WO2020143428A1 - 传输上行信息的方法和通信装置 - Google Patents

传输上行信息的方法和通信装置 Download PDF

Info

Publication number
WO2020143428A1
WO2020143428A1 PCT/CN2019/126921 CN2019126921W WO2020143428A1 WO 2020143428 A1 WO2020143428 A1 WO 2020143428A1 CN 2019126921 W CN2019126921 W CN 2019126921W WO 2020143428 A1 WO2020143428 A1 WO 2020143428A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
information
frequency resource
uplink
control information
Prior art date
Application number
PCT/CN2019/126921
Other languages
English (en)
French (fr)
Inventor
李�远
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19908299.1A priority Critical patent/EP3897053A4/en
Publication of WO2020143428A1 publication Critical patent/WO2020143428A1/zh
Priority to US17/371,489 priority patent/US20210345373A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • H04W72/569Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • This application relates to the field of communications, and in particular to a method and a communication device for transmitting uplink information.
  • augmented reality augmented reality
  • VR virtual reality
  • MBB video transmission Waiting for mobile broadband
  • the same terminal device can simultaneously support URLLC services and enhanced mobile broadband (enhanced mobile broadband (eMBB) services, and the two services can be dynamically switched, and the network device can indicate the physical layer downlink shared channel through downlink control information (DCI) (Physical Downlink Shared Channel, PDSCH) or physical layer uplink shared channel (Physical Uplink Shared Channel, PUSCH) corresponding service type, you can also indicate channel status information corresponding to URLLC service or eMBB service through control signaling configuration or DCI dynamic indication ( Channel State information (CSI) resources.
  • DCI downlink control information
  • PDSCH Physical Downlink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • CSI Channel State information
  • the uplink information (upstream data channel or uplink control information) corresponding to the two services may collide in the time domain, such as eMBB uplink control information (Uplink control information, UCI) ) (Such as Hybrid Automatic Repeat Request-Acknowledgement (HARQ-ACK) information and/or CSI information and scheduling request (SR) information corresponding to eMBB) and UCI for URLLC (such as URLLC correspondence) (HARQ-ACK information and/or CSI information and/or SR information) collide, or the UCI for eMBB collides with the PUSCH corresponding to the URLLC service, or the UCI for URLLC collides with the PUSCH corresponding to the eMBB service.
  • eMBB uplink control information Uplink control information, UCI
  • HARQ-ACK Hybrid Automatic Repeat Request-Acknowledgement
  • SR scheduling request
  • URLLC such as URLLC correspondence
  • the present application provides a method and a communication device for transmitting uplink information, which can realize the transmission of two types of information when two types of uplink information collide.
  • a method for transmitting uplink information includes:
  • the first uplink information includes first uplink data information corresponding to a first priority and/or first uplink control information corresponding to a first priority
  • the second uplink information includes a second corresponding to a second priority
  • Uplink data information and/or second uplink control information corresponding to a second priority the first uplink information and the second uplink information are independently encoded;
  • the terminal device independently encodes the control information or data information corresponding to services of different priorities, and by determining the priorities of the two, the priority of the control/service information corresponding to the services of low priority is lower than The priority of the control/service information corresponding to the high-priority service, or the time-frequency domain position of the control/service information corresponding to the low-priority service is later than the time-frequency domain position of the control/service information corresponding to the high-priority service , So as to achieve a better balance between the two different priority services.
  • the terminal device or the network device may determine the two time-frequency resources together, or may determine the two resources separately, for example, the first One time-frequency resource, and then another time-frequency resource is determined.
  • the embodiments of the present application are not limited thereto.
  • the first time-frequency resource and the second time-frequency resource may not overlap, that is, there is no same resource unit RE, and the two time-frequency resources may also overlap, that is, at least one of the same RE; the at least one identical RE is called a first overlapping time-frequency resource or a second overlapping time-frequency resource.
  • the punctured resource may be referred to as a first overlapping time-frequency resource or a second overlapping time-frequency resource.
  • first time-frequency resource and the second time-frequency resource may also have an inclusion relationship, for example, the first time-frequency resource includes the second time-frequency resource, or the second time-frequency resource includes the first time-frequency resource
  • first time-frequency resource includes the second time-frequency resource
  • second time-frequency resource includes the first time-frequency resource
  • the first time-frequency resource is earlier than the second time-frequency resource in the time domain, and/or, the first time-frequency resource Lower than the second time domain resource in the frequency domain;
  • the time interval between the time domain symbol corresponding to the first time-frequency resource and the demodulation reference signal DMRS symbol of the uplink channel is less than the time domain symbol corresponding to the second time-frequency resource and the DMRS symbol Time interval between, and/or, the first time-frequency resource is lower than the second time-frequency resource in the frequency domain.
  • the first priority may correspond to high-priority services
  • the second priority may correspond to low-priority services.
  • the embodiment of the present application mainly describes how to send uplink information when the first priority service collides with the second priority service.
  • the first priority corresponds to the URLLC service
  • the second priority corresponds to the eMBB service.
  • the first uplink data information is data information corresponding to the URLLC service
  • the first uplink control information is uplink control information corresponding to the URLLC service
  • the second uplink control information is uplink control information corresponding to the eMBB service.
  • the data information is the uplink data information corresponding to the eMBB service.
  • the first uplink information or the second uplink information in the embodiment of the present application may be information before encoding, or referred to as cell information or system information (systemic bits).
  • the terminal device may send part or all of the encoded information of the first uplink information or the second uplink information.
  • the terminal device does not transmit all the encoded information of the uplink information, for example, after the encoded information of the uplink information is mapped to the time-frequency resource, some of the time-frequency resource is used by other
  • the uplink information is punctured so that the terminal device actually sends only a part of the encoded information of the uplink information, but considering that the network device receives a part of the encoded information of the uplink information, it is still possible (for example, by decoding) to recover the All pre-coding information of the upstream information (that is, the network device may potentially obtain all the pre-coding information of the upstream information through a part of the information after the encoding of the upstream information). Therefore, in this case, it can still be said that the time-frequency resource carries all the uplink information.
  • the first uplink information or the second uplink information in the embodiment of the present application may also be encoded information.
