WO2020151440A1 - 唾液检测装置、唾液检测系统及其操作方法 - Google Patents

唾液检测装置、唾液检测系统及其操作方法 Download PDF

Info

Publication number
WO2020151440A1
WO2020151440A1 PCT/CN2019/127557 CN2019127557W WO2020151440A1 WO 2020151440 A1 WO2020151440 A1 WO 2020151440A1 CN 2019127557 W CN2019127557 W CN 2019127557W WO 2020151440 A1 WO2020151440 A1 WO 2020151440A1
Authority
WO
WIPO (PCT)
Prior art keywords
saliva
detection device
electrode
polymer layer
saliva detection
Prior art date
Application number
PCT/CN2019/127557
Other languages
English (en)
French (fr)
Inventor
吴峥
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/768,270 priority Critical patent/US12048421B2/en
Publication of WO2020151440A1 publication Critical patent/WO2020151440A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/0045Devices for taking samples of body liquids
    • A61B10/0051Devices for taking samples of body liquids for taking saliva or sputum samples
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1486Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using enzyme electrodes, e.g. with immobilised oxidase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3272Test elements therefor, i.e. disposable laminated substrates with electrodes, reagent and channels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3273Devices therefor, e.g. test element readers, circuitry
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/04Friction generators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0204Operational features of power management
    • A61B2560/0214Operational features of power management of power generation or supply
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0247Pressure sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/029Humidity sensors

