装置および物体検知方法を提供する。
 物体検知装置は、測距センサを複数搭載する移動体の外側に存在する物体を検知するように構成されている。前記測距センサは、前記移動体の外側に向けて探査波を送信するとともに、前記探査波の前記物体による反射波を含む受信波を検知することで、測距情報を出力するように設けられている。前記測距情報は、前記移動体の周囲の前記物体との距離に対応する情報である。
 本開示の1つの観点によれば、物体検知装置は、
 複数の前記測距センサのうちの一つである第一測距センサにおける前記受信波であって当該第一測距センサから送信された前記探査波の前記反射波に起因する直接波、および、複数の前記測距センサのうちの他の一つである第二測距センサにおける前記受信波であって前記第一測距センサから送信された前記探査波の前記反射波に起因する間接波の、検知状態を取得する検知状態取得部と、
 前記検知状態取得部により取得した前記検知状態に基づいて、前記物体の検知の信頼度に対応する指標値を算出する信頼度算出部と、
 前記信頼度が高いことに対応する判定閾値に前記指標値が達したことを判定条件として、前記移動体の運転支援制御にて考慮すべき前記物体である対象物体の検知を判定する物体判定部と、を備え、
 前記信頼度算出部は、前記直接波および前記間接波のうちの一方のみの検知が同一物体について連続した場合に、前記信頼度を高くする側に前記指標値を更新する。
 物体検知方法は、測距センサを複数搭載する移動体の外側に存在する物体を検知する。前記測距センサは、前記移動体の外側に向けて探査波を送信するとともに、前記探査波の前記物体による反射波を含む受信波を検知することで、測距情報を出力するように設けられている。前記測距情報は、前記移動体の周囲の前記物体との距離に対応する情報である。
 本開示の他の1つの観点によれば、物体検知方法は、以下の手順を含む。
 複数の前記測距センサのうちの一つである第一測距センサにおける前記受信波であって当該第一測距センサから送信された前記探査波の前記反射波に起因する直接波、および、複数の前記測距センサのうちの他の一つである第二測距センサにおける前記受信波であって前記第一測距センサから送信された前記探査波の前記反射波に起因する間接波の、検知状態を取得し、
 取得した前記検知状態に基づいて、前記物体の検知の信頼度に対応する指標値を算出し、
 前記信頼度が高いことに対応する判定閾値に前記指標値が達したことを判定条件として、前記移動体の運転支援制御にて考慮すべき前記物体である対象物体の検知を判定し、
 前記指標値の算出にて、前記直接波および前記間接波のうちの一方のみの検知が同一物体について連続した場合に、前記信頼度を高くする側に前記指標値を更新する。
 上記構成および方法においては、前記直接波および前記間接波の前記検知状態が取得される。また、取得した前記検知状態に基づいて、前記物体の検知の前記信頼度に対応する前記指標値が算出される。そして、前記信頼度が高いことに対応する前記判定閾値に前記指標値が達したことを前記判定条件として、前記対象物体の検知が判定される。
 前記直接波および前記間接波のうちの一方のみの検知が同一物体について連続する場合がある。このような場合、かかる物体がその後前記対象物体として検知される可能性が高い。そこで、上記構成および方法においては、前記指標値の算出にて、前記信頼度を高くする側に前記指標値が更新される。これにより、物体検知性能が従来よりもよりいっそう向上し得る。具体的には、例えば、前記対象物体の検知がより早期に判定され得る。
 なお、出願書類において、各要素に括弧付きの参照符号が付される場合がある。しかしながら、この場合であっても、かかる参照符号は、各要素と後述する実施形態に記載の具体的手段との対応関係の単なる一例を示すものにすぎない。よって、本開示は、上記の参照符号の記載によって、何ら限定されるものではない。
実施形態に係る物体検知装置を搭載した車両の概略構成を示す平面図である。 図1に示された物体検知装置の概略的な機能構成を示すブロック図である。 図2に示された物体検知装置の第一動作例を示すフローチャートである。 図2に示された物体検知装置の第一動作例を示すフローチャートである。 図2に示された物体検知装置の第二動作例を示すフローチャートである。 図2に示された物体検知装置の第二動作例を示すフローチャートである。 図2に示された物体検知装置の第二動作例を示すフローチャートである。 図2に示された物体検知装置の第三動作例を示すフローチャートである。 図2に示された物体検知装置の第三動作例を示すフローチャートである。
 (実施形態)
 以下、本開示の実施形態を、図面に基づいて説明する。なお、実施形態に対して適用可能な各種の変形例については、当該実施形態に関する一連の説明の途中に挿入されると当該実施形態の理解が妨げられるおそれがあるため、当該実施形態の説明の後にまとめて記載する。
 (構成)
 図1を参照すると、移動体としての車両10は、いわゆる四輪自動車であって、平面視にて略矩形状の車体11を備えている。以下、平面視にて、車両10の車幅方向における中心を通り、且つ車両10における車両全長方向と平行な仮想直線を、車両中心線LCと称する。車両全長方向は、車幅方向と直交し且つ車高方向と直交する方向である。車高方向は、車両10の車高を規定する方向であって、車両10を水平面に載置した場合の重力作用方向と平行な方向である。図1において、車両全長方向は図中上下方向であり、車幅方向は図中左右方向である。
 車両10における「前」「後」「左」「右」を、図1中にて矢印で示された通りに定義する。すなわち、車両全長方向は、前後方向と同義である。また、車幅方向は、左右方向と同義である。「平面視」における各部の形状は、当該各部を車高方向と平行な視線で車両10の上方から見た場合の形状を指すものである。
 車体11における前側の端部には、フロントバンパー12が装着されている。車体11における後側の端部には、リアバンパー13が装着されている。車体11における側面部には、ドアパネル14が装着されている。図1に示す具体例においては、左右にそれぞれ二枚ずつ、合計四枚のドアパネル14が設けられている。前側の左右一対のドアパネル14のそれぞれには、ドアミラー15が装着されている。
 車両10には、物体検知装置20が搭載されている。本実施形態に係る物体検知装置20を搭載した車両10を、以下「自車両」と称することがある。物体検知装置20は、自車両に搭載されることで、自車両の外側に存在する物体Bを検知するように構成されている。
 具体的には、物体検知装置20は、測距センサ21と、車速センサ22と、シフトポジションセンサ23と、操舵角センサ24と、ヨーレートセンサ25と、表示部26と、警報音発生部27と、電子制御装置30とを備えている。なお、図示の簡略化のため、物体検知装置20を構成する各部の間の電気接続関係は、図1においては適宜省略されている。
 測距センサ21は、自車両の外側に向けて探査波を送信するとともに、この探査波の物体Bによる反射波を含む受信波を検知することで、測距情報を出力するように設けられている。測距情報は、測距センサ21の出力信号に含まれる情報であって、自車両の周囲の物体Bとの距離に対応する情報である。本実施形態においては、測距センサ21は、いわゆる超音波センサであって、超音波である探査波を発信するとともに、超音波を含む受信波を受信可能に構成されている。
 なお、ここにいう、受信波の「検知」とは、有効に測距情報を取得可能な程度に受信波を受信することをいう。このため、測距情報が有効に取得できない程度の、弱い受信強度の受信は、ここにいう「検知」とは取り扱われない。よって、ここにいう「検知」は、「閾値受信強度以上での受信」、「有効な受信」、「良好な受信」、あるいは単に「受信」と言い換えられ得る。
 自車両には、測距センサ21が複数搭載されている。複数の測距センサ21の各々は、平面視にて相互に異なる位置に設けられている。また、本実施形態においては、複数の測距センサ21の各々は、車両中心線LCから、車幅方向におけるいずれか一方側にシフトして配置されている。
 具体的には、本実施形態においては、フロントバンパー12には、測距センサ21としての、第一フロントソナー211A、第二フロントソナー211B、第三フロントソナー211C、および第四フロントソナー211Dが装着されている。同様に、リアバンパー13には、測距センサ21としての、第一リアソナー212A、第二リアソナー212B、第三リアソナー212C、および第四リアソナー212Dが装着されている。また、車体11の側面部には、第一サイドソナー213A、第二サイドソナー213B、第三サイドソナー213C、および第四サイドソナー213Dが装着されている。以下の説明において、上記の第一フロントソナー211A等のうちのいずれであるかを特定しない場合、「測距センサ21」という表現を用いる。
 「直接波」および「間接波」を、以下のように定義する。複数の測距センサ21のうちの一つを「第一測距センサ」と称し、他の一つを「第二測距センサ」と称する。第一測距センサにおける受信波であって、第一測距センサから送信された探査波の物体Bによる反射波に起因する受信波を、「直接波」と称する。直接波は、典型的には、第一測距センサから送信された探査波の物体Bによる反射波を第一測距センサが受信波として検知したときの当該受信波である。すなわち、直接波は、探査波を送信した測距センサ21と、当該探査波の物体Bによる反射波を受信波として検知した測距センサ21とが、同一である場合の、当該受信波である。
 これに対し、第二測距センサにおける受信波であって、第一測距センサから送信された探査波の物体Bによる反射波に起因する受信波を、「間接波」と称する。間接波は、典型的には、第一測距センサから送信された探査波の物体Bによる反射波を第二測距センサが受信波として検知したときの当該受信波である。すなわち、間接波とは、探査波を送信した測距センサ21と、当該探査波の物体Bによる反射波を受信波として検知した測距センサ21とが、異なる場合の、当該受信波である。
 図1に、第三フロントソナー211Cおよび第四フロントソナー211Dを例として、二個の測距センサ21における直接波領域RDおよび間接波領域RIを示す。直接波領域RDは、物体Bが存在した場合に、当該物体Bに起因する直接波を検知可能な領域である。間接波領域RIは、物体Bが存在した場合に、当該物体Bに起因する間接波を検知可能な領域である。具体的には、間接波領域RIは、二個の測距センサ21における直接波領域RD同士が重複する領域と、完全には一致しないものの、大部分が重複する。以下、説明の簡略化のため、間接波領域RIを、二個の測距センサ21における直接波領域RD同士が重複する領域とほぼ一致するものとして取り扱う。
