WO2020144819A1 - Optical disk device - Google Patents

Optical disk device Download PDF

Info

Publication number
WO2020144819A1
WO2020144819A1 PCT/JP2019/000565 JP2019000565W WO2020144819A1 WO 2020144819 A1 WO2020144819 A1 WO 2020144819A1 JP 2019000565 W JP2019000565 W JP 2019000565W WO 2020144819 A1 WO2020144819 A1 WO 2020144819A1
Authority
WO
WIPO (PCT)
Prior art keywords
tray
optical disc
traverse mechanism
optical disk
cam slider
Prior art date
Application number
PCT/JP2019/000565
Other languages
French (fr)
Japanese (ja)
Inventor
昌樹 宇田
克博 小野寺
福島 良光
和明 岡田
秀夫 伊藤
Original Assignee
パイオニアデジタルデザインアンドマニュファクチャリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニアデジタルデザインアンドマニュファクチャリング株式会社 filed Critical パイオニアデジタルデザインアンドマニュファクチャリング株式会社
Priority to CN201980077444.6A priority Critical patent/CN113272899B/en
Priority to JP2020565114A priority patent/JP7068503B2/en
Priority to PCT/JP2019/000565 priority patent/WO2020144819A1/en
Publication of WO2020144819A1 publication Critical patent/WO2020144819A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B17/00Guiding record carriers not specifically of filamentary or web form, or of supports therefor
    • G11B17/02Details
    • G11B17/04Feeding or guiding single record carrier to or from transducer unit
    • G11B17/05Feeding or guiding single record carrier to or from transducer unit specially adapted for discs not contained within cartridges
    • G11B17/053Indirect insertion, i.e. with external loading means
    • G11B17/056Indirect insertion, i.e. with external loading means with sliding loading means