Definitions

  • the present disclosure relates to the field of medical instruments, in particular to a saliva detection device, a saliva detection system and an operation method thereof.
  • Saliva is relatively simple to obtain and store, and there are biomarkers for various diseases in saliva, so it can be used for early diagnosis and treatment of diseases, effectively reducing the probability of serious illnesses, and playing a role in the treatment of possible complications
  • An important role, as a continuously regenerating fluid, saliva provides a huge "physiological snapshot" database, making saliva more practical as a diagnostic specimen.
  • the sampling operation of saliva samples is simple and convenient, which avoids the pain and anxiety caused by traditional invasive sample collection methods, such as blood sampling or tissue biopsy. Therefore, saliva samples have a very important value in clinical chemistry examinations.
  • the present disclosure provides a saliva detection device, a saliva detection system and an operation method thereof.
  • a saliva detection device includes a flexible triboelectric component configured to supply power to the saliva detection device and sequentially includes: a first electrode; a first polymer The polymer layer is configured to be in contact with the surface of the first electrode, and has a concave-convex structure on the surface opposite to the first electrode; the second polymer layer, which faces the first electrode A high-molecular polymer layer has a concave-convex structure on the surface; and a second electrode configured to be in contact with the surface of the second high-molecular polymer layer on the opposite side of the concave-convex structure, wherein When the flexible friction power generation component is flexibly deformed, the concave and convex structures of the first polymer layer and the second polymer layer rub against each other and pass through the first electrode and the second electrode Output electrical signals.
  • the flexible deformation includes bending, and the flexible triboelectric component is configured to output periodic alternating current signals through the first electrode and the second electrode through repeated bending and restoration.
  • the saliva detection device further includes a stepping motor configured to periodically oscillate to drive the flexible friction power generation assembly to bend and recover repeatedly.
  • the saliva detection device further has an electric storage component configured to store the electric energy generated by the flexible friction power generation component.
  • the uneven structure is a micro- and/or nano-level uneven structure.
  • the stacking direction of the first electrode, the first polymer layer, the second polymer layer and the second electrode of the flexible triboelectric component is perpendicular to the opening direction of the electrochemical reaction sample tank , And the thickness of the flexible triboelectric component is consistent with the size of the cross section of the sample collector along the stacking direction.
  • the thickness of the triboelectric component is about 380 ⁇ m.
  • the sample collector has an arc as a whole so that both ends in the length direction are higher than the middle part, and an electrochemical reaction sample tank is provided in the sample collector for collecting saliva samples.
  • the sample collector is made of the same flexible material as the first polymer layer and the second polymer layer.
  • the saliva detection device further includes a sample collector, an electrochemical sensor, and an electrical signal transmission member, wherein the sample collector has an arc such that the middle is lower than two sides and an electrochemical reaction sample tank is provided inside;
  • the electrochemical sensor is arranged in the electrochemical reaction sample tank to detect the components in the saliva sample and generate corresponding electric signals; and the electric signal transmission member is configured to transmit the electric signals.
  • the flexible triboelectric component is arranged at the bottom of the sample collector and is wrapped by a flexible waterproof insulating material.
  • the first polymer layer and the second polymer layer are made of hydrophobic materials.
  • the saliva detection device further includes: a conductive column, which is arranged on the sample collector, and is configured to electrically stimulate the salivary glands of a subject wearing the saliva detection device.
  • a liquid inlet is opened on the outer wall of the sample collector for saliva to enter the electrochemical reaction sample tank through it.
  • the saliva detection device further includes: a sample amount reminder member configured to determine the amount of saliva sample in the electrochemical reaction sample tank, and when the amount of saliva sample detected reaches a preset threshold A reminder is issued at time and the detection of the electrochemical sensor is started.
  • the sample amount reminder component includes any one of the following components arranged in the electrochemical reaction sample tank to determine the saliva in the electrochemical reaction sample tank based on the detection result of the component Amount of sample: a humidity sensor configured to detect the humidity in the electrochemical reaction sample tank; a liquid level sensor configured to detect the liquid level in the electrochemical reaction sample tank; and a pressure sensor configured to detect The pressure in the electrochemical reaction sample tank.
  • the electrochemical sensor is configured to detect the glucose content in saliva and includes a working electrode in the form of nanospheres and loaded with riboflavin adenine nucleotide complexes. Glucose dehydrogenase or glucose oxidase.
  • a saliva detection system including the saliva detection device according to any one of the embodiments of the present disclosure and a terminal, the terminal including: a communication interface configured to receive The electrical signal transmitted by the electrical signal transmission member; and the processor, configured to process and analyze the received electrical signal to directly convert it into the content of saliva components, the saliva components including glucose.
  • the terminal further includes: a display configured to display the content of the saliva component.
  • an operating method of the saliva detection system described above including: deforming the flexible friction power generation component to generate electric energy, using an electric storage component to store the generated electric energy; and placing the saliva detection device In the user's mouth, the stored electric energy is used to drive the sample collector, the electrochemical sensor and the electrical signal transmission member to operate to obtain the detection data; the detection data is transmitted to the processor for processing to obtain the detection result; and the detection result is displayed on the display.
  • deforming the flexible friction power generation component includes repeatedly bending and restoring the flexible friction power generation component by a stepping motor or manually.
  • Fig. 1 is a schematic structural diagram of a saliva detection device according to an embodiment of the present disclosure
  • Fig. 2 is a schematic structural diagram of a flexible triboelectric component of a saliva detection device according to an embodiment of the present disclosure
  • Fig. 3 is a schematic structural diagram of a saliva detection device according to an embodiment of the present disclosure.
  • Figure 4a is a schematic structural diagram of a saliva detection device according to an embodiment of the present disclosure.
  • Figure 4b is a schematic structural diagram of a saliva detection device according to an embodiment of the present disclosure.
  • Fig. 5 is a schematic structural diagram of a saliva detection system according to an embodiment of the present disclosure.
  • Fig. 6 is a flowchart of an operating method of a saliva detection system according to an embodiment of the present disclosure.
  • electrochemical biosensors have excellent characteristics.
  • Existing electrochemical biodetectors often need an external power supply when they are in use, which is not conducive to carry around and cannot be detected anytime and anywhere.
  • the state of saliva samples will significantly affect the test results. For example, the amount of saliva samples collected is small, or contains more bubbles, or is contaminated during the collection process, and the existing saliva detection devices cannot be avoided well. these questions.
  • Fig. 1 is a schematic structural diagram of a saliva detection device according to an embodiment of the present disclosure.
  • the present disclosure provides a saliva detection device 105.
  • the saliva detection device 105 includes a flexible friction power generation assembly 100 configured to Power is supplied to the saliva detection device 105.
  • the specific structure of the flexible friction power generation assembly 100 is shown in FIG. 2.
  • the flexible friction power generation assembly 100 sequentially includes: a first electrode 101; a first polymer polymer
  • the object layer 102 is configured to be in contact with the surface of the first electrode 101, and has an uneven structure on the surface opposite to the first electrode 101; the second polymer layer 103, which faces the first polymer
  • the surface of the polymer layer 102 has an uneven structure; and a second electrode 104, the second electrode 104 is configured to be in contact with the surface on the opposite side of the uneven structure of the second polymer layer 103, wherein the flexible friction power generation component
  • the flexible friction power generation assembly 100 works as a friction generator, and the first electrode 101 and the second electrode 104 can be used as voltage and current output electrodes of the friction generator to provide power.
  • the material of the first electrode 101 and the material of the second electrode 104 may be independently selected from conductive adhesives, indium tin oxide, graphene, carbon nanotubes, silver nanowire films, metals or alloys.
  • the metal is gold, silver, aluminum, nickel, copper, titanium, iron, or tungsten
  • the alloy is aluminum alloy, iron alloy, magnesium alloy, copper alloy, zinc alloy, lead alloy, etc., which are not specifically limited here.
  • the layers of the flexible friction power generation component 100 are bent, since the surfaces of the first polymer layer 102 and the second polymer layer 103 both have uneven structures, the surface of the polymer layer
  • the electrostatic charge is generated by friction between each other, and the generation of static charge changes the capacitance between the first electrode 101 and the second electrode 104, resulting in a potential difference between the first electrode 101 and the second electrode 104, and free electrons will be detected by saliva
  • the transmission circuit (not shown in the figure) in the device 105 flows from the side with low potential to the side with high potential, thereby forming a current in the transmission circuit.
  • the internal potential between the first electrode 101 and the second electrode 104 disappears.
  • the flexible friction power generation assembly 100 is configured to output periodic alternating current signals through the first electrode 101 and the second electrode 104 through repeated bending and restoration. Therefore, by repeatedly rubbing and restoring the flexible friction power generation assembly 100, a periodic alternating current signal can be formed in the transmission circuit to power the saliva detection device 105.
  • the flexible friction power generation assembly 100 may be repeatedly bent and restored manually or by a motor, so that the first electrode 101 and the second electrode 104 output periodic alternating current signals.
  • the saliva detection device 105 may further include a stepping motor 200 configured to periodically oscillate to drive the flexible friction power generation assembly 100 to repeatedly bend and recover.
  • the stepping motor 200 is an open-loop control element that can convert an electrical pulse signal into an angular displacement or a linear displacement. The speed and acceleration of the stepping motor 200 can be controlled by controlling the pulse frequency to make it happen.
  • the periodic oscillation drives the flexible friction power generation assembly 100 to repeatedly bend and recover, thereby generating periodic alternating current signals.
  • the stepping motor 200 for periodically driving the flexible friction power generation assembly 100 may have an oscillation frequency of 0.33 Hz to achieve a deformation of about 0.3%, which makes the maximum output voltage of the flexible friction power generation assembly 100 reach 8V And the maximum output current has reached 9 ⁇ A.
  • the saliva detection device 105 may also have an electric storage component 300 configured to store the electric energy generated by the flexible friction power generation assembly 100.
  • the electricity storage component 300 can be an energy storage capacitor, a battery, etc., which can be directly connected to the first electrode 101 and the second electrode 104 to store the electrical energy generated by the flexible friction power generation assembly 100, or can be connected to the saliva detection device 105
  • the user does not need to make the flexible friction power generation assembly 100 generate electricity every time before using the saliva detection device 105, but only in the power storage component 300
  • the flexible friction power generation component 100 is deformed to generate electricity, which is convenient and quick to use and can significantly increase the service life of the flexible friction power generation component 100.
  • the concave-convex structure of the first polymer layer 102 and the second polymer layer 103 opposite to each other is a micron and/or nano-scale concave-convex structure, and the first polymer having the concave-convex structure
  • the polymer layer 102 and the second polymer layer 103 can be prepared through various processes.
  • the high-molecular polymer colloid solution can be coated on the surface of the template after the surface roughening treatment, and then dried and peeled off; or, the high-molecular polymer colloid solution can also be coated on the flat surface of the template, dried and then Stripping to obtain a flat high-molecular polymer layer, and subjecting the flat high-molecular polymer layer to surface roughening treatment, such as sanding with sandpaper, to obtain a corresponding high-molecular polymer layer having the uneven structure.
  • surface roughening treatment such as sanding with sandpaper
  • the template may be a metal plate, a glass base, a silicon substrate, or the like.
  • the high molecular polymer may be polydimethylsiloxane (PDMS), polymethylmethacrylate (PMMA), polyvinyl acetate (PVA), polyacrylamide (PAN), polyvinylidene Vinyl fluoride (PVDF), polyimide film, polyoxymethylene film, ethyl cellulose film, polyamide film, polyethylene glycol succinate film, cellulose film, cellulose acetate film, fiber (regenerated ) Any one or several of sponge film, rayon film, polymethyl methacrylate film, etc., are not specifically limited here.
  • the drying operation may be performed at room temperature for 10 hours, or may be performed at 45-75 degrees Celsius for 4-6 hours.
  • the material of the first polymer layer 102 and the material of the second polymer layer 103 may be different.
  • the “friction electrode sequence” mentioned in this disclosure is based on the degree of attraction of the high-molecular polymer layer materials to the charges. When the two high-molecular polymer layer materials are in contact with each other, they will be on the friction surface. The upper negative charge is transferred from the surface of the material with more positive polarity in the triboelectrode sequence to the surface of the material with more negative polarity in the triboelectrode sequence.
  • this charge transfer is related to the surface work function of the polymer layer material.
  • the charge transfer is realized by the transfer of electrons or ions on the friction surface.