 第一フロントソナー211Aは、自車両の左前方に探査波を発信するように、フロントバンパー12の前側表面における左端部に設けられている。第二フロントソナー211Bは、自車両の右前方に探査波を発信するように、フロントバンパー12の前側表面における右端部に設けられている。第一フロントソナー211Aと第二フロントソナー211Bとは、車両中心線LCを挟んで対称に配置されている。
 第三フロントソナー211Cおよび第四フロントソナー211Dは、フロントバンパー12の前側表面における中央寄りの位置にて、車幅方向に配列されている。第三フロントソナー211Cは、自車両の略前方に探査波を発信するように、車幅方向について第一フロントソナー211Aと車両中心線LCとの間に配置されている。第四フロントソナー211Dは、自車両の略前方に探査波を発信するように、車幅方向について第二フロントソナー211Bと車両中心線LCとの間に配置されている。第三フロントソナー211Cと第四フロントソナー211Dとは、車両中心線LCを挟んで対称に配置されている。
 上記の通り、第一フロントソナー211Aと第三フロントソナー211Cとは、平面視にて互いに異なる位置に配置されている。また、車幅方向について互いに隣接する第一フロントソナー211Aと第三フロントソナー211Cとは、相互に、一方が送信した探査波の物体Bによる反射波が他方における受信波として検知可能な位置関係に設けられている。
 すなわち、第一フロントソナー211Aは、自己が送信した探査波に対応する直接波と、第三フロントソナー211Cが送信した探査波に対応する間接波との双方を検知可能に配置されている。同様に、第三フロントソナー211Cは、自己が送信した探査波に対応する直接波と、第一フロントソナー211Aが送信した探査波に対応する間接波との双方を検知可能に配置されている。
 同様に、第三フロントソナー211Cと第四フロントソナー211Dとは、平面視にて互いに異なる位置に配置されている。また、車幅方向について互いに隣接する第三フロントソナー211Cと第四フロントソナー211Dとは、相互に、一方が送信した探査波の物体Bによる反射波が他方における受信波として検知可能な位置関係に設けられている。
 同様に、第二フロントソナー211Bと第四フロントソナー211Dとは、平面視にて互いに異なる位置に配置されている。また、車幅方向について互いに隣接する第二フロントソナー211Bと第四フロントソナー211Dとは、相互に、一方が送信した探査波の物体Bによる反射波が他方における受信波として検知可能な位置関係に設けられている。
 第一リアソナー212Aは、自車両の左後方に探査波を発信するように、リアバンパー13の後側表面における左端部に設けられている。第二リアソナー212Bは、自車両の右後方に探査波を発信するように、リアバンパー13の後側表面における右端部に設けられている。第一リアソナー212Aと第二リアソナー212Bとは、車両中心線LCを挟んで対称に配置されている。
 第三リアソナー212Cおよび第四リアソナー212Dは、リアバンパー13の後側表面における中央寄りの位置にて、車幅方向に配列されている。第三リアソナー212Cは、自車両の略後方に探査波を発信するように、車幅方向について第一リアソナー212Aと車両中心線LCとの間に配置されている。第四リアソナー212Dは、自車両の略後方に探査波を発信するように、車幅方向について第二リアソナー212Bと車両中心線LCとの間に配置されている。第三リアソナー212Cと第四リアソナー212Dとは、車両中心線LCを挟んで対称に配置されている。
 上記の通り、第一リアソナー212Aと第三リアソナー212Cとは、平面視にて互いに異なる位置に配置されている。また、車幅方向について互いに隣接する第一リアソナー212Aと第三リアソナー212Cとは、相互に、一方が送信した探査波の物体Bによる反射波が他方における受信波として検知可能な位置関係に設けられている。
 すなわち、第一リアソナー212Aは、自己が送信した探査波に対応する直接波と、第三リアソナー212Cが送信した探査波に対応する間接波との双方を検知可能に配置されている。同様に、第三リアソナー212Cは、自己が送信した探査波に対応する直接波と、第一リアソナー212Aが送信した探査波に対応する間接波との双方を検知可能に配置されている。
 同様に、第三リアソナー212Cと第四リアソナー212Dとは、平面視にて互いに異なる位置に配置されている。また、車幅方向について互いに隣接する第三リアソナー212Cと第四リアソナー212Dとは、相互に、一方が送信した探査波の物体Bによる反射波が他方における受信波として検知可能な位置関係に設けられている。
 同様に、第二リアソナー212Bと第四リアソナー212Dとは、平面視にて互いに異なる位置に配置されている。また、車幅方向について互いに隣接する第二リアソナー212Bと第四リアソナー212Dとは、相互に、一方が送信した探査波の物体Bによる反射波が他方における受信波として検知可能な位置関係に設けられている。
 第一サイドソナー213A、第二サイドソナー213B、第三サイドソナー213C、および第四サイドソナー213Dは、車体11の側面から自車両の側方に探査波を発信するように設けられている。第一サイドソナー213Aおよび第二サイドソナー213Bは、車体11における前側部分に装着されている。第一サイドソナー213Aと第二サイドソナー213Bとは、車両中心線LCを挟んで対称に配置されている。第三サイドソナー213Cおよび第四サイドソナー213Dは、車体11における後側部分に装着されている。第三サイドソナー213Cと第四サイドソナー213Dとは、車両中心線LCを挟んで対称に配置されている。
 第一サイドソナー213Aは、自車両の左方に探査波を発信するように、前後方向について第一フロントソナー211Aと左側のドアミラー15との間に配置されている。第一サイドソナー213Aは、第一フロントソナー211Aとの間で、相互に、一方が送信した探査波の物体Bによる反射波が他方における受信波として検知可能な位置関係に設けられている。
 第二サイドソナー213Bは、自車両の右方に探査波を発信するように、前後方向について第二フロントソナー211Bと右側のドアミラー15との間に配置されている。第二サイドソナー213Bは、第二フロントソナー211Bとの間で、相互に、一方が送信した探査波の物体Bによる反射波が他方における受信波として検知可能な位置関係に設けられている。
 第三サイドソナー213Cは、自車両の左方に探査波を発信するように、前後方向について第一リアソナー212Aと左後側のドアパネル14との間に配置されている。第三サイドソナー213Cは、第一リアソナー212Aとの間で、相互に、一方が送信した探査波の物体Bによる反射波が他方における受信波として検知可能な位置関係に設けられている。
 第四サイドソナー213Dは、自車両の右方に探査波を発信するように、前後方向について第二リアソナー212Bと右後側のドアパネル14との間に配置されている。第四サイドソナー213Dは、第二リアソナー212Bとの間で、相互に、一方が送信した探査波の物体Bによる反射波が他方における受信波として検知可能な位置関係に設けられている。
 複数の測距センサ21の各々は、電子制御装置30に電気接続されている。すなわち、複数の測距センサ21の各々は、電子制御装置30の制御下で超音波を送受信するように設けられている。また、複数の測距センサ21の各々は、受信波の検知結果に対応する出力信号を発生して、電子制御装置30に送信するようになっている。
 車速センサ22、シフトポジションセンサ23、操舵角センサ24、およびヨーレートセンサ25は、電子制御装置30に電気接続されている。車速センサ22は、自車両の走行速度に対応する信号を発生して、電子制御装置30に送信するように設けられている。自車両の走行速度を、以下単に「車速」と称する。シフトポジションセンサ23は、自車両のシフトポジションに対応する信号を発生して、電子制御装置30に送信するように設けられている。操舵角センサ24は、自車両の操舵角に対応する信号を発生して、電子制御装置30に送信するように設けられている。ヨーレートセンサ25は、自車両に作用するヨーレートに対応する信号を発生して、電子制御装置30に送信するように設けられている。
 表示部26および警報音発生部27は、自車両における車室内に配置されている。表示部26は、電子制御装置30の制御下で物体検知動作に伴う表示を行うように、電子制御装置30に電気接続されている。警報音発生部27は、電子制御装置30の制御下で物体検知動作に伴う警報音を発生するように、電子制御装置30に電気接続されている。
 電子制御装置30は、車体11の内側に配置されている。電子制御装置30は、複数の測距センサ21の各々、車速センサ22、シフトポジションセンサ23、操舵角センサ24、およびヨーレートセンサ25等から受信した信号および情報に基づいて、所定の動作を実行するように構成されている。「所定の動作」には、物体検知動作と、物体検知結果に基づく自車両の運転支援動作とが含まれる。「運転支援動作」は、例えば、衝突回避動作、駐車支援動作、自動運転動作、等が含まれる。
 本実施形態においては、電子制御装置30は、いわゆる車載マイクロコンピュータであって、図示しないCPU、ROM、RAM、不揮発性RAM、等を備えている。不揮発性RAMは、例えば、フラッシュROM等である。電子制御装置30のCPU、ROM、RAMおよび不揮発性RAMを、以下単に「CPU」、「ROM」、「RAM」および「不揮発性RAM」と略称する。
 電子制御装置30は、CPUがROMまたは不揮発性RAMからプログラムを読み出して実行することで、各種の制御動作を実現可能に構成されている。このプログラムには、後述のルーチンに対応するものが含まれている。また、ROMまたは不揮発性RAMには、プログラムの実行の際に用いられる各種のデータが、あらかじめ格納されている。各種のデータには、例えば、初期値、ルックアップテーブル、マップ、等が含まれている。
 図2に示されているように、電子制御装置30は、機能上の構成として、測距情報取得部301と、位置算出部302と、信頼度算出部303と、物体判定部304と、運転支援制御部305とを備えている。以下、図2に示されている電子制御装置30の機能構成について説明する。
 測距情報取得部301は、複数の測距センサ21の各々から出力された測距情報を取得するように設けられている。すなわち、測距情報取得部301は、複数の測距センサ21の各々から受信した測距情報を、所定期間分、RAMまたは不揮発性RAMに時系列で一時的に格納するようになっている。また、測距情報取得部301は、取得した測距情報に基づいて、複数の測距センサ21の各々における、直接波および間接波の検知状態を取得すなわち判定するようになっている。