  • part of the information carrying the uplink information in the time-frequency resource may be understood as a part of the uplink information mapped to the time-frequency resource, and another part of the information in the uplink information is mapped to other time-frequency of the uplink channel
  • the resources may be mapped to other uplink channels, or the other part of the information is not mapped, and the embodiments of the present application are not limited thereto.
  • the uplink information is an independently coded uplink Information refers to: the terminal device generates coded information (such as CRC and or coded bits) according to the system information bits of the uplink information to form a coded information sequence. Further, that the uplink information is independently coded uplink information means that the terminal device does not generate coded information according to other system information bits other than the uplink information.
  • the first uplink information and the second uplink information are independently encoded means that the terminal device encodes the first uplink information and the second uplink information separately. After separately coding and modulating the two, the two are mapped onto the upstream channel.
  • the coding information for example, parity bits
  • the coding information corresponding to the first uplink information is determined by the system information bits corresponding to the first uplink information and is not related to the system information bits (systematic bits) of the second uplink information.
  • the second uplink information (for example, CRC bits or parity bits) corresponding to the information is determined by the system information bits (systematic bits) corresponding to the second uplink information and is not related to the system information bits of the first uplink information.
  • all information included in a certain type of uplink information is a joint Encoded information.
  • the above-mentioned joint coding means that the coding information corresponding to the uplink information is generated by all system information bits included in the uplink information. If the uplink information includes multiple types of information, the terminal device jointly encodes the multiple types of information included in the uplink information, and the CRC and/or coding information corresponding to the uplink information is generated by the multiple types of information. For example, if the type of uplink information includes HARQ-ACK information and SR information, the type of uplink information is the information jointly coded by the two types of information.
  • different uplink information can be independently encoded, and all information in the same uplink information is jointly encoded.
  • the first uplink data information includes data information sent by the first downlink control information scheduling or configuration terminal device, where the first uplink data information corresponds to The first priority is expressed by satisfying one or more of the following conditions: the first bit field in the first downlink control information indicates or configures that the first uplink data information corresponds to all The first priority, the first downlink control information is located in a first search space, the first downlink control information is located in a first physical downlink control channel PDCCH opportunity set, and the first downlink control information corresponds to the first A format of downlink control information DCI, and the first downlink control information corresponds to the first radio network temporary identifier RNTI;
  • the first uplink control information includes second downlink control information configuring or triggering uplink control information sent by a terminal device, wherein the first uplink control information corresponds to the first priority by satisfying one of the following conditions Or multiple types: the second bit field in the second downlink control information indicates or configures that the first uplink control information corresponds to the first priority, and the second downlink control information is located in the first search Space, the second downlink control information is located in the first PDCCH opportunity set, the second downlink control information corresponds to the first DCI format, and the second downlink control information corresponds to the first RNTI;
  • the second uplink control information includes third downlink control information configuration or triggers uplink control information sent by the terminal device, where the second uplink control information corresponds to The second priority is expressed by satisfying one or more of the following conditions: a third bit field in the third downlink control information indicates or configures that the second uplink control information corresponds to the Second priority, the third downlink control information is located in a second search space, the third downlink control information is located in a second PDCCH opportunity set, the third downlink control information corresponds to a second DCI format, and, the The three downlink control information corresponds to the second RNTI;
  • the second uplink data information includes data information sent by a fourth downlink control information scheduling or configuration terminal device, where the second uplink data information corresponds to the second priority by satisfying one of the following conditions or Multiple representations: the fourth bit field in the fourth downlink control information indicates or configures that the second uplink data information corresponds to the second priority, and the fourth downlink control information is located in the second search space.
  • the fourth downlink control information is located in the second PDCCH opportunity set, the fourth downlink control information corresponds to the second DCI format, and the fourth downlink control information corresponds to the second RNTI.
  • the first uplink control information includes one or more of the following information: a hybrid automatic repeat request confirmation HARQ corresponding to the first priority -ACK information, channel state information CSI information corresponding to the first priority, and scheduling request SR information corresponding to the first priority;
  • the second uplink control information includes one or more of the following information: HARQ-ACK information corresponding to the second priority, CSI information corresponding to the second priority, and corresponding to the second Priority SR information.
  • the first time-frequency resource is earlier than the second time-frequency resource in the time domain, and/or, the first time-frequency resource is in frequency The domain is lower than the second time domain resource;
  • the time interval between the time-domain symbol corresponding to the first time-frequency resource and the demodulation reference signal DMRS symbol of the uplink channel is less than the time-domain symbol corresponding to the second time-frequency resource and the DMRS symbol
  • the time interval, and/or, the first time-frequency resource is lower than the second time-frequency resource in the frequency domain.
  • the first uplink information includes first uplink control information corresponding to the first priority
  • the second uplink information includes corresponding to the first
  • the method further includes:
  • the third time-frequency resource is used by the terminal device to send third uplink information
  • the third uplink information includes a third uplink control corresponding to a first priority Information
  • the third uplink control information and the first uplink control information are independently encoded
  • the third uplink control information and the second uplink control information are independently encoded
  • the second time-domain resource is earlier than the third time-frequency resource in the time domain, and/or, the second time-frequency resource is lower than the third time-domain resource in the frequency domain;
  • the time interval between the time domain symbol corresponding to the second time-frequency resource and the demodulation reference signal DMRS symbol of the uplink channel is less than the time interval symbol corresponding to the third time-frequency resource and the DMRS symbol
  • the time interval, and/or, the second time-frequency resource is lower than the third time-frequency resource in the frequency domain.
  • the method before sending information on the first time-frequency resource and the second time-frequency resource, the method further includes:
  • the sending information on the first time-frequency resource and the second time-frequency resource includes:
  • the first uplink information and the second uplink information are sent in a rate matching manner, and the first uplink information and the second uplink information are independently encoded.
  • the first uplink information uses a low compression rate encoding method.
  • the second upstream information adopts a high compression rate coding method, which can ensure that the resource overhead occupied by different priority services is balanced when the high priority service and the first priority service are simultaneously transmitted.
  • the method before sending information on the first time-frequency resource and the second time-frequency resource, the method further includes:
  • the first overlapping time-frequency resource is a time-frequency resource where the first time-frequency resource and the second time-frequency resource overlap ,
  • the sending information on the first time-frequency resource and the second time-frequency resource includes:
  • the first uplink control information is mapped by puncturing the second uplink data information, which can ensure the transmission of the first uplink information of the high priority service.