Definitions

  • the present invention relates to the technical field of optical disk devices.
  • This type of device is used, for example, in an archive system that uses optical disks.
  • an archive system for example, an archive system including a plurality of optical disc drives has been proposed (see Patent Documents 1 and 2).
  • a method for increasing the data capacity per optical disc for example, there is a method of using a double-sided optical disc in which a recording layer is provided on both one surface and the other surface opposite to the one surface. ..
  • the following configuration is adopted in order to use the double-sided optical disk without providing a reversing mechanism for reversing the double-sided optical disk. That is, one side of the double-sided optical disk is arranged so that the optical disk drive is arranged so that the rotation axis of the optical disk intersects with the vertical direction (that is, the optical disk drive is vertically installed) and the positions of the optical pickups are opposite to each other.
  • An optical disk drive that performs a reproducing or recording operation on the recording layer on the surface of 1) and an optical disk drive that performs a recording or reproducing operation on the recording layer on the other surface of the double-sided optical disk are arranged.
  • Patent Document 1 unlike the archive system described in Patent Document 2, the technology described in Patent Document 1 cannot be applied to an archive system in which an optical disk drive is arranged so that the rotation axis of the optical disk is along the vertical direction.
  • a tray loading type optical disk drive is used as the optical disk drive, a reproducing or recording operation is performed on the recording layer on the surface (that is, the upper surface) of the double-sided optical disk that is not in contact with the tray without using the inversion mechanism. Is extremely difficult to do.
  • the present invention has been made in view of the above problems, for example, and is an optical disk device capable of performing a reproducing or recording operation on a recording layer of a surface of the optical disk which is not in contact with the tray (corresponding to the optical disk drive described above. ) Is an issue.
  • an optical disc of the present invention includes a mounting portion on which an optical disc is mounted and a first surface including a groove portion formed by a pair of tray ribs extending in one direction, and the first surface.
  • a tray having a second surface on the opposite side, a traverse mechanism arranged to face the first surface and having a first boss portion, and a clamper arranged to face the second surface, The first boss portion is inserted through the second boss portion inserted into the groove portion, and the first boss portion is moved along with the movement in the other direction intersecting the one direction on the plane along the first surface.
  • a cam slider having an elevating cam hole for guiding the boss portion to elevate and lower the traverse mechanism, and the pair of tray ribs are divided by the placing portion.
  • the optical disk device includes a mounting surface on which an optical disk is mounted and a first surface including a groove portion formed by a pair of tray ribs extending in one direction, and a second surface on the side opposite to the first surface.
  • a tray having a surface, a traverse mechanism arranged to face the first surface and having a first boss portion, a clamper arranged to face the second surface, and inserted into the groove portion. The second boss portion and the first boss portion are inserted, and the first boss portion is guided along with the movement in the other direction intersecting the one direction on the plane along the first surface.
  • a cam slider having an elevating cam hole for elevating and lowering the traverse mechanism, wherein the pair of tray ribs are divided by the placing portion.
  • the optical disc device is a so-called tray loading type optical disc device.
  • a traverse mechanism including, for example, an optical pickup and a spindle motor is arranged so as to face the first surface of the tray. Therefore, in the optical disc device, the surface of the optical disc mounted on the tray mounting portion that is not in contact with the tray faces the traverse mechanism. Therefore, in the optical disk device, the reproduction or recording operation is performed on the surface of the optical disk which is not in contact with the tray.
  • the cam slider has a second boss portion that is inserted into a groove portion formed by a pair of tray ribs on the first surface of the tray.
  • the cam slider further has a lifting cam hole for guiding the first boss portion of the traverse mechanism. Since the cam slider has the second boss portion and the lifting cam hole, the tray, the cam slider, and the traverse mechanism work together.
  • the optical disc device is used to enhance compatibility with other optical disc devices, or to enhance versatility of a housing used in a device including the optical disc device (for example, the above-described archive system, personal computer, etc.).
  • a housing used in a device including the optical disc device for example, the above-described archive system, personal computer, etc.
  • the width of the tray (that is, the length of the tray in the other directions) needs to be almost the same as the diameter of the optical disk.
  • a groove portion (in other words, a pair of tray ribs) into which the second boss portion of the cam slider is inserted must be formed on the first surface of the tray.
  • the pair of tray ribs is divided by the mounting portion on the first surface of the tray. That is, a pair of tray ribs is not formed on the mounting portion. According to this structure, the tray, the cam slider, and the traverse mechanism can be interlocked with each other, and the size of the optical disk device can be adjusted to the standard.
  • the optical disk device it is possible to perform the reproducing or recording operation on the recording layer on the surface of the optical disk which is not in contact with the tray.
  • the size of the optical disc device can be adjusted to the standard, compatibility and/or versatility of the optical disc device can be improved.
  • the second surface has a tray rack extending along the one direction, is arranged to face the first surface, and the tray is placed in the one direction.
  • a motor for outputting power for moving along a gear arranged to face the second surface and meshing with the tray rack, and a power transmission member for transmitting the power output from the motor to the gear.
  • the power for moving the tray along the one direction is transmitted from the motor arranged on the first surface side of the tray to the tray rack formed on the second surface of the tray. Since the traverse mechanism is arranged so as to face the first surface of the tray, even if the motor is arranged on the first surface side of the tray, there is no influence on the height (or thickness) of the optical disk device. Therefore, according to this aspect, it is possible to move the tray along one direction while adjusting the size (especially height or thickness) of the optical disk device to the standard.
  • the cam slider has a first suppressing member that suppresses movement of the cam slider in the other direction.
  • the pair of tray ribs is not formed on the mounting portion of the first surface of the tray. That is, the groove portion into which the second boss portion of the cam slider is inserted is interrupted at the tray mounting portion. Therefore, if no measures are taken, there is a possibility that the cam slider will move in the other direction more than expected due to the interruption of the groove.
  • the cam slider since the cam slider has the first suppressing member, it is possible to suppress the movement of the cam slider in the other direction.
  • the elevating cam hole when the optical disc is clamped, has a distance between the traverse mechanism and the tray at a second position where the traverse mechanism is located.
  • the distance is smaller than the distance at the first position where the traverse mechanism is located.
  • the distance between the traverse mechanism and the tray when the optical disc is clamped is smaller than the distance when the optical disc is reproduced or recorded. Therefore, the distance between the spindle motor of the traverse mechanism and the clamper becomes relatively small, so that the optical disc can be properly clamped.
  • the clamper is rotatably arranged in a recess formed in the cover of the optical disc device, and abuts on a portion of the cover forming the recess.
  • a clamper cover having a second suppressing member that suppresses the positional fluctuation of the clamper in the recess.
  • the position change of the clamper is suppressed by the second suppressing member, so that when the optical disc is clamped, it is possible to preferably suppress the displacement between the spindle motor of the traverse mechanism and the clamper. it can.
  • a limit is formed on the first surface side of the tray and at a position separated from the tray and restricts movement of the optical disc to the traverse mechanism side. It has a member.
  • the tray In an optical disc device in which the traverse mechanism is arranged so as to face the second surface of the tray, the tray will be interposed between the traverse mechanism and the optical disc. Therefore, when the optical disc is taken out from the optical disc device after the reproduction or recording of the optical disc is completed, the optical disc is unclamped due to the ejection operation of the tray.
  • the traverse mechanism since the traverse mechanism is arranged so as to face the first surface of the tray, the tray is not interposed between the traverse mechanism and the optical disc. For this reason, if no measures are taken, the optical disk may remain stuck to the spindle motor of the traverse mechanism when the optical disk is taken out from the optical disk device (that is, the optical disk is not properly unclamped). There is a possibility). As a result, problems such as the optical disc not being ejected from the optical disc device and scratches or stains on the optical disc may occur.
  • the movement of the optical disc to the traverse mechanism side is limited because the optical disc device includes the limiting member. Therefore, according to this aspect, it is possible to preferably prevent the optical disc from being stuck to the spindle motor of the traverse mechanism when the optical disc is taken out from the optical disc device.
  • optical disk device of the present invention An embodiment of the optical disk device of the present invention will be described with reference to the drawings.
  • an optical disk drive is taken as an example of the optical disk device of the present invention.
  • FIG. 1 is a diagram showing an arrangement of components of an optical disc drive according to an embodiment.
  • FIG. 2 is a perspective view showing a main part of the optical disc drive according to the embodiment.
  • FIG. 3 is a plan view showing the tray according to the embodiment.
  • FIG. 4 is a diagram showing a cam slider according to the embodiment.
  • the optical disk drive 1 is arranged so as to face the tray 10 and a first surface of the tray 10 on the side where the optical disk 200 is placed, and a spindle motor (SPDL) and an optical pickup (PU). ), a clamper 30 arranged to face a second surface of the tray 10 opposite to the first surface, a cam slider 40, and power for driving the tray 10 and the cam slider 40.
  • the drive unit 50 that outputs the power and the gear train 60 that transmits the power output from the drive unit 50 to the tray 10 are configured.
  • the optical disk drive 1 is a so-called tray loading type optical disk drive.
  • the optical pickup of the traverse mechanism 20 performs a reproducing or recording operation on the surface (that is, the upper surface) of the optical disk 200 on the side not in contact with the tray 10. ..
  • FIG. 3A is a plan view of the tray 10 seen from above the optical disc drive 1. That is, FIG. 3A is a plan view showing the first surface of the tray 10 described above.
  • FIG. 3B is a plan view of the tray 10 as seen from below the optical disc drive 1. That is, FIG. 3B is a plan view showing the second surface of the tray 10 described above.
  • a mounting portion 11 on which the optical disc 200 is mounted is formed on the first surface of the tray 10.
  • a pair of tray ribs 12 extending in the x direction is further formed on the first surface of the tray 10.
  • a groove 13 is formed by the pair of tray ribs 12. The groove 13 limits the movement of the cam slider 40 (details will be described later).
  • the pair of tray ribs 12 are divided by the mounting portion 11.
  • a tray rack 14 extending along the x direction is formed on the second surface of the tray 10.
  • a gear 61 meshes with the tray rack 14 (a power transmission path to the gear 61 will be described later).
  • the cam slider 40 has a boss 41 that is inserted into the groove 13 of the tray 10.
  • the boss 21 of the traverse mechanism 20 is inserted into the cam slider 40, and as the cam slider 40 moves in the y direction (see FIGS. 2 and 3), the boss 21 is guided to move the traverse mechanism 20 up and down. 42 is formed.
  • the power output from the motor 51 is transmitted from a pulley (not shown) fixed to the motor 51 to the pulley 52 via a belt. After that, the power output from the motor 51 is transmitted to the gear 54 via the gear 53 and the like.
  • the gear 53 is configured to be able to mesh with a cam rack (not shown) formed on the cam slider 40.
  • a gear 62 is connected to a rotary shaft 55 of the gear 54. Therefore, the power output from the motor 51 and transmitted to the gear 54 is transmitted to the gear 61 via the rotary shaft 55 and the gear 62.
  • the tray 10 is moved along the x direction.
  • the motor 51, the pulley 52, the gears 53 and 54, and the rotating shaft 55 form a part of the drive unit 50.
  • the gears 61 and 62 form a part of the gear train 60.
  • FIG. 5 is a diagram showing the movement of the cam slider with respect to the tray.
  • FIG. 6 is a diagram showing the movement of the traverse mechanism with respect to the cam slider.
  • the state shown in FIG. 5A corresponds to the states shown in FIGS. 6A1 and 6A2, respectively.
  • the state shown in FIG. 5(b) corresponds to the state shown in each of FIGS. 6(b1) and 6(b2).
  • the state shown in FIG. 5C corresponds to the states shown in FIGS. 6C1 and 6C2, respectively.
  • the state shown in FIG. 5D corresponds to the states shown in FIGS. 6D1 and 6D2, respectively.
  • FIGS. b2), (c2) and (d2) are views (that is, a side view) of the traverse mechanism 20 and the like viewed from the right side of FIG. 5.
  • FIG. 3A shows a state in which the tray 10 projects in front of the main base (not shown) of the optical disc drive 1.
  • FIG. 5B shows a state where the tray 10 is accommodated in the main base of the optical disc drive 1 (the same applies to the corresponding FIGS. 6B1 and 6B2).
  • FIG. 5(a) shows a state between the state shown in FIG. 3(a) and the state shown in FIG. 5(b) (also for the corresponding FIG. 6(a1) and FIG. 6(a2). As well).
  • FIG. 5C shows a state in which the optical disc 200 is clamped by the traverse mechanism 20 as shown in corresponding FIGS. 6C1 and 6C2.
  • FIG. 5D shows a state in which the optical pickup of the traverse mechanism 20 performs a reproduction or recording operation on the optical disc 200 (also in the corresponding FIGS. 6D1 and 6D2). As well).
  • the cam slider 40 moves toward the rear end side of the tray 10 (that is, as shown by the broken line arrow in FIG. 5A). It moves from the upper side of FIG. 5A) toward the front end side of the tray 10 (that is, the lower side of FIG. 5A). At this time, the boss 41 (see FIG. 4) of the cam slider 40 moves in the groove portion 13 of the tray 10.
  • the pair of tray ribs 12 (see FIG. 3A) forming the groove 13 are divided by the mounting portion 11 of the tray 10. Therefore, when the tray 10 is housed in the main base, the boss 41 of the cam slider 41 is once disengaged from the groove portion 13 of the tray 10, and after the cam slider 40 has passed the mounting portion 11 of the tray 10, the groove portion 13 is again formed. It will enter inside.
  • the groove 13 is formed so that the cam slider 40 moves along the y direction.
  • the cam rack of the cam slider 40 and the gear 53 (see FIG. 2) are not yet in mesh with each other.
  • the cam slider 40 is caused by the shape of the groove portion 13 as shown by a broken line arrow in FIG. Move from the right side to the left side of FIG. 5).
  • the cam rack and the gear 53 mesh with each other.
  • the cam slider 40 further moves from the right side to the left side in FIG.
  • the traverse mechanism 20 is installed in the main base together with the tray 10. It is located at a retracted position where it does not collide with the optical disc 200 accommodated in the.
  • the cam slider 40 As the gear 53 meshed with the cam rack rotates, the cam slider 40 further moves from the right side to the left side in FIG. 5, and the boss 21 of the traverse mechanism 20 moves as shown in FIGS. 6(c1) and 6(c2). As a result of the movement according to the shape of the elevating cam hole 42 formed in the cam slider 40, the traverse mechanism 20 descends toward the optical disc 200. In the state shown in FIGS. 6C1 and 6C2, the traverse mechanism 20 is located at the clamp position when the optical disc 200 is clamped.
  • the cam slider 40 is arranged above the tray 10.
  • the pair of tray ribs 12 forming the groove portion 13 into which the boss 41 of the cam slider 40 is inserted so that the tray 10 and the cam slider 40 (further, the traverse mechanism 20) interlock with each other.
  • the width (that is, the length in the y direction) of the tray 10 needs to be substantially the same as the diameter of the optical disc 200 so that the size of the optical disc drive 1 conforms to the standard.
  • the pair of tray ribs 12 formed on the first surface of the tray 10 is divided by the mounting portion 11 (in other words, by not forming the pair of tray ribs 12 on the mounting portion 11). ), the interlocking of the cam slider 40 arranged above the tray 10 with the tray 10 and compatibility with the size standard of the optical disk drive 1 are both achieved.
  • the motor 51 that outputs power for driving the tray 10 is arranged above the tray 10.
  • the tray rack 14 is formed on the second surface of the tray 10 as shown in FIG. Therefore, in the optical disk drive 1, the power output from the motor 51 is transmitted to the gear 61 meshing with the tray rack 14 via the gear 54, the rotary shaft 55, and the gear 62.
  • the "gear 54", the "rotary shaft 55", and the “gear 62" correspond to an example of the "power transmission member" according to the present invention.
  • the boss 41 of the cam slider 40 has the groove portion of the tray 10. It leaves 13 once. At this time, if no measures are taken, the cam slider 40 may move in the y direction.
  • the traverse mechanism 20 When the tray 10 is stored in the main base, the traverse mechanism 20 is located at the retracted position, as shown in FIG. 6(a2), for example. At this time, the boss 21 of the traverse mechanism 20 is at the position shown in FIG. 6A1 of the elevating cam hole 42 of the cam slider 40.
  • the portion of the cam slider 40 indicated by the dotted circle c2 in FIG. 6(a1) (that is, the portion where the boss 21 is located) is formed to be slightly lower than the periphery thereof. That is, a recess is formed in the portion indicated by the dotted circle c2.
  • the cam slider 40 further has a resin spring 43, as shown in FIG.
  • the resin spring 43 is formed so as to come into contact with a convex portion formed on a chassis (not shown) surrounding the traverse mechanism 20.
  • the resin spring 43 will be described with reference to FIG. 7.
  • FIG. 7 is an enlarged view showing the vicinity of the resin spring of the cam slider according to the embodiment in an enlarged manner.
  • the above-mentioned convex portion is formed in the portion of the chassis shown by the dotted circle c4 in FIG.
  • the resin spring 43 is brought into contact with the above-mentioned projection.
  • the part is formed on the chassis. Therefore, when the tray 10 is accommodated in the main base, even if a force from the right side to the left side in FIG. 7 (that is, a force from the right side to the left side in FIG.
  • the resin spring 43 corresponds to an example of the "first suppressing member" according to the present invention.
  • the distance between the traverse mechanism 20 and the tray 10 when the traverse mechanism 20 is located at the clamp position (see (c1) and (c2) of FIG. 6) is the reproduction position (
  • the elevating cam hole 42 of the cam slider 40 is formed so as to be smaller than the distance when it is located in FIGS. 6D1 and 6D2).
  • this is the case where the traverse mechanism 20 is located at the reproduction position in the state shown in FIG. 6D1 (being focused on the position of the boss 21).
  • the state where the boss 21 is located in the portion indicated by the dotted circle c3 in FIG. 6D1 is the case where the traverse mechanism 20 is located in the clamp position. ..
  • the lifting cam hole 42 is formed so that the position of the boss 21 when the traverse mechanism 20 is located at the clamp position is lower than the position of the boss 21 when the traverse mechanism 20 is located at the reproduction position. Has been done.
  • FIG. 8 is a diagram showing a clamp cover according to the embodiment.
  • the clamper 30 is rotatably arranged in a recess formed in the cover of the optical disc drive 1. A hole is formed in the recess so that the clamper 30 can be coupled to the spindle motor of the traverse mechanism 20.
  • the cover and the clamper 30 are prevented from contacting each other. A recess is formed. Therefore, if no measures are taken, the positional fluctuation of the clamper 30 in the recess may be relatively large. Then, the optical disc 200 may not be properly clamped due to the position variation of the clamper 30 in the recess.
  • a rib 71 is formed on the clamper cover 70 for suppressing the positional fluctuation of the clamper 30 in the recess.
  • the clamper cover 70 can preferably suppress the positional fluctuation of the clamper 30 in the recess.
  • a part of the rib 71 is in contact with a portion of the cover that constitutes the recess. Therefore, the ribs 71 also prevent the clamper cover 70 from being displaced with respect to the recess.
  • the "rib 71" corresponds to an example of the "second suppressing member" according to the present invention.
  • the lifting cam hole 42 of the cam slider 40 is formed so that the distance between the spindle motor of the traverse mechanism 20 and the clamper 30 becomes as short as possible when the optical disk 200 is clamped.
  • the clamper cover 70 has the ribs 71 so as to suppress the positional fluctuation of the clamper 30 in the recess. Therefore, according to the optical disc drive 1, the optical disc 200 can be appropriately clamped.
  • the optical disc 200 When the optical disc 200 is taken out of the optical disc drive 1 after the reproduction or recording of the optical disc 200 is completed, the optical disc 200 is ejected from the main base of the optical disc drive 1 due to the ejection operation. Unclamped. At this time, if no measures are taken, the optical disc 200 may remain stuck to the spindle motor of the traverse mechanism 20 (that is, the optical disc 200 may not be properly unclamped). As a result, problems such as the optical disc 200 not being ejected from the optical disc drive 1 and the optical disc 200 being scratched or soiled may occur.
  • the portion of the chassis surrounding the traverse mechanism 20 is surrounded by the dotted circle c5 in FIG. Ribs 80 (see FIG. 9B) that restrict the movement (i.e., the upward movement) of the ribs are formed.
  • the rib 80 is lower than the position of the lower end of the spindle motor when the traverse mechanism 20 is located at the retracted position in the height direction (z direction) of the optical disc drive 1, and the traverse mechanism 20 is at the reproduction position. It is formed at a position higher than the position of the upper surface of the optical disc 200 when it is located at.
  • the optical disc 200 Even if the optical disc 200 adheres to the spindle motor of the traverse mechanism 20, the optical disc 200 may come into contact with the rib 80 when the traverse mechanism 20 rises toward the retracted position due to the ejection operation of the tray 10. Thus, the optical disc 200 is removed from the spindle motor. Therefore, according to the optical disc drive 1, the optical disc 200 can be appropriately unclamped.
  • the "rib 80" corresponds to an example of the "limitation member" according to the present invention.
  • Optical disk drive 10... Tray, 20... Traverse mechanism, 30... Clamper, 40... Cam slider, 50... Drive part, 60... Gear train part, 70... Clamper cover