 位置算出部302は、物体Bの自車両との相対位置を算出するように設けられている。説明の簡略化のため、物体Bの自車両との相対位置を、以下単に「物体位置P」と称する。
 直接波および間接波の双方がともに検知されることで、三角測量が成立する場合があり得る。この場合、位置算出部302は、直接波に基づく測距情報と間接波に基づく測距情報とを用いた三角測量の原理により、物体位置Pを算出するようになっている。すなわち、位置算出部302は、同一物体について直接波および間接波の双方が検知されることで三角測量が成立する場合に、物体位置Pの測量値を算出するようになっている。
 一方、直接波および間接波のうちの一方のみが検知されることで、三角測量が不成立となる場合があり得る。この場合、位置算出部302は、三角測量が不成立でも、下記の条件1と条件2との双方が成立する場合に、物体位置Pの推定値を算出するようになっている。
  条件1:直接波と間接波とのうちのいずれか一方が受信波として検知されること。
  条件2:当該受信波が、既知の物体B、すなわち、物体位置Pが算出および格納済みの物体Bによる、反射波であること。
 信頼度算出部303は、検知状態取得部としての測距情報取得部301により取得した、直接波および間接波の検知状態に基づいて、指標値Nを算出するように設けられている。指標値Nは、実数であって、物体検知信頼度に対応する値である。指標値Nは、例えば、数値が大きくなるほど物体検知信頼度が高くなる整数型カウンタである。指標値Nは、特許文献1における「信頼レベル判定カウンタ」に対応する。指標値Nは、第一測距センサとしての測距センサ21毎、および、物体B毎に設定されるようになっている。
 物体検知信頼度は、測距センサ21を用いた物体Bの検知の信頼度である。すなわち、物体検知信頼度は、物体検知装置20による物体Bの検知の信頼度である。また、物体検知信頼度は、位置算出部302による物体位置Pの算出値の信頼度あるいは算出精度にも対応し得る。物体検知信頼度は、自車両の周囲に対象物体が存在することの確からしさにも対応し得る。「対象物体」は、自車両の運転支援制御にて考慮すべき物体Bである。具体的には、例えば、対象物体は、衝突回避制御あるいは自動運転制御における、衝突を回避すべき物体である。あるいは、例えば、対象物体は、駐車支援制御における目標駐車空間の周囲の物体であって、同空間を規定するために用いられる物体である。したがって、「対象物体」は、「障害物」とも称され得る。
 本実施形態においては、信頼度算出部303は、測距センサ21で同一の物体Bを検知した回数に基づいて、指標値Nを算出するようになっている。具体的には、信頼度算出部303は、直接波および間接波の検知状態に応じて、指標値Nの更新値Vを決定するようになっている。また、信頼度算出部303は、算出された物体位置Pに応じて、指標値Nの更新値Vを決定するようになっている。信頼度算出部303の具体的動作の詳細については後述する。
 物体判定部304は、指標値Nが判定閾値Nthに達したことを判定条件として、対象物体の検知を判定するように設けられている。判定閾値Nthは、物体検知信頼度が所定程度高いことに対応する値である。
 運転支援制御部305は、位置算出部302による算出結果と、物体判定部304による判定結果とに基づいて、運転支援動作制御を実行するように設けられている。また、運転支援制御部305は、運転支援動作に対応して、表示部26および/または警報音発生部27を適宜動作させるようになっている。
 (動作概要)
 以下、本実施形態に係る物体検知装置20の動作概要について、実施形態の構成による効果とともに説明する。なお、説明の簡略化のため、本説明においては、物体Bは、静止物であるものとする。静止物には、壁、ポール、等の固定物のみならず、駐車車両も含まれる。
 電子制御装置30は、車速センサ22、シフトポジションセンサ23、操舵角センサ24、ヨーレートセンサ25、等の出力に基づいて、車両移動状態を取得する。車両移動状態は、車速センサ22、シフトポジションセンサ23、操舵角センサ24、およびヨーレートセンサ25によって取得された、自車両の移動状態である。車両移動状態は「走行状態」とも称され得る。車両移動状態には、停車状態、すなわち車速が0km/hである状態も含まれる。車両移動状態には、自車両の進行方向および車速が含まれる。自車両の進行方向を、以下「車両進行方向」と称する。車両移動状態は、複数の測距センサ21の各々における移動状態に対応する。
 電子制御装置30は、物体検知装置20の動作条件が成立した時点から、所定時間間隔で、所定のセンサ組み合わせにおける物体検知タイミングの到来を判定する。「動作条件」には、例えば、車速が所定範囲内であること、シフトポジションが所定ポジションであること、等が含まれる。
 「所定のセンサ組み合わせ」は、複数の測距センサ21のうちの一つを第一測距センサとして選択した場合の、当該第一測距センサと、第二測距センサとなり得る他の少なくとも一つの測距センサ21との組み合わせである。具体的には、例えば、第一測距センサとして第三フロントソナー211Cを選択した場合を想定する。この場合、「所定のセンサ組み合わせ」は、第一測距センサとしての第三フロントソナー211Cと、第二測距センサとなり得る他の複数の測距センサ21とを含む。この場合の「他の複数の測距センサ21」は、第一フロントソナー211A、第二サイドソナー213B、および第四フロントソナー211Dである。「所定のセンサ組み合わせ」は、「所定の第一測距センサの選択」とも称され得る。
 「物体検知タイミング」とは、所定のセンサ組み合わせ用いて物体位置Pを算出する、特定の時点である。すなわち、物体検知タイミングは、物体Bを検知するための後述するルーチンの起動時点である。
 物体検知タイミングは、所定のセンサ組み合わせの各々について、物体検知装置20の動作条件が成立した後、所定時間T(例えば200msec)間隔で到来する。すなわち、電子制御装置30は、所定時間T周期で、複数の測距センサ21のうちから第一測距センサを順に選択して、選択した第一測距センサによる探査波の発信と、直接波および間接波の検知とを実行する。よって、所定のセンサ組み合わせにおいて、物体検知タイミングは、所定時間T毎に到来する。所定時間Tは「演算周期」とも称される。また、第一測距センサとなり得る測距センサ21の個数をCとすると、物体検知装置20において、物体検知タイミングは、T/C毎に到来する。
 物体検知タイミングが到来すると、電子制御装置30は、物体検知動作を実行する。具体的には、電子制御装置30は、複数の測距センサ21のうちの所定の一個を第一測距センサとして選択して、選択した第一測距センサから探査波を発信させる。また、電子制御装置30は、複数の測距センサ21の各々の動作を制御して、複数の測距センサ21の各々から、測距情報を含む出力信号を受信する。すると、測距情報取得部301は、複数の測距センサ21の各々から出力された測距情報を取得する。すなわち、測距情報取得部301は、複数の測距センサ21の各々から受信した測距情報を、所定期間分、RAMまたは不揮発性RAMに時系列で一時的に格納する。
 位置算出部302は、測距情報取得部301による測距情報の取得結果に基づいて、物体位置Pを算出する。例えば、第一測距センサと第二測距センサを用いた物体検知動作の実行中に、直接波と間接波との双方がともに検知される場合がある。この場合、位置算出部302は、直接波に基づく測距情報と間接波に基づく測距情報とを用いた三角測量の原理により、物体位置Pを算出する。
 一方、物体検知動作の実行中に、三角測量が不成立となる場合がある。この場合、三角測量の原理により物体位置Pを算出することはできない。但し、この場合でも、直接波と間接波とのうちの一方のみが検知されることがある。具体的には、間接波は検知されない一方で直接波が検知されることがあり得る。あるいは、直接波は検知されない一方で間接波が検知されることがあり得る。この場合、検知された受信波が、物体位置Pを算出済みの物体Bによる反射波であれば、かかる物体位置Pの近傍に物体Bが存在する可能性が高い。そこで、位置算出部302は、三角測量が不成立でも、物体位置Pの推定値を算出する。
 測距情報取得部301は、直接波および間接波の検知状態を取得する。すなわち、測距情報取得部301は、今回の直接波の検知の有無、および、今回の間接波の検知の有無を、測距情報の取得結果に基づいて判定する。信頼度算出部303は、測距情報取得部301により取得した、直接波および間接波の検知状態に基づいて、指標値Nを算出する。具体的には、信頼度算出部303は、同一物体の検知回数が多いほど指標値Nが大きい値となるように、指標値Nを算出する。典型的には、信頼度算出部303は、同一物体についての直接波および間接波の双方の検知により、物体検知信頼度を高くする側に指標値Nを更新する。
 物体Bの検知の信頼度、すなわち、物体検知信頼度は、物体位置Pによって変動し得る。具体的には、例えば、物体位置Pが間接波領域RI内である場合があり得る。この場合、かかる物体位置Pに物体Bが位置することの確からしさが高い。
 一方、例えば、物体位置Pが間接波領域RI外であって且つ第一測距センサおよび第二測距センサうちの一方のみの直接波領域RD内である場合があり得る。この場合、かかる物体位置Pに物体Bが位置することの確からしさは、三角測量が成立中であっても、比較的低い。
 そこで、信頼度算出部303は、今回の所定のセンサ組み合わせにおける物体検知タイミング、すなわち、今回の指標値Nの算出タイミングにおける物体位置Pに応じて、同タイミングにおける更新値Vを決定する。具体的には、信頼度算出部303は、直接波領域RDおよび間接波領域RIと物体位置Pとの位置関係に応じて、更新値Vを決定する。
 例えば、直接波と間接波との双方が検知され、且つ、これらにより算出された物体位置Pが間接波領域RI内である場合があり得る。この場合、信頼度算出部303は、更新値Vを所定の正数δ1に設定する。
 また、例えば、直接波と間接波との双方が検知されるとともに、これらにより算出された物体位置Pが間接波領域RI外であって且つ直接波領域RD内である場合があり得る。この場合、信頼度算出部303は、更新値Vを所定の正数δ2に設定する。δ2<δ1である。
 信頼度算出部303は、前回の算出タイミングにて算出された指標値Nを、今回の算出タイミングにて決定された更新値Vにより更新する。これにより、今回の算出タイミングにおける指標値Nが算出される。具体的には、信頼度算出部303は、指標値Nの前回値に更新値Vを加算する。物体判定部304は、指標値Nが判定閾値Nthに達したことを判定条件として、対象物体の検知を判定する。