  • the method before sending information on the first time-frequency resource and the second time-frequency resource, the method further includes:
  • the second overlapping time-frequency resource is a time-frequency resource where the first time-frequency resource and the second time-frequency resource overlap ,
  • the sending information on the first time-frequency resource and the second time-frequency resource includes:
  • the second uplink control information is mapped by puncturing the first uplink data information, and the transmission of the low-priority control information can be realized while ensuring the transmission of the high-priority first uplink data information.
  • the first time-frequency resource is a reserved resource corresponding to the first uplink information, the first time-frequency resource, and the second time Frequency resources do not overlap
  • the method further includes:
  • the sending information on the first time-frequency resource and the second time-frequency resource includes:
  • the method further includes:
  • the sending information on the first time-frequency resource and the second time-frequency resource includes:
  • the first time-frequency resource is pre-defined or pre-configured by a network device.
  • the transmission of the first information can be guaranteed not to be affected by the second information, and the reliability of the first information can be ensured.
  • the second time-frequency resource is a reserved resource corresponding to the second uplink information, and the first time-frequency resource and the second time Frequency resources do not overlap,
  • the method further includes:
  • the sending information on the first time-frequency resource and the second time-frequency resource includes:
  • the method further includes:
  • the sending information on the first time-frequency resource and the second time-frequency resource includes:
  • the second time-frequency resource is pre-defined or pre-configured by the network device.
  • the transmission of the second information can be guaranteed not to be affected by the first information, and the reliability of the second information can be ensured.
  • a method for transmitting uplink information includes determining a first time-frequency resource and a second time-frequency resource on an uplink channel.
  • the first time-frequency resource is used to carry first uplink information.
  • the second time-frequency resource is used to carry second uplink information, where the first uplink information includes first uplink data information corresponding to a first priority and/or first uplink control information corresponding to a first priority ,
  • the second uplink information includes second uplink data information corresponding to a second priority and/or second uplink control information corresponding to a second priority, and the first uplink information and the second uplink information are independent coding;
  • the first time-frequency resource used to carry the first uplink information can also be understood as the first time-frequency resource used by the terminal device to send the first uplink information; the second time-frequency resource used to carry the second uplink information can also be understood The second time-frequency resource is used by the terminal device to send the second uplink information.
  • control information or data information corresponding to services of different priorities are independently encoded, and by determining the priorities of the two, the priority of control/service information corresponding to low-priority services is lower than that of high-priority
  • the priority of control/service information corresponding to high-level services, or the time-frequency domain position of control/service information corresponding to low-priority services is later than the time-frequency domain position of control/service information corresponding to high-priority services, thereby Achieve the effect of better balancing two different priority services.
  • the execution subject of the second aspect may be a network device.
  • the specific content of the second aspect corresponds to the content of the first aspect that can be executed by the terminal device.
  • the first aspect Description in order to avoid repetition, detailed description is omitted here as appropriate.
  • the first uplink data information includes data information sent by the first downlink control information scheduling or configuration of the terminal device, where the first uplink data
  • the information corresponding to the first priority is expressed by satisfying one or more of the following conditions: the first bit field in the first downlink control indicates or configures that the first uplink data information corresponds to For the first priority, the first downlink control information is located in a first search space, the first downlink control information is located in a first physical downlink control channel PDCCH opportunity set, and the first downlink control information corresponds to the first A downlink control information format DCI format, and the first downlink control information corresponds to the first wireless network temporary identifier RNTI;
  • the first uplink control information includes second downlink control information configuring or triggering uplink control information sent by the terminal device, wherein the first uplink control information corresponds to the first priority by satisfying the following conditions
  • the second bit field in the second downlink control information indicates or configures that the first uplink control information corresponds to the first priority
  • the second downlink control information is located in the A search space
  • the second downlink control information is located in a first PDCCH opportunity set
  • the second downlink control information corresponds to a first DCI format
  • the second downlink control information corresponds to a first RNTI
  • the second uplink control information includes third downlink control information configuring or triggering uplink control information sent by the terminal device, where the second uplink control information Corresponding to the second priority is expressed by satisfying one or more of the following conditions: a third bit field in the third downlink control information indicates or configures that the second uplink control information corresponds to all The second priority, the third downlink control information is located in a second search space, the third downlink control information is located in a second PDCCH opportunity set, the third downlink control information corresponds to a second DCI format, and, the The third downlink control information corresponds to the second RNTI;
  • the second uplink data information includes fourth downlink control information to schedule or configure data information sent by the terminal device, wherein the second uplink data information corresponds to the second priority by satisfying one of the following conditions Represented by one or more types: the fourth bit field in the fourth downlink control indicates or configures that the second uplink data information corresponds to the second priority, and the fourth downlink control information is located in the second search In space, the fourth downlink control information is located in the second PDCCH opportunity set, the fourth downlink control information corresponds to the second DCI format, and the fourth downlink control information corresponds to the second RNTI.
  • the first uplink control information includes one or more of the following information: a hybrid automatic repeat request confirmation HARQ corresponding to the first priority -ACK information, channel state information CSI information corresponding to the first priority, and scheduling request SR information corresponding to the first priority;
  • the second uplink control information includes one or more of the following information: HARQ-ACK information corresponding to the second priority, CSI information corresponding to the second priority, and corresponding to the second Priority SR information.
  • the first time-frequency resource is earlier than the second time-frequency resource in the time domain, and/or the first time-frequency resource is in frequency The domain is lower than the second time domain resource;
  • the time interval between the time-domain symbol corresponding to the first time-frequency resource and the demodulation reference signal DMRS symbol of the uplink channel is less than the time-domain symbol corresponding to the second time-frequency resource and the DMRS symbol
  • the time interval, and/or, the first time-frequency resource is lower than the second time-frequency resource in the frequency domain.