Landscapes

  • Feeding And Guiding Record Carriers (AREA)

Abstract

This optical disk device (1) is provided with: a tray (10) that has a second surface and a first surface including a groove part (13) formed by a pair of tray ribs (12) which extend in one direction and a placement part (11) on which an optical disk (200) is placed; a traverse mechanism (20) that is disposed so as to face opposite to the first surface and has a first boss part (21); a clamper (30) that is disposed so as to face opposite to the second surface; and a cam slider (40) that has a second boss part (41) to be inserted in the groove part and a vertical movement cam hole (42) which has the first boss part inserted therethrough and which, in association with movement in another direction, guides the first boss part so as to cause the traverse mechanism to move vertically. The pair of tray ribs are isolated from each other by the placement part.

Description

光ディスク装置Optical disk device
 本発明は、光ディスク装置の技術分野に関する。 The present invention relates to the technical field of optical disk devices.
 この種の装置は、例えば光ディスクを用いたアーカイブシステムに用いられる。該アーカイブシステムとして、例えば、複数の光ディスクドライブを備えるアーカイブシステムが提案されている(特許文献1及び2参照)。 This type of device is used, for example, in an archive system that uses optical disks. As the archive system, for example, an archive system including a plurality of optical disc drives has been proposed (see Patent Documents 1 and 2).
特開2014-93110号公報JP, 2014-93110, A 国際公開第2017/199430号International Publication No. 2017/199430
 アーカイブシステムでは、その性質上、光ディスク一枚当たりのデータ容量を増やすことが図られる。光ディスク一枚当たりのデータ容量を増やす方法としては、例えば、一方の面、及び、該一方の面とは反対側の他方の面の両方に記録層が設けられた両面光ディスクを用いる方法が挙げられる。 Due to the nature of the archive system, it is possible to increase the data capacity per optical disc. As a method for increasing the data capacity per optical disc, for example, there is a method of using a double-sided optical disc in which a recording layer is provided on both one surface and the other surface opposite to the one surface. ..
 特許文献1に記載のアーカイブシステムでは、両面光ディスクを反転する反転機構を備えることなく、該両面光ディスクを用いるために、次のような構成が採られている。即ち、光ディスクの回転軸が鉛直方向に対して交わるように光ディスクドライブが配置される(即ち、光ディスクドライブが縦置きされる)とともに、光ピックアップの位置が互いに反対になるように、両面光ディスクの一方の面の記録層に対して再生又は記録動作を行う光ディスクドライブと、両面光ディスクの他方の面の記録層に対して記録又は再生動作を行う光ディスクドライブとが配置されている。 In the archive system described in Patent Document 1, the following configuration is adopted in order to use the double-sided optical disk without providing a reversing mechanism for reversing the double-sided optical disk. That is, one side of the double-sided optical disk is arranged so that the optical disk drive is arranged so that the rotation axis of the optical disk intersects with the vertical direction (that is, the optical disk drive is vertically installed) and the positions of the optical pickups are opposite to each other. An optical disk drive that performs a reproducing or recording operation on the recording layer on the surface of 1) and an optical disk drive that performs a recording or reproducing operation on the recording layer on the other surface of the double-sided optical disk are arranged.
 しかしながら、特許文献2に記載のアーカイブシステムのように、光ディスクの回転軸が鉛直方向に沿うように光ディスクドライブが配置されるアーカイブシステムには、特許文献1に記載の技術を適用することはできない。特に、光ディスクドライブとして、トレイローディング方式の光ディスクドライブが用いられる場合、上記反転機構を用いることなく、両面光ディスクのトレイと接しない側の面(即ち、上面)の記録層に対して再生又は記録動作を行うことは極めて困難である。 However, unlike the archive system described in Patent Document 2, the technology described in Patent Document 1 cannot be applied to an archive system in which an optical disk drive is arranged so that the rotation axis of the optical disk is along the vertical direction. In particular, when a tray loading type optical disk drive is used as the optical disk drive, a reproducing or recording operation is performed on the recording layer on the surface (that is, the upper surface) of the double-sided optical disk that is not in contact with the tray without using the inversion mechanism. Is extremely difficult to do.
 本発明は、例えば上記問題点に鑑みてなされたものであり、光ディスクのトレイと接しない側の面の記録層に対して再生又は記録動作を行うことができる光ディスク装置(上述の光ディスクドライブに相当)を提供することを課題とする。 The present invention has been made in view of the above problems, for example, and is an optical disk device capable of performing a reproducing or recording operation on a recording layer of a surface of the optical disk which is not in contact with the tray (corresponding to the optical disk drive described above. ) Is an issue.
 本発明の光ディスクは、上記課題を解決するために、光ディスクを載置する載置部及び一の方向に沿って延びる一対のトレイリブにより形成された溝部を含む第1面と、前記第1面とは反対側の第2面とを有するトレイと、前記第1面と対向して配置されるとともに、第1ボス部を有するトラバースメカと、前記第2面と対向して配置されたクランパと、前記溝部内に挿入される第2ボス部と、前記第1ボス部が挿通されるとともに、前記第1面に沿った平面において前記一の方向と交わる他の方向への移動に伴い前記第1ボス部を案内して前記トラバースメカを昇降させる昇降カム孔とを有するカムスライダと、を備え、前記一対のトレイリブは、前記載置部によって分断されている。 In order to solve the above-mentioned problems, an optical disc of the present invention includes a mounting portion on which an optical disc is mounted and a first surface including a groove portion formed by a pair of tray ribs extending in one direction, and the first surface. A tray having a second surface on the opposite side, a traverse mechanism arranged to face the first surface and having a first boss portion, and a clamper arranged to face the second surface, The first boss portion is inserted through the second boss portion inserted into the groove portion, and the first boss portion is moved along with the movement in the other direction intersecting the one direction on the plane along the first surface. And a cam slider having an elevating cam hole for guiding the boss portion to elevate and lower the traverse mechanism, and the pair of tray ribs are divided by the placing portion.
 本発明の作用及び他の利得は次に説明する実施するための形態から明らかにされる。 The operation and other advantages of the present invention will be clarified from the modes for carrying out the invention described below.
実施例に係る光ディスクドライブの構成要素の配置を示す図である。It is a figure which shows arrangement|positioning of the component of the optical disk drive which concerns on an Example. 実施例に係る光ディスクドライブの要部を示す斜視図である。It is a perspective view showing the important section of the optical disk drive concerning an example. 実施例に係るトレイを示す平面図である。It is a top view which shows the tray which concerns on an Example. 実施例に係るカムスライダを示す図である。It is a figure which shows the cam slider which concerns on an Example. トレイに対するカムスライダの動きを示す図である。It is a figure which shows the movement of the cam slider with respect to a tray. カムスライダに対するトラバースメカの動きを示す図である。It is a figure which shows the movement of the traverse mechanism with respect to a cam slider. 実施例に係る樹脂ばね近傍を拡大して示す拡大図である。It is an enlarged view which expands and shows the resin spring vicinity which concerns on an Example. 実施例に係るクランプカバーを示す図である。It is a figure which shows the clamp cover which concerns on an Example. 実施例に係る光ディスクドライブのシャーシを示す図である。It is a figure which shows the chassis of the optical disk drive which concerns on an Example.
 本発明の光ディスク装置に係る実施形態について説明する。 An embodiment of the optical disk device of the present invention will be described.
 実施形態に係る光ディスク装置は、光ディスクを載置する載置部及び一の方向に沿って延びる一対のトレイリブにより形成された溝部を含む第1面と、前記第1面とは反対側の第2面とを有するトレイと、前記第1面と対向して配置されるとともに、第1ボス部を有するトラバースメカと、前記第2面と対向して配置されたクランパと、前記溝部内に挿入される第2ボス部と、前記第1ボス部が挿通されるとともに、前記第1面に沿った平面において前記一の方向と交わる他の方向への移動に伴い前記第1ボス部を案内して前記トラバースメカを昇降させる昇降カム孔とを有するカムスライダと、を備え、前記一対のトレイリブは、前記載置部によって分断されている。 The optical disk device according to the embodiment includes a mounting surface on which an optical disk is mounted and a first surface including a groove portion formed by a pair of tray ribs extending in one direction, and a second surface on the side opposite to the first surface. A tray having a surface, a traverse mechanism arranged to face the first surface and having a first boss portion, a clamper arranged to face the second surface, and inserted into the groove portion. The second boss portion and the first boss portion are inserted, and the first boss portion is guided along with the movement in the other direction intersecting the one direction on the plane along the first surface. And a cam slider having an elevating cam hole for elevating and lowering the traverse mechanism, wherein the pair of tray ribs are divided by the placing portion.
 当該光ディスク装置は、いわゆるトレイローディング方式の光ディスク装置である。当該光ディスク装置では、例えば光ピックアップ、スピンドルモータ等を含むトラバースメカが、トレイの第1面と対向して配置されている。このため、当該光ディスク装置では、トレイの載置部に載置された光ディスクの該トレイと接しない側の面が、トラバースメカと対向することとなる。従って、当該光ディスク装置では、光ディスクのトレイと接しない側の面に対して、再生又は記録動作が行われることになる。 The optical disc device is a so-called tray loading type optical disc device. In the optical disc device, a traverse mechanism including, for example, an optical pickup and a spindle motor is arranged so as to face the first surface of the tray. Therefore, in the optical disc device, the surface of the optical disc mounted on the tray mounting portion that is not in contact with the tray faces the traverse mechanism. Therefore, in the optical disk device, the reproduction or recording operation is performed on the surface of the optical disk which is not in contact with the tray.
 カムスライダは、トレイの第1面に一対のトレイリブにより形成された溝部内に挿入される第2ボス部を有する。カムスライダは更に、トラバースメカの第1ボス部を案内する昇降カム孔を有する。カムスライダが第2ボス部及び昇降カム孔を有することで、トレイ、カムスライダ及びトラバースメカが連動することになる。 The cam slider has a second boss portion that is inserted into a groove portion formed by a pair of tray ribs on the first surface of the tray. The cam slider further has a lifting cam hole for guiding the first boss portion of the traverse mechanism. Since the cam slider has the second boss portion and the lifting cam hole, the tray, the cam slider, and the traverse mechanism work together.
 ところで、光ディスク装置は、他の光ディスク装置との互換性を高めるために、或いは、光ディスク装置を搭載する装置(例えば、上述したアーカイブシステム、パーソナルコンピュータ等)に用いられる筐体の汎用性を高めるために、そのサイズに係る規格が存在する。 By the way, the optical disc device is used to enhance compatibility with other optical disc devices, or to enhance versatility of a housing used in a device including the optical disc device (for example, the above-described archive system, personal computer, etc.). , There is a standard for the size.
 当該光ディスク装置のサイズを規格に合わせる場合、トレイの幅(即ち、トレイの上記他の方向の長さ)を、光ディスクの直径とほぼ同じにする必要がある。他方で、トレイ、カムスライダ及びトラバースメカを連動させるために、カムスライダの第2ボス部が挿入される溝部(言い換えれば、一対のトレイリブ)をトレイの第1面に形成しなければならない。 When matching the size of the optical disk device to the standard, the width of the tray (that is, the length of the tray in the other directions) needs to be almost the same as the diameter of the optical disk. On the other hand, in order to interlock the tray, the cam slider and the traverse mechanism, a groove portion (in other words, a pair of tray ribs) into which the second boss portion of the cam slider is inserted must be formed on the first surface of the tray.
 しかるに当該光ディスク装置では、トレイの第1面において、載置部により一対のトレイリブが分断されている。つまり、載置部には一対のトレイリブが形成されていない。このように構成すれば、トレイ、カムスライダ及びトラバースメカを連動させることができるとともに、当該光ディスク装置のサイズを規格に合わせることができる。 However, in the optical disk device, the pair of tray ribs is divided by the mounting portion on the first surface of the tray. That is, a pair of tray ribs is not formed on the mounting portion. According to this structure, the tray, the cam slider, and the traverse mechanism can be interlocked with each other, and the size of the optical disk device can be adjusted to the standard.
 以上の結果、当該光ディスク装置によれば、光ディスクのトレイと接しない側の面の記録層に対して再生又は記録動作を行うことができる。加えて、当該光ディスク装置のサイズを規格に合わせることができるので、当該光ディスク装置の互換性及び/又は汎用性を高めることができる。 As a result of the above, according to the optical disk device, it is possible to perform the reproducing or recording operation on the recording layer on the surface of the optical disk which is not in contact with the tray. In addition, since the size of the optical disc device can be adjusted to the standard, compatibility and/or versatility of the optical disc device can be improved.