 特許文献1に記載の構成においては、三角測量成立前は、指標値Nは、判定閾値Nthに達し難い。具体的には、例えば、同構成においては、直接波および間接波のうちの一方のみの検知が同一物体について連続しても、指標値Nは上昇しない。同構成において、指標値Nが上昇するのは、三角測量成立中、すなわち、直接波および間接波の双方の検知中のみである。
 直接波および間接波のうちの一方のみの検知が、同一物体について連続する場合がある。具体的には、例えば、物体Bが自車両に接近中に、以下のような経過をたどることがあり得る。まず、図1に示されているように、物体Bが、直接波領域RDおよび間接波領域RIの外から、間接波領域RIの外であって直接波領域RDの外縁部内に進入することで、直接波のみが検知される。そして、直接波のみが検知される一方で間接波が検知されない状態が、所定期間継続する。その後、物体Bが間接波領域RI内に進入することで、直接波および間接波の双方が検知される。このように、直接波および間接波のうちの一方のみの検知が連続している物体Bは、その後、対象物体として検知されるべきものとなる可能性が高い。そこで、直接波および間接波のうちの一方のみが連続検知される期間中に、指標値Nを所定程度上昇させれば、かかる物体Bが対象物体である旨の検知判定がより早期に成立し得る。これにより、より適切な運転支援が実現され得る。
 この点、本実施形態において、信頼度算出部303は、指標値Nの算出にて、直接波および間接波のうちの一方のみの検知が同一物体について連続した場合に、物体検知信頼度を高くする側に指標値Nを更新する。具体的には、信頼度算出部303は、直接波のみの検知または間接波のみの検知が同一物体について連続した場合に、物体検知信頼度を高くする側に指標値Nを更新する。したがって、かかる構成を有する物体検知装置20、および、これにより実行される物体検知方法によれば、対象物体の検知がより早期に判定され得る。すなわち、上記構成および方法によれば、検知した物体Bが回避対象等となるものであるか否かを、より早期に判定することが可能となる。このように、上記構成および方法によれば、物体検知性能を従来よりもよりいっそう向上することが可能となる。
 また、信頼度算出部303は、直接波および間接波の双方の不検知が所定程度継続した場合に、指標値Nを低信頼度側のリセット値にリセットする。具体的には、信頼度算出部303は、直接波も間接波も検知しない状態が所定のリセット回数連続した場合、指標値Nをリセットする。指標値Nのリセット値は、例えば0である。
 (第一動作例)
 以下、本実施形態の構成による具体的な動作例について、図3Aおよび図3Bのフローチャートを用いて説明する。図3A以降にて図示されたフローチャートにおいて、「S」は、「ステップ」を略記したものである。また、図3A等において、WDは直接波を示し、WIは間接波を示す。
 説明の簡略化のため、本動作例において、運転支援制御部305が実行する運転支援動作は、自車両の前進時における衝突回避動作であるものとする。図3Aに示された物体検知ルーチンは、物体検知装置20の動作条件が不成立から成立に切り替わった時点に初回起動され、その後、物体検知装置20の動作条件が不成立となるまで、物体検知タイミングが到来する度に繰り返し起動される。
 例えば、最初の物体検知タイミングが到来すると、CPUは、第一フロントソナー211Aを第一測距センサとして選択して、図3Aに示された物体検知ルーチンを起動し実行する。次の物体検知タイミングが到来すると、CPUは、第二フロントソナー211Bを第一測距センサとして選択して、図3Aに示された物体検知ルーチンを起動し実行する。さらに次の物体検知タイミングが到来すると、CPUは、第三フロントソナー211Cを第一測距センサとして選択して、図3Aに示された物体検知ルーチンを起動し実行する。このようにして、所定時間T(例えば200msec)内に、第一測距センサとして選択可能なC個の測距センサ21が、それぞれ一回ずつ選択される。
 最初の物体検知タイミングの到来から所定時間T経過することで、第一フロントソナー211Aを第一測距センサとする物体検知タイミングが再度到来する。すると、CPUは、第一フロントソナー211Aを再び第一測距センサとして選択して、図3Aに示された物体検知ルーチンを起動し実行する。さらに次の物体検知タイミングが到来すると、CPUは、第二フロントソナー211Bを再び第一測距センサとして選択して、図3Aに示された物体検知ルーチンを起動し実行する。以下同様にして、物体検知装置20の動作条件が不成立となるまで、CPUは、第一測距センサを順次変更しつつ、図3Aに示された物体検知ルーチンを繰り返し起動し実行する。
 図3Aに示された物体検知ルーチンが起動されると、まず、ステップ310にて、CPUは、直接波と間接波との双方がともに検知されたか否かを判定する。直接波と間接波との双方がともに検知された場合(すなわちステップ310=YES)、三角測量が成立する。そこで、この場合、CPUは、ステップ320に処理を進行させる。
 ステップ320にて、CPUは、直接波距離と間接波距離とを用いた三角測量の原理により、今回検知した物体Bについて物体位置Pを算出する。直接波距離は、今回検知した直接波に基づく測距情報に対応する。間接波距離は、今回検知した間接波に基づく測距情報に対応する。なお、ステップ320における物体位置Pの算出に際しては、車速、ヨーレート、等の、車両移動状態が適宜勘案されることは、いうまでもない。
 ステップ320の処理に続いて、CPUは、ステップ330に処理を進行させる。ステップ330にて、CPUは、今回検知した物体Bが前回と同一物体であるか否かを判定する。「前回」とは、所定時間T前、すなわち、今回の所定のセンサ組み合わせと同一のセンサ組み合わせによる一演算周期前をいう。
 同一物体であるか否かの判定には、今回算出した物体位置P(i)と、前回算出した物体位置P(i-1)とが用いられる。具体的には、CPUは、ΔPxとΔPyとを算出する。ΔPxは、物体位置P(i)と物体位置P(i-1)との、X座標の差分である。X座標は車幅方向における位置に相当する。ΔPyは、物体位置P(i)と物体位置P(i-1)との、Y座標の差分である。Y座標は車両全長方向における位置に相当する。CPUは、ΔPxが所定閾値Δxよりも小さく、且つΔPyが所定閾値Δyよりも小さい場合に、同一物体であると判定する。
 今回検知した物体Bが前回とは異なる場合(すなわちステップ330=NO)、CPUは、ステップ331の処理を実行した後、本ルーチンを一旦終了する。ステップ331にて、CPUは、指標値Nをリセットする。一方、今回と前回とで同一物体を検知した場合(すなわちステップ330=YES)、CPUは、ステップ332~334の処理を順に実行する。
 ステップ332にて、CPUは、今回算出した物体位置Pに基づいて、更新値Vを決定する。ステップ333にて、CPUは、ステップ332にて決定した更新値Vを用いて、指標値Nを更新する。具体的には、CPUは、指標値Nの前回値に更新値Vを加算することで、指標値Nの今回値を算出する。
 ステップ334にて、CPUは、ステップ333にて更新した最新の指標値Nが判定閾値Nthに達したか否かを判定する。なお、「指標値Nが判定閾値Nthに達した」とは、指標値Nが判定閾値Nthよりも小さな値から判定閾値Nthと同値に変化したことのみを指すものではない。すなわち、「指標値Nが判定閾値Nthに達した」には、指標値Nが判定閾値Nthよりも小さな値から判定閾値Nthよりも大きな値に変化したことをも含む。よって、「指標値Nが判定閾値Nthに達した」は、「指標値Nが判定閾値Nth以上となった」とも言い換えられ得る。
 指標値Nが判定閾値Nthに達した場合(すなわちステップ334=YES)、CPUは、ステップ335に処理を進行させる。これに対し、指標値Nが判定閾値Nthに達していない場合(すなわちステップ334=NO)、CPUは、ステップ335の処理をスキップして、本ルーチンを一旦終了する。
 ステップ335にて、CPUは、今回検知した物体Bが自車両の進路内に存在するか否かを判定する。今回検知した物体Bが自車両の進路内である場合(すなわちステップ335=YES)、CPUは、ステップ336の処理を実行した後、本ルーチンを一旦終了する。一方、今回検知した物体Bが自車両の進路外である場合(すなわちステップ335=NO)、CPUは、ステップ336の処理をスキップして、本ルーチンを一旦終了する。
 ステップ336にて、CPUは、今回検知した物体Bが対象物体である旨判定する。すなわち、CPUは、今回検知した物体Bを、対象物体として検知する。この場合、CPUは、自車両の衝突回避制御を実行する。これにより、例えば、操舵角制御、減速制御、表示部26および/または警報音発生部27を用いた運転者への報知、等が実行される。
 直接波と間接波とのうちの少なくともいずれか一方が不検知の場合(すなわちステップ310=NO)、三角測量が不成立となる。そこで、この場合、CPUは、図3Bに示されたステップ340に処理を進行させる。
 ステップ340にて、CPUは、直接波および間接波のうちのいずれか一方が今回検知されたか否かを判定する。直接波および間接波のうちのいずれか一方が今回検知された場合(すなわちステップ340=YES)、CPUは、ステップ341に処理を進行させる。
 ステップ341にて、CPUは、受信波の検知状態が前回と同一であるか否かを判定する。具体的には、今回直接波のみが検知されたとすると、CPUは、直接波のみの検知が同一物体について連続したか否かを判定する。一方、今回間接波のみが検知されたとすると、CPUは、間接波のみの検知が同一物体について連続したか否かを判定する。同一物体であるか否かの判定は、上記と同様である。
 受信波の検知状態が前回と同一である場合(すなわちステップ341=YES)、CPUは、ステップ342の処理を実行した後、ステップ333に処理を進行させる。ステップ342にて、CPUは、更新値Vを正値+Vpに設定する。Vpは例えば1である。この場合、ステップ333にて、今回の指標値Nの算出値は、前回値に+Vpを加算した値となる。このステップ333以降の処理は、上記と同様である。
 受信波の検知状態が前回と異なる場合(すなわちステップ341=NO)、CPUは、ステップ343の処理を実行した後、ステップ333に処理を進行させる。ステップ343にて、CPUは、更新値Vを0に設定する。この場合、ステップ333にて、今回の指標値Nの算出値は、前回値と同一となる。このステップ333以降の処理は、上記と同様である。
