WO2020147170A1 - 一种具有可表面改性的微纳结构的氮化硅陶瓷及其加工方法 - Google Patents

一种具有可表面改性的微纳结构的氮化硅陶瓷及其加工方法 Download PDF

Info

Publication number
WO2020147170A1
WO2020147170A1 PCT/CN2019/076714 CN2019076714W WO2020147170A1 WO 2020147170 A1 WO2020147170 A1 WO 2020147170A1 CN 2019076714 W CN2019076714 W CN 2019076714W WO 2020147170 A1 WO2020147170 A1 WO 2020147170A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
silicon nitride
nano structure
processing
ceramic
Prior art date
Application number
PCT/CN2019/076714
Other languages
English (en)
French (fr)
Inventor
左飞
袁莉娟
林华泰
Original Assignee
广东工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东工业大学 filed Critical 广东工业大学
Publication of WO2020147170A1 publication Critical patent/WO2020147170A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/0036Laser treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics

Definitions

  • the invention belongs to the technical field of silicon nitride ceramics, and in particular relates to a silicon nitride ceramic with a surface-modifiable micro-nano structure and a processing method thereof.
  • Ceramic materials have been widely concerned and applied due to their stable physical and chemical properties such as good corrosion resistance, wear resistance, and high temperature resistance, such as Ca 10 (PO 4 ) 6 (OH) 2 , ZrO 2 , Al 2 O 3 , Si 3 N 4 and so on.
  • Si 3 N 4 bioceramics not only have the above-mentioned excellent properties, but also have no cytotoxicity and good biocompatibility.
  • International Journal Nanomedicine 7(2012) 4829-4840 Journal of the European Ceramic Society.
  • Si 3 N 4 has excellent antibacterial properties and cell adsorption, so it can be used as a good spinal fusion material .
  • Si 3 N 4 ceramics have great potential for applications in other biological, environmental, chemical and other fields.
  • the existing research on Si 3 N 4 bioceramics in the literature mainly focuses on the extremely simple chemical modification of the material itself or the surface of the material (Acta Biomaterialia 26 (2015) 318-330).
  • the biocompatibility and antibacterial properties of the material surface are determined by the chemical properties and microscopic morphology of the material surface.
  • the chemical composition and morphological structure of the material surface are modified, such as micro-nano structure.
  • the micro-nano structure can effectively improve the biological characteristics of Si 3 N 4 ceramic materials, give full play to its advantages, and expand the scope of application.
  • the purpose of the present invention is to provide a silicon nitride ceramic with a surface-modifiable micro-nano structure and a processing method thereof, to provide micro-nano structure processing on the surface of silicon nitride, and to further modify the surface. New methods to expand its application fields.
  • the invention also provides a method for processing silicon nitride ceramics with a surface-modifiable micro-nano structure, which includes the following steps:
  • Step 1 Laser processing the processing area of the silicon nitride ceramic, and the laser processing forms the SiO 2 phase in the processing area of the silicon nitride ceramic to obtain the preliminary processed ceramic;
  • Step 2 Polish, clean and dry the pre-processed ceramics in sequence to obtain a silicon nitride ceramic with a surface-modifiable micro-nano structure, wherein the silicon nitride with a surface-modifiable micro-nano structure
  • the ceramic processing area has an SiO 2 phase.
  • the SiO 2 phase is an important component of bioglass, and it is also a carrier for further surface chemical modification, chemical grafting, and introduction of functional groups.
  • the laser processing of the silicon nitride ceramics of the present invention forms a micro-nano structure on the surface of the silicon nitride material, and at the same time, a silicon dioxide phase can be formed in the processing area of the silicon nitride ceramic, and a newly formed SiO 2 phase , Is an important part of biological glass, and is also a carrier for further surface chemical modification, chemical grafting, and introduction of functional groups; compared with other non-oxide ceramic materials, silicon nitride ceramics have excellent mechanical properties and also It has a special microstructure. According to the phase difference, it can have both equiaxed and long columnar crystal morphologies. This structural advantage can be combined with laser processing to form a multi-scale micro-nano structure integrated design and manufacturing, making Silicon nitride materials have special properties in the biomedical field.
  • the laser processing system selects an ultraviolet laser processing system with a wavelength of 284 nm to 450 nm.
  • the number of pulses of the laser processing is 1-100; the pulse frequency of the laser processing is 40-90 kHz; and the pulse width of the laser processing is on the order of nanoseconds.
  • the power of the laser processing is 0.5-8W.
  • the scanning speed of the laser processing is 10-500 mm/s.
  • the width of the micro-nano structure is 5-200 ⁇ m
  • the depth of the micro-nano structure is 1-50 ⁇ m
  • the pitch of the micro-nano structure is 10-1000 ⁇ m.