  • the friction electrode sequence is only a statistical result based on experience, that is, the farther the two polymer layer materials differ in the sequence, the positive and negative of the charge generated after contact is consistent with the sequence. The greater the probability, and the actual results are affected by many factors, such as the surface roughness of the material, environmental humidity and whether there is relative friction and so on.
  • the saliva detection device 105 further includes a sample collector 400, an electrochemical sensor 401 and an electrical signal transmission member 402.
  • the sample collector 400 has a curvature such that the middle is lower than the two sides, and an electrochemical reaction sample tank 403 is provided inside.
  • the sample collector 400 of this structure is easier to fit the teeth, so that the collected The saliva samples are gathered in the middle of the sample collector 400 to quickly collect the saliva samples; the electrochemical sensor 401 is arranged in the electrochemical reaction sample tank 403 to detect the components in the saliva sample and generate corresponding electrical signals; and
  • the signal transmission member 402 (not shown in FIGS.
  • the sample collector 400 is configured to transmit the electrical signals collected by the electrochemical sensor 401 to a microcontroller in the saliva device or an external electronic device or server, so as to analyze the saliva sample.
  • the sample collector 400 is made of a flexible material.
  • the flexible high-molecular polymer used to prepare the first high-molecular polymer layer and the second high-molecular polymer layer as described above may also be used, for example, Polydimethylsiloxane (PDMS), polymethylmethacrylate (PMMA), polyvinyl acetate (PVA), polyacrylamide (PAN), polyvinylidene fluoride (PVDF), polyimide film, Polyoxymethylene film, ethyl cellulose film, polyamide film, polyethylene glycol succinate film, cellulose film, cellulose acetate film, fiber (regenerated) sponge film, rayon film, polymethacrylic acid Any one or several of the methyl ester film etc. are not specifically limited here.
  • PDMS Polydimethylsiloxane
  • PMMA polymethylmethacrylate
  • PVA polyvinyl acetate
  • PAN polyacrylamide
  • PVDF polyvinylidene fluoride
  • polyimide film Polyoxymethylene film, ethyl cellulose film,
  • the flexible triboelectric component 100 may be arranged at the bottom of the sample collector 400 and be wrapped by a flexible waterproof insulating material.
  • the stacking direction of the first electrode, the first polymer layer, the second polymer layer, and the second electrode of the flexible triboelectric component is perpendicular to the electrochemical reaction sample tank.
  • the size of the flexible triboelectric component 100 is consistent with the size of the cross section of the sample collector 400 along the stacking direction, and the thickness is about 380 ⁇ m.
  • the flexible triboelectric component 100 thus arranged can be bent and restored along the curvature of the sample collector.
  • the flexible friction power generation component 100 can be pasted to the bottom of the sample collector 400 with conductive glue, and the flexible friction power generation component 100 can be wrapped with a flexible waterproof insulating material to prevent the flexible friction power generation component 100 from being wetted by saliva or leaking the electrical energy generated by it. The service life and the safety of the saliva detection device 105 are improved.
  • FIG. 4b shows a schematic diagram of the assembly of the flexible friction power generation assembly 100 and the sample collector 400.
  • the flexible friction power generation component 100 and the sample collector 400 are made of flexible materials, so they can have a similar curvature.
  • the first polymer layer in the flexible friction power generation component The concavo-convex structures of 102 and the second polymer layer 103 opposite to each other generate electric energy by friction.
  • FIG. 4b only shows one way of arranging the flexible friction power generation assembly 100 and the sample collector 400. The application is not limited to this, and a flexible insulating material package is also provided outside the flexible friction power generation assembly 100.
  • the width of the flexible friction power generation assembly 100 may be the same as the width of the sample collector 400, so as to be set in the oral cavity for saliva collection and detection.
  • the first polymer layer 102 and the second polymer layer 103 are made of hydrophobic materials.
  • hydrophobic materials such as hydrophobic paper
  • the use of hydrophobic materials (such as hydrophobic paper) for the first polymer layer 102 and the second polymer layer 103 can reduce the sensitivity of the flexible friction power generation component 100 to environmental humidity, even if the flexible friction power generation component 100 is in contact with the saliva sample, it will not be wetted, affecting the power generation efficiency, and can improve the printing resolution of the metal electrode by minimizing the spraying of the metal electrode material (such as the tailing effect of nickel ink).
  • the hydrophobic material It is also possible to prevent the electrode layer materials of the first electrode 101 and the second electrode 104 from diffusing into the high molecular polymer layer.
  • Saliva can have a variety of components to be tested that are meaningful for diagnosis, such as glucose, salivary amylase, lysozyme, and virus antibodies.
  • the electrochemical sensor 401 may include a reference electrode 404 for providing a reference potential and maintaining a stable potential, a working electrode 405, and a To provide the counter electrode 406 of the return circuit.
  • the working electrode 405 takes the form of nanospheres and is loaded with riboflavin adenine nucleotide complexed glucose dehydrogenase or glucose oxidase.
  • the working electrode 405 in the form of nano-microspheres has a small volume and is easy to integrate on the electrochemical sensor 401.
  • the riboflavin adenine nucleotides on the working electrode 405 can be combined with glucose dehydrogenase or glucose oxidase in the saliva.
  • the action of glucose generates an electrical signal.
  • the electrochemical sensor 401 can collect the electrical signal by the coulometric method, that is, all electrical signals generated are included in the calculation to ensure that the lower glucose content in the saliva sample can also be accurately detected.
  • the thin-film gold electrode is used as the working electrode 405 of the electrochemical sensor 401
  • the Ag/AgCl electrode is used as the reference electrode 404 of the electrochemical sensor 401
  • the gold electrode is used as the counter electrode 406 of the electrochemical sensor 401.
  • the sexual material acts as an electronic mediator, and uses glutaraldehyde to cross-link and immobilize glucose oxidase.
  • the electrochemical sensor 401 can be manufactured using various processes. For example, taking a thin-film gold electrode as the working electrode 405, the Ag/AgCl electrode as the reference electrode 404, and the gold electrode as the counter electrode 406 as an example of the electrochemical sensor 401, the production process may include: Draw a stripe mask pattern on the plastic substrate; vacuum sputtering nickel-chromium/gold (10nm/100nm) electrode layer on the plastic substrate through the micro-electromechanical system (MEMS) process; remove the mask to obtain a gold electrode array, where the thickness of the gold layer Less than 100nm; screen printing Ag/AgCl mixed paste on the reference electrode by screen printing process, dry in a drying oven at 120°C for 5 minutes to make Ag/AgCl reference electrode; paste the double-sided tape on the plastic substrate, Expose the basic working electrode, Ag/AgCl reference electrode and gold counter electrode.
  • MEMS micro-electromechanical system
  • the electrocatalytic oxidation of glucose is a kinetic control process. Therefore, it is necessary to modify the basic working electrode of the electrochemical sensor 401 to form a catalytic material film with a high specific surface area on the surface of the basic working electrode. Improve the response signal of the electrochemical process controlled by kinetics to reduce the detection limit of glucose. Specifically, before modifying the basic working electrode obtained in the manufacturing process of the electrochemical sensor 401, it needs to be placed in an ultrasonic cleaner, cleaned with deionized water for 5 minutes, and the basic working electrode is naturally dried after taking it out.
  • the specific modification procedures include: taking the concentration of 1.5U/ ⁇ L 1.5 ⁇ L of glucose oxidase (GOD) solution and drip it on the surface of the basic working electrode that has been preliminarily modified with ferrocene ethanol solution; after dripping 1 ⁇ L of bovine serum albumin (BSA) with a mass fraction of 1% Dry the basic working electrode at room temperature; add 1.5 ⁇ L of glutaraldehyde solution with a mass fraction of 1.5% for cross-linking and immobilization of the enzyme; wash away the unfixed free enzyme and monomer with deionized water and leave it at room temperature
  • BSA bovine serum albumin
  • the saliva detection device 105 further includes: a conductive column 500 arranged on the sample collector 400 for electrically stimulating the salivary glands of a subject wearing the saliva detection device 105.
  • the conductive column 500 receives the control command sent by the microcontroller in the saliva detection device 105 or an external electronic device or server, and performs electrical stimulation on the salivary glands of the subject wearing the saliva detection device 105 according to preset parameters, To reduce the collection time of saliva samples.
  • a liquid inlet is opened on the outer wall of the sample collector 400 for saliva to enter the electrochemical reaction sample tank 403 through it, and the liquid inlet can quickly allow the saliva to enter the electrochemical reaction sample tank 403. At the same time, the saliva is prevented from contacting other components in the saliva detection device 105, which affects the performance of the saliva detection device 105.
  • the saliva detection device 105 further includes: a sample amount reminder member 600 configured to determine the amount of the saliva sample in the electrochemical reaction sample tank 403, and to determine the amount of the saliva sample When the amount reaches the preset threshold, a reminder is issued and the detection of the electrochemical sensor 401 is started.
  • the sample amount reminding component 600 can determine the amount of saliva sample according to various parameters such as humidity, liquid level, and pressure in the electrochemical reaction sample tank 403.
  • the electrochemical reaction sample tank 403 is provided for obtaining The sensor of the parameter.
  • the sample amount reminding component 600 includes any one of the following components arranged in the electrochemical reaction sample tank 403 to determine the amount of saliva sample in the electrochemical reaction sample tank 403 based on the detection result of the component:
  • the humidity sensor is configured to detect the humidity in the electrochemical reaction sample tank;
  • the liquid level sensor is configured to detect the liquid level in the electrochemical reaction sample tank 403;
  • the pressure sensor is configured to detect the electrochemical reaction sample tank 403
  • the sample reminder component 600 determines the amount of saliva sample through the detection results of the components arranged in the electrochemical reaction sample tank 403 to obtain an appropriate amount of saliva sample to avoid the insufficient amount of saliva sample to affect the detection result , And can prompt the user in time when an appropriate amount of saliva sample is obtained, which is convenient and quick.
  • the saliva detection device 105 may also include a microcontroller and a display.
  • the microcontroller receives the electrical signal collected by the sensor and processes and analyzes the electrical signal to obtain the content of saliva. The result of processing and analysis is displayed, thereby realizing an intelligent and portable saliva detection device 105.
  • the saliva detection device 105 may also include a wireless transceiver module and an energy storage module.
  • the wireless transceiver module is used to send electrical signals to external electronic devices or servers, such as mobile phones, computers, clouds, etc. To store the electrical energy generated by the flexible friction power generation assembly 100.
  • the saliva detection device 105 provided by the present disclosure uses the flexible friction power generation assembly 100 to supply power to the saliva detection device 105, which realizes the integration of power supply, sampling and detection, and is efficient and convenient.
  • only the detection and electrical signal transmission functions may be retained in the saliva detection device 105, and the processing of electrical signals related to saliva components is implemented by the terminal.
  • the saliva worn in the oral cavity can be detected.
  • the structure of the device 105 is more compact, which improves user-friendliness; further, multiple saliva detection devices 105 can be communicatively connected to the same terminal for saliva component analysis and display. In this way, multiple saliva detection devices 105 can share the same terminal. Terminal, thereby reducing the cost of the saliva detection system, and also more convenient for maintenance work when a certain device fails.
  • FIG. 5 is a schematic structural diagram of a saliva detection system according to an embodiment of the present disclosure.
  • an embodiment of the present disclosure also provides a saliva detection system 700, including the saliva detection system 700 according to any one of the embodiments of the present disclosure.
  • the saliva detection device 105 and the terminal 800, the terminal 800 includes: a communication interface 801 configured to receive electrical signals transmitted from the electrical signal transmission member 402; and a processor 802 configured to process and analyze the received electrical signals, In order to convert it directly into the content of saliva components, the saliva components include glucose.
  • the terminal 800 may include a mobile phone, a tablet computer, a server, etc.
  • the electrical signal transmission member 402 may be a transmission wire.
  • the transmission wire is respectively connected to the communication interface 801 on the terminal and the communication interface on the saliva detection device 105,
  • the data processing process of the electrical signal by the processor 802 can be set to a direct reading format, that is, in the form of a standard curve, a standard table, etc., according to the The electrical signal directly reads the content of saliva components without the need for repeated data processing, which can greatly speed up the data processing process and reduce power consumption.
  • the saliva detection system 700 provided by the present disclosure uses the flexible friction power generation component 100 to supply power to the saliva detection device 105, which realizes the integration of power supply, sampling and detection, and is efficient and convenient.
  • the terminal 800 may further include: a display 803 configured to display the content of saliva components.
  • the display 803 can display the content of saliva components in various forms such as curves and tables, so that the user can quickly read the content data of saliva components.
  • the embodiment of the present disclosure also provides an operating method of the above saliva detection system, including step S10: deforming the flexible friction power generation component to generate electric energy through a stepping motor or manually repeatedly bending and restoring the flexible friction power generation component, Use the electricity storage component to store the generated electrical energy; Step S20: Place the saliva detection device in the user's mouth, and use the stored electrical energy to drive the sample collector, electrochemical sensor and electrical signal transmission member to operate to obtain detection data; S30: The detection data is transmitted to the processor for processing to obtain the detection result; and S40: the detection result is displayed on the display.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Pulmonology (AREA)
  • Emergency Medicine (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