 直接波および間接波の双方が不検知である場合(すなわちステップ340=NO)、CPUは、ステップ344に処理を進行させる。ステップ344にて、CPUは、直接波および間接波の双方の不検知が所定のリセット回数連続したか否かを判定する。
 直接波および間接波の双方の連続不検知回数がリセット回数に達していない場合(すなわちステップ344=NO)、CPUは、ステップ345の処理を実行した後、ステップ333に処理を進行させる。ステップ345にて、CPUは、更新値Vを負値-Vnに設定する。Vnは例えば1である。この場合、ステップ333にて、今回の指標値Nの算出値は、前回値からVnを減算した値となる。このステップ333以降の処理は、上記と同様である。
 直接波および間接波の双方の不検知がリセット回数連続した場合(すなわちステップ344=YES)、CPUは、ステップ346の処理を実行した後、本ルーチンを一旦終了する。ステップ346にて、CPUは、指標値Nをリセットする。
 (第二動作例)
 自車両の走行中、自車両と物体Bとの相対位置は、刻々と変化し得る。特に、自車両が操舵状態で走行中、すなわち、自車両の操舵角が0ではない所定量である場合、物体Bの水平方位が大きく変化し得る。このような状況においては、直接波および間接波の双方の検知による三角測量が一旦成立した後、一方が不検知となることで三角測量が不成立となる場合があり得る。
 三角測量不成立中は、三角測量成立中よりも、物体検知信頼度が低い。また、上記の通り、物体位置Pが間接波領域RI外である場合、物体Bの検知の信頼度は比較的低い。さらに、三角測量が成立から不成立に変化した場合、物体Bをロストした可能性がある。このため、このような場合に、直接波および間接波のうちの一方のみの連続検知により対象物体の検知判定を行うと、誤判定となる可能性がある。
 そこで、本動作例においては、物体判定部304は、直接波および間接波の双方の検知中に指標値Nが判定閾値Nth1に達したことを判定条件として、対象物体の検知を判定するようになっている。具体的には、信頼度算出部303は、直接波および間接波のうちの一方のみの検知中は、判定閾値Nth1に達しないように指標値Nをガードする。これにより、判定の確実性が向上する。すなわち、検知した物体Bが回避対象等となるものであるか否かを、より確実に判定することが可能となる。なお、「指標値Nが判定閾値Nthに達した」の意義は、上記の「指標値Nが判定閾値Nthに達した」と同様である。
 図4A~図4Cは、本動作例に対応するフローチャートである。図4Aに示された物体検知ルーチンの起動タイミングは、図3Aに示された物体検知ルーチンと同様である。図4A~図4C内のステップにおける、図3Aおよび図3B内のステップと同様の処理内容のものについては、上記動作例における説明を援用することができる。よって、かかるステップについては、説明を適宜簡略化する。
 図4Aに示された物体検知ルーチンが起動されると、まず、ステップ410にて、CPUは、直接波と間接波との双方がともに検知されたか否かを判定する。ステップ410の処理内容は、図3Aに示された物体検知ルーチンにおけるステップ310の処理内容と同様である。直接波と間接波との双方がともに検知された場合(すなわちステップ410=YES)、CPUは、ステップ420~422の処理を順に実行する。
 ステップ420にて、CPUは、無検知カウンタMをリセットする。無検知カウンタMは、直接波および間接波の双方の不検知が連続した回数を計数するための整数型カウンタである。無検知カウンタMのリセット値は0である。
 ステップ421にて、CPUは、直接波距離と間接波距離とを用いた三角測量の原理により、今回検知した物体Bについて物体位置Pを算出する。ステップ421の処理内容は、図3Aに示された物体検知ルーチンにおけるステップ320の処理内容と同様である。
 ステップ422にて、CPUは、三角測量フラグFをセットする(すなわちF=1)。三角測量フラグFは、三角測量成立中にセットされ、三角測量不成立中にリセットされるフラグである。
 ステップ422の処理に続いて、CPUは、ステップ430に処理を進行させる。ステップ430にて、CPUは、今回検知した物体Bが前回と同一物体であるか否かを判定する。ステップ430の処理内容は、図3Aに示された物体検知ルーチンにおけるステップ330の処理内容と同様である。
 今回検知した物体Bが前回とは異なる場合(すなわちステップ430=NO)、CPUは、ステップ431の処理を実行した後、本ルーチンを一旦終了する。ステップ431にて、CPUは、指標値Nをリセットする。ステップ431の処理内容は、図3Aに示された物体検知ルーチンにおけるステップ331の処理内容と同様である。
 一方、今回と前回とで同一物体を検知した場合(すなわちステップ430=YES)、CPUは、ステップ432~434の処理を順に実行する。ステップ432にて、CPUは、今回算出した物体位置Pに基づいて、更新値Vを決定する。ステップ433にて、CPUは、ステップ432にて決定した更新値Vを用いて、指標値Nを更新する。ステップ432および433の処理内容は、図3Aに示された物体検知ルーチンにおけるステップ332および333の処理内容と同様である。
 ステップ434にて、CPUは、ステップ433にて更新した最新の指標値Nが判定閾値Nth1に達したか否かを判定する。ステップ434の処理内容は、図3Aに示された物体検知ルーチンにおけるステップ334の処理内容と同様である。すなわち、ステップ434における判定閾値Nth1は、ステップ334における判定閾値Nthと同一である。
 指標値Nが判定閾値Nth1に達した場合(すなわちステップ434=YES)、CPUは、ステップ435に処理を進行させる。これに対し、指標値Nが判定閾値Nth1に達していない場合(すなわちステップ434=NO)、CPUは、ステップ435の処理をスキップして、本ルーチンを一旦終了する。
 ステップ435にて、CPUは、今回検知した物体Bが自車両の進路内に存在するか否かを判定する。今回検知した物体Bが自車両の進路内である場合(すなわちステップ435=YES)、CPUは、ステップ436の処理を実行した後、本ルーチンを一旦終了する。一方、今回検知した物体Bが自車両の進路外である場合(すなわちステップ435=NO)、CPUは、ステップ436の処理をスキップして、本ルーチンを一旦終了する。
 ステップ436にて、CPUは、今回検知した物体Bが対象物体である旨判定する。ステップ435および436の処理内容は、図3Aに示された物体検知ルーチンにおけるステップ335および336の処理内容と同様である。
 直接波と間接波とのうちの少なくともいずれか一方が不検知の場合(すなわちステップ410=NO)、三角測量が不成立となる。そこで、この場合、CPUは、図4Bに示されたステップ440に処理を進行させる。
 ステップ440にて、CPUは、直接波が今回検知されたか否かを判定する。直接波が今回検知された場合(すなわちステップ440=YES)、CPUは、ステップ451~453の処理を順に実行する。
 ステップ451にて、CPUは、無検知カウンタMをリセットする。ステップ452にて、CPUは、間接波検知カウンタKをリセットする。間接波検知カウンタKは、間接波のみの検知の連続回数を計数するための整数型カウンタである。間接波検知カウンタKのリセット値は0である。ステップ453にて、CPUは、直接波検知カウンタDをインクリメントする。すなわち、CPUは、直接波検知カウンタDの値に1を加算する。直接波検知カウンタDは、直接波のみの検知の連続回数を計数するための整数型カウンタである。直接波検知カウンタDのリセット値は0である。
 ステップ453の処理に続いて、CPUは、ステップ454に処理を進行させる。ステップ454にて、CPUは、直接波検知カウンタDが1を超えているか否かを判定する。すなわち、CPUは、直接波のみの検知が2回以上連続しているか否かを判定する。
 直接波検知カウンタDの値が1である場合(すなわちステップ454=NO)、今回の直接波のみの検知は単発のものであって、直接波のみの検知が連続しているわけではない。そこで、この場合、CPUは、ステップ459の処理を実行した後、ステップ433に処理を進行させる。ステップ459にて、CPUは、更新値Vを0に設定する。この場合、ステップ433にて、今回の指標値Nの算出値は、前回値と同一となる。
 直接波検知カウンタDが2以上である場合(すなわちステップ454=YES)、直接波のみの検知が連続していることになる。そこで、この場合、CPUは、ステップ455に処理を進行させる。ステップ455にて、CPUは、三角測量フラグFがリセットされているか否かを判定する。
 三角測量フラグFがセットされている場合(すなわちステップ455=NO)、これ以前に三角測量が成立していた期間にて、指標値Nの値が、判定閾値Nth1に近い程度にまで大きくなっている可能性がある。この状態で、直接波のみの連続検知により指標値Nを上昇させると、三角測量不成立中に指標値Nの値が判定閾値Nth1に達して対象物体検知が判定されることとなってしまう。
 そこで、本動作例においては、三角測量フラグFがセットされている場合(すなわちステップ455=NO)、CPUは、ステップ459の処理を実行した後、ステップ433に処理を進行させる。ステップ459にて、CPUは、更新値Vを0に設定する。この場合、ステップ433にて、今回の指標値Nの算出値は、前回値と同一となる。
 三角測量フラグFがリセットされている場合(すなわちステップ455=YES)、CPUは、ステップ456に処理を進行させる。ステップ456にて、CPUは、今回直接波により検知した物体Bが前回と同一物体であるか否かを判定する。ステップ456の処理における「前回」および「同一物体」の内容は、図3Aに示された物体検知ルーチンにおけるステップ330における内容と同様である。
 今回直接波により検知した物体Bが前回とは異なる場合(すなわちステップ456=NO)、CPUは、ステップ459の処理を実行した後、ステップ433に処理を進行させる。ステップ459にて、CPUは、更新値Vを0に設定する。この場合、ステップ433にて、今回の指標値Nの算出値は、前回値と同一となる。
 今回直接波により検知した物体Bが前回と同一物体である場合(すなわちステップ456=YES)、CPUは、ステップ457に処理を進行させる。ステップ457にて、CPUは、現在の指標値Nの値、すなわち、前回の指標値Nの算出値が、ガード値Nth2よりも小さいか否かを判定する。ガード値Nth2は、判定閾値Nth1近傍の値であって、判定閾値Nth1よりも小さい。ガード値Nth2と判定閾値Nth1との差ΔNthは、後述するVp1またはVp2のβ倍である。1<βであり、例えばβ≦4である。典型的には例えばβ=1.5~3である。Vp1とVp2とが異なる値の場合は、ΔNthは、Vp1とVp2とのうちの絶対値の大きな方のβ倍である。