  • the light source of the laser system emits laser light and reaches the surface of the silicon nitride ceramic through the optical path, forming a spot with a certain diameter.
  • the diameter of the light spot will affect and restrict the three-dimensional size of the pattern that can be finally processed.
  • the silicon nitride ceramic and its surface pattern can be adjusted within a certain range of size parameters.
  • Silicon nitride ceramics as a biological material, the shape and size of the surface texture (making patterns) will significantly affect the response of bacteria and cells to the material. Therefore, the size of the pattern lines should be designed within a certain range And optimization can significantly improve the biological characteristics of silicon nitride ceramics.
  • step 1 laser processing is performed on the processing area of the silicon nitride ceramic to obtain the preliminary processed ceramic including fixing the silicon nitride ceramic on the laser workbench, and determining the processing area of the silicon nitride ceramic, in the laser workbench Enter 2000 ⁇ 6000mm height value in the laser system to complete the calibration and focus.
  • the laser worktable can move along the X and Y axes to process a preset pattern on the surface of the silicon nitride ceramic to obtain a surface-modifiable Silicon nitride ceramics with micro-nano structure.
  • the polishing includes polishing the surface of the preliminary processed ceramic with a polishing liquid and a polishing cloth.
  • the cleaning includes ultrasonic cleaning of the polished ceramics in an ultrasonic solution, and the ultrasonic solution includes ethanol and water.
  • step 1 it further includes: cleaning and drying the silicon nitride ceramic.
  • the cleaning and drying of the silicon nitride ceramic before step 1 includes ultrasonic cleaning the silicon nitride ceramic in an ultrasonic solution for 15-30 minutes, and drying in an oven, where the ultrasonic solution includes ethanol and acetone. , Deionized water, etc.
  • the purpose of cleaning and drying the silicon nitride ceramic is to remove a small amount of ablation discharge accumulated on the surface of the silicon nitride ceramic after laser processing.
  • the invention provides a silicon nitride ceramic with a surface-modifiable micro-nano structure, including the silicon nitride ceramic with a surface-modifiable micro-nano structure obtained by the processing method.
  • the present invention uses sintered dense Si 3 N 4 ceramics and uses an ultraviolet laser processing system to process the surface to obtain a surface micro-nano structure containing SiO 2 rich phases. After the processing is completed, it is polished, cleaned and dried. , To obtain functional Si 3 N 4 materials that can be used in biomedicine.
  • Si 3 N 4 is a non-oxide ceramic.
  • the high temperature action of the laser will cause a new chemical phase SiO 2 to be formed on the surface of the processed Si 3 N 4 material.
  • SiO 2 has the characteristics of high surface activity, high temperature resistance, chemical corrosion resistance, non-toxicity, and pollution-free. It can be used as a solid support for the surface modification (surface grafting) of inorganic materials by polymers to improve the physical properties of the original inorganic materials. Chemical properties. Therefore, the use of laser processing methods to fabricate micro-nano structures on the surface of Si 3 N 4 ceramics can not only change the biocompatibility of Si 3 N 4 ceramics from the perspective of morphology, but also can be further formed by surface grafting.
  • Si 3 N 4 based hybrid materials optimize the biology, chemistry, physics and other properties of Si 3 N 4 ceramics to the greatest extent, and expand their applications and fields. Due to the hard and brittle characteristics of ceramic materials, the laser adopts non-contact processing with fast processing speed, which is especially suitable for ceramic material processing.
  • the present invention uses an ultraviolet laser system to process surface micro-nano structures with different patterns, and generates SiO 2 rich phases in the processing areas of the micro-nano structures, which can be used as solid phase carriers for further surface modification (Surface grafting) to form a Si 3 N 4 based hybrid material
  • the Si 3 N 4 ceramic of the present invention is used in the fields of biomedicine and environmental chemical engineering.
  • Fig. 1 shows an SEM image of Si 3 N 4 ceramics with a surface-modifiable micro-nano structure provided in Example 1 of the present invention
  • Fig. 2 shows an SEM image of Si 3 N 4 ceramics with surface-modifiable micro-nano structure provided in Example 2 of the present invention
  • FIG. 3 shows an SEM image of Si 3 N 4 ceramics with a surface-modifiable micro-nano structure provided in Example 3 of the present invention
  • FIG. 4 shows an SEM image of Si 3 N 4 ceramics with a surface-modifiable micro-nano structure provided in Example 4 of the present invention
  • Fig. 5 shows an enlarged SEM image of the Si 3 N 4 ceramic with a surface-modifiable micro-nano structure of Fig. 2;