 本実施形態に係る光ディスク装置の一態様では、前記第2面は、前記一の方向に沿って延びるトレイラックを有し、前記第1面と対向して配置され、前記トレイを前記一の方向に沿って移動させるための動力を出力するモータと、前記第2面と対向して配置され、前記トレイラックと噛合する歯車と、前記モータから出力された動力を前記歯車に伝達する動力伝達部材と、を備える。 In an aspect of the optical disc device according to the present embodiment, the second surface has a tray rack extending along the one direction, is arranged to face the first surface, and the tray is placed in the one direction. A motor for outputting power for moving along, a gear arranged to face the second surface and meshing with the tray rack, and a power transmission member for transmitting the power output from the motor to the gear. And
 この態様では、トレイを一の方向に沿って移動させるための動力は、トレイの第1面側に配置されたモータから、トレイの第2面に形成されたトレイラックに伝達される。トレイの第1面と対向してトラバースメカが配置されているので、トレイの第1面側に上記モータが配置されたとしても、当該光ディスク装置の高さ(又は厚み)への影響はない。従って、この態様によれば、当該光ディスク装置のサイズ(特に高さ又は厚み)を規格に合わせつつ、トレイを一の方向に沿って移動させることができる。 In this aspect, the power for moving the tray along the one direction is transmitted from the motor arranged on the first surface side of the tray to the tray rack formed on the second surface of the tray. Since the traverse mechanism is arranged so as to face the first surface of the tray, even if the motor is arranged on the first surface side of the tray, there is no influence on the height (or thickness) of the optical disk device. Therefore, according to this aspect, it is possible to move the tray along one direction while adjusting the size (especially height or thickness) of the optical disk device to the standard.
 本実施形態に係る光ディスク装置の他の態様では、前記カムスライダは、前記他の方向への前記カムスライダの移動を抑制する第1抑制部材を有する。上述の如く、トレイの第1面のうち載置部には一対のトレイリブは形成されていない。つまり、カムスライダの第2ボス部が挿入される溝部は、トレイの載置部で途切れている。このため、何らの対策もしなければ、上記溝部が途切れていることに起因して、想定されているよりも多くカムスライダが他の方向へ移動する可能性がある。しかるに、この態様によれば、カムスライダが第1抑制部材を有しているが故に、他の方向へのカムスライダの移動を抑制することができる。 In another aspect of the optical disk device according to the present embodiment, the cam slider has a first suppressing member that suppresses movement of the cam slider in the other direction. As described above, the pair of tray ribs is not formed on the mounting portion of the first surface of the tray. That is, the groove portion into which the second boss portion of the cam slider is inserted is interrupted at the tray mounting portion. Therefore, if no measures are taken, there is a possibility that the cam slider will move in the other direction more than expected due to the interruption of the groove. However, according to this aspect, since the cam slider has the first suppressing member, it is possible to suppress the movement of the cam slider in the other direction.
 本実施形態に係る光ディスク装置の他の態様では、前記昇降カム孔は、前記光ディスクがクランプされるときに、前記トラバースメカが位置する第2位置における前記トラバースメカと前記トレイとの間の距離が、前記光ディスクの再生又は記録が行われるときに、前記トラバースメカが位置する第1位置における前記距離よりも小さくなるように形成されている。 In another aspect of the optical disc apparatus according to the present embodiment, when the optical disc is clamped, the elevating cam hole has a distance between the traverse mechanism and the tray at a second position where the traverse mechanism is located. When the reproduction or recording of the optical disc is performed, the distance is smaller than the distance at the first position where the traverse mechanism is located.
 この態様では、光ディスクがクランプされるときのトラバースメカとトレイとの間の距離は、光ディスクの再生又は記録が行われるときの該距離に比べて小さい。このため、トラバースメカのスピンドルモータと、クランパとの間の距離も比較的小さくなるので、光ディスクを適切にクランプすることができる。 In this mode, the distance between the traverse mechanism and the tray when the optical disc is clamped is smaller than the distance when the optical disc is reproduced or recorded. Therefore, the distance between the spindle motor of the traverse mechanism and the clamper becomes relatively small, so that the optical disc can be properly clamped.
 本実施形態に係る光ディスク装置の他の態様では、前記クランパは、当該光ディスク装置のカバーに形成された凹部内に回転自在に配置されており、前記カバーのうち前記凹部を形成する部分に当接して、前記凹部内における前記クランパの位置変動を抑制する第2抑制部材を有するクランパカバーを備える。 In another aspect of the optical disc device according to the present embodiment, the clamper is rotatably arranged in a recess formed in the cover of the optical disc device, and abuts on a portion of the cover forming the recess. And a clamper cover having a second suppressing member that suppresses the positional fluctuation of the clamper in the recess.
 この態様によれば、第2抑制部材によりクランパの位置変動が抑制されるので、光ディスクがクランプされるときに、トラバースメカのスピンドルモータとクランパとの位置ずれが生じることを好適に抑制することができる。 According to this aspect, the position change of the clamper is suppressed by the second suppressing member, so that when the optical disc is clamped, it is possible to preferably suppress the displacement between the spindle motor of the traverse mechanism and the clamper. it can.
 本実施形態に係る光ディスク装置の他の態様では、前記トレイの第1面側、且つ、前記トレイから離隔された位置に形成されるとともに、前記光ディスクの前記トラバースメカ側への移動を制限する制限部材を備える。 In another aspect of the optical disc apparatus according to the present embodiment, a limit is formed on the first surface side of the tray and at a position separated from the tray and restricts movement of the optical disc to the traverse mechanism side. It has a member.
 トレイの第2面と対向してトラバースメカが配置されている光ディスク装置では、トラバースメカと光ディスクとの間にトレイが介在することとなる。このため、光ディスクの再生又は記録が終了した後、光ディスク装置から光ディスクが取り出されるときには、トレイの排出動作に起因して、光ディスクがアンクランプされることになる。 In an optical disc device in which the traverse mechanism is arranged so as to face the second surface of the tray, the tray will be interposed between the traverse mechanism and the optical disc. Therefore, when the optical disc is taken out from the optical disc device after the reproduction or recording of the optical disc is completed, the optical disc is unclamped due to the ejection operation of the tray.
 他方で、当該光ディスク装置では、トレイの第1面と対向してトラバースメカが配置されているが故に、トラバースメカと光ディスクとの間にはトレイが介在していない。このため、何らの対策も採らなければ、当該光ディスク装置から光ディスクが取り出されるときに、トラバースメカのスピンドルモータに光ディスクが貼り付いたままになる可能性がある(即ち、光ディスクが適切にアンクランプされない可能性がある)。この結果、光ディスクが当該光ディスク装置から排出されない、光ディスクに傷や汚れがつく等の不具合が発生する可能性がある。 On the other hand, in the optical disc device, since the traverse mechanism is arranged so as to face the first surface of the tray, the tray is not interposed between the traverse mechanism and the optical disc. For this reason, if no measures are taken, the optical disk may remain stuck to the spindle motor of the traverse mechanism when the optical disk is taken out from the optical disk device (that is, the optical disk is not properly unclamped). there is a possibility). As a result, problems such as the optical disc not being ejected from the optical disc device and scratches or stains on the optical disc may occur.
 しかるに、この態様では、当該光ディスク装置が制限部材を備えるが故に、光ディスクのトラバースメカ側への移動が制限される。このため、この態様によれば、当該光ディスク装置から光ディスクが取り出されるときに、トラバースメカのスピンドルモータに光ディスクが貼り付いたままになることを好適に抑制することができる。 However, in this mode, the movement of the optical disc to the traverse mechanism side is limited because the optical disc device includes the limiting member. Therefore, according to this aspect, it is possible to preferably prevent the optical disc from being stuck to the spindle motor of the traverse mechanism when the optical disc is taken out from the optical disc device.
 本発明の光ディスク装置に係る実施例を図面に基づいて説明する。ここでは、本発明の光ディスク装置の一例として、光ディスクドライブを挙げる。 An embodiment of the optical disk device of the present invention will be described with reference to the drawings. Here, an optical disk drive is taken as an example of the optical disk device of the present invention.
 (構成)
 実施例に係る光ディスクドライブの構成について図1乃至図4を参照して説明する。図1は、実施例に係る光ディスクドライブの構成要素の配置を示す図である。図2は、実施例に係る光ディスクドライブの要部を示す斜視図である。図3は、実施例に係るトレイを示す平面図である。図4は、実施例に係るカムスライダを示す図である。
(Constitution)
The configuration of the optical disc drive according to the embodiment will be described with reference to FIGS. FIG. 1 is a diagram showing an arrangement of components of an optical disc drive according to an embodiment. FIG. 2 is a perspective view showing a main part of the optical disc drive according to the embodiment. FIG. 3 is a plan view showing the tray according to the embodiment. FIG. 4 is a diagram showing a cam slider according to the embodiment.
 実施例に係る光ディスクドライブの概要について図1を参照して説明する。図1において、光ディスクドライブ1は、トレイ10と、トレイ10の光ディスク200が載置される側の面である第1面に対向して配置されるとともに、スピンドルモータ(SPDL)及び光ピックアップ(PU)を有するトラバースメカ20と、トレイ10の第1面とは反対側の面である第2面に対向して配置されたクランパ30と、カムスライダ40と、トレイ10及びカムスライダ40を駆動する動力を出力する駆動部50と、駆動部50から出力された動力をトレイ10に伝達するギア列部60とを備えて構成されている。 An outline of the optical disk drive according to the embodiment will be described with reference to FIG. In FIG. 1, the optical disk drive 1 is arranged so as to face the tray 10 and a first surface of the tray 10 on the side where the optical disk 200 is placed, and a spindle motor (SPDL) and an optical pickup (PU). ), a clamper 30 arranged to face a second surface of the tray 10 opposite to the first surface, a cam slider 40, and power for driving the tray 10 and the cam slider 40. The drive unit 50 that outputs the power and the gear train 60 that transmits the power output from the drive unit 50 to the tray 10 are configured.
 当該光ディスクドライブ1は、いわゆるトレイローディング方式の光ディスクドライブである。当該光ディスクドライブ1では、図1に示すように、トラバースメカ20の光ピックアップにより、光ディスク200のトレイ10と接しない側の面(即ち、上面)に対して再生又は記録動作が行われることになる。 The optical disk drive 1 is a so-called tray loading type optical disk drive. In the optical disk drive 1, as shown in FIG. 1, the optical pickup of the traverse mechanism 20 performs a reproducing or recording operation on the surface (that is, the upper surface) of the optical disk 200 on the side not in contact with the tray 10. ..
 トレイ10について図3を参照して説明を加える。図3(a)は、光ディスクドライブ1の上方からトレイ10を見た平面図である。つまり、図3(a)は、上述したトレイ10の第1面を示す平面図である。図3(b)は、光ディスクドライブ1の下方からトレイ10を見た平面図である。つまり、図3(b)は、上述したトレイ10の第2面を示す平面図である。 -Additional explanation about the tray 10 with reference to FIG. FIG. 3A is a plan view of the tray 10 seen from above the optical disc drive 1. That is, FIG. 3A is a plan view showing the first surface of the tray 10 described above. FIG. 3B is a plan view of the tray 10 as seen from below the optical disc drive 1. That is, FIG. 3B is a plan view showing the second surface of the tray 10 described above.
 図3(a)に示すように、トレイ10の第1面には、光ディスク200が載置される載置部11が形成されている。トレイ10の第1面には更に、x方向に沿って延びる一対のトレイリブ12が形成されている。この一対のトレイリブ12により溝部13が形成される。この溝部13により、カムスライダ40の移動が制限される(詳細については後述する)。図3(a)に示すように、一対のトレイリブ12は、載置部11により分断されている。 As shown in FIG. 3A, a mounting portion 11 on which the optical disc 200 is mounted is formed on the first surface of the tray 10. A pair of tray ribs 12 extending in the x direction is further formed on the first surface of the tray 10. A groove 13 is formed by the pair of tray ribs 12. The groove 13 limits the movement of the cam slider 40 (details will be described later). As shown in FIG. 3A, the pair of tray ribs 12 are divided by the mounting portion 11.
 図3(b)に示すように、トレイ10の第2面には、x方向に沿って延びるトレイラック14が形成されている。トレイラック14には、歯車61が噛合している(歯車61への動力伝達経路についての説明は後述する)。 As shown in FIG. 3B, a tray rack 14 extending along the x direction is formed on the second surface of the tray 10. A gear 61 meshes with the tray rack 14 (a power transmission path to the gear 61 will be described later).
 カムスライダ40は、図4に示すように、トレイ10の溝部13内に挿入されるボス41を有する。カムスライダ40には、トラバースメカ20のボス21が挿通されるとともに、カムスライダ40のy方向(図2及び図3参照)への移動に伴いボス21を案内してトラバースメカ20を昇降させる昇降カム孔42が形成されている。 As shown in FIG. 4, the cam slider 40 has a boss 41 that is inserted into the groove 13 of the tray 10. The boss 21 of the traverse mechanism 20 is inserted into the cam slider 40, and as the cam slider 40 moves in the y direction (see FIGS. 2 and 3), the boss 21 is guided to move the traverse mechanism 20 up and down. 42 is formed.