 現在直接波のみを連続検知中の物体Bについて、これまでに三角測量が不成立であっても、直接波の多数回の連続検知のみによって指標値Nが判定閾値Nth1に達すると、三角測量不成立中に対象物体検知が判定されることとなってしまう。そこで、本動作例においては、現在の指標値Nの値がガード値Nth2以上となった場合(すなわちステップ457=NO)、CPUは、ステップ459の処理を実行した後、ステップ433に処理を進行させる。ステップ459にて、CPUは、更新値Vを0に設定する。この場合、ステップ433にて、今回の指標値Nの算出値は、前回値と同一となる。このように、本動作例においては、直接波のみの検知中は、判定閾値Nth1に達しないように指標値Nがガードされる。
 現在の指標値Nの値がガード値Nth2よりも小さい場合(すなわちステップ457=YES)、CPUは、ステップ458の処理を実行した後、ステップ433に処理を進行させる。ステップ458にて、CPUは、更新値Vを正値+Vp1に設定する。Vp1は例えば1である。この場合、ステップ433にて、今回の指標値Nの算出値は、前回値に+Vp1を加算した値となる。
 三角測量が不成立であり(すなわちステップ410=NO)、且つ直接波が今回検知されなかった場合(すなわちステップ440=NO)、CPUは、図4Cに示されたステップ460に処理を進行させる。
 ステップ460にて、CPUは、間接波が今回検知されたか否かを判定する。間接波が今回検知された場合(すなわちステップ460=YES)、CPUは、ステップ471~473の処理を順に実行する。
 ステップ471にて、CPUは、無検知カウンタMをリセットする。ステップ472にて、CPUは、直接波検知カウンタDをリセットする。ステップ473にて、CPUは、間接波検知カウンタKをインクリメントする。すなわち、CPUは、間接波検知カウンタKの値に1を加算する。
 ステップ473の処理に続いて、CPUは、ステップ474に処理を進行させる。ステップ474にて、CPUは、間接波検知カウンタKが1を超えているか否かを判定する。すなわち、CPUは、間接波のみの受信が2回以上連続しているか否かを判定する。
 間接波検知カウンタKの値が1である場合(すなわちステップ474=NO)、今回の間接波のみの受信は単発のものであって、間接波のみの受信が連続しているわけではない。そこで、この場合、CPUは、ステップ479の処理を実行した後、ステップ433に処理を進行させる。ステップ479にて、CPUは、更新値Vを0に設定する。この場合、ステップ433にて、今回の指標値Nの算出値は、前回値と同一となる。
 間接波検知カウンタKの値が2以上である場合(すなわちステップ474=YES)、間接波のみの受信が連続していることになる。そこで、この場合、CPUは、ステップ475に処理を進行させる。ステップ475にて、CPUは、三角測量フラグFがリセットされているか否かを判定する。
 三角測量フラグFがセットされている場合(すなわちステップ475=NO)、上記のステップ455と同様の理由により、CPUは、ステップ479の処理を実行した後、ステップ433に処理を進行させる。ステップ479にて、CPUは、更新値Vを0に設定する。この場合、ステップ433にて、今回の指標値Nの算出値は、前回値と同一となる。
 三角測量フラグFがリセットされている場合(すなわちステップ475=YES)、CPUは、ステップ476に処理を進行させる。ステップ476にて、CPUは、今回間接波により検知した物体Bが前回と同一物体であるか否かを判定する。
 今回間接波により検知した物体Bが前回とは異なる場合(すなわちステップ476=NO)、CPUは、ステップ479の処理を実行した後、ステップ433に処理を進行させる。ステップ479にて、CPUは、更新値Vを0に設定する。この場合、ステップ433にて、今回の指標値Nの算出値は、前回値と同一となる。
 今回間接波により検知した物体Bが前回と同一物体である場合(すなわちステップ476=YES)、CPUは、ステップ477に処理を進行させる。ステップ477にて、CPUは、現在の指標値Nの値、すなわち、前回の指標値Nの算出値が、ガード値Nth2よりも小さいか否かを判定する。
 現在の指標値Nの値がガード値Nth2以上となった場合(すなわちステップ477=NO)、CPUは、ステップ479の処理を実行した後、ステップ433に処理を進行させる。ステップ479にて、CPUは、更新値Vを0に設定する。この場合、ステップ433にて、今回の指標値Nの算出値は、前回値と同一となる。このように、本動作例においては、間接波のみの検知中は、判定閾値Nth1に達しないように指標値Nがガードされる。
 現在の指標値Nの値がガード値Nth2よりも小さい場合(すなわちステップ477=YES)、CPUは、ステップ478の処理を実行した後、ステップ433に処理を進行させる。ステップ478にて、CPUは、更新値Vを正値+Vp2に設定する。Vp2は例えば1である。この場合、ステップ433にて、今回の指標値Nの算出値は、前回値に+Vp2を加算した値となる。
 直接波および間接波の双方が今回不検知である場合(すなわちステップ460=NO)、CPUは、ステップ481および482の処理を順に実行する。ステップ481にて、CPUは、無検知カウンタMをインクリメントする。すなわち、CPUは、無検知カウンタMの値に1を加算する。ステップ482にて、CPUは、無検知カウンタMの値がリセット閾値Mthを超えたか否かを判定する。
 無検知カウンタMの値がリセット閾値Mth以下である場合(すなわちステップ482=NO)、CPUは、ステップ483の処理を実行した後、ステップ433に処理を進行させる。ステップ483にて、CPUは、更新値Vを負値-Vnに設定する。Vnは例えば2である。この場合、ステップ433にて、今回の指標値Nの算出値は、前回値からVnを減算した値となる。
 無検知カウンタMの値がリセット閾値Mthを超えた場合(すなわちステップ482=YES)、直接波および間接波の双方の不検知が所定のリセット回数連続したこととなる。そこで、この場合、CPUは、ステップ484および485の処理を実行した後、本ルーチンを一旦終了する。ステップ484にて、CPUは、三角測量フラグFをリセットする(すなわちF=0)。ステップ485にて、CPUは、指標値Nをリセットする。
 (第三動作例)
 上記の第二動作例においては、信頼度算出部303は、直接波および間接波のうちの一方のみの検知中は、判定閾値Nth1に達しないように指標値Nをガードした。これに対し、本動作例においては、指標値Nのガードに代わる別の手法を採用した。具体的には、本動作例においては、信頼度算出部303は、直接波および間接波のうちの一方のみの検知が同一物体について連続した場合の、指標値Nの更新回数に、上限を設けた。
 図5Aおよび図5Bは、本動作例に対応するフローチャートである。図5Aは、図4Bの一部を変更したものである。図5Bは、図4Cの一部を変更したものである。すなわち、本動作例は、図4A、図5A、および図5Bによって構成される。
 図5Aにおけるステップ540~556、558、および559の処理内容は、図4Bにおけるステップ440~456、458、および459の処理内容と同一である。図5Bにおけるステップ560~576、578、および579~585の処理内容は、図4Cにおけるステップ460~476、478、および479~485の処理内容と同一である。以下、変更点を主として説明する。
 図5Aを参照すると、ステップ556にて、CPUは、今回直接波により検知した物体Bが前回と同一物体であるか否かを判定する。今回直接波により検知した物体Bが前回と同一物体である場合(すなわちステップ556=YES)、CPUは、ステップ557に処理を進行させる。ステップ557にて、CPUは、直接波検知カウンタDが制限値Dthよりも小さいか否かを判定する。
 直接波検知カウンタDが制限値Dthよりも小さい場合(すなわちステップ557=YES)、CPUは、ステップ558の処理を実行した後、図4Aに示されたステップ433に処理を進行させる。ステップ558にて、CPUは、更新値Vを正値+Vp1に設定する。この場合、ステップ433にて、今回の指標値Nの算出値は、前回値に+Vp1を加算した値となる。
 これに対し、直接波検知カウンタDが制限値Dth以上である場合(すなわちステップ557=NO)、CPUは、ステップ559の処理を実行した後、図4Aに示されたステップ433に処理を進行させる。ステップ559にて、CPUは、更新値Vを0に設定する。この場合、ステップ433にて、今回の指標値Nの算出値は、前回値と同一となる。このように、本動作例によれば、直接波のみを連続検知した場合の、+Vp1の加算回数が、所定の上限回数「Dth-1」に制限される。
 同様に、図5Bを参照すると、ステップ576にて、CPUは、今回間接波により検知した物体Bが前回と同一物体であるか否かを判定する。今回間接波により検知した物体Bが前回と同一物体である場合(すなわちステップ576=YES)、CPUは、ステップ577に処理を進行させる。ステップ577にて、CPUは、間接波検知カウンタKが制限値Kthよりも小さいか否かを判定する。
 間接波検知カウンタKが制限値Kthよりも小さい場合(すなわちステップ577=YES)、CPUは、ステップ578の処理を実行した後、図4Aに示されたステップ433に処理を進行させる。ステップ578にて、CPUは、更新値Vを正値+Vp2に設定する。この場合、ステップ433にて、今回の指標値Nの算出値は、前回値に+Vp2を加算した値となる。
 これに対し、間接波検知カウンタKが制限値Kth以上である場合(すなわちステップ577=NO)、CPUは、ステップ579の処理を実行した後、図4Aに示されたステップ433に処理を進行させる。ステップ579にて、CPUは、更新値Vを0に設定する。この場合、ステップ433にて、今回の指標値Nの算出値は、前回値と同一となる。このように、本動作例によれば、間接波のみを連続検知した場合の、+Vp2の加算回数が、所定の上限回数「Kth-1」に制限される。
 (変形例)
 本開示は、上記実施形態に限定されるものではない。故に、上記実施形態に対しては、適宜変更が可能である。以下、代表的な変形例について説明する。以下の変形例の説明においては、上記実施形態との相違点を主として説明する。また、上記実施形態と変形例とにおいて、互いに同一または均等である部分には、同一符号が付されている。したがって、以下の変形例の説明において、上記実施形態と同一の符号を有する構成要素に関しては、技術的矛盾または特段の追加説明なき限り、上記実施形態における説明が適宜援用され得る。