  • Fig. 6 shows a specific enlarged SEM image of the Si 3 N 4 ceramic with a surface-modifiable micro-nano structure of Fig. 5;
  • FIG. 7 shows the Si element distribution diagram of the Si 3 N 4 ceramic with a surface-modifiable micro-nano structure of FIG. 6;
  • FIG. 8 shows the O element distribution diagram of the Si 3 N 4 ceramic with a surface-modifiable micro-nano structure of FIG. 6.
  • the invention provides a silicon nitride ceramic with a surface-modifiable micro-nano structure and a processing method thereof, which are used to fill the gap of directly processing the surface-modifiable micro-nano structure on the silicon nitride ceramic.
  • the raw materials used in the following examples are all commercially available or self-made, and the polishing liquid is formed by mixing polishing fine powder and emulsion.
  • the embodiment of the present invention provides a method for processing silicon nitride ceramics with a surface-modifiable micro-nano structure, and the steps are as follows:
  • Step 1 Place the silicon nitride ceramic workpiece in a beaker containing absolute ethanol, clean it with ultrasonic for 15 minutes, and dry it in an oven to obtain a silicon nitride ceramic workpiece;
  • Step 2 Determine the processing surface, fix the silicon nitride ceramic workpiece on the laser workbench, and determine the processing area, enter 4728mm height value and use autofocus to complete the calibration and focus.
  • the laser workbench can move along the X and Y axes;
  • Step 3 Import the designed linear pattern into the laser processing system of the laser workbench, and select the processing parameters as: 1 pulse number; 90kHz pulse frequency; 1W power; 100mm/s scanning speed, laser processing and laser processing on the processing surface SiO 2 phase is formed in the processing area of the silicon nitride ceramic workpiece to obtain the preliminary processed ceramic;
  • Step 4 Choose a polishing liquid with a particle size of 0.5 ⁇ m and a polishing cloth with a particle size of 0.5 ⁇ m to polish the pre-processed ceramics for 1 minute to remove surface slag; the polished pre-processed ceramics are sequentially ultrasonically cleaned and dried.
  • the ultrasonic solution for ultrasonic cleaning includes absolute ethanol and deionized water. The number of ultrasonics is 3 times, each ultrasonic is 10 minutes, and the ultrasonic solution is replaced after each ultrasonic; the silicon nitride with the surface-modifiable micro-nano structure is obtained ceramics.
  • the micro-nano structure of silicon nitride ceramics is a straight line with a width of 13.4 ⁇ m, a depth of 4.65 ⁇ m, and a spacing between the straight lines of 60 ⁇ m.
  • the embodiment of the present invention provides a method for processing silicon nitride ceramics with a surface-modifiable micro-nano structure, and the steps are as follows:
  • Step 1 Place the silicon nitride ceramic workpiece in a beaker containing absolute ethanol, clean it with ultrasonic for 15 minutes, and dry it in an oven to obtain a silicon nitride ceramic workpiece;
  • Step 2 Determine the processing surface, fix the silicon nitride ceramic workpiece on the laser workbench, and determine the processing area, enter the 4720mm height value and use autofocus to complete the calibration and focus.
  • the laser workbench can move along the X and Y axes;
  • Step 3 Import the designed wave line pattern into the laser processing system of the laser workbench, and select the processing parameters: 1 pulse number; 90kHz pulse frequency; 1W power; 90mm/s scanning speed, laser processing on the processing surface, laser Machining to form SiO 2 phase in the processing area of the silicon nitride ceramic workpiece to obtain the primary processed ceramic;
  • Step 4 Choose a polishing liquid with a particle size of 0.5 ⁇ m and a polishing cloth with a particle size of 0.5 ⁇ m to polish the pre-processed ceramics for 1 minute to remove surface slag; the polished pre-processed ceramics are sequentially ultrasonically cleaned and dried.
  • the ultrasonic solution for ultrasonic cleaning includes absolute ethanol and deionized water. The number of ultrasonics is 3 times, each ultrasonic is 10 minutes, and the ultrasonic solution is replaced after each ultrasonic; the silicon nitride with the surface-modifiable micro-nano structure is obtained ceramics.
  • the micro-nano structure of silicon nitride ceramics is wavy lines, the width of the wavy lines is 16.32 ⁇ m, the depth is 6.27 ⁇ m, and the spacing between the wavy lines is 65 ⁇ m.
  • Figure 5 is an enlarged SEM image of the Si 3 N 4 ceramic with a surface-modifiable micro-nano structure of Figure 2. It can be seen from Figure 5 that the surface of the silicon nitride ceramic is processed by laser, and the micro-nano pattern processing area is generated Obvious white SiO 2 particles.
  • Fig. 6 is a specific enlarged SEM image of the Si 3 N 4 ceramic with a surface-modifiable micro-nano structure of Fig. 5, and Fig. 7 and Fig. 8 are taken by EDS energy dispersive spectrometer (Energy Dispersive Spectrometer) and scanning electron microscope images.
  • EDS energy dispersive spectrometer Energy Dispersive Spectrometer