一种唾液检测装置、唾液检测系统及其操作方法,唾液检测装置包括柔性摩擦发电组件,被配置为向唾液检测装置供电且依序包括:第一电极;第一高分子聚合物层,被配置为与第一电极的表面接触,且在与第一电极相反侧的表面上带有凹凸结构;第二高分子聚合物层,其在面对第一高分子聚合物层的表面上带有凹凸结构;以及第二电极,被配置为与第二高分子聚合物层的凹凸结构的相反侧的表面接触,其中,在柔性摩擦发电组件发生柔性形变时,第一高分子聚合物层和第二高分子聚合物层两者的凹凸结构相互摩擦,并通过第一电极和第二电极输出电信号。该唾液检测装置及系统利用柔性摩擦发电组件为唾液检测装置供电,实现了供电-采样-检测的一体化,且高效便捷。

Description

唾液检测装置、唾液检测系统及其操作方法
相关申请的交叉引用
本申请要求于2019年1月25日提交的申请号为201910074709.9、发明名称为“一种唾液检测装置及系统”的中国专利的优先权,该申请在此以引文方式整体并入本文。
技术领域
本公开涉及医疗仪器领域,尤其涉及一种唾液检测装置、唾液检测系统及其操作方法。
背景技术
唾液的获取和储存都较为简单,并且唾液中存在多种疾病的生物标志物,因此可以用于疾病的早期诊断和治疗,有效降低重病发生的概率,且在可能发生的并发症治疗中发挥着重要作用,作为一种不断再生液,唾液提供了一个巨大的“生理快照”数据库,使得以唾液作为诊断标本更具实用性。唾液样品的采样操作简单方便,避免了传统侵入性的样本收集方法引起的痛苦和焦虑,如血液采样或组织活检,因此,唾液标本在临床化学检查中有着非常重要的价值。
发明内容
本公开提供了一种唾液检测装置、唾液检测系统及其操作方法。
根据本公开的第一方面,提供了一种唾液检测装置,所述唾液检测装置包括柔性摩擦发电组件,被配置为向所述唾液检测装置供电且依序包括:第一电极;第一高分子聚合物层,被配置为与所述第一电极的表面接触,且在与所述第一电极相反侧的表面上带有凹凸结构;第二高分子聚合物层,其在面对所述第一高分子聚合物层的表面上带有凹凸结构;以及第二电极,所述第二电极配置为与所述第二高分子聚合物层的凹凸结构的相反侧的表面接触,其中,在所述柔性摩擦发电组件发生柔性形变时,所述第一高分子聚合 物层和所述第二高分子聚合物层两者的凹凸结构相互摩擦,并通过所述第一电极和所述第二电极输出电信号。
在一些实施例中,所述柔性形变包括弯曲,所述柔性摩擦发电组件被配置为通过反复的弯曲和恢复通过所述第一电极和所述第二电极输出周期性的交流电信号。
在一些实施例中,所述唾液检测装置还包括:步进电机,被配置为周期性振荡以驱动所述柔性摩擦发电组件进行反复的弯曲和恢复。
在一些实施例中,所述唾液检测装置还具有储电部件,被配置为存储由所述柔性摩擦发电组件生成的电能。
在一些实施例中,所述凹凸结构是微米和/或纳米级别的凹凸结构。
在一些实施例中,所述柔性摩擦发电组件的第一电极、第一高分子聚合物层、第二高分子聚合物层和第二电极的叠置方向垂直于电化学反应样品槽的开口方向,以及所述柔性摩擦发电组件的厚度与所述样品采集器沿所述叠置方向的横截面的尺寸一致。
在一些实施例中,所述摩擦发电组件的厚度约为380μm。
在一些实施例中,所述样品采集器整体上具有弧度使其在长度方向两端高于中部,以及所述样品采集器内设置有电化学反应样品槽,用于采集唾液样品。
在一些实施例中,所述样品采集器采用与第一高分子聚合物层和第二高分子聚合物层相同的柔性材料制备。
在一些实施例中,所述第一高分子聚合物层的材料与所述第二高分子聚合物层的材料之间存在摩擦电极序差异。
在一些实施例中,所述唾液检测装置还包括样品采集器、电化学传感器和电信号传输构件,其中,所述样品采集器具有弧度使得中间低于两边且内设有电化学反应样品槽;所述电化学传感器设置在所述电化学反应样品槽内,以对唾液样品中的成分进行检测并生成相应的电信号;以及所述电信号传输构件被配置为传输所述电信号。
在一些实施例中,所述柔性摩擦发电组件布置在所述样品采集器的底部,且由柔性防水绝缘材料包裹。
在一些实施例中,所述第一高分子聚合物层和所述第二高分子聚合物层采用疏水性材料。
在一些实施例中,所述唾液检测装置还包括:导电柱,设置于所述样品采集器上,被配置为电刺激佩戴唾液检测装置的受检者的唾液腺。
在一些实施例中,所述样品采集器的外壁上开有进液口,以供唾液通过其进入所述电化学反应样品槽中。
在一些实施例中,所述唾液检测装置还包括:样品量提醒构件,被配置为确定所述电化学反应样品槽中的唾液样品的量,并在所检测的唾液样品的量达到预设阈值时发出提醒并启动所述电化学传感器的检测。
在一些实施例中,所述样品量提醒构件包括设置在所述电化学反应样品槽中的如下任何一种构件,以基于所述构件的检测结果来确定所述电化学反应样品槽中的唾液样品的量:湿度传感器,被配置为检测所述电化学反应样品槽内的湿度;液位传感器,被配置为检测所述电化学反应样品槽内的液位;以及压力传感器,被配置为检测所述电化学反应样品槽内的压力。
在一些实施例中,所述电化学传感器被配置为检测唾液中的葡萄糖含量,且包括工作电极,所述工作电极采用纳米微球的形式,且负载有核黄素腺嘌呤核苷酸络合葡萄糖脱氢酶或葡萄糖氧化酶。
根据本公开的第二方面,提供了一种唾液检测系统,包括根据本公开实施例中任一项所述的唾液检测装置和终端,所述终端包括:通信接口,被配置为接收来自所述电信号传输构件传输的电信号;以及处理器,被配置为对所接收的电信号进行处理分析,以将其直接转换为唾液成分的含量,所述唾液成分包括葡萄糖。
在一些实施例中,所述终端还包括:显示器,被配置为显示所述唾液成分的含量。
根据本公开的第三方面,提供了一种上述唾液检测系统的操作方法,包括:使所述柔性摩擦发电组件变形以产生电能,利用储电部件存储产生的电能;将所述唾液检测装置放置于用户口中,利用存储的电能驱动所述样品采集器、电化学传感器和电信号传输构件操作,获得检测数据;将检测数据传输到处理器进行处理获得检测结果;以及通过显示器显示检测结果。
在一些实施例中,使所述柔性摩擦发电组件变形包括:通过步进电机或者手动地反复弯曲和恢复所述柔性摩擦发电组件。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为根据本公开实施例的唾液检测装置的结构示意图;
图2为根据本公开实施例的唾液检测装置的柔性摩擦发电组件的结构示意图;
图3为根据本公开实施例的唾液检测装置的结构示意图;
图4a为根据本公开实施例的唾液检测装置的结构示意图;
图4b为根据本公开实施例的唾液检测装置的结构示意图;
图5为根据本公开实施例的唾液检测系统的结构示意图;以及
图6为根据本公开实施例的唾液检测系统的操作方法的流程图。
具体实施方式
为了使得本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
基于目前对快速及时检测的需求不断提高,迫切的需要开发出针对唾液中生物标志物进行高可靠性检测的方法及装置,在这方面,电化学生物传感器具有优异的特性。现有的电化学生物检测器在使用时,往往需要外接电源,这样不利于随身携带,无法做到随时随地地检测。此外,唾液样品的状态会显著影响检测结果,例如唾液样品的采集量较少,或者含有较多气泡,或者 在采集的过程中被污染,而现有的唾液检测装置并不能够很好的避免这些问题。
为了保持本公开实施例的以下说明清楚且简明,本公开省略了已知功能和已知部件的详细说明。
图1为根据本公开实施例的一种唾液检测装置的结构示意图,如图1所示,本公开提供了一种唾液检测装置105,该唾液检测装置105包括柔性摩擦发电组件100,被配置为向该唾液检测装置105供电,具体的,在本实施例中,柔性摩擦发电组件100的具体结构如图2所示,柔性摩擦发电组件100依序包括:第一电极101;第一高分子聚合物层102,被配置为与第一电极101的表面接触,且在与第一电极101相反侧的表面上带有凹凸结构;第二高分子聚合物层103,其在面对第一高分子聚合物层102的表面上带有凹凸结构;以及第二电极104,第二电极104配置为与第二高分子聚合物层103的凹凸结构的相反侧的表面接触,其中,在柔性摩擦发电组件100发生柔性形变时,第一高分子聚合物层102和第二高分子聚合物层103两者的凹凸结构相互摩擦,并通过第一电极101和第二电极104输出电信号。在一些实施例中,柔性摩擦发电组件100作为摩擦发电机工作,而第一电极101和第二电极104可作为该摩擦发电机的电压和电流输出电极,以提供电力。