 本開示は、上記実施形態にて示された具体的な装置構成に限定されない。すなわち、例えば、車両10は、四輪自動車に限定されない。具体的には、車両10は、三輪自動車であってもよいし、貨物トラック等の六輪または八輪自動車であってもよい。「物体」は、「障害物」とも言い換えられ得る。すなわち、「物体検知装置」は、「障害物検知装置」とも称され得る。
 測距センサ21の配置および個数は、上記の具体例に限定されない。すなわち、例えば、図1を参照すると、第三フロントソナー211Cが車幅方向における中央位置に配置される場合、第四フロントソナー211Dは省略される。同様に、第三リアソナー212Cが車幅方向における中央位置に配置される場合、第四リアソナー212Dは省略される。
 測距センサ21は、超音波センサに限定されない。すなわち、例えば、測距センサ21は、レーザレーダセンサ、またはミリ波レーダセンサであってもよい。車両移動状態すなわち走行状態の取得は、車速センサ22、シフトポジションセンサ23、操舵角センサ24、およびヨーレートセンサ25を用いた態様に限定されない。すなわち、例えば、ヨーレートセンサ25は省略され得る。あるいは、例えば、車両移動状態の取得の際に、上記以外のセンサが用いられ得る。
 上記実施形態においては、電子制御装置30は、CPUがROM等からプログラムを読み出して起動する構成であった。しかしながら、本開示は、かかる構成に限定されない。すなわち、例えば、電子制御装置30は、上記のような動作を可能に構成されたデジタル回路、例えばゲートアレイ等のASICであってもよい。ASICはAPPLICATION SPECIFIC INTEGRATED CIRCUITの略である。
 電子制御装置30は、車載通信ネットワークを介して、車速センサ22等と電気接続され得る。車載通信ネットワークは、CAN(国際登録商標)、FlexRay(国際登録商標)等の車載LAN規格に準拠して構成される。CAN(国際登録商標)は、Controller Area Networkの略である。LANはLocal Area Networkの略である。
 第一サイドソナー213A、第二サイドソナー213B、第三サイドソナー213C、および第四サイドソナー213Dは、それぞれ、直接波のみを検知可能に設けられていてもよい。あるいは、第一サイドソナー213A、第二サイドソナー213B、第三サイドソナー213C、および第四サイドソナー213Dは、省略され得る。
 本開示は、上記実施形態にて示された具体的な動作例および処理態様に限定されない。例えば、上記の動作概要および動作例は、自車両の前進時における衝突回避動作に対応するものであった。しかしながら、本開示は、かかる態様に限定されない。すなわち、本開示は、自車両の後退時にも、同様に適用され得る。また、運転支援動作は、衝突回避動作に限定されず、駐車支援動作であってもよいし、レベル1以上のレベルの自動運転動作であってもよい。
 第一測距センサおよび第二測距センサは、典型的には、互いに隣接する二個の測距センサ21である。しかしながら、本開示は、かかる態様に限定されない。すなわち、例えば、図1を参照すると、第二フロントソナー211Bと第三フロントソナー211Cとによっても三角測量は成立し得る。よって、第二フロントソナー211Bが第一測距センサであって第三フロントソナー211Cが第二測距センサである場合もあり得る。
 図2に示された機能ブロック構成は、本開示明の一実施形態を簡略的に説明するために便宜的に示された、単なる一例である。よって、本開示は、かかる機能ブロック構成に限定されるものではない。すなわち、機能配置に関しては、図2に示された具体的一例から、適宜変更され得る。
 上記の具体例においては、物体Bを静止物として説明を行ったが、本開示はかかる態様に限定されない。すなわち、例えば、物体Bが移動物である場合、自車両と物体Bとの相対移動の態様が、上記の各処理において考慮されることは、いうまでもない。また、この場合、車両移動状態を取得するためのセンサとして、CMOSセンサあるいはCCDセンサ等の画像センサも用いられ得る。CMOSはComplementary MOSの略である。CCDはCharge Coupled Deviceの略である。
 上記具体例において、信頼度算出部303は、直接波のみの検知または間接波のみの検知が同一物体について連続した場合に、物体検知信頼度を高くする側に指標値Nを更新するものであった。しかしながら、本開示は、かかる態様に限定されない。すなわち、信頼度算出部303は、直接波および間接波のうちの一方のみの検知が同一物体について連続した場合に、物体検知信頼度を高くする側に指標値Nを更新するものであればよい。
 同一物体か否かの判定手法についても、上記の具体例のような、座標の差分に基づくものに限定されない。すなわち、かかる判定に際しては、座標の差分に代えて、あるいはこれとともに、距離差、受信強度、周波数変調状態、等の、他の情報が用いられ得る。
 「連続」は、回数ではなく、時間によって判定されてもよい。すなわち、信頼度算出部303は、直接波および間接波のうちの一方のみの検知が同一物体について所定時間継続した場合に、物体検知信頼度を高くする側に指標値Nを更新するものであってもよい。具体的には、カウンタに代えてタイマが用いられ得る。
 図3Bにおいて、ステップ341の直前に、ステップ320と同様の「物体位置P算出」のステップが挿入され得る。この場合の、物体位置Pの算出は、推定値の算出となる。
 ステップ454にて、CPUは、直接波のみの検知がG回以上連続しているか否かを判定してもよい。Gは2以上の整数であり、典型的には2である。ステップ554についても同様である。同様に、ステップ474にて、CPUは、間接波のみの検知がH回以上連続しているか否かを判定してもよい。Hは2以上の整数であり、典型的には2である。ステップ574についても同様である。
 ステップ457とステップ477とで、異なるガード値を設定してもよい。同様に、ステップ557とステップ577とで、異なるガード値を設定してもよい。
 ステップ455とステップ457とのうちの一方は、省略され得る。同様に、ステップ475とステップ477とのうちの一方は、省略され得る。同様に、ステップ555とステップ557とのうちの一方は、省略され得る。同様に、ステップ575とステップ577とのうちの一方は、省略され得る。
 上記第二動作例および第三動作例においては、或る物体Bについての三角測量成立により、三角測量フラグFがセットされる。その後、同フラグがリセットされるまでの間に、直接波および間接波のうちの一方のみの検知が別物体について連続する場合があり得る。この場合、信頼度算出部303は、当該別物体についての検知が所定回数連続したことを条件として、指標値Nをリセットするようになっていてもよい。
 具体的には、例えば、上記第二動作例において、CPUは、ステップ456の判定が「NO」の場合、かかるNO判定が所定回数連続したか否かを判定する。そして、かかるNO判定が所定回数連続した場合、CPUは、指標値Nをリセットし、ルーチンを一旦終了する。このとき、CPUは、三角測量フラグFをリセットしてもよい。これに対し、かかるNO判定の連続回数が所定回数に達していない場合、CPUは、ステップ459に処理を進行させる。上記第三動作例(すなわちステップ556の判定)についても同様である。
 同様に、CPUは、ステップ476の判定が「NO」の場合、かかるNO判定が所定回数連続したか否かを判定する。そして、かかるNO判定が所定回数連続した場合、CPUは、指標値Nをリセットし、ルーチンを一旦終了する。このとき、CPUは、三角測量フラグFをリセットしてもよい。これに対し、かかるNO判定の連続回数が所定回数に達していない場合、CPUは、ステップ459に処理を進行させる。上記第三動作例(すなわちステップ576の判定)についても同様である。
 「算出」、「演算」、「取得」、「推定」等の、互いに概念が類似する表現同士は、技術的矛盾が生じない限り、互いに入れ替え可能である。また、各判定処理における不等号は、等号付きであってもよいし、等号無しであってもよい。すなわち、例えば、「閾値以上」は、「閾値を超える」に変更され得る。
 変形例も、上記の例示に限定されない。また、複数の変形例が、互いに組み合わされ得る。更に、上記実施形態の全部または一部と、変形例の全部または一部とが、互いに組み合わされ得る。
 上記の各機能構成および方法は、コンピュータプログラムにより具体化された一つあるいは複数の機能を実行するようにプログラムされたプロセッサおよびメモリーを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、上記の各機能構成および方法は、一つ以上の専用ハードウエア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、上記の各機能構成および方法は、一つあるいは複数の機能を実行するようにプログラムされたプロセッサおよびメモリーと一つ以上のハードウエア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。

Claims (12)

  1.  移動体(10)の外側に向けて探査波を送信するとともに前記探査波の物体(B)による反射波を含む受信波を検知することで前記移動体の周囲の前記物体との距離に対応する測距情報を出力する測距センサ(21)を複数搭載する前記移動体の外側に存在する前記物体を検知するように構成された、物体検知装置(20)であって、
     複数の前記測距センサのうちの一つである第一測距センサにおける前記受信波であって当該第一測距センサから送信された前記探査波の前記反射波に起因する直接波、および、複数の前記測距センサのうちの他の一つである第二測距センサにおける前記受信波であって前記第一測距センサから送信された前記探査波の前記反射波に起因する間接波の、検知状態を取得する検知状態取得部(301)と、
     前記検知状態取得部により取得した前記検知状態に基づいて、前記物体の検知の信頼度に対応する指標値を算出する信頼度算出部(303)と、
     前記信頼度が高いことに対応する判定閾値に前記指標値が達したことを判定条件として、前記移動体の運転支援制御にて考慮すべき前記物体である対象物体の検知を判定する物体判定部(304)と、を備え、
     前記信頼度算出部は、前記直接波および前記間接波のうちの一方のみの検知が同一物体について連続した場合に、前記信頼度を高くする側に前記指標値を更新する、
     物体検知装置。