  • the first uplink information includes first uplink control information corresponding to the first priority
  • the second uplink information includes corresponding to the first
  • the method further includes:
  • the third time-frequency resource is used by the terminal device to send third uplink information
  • the third uplink information includes a third uplink control corresponding to a first priority Information
  • the third uplink control information and the first uplink control information are independently encoded
  • the third uplink control information and the second uplink control information are independently encoded
  • the second time-domain resource is earlier than the third time-frequency resource in the time domain, and/or, the second time-frequency resource is lower than the third time-domain resource in the frequency domain;
  • the time interval between the time domain symbol corresponding to the second time-frequency resource and the demodulation reference signal DMRS symbol of the uplink channel is less than the time interval symbol corresponding to the third time-frequency resource and the DMRS symbol
  • the time interval, and/or, the second time-frequency resource is lower than the third time-frequency resource in the frequency domain.
  • the receiving information from the terminal device on the first time-frequency resource and the second time-frequency resource includes:
  • the first uplink information and the second uplink information are mapped onto the first time-frequency resource and the second time-frequency resource in a rate matching manner.
  • the receiving information from the terminal device on the first time-frequency resource and the second time-frequency resource includes:
  • the first non-overlapping time-frequency resource is a time-frequency resource other than the first overlapping time-frequency resource in the second time-frequency resource
  • the first overlapping time-frequency resource is the first time-frequency resource and Time-frequency resources where the second time-frequency resources overlap
  • the second uplink information is mapped to the second time-frequency resource by the terminal device, and the second uplink information has been mapped to the first
  • the information sent on the first non-overlapping time-frequency resources, the first uplink information is that the terminal device has mapped the In the case of the information on the first overlapping time-frequency resource, it is mapped to the information on the first time-frequency resource.
  • the receiving information from the terminal device on the first time-frequency resource and the second time-frequency resource includes:
  • the second non-overlapping time-frequency resource is a time-frequency resource other than the second overlapping time-frequency resource in the first time-frequency resource
  • the second overlapping time-frequency resource is the first time-frequency resource and Time-frequency resources where the second time-frequency resources overlap
  • the first uplink information is mapped to the first time-frequency resource by the terminal device, and the first uplink information has been mapped to the first
  • the information sent on the second non-overlapping time-frequency resources, the second uplink information is that the terminal device has mapped the In the case of the information on the second overlapping time-frequency resource, it is mapped to the information on the second time-frequency resource.
  • the first time-frequency resource is a reserved resource corresponding to the first uplink information, and the first time-frequency resource and the second time Frequency resources do not overlap,
  • the second uplink information is mapped on the second time-frequency resource, and the first uplink information is mapped on the first time-frequency resource ,
  • the receiving information from the terminal device on the first time-frequency resource and the second time-frequency resource includes:
  • the second uplink information is mapped on the second time-frequency resource, and the fourth uplink information is mapped on the first time-frequency resource, The fourth uplink information is different from the first uplink information
  • the receiving information from the terminal device on the first time-frequency resource and the second time-frequency resource includes:
  • the first time-frequency resource is pre-defined or pre-configured by a network device.
  • the second time-frequency resource is a reserved resource corresponding to the second uplink information, the first time-frequency resource, and the second time Frequency resources do not overlap
  • the first uplink information is mapped on the first time-frequency resource
  • the second uplink information is mapped on the second time-frequency resource
  • the receiving information from the terminal device on the first time-frequency resource and the second time-frequency resource includes:
  • the first uplink information is mapped on the first time-frequency resource
  • the fifth uplink information is mapped on the second time-frequency resource
  • the fifth uplink information is different from the second uplink information
  • the receiving information from the terminal device on the first time-frequency resource and the second time-frequency resource includes:
  • the second time-frequency resource is pre-defined or pre-configured by the network device.
  • a communication device including various modules or units for performing the method in the first aspect or any possible implementation manner of the first aspect.
  • the communication device is a terminal device.
  • a communication device including various modules or units for performing the method in the second aspect or any possible implementation manner of the second aspect.
  • the communication device is a network device.
  • a communication device including a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver to transmit and receive signals
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory, so that the network device executes the method in the first aspect and its possible implementation.
  • the communication device is a terminal device.
  • a communication device including a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver to transmit and receive signals
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory, so that the terminal device executes the method in the second aspect and its possible implementation.
  • the communication device is a network device.
  • a computer-readable medium is provided on which a computer program is stored, which when executed by a computer implements the method in the first aspect and its possible implementation.
  • a computer-readable medium is provided on which a computer program is stored, which when executed by a computer implements the method in the second aspect and its possible implementation.
  • a computer program product which implements the method in the first aspect and possible implementation manners when the computer program product is executed by a computer.
  • a computer program product which implements the method in the second aspect and possible implementation manners when the computer program product is executed by a computer.
  • a processing device including a processor and an interface.
  • a processing device including a processor, an interface, and a memory.
  • the processor is configured to execute as the execution body of the method in the first aspect to the second aspect or any possible implementation manner of the first aspect to the second aspect
  • related data interaction processes are completed through the above interface.
  • the above interface may further complete the above data interaction process through a transceiver.
  • the processing device in the above eleventh or twelfth aspect may be a chip, and the processor may be implemented by hardware or software.
  • the processor When implemented by hardware, the processor may be a logic circuit, Integrated circuits, etc.; when implemented by software, the processor may be a general-purpose processor, implemented by reading software codes stored in a memory, the memory may be integrated in the processor, and may be located outside the processor, Independent existence.
  • a system including the foregoing terminal device and network device.
  • FIG. 1 is a schematic diagram of a scenario applicable to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of uplink information transmission.
  • FIG. 3 is another schematic diagram of uplink information transmission.
  • FIG. 4 is a schematic diagram of a method for transmitting uplink information according to an embodiment of the present application.
  • 5 is a schematic diagram of uplink information transmission according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of uplink information transmission according to another embodiment of the present application.
  • FIG. 7 is a schematic diagram of uplink information transmission according to another embodiment of the present application.
  • FIG. 8 is a schematic diagram of uplink information transmission according to another embodiment of the present application.
  • FIG. 9 is a schematic diagram of uplink information transmission according to another embodiment of the present application.
  • FIG. 10 is a schematic diagram of uplink information transmission according to another embodiment of the present application.
  • FIG. 11 is a schematic diagram of uplink information transmission according to another embodiment of the present application.
  • FIG. 12 is a schematic diagram of uplink information transmission according to another embodiment of the present application.