 トラバースメカ20及びクランパ30には、既存の各種態様を適用可能であるので、その詳細な説明は省略する。 Since various existing modes can be applied to the traverse mechanism 20 and the clamper 30, detailed description thereof will be omitted.
 次に、トレイ10をx方向に沿って移動させるための動力伝達経路について図2を参照して説明する。図2(a)において、モータ51から出力された動力は、モータ51に固着されたプーリ(図示せず)からベルトを介してプーリ52に伝達される。その後、モータ51から出力された動力は、歯車53等を介して、歯車54に伝達される。尚、歯車53は、カムスライダ40に形成されたカムラック(図示せず)と噛合可能に構成されている。 Next, a power transmission path for moving the tray 10 along the x direction will be described with reference to FIG. In FIG. 2A, the power output from the motor 51 is transmitted from a pulley (not shown) fixed to the motor 51 to the pulley 52 via a belt. After that, the power output from the motor 51 is transmitted to the gear 54 via the gear 53 and the like. The gear 53 is configured to be able to mesh with a cam rack (not shown) formed on the cam slider 40.
 図2に示すように、歯車54の回転軸55には、歯車62が接続されている。このため、歯車54に伝達されたモータ51から出力された動力は、回転軸55及び歯車62を介して、歯車61に伝達される。トレイラック14(図3(b)参照)と噛合した歯車61が回転することにより、トレイ10がx方向に沿って移動される。尚、モータ51、プーリ52、歯車53及び54並びに回転軸55は、駆動部50の一部を構成している。歯車61及び62は、ギア列部60の一部を構成している。 As shown in FIG. 2, a gear 62 is connected to a rotary shaft 55 of the gear 54. Therefore, the power output from the motor 51 and transmitted to the gear 54 is transmitted to the gear 61 via the rotary shaft 55 and the gear 62. By rotating the gear 61 meshed with the tray rack 14 (see FIG. 3B), the tray 10 is moved along the x direction. The motor 51, the pulley 52, the gears 53 and 54, and the rotating shaft 55 form a part of the drive unit 50. The gears 61 and 62 form a part of the gear train 60.
 (動作)
 次に、上述の如く構成された光ディスクドライブ1の動作について図3に加えて、図5及び図6を参照して説明する。図5は、トレイに対するカムスライダの動きを示す図である。図6は、カムスライダに対するトラバースメカの動きを示す図である。ここで、図5(a)に示す状態は、図6(a1)及び(a2)各々に示す状態に対応している。5(b)に示す状態は、図6(b1)及び(b2)各々に示す状態に対応している。図5(c)に示す状態は、図6(c1)及び(c2)各々に示す状態に対応している。図5(d)に示す状態は、図6(d1)及び(d2)各々に示す状態に対応している。尚、図6(a1)、(b1)、(c1)及び(d1)は、図5の下側からカムスライダ40等を見た図(即ち、正面図)であり、図6(a2)、(b2)、(c2)及び(d2)は、図5の右側からトラバースメカ20等を見た図(即ち、側面図)である。
(motion)
Next, the operation of the optical disc drive 1 configured as described above will be described with reference to FIGS. 5 and 6 in addition to FIG. FIG. 5 is a diagram showing the movement of the cam slider with respect to the tray. FIG. 6 is a diagram showing the movement of the traverse mechanism with respect to the cam slider. Here, the state shown in FIG. 5A corresponds to the states shown in FIGS. 6A1 and 6A2, respectively. The state shown in FIG. 5(b) corresponds to the state shown in each of FIGS. 6(b1) and 6(b2). The state shown in FIG. 5C corresponds to the states shown in FIGS. 6C1 and 6C2, respectively. The state shown in FIG. 5D corresponds to the states shown in FIGS. 6D1 and 6D2, respectively. 6(a1), (b1), (c1), and (d1) are views (that is, a front view) of the cam slider 40 viewed from the lower side of FIG. 5, and FIGS. b2), (c2) and (d2) are views (that is, a side view) of the traverse mechanism 20 and the like viewed from the right side of FIG. 5.
 図3(a)は、トレイ10が当該光ディスクドライブ1のメインベース(図示せず)の前方に突出した状態を示している。図5(b)は、トレイ10が当該光ディスクドライブ1のメインベース内に収容された状態を示している(対応する図6(b1)及び図6(b2)についても同様)。図5(a)は、図3(a)に示す状態と、図5(b)に示す状態との間の状態を示している(対応する図6(a1)及び図6(a2)についても同様)。 FIG. 3A shows a state in which the tray 10 projects in front of the main base (not shown) of the optical disc drive 1. FIG. 5B shows a state where the tray 10 is accommodated in the main base of the optical disc drive 1 (the same applies to the corresponding FIGS. 6B1 and 6B2). FIG. 5(a) shows a state between the state shown in FIG. 3(a) and the state shown in FIG. 5(b) (also for the corresponding FIG. 6(a1) and FIG. 6(a2). As well).
 図5(c)は、対応する図6(c1)及び(c2)に示すように、トラバースメカ20により光ディスク200がクランプされるときの状態を示している。図5(d)は、トラバースメカ20の光ピックアップにより、光ディスク200に対して再生又は記録動作が行われるときの状態を示している(対応する図6(d1)及び図6(d2)についても同様)。 FIG. 5C shows a state in which the optical disc 200 is clamped by the traverse mechanism 20 as shown in corresponding FIGS. 6C1 and 6C2. FIG. 5D shows a state in which the optical pickup of the traverse mechanism 20 performs a reproduction or recording operation on the optical disc 200 (also in the corresponding FIGS. 6D1 and 6D2). As well).
 さて、図3(a)に示す状態から、トレイ10がメインベース内に収容される場合、図5(a)に破線矢印で示すように、カムスライダ40は、トレイ10の後端側(即ち、図5(a)の上側)から、トレイ10の前端側(即ち、図5(a)の下側)に向かって移動する。このとき、カムスライダ40のボス41(図4参照)は、トレイ10の溝部13内を移動する。 Now, from the state shown in FIG. 3A, when the tray 10 is accommodated in the main base, the cam slider 40 moves toward the rear end side of the tray 10 (that is, as shown by the broken line arrow in FIG. 5A). It moves from the upper side of FIG. 5A) toward the front end side of the tray 10 (that is, the lower side of FIG. 5A). At this time, the boss 41 (see FIG. 4) of the cam slider 40 moves in the groove portion 13 of the tray 10.
 上述したように、溝部13を形成する一対のトレイリブ12(図3(a)参照)は、トレイ10の載置部11により分断されている。このため、トレイ10がメインベース内に収容される際には、カムスライダ41のボス41は、トレイ10の溝部13から一旦外れ、カムスライダ40がトレイ10の載置部11を通過した後に再度溝部13内に進入することとなる。 As described above, the pair of tray ribs 12 (see FIG. 3A) forming the groove 13 are divided by the mounting portion 11 of the tray 10. Therefore, when the tray 10 is housed in the main base, the boss 41 of the cam slider 41 is once disengaged from the groove portion 13 of the tray 10, and after the cam slider 40 has passed the mounting portion 11 of the tray 10, the groove portion 13 is again formed. It will enter inside.
 トレイ10の図5(a)の点線円c1で示す部分では、カムスライダ40がy方向に沿って移動するように溝部13が形成されている。図5(a)に示す状態では、カムスライダ40のカムラックと歯車53(図2参照)とは、未だ噛合していない。図5(a)に示す状態から、トレイ10がメインベース内に更に収容されると、カムスライダ40は溝部13の形状に起因して、図5(b)に破線矢印で示すように(即ち、図5の右側から左側に向かって)移動する。この結果、カムラックと歯車53とが噛合される。 In the portion of the tray 10 indicated by the dotted circle c1 in FIG. 5A, the groove 13 is formed so that the cam slider 40 moves along the y direction. In the state shown in FIG. 5A, the cam rack of the cam slider 40 and the gear 53 (see FIG. 2) are not yet in mesh with each other. When the tray 10 is further housed in the main base from the state shown in FIG. 5A, the cam slider 40 is caused by the shape of the groove portion 13 as shown by a broken line arrow in FIG. Move from the right side to the left side of FIG. 5). As a result, the cam rack and the gear 53 mesh with each other.
 その後、カムラックと噛合した歯車53が回転することにより、カムスライダ40は、図5の右側から左側に向かって更に移動することとなる。ここで、図5(b)に示す状態に対応する図6(b1)及び(b2)を参照すると、図5(b)に示す状態では、トラバースメカ20は、トレイ10と一緒にメインベース内に収容される光ディスク200とぶつからない退避位置に位置している。 Thereafter, as the gear 53 meshed with the cam rack rotates, the cam slider 40 further moves from the right side to the left side in FIG. Here, referring to FIGS. 6(b1) and 6(b2) corresponding to the state shown in FIG. 5(b), in the state shown in FIG. 5(b), the traverse mechanism 20 is installed in the main base together with the tray 10. It is located at a retracted position where it does not collide with the optical disc 200 accommodated in the.
 カムラックと噛合した歯車53が回転することにより、カムスライダ40は、図5の右側から左側に向かって更に移動すると、図6(c1)及び(c2)に示すように、トラバースメカ20のボス21が、カムスライダ40に形成された昇降カム孔42の形状に従って移動する結果、トラバースメカ20が光ディスク200に向かって降下することとなる。尚、図6(c1)及び(c2)に示す状態では、トラバースメカ20は、光ディスク200をクランプするときのクランプ位置に位置している。 As the gear 53 meshed with the cam rack rotates, the cam slider 40 further moves from the right side to the left side in FIG. 5, and the boss 21 of the traverse mechanism 20 moves as shown in FIGS. 6(c1) and 6(c2). As a result of the movement according to the shape of the elevating cam hole 42 formed in the cam slider 40, the traverse mechanism 20 descends toward the optical disc 200. In the state shown in FIGS. 6C1 and 6C2, the traverse mechanism 20 is located at the clamp position when the optical disc 200 is clamped.
 その後、カムスライダ40が、図5の右側から左側に向かって更に移動すると、図6(d1)及び(d2)に示すように、ボス21が昇降カム孔42の形状に従って移動する結果、トラバースメカ20が、光ディスク200に対し再生又は記録動作を行う位置(ここでは、便宜上“再生位置”と称する)へ移動する。 Thereafter, when the cam slider 40 further moves from the right side to the left side in FIG. 5, the boss 21 moves according to the shape of the ascending/descending cam hole 42 as a result, as shown in (d1) and (d2) of FIG. Moves to a position where a reproduction or recording operation is performed on the optical disc 200 (herein, referred to as "reproduction position" for convenience).
 尚、トレイ10がメインベースから排出される際は、図5及び図6を参照して説明した動作とは逆の手順の動作が行われる。 Incidentally, when the tray 10 is ejected from the main base, the operation of the procedure opposite to the operation described with reference to FIGS. 5 and 6 is performed.
 (構成上の特徴)
 (1)当該光ディスクドライブ1では、例えば図1に示すように、カムスライダ40がトレイ10の上方に配置されている。当該光ディスクドライブ1では、トレイ10及びカムスライダ40(更には、トラバースメカ20)が連動するように、カムスライダ40のボス41が挿入される溝部13を形成する一対のトレイリブ12は、トレイ10の第1面に形成される必要がある。他方で、当該光ディスクドライブ1のサイズが規格に合うように、トレイ10の幅(即ち、y方向の長さ)は、光ディスク200の直径とほぼ同じにする必要がある。そこで、当該光ディスクドライブ1では、トレイ10の第1面に形成された一対のトレイリブ12を載置部11により分断することにより(言い換えれば、載置部11に一対のトレイリブ12を形成しないことにより)、トレイ10の上方に配置されたカムスライダ40とトレイ10との連動と、当該光ディスクドライブ1のサイズの規格への適合とを両立させている。
(Characteristics of configuration)
(1) In the optical disc drive 1, as shown in FIG. 1, for example, the cam slider 40 is arranged above the tray 10. In the optical disc drive 1, the pair of tray ribs 12 forming the groove portion 13 into which the boss 41 of the cam slider 40 is inserted so that the tray 10 and the cam slider 40 (further, the traverse mechanism 20) interlock with each other. Must be formed on the surface. On the other hand, the width (that is, the length in the y direction) of the tray 10 needs to be substantially the same as the diameter of the optical disc 200 so that the size of the optical disc drive 1 conforms to the standard. Therefore, in the optical disk drive 1, the pair of tray ribs 12 formed on the first surface of the tray 10 is divided by the mounting portion 11 (in other words, by not forming the pair of tray ribs 12 on the mounting portion 11). ), the interlocking of the cam slider 40 arranged above the tray 10 with the tray 10 and compatibility with the size standard of the optical disk drive 1 are both achieved.
 (2)当該光ディスクドライブ1では、図2に示すように、トレイ10を駆動するための動力を出力するモータ51は、トレイ10の上方に配置されている。しかしながら、トレイラック14は、図3(b)に示すように、トレイ10の第2面に形成されている。そこで、当該光ディスクドライブ1では、歯車54、回転軸55及び歯車62を介して、モータ51から出力された動力を、トレイラック14と噛合する歯車61に伝達している。尚、「歯車54」、「回転軸55」及び「歯車62」は、本発明に係る「動力伝達部材」の一例に相当する。 (2) In the optical disc drive 1, as shown in FIG. 2, the motor 51 that outputs power for driving the tray 10 is arranged above the tray 10. However, the tray rack 14 is formed on the second surface of the tray 10 as shown in FIG. Therefore, in the optical disk drive 1, the power output from the motor 51 is transmitted to the gear 61 meshing with the tray rack 14 via the gear 54, the rotary shaft 55, and the gear 62. The "gear 54", the "rotary shaft 55", and the "gear 62" correspond to an example of the "power transmission member" according to the present invention.
 (3)図5を参照して説明したように、トレイ10がメインベースに収容される場合(及び、トレイ10がメインベースから排出される場合)、カムスライダ40のボス41は、トレイ10の溝部13から一旦外れる。このとき何らの対策も採らなければ、カムスライダ40がy方向へ移動する可能性がある。 (3) As described with reference to FIG. 5, when the tray 10 is housed in the main base (and when the tray 10 is ejected from the main base), the boss 41 of the cam slider 40 has the groove portion of the tray 10. It leaves 13 once. At this time, if no measures are taken, the cam slider 40 may move in the y direction.