在一些实施例中,第一电极101的材料和第二电极104的材料可以分别独立地选自导电胶、铟锡氧化物、石墨烯、碳纳米管、银纳米线膜、金属或合金,其中金属是金、银、铝、镍、铜、钛、铁或钨,合金是铝合金、铁合金、镁合金、铜合金、锌合金、铅合金等,在此不做具体限定。具体说来,在柔性摩擦发电组件100的各层进行弯曲时,由于第一高分子聚合物层102和第二高分子聚合物层103的表面上均带有凹凸结构,高分子聚合物层表面间相互摩擦产生静电荷,静电荷的产生使第一电极101和第二电极104之间的电容发生改变,从而导致第一电极101和第二电极104之间出现电势差,自由电子将通过唾液检测装置105中的传输电路(图中未示出)由电势低的一侧流向电势高的一侧,从而在传输电路中形成电流,当柔性摩擦发电组件100的各层恢复到初始状态时,在第一电极101和第二电极104之间的内电势消失,此时,已平衡的第一电极101和第二电极104之间再次产生反向的电势差,自由电子通过传输电路形成反向电流。这样,在一些实施例中,柔性摩擦发电组件100被配置为通过反复的弯曲和恢复,从而通过第一电极101 和第二电极104输出周期性的交流电信号。由此,通过对柔性摩擦发电组件100进行反复的摩擦和恢复,就可以在传输电路中形成周期性的交流电信号,以为唾液检测装置105供电。
在一些实施例中,可以通过手动或电机对柔性摩擦发电组件100进行反复的弯曲和恢复,以使第一电极101和第二电极104输出周期性的交流电信号。在一些实施例中,如图3所示,唾液检测装置105还可以包括:步进电机200,被配置为周期性振荡以驱动柔性摩擦发电组件100进行反复的弯曲和恢复。具体说来,步进电机200是一种能够将电脉冲信号转变为角位移或线位移的开环控制元件,可以通过控制脉冲频率来控制步进电机200转动的速度和加速度,以使其发生周期性的振荡以驱动柔性摩擦发电组件100进行反复的弯曲和恢复,进而产生周期性的交流电信号。作为本公开的示例,用于周期性驱动柔性摩擦发电组件100的步进电机200可以具有0.33Hz的振荡频率以实现大约0.3%的形变,其使得柔性摩擦发电组件100的最大输出电压达到了8V且最大输出电流达到了9μA。
在一些实施例中,如图3所示,唾液检测装置105还可以具有储电部件300,被配置为存储由柔性摩擦发电组件100生成的电能。可选的,储电部件300可以为储能电容、蓄电池等,其可以直接与第一电极101和第二电极104连接以储存由柔性摩擦发电组件100生成的电能,也可以与唾液检测装置105中的传输电路连接,以利用其中剩余的电力对唾液检测装置105供电,如此,用户无需在每次使用唾液检测装置105之前都使柔性摩擦发电组件100发电,而仅仅在储电部件300中电力不足时,才进行柔性摩擦发电组件100的变形发电,从而使用方便快捷且能够显著增加柔性摩擦发电组件100的使用寿命。
在一些实施例中,第一高分子聚合物层102和第二高分子聚合物层103的彼此相对的凹凸结构是微米和/或纳米级别的凹凸结构,具有所述凹凸结构的第一高分子聚合物层102和第二高分子聚合物层103可以通过多种工序来制备。例如,可以将高分子聚合物胶体溶液涂覆于表面粗糙化处理后的模板表面,然后进行干燥并剥离;或者,也可以将高分子聚合物胶体溶液涂覆于平整的模板表面,进行干燥并剥离以得到平整的高分子聚合物层,并对平整的高分子聚合物层进行表面粗糙化处理,例如采用砂纸进行打磨,来得到具有所述凹凸结构的相应的高分子聚合物层。
在一些实施例中,该模板可以为金属板、玻璃基、硅基板等。在一些实施例中,高分子聚合物可以为聚二甲基硅氧烷(PDMS)、聚甲基丙烯酸甲酯(PMMA)、聚醋酸乙烯酯(PVA)、聚丙烯酰胺(PAN)、聚偏氟乙烯(PVDF)、聚酰亚胺薄膜、聚甲醛薄膜、乙基纤维素薄膜、聚酰胺薄膜、聚乙二醇丁二酸酯薄膜、纤维素薄膜、纤维素乙酸酯薄膜、纤维(再生)海绵薄膜、人造纤维薄膜、聚甲基丙烯酸甲酯薄膜等中的任何一种或数种,在此不做具体限定。在一些实施例中,所述干燥操作可以在室温下执行10小时,或者也可以在加热至45-75摄氏度的情况下执行4-6小时。
在一些实施例中,第一高分子聚合物层102的材料与第二高分子聚合物层103的材料之间存在摩擦电极序差异。例如,第一高分子聚合物层102的材料与第二高分子聚合物层103的材料可以不同。本公开中所述的“摩擦电极序”,是根据高分子聚合物层的材料对电荷的吸引程度将其进行的排序,两种高分子聚合物层材料在互相接触摩擦的瞬间,在摩擦面上负电荷从摩擦电极序中极性较正的材料表面转移至摩擦电极序中极性较负的材料表面,一般认为,这种电荷转移和高分子聚合物层的材料的表面功函数相关,通过电子或者离子在摩擦面上的转移而实现电荷转移。需要说明的是,摩擦电极序只是一种基于经验的统计结果,即两种高分子聚合物层的材料在该序列中相差越远,接触后所产生电荷的正负性和该序列相符合的几率就越大,而且实际的结果受到很多种因素的影响,比如材料的表面粗糙程度、环境湿度和是否有相对摩擦等。通过使得第一高分子聚合物层102的材料与第二高分子聚合物层103的材料之间存在摩擦电极序差异,能够便利柔性摩擦发电组件100中的电荷转移以及相应地便利发电。
在一些实施例中,如图3所示,唾液检测装置105还包括样品采集器400、电化学传感器401和电信号传输构件402。例如,如图4所示,样品采集器400具有弧度使得中间低于两边,且内设有电化学反应样品槽403,这种结构的样品采集器400更易于与牙齿贴合,使采集到的唾液样品汇聚到样品采集器400的中部,以便快速的收集唾液样品;电化学传感器401设置在电化学反应样品槽403内,以对唾液样品中的成分进行检测并生成相应的电信号;以及电信号传输构件402(未在图4a和图4b中示出)被配置为将电化学传感器401采集到的电信号传输至唾液装置中的微控制器或外部的电子设备或服务器,以对唾液样品中的成本进行进一步分析,在此不做具体限定。在一 些实施例中,样品采集器400由柔性材料制备,例如也可以采用如上所述的用于制备第一高分子聚合物层和第二高分子聚合物层的柔性高分子聚合物制备,例如聚二甲基硅氧烷(PDMS)、聚甲基丙烯酸甲酯(PMMA)、聚醋酸乙烯酯(PVA)、聚丙烯酰胺(PAN)、聚偏氟乙烯(PVDF)、聚酰亚胺薄膜、聚甲醛薄膜、乙基纤维素薄膜、聚酰胺薄膜、聚乙二醇丁二酸酯薄膜、纤维素薄膜、纤维素乙酸酯薄膜、纤维(再生)海绵薄膜、人造纤维薄膜、聚甲基丙烯酸甲酯薄膜等中的任何一种或数种,在此不做具体限定。
在一些实施例中,如图4a所示,柔性摩擦发电组件100可以布置在样品采集器400的底部,且由柔性防水绝缘材料包裹。具体的,在本实施例中,所述柔性摩擦发电组件的第一电极、第一高分子聚合物层、第二高分子聚合物层和第二电极的叠置方向垂直于电化学反应样品槽的开口方向。柔性摩擦发电组件100的尺寸与样品采集器400沿所述叠置方向的横截面的尺寸一致,厚度约为380μm。如此设置的柔性摩擦发电组件100可以沿着样品采集器的弧度进行弯曲和恢复。可以利用导电胶将柔性摩擦发电组件100粘贴至样品采集器400的底部,并采用柔性防水绝缘材料包裹柔性摩擦发电组件100,防止柔性摩擦发电组件100被唾液沾湿或泄漏其生成的电能,以提高其使用寿命和唾液检测装置105的使用安全性。
图4b示出了柔性摩擦发电组件100与样品采集器400的组合件的示意图。由以上描述可知,柔性摩擦发电组件100和样品采集器400均由柔性材料制备,因此可以具有类似的弧度,通过弯曲和恢复该组合件,使得柔性摩擦发电组件中的第一高分子聚合物层102和第二高分子聚合物层103的彼此相对的凹凸结构摩擦产生电能。图4b仅仅是示出了布置柔性摩擦发电组件100和样品采集器400的一种方式。本申请不限于此,柔性摩擦发电组件100外部还设置有柔性绝缘材料包裹。柔性摩擦发电组件100的宽度可以与样品采集器400的宽度相同,以便于设置到口腔中对唾液进行采集检测。
在一些实施例中,第一高分子聚合物层102和第二高分子聚合物层103采用疏水性材料制备。具体说来,第一高分子聚合物层102和第二高分子聚合物层103采用疏水性材料(例如疏水纸)可以降低柔性摩擦发电组件100对环境的湿度的敏感度,即使柔性摩擦发电组件100与唾液样品接触,也不会被沾湿,影响发电效率,并且可以通过最小化喷涂金属电极材料(如镍墨 水的拖尾效应),以提高金属电极的印刷分辨率,此外,疏水性材料还能够防止第一电极101和第二电极104的电极层材料扩散至高分子聚合物层。