  • Inventive embodiment 2 provides the Si 3 N 4 ceramic with a surface-modifiable micro-nano structure to analyze the types and contents of the constituent elements on the surface of the laser processed micro-regions of the Si 3 N 4 ceramics, wherein the colored spots represent the corresponding element distribution.
  • Fig. 7 is the Si element distribution diagram of the Si 3 N 4 ceramic with surface-modifiable micro-nano structure of Fig. 6, and
  • Fig. 8 is the O of the Si 3 N 4 ceramic with surface-modifiable micro-nano structure of Fig. 6
  • the element distribution diagram, as shown in Figures 6-8 it can be clearly observed that the O element is mainly concentrated in the pattern processing area compared to the Si element, and the Si element is more evenly distributed on the surface of the silicon nitride ceramic.
  • the embodiment of the present invention provides a method for processing silicon nitride ceramics with a surface-modifiable micro-nano structure, and the steps are as follows:
  • Step 1 Place the silicon nitride ceramic workpiece in a beaker containing absolute ethanol, clean it with ultrasonic for 15 minutes, and dry it in an oven to obtain a silicon nitride ceramic workpiece;
  • Step 2 Determine the processing surface, fix the silicon nitride ceramic workpiece on the laser workbench, and determine the processing area, enter 4729mm height value and use autofocus to complete the calibration and focus, the laser workbench can move along the X and Y axes;
  • Step 3 Import the designed grid pattern into the laser processing system of the laser workbench, select the processing parameters as: 1 pulse number; 90kHz pulse frequency; 1W power; 105mm/s scanning speed, laser processing the processing surface, laser Machining to form SiO 2 phase in the processing area of the silicon nitride ceramic workpiece to obtain the primary processed ceramic;
  • Step 4 Choose a polishing liquid with a particle size of 0.5 ⁇ m and a polishing cloth with a particle size of 0.5 ⁇ m to polish the pre-processed ceramics for 1 minute to remove surface slag; the polished pre-processed ceramics are sequentially ultrasonically cleaned and dried.
  • the ultrasonic solution for ultrasonic cleaning includes absolute ethanol and deionized water, the number of ultrasonics is 3 times, each ultrasonic is 10 minutes, and the ultrasonic solution is replaced after each ultrasonic; a silicon nitride ceramic with a surface-modifiable nano structure is obtained .
  • the micro-nano structure of the silicon nitride ceramic is a square grid, the grid line width is 14.56 ⁇ m, the grid line depth is 8.20 ⁇ m, and the spacing between the grids is 65 ⁇ m.
  • the embodiment of the present invention provides a method for processing Si 3 N 4 ceramics with a surface-modifiable micro-nano structure, and the steps are as follows:
  • Step 1 Place the silicon nitride ceramic workpiece in a beaker containing absolute ethanol, clean it with ultrasonic for 15 minutes, and dry it in an oven to obtain a silicon nitride ceramic workpiece;
  • Step 2 Determine the processing surface, fix the silicon nitride ceramic workpiece on the laser workbench, and determine the processing area, enter 4728mm height value and use autofocus to complete the calibration and focus.
  • the laser workbench can move along the X and Y axes;
  • Step 3 Import the designed micro-hole pattern into the laser processing system of the laser workbench, and select the processing parameters: 8 pulses; 90kHz pulse frequency; 0.7W power, laser processing on the processing surface, laser processing in silicon nitride
  • the SiO 2 phase is formed in the processing area of the ceramic workpiece to obtain the preliminary processed ceramic;
  • Step 4 Choose a polishing liquid with a particle size of 0.5 ⁇ m and a polishing cloth with a particle size of 0.5 ⁇ m to polish the pre-processed ceramics for 1 minute to remove surface slag; the polished pre-processed ceramics are sequentially ultrasonically cleaned and dried.
  • the ultrasonic solution for ultrasonic cleaning includes absolute ethanol and deionized water. The number of ultrasonics is 3 times, each ultrasonic is 10 minutes, and the ultrasonic solution is replaced after each ultrasonic; the silicon nitride with the surface-modifiable micro-nano structure is obtained ceramics.
  • the micro-nano structure of silicon nitride ceramics is micro-pores
  • the width of the micro-pores is 16.36 ⁇ m
  • the depth of the micro-pores is 3.26 ⁇ m
  • the distance between the centers of the two circles is 50 ⁇ m.
  • the present invention can be obtained not only in a different pattern surface of the Si 3 N 4 ceramic of the same size but micro- and nanostructures having a surface-modified, and further control study Si 3 N 4 ceramics in biomedical applications, also micro-nano structure processing region
  • the SiO 2 rich phase is generated, which can be used as a solid phase carrier for further surface modification or surface grafting to form Si 3 N 4 -based hybrid materials, expanding its application in environmental and chemical industries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种具有可表面改性的微纳结构的氮化硅陶瓷及其加工方法,该方法包括以下步骤:步骤1、对氮化硅陶瓷的加工区域进行激光加工,激光加工在氮化硅陶瓷的加工区域形成SiO 2相,得到初加工陶瓷;步骤2、将初加工陶瓷依次进行抛光、清洗和烘干,得到具有可表面改性的微纳结构的氮化硅陶瓷,其中具有可表面改性的微纳结构的氮化硅陶瓷的加工区域形成SiO 2相。