  • FIG. 13 is a schematic block diagram of a communication device of the present application.
  • FIG. 14 is a schematic block diagram of a terminal device of the present application.
  • 15 is a schematic block diagram of another communication device of the present application.
  • 16 is a schematic block diagram of a network device of the present application.
  • GSM global mobile communication
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • general packet radio service general packet radio service, GPRS
  • LTE long term evolution
  • LTE frequency division duplex FDD
  • TDD time division duplex
  • UMTS universal mobile communication system
  • WiMAX worldwide interoperability for microwave access
  • FIG. 1 shows a schematic diagram of a communication system 100 suitable for the method and apparatus for sending and receiving according to embodiments of the present application.
  • the communication system 100 may include at least one network device, such as the network device 110 shown in FIG. 1; the communication system 100 may also include at least one terminal device, such as the terminal device 120 shown in FIG.
  • the network device 110 and the terminal device 120 can communicate through a wireless link.
  • Each communication device such as the network device 110 or the terminal device 120 in FIG. 1, may be configured with multiple antennas.
  • the plurality of antennas may include at least one transmitting antenna for transmitting signals and at least one receiving antenna for receiving signals.
  • each communication device additionally includes a transmitter chain and a receiver chain.
  • Those of ordinary skill in the art can understand that they can include multiple components related to signal transmission and reception (such as processors, modulators, and multiplexers) , Demodulator, demultiplexer or antenna, etc.). Therefore, network devices and terminal devices can communicate through multi-antenna technology.
  • the network device in the wireless communication system may be any device having a wireless transceiver function.
  • the device includes but is not limited to: it can be a global mobile system (global system for mobile communications, GSM) system or a base station (base transceiver station (BTS) in code division multiple access (CDMA), or broadband Base station (NodeB, NB) in a wideband code division multiple access (WCDMA) system, or evolved NodeB (eNB or eNodeB) in an LTE system, or a cloud wireless access network (cloud, radio access, network, CRAN) scenario, or the network device can be a relay station, an access point, an in-vehicle device, a wearable device, a network device in a future 5G network, or a network in a future evolved PLMN network Equipment, such as one or a group of transmission and reception points (TRP) or transmission points (TRP) or transmission points (TP) in the NR system, base stations (gNB) in the NR system, and
  • gNB may include a centralized unit (CU) and DU.
  • the gNB may also include a radio unit (RU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB, for example, CU implements radio resource control (RRC), packet data convergence layer protocol (packet data convergence protocol, PDCP) layer functions
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • DU implements wireless chain
  • the functions of the radio link (control RLC) layer, media access control (MAC) layer and physical (PHY) layer The functions of the radio link (control RLC) layer, media access control (MAC) layer and physical (PHY) layer.
  • RRC radio resource control
  • MAC media access control
  • PHY physical
  • high-level signaling such as RRC layer signaling
  • CU determines the high-level information and sends it to DU, and DU sends the high-level information.
  • the network device may be a CU node, or a DU node, or a device including a CU node and a DU node.
  • the CU may be divided into network devices in a radio access network (RAN), and may also be divided into network devices in a core network (CN), which is not limited in this application.
  • RAN radio access network
  • CN core network
  • terminal equipment in the wireless communication system may also be referred to as user equipment (UE), access terminal, subscriber unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, User terminal, terminal, wireless communication device, user agent or user device.
  • UE user equipment
  • the terminal device in the embodiment of the present application may be a mobile phone, a tablet computer, a computer with wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, and an augmented reality (augmented reality, AR) terminal Wireless terminals in equipment, industrial control (industrial control), wireless terminals in self-driving (self-driving), wireless terminals in remote medical (remote medical), wireless terminals in smart grid (smart grid), transportation safety ( Wireless terminals in transportation, wireless terminals in smart cities, wireless terminals in smart homes, terminal devices in future 5G networks or public land mobile communication networks in the future (public land mobile) network, PLMN) terminal equipment, etc., this embodiment of the present application is not limited thereto.
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes central processing unit (CPU), memory management unit (memory management unit, MMU), and memory (also called main memory) and other hardware.
  • the operating system may be any one or more computer operating systems that implement business processes through processes, for example, a Linux operating system, a Unix operating system, an Android operating system, an iOS operating system, or a windows operating system.
  • the application layer includes browser, address book, word processing software, instant messaging software and other applications.
  • the embodiment of the present application does not specifically limit the specific structure of the execution body of the method provided in the embodiment of the present application, as long as it can run the program that records the code of the method provided by the embodiment of the present application to provide according to the embodiment of the present application
  • the method may be used for communication.
  • the execution body of the method provided in the embodiments of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call a program and execute the program.
  • various aspects or features of the present application may be implemented as methods, devices, or articles using standard programming and/or engineering techniques.
  • article of manufacture encompasses a computer program accessible from any computer-readable device, carrier, or medium.
  • computer-readable media may include, but are not limited to: magnetic storage devices (eg, hard disks, floppy disks, or magnetic tapes, etc.), optical disks (eg, compact discs (CD), digital universal discs (digital) discs, DVDs) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • machine-readable medium may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • the technical solution of the present application may be applied to a wireless communication system, for example, the communication system 100 shown in FIG. 1.
  • a wireless communication connection relationship between two communication devices in a wireless communication system may correspond to, for example, the network device 110 shown in FIG. 1, for example, it may be the network device 110 or a chip configured in the network device 110, and the other of the two communication devices may correspond to, for example, FIG.
  • the terminal device 120 in 1, for example, may be the terminal device 120 or a chip configured in the terminal device 120.
  • the terminal device can support both URLLC service and eMBB service.
  • the two uplink information (upstream data channel or uplink control information) corresponding to the two services may collide in the time domain. In the case of, how to send uplink information by the terminal equipment has become an urgent problem to be solved.
  • the terminal device when the uplink data channel or uplink control information corresponding to a low priority (e.g. eMBB) service collides with the uplink data channel or uplink control information corresponding to a high priority (e.g. URLLC) service, the terminal device will stop sending The uplink data channel or uplink control information corresponding to the low priority service.
  • a low priority e.g. eMBB
  • a high priority e.g. URLLC
  • the terminal device drops the UCI for eMBB and only sends the UCI for URLLC.