唾液可以具有多种对诊断有意义的待检成分,例如葡萄糖、唾液淀粉酶、溶菌酶、病毒抗体等。以配置为检测唾液中的葡萄糖含量的电化学传感器401为例,如图4所示,该电化学传感器401可以包括用于提供参考电位并保持电位稳定的参比电极404、工作电极405和用于提供回流电路的对电极406。在一些实施例中,工作电极405采用纳米微球的形式,且负载有核黄素腺嘌呤核苷酸络合葡萄糖脱氢酶或葡萄糖氧化酶。纳米微球形式的工作电极405的体积较小,便于集成于电化学传感器401上,工作电极405上的核黄素腺嘌呤核苷酸络合葡萄糖脱氢酶或葡萄糖氧化酶能够与唾液中的葡萄糖作用进而生成电信号,电化学传感器401可以采用库伦电量法收集该电信号,即将生成的全部电信号均纳入计算,以保证唾液样品中的较低的葡萄糖含量也能被准确检测出来。在本实施例中,采用薄膜金电极作为电化学传感器401的工作电极405,Ag/AgCl电极作为电化学传感器401的参比电极404,金电极作为电化学传感器401的对电极406,以有机功能性材料作为电子媒介体,并利用戊二醛交联固定葡萄糖氧化酶。
电化学传感器401可以采用各种工艺来制造。例如,以采用薄膜金电极作为工作电极405、Ag/AgCl电极作为的参比电极404、且金电极作为对电极406的电化学传感器401为例,其制作流程可以包括:在带有保护膜的塑料基片上绘制条形掩膜图案;通过微机电系统(MEMS)工艺在塑料基片上真空溅射镍铬/金(10nm/100nm)电极层;去掉掩膜得到金电极阵列,其中,金层厚度小于100nm;采用丝网印刷工艺在参比电极上丝印Ag/AgCl的混合浆料,在120℃干燥箱内干燥5min后制成Ag/AgCl参比电极;将双面胶带粘贴在塑料基片上,露出基础工作电极、Ag/AgCl参比电极和金对电极。具体说来,葡萄糖的电催化氧化是动力学控制过程,因此需要在电化学传感器401的基础工作电极进行修饰以在基础工作电极的表面形成高比表面积的催化材料膜,通过催化材料的筛选能够提高受动力学控制的电化学过程的响应信号,以降低葡萄糖的检测限。具体的,在对上述电化学传感器401的制作工序中得到的基础工作电极进行修饰之前,需要首先将其放置于超声波清洗器中,用去离子水清洗5min,取出后将基础工作电极自然晾干,然后取5μL浓度为0.1mol/L的二茂铁乙醇溶液滴涂在制备好的基础工作电极的表面,室温晾 干后对其进行修饰,具体的修饰工序包括:取浓度为1.5U/μL的葡萄糖氧化酶(GOD)溶液1.5μL并将其滴涂于上述已经经过二茂铁乙醇溶液初步修饰的基础工作电极的表面;滴加1μL质量分数为1%的牛血清白蛋白(BSA)后将基础工作电极进行室温晾干;滴加1.5μL质量分数为1.5%的戊二醛溶液进行酶的交联固定;用去离子水冲去未固定的游离酶和单体并将其在室温下自然晾干成膜以得到工作电极405,并将该工作电极405放置于温度为4℃的冰箱中保存备用。本实施例所制造的电化学传感器401的稳定性好,性能优异,能够检测出唾液中较低含量的葡萄糖含量。在一些实施例中,如图3所示,唾液检测装置105还包括:导电柱500,设置于样品采集器400上,用于电刺激佩戴唾液检测装置105的受检者的唾液腺。具体说来导电柱500接收唾液检测装置105中的微控制器或外部的电子设备或服务器所发送的控制命令,并根据预设参数对佩戴唾液检测装置105的受检者的唾液腺进行电刺激,以减少唾液样品的收集时长。
在一些实施例中,样品采集器400的外壁上开有进液口,以供唾液通过其进入电化学反应样品槽403中,进液口可以快速地使唾液进入电化学反应样品槽403中,同时避免唾液与唾液检测装置105中的其他部件接触,影响唾液检测装置105的性能。
在一些实施例中,如图3所示,唾液检测装置105还包括:样品量提醒构件600,被配置为确定电化学反应样品槽403中的唾液样品的量,并在所检测的唾液样品的量达到预设阈值时发出提醒并启动电化学传感器401的检测。可选的,样品量提醒构件600可以根据电化学反应样品槽403中的湿度、液位、压力等多种参数确定唾液样品的量,相对应的,电化学反应样品槽403中设置有用于获取该参数的传感器。
在一些实施例中,样品量提醒构件600包括设置在电化学反应样品槽403中的如下任何一种构件,以基于该构件的检测结果来确定电化学反应样品槽403中的唾液样品的量:湿度传感器,被配置为检测电化学反应样品槽内的湿度;液位传感器,被配置为检测电化学反应样品槽403内的液位;以及压力传感器,被配置为检测电化学反应样品槽403内的压力,样品提醒构件600通过设置于电化学反应样品槽403中的构件的检测结果来确定唾液样品的量即可获取到适当量的唾液样品,以避免因唾液样品的量的不足影响检测结果,又能够在获取到适当量的唾液样品时及时向用户发出提醒,方便快捷。
在一些实施例中,唾液检测装置105还可以包括微控制器和显示器,微控制器接收传感器采集到的电信号并对该电信号进行处理分析,以得到唾液的成分的含量,显示器用于对处理分析的结果进行显示,从而实现智能化且便携式的唾液检测装置105。在一些实施例中,唾液检测装置105还可以包括无线收发模块和储能模块,无线收发模块用于将电信号发送至外部的电子设备或服务器,例如手机、电脑、云端等,储能模块用于储存柔性摩擦发电组件100生成的电能。本公开所提供的唾液检测装置105利用柔性摩擦发电组件100为唾液检测装置105供电,实现了供电-采样-检测的一体化,且高效便捷。
在一些实施例中,也可以仅在唾液检测装置105中保留检测和电信号传输功能,对与唾液成分相关的电信号的处理则由终端来实现,如此,能够使得佩戴在口腔内的唾液检测装置105结构更加紧凑,提高用户友好度;进一步地,多个唾液检测装置105可以通信连接到同个终端,以由其进行唾液成分分析和显示,如此,多个唾液检测装置105可以共享同个终端,从而降低唾液检测系统的成本,也更便利在某个装置故障时的维修工作。
图5为根据本公开的实施例的唾液检测系统的结构示意图,如图5所示,本公开的实施例还提供了一种唾液检测系统700,包括根据本公开实施例中任一项所述的唾液检测装置105和终端800,终端800包括:通信接口801,被配置为接收来自电信号传输构件402传输的电信号;以及处理器802,被配置为对所接收的电信号进行处理分析,以将其直接转换为唾液成分的含量,所述唾液成分包括葡萄糖。可选的,终端800可以包括手机、平板电脑、服务器等,电信号传输构件402可以为传输导线,具体的,传输导线分别与终端上的通信接口801和唾液检测装置105上的通信接口连接,以将电化学传感器401采集到的电信号传输至终端800中的处理器802,处理器802对电信号的数据处理过程可以设置为直读形式,即采用标准曲线、标准表等形式,根据该电信号直接读出唾液成分的含量,而不需要进行重复的数据处理,这样能够大大加快数据处理过程,并且可以降低耗电量。本公开所提供的唾液检测系统700利用柔性摩擦发电组件100为唾液检测装置105供电,实现了供电-采样-检测的一体化,且高效便捷。
在一些实施例中,终端800还可以包括:显示器803,被配置为显示唾液成分的含量。可选的,显示器803可以通过曲线、表格等多种形式显示唾液成分的含量,以便于用户能够快速地读取唾液成分的含量数据。
本公开实施例还提供了一种上述唾液检测系统的操作方法,包括步骤S10:通过步进电机或者手动地反复弯曲和恢复所述柔性摩擦发电组件使所述柔性摩擦发电组件变形以产生电能,利用储电部件存储产生的电能;步骤S20:将所述唾液检测装置放置于用户口中,利用存储的电能驱动所述样品采集器、电化学传感器和电信号传输构件操作,获得检测数据;S30:将检测数据传输到处理器进行处理获得检测结果;以及S40:通过显示器显示检测结果。
以上描述旨在是说明性的而不是限制性的。例如,上述示例(或其一个或更多方案)可以彼此组合使用。例如本领域普通技术人员在阅读上述描述时可以使用其它实施例。另外,在上述具体实施方式中,各种特征可以被分组在一起以简单化本公开。这不应解释为一种不要求保护的公开的特征对于任一权利要求是必要的意图。相反,本公开的主题可以少于特定的公开的实施例的全部特征。从而,以下权利要求书作为示例或实施例在此并入具体实施方式中,其中每个权利要求独立地作为单独的实施例,并且考虑这些实施例可以以各种组合或排列彼此组合。本公开的范围应参照所附权利要求以及这些权利要求赋权的等同形式的全部范围来确定。
以上实施例仅为本公开的示例性实施例,不用于限制本公开,本公开的保护范围由权利要求书限定。本领域技术人员可以在本公开的实质和保护范围内,对本公开做出各种修改或等同替换,这种修改或等同替换也应视为落在本公开的保护范围内。