 トレイ10がメインベースに収容されているときは、例えば図6(a2)に示すように、トラバースメカ20は退避位置に位置している。このとき、トラバースメカ20のボス21は、カムスライダ40の昇降カム孔42の図6(a1)に示す位置にある。当該光ディスクドライブ1では、カムスライダ40の図6(a1)の点線円c2で示す部分(即ち、ボス21が位置している部分)が、その周辺よりもわずかに低くなるように形成されている。つまり、点線円c2で示す部分に凹みが形成されている。 When the tray 10 is stored in the main base, the traverse mechanism 20 is located at the retracted position, as shown in FIG. 6(a2), for example. At this time, the boss 21 of the traverse mechanism 20 is at the position shown in FIG. 6A1 of the elevating cam hole 42 of the cam slider 40. In the optical disk drive 1, the portion of the cam slider 40 indicated by the dotted circle c2 in FIG. 6(a1) (that is, the portion where the boss 21 is located) is formed to be slightly lower than the periphery thereof. That is, a recess is formed in the portion indicated by the dotted circle c2.
 ここで、図6(a2)に示すように、カムスライダ40は、トラバースメカ20の一端を支持しているので、ボス21には、鉛直方向下向きに相応の力が加わっている。このため、トレイ10がメインベースに収容されるときに、カムスライダ40に、図5の右側から左側に向かう力(即ち、図6(a1)の右側から左側に向かう力)が多少加わったとしても、つまり、カムスライダ40に外乱が加わったとしても、ボス21が、カムスライダ40の図6(a1)の点線円c2で示す部分から動くことはない。 Here, as shown in FIG. 6( a 2 ), since the cam slider 40 supports one end of the traverse mechanism 20, a corresponding force is applied to the boss 21 vertically downward. Therefore, when the tray 10 is housed in the main base, even if a force from the right side to the left side of FIG. 5 (that is, a force from the right side to the left side of FIG. 6A1) is applied to the cam slider 40. That is, even if a disturbance is applied to the cam slider 40, the boss 21 does not move from the portion of the cam slider 40 indicated by the dotted circle c2 in FIG. 6A1.
 カムスライダ40は更に、図4に示すように、樹脂ばね43を有している。この樹脂ばね43は、トラバースメカ20をその周囲から囲うシャーシ(図示せず)に形成された凸部に当接するように形成されている。ここで、樹脂ばね43について図7を参照して説明を加える。図7は、実施例に係るカムスライダの樹脂ばね近傍を拡大して示す拡大図である。 The cam slider 40 further has a resin spring 43, as shown in FIG. The resin spring 43 is formed so as to come into contact with a convex portion formed on a chassis (not shown) surrounding the traverse mechanism 20. Here, the resin spring 43 will be described with reference to FIG. 7. FIG. 7 is an enlarged view showing the vicinity of the resin spring of the cam slider according to the embodiment in an enlarged manner.
 上記凸部は、シャーシの図7の点線円c4で示す部分に形成されている。トレイ10がメインベースに収容されているとき(特に、カムスライダ40のボス41が、トレイ10の載置部11の上方に位置しているとき)に、樹脂ばね43が当接するように、上記凸部がシャーシに形成されている。このため、トレイ10がメインベースに収容されるときに、カムスライダ40に、図7の右側から左側に向かう力(即ち、図5の右側から左側に向かう力)が多少加わったとしても、つまり、カムスライダ40に外乱が加わったとしても、樹脂ばね43の作用により、カムスライダ40のy方向への移動が抑制される。尚、樹脂ばね43は、本発明に係る「第1抑制部材」の一例に相当する。 The above-mentioned convex portion is formed in the portion of the chassis shown by the dotted circle c4 in FIG. When the tray 10 is housed in the main base (particularly, when the boss 41 of the cam slider 40 is located above the mounting portion 11 of the tray 10), the resin spring 43 is brought into contact with the above-mentioned projection. The part is formed on the chassis. Therefore, when the tray 10 is accommodated in the main base, even if a force from the right side to the left side in FIG. 7 (that is, a force from the right side to the left side in FIG. 5) is applied to the cam slider 40, that is, Even if a disturbance is applied to the cam slider 40, the movement of the cam slider 40 in the y direction is suppressed by the action of the resin spring 43. The resin spring 43 corresponds to an example of the "first suppressing member" according to the present invention.
 (4)光ディスク200がクランプされるときには、光ディスク200に向かって降下したトラバースメカ20と、クランパ30との間に働く磁力に起因して、クランパ30がトラバースメカ20に向かって吸い寄せられ、クランパ30がトラバースメカ20のスピンドルモータと結合することによって、光ディスク200がクランプされる。 (4) When the optical disc 200 is clamped, the clamper 30 is attracted toward the traverse mechanism 20 due to the magnetic force acting between the clamper 30 and the traverse mechanism 20 descending toward the optical disc 200. Is coupled with the spindle motor of the traverse mechanism 20 to clamp the optical disc 200.
 当該光ディスクドライブ1では、トラバースメカ20が、クランプ位置(図6(c1)及び(c2)参照)に位置する場合のトラバースメカ20とトレイ10との間の距離が、トラバースメカ20が再生位置(図6(d1)及び(d2)参照)に位置する場合の上記距離に比べて小さくなるように、カムスライダ40の昇降カム孔42が形成されている。 In the optical disc drive 1, the distance between the traverse mechanism 20 and the tray 10 when the traverse mechanism 20 is located at the clamp position (see (c1) and (c2) of FIG. 6) is the reproduction position ( The elevating cam hole 42 of the cam slider 40 is formed so as to be smaller than the distance when it is located in FIGS. 6D1 and 6D2).
 具体的には、図6(d1)に示す状態(ボス21の位置に着目されたし)、トラバースメカ20が再生位置に位置する場合である。これに対して、図6(d1)の点線円c3で示す部分にボス21が位置する状態(即ち、図6(c1)に示す状態)が、トラバースメカ20がクランプ位置に位置する場合である。このように、トラバースメカ20がクランプ位置に位置する場合のボス21の位置が、トラバースメカ20が再生位置に位置する場合のボス21の位置に比べて低くなるように、昇降カム孔42が形成されている。 Specifically, this is the case where the traverse mechanism 20 is located at the reproduction position in the state shown in FIG. 6D1 (being focused on the position of the boss 21). On the other hand, the state where the boss 21 is located in the portion indicated by the dotted circle c3 in FIG. 6D1 (that is, the state shown in FIG. 6C1) is the case where the traverse mechanism 20 is located in the clamp position. .. Thus, the lifting cam hole 42 is formed so that the position of the boss 21 when the traverse mechanism 20 is located at the clamp position is lower than the position of the boss 21 when the traverse mechanism 20 is located at the reproduction position. Has been done.
 ここで、クランパ30について図8を参照して説明する。図8は、実施例に係るクランプカバーを示す図である。 Here, the clamper 30 will be described with reference to FIG. FIG. 8 is a diagram showing a clamp cover according to the embodiment.
 クランパ30は、当該光ディスクドライブ1のカバーに形成された凹部内に回転自在に配置されている。該凹部には、クランパ30がトラバースメカ20のスピンドルモータと結合可能なように、孔が形成されている。 The clamper 30 is rotatably arranged in a recess formed in the cover of the optical disc drive 1. A hole is formed in the recess so that the clamper 30 can be coupled to the spindle motor of the traverse mechanism 20.
 ところで、光ディスク200に対して再生又は記録動作が行われる場合に(即ち、クランパ30が、スピンドルモータの回転に伴って回転している場合に)、カバーとクランパ30とが接触しないように、上記凹部が形成されている。このため、何らの対策も採らなければ、上記凹部内におけるクランパ30の位置変動が比較的大きくなる可能性がある。すると、上記凹部内におけるクランパ30の位置変動に起因して、光ディスク200が適切にクランプされない可能性がある。 By the way, when the reproducing or recording operation is performed on the optical disc 200 (that is, when the clamper 30 is rotated by the rotation of the spindle motor), the cover and the clamper 30 are prevented from contacting each other. A recess is formed. Therefore, if no measures are taken, the positional fluctuation of the clamper 30 in the recess may be relatively large. Then, the optical disc 200 may not be properly clamped due to the position variation of the clamper 30 in the recess.
 そこで、当該光ディスクドライブ1では、クランパカバー70に、上記凹部内におけるクランパ30の位置変動を抑制するためのリブ71が形成されている。図8に示すように、リブ71で囲われた部分に、クランパ30が配置されているので、クランパカバー70により、上記凹部内におけるクランパ30の位置変動を好適に抑制することができる。加えて、図8に示すように、リブ71の一部が、カバーのうち上記凹部を構成する部分に当接している。このため、リブ71により、クランパカバー70が上記凹部に対してずれることも抑制される。尚、「リブ71」は、本発明に係る「第2抑制部材」の一例に相当する。 Therefore, in the optical disc drive 1, a rib 71 is formed on the clamper cover 70 for suppressing the positional fluctuation of the clamper 30 in the recess. As shown in FIG. 8, since the clamper 30 is arranged in the portion surrounded by the ribs 71, the clamper cover 70 can preferably suppress the positional fluctuation of the clamper 30 in the recess. In addition, as shown in FIG. 8, a part of the rib 71 is in contact with a portion of the cover that constitutes the recess. Therefore, the ribs 71 also prevent the clamper cover 70 from being displaced with respect to the recess. The "rib 71" corresponds to an example of the "second suppressing member" according to the present invention.
 このように、当該光ディスクドライブ1では、光ディスク200がクランプされるときに、トラバースメカ20のスピンドルモータとクランパ30との間の距離ができるだけ短くなるように、カムスライダ40の昇降カム孔42が形成されているとともに、上記凹部内におけるクランパ30の位置変動が抑制されるようにクランパカバー70がリブ71を有する。従って、当該光ディスクドライブ1によれば、光ディスク200を適切にクランプすることができる。 Thus, in the optical disk drive 1, the lifting cam hole 42 of the cam slider 40 is formed so that the distance between the spindle motor of the traverse mechanism 20 and the clamper 30 becomes as short as possible when the optical disk 200 is clamped. In addition, the clamper cover 70 has the ribs 71 so as to suppress the positional fluctuation of the clamper 30 in the recess. Therefore, according to the optical disc drive 1, the optical disc 200 can be appropriately clamped.
 (5)光ディスク200の再生又は記録が終了した後、当該光ディスクドライブ1から光ディスク200が取り出されるときには、トレイ10が当該光ディスクドライブ1のメインベースから排出される排出動作に起因して、光ディスク200がアンクランプされる。このとき、何らの対策も採らなければ、光ディスク200がトラバースメカ20のスピンドルモータに貼り付いたままになる可能性がある(即ち、光ディスク200が適切にアンクランプされない可能性がある)。この結果、光ディスク200が当該光ディスクドライブ1から排出されない、光ディスク200に傷や汚れがつく等の不具合が発生する可能性がある。 (5) When the optical disc 200 is taken out of the optical disc drive 1 after the reproduction or recording of the optical disc 200 is completed, the optical disc 200 is ejected from the main base of the optical disc drive 1 due to the ejection operation. Unclamped. At this time, if no measures are taken, the optical disc 200 may remain stuck to the spindle motor of the traverse mechanism 20 (that is, the optical disc 200 may not be properly unclamped). As a result, problems such as the optical disc 200 not being ejected from the optical disc drive 1 and the optical disc 200 being scratched or soiled may occur.
 そこで、当該光ディスクドライブ1では、図9(a)に示すように、トラバースメカ20をその周囲から囲うシャーシの図9(a)の点線円c5で示す部分に、光ディスク200のトラバースメカ20側への移動(即ち、上方への移動)を制限するリブ80(図9(b)参照)が形成されている。 Therefore, in the optical disc drive 1, as shown in FIG. 9A, the portion of the chassis surrounding the traverse mechanism 20 is surrounded by the dotted circle c5 in FIG. Ribs 80 (see FIG. 9B) that restrict the movement (i.e., the upward movement) of the ribs are formed.
 ここで、リブ80は、当該光ディスクドライブ1の高さ方向(z方向)において、トラバースメカ20が退避位置に位置するときのスピンドルモータの下端の位置よりも低く、且つ、トラバースメカ20が再生位置に位置するときの光ディスク200の上面の位置よりも高い、位置に形成されている。 Here, the rib 80 is lower than the position of the lower end of the spindle motor when the traverse mechanism 20 is located at the retracted position in the height direction (z direction) of the optical disc drive 1, and the traverse mechanism 20 is at the reproduction position. It is formed at a position higher than the position of the upper surface of the optical disc 200 when it is located at.
 仮に、光ディスク200がトラバースメカ20のスピンドルモータに貼り付いたとしても、トレイ10の排出動作に起因してトラバースメカ20が退避位置に向かって上昇する際に、光ディスク200がリブ80に接触することによって、光ディスク200がスピンドルモータから外れる。従って、当該光ディスクドライブ1によれば、光ディスク200を適切にアンクランプすることができる。尚、「リブ80」は、本発明に係る「制限部材」の一例に相当する。 Even if the optical disc 200 adheres to the spindle motor of the traverse mechanism 20, the optical disc 200 may come into contact with the rib 80 when the traverse mechanism 20 rises toward the retracted position due to the ejection operation of the tray 10. Thus, the optical disc 200 is removed from the spindle motor. Therefore, according to the optical disc drive 1, the optical disc 200 can be appropriately unclamped. The "rib 80" corresponds to an example of the "limitation member" according to the present invention.
 本発明は、上述した実施形態に限られるものではなく、請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う光ディスク装置もまた本発明の技術的範囲に含まれるものである。 The present invention is not limited to the above-described embodiments, and can be appropriately modified within the scope of the gist or concept of the invention that can be read from the claims and the entire specification, and an optical disk device with such modifications is also provided. It is included in the technical scope of the present invention.
 1…光ディスクドライブ、10…トレイ、20…トラバースメカ、30…クランパ、40…カムスライダ、50…駆動部、60…ギア列部、70…クランパカバー 1... Optical disk drive, 10... Tray, 20... Traverse mechanism, 30... Clamper, 40... Cam slider, 50... Drive part, 60... Gear train part, 70... Clamper cover