Description

一种具有可表面改性的微纳结构的氮化硅陶瓷及其加工方法 技术领域
本发明属于氮化硅陶瓷的技术领域,尤其涉及一种具有可表面改性的微纳结构的氮化硅陶瓷及其加工方法。
背景技术
近年来,陶瓷材料因具有良好的耐腐蚀、耐磨损、耐高温等稳定的物理化学性质,其性能被广泛关注与应用,如Ca 10(PO 4) 6(OH) 2、ZrO 2、Al 2O 3、Si 3N 4等。其中,Si 3N 4生物陶瓷除具有上述优异性质外,还具有无细胞毒性以及良好的生物相容性,近年来有文献(International Journal Nanomedicine 7(2012)4829-4840,Journal of the European Ceramic Society(2017))指出,Si 3N 4相比于其他生物材料,如钛(Ti)、聚醚酮(PEEK)等,具有优异的抗菌性和细胞吸附性,因此可以作为很好的脊柱融合材料。而针对细菌和细胞的相关特性,同时也表明Si 3N 4陶瓷具有应用于其他生物、环境、化工等领域的巨大潜力。
文献报道中现有针对Si 3N 4生物陶瓷的研究主要集中于对材料本身或材料表面进行极为简单的化学改性(Acta Biomaterialia 26(2015)318-330)。然而,材料表面的生物相容性、抗菌特性等是由材料表面的化学性质以及微观形貌共同决定,同时对材料表面的化学组成和形貌结构进行修饰,如微纳结构,微纳结构是人为设计的、具有微米或纳米尺度特征尺寸、按照特定方式排布的功能结构,微纳结构能有效提高Si 3N 4陶瓷材料的生物学特性,发挥其优势,拓展应用范围。
加工表面微纳结构的技术众多,如电子束加工,纳米压痕及微细电火花加工等。文献(Ceramics International,DOI:10.1016/j.ceramint.2018.09.106)报道了红外纳秒激光加工Al 2O 3/TiC陶瓷直线和波浪形微结构,宽度约为60μm,深度约为40μm,但这难以满足生物陶瓷对微纳结构的尺寸及机械性能的要求。文献(激光技术2016,40(4):550-554.)报道了紫外激光加工Al 2O 3/TiC陶瓷微织构,其截面形状呈V形,宽度26μm,深度17μm,间距49μm,且仅用于刀具应用方面。迄今为止,未见生物医用Si 3N 4陶瓷表面进行具有表面改性 微纳结构的加工报道。
发明内容
有鉴于此,本发明的目的是提供一种具有可表面改性的微纳结构的氮化硅陶瓷及其加工方法,提供了在氮化硅表面进行微纳结构加工,以及可以进一步进行表面改性、拓展其应用领域的新方法。
本发明还提供了一种具有可表面改性的微纳结构的氮化硅陶瓷的加工方法,包括以下步骤:
步步骤1、对氮化硅陶瓷的加工区域进行激光加工,激光加工在所述氮化硅陶瓷的加工区域形成SiO 2相,得到初加工陶瓷;
步骤2、将所述初加工陶瓷依次进行抛光、清洗和烘干,得到具有可表面改性的微纳结构的氮化硅陶瓷,其中所述具有可表面改性的微纳结构的氮化硅陶瓷的加工区域具有SiO 2相。
作为优选,SiO 2相是生物玻璃的重要组成部分,也是进一步进行表面化学改性、化学接枝、引入功能基团的载体。
需要说明的是,本发明针对氮化硅陶瓷的激光加工对氮化硅材料表面形成微纳结构的同时,可以在氮化硅陶瓷的加工区域形成二氧化硅物相,新形成的SiO 2相,是生物玻璃的重要组成部分,也是进一步进行表面化学改性、化学接枝、引入功能基团的载体;氮化硅陶瓷相对于其他非氧化物陶瓷材料,除具有优良的机械性能外,还具有特殊的显微组织结构,根据物相差别,可以同时具有等轴状和长柱状的晶体形貌,这一结构优势可以同时结合激光加工,形成多尺度微纳结构一体化设计与制造,使得氮化硅材料在生物医疗领域拥有特殊性能。
作为优选,步骤1中,所述激光加工系统选用紫外激光加工系统,波长为284nm~450nm。
作为优选,步骤1中,所述激光加工的脉冲个数为1~100个;所述激光加工的脉冲频率为40~90kHz;所述激光加工的脉宽为纳秒级别。
作为优选,步骤1中,所述激光加工的功率为0.5~8W。
作为优选,步骤1中,所述激光加工的扫描速度为10~500mm/s。
作为优选,所述微纳结构的宽度为5~200μm,所述微纳结构的深度为1~50 μm,所述微纳结构的间距为10~1000μm。
需要说明的是,激光系统的光源发射激光,通过光路到达氮化硅陶瓷的表面,会形成一定直径的光斑。光斑的直径会对最终可以加工出的图案三维尺寸形成影响和制约。对于给定的激光系统,通过优化脉冲数、频率、功率、扫描速度的工艺参数,可以对氮化硅陶瓷及其表面图案花样,实现一定范围内的尺寸参数调整。氮化硅陶瓷作为生物材料,表面织构化(制造图案花样)的形状、尺寸等形貌学特征,会显著影响细菌、细胞等对材料的响应,因此,一定范围内对图案线条尺寸进行设计与优化,可以显著提高氮化硅陶瓷的生物学特征。
具体的,步骤1中,对氮化硅陶瓷的加工区域进行激光加工,得到初加工陶瓷包括将氮化硅陶瓷固定于激光工作台上,并确定氮化硅陶瓷的加工区域,在激光工作台的激光系统中输入2000~6000mm高度值采用自动对焦来完成校准对焦,激光工作台可沿X、Y轴运动,在氮化硅陶瓷的表面加工出预置的图案,得到具有可表面改性的微纳结构的氮化硅陶瓷。
作为优选,步骤2中,所述抛光包括采用抛光液和抛光布对所述初加工陶瓷的表面进行抛光。
作为优选,步骤2中,所述清洗包括将进行抛光的陶瓷置于超声溶液中超声清洗,所述超声溶液包括乙醇和水。
作为优选,步骤1中之前还包括:对所述氮化硅陶瓷进行清洗和烘干。
具体的,步骤1中之前对所述氮化硅陶瓷进行清洗和烘干包括对所述氮化硅陶瓷在超声溶液中超声清洗15~30min,用烘箱烘干,其中,超声溶液包括乙醇、丙酮、去离子水等。