  2.  前記物体判定部は、前記直接波および前記間接波の双方の検知中に前記指標値が前記判定閾値に達したことを前記判定条件として、前記対象物体の検知を判定する、
     請求項1に記載の物体検知装置。
  3.  前記信頼度算出部は、前記直接波および前記間接波のうちの一方のみの検知中は、前記判定閾値に達しないように前記指標値をガードする、
     請求項1または2に記載の物体検知装置。
  4.  前記信頼度算出部は、前記直接波のみの検知または前記間接波のみの検知が同一物体について連続した場合に、前記信頼度を高くする側に前記指標値を更新する、
     請求項1~3のいずれか1つに記載の物体検知装置。
  5.  前記信頼度算出部は、前記直接波および前記間接波の双方の不検知が所定程度継続した場合に、前記指標値を低信頼度側のリセット値にリセットする、
     請求項1~4のいずれか1つに記載の物体検知装置。
  6.  前記直接波に基づく前記測距情報と前記間接波に基づく前記測距情報とを用いた三角測量の原理により、前記物体の前記移動体との相対位置を算出する位置算出部(302)をさらに備え、
     前記信頼度算出部は、同一物体についての前記直接波および前記間接波の双方の検知により、前記信頼度を高くする側に前記指標値を更新する、
     請求項1~5のいずれか1つに記載の物体検知装置。
  7.  移動体(10)の外側に向けて探査波を送信するとともに前記探査波の物体(B)による反射波を含む受信波を検知することで前記移動体の周囲の前記物体との距離に対応する測距情報を出力する測距センサ(21)を複数搭載する前記移動体の外側に存在する前記物体を検知する、物体検知方法であって、
     複数の前記測距センサのうちの一つである第一測距センサにおける前記受信波であって当該第一測距センサから送信された前記探査波の前記反射波に起因する直接波、および、複数の前記測距センサのうちの他の一つである第二測距センサにおける前記受信波であって前記第一測距センサから送信された前記探査波の前記反射波に起因する間接波の、検知状態を取得し、
     取得した前記検知状態に基づいて、前記物体の検知の信頼度に対応する指標値を算出し、
     前記信頼度が高いことに対応する判定閾値に前記指標値が達したことを判定条件として、前記移動体の運転支援制御にて考慮すべき前記物体である対象物体の検知を判定し、
     前記指標値の算出にて、前記直接波および前記間接波のうちの一方のみの検知が同一物体について連続した場合に、前記信頼度を高くする側に前記指標値を更新する、
     物体検知方法。
  8.  前記直接波および前記間接波の双方の検知中に前記指標値が前記判定閾値に達したことを前記判定条件として、前記対象物体の検知を判定する、
     請求項7に記載の物体検知方法。
  9.  前記直接波および前記間接波のうちの一方のみの検知中は、前記判定閾値に達しないように前記指標値をガードする、
     請求項7または請求項8に記載の物体検知方法。
  10.  前記指標値の算出にて、前記直接波のみの検知または前記間接波のみの検知が同一物体について連続した場合に、前記信頼度を高くする側に前記指標値を更新する、
     請求項7~請求項9のいずれか1つに記載の物体検知方法。
  11.  前記直接波および前記間接波の双方の不検知が所定程度継続した場合に、前記指標値を低信頼度側のリセット値にリセットする、
     請求項7~請求項10のいずれか1つに記載の物体検知方法。
  12.  前記直接波に基づく前記測距情報と前記間接波に基づく前記測距情報とを用いた三角測量の原理により、前記物体の前記移動体との相対位置を算出し、
     前記指標値の算出にて、同一物体についての前記直接波および前記間接波の双方の検知により、前記信頼度を高くする側に前記指標値を更新する、
     請求項7~請求項11のいずれか1つに記載の物体検知方法。
PCT/JP2019/043143 2019-01-25 2019-11-01 物体検知装置および物体検知方法 WO2020152935A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-011590 2019-01-25
JP2019011590A JP7132861B2 (ja) 2019-01-25 2019-01-25 物体検知装置および物体検知方法

Publications (1)

Publication Number Publication Date
WO2020152935A1 true WO2020152935A1 (ja) 2020-07-30

Family

ID=71735442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043143 WO2020152935A1 (ja) 2019-01-25 2019-11-01 物体検知装置および物体検知方法

Country Status (2)

Country Link
JP (1) JP7132861B2 (ja)
WO (1) WO2020152935A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6289282B1 (en) * 1998-09-15 2001-09-11 Mannesmann Vdo Ag Method of determining the distance between and object and a device of varying location
US20150097704A1 (en) * 2013-10-08 2015-04-09 Mando Corporation Method and apparatus of determining position of obstacle, and parking assist method and system
JP2016081449A (ja) * 2014-10-22 2016-05-16 株式会社デンソー 物体検知装置
JP2016080643A (ja) * 2014-10-22 2016-05-16 株式会社デンソー 物体検知装置
JP2019095302A (ja) * 2017-11-22 2019-06-20 アイシン精機株式会社 物体検出装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6484000B2 (ja) * 2014-10-22 2019-03-13 株式会社デンソー 物体検知装置
JP6798424B2 (ja) * 2017-05-30 2020-12-09 株式会社デンソー 電子制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6289282B1 (en) * 1998-09-15 2001-09-11 Mannesmann Vdo Ag Method of determining the distance between and object and a device of varying location
US20150097704A1 (en) * 2013-10-08 2015-04-09 Mando Corporation Method and apparatus of determining position of obstacle, and parking assist method and system
JP2016081449A (ja) * 2014-10-22 2016-05-16 株式会社デンソー 物体検知装置
JP2016080643A (ja) * 2014-10-22 2016-05-16 株式会社デンソー 物体検知装置
JP2019095302A (ja) * 2017-11-22 2019-06-20 アイシン精機株式会社 物体検出装置

Also Published As

Publication number Publication date
JP7132861B2 (ja) 2022-09-07
JP2020118618A (ja) 2020-08-06

Similar Documents

Publication Publication Date Title
WO2018198574A1 (ja) 障害物検知装置
JP7167675B2 (ja) 物体検知装置および物体検知方法
US10451722B2 (en) In-vehicle object determining apparatus
JP6484000B2 (ja) 物体検知装置
US20150353078A1 (en) Driving assistance apparatus
CN108140323B (zh) 用于机动车中的环境检测时改进的数据融合的方法和设备
US11052907B2 (en) Parking control device and parking control method
JP6303975B2 (ja) 障害物警報装置
KR101964858B1 (ko) 충돌 방지 장치 및 충돌 방지 방법
JP2016080641A (ja) 物体検知装置
JP6442225B2 (ja) 物体検知装置
JP5075656B2 (ja) 物体検知装置
JP7147648B2 (ja) 運転支援装置
JP4082286B2 (ja) 前方物体位置検出装置
JP2019133324A (ja) 物体検知装置および駐車支援装置
JP2021043164A (ja) 物体検知装置および物体検知方法
WO2020152935A1 (ja) 物体検知装置および物体検知方法
CN113581174B (zh) 一种车辆的障碍物定位方法及障碍物定位装置
WO2016063533A1 (ja) 車載用物体判別装置
KR20180007211A (ko) 차량의 후방 추돌경보시스템
JP2018165945A (ja) 障害物検知装置
WO2020013057A1 (ja) 交差道路推定装置
JP2001215274A (ja) 車両周辺監視装置
WO2023032568A1 (ja) 物体検知装置、物体検知方法、および物体検知プログラム
JP6820132B2 (ja) 運転支援装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19911569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19911569

Country of ref document: EP

Kind code of ref document: A1