Claims (6)

  1.  光ディスクを載置する載置部及び一の方向に沿って延びる一対のトレイリブにより形成された溝部を含む第1面と、前記第1面とは反対側の第2面とを有するトレイと、
     前記第1面と対向して配置されるとともに、第1ボス部を有するトラバースメカと、
     前記第2面と対向して配置されたクランパと、
     前記溝部内に挿入される第2ボス部と、前記第1ボス部が挿通されるとともに、前記第1面に沿った平面において前記一の方向と交わる他の方向への移動に伴い前記第1ボス部を案内して前記トラバースメカを昇降させる昇降カム孔とを有するカムスライダと、
     を備え、
     前記一対のトレイリブは、前記載置部によって分断されている
     ことを特徴とする光ディスク装置。
    A tray having a mounting portion for mounting an optical disc and a first surface including a groove portion formed by a pair of tray ribs extending in one direction, and a second surface opposite to the first surface;
    A traverse mechanism having a first boss portion, which is arranged to face the first surface,
    A clamper arranged to face the second surface,
    The first boss portion is inserted through the second boss portion inserted into the groove portion, and the first boss portion is moved along with the movement in the other direction intersecting the one direction on the plane along the first surface. A cam slider having an elevating cam hole for guiding the boss portion and elevating the traverse mechanism;
    Equipped with
    The optical disk device, wherein the pair of tray ribs are divided by the mounting portion.
  2.  前記第2面は、前記一の方向に沿って延びるトレイラックを有し、
     前記第1面と対向して配置され、前記トレイを前記一の方向に沿って移動させるための動力を出力するモータと、
     前記第2面と対向して配置され、前記トレイラックと噛合する歯車と、
     前記モータから出力された動力を前記歯車に伝達する動力伝達部材と、
     を備えることを特徴とする請求項1に記載の光ディスク装置。
    The second surface has a tray rack extending along the one direction,
    A motor that is arranged so as to face the first surface and that outputs power for moving the tray in the one direction;
    A gear arranged to face the second surface and meshing with the tray rack;
    A power transmission member that transmits the power output from the motor to the gear,
    The optical disk device according to claim 1, further comprising:
  3.  前記カムスライダは、前記他の方向への前記カムスライダの移動を抑制する第1抑制部材を有することを特徴とする請求項1に記載の光ディスク装置。 The optical disk device according to claim 1, wherein the cam slider has a first suppressing member that suppresses movement of the cam slider in the other direction.
  4.  前記昇降カム孔は、前記光ディスクがクランプされるときに、前記トラバースメカが位置する第2位置における前記トラバースメカと前記トレイとの間の距離が、前記光ディスクの再生又は記録が行われるときに、前記トラバースメカが位置する第1位置における前記距離よりも小さくなるように形成されていることを特徴とする請求項1に記載の光ディスク装置。 When the optical disc is clamped, the distance between the traverse mechanism and the tray at the second position where the traverse mechanism is located is such that when the optical disc is reproduced or recorded, The optical disc device according to claim 1, wherein the traverse mechanism is formed to be smaller than the distance at the first position where the traverse mechanism is located.
  5.  前記クランパは、当該光ディスク装置のカバーに形成された凹部内に回転自在に配置されており、
     前記カバーのうち前記凹部を形成する部分に当接して、前記凹部内における前記クランパの位置変動を抑制する第2抑制部材を有するクランパカバーを備える
     ことを特徴とする請求項1に記載の光ディスク装置。
    The clamper is rotatably arranged in a recess formed in the cover of the optical disc device.
    The optical disk device according to claim 1, further comprising: a clamper cover having a second suppressing member that abuts a portion of the cover that forms the concave portion and that suppresses positional fluctuation of the clamper in the concave portion. ..
  6.  前記トレイの第1面側、且つ、前記トレイから離隔された位置に形成されるとともに、前記光ディスクの前記トラバースメカ側への移動を制限する制限部材を備えることを特徴とする請求項1に記載の光ディスク装置。 2. The limiting member which is formed on the first surface side of the tray and at a position separated from the tray and which limits the movement of the optical disc to the traverse mechanism side. Optical disk device.
PCT/JP2019/000565 2019-01-10 2019-01-10 Optical disk device WO2020144819A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980077444.6A CN113272899B (en) 2019-01-10 2019-01-10 Optical disk device
JP2020565114A JP7068503B2 (en) 2019-01-10 2019-01-10 Optical disk device
PCT/JP2019/000565 WO2020144819A1 (en) 2019-01-10 2019-01-10 Optical disk device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/000565 WO2020144819A1 (en) 2019-01-10 2019-01-10 Optical disk device