需要说明的是,对氮化硅陶瓷进行清洗和烘干是为了去除激光加工后堆积在氮化硅陶瓷的表面的少量烧蚀排出物。
本发明提供了一种具有可表面改性的微纳结构的氮化硅陶瓷,包括所述加工方法得到的具有可表面改性的微纳结构的氮化硅陶瓷。
本发明采用烧结致密度的Si 3N 4陶瓷,采用紫外激光加工系统对其表面进行加工,以得到含有富SiO 2物相的表面微纳结构,加工完成后,经抛光、清洗和烘干后,获得可用于生物医疗的功能化Si 3N 4材料。
Si 3N 4属于非氧化物陶瓷,在有氧环境下,激光的高温作用会使被加工的Si 3N 4材料表面形成新的化学物相SiO 2。SiO 2具有表面活性高、耐高温、耐化学腐蚀、无毒、无污染等特点,可作为固相载体用于聚合物对无机材料的面修饰(表面接枝),改善原有无机材料的物理化学性能。因此,使用激光加工的方法,在Si 3N 4陶瓷表面制造微纳结构,不仅可以从形貌学的角度改变Si 3N 4陶瓷的生物相容性,还可以进一步通过表面接枝的方法形成Si 3N 4基杂化材料,最大程度上优化Si 3N 4陶瓷的生物学、化学、物理学等性能,拓展其应用场合与领域。由于陶瓷材料的硬脆特性,激光采用非接触式加工,加工速度快,尤其适用于陶瓷材料加工。
本发明针对Si 3N 4陶瓷,采用紫外激光系统,加工出不同图案花样的表面微纳结构,并且在微纳结构的加工区域生成富SiO 2相,可作为固相载体做进一步的表面改性(表面接枝),形成Si 3N 4基杂化材料,本发明的Si 3N 4陶瓷在生物医疗、环境化工领域的应用。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1示本发明实施例1提供的具有可表面改性的微纳结构的Si 3N 4陶瓷的SEM图;
图2示本发明实施例2提供的具有可表面改性的微纳结构的Si 3N 4陶瓷的SEM图;
图3示本发明实施例3提供的具有可表面改性的微纳结构的Si 3N 4陶瓷的SEM图;
图4示本发明实施例4提供的具有可表面改性的微纳结构的Si 3N 4陶瓷的SEM图;
图5示图2的具有可表面改性的微纳结构的Si 3N 4陶瓷的放大SEM图;
图6示图5的具有可表面改性的微纳结构的Si 3N 4陶瓷的具体放大SEM图;
图7示图6的具有可表面改性的微纳结构的Si 3N 4陶瓷的Si元素分布图;
图8示图6的具有可表面改性的微纳结构的Si 3N 4陶瓷的O元素分布图。
具体实施方式
本发明提供了一种具有可表面改性的的微纳结构的氮化硅陶瓷及其加工方法,用于填补了氮化硅陶瓷上直接加工可表面改性微纳结构的空白。
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
其中,以下实施例所用原料均为市售或自制,抛光液由抛光微粉和乳化液混合而成。
实施例1
本发明实施例提供了一种具有可表面改性的微纳结构的氮化硅陶瓷的加工方法,其步骤如下:
步骤1:将氮化硅陶瓷工件置于盛有无水乙醇的烧杯中,用超声清洗15min,并用烘箱烘干,得到氮化硅陶瓷工件;
步骤2:确定加工面,将氮化硅陶瓷工件固定于激光工作台上,并确定加工区域,输入4728mm高度值采用自动对焦来完成校准对焦,激光工作台可沿X、Y轴运动;
步骤3:将设计的直线图案导入激光工作台的激光加工系统,选择加工参数为:1个脉冲个数;90kHz脉冲频率;1W功率;100mm/s扫描速度,对加工面进行激光加工,激光加工在氮化硅陶瓷工件的加工区域形成SiO 2相,得到初加工陶瓷;
步骤4:选用粒度为0.5μm的抛光液和粒径为0.5μm的抛光布对初加工陶瓷进行1min的抛光,去除表面熔渣;对被抛光的初加工陶瓷依次进行超声清洗和烘干,其中,超声清洗的超声溶液包括无水乙醇和去离子水,超声次数为3次,每次超声10min,每次超声后换新的超声溶液;获得具有可表面改性的微纳结构的氮化硅陶瓷。如图1所示,氮化硅陶瓷的微纳结构为直线,直线宽度为13.4μm,深度为4.65μm,直线间的间距为60μm。
实施例2
本发明实施例提供了一种具有可表面改性的微纳结构的氮化硅陶瓷的加 工方法,其步骤如下:
步骤1:将氮化硅陶瓷工件置于盛有无水乙醇的烧杯中,用超声清洗15min,并用烘箱烘干,得到氮化硅陶瓷工件;
步骤2:确定加工面,将氮化硅陶瓷工件固定于激光工作台上,并确定加工区域,输入4720mm高度值采用自动对焦来完成校准对焦,激光工作台可沿X、Y轴运动;
步骤3:将设计的波浪线图案导入激光工作台的激光加工系统,选择加工参数为:1个脉冲个数;90kHz脉冲频率;1W功率;90mm/s扫描速度,对加工面进行激光加工,激光加工在氮化硅陶瓷工件的加工区域形成SiO 2相,得到初加工陶瓷;
步骤4:选用粒度为0.5μm的抛光液和粒径为0.5μm的抛光布对初加工陶瓷进行1min的抛光,去除表面熔渣;对被抛光的初加工陶瓷依次进行超声清洗和烘干,其中,超声清洗的超声溶液包括无水乙醇和去离子水,超声次数为3次,每次超声10min,每次超声后换新的超声溶液;获得具有可表面改性的微纳结构的氮化硅陶瓷。如图2所示,氮化硅陶瓷的微纳结构为波浪线,波浪线宽度为16.32μm,深度为6.27μm,波浪线间的间距为65μm。
图5为图2的具有可表面改性的微纳结构的Si 3N 4陶瓷的放大SEM图,从图5可看出,通过激光在氮化硅陶瓷表面加工,在微纳图案加工区域产生明显的白色SiO 2颗粒。图6为图5的具有可表面改性的微纳结构的Si 3N 4陶瓷的具体放大SEM图,图7和图8是通过EDS能谱仪(Energy Dispersive Spectrometer),配合扫描电子显微镜图像对本发明实施例2提供的具有可表面改性的微纳结构的Si 3N 4陶瓷的激光加工表面微区成分元素种类与含量进行分析,其中,彩色斑点即代表相应的元素分布。图7为图6的具有可表面改性的微纳结构的Si 3N 4陶瓷的Si元素分布图,图8为图6的具有可表面改性的微纳结构的Si 3N 4陶瓷的O元素分布图,从图6-8所示,可以明显观察O元素相比较于Si元素主要密集于图案加工区域,而Si元素比较均匀的分布在氮化硅陶瓷的表面。