  • the terminal device compares the uplink control information corresponding to the low-priority service
  • the uplink control information corresponding to the high priority industry is jointly encoded and sent.
  • Joint coding means that the pre-coding information of the two UCIs is merged (for example, the two UCIs are merged in series) and then the coding is performed.
  • the coding information bits and/or the check information bits are determined jointly by the pre-coding information of the two UCIs.
  • the terminal device encodes the two and maps them to URLLC PUSCH.
  • the code rate of the HARQ-ACK information corresponding to the URLLC is lower than the HARQ-ACK information corresponding to the eMBB To ensure higher reliability.
  • HARQ-ACK information of eMBB and HARQ-ACK information of URLLC are jointly encoded, only one modulation and coding method can be selected for modulation and coding.
  • the embodiments of the present application provide a method for transmitting uplink information, which can solve the uplink data channel or uplink control information corresponding to a low priority (eg eMBB) service and the uplink data channel or uplink control corresponding to a high priority (eg URLLC) service
  • a low priority eg eMBB
  • URLLC high priority
  • this application proposes a method for sending uplink information in a scenario where the control information or data information corresponding to two types of services with different priorities collide, and the control information corresponding to the services with different priorities Data information is encoded independently, and by determining the priority of the two, the priority of control/service information corresponding to low-priority services is lower than the priority of control/service information corresponding to high-priority services, or low priority
  • the time-frequency domain position of the control/service information corresponding to the service is later than the time-frequency domain position of the control/service information corresponding to the high-priority service, thereby achieving the effect of better balancing the two different priority services.
  • any terminal device in the wireless communication system or a chip configured in the terminal device can send uplink information based on the same method, and any network device in the wireless communication system or the chip configured in the network device is Uplink information can be received based on the same method. This application does not limit this.
  • collision in the embodiment of the present application means that the uplink information of different services needs to be transmitted through the same channel. In other words, the uplink information corresponding to different services or different priorities needs to be sent on the same time-frequency resource, resulting in information collision .
  • the information "collision” in the embodiment of the present application may also be referred to as information conflict, and the embodiment of the present application is not limited thereto.
  • FIG. 4 is a schematic flowchart of a method 400 for receiving and transmitting signals shown from the perspective of interaction between a network device and a terminal device.
  • the method 400 shown in FIG. 4 includes:
  • the terminal device determines a first time-frequency resource and a second time-frequency resource on an uplink channel.
  • the first time-frequency resource is used to send first uplink information
  • the second time-frequency resource is used to send second uplink information.
  • the first uplink information includes first uplink data information corresponding to a first priority and/or first uplink control information corresponding to a first priority
  • the second uplink information includes a second priority
  • the second uplink data information of the level and/or the second uplink control information corresponding to the second priority, the first uplink information and the second uplink information are independently coded;
  • the network device determines the first time-frequency resource and the second time-frequency resource.
  • the first time-frequency resource can be used to receive the first uplink information
  • the second time-frequency resource is used to receive the first 2. Uplink information.
  • the terminal device or the network device may determine the two time-frequency resources at the same time, or may determine the two resources separately, for example, the first One time-frequency resource, and then another time-frequency resource is determined, and the embodiments of the present application are not limited thereto.
  • the first time-frequency resource and the second time-frequency resource may not overlap, that is, the first time-frequency resource and the second time-frequency resource do not include the same resource particles (resource elements).
  • RE resource particles
  • the two time-frequency resources may also overlap, that is, the first time-frequency resource and the second time-frequency resource include at least one same RE; the at least one same RE is called an overlapping time-frequency resource (for example, Is the first overlapping time-frequency resource or the second overlapping time-frequency resource hereinafter).
  • the punctured resources may be referred to as overlapping time-frequency resources.
  • the third time-frequency resource and the second time-frequency resource appearing below may not overlap, or may overlap.
  • the embodiments of the present application are not limited thereto.
  • puncture may also be referred to as overwriting or discarding.
  • the information C puncturing information D is also referred to as the information C override information D.
  • first time-frequency resource and the second time-frequency resource may also have an inclusion relationship, for example, the first time-frequency resource includes the second time-frequency resource, or the second time-frequency resource includes the first time-frequency resource
  • first time-frequency resource includes the second time-frequency resource
  • second time-frequency resource includes the first time-frequency resource
  • the first time-frequency resource is earlier than the second time-frequency resource in the time domain, and/or, the first time-frequency resource Lower than the second time domain resource in the frequency domain;
  • the time interval between the time domain symbol corresponding to the first time-frequency resource and the demodulation reference signal (DMRS) symbol of the uplink channel is less than the time domain symbol corresponding to the second time-frequency resource
  • the time interval between the DMRS symbol and/or the first time-frequency resource is lower than the second time-frequency resource in the frequency domain.
  • the first priority may correspond to high-priority services
  • the second priority may correspond to low-priority services
  • the first priority corresponds to the URLLC service
  • the second priority corresponds to the eMBB service.
  • the first uplink data information is data information corresponding to the URLLC service
  • the first uplink control information is uplink control information corresponding to the URLLC service
  • the second uplink control information is uplink control information corresponding to the eMBB service.
  • the data information is the uplink data information corresponding to the eMBB service.
  • the first priority service is the URLLC service and the second priority service is the eMBB service as an example for illustration.
  • the application embodiment is not limited to this.
  • the first priority service and the second priority service may also be other services.
  • the terminal device sends information on the first time-frequency resource and the second time-frequency resource.
  • the network device receives information on the first time-frequency resource and the second time-frequency resource.
  • the terminal device separately encodes the first upstream information and the second upstream information and sends information using different resources, which can achieve better Balance the effects of two different priority services.
  • the first uplink information may be first uplink data information corresponding to the first priority, or may be first uplink control information corresponding to the first priority, or may include both of the foregoing, that is, including the first priority.
  • the first uplink data information and the first uplink control information of the level may be first uplink data information corresponding to the first priority, or may be first uplink control information corresponding to the first priority, or may include both of the foregoing, that is, including the first priority.
  • the second uplink information may be second uplink data information corresponding to the second priority, or may be second uplink control information corresponding to the second priority, or may include both of the above, that is, the second priority Second uplink data information and second uplink control information.