Claims (22)

  1. 一种唾液检测装置,包括柔性摩擦发电组件,被配置为向所述唾液检测装置供电且依序包括:
    第一电极;
    第一高分子聚合物层,被配置为与所述第一电极的表面接触,且在与所述第一电极相反侧的表面上带有凹凸结构;
    第二高分子聚合物层,其在面对所述第一高分子聚合物层的表面上带有凹凸结构;以及
    第二电极,所述第二电极配置为与所述第二高分子聚合物层的凹凸结构的相反侧的表面接触,
    其中,在所述柔性摩擦发电组件发生形变时,所述第一高分子聚合物层和所述第二高分子聚合物层两者的凹凸结构相互摩擦,并通过所述第一电极和所述第二电极输出电信号。
  2. 根据权利要求1所述的唾液检测装置,其中,所述柔性形变包括弯曲,所述柔性摩擦发电组件被配置为通过反复的弯曲和恢复通过所述第一电极和所述第二电极输出周期性的交流电信号。
  3. 根据权利要求2所述的唾液检测装置,其中,所述唾液检测装置还包括:步进电机,被配置为周期性振荡以驱动所述柔性摩擦发电组件进行反复的弯曲和恢复。
  4. 根据权利要求1所述的唾液检测装置,其中,所述唾液检测装置还具有储电部件,被配置为存储由所述柔性摩擦发电组件生成的电能。
  5. 根据权利要求1所述的唾液检测装置,其中,所述凹凸结构是微米和/或纳米级别的凹凸结构。
  6. 根据权利要求1所述的唾液检测装置,其中,所述第一高分子聚合物层的材料与所述第二高分子聚合物层的材料之间存在摩擦电极序差异。
  7. 根据权利要求1所述的唾液检测装置,其中,所述唾液检测装置还包括样品采集器、电化学传感器和电信号传输构件,其中,
    所述样品采集器具有弧度使得中间低于两边且内设有电化学反应样品槽;
    所述电化学传感器设置在所述电化学反应样品槽内,以对唾液样品中的成分进行检测并生成相应的电信号;以及
    所述电信号传输构件被配置为传输所述电信号。
  8. 根据权利要求7所述的唾液检测装置,其特征在于,所述柔性摩擦发电组件布置在所述样品采集器的底部,且由柔性防水绝缘材料包裹。
  9. 根据权利要求8所述的唾液检测装置,其中,所述柔性摩擦发电组件的第一电极、第一高分子聚合物层、第二高分子聚合物层和第二电极的叠置方向垂直于电化学反应样品槽的开口方向,以及
    所述柔性摩擦发电组件的厚度与所述样品采集器沿所述叠置方向的横截面的尺寸一致。
  10. 根据权利要求9所述的唾液检测装置,其中,所述摩擦发电组件的厚度约为380μm。
  11. 根据权利要求8至10中任一项所述的唾液检测装置,其中,
    所述样品采集器整体上具有弧度使其在长度方向两端高于中部,以及
    所述样品采集器内设置有电化学反应样品槽,用于采集唾液样品。
  12. 根据权利要求11所述的唾液检测装置,其中,
    所述样品采集器采用与第一高分子聚合物层和第二高分子聚合物层相同的柔性材料制备。
  13. 根据权利要求7所述的唾液检测装置,其中,所述第一高分子聚合物层和所述第二高分子聚合物层采用疏水性材料。
  14. 根据权利要求7所述的唾液检测装置,其中,所述唾液检测装置还包括:
    导电柱,设置于所述样品采集器上,被配置为电刺激佩戴唾液检测装置的受检者的唾液腺。
  15. 根据权利要求7所述的唾液检测装置,其中,所述样品采集器的外壁上开有进液口,以供唾液通过其进入所述电化学反应样品槽中。
  16. 根据权利要求7所述的唾液检测装置,其中,所述唾液检测装置还包括:
    样品量提醒构件,被配置为确定所述电化学反应样品槽中的唾液样品的量,并在所检测的唾液样品的量达到预设阈值时发出提醒并启动所述电化学传感器的检测。
  17. 根据权利要求16所述的唾液检测装置,其中,所述样品量提醒构件包括设置在所述电化学反应样品槽中的如下任何一种构件,以基于所述构件的检测结果来确定所述电化学反应样品槽中的唾液样品的量:
    湿度传感器,被配置为检测所述电化学反应样品槽内的湿度;
    液位传感器,被配置为检测所述电化学反应样品槽内的液位;以及
    压力传感器,被配置为检测所述电化学反应样品槽内的压力。
  18. 根据权利要求1所述的唾液检测装置,其中,所述电化学传感器被配置为检测唾液中的葡萄糖含量,且包括工作电极,所述工作电极采用纳米微球的形式,且负载有核黄素腺嘌呤核苷酸络合葡萄糖脱氢酶或葡萄糖氧化酶。
  19. 一种唾液检测系统,包括根据权利要求7-18中任一项所述的唾液检测装置和终端,所述终端包括:
    通信接口,被配置为接收来自所述电信号传输构件传输的电信号;以及
    处理器,被配置为对所接收的电信号进行处理分析,以将其直接转换为唾液成分的含量,所述唾液成分包括葡萄糖。
  20. 根据权利要求19所述的唾液检测系统,其中,所述终端还包括:
    显示器,被配置为显示所述唾液成分的含量。
  21. 一种权利要求20的唾液检测系统的操作方法,包括:
    使所述柔性摩擦发电组件变形以产生电能,利用储电部件存储产生的电能;
    将所述唾液检测装置放置于用户口中,利用存储的电能驱动所述样品采集器、电化学传感器和电信号传输构件操作,获得检测数据;
    将检测数据传输到处理器进行处理获得检测结果;以及
    通过显示器显示检测结果。
  22. 根据权利要求21所述的操作方法,其中,
    使所述柔性摩擦发电组件变形包括:通过步进电机或者手动地反复弯曲和恢复所述柔性摩擦发电组件。
PCT/CN2019/127557 2019-01-25 2019-12-23 唾液检测装置、唾液检测系统及其操作方法 WO2020151440A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/768,270 US12048421B2 (en) 2019-01-25 2019-12-23 Saliva detection device, saliva detection system and operation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910074709.9 2019-01-25
CN201910074709.9A CN109682873A (zh) 2019-01-25 2019-01-25 一种唾液检测装置及系统