实施例3
本发明实施例提供了一种具有可表面改性的微纳结构的氮化硅陶瓷的加 工方法,其步骤如下:
步骤1:将氮化硅陶瓷工件置于盛有无水乙醇的烧杯中,用超声清洗15min,并用烘箱烘干,得到氮化硅陶瓷工件;
步骤2:确定加工面,将氮化硅陶瓷工件固定于激光工作台上,并确定加工区域,输入4729mm高度值采用自动对焦来完成校准对焦,激光工作台可沿X、Y轴运动;
步骤3:将设计的方格图案导入激光工作台的激光加工系统,选择加工参数为:1个脉冲个数;90kHz脉冲频率;1W功率;105mm/s扫描速度,对加工面进行激光加工,激光加工在氮化硅陶瓷工件的加工区域形成SiO 2相,得到初加工陶瓷;
步骤4:选用粒度为0.5μm的抛光液和粒径为0.5μm的抛光布对初加工陶瓷进行1min的抛光,去除表面熔渣;对被抛光的初加工陶瓷依次进行超声清洗和烘干,其中,超声清洗的超声溶液包括无水乙醇和去离子水,超声次数为3次,每次超声10min,每次超声后换新的超声溶液;获得具有可表面改性的纳结构的氮化硅陶瓷。如图3所示,氮化硅陶瓷的微纳结构为方格,方格线宽度为14.56μm,方格线深度为8.20μm,方格间的间距为65μm。
实施例4
本发明实施例提供了一种具有可表面改性的微纳结构的Si 3N 4陶瓷的加工方法,其步骤如下:
步骤1:将氮化硅陶瓷工件置于盛有无水乙醇的烧杯中,用超声清洗15min,并用烘箱烘干,得到氮化硅陶瓷工件;
步骤2:确定加工面,将氮化硅陶瓷工件固定于激光工作台上,并确定加工区域,输入4728mm高度值采用自动对焦来完成校准对焦,激光工作台可沿X、Y轴运动;
步骤3:将设计的微孔图案导入激光工作台的激光加工系统,选择加工参数为:8个脉冲个数;90kHz脉冲频率;0.7W功率,对加工面进行激光加工,激光加工在氮化硅陶瓷工件的加工区域形成SiO 2相,得到初加工陶瓷;
步骤4:选用粒度为0.5μm的抛光液和粒径为0.5μm的抛光布对初加工陶瓷进行1min的抛光,去除表面熔渣;对被抛光的初加工陶瓷依次进行超声 清洗和烘干,其中,超声清洗的超声溶液包括无水乙醇和去离子水,超声次数为3次,每次超声10min,每次超声后换新的超声溶液;获得具有可表面改性的微纳结构的氮化硅陶瓷。如图4所示,氮化硅陶瓷的微纳结构为微孔,微孔宽度为16.36μm,微孔深度为3.26μm,两圆心的间距为50μm。
本发明不仅可以在Si 3N 4陶瓷表面获得不同图形但尺寸相同的具有可表面改性的微纳结构,进而对照研究Si 3N 4陶瓷在生物医学的应用,还在微纳结构的加工区域生成富SiO 2相,可作为固相载体做进一步的表面改性或表面接枝,形成Si 3N 4基杂化材料,扩展其在环境化工等领域的应用。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种具有可表面改性的微纳结构的氮化硅陶瓷的加工方法,其特征在于,包括以下步骤:
    步骤1、对氮化硅陶瓷的加工区域进行激光加工,激光加工在所述氮化硅陶瓷的加工区域形成SiO 2相,得到初加工陶瓷;
    步骤2、将所述初加工陶瓷依次进行抛光、清洗和烘干,得到具有可表面改性的微纳结构的氮化硅陶瓷,其中,所述具有可表面改性的微纳结构的氮化硅陶瓷的加工区域形成SiO 2相。
  2. 根据权利要求1所述的加工方法,其特征在于,步骤1中,所述激光加工的波长为284nm~1064nm。
  3. 根据权利要求1所述的加工方法,其特征在于,步骤1中,所述激光加工的脉冲个数为1~500个;所述激光加工的脉冲频率为30~550kHz;所述激光加工的脉宽为纳秒或飞秒级别。
  4. 根据权利要求1所述的加工方法,其特征在于,步骤1中,所述激光加工的功率为0.3~20W。
  5. 根据权利要求1所述的加工方法,其特征在于,步骤1中,所述激光加工的扫描速度为10~800mm/s。
  6. 根据权利要求1所述的加工方法,其特征在于,所述微纳结构的宽度为5~200μm,所述微纳结构的深度为1~50μm,所述微纳结构的间距为10~1000μm。
  7. 根据权利要求1所述的加工方法,其特征在于,步骤2中,所述抛光包括采用抛光液和抛光布对所述初加工陶瓷的表面进行抛光。
  8. 根据权利要求1所述的加工方法,其特征在于,步骤2中,所述清洗包括将进行抛光的陶瓷置于超声溶液中超声清洗,所述超声溶液包括乙醇和水。
  9. 根据权利要求1所述的加工方法,其特征在于,步骤1中之前还包括:对所述氮化硅陶瓷进行清洗和烘干。
  10. 一种具有可表面改性的微纳结构的氮化硅陶瓷,其特征在于,包括如权利要求1至9任意一项所述的加工方法得到的具有可表面改性的微纳结构的氮化硅陶瓷。
PCT/CN2019/076714 2019-01-17 2019-03-01 一种具有可表面改性的微纳结构的氮化硅陶瓷及其加工方法 WO2020147170A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910044865.0 2019-01-17
CN201910044865.0A CN109574706B (zh) 2019-01-17 2019-01-17 一种具有可表面改性的微纳结构的氮化硅陶瓷及其加工方法