  • the third uplink information may be third uplink control information corresponding to the first priority, or may include third uplink control information corresponding to the first priority and include the first priority and different from the first Other upstream control information of upstream information.
  • the uplink channel may be PUSCH, and the uplink channel may also be PUCCH.
  • the embodiment of the present application is not limited thereto.
  • the uplink channel is PUSCH.
  • the PUSCH may carry first uplink control information and second uplink control information.
  • the PUSCH may carry first uplink data information and second uplink control information.
  • the PUSCH may carry first uplink control information and second uplink data information.
  • the PUSCH may carry first uplink data information and second uplink data information.
  • the PUSCH may also carry uplink data information (Uplink Shared Channel, UL-SCH) corresponding to the first priority.
  • the PUSCH may be a PUSCH bearing URLLC service.
  • the UL-SCH is the first uplink data information.
  • the PUSCH may also carry uplink data information UL-SCH corresponding to the second priority.
  • the PUSCH is a PUSCH carrying eMBB services.
  • the UL-SCH is the second uplink data information.
  • the uplink channel may be a PUSCH
  • the PUSCH carries first uplink control information and second uplink control information, but does not carry uplink data information. That is, the PUSCH is a PUSCH (PUSCH without UL-SCH) that does not carry uplink data information.
  • the uplink channel is PUCCH.
  • the PUCCH carries the first uplink control information and the second uplink control information.
  • the terminal device sending information on the first time-frequency resource and the second time-frequency resource includes: the terminal device sending the first time-frequency resource on the first time-frequency resource An uplink information, and the second uplink information is sent on the second time-frequency resource.
  • the sending of information by the terminal device on the first time-frequency resource and the second time-frequency resource includes: the terminal device sending the information on the first time-frequency resource First uplink information, and the second uplink information is not sent on the second time-frequency resource, but other uplink information is sent; or, the terminal device sends other uplink on the first time-frequency resource Information, and send the second uplink information on the second time-frequency resource; or, the terminal device sends other uplink information on both the first time-frequency resource and the second time-frequency resource.
  • other uplink information here is uplink information different from the first uplink information and different from the second uplink information.
  • the other uplink information is null information, and the terminal device sending null information indicates that the terminal device does not send uplink information to the network device.
  • a certain time-frequency resource (such as the first time-frequency resource or the second time-frequency resource or the third time-frequency resource) is used to carry certain uplink information (such as the first uplink information , The second uplink information or the third uplink information), or the time-frequency resource can be used by the terminal device to send the uplink information, specifically: the time-frequency resource can be used to carry or send potential The upstream information.
  • the uplink information is sent on the time-frequency resource; if the terminal device is not (or does not need to be) on the uplink channel, the uplink information is sent , You can send other uplink information on the time-frequency resource, or do not send (or not map) any information.
  • the terminal device needs to send the uplink information on the uplink channel specifically: the terminal device receives the downlink control information corresponding to the uplink information, and the downlink control information is used to schedule or trigger or configure the terminal device to send the uplink information Information; for example, the first downlink control information described later schedules or configures the terminal device to send the first uplink data information, or the second downlink control information triggers or configures the terminal device to send the first uplink control information, or the third downlink control information Trigger or configure the terminal device to send the second uplink control information, or the fourth downlink control information trigger or configure the terminal device to send the second uplink data information.
  • the terminal device sends the uplink information on the time-frequency resource, then for one of the time-domain symbols corresponding to the time-frequency resource, the uplink information may be mapped to the time-domain symbol All frequency domain resources may also be mapped to a part of frequency domain resources on the time domain symbol, for example, a part of subcarriers on the time domain symbol, and the embodiments of the present application are not limited thereto.
  • the above-mentioned time-frequency resource is a time-frequency resource used for sending the above-mentioned uplink information, and it can be understood that the time-frequency resource can be used to carry all the uplink information, or that the time-frequency resource can be used to carry the uplink Part of the information is not limited to this embodiment of the present application.
  • the above-mentioned uplink information in the embodiment of the present application may be information before encoding, or referred to as cell information or system information (system information).
  • the information before encoding may include cyclic redundancy check (cyclic redundancy check, CRC) bits, or may not include CRC bits.
  • CRC cyclic redundancy check
  • the above-mentioned uplink information sent by the terminal device is part or all of the encoded information of the uplink information.
  • the terminal device does not transmit all the encoded information of the uplink information, for example, after the encoded information of the uplink information is mapped to the time-frequency resource, some of the time-frequency resource is used by other
  • the uplink information is punctured so that the terminal device actually sends only a part of the encoded information of the uplink information, but considering that the network device receives a part of the encoded information of the uplink information, it can still recover (for example, by decoding) All pre-coding information of the upstream information (that is, the network device may potentially obtain all the pre-coding information of the upstream information through a part of the information after the encoding of the upstream information). Therefore, in this case, it can still be said that the time-frequency resource carries all the uplink information (for example, the first uplink information or the second uplink information).
  • the first uplink information or the second uplink information in the embodiment of the present application may also be encoded information.
  • part of the information carrying the uplink information in the time-frequency resource may be understood as a part of the information of the uplink information is mapped to the time-frequency resource, and another part of the information of the uplink information is mapped to other information of the uplink channel.
  • the time-frequency resource may be mapped to other uplink channels, or the other part of the information is not mapped or discarded after the mapping.
  • the embodiments of the present application are not limited to this.
  • the first uplink data information, the first uplink control information, the second uplink control information, and the second uplink data information in the embodiments of the present application are described in detail below.
  • the first uplink data information is all uplink data information on the uplink channel corresponding to the first priority, or the first uplink data information is part of uplink data corresponding to the first priority on the uplink channel information.
  • the first uplink data information is independently encoded uplink data information.
  • the first uplink control information is all uplink control information corresponding to the first priority on the uplink channel, or the first uplink control information is uplink control information corresponding to the first priority on the uplink channel Part of.
  • the first uplink control information is independently coded control information.
  • the second uplink data information is all uplink data information on the uplink channel corresponding to the second priority, or the second uplink data information is part of uplink data corresponding to the second priority on the uplink channel information.
  • the first uplink data information is independently encoded uplink data information.