Publications (1)

Publication Number Publication Date
WO2020144819A1 true WO2020144819A1 (en) 2020-07-16

Family

ID=71520318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000565 WO2020144819A1 (en) 2019-01-10 2019-01-10 Optical disk device

Country Status (3)

Country Link
JP (1) JP7068503B2 (en)
CN (1) CN113272899B (en)
WO (1) WO2020144819A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527817U (en) * 1991-09-02 1993-04-09 三洋電機株式会社 Optical pickup device
JPH05151686A (en) * 1991-11-26 1993-06-18 Sanyo Electric Co Ltd Device for reproducing both faces of disk
JP2008084416A (en) * 2006-09-27 2008-04-10 Matsushita Electric Ind Co Ltd Disk loading apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100532449B1 (en) * 2003-07-16 2005-11-30 삼성전자주식회사 Optical disc drive
JP2008305480A (en) * 2007-06-06 2008-12-18 Teac Corp Optical disk drive
JP2009087391A (en) * 2007-09-27 2009-04-23 Toshiba Corp Optical disc apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0527817U (en) * 1991-09-02 1993-04-09 三洋電機株式会社 Optical pickup device
JPH05151686A (en) * 1991-11-26 1993-06-18 Sanyo Electric Co Ltd Device for reproducing both faces of disk
JP2008084416A (en) * 2006-09-27 2008-04-10 Matsushita Electric Ind Co Ltd Disk loading apparatus

Also Published As

Publication number Publication date
CN113272899B (en) 2023-03-10
JP7068503B2 (en) 2022-05-16
JPWO2020144819A1 (en) 2021-11-11
CN113272899A (en) 2021-08-17

Similar Documents

Publication Publication Date Title
US6910218B2 (en) Slim type optical disc drive
US7467395B2 (en) Disc drive device
JP4294616B2 (en) Slot-in type disk unit
WO2020144819A1 (en) Optical disk device
JP4494230B2 (en) Disk unit
US7281254B2 (en) Optical disc drive having a traverse holder that is rotatable around an axis that is mutually different from the axis of a traverse base
US7984460B2 (en) Disk device with ring-shaped elastomer member between mechanical chassis and wall of pickup supporting member
JP3822621B2 (en) Disk unit
JP2005327431A5 (en)
JP3822614B2 (en) Disk unit
KR20070049966A (en) Disk drive device
US20050286359A1 (en) Disc device
US20030048732A1 (en) Disk drive
JP3822605B2 (en) Disk device chucking method and disk device
JP4736827B2 (en) Optical disk device
JP4490755B2 (en) Optical disk device
JP4368764B2 (en) Disk unit
JP4322868B2 (en) Slot-in type disk unit
JP3427681B2 (en) Disk unit
KR100811822B1 (en) Multi-disk player
JP5273171B2 (en) Drive device of optical disk device
JP2006236405A (en) Optical disk device
JP2007164840A (en) Disk device
US20070279800A1 (en) Disk Clamping Device
JP2000339806A (en) Disk chucking mechanism

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19908457

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020565114

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19908457

Country of ref document: EP

Kind code of ref document: A1