Publications (1)

Publication Number Publication Date
WO2020147170A1 true WO2020147170A1 (zh) 2020-07-23

Family

ID=65915243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/076714 WO2020147170A1 (zh) 2019-01-17 2019-03-01 一种具有可表面改性的微纳结构的氮化硅陶瓷及其加工方法

Country Status (2)

Country Link
CN (1) CN109574706B (zh)
WO (1) WO2020147170A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110143829B (zh) * 2019-06-21 2021-08-13 广东工业大学 一种调控激光加工氮化硅基复合材料表面形貌的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0669298A1 (en) * 1994-02-23 1995-08-30 Sumitomo Electric Industries, Ltd. Method of working silicon nitride ceramics
CN106735911A (zh) * 2016-11-28 2017-05-31 湖北工业大学 一种超快激光处理氧化铝陶瓷刀片表面的方法
CN109079314A (zh) * 2018-09-18 2018-12-25 广东工业大学 一种超快激光组合脉冲序列的阵列微纳结构加工方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0669298A1 (en) * 1994-02-23 1995-08-30 Sumitomo Electric Industries, Ltd. Method of working silicon nitride ceramics
CN106735911A (zh) * 2016-11-28 2017-05-31 湖北工业大学 一种超快激光处理氧化铝陶瓷刀片表面的方法
CN109079314A (zh) * 2018-09-18 2018-12-25 广东工业大学 一种超快激光组合脉冲序列的阵列微纳结构加工方法

Also Published As

Publication number Publication date
CN109574706B (zh) 2021-06-01
CN109574706A (zh) 2019-04-05

Similar Documents

Publication Publication Date Title
Song et al. Controllable superhydrophobic aluminum surfaces with tunable adhesion fabricated by femtosecond laser
Zhou et al. A review of the techniques for the mold manufacturing of micro/nanostructures for precision glass molding
Gora et al. Enhancing surface finish of additively manufactured titanium and cobalt chrome elements using laser based finishing
Wu et al. Laser fabrication of bioinspired gradient surfaces for wettability applications
DE102012010635B4 (de) Verfahren zur 3D-Strukturierung und Formgebung von Oberflächen aus harten, spröden und optischen Materialien
Ahsan et al. Formation of superhydrophobic soda-lime glass surface using femtosecond laser pulses
Brown et al. Fundamentals of laser-material interaction and application to multiscale surface modification
Zhang et al. Achieving of bionic super-hydrophobicity by electrodepositing nano-Ni-pyramids on the picosecond laser-ablated micro-Cu-cone surface
Hörstmann-Jungemann et al. 3D-Microstructuring of Sapphire using fs-Laser Irradiation and Selective Etching.
KR100928057B1 (ko) 초고속 레이저를 이용한 초발수성 표면개질 방법
Fiedler et al. Machining of biocompatible ceramics with femtosecond laser pulses
WO2020147170A1 (zh) 一种具有可表面改性的微纳结构的氮化硅陶瓷及其加工方法
Stępak et al. Femtosecond laser-induced ripple patterns for homogenous nanostructuring of pyrolytic carbon heart valve implant
Chen et al. Fabrication of grooves on polymer-derived SiAlCN ceramics using femtosecond laser pulses
CN116685562A (zh) 减少玻璃元件上凸起结构的方法和根据该方法制造的玻璃元件
KR100851892B1 (ko) 이온 빔을 이용한 폴리머 표면 형상의 제어 방법 및 이에의해 제조된 표면에 잔물결 패턴이 형성된 폴리머와, 그응용들
Ma et al. Fabrication of regular hierarchical structures with superhydrophobic and high adhesion performances on a 304 stainless steel surface via picosecond laser
Kumthekar et al. Effects of machining parameters on Ni-Mn-Ga-based alloys for fabrication of multifunctional micro devices using femtosecond pulse width laser
Yan et al. Tailoring surface wettability of TZP bioceramics by UV picosecond laser micro-fabrication
JP4203310B2 (ja) 防眩性反射防止フィルムの製造方法
Malinauskas et al. Femtosecond pulse light filament-assisted microfabrication of biodegradable polylactic acid (PLA) material
Ho et al. An experimental investigation of surface generation using an integrated ultra-precision polishing process and different polishing trajectories
Bischoff et al. Generation of laser-induced periodic surface structures on different glasses by a picosecond-pulsed laser
Mitsuishi et al. Analysis of laser micromachining in silica glass with an absorbent slurry
Zhou et al. Research on 3D fabrication technology of monocrystalline silicon microlens array femtosecond laser

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19910364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19910364

Country of ref document: EP

Kind code of ref document: A1