Publications (1)

Publication Number Publication Date
WO2020151440A1 true WO2020151440A1 (zh) 2020-07-30

Family

ID=66193987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127557 WO2020151440A1 (zh) 2019-01-25 2019-12-23 唾液检测装置、唾液检测系统及其操作方法

Country Status (3)

Country Link
US (1) US12048421B2 (zh)
CN (1) CN109682873A (zh)
WO (1) WO2020151440A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7272324B2 (ja) * 2020-06-10 2023-05-12 株式会社村田製作所 口腔用治具
CN114518394B (zh) * 2020-11-20 2023-06-06 中国科学院大连化学物理研究所 自发电柔性纳米发电机及其应用
CN114002292B (zh) * 2021-11-02 2024-03-08 深圳清华大学研究院 一种唾液血糖校正装置及方法
CN114354696B (zh) * 2021-11-25 2023-05-16 中国科学院海洋研究所 一种摩擦纳米发电机驱动的dna生物传感器及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118758A1 (ja) * 2010-03-25 2011-09-29 ニプロ株式会社 測定装置及び測定方法
CN202305465U (zh) * 2011-08-16 2012-07-04 苏州悦安医疗电子有限公司 一种唾糖浓度获取装置
CN102684546A (zh) * 2012-05-15 2012-09-19 纳米新能源(唐山)有限责任公司 一种摩擦发电机
US20140084748A1 (en) * 2012-09-21 2014-03-27 Georgia Tech Research Corporation Triboelectric Nanogenerator for Powering Portable Electronics
CN103780120A (zh) * 2012-10-25 2014-05-07 纳米新能源(唐山)有限责任公司 柔性纳米摩擦发电机的制备方法及该摩擦发电机
CN104856662A (zh) * 2015-06-10 2015-08-26 京东方科技集团股份有限公司 便携式生理参数检测装置及生理参数检测方法
CN106104264A (zh) * 2014-01-21 2016-11-09 加利福尼亚大学董事会 唾液生物传感器以及生物燃料电池

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202195962U (zh) * 2011-06-30 2012-04-18 艾博生物医药(杭州)有限公司 一种用于收集流体样本的装置
CN102323310B (zh) * 2011-08-16 2014-03-12 苏州悦安医疗电子有限公司 无创血糖监测系统
CN202793842U (zh) * 2012-07-25 2013-03-13 广州万孚生物技术股份有限公司 唾液收集分析装置
JP2015192717A (ja) * 2014-03-31 2015-11-05 アイシン・エィ・ダブリュ株式会社 生体情報取得ユニット
CN104660095B (zh) * 2015-02-13 2018-09-28 京东方科技集团股份有限公司 一种摩擦发电装置及其制备方法
CN204666397U (zh) * 2015-05-14 2015-09-23 杭州隆基生物技术有限公司 一种唾液三联检测试剂盒
CN205826351U (zh) * 2016-01-22 2016-12-21 杭州康永生物技术有限公司 一种唾液收集装置
CN105973883B (zh) * 2016-05-23 2018-11-20 江山海维科技有限公司 不易污染的唾液检测装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118758A1 (ja) * 2010-03-25 2011-09-29 ニプロ株式会社 測定装置及び測定方法
CN202305465U (zh) * 2011-08-16 2012-07-04 苏州悦安医疗电子有限公司 一种唾糖浓度获取装置
CN102684546A (zh) * 2012-05-15 2012-09-19 纳米新能源(唐山)有限责任公司 一种摩擦发电机
US20140084748A1 (en) * 2012-09-21 2014-03-27 Georgia Tech Research Corporation Triboelectric Nanogenerator for Powering Portable Electronics
CN103780120A (zh) * 2012-10-25 2014-05-07 纳米新能源(唐山)有限责任公司 柔性纳米摩擦发电机的制备方法及该摩擦发电机
CN106104264A (zh) * 2014-01-21 2016-11-09 加利福尼亚大学董事会 唾液生物传感器以及生物燃料电池
CN104856662A (zh) * 2015-06-10 2015-08-26 京东方科技集团股份有限公司 便携式生理参数检测装置及生理参数检测方法

Also Published As

Publication number Publication date
US12048421B2 (en) 2024-07-30
US20210204917A1 (en) 2021-07-08
CN109682873A (zh) 2019-04-26

Similar Documents

Publication Publication Date Title
WO2020151440A1 (zh) 唾液检测装置、唾液检测系统及其操作方法
Sempionatto et al. Touch-based fingertip blood-free reliable glucose monitoring: Personalized data processing for predicting blood glucose concentrations
Min et al. Wearable electrochemical biosensors in North America
Zhao et al. A fully integrated and self-powered smartwatch for continuous sweat glucose monitoring
Zhai et al. Vertically aligned gold nanowires as stretchable and wearable epidermal ion-selective electrode for noninvasive multiplexed sweat analysis
KR101877108B1 (ko) 전자 피부 및 그 제조 방법과 용도
TWI413770B (zh) 無線生醫監測系統
KR101535075B1 (ko) 비침습형 건강지표 모니터링 시스템 및 이용 방법
WO2017198116A1 (zh) 电化学电极、连续葡萄糖监测传感器及其制备方法
CN103995033A (zh) 基于石墨烯和纳米颗粒修饰的电化学葡萄糖传感器及应用
CN109199400A (zh) 基于微针阵列的血糖电化学传感器
CN110017937A (zh) 一种柔性压力传感器及其制备方法和诊脉仪
Kil et al. A self-charging supercapacitor for a patch-type glucose sensor
da Costa et al. Portable laboratory platform with electrochemical biosensors for immunodiagnostic of hepatitis C virus
Phan et al. Trending Technology of Glucose Monitoring during COVID‐19 Pandemic: Challenges in Personalized Healthcare
CN110974251A (zh) 一种基于手机平台的微针按压式电化学传感器
US20240049994A1 (en) One-touch fingertip sweat sensor and personalized data processing for reliable prediction of blood biomarker concentrations
US11365435B2 (en) Multiple-use renewable electrochemical sensors based on direct drawing of enzymatic inks
US20210325332A1 (en) Electrochemical sensor for humoral detection and detection device
US20210215632A1 (en) Glucose Sensor Electrode, Preparation Method Therefor and Use Thereof
KR20190073084A (ko) 나노구조를 활용한 혈당센서용 니들어레이 및 무통 혈당센서, 이의 제조방법
CN115112738B (zh) 一种激光直写石墨烯/酶电极的制备及葡萄糖传感应用
CN100396786C (zh) 多参数微传感器
CN115919304A (zh) 贴片式可穿戴代谢物检测装置
Faustino et al. Miniaturized electrochemical (bio) sensing devices going wearable

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19911112

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19911112

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17/02/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19911112

Country of ref document: EP

Kind code of ref document: A1