  • the second uplink control information is all uplink control information corresponding to the second priority on the uplink channel, or the second uplink control information is uplink control information corresponding to the second priority on the uplink channel Part of.
  • the second uplink control information is independently coded control information.
  • the third uplink control information may also be independently coded control information.
  • the uplink information is an independently coded uplink Information refers to: the terminal device generates coded information (such as CRC and or coded bits) according to the system information bits of the uplink information to form a coded information sequence. Further, the uplink information is independently coded uplink information means that the terminal device generates coding information based on only the system information bits of the uplink information, or that the terminal device does not generate the coding based on system information bits of information other than the uplink information information.
  • coded information such as CRC and or coded bits
  • the first uplink information and the second uplink information are independently encoded means that the terminal device encodes the first uplink information and the second uplink information separately. After separately coding and modulating the two, the two are mapped onto the upstream channel.
  • the coding information for example, parity bits
  • the coding information corresponding to the first uplink information is determined by the system information bits corresponding to the first uplink information and is not related to the system information bits (systematic bits) of the second uplink information.
  • the second uplink information (for example, CRC bits or parity bits) corresponding to the information is determined by the system information bits (systematic bits) corresponding to the second uplink information and is not related to the system information bits of the first uplink information.
  • the independent encoding of the first uplink information and the third uplink information means that the terminal device encodes the first uplink information and the third uplink information separately.
  • Independent coding of the second uplink information and the third uplink information means that the terminal device encodes the second uplink information and the third uplink information separately.
  • all information included in a certain type of uplink information may be Jointly encoded information.
  • the above-mentioned joint coding means that the coding information corresponding to the uplink information is generated by all system information bits included in the uplink information. If the uplink information includes multiple types of information, the terminal device jointly encodes the multiple types of information included in the uplink information, and the CRC and/or coding information corresponding to the uplink information is generated by the multiple types of information. For example, if the type of uplink information includes HARQ-ACK information and SR information, the type of uplink information is the information jointly coded by the two types of information.
  • different uplink information can be independently encoded, and all information in the same uplink information is jointly encoded.
  • the first uplink data information includes data information sent by the first downlink control information scheduling or configuration terminal device, where the first uplink data information corresponds to the first The priority is expressed by satisfying one or more of the following conditions: the first bit field in the first downlink control information indicates or configures that the first uplink data information corresponds to the first priority ,
  • the first downlink control information is located in the first search space, the first downlink control information is located in the first physical downlink control channel PDCCH opportunity set, and the first downlink control information corresponds to the first downlink control information format DCI format, and the first downlink control information corresponds to a first wireless network temporary identity (RNTI).
  • RNTI wireless network temporary identity
  • the first downlink control information is dynamic DCI at the physical layer, such as uplink grant (UL grant).
  • UL grant is scrambled by other RNTIs other than the configured wireless network temporary identifier (CS-RNTI), such as the cell wireless network temporary identifier (C-RNTI).
  • CS-RNTI configured wireless network temporary identifier
  • C-RNTI cell wireless network temporary identifier
  • modulation and coding strategy wireless network temporary identification modulation and coding scheme RNTI, MCS-C-RNTI
  • the first downlink control information may be information that configures the uplink channel to the terminal device for sending information in a grant-free (GF grant free, GF) manner, such as high-level signaling or semi-static uplink grant UL
  • the grant may also be high-level signaling and semi-static UL grant (such as CS-RNTI scrambled UL grant).
  • the first uplink control information includes second downlink control information configuration or triggers uplink control information sent by a terminal device, where the first uplink control information corresponds to the first
  • the priority is expressed by satisfying one or more of the following conditions: the second bit field in the second downlink control information indicates or configures that the first uplink control information corresponds to the first priority,
  • the second downlink control information is located in a first search space, the second downlink control information is located in a first PDCCH opportunity set, the second downlink control information corresponds to a first DCI format, and the second downlink control information corresponds to First RNTI;
  • the second downlink control information may be high-level signaling that configures the uplink control information, or it may be a configuration Or trigger the terminal device to send the semi-static DCI signaling of the uplink control information (for example, CS-RNTI scrambled downlink grant (downlink grant, DL grant).
  • the first uplink control information includes periodic channel state information (channel state information, CSI) information or SR information
  • the periodic CSI information or SR information is information sent by a high-level signaling configuration terminal device
  • the time unit for example, time slot
  • the network device may configure the downlink data information (that is, SPS PDSCH) based on semi-persistent scheduling (SPS) to the terminal device through the second downlink control information.
  • SPS semi-persistent scheduling
  • the SPS PDSCH is periodic.
  • the terminal device The HARQ-ACK information fed back to the periodic SPS PDSCH is also periodic, so if the first uplink control information includes the HARQ-ACK information, it can be considered that the HARQ-ACK information is the second downlink control information configuration or trigger Sent by the terminal device.
  • the second downlink control information may be control signaling that triggers or instructs the terminal device to send the uplink control information.
  • the second downlink control information is physical layer downlink control information DCI, such as UL grant or DL grant. More specifically, the UL grant or DL grant is scrambled by other RNTIs than CS-RNTI, for example, C-RNTI or MCS-C-RNTI scrambling.
  • the first uplink control information includes aperiodic CSI information
  • the aperiodic CSI information is sent by the terminal device triggered by DL grant or UL grant.
  • the network device may schedule the PDSCH to the terminal device through the second downlink control information.
  • the terminal device detects the second downlink control information and feeds back the corresponding HARQ-ACK information. Therefore, if the first uplink control information includes HARQ-ACK Information, it can be considered that the HARQ-ACK information is sent by the terminal device triggered by the second downlink control information.
  • the second uplink control information includes third downlink control information configuring or triggering uplink control information sent by a terminal device, where the second uplink control information corresponds to the second The priority is expressed by satisfying one or more of the following conditions: the fourth bit field in the third downlink control information indicates or configures that the second uplink control information corresponds to the second priority,
  • the third downlink control information is located in a second search space, the third downlink control information is located in a second PDCCH opportunity set, the third downlink control information corresponds to a second DCI format, and the third downlink control information corresponds to The second RNTI.
  • the method for configuring the third downlink control information or triggering the terminal device to send the second uplink control information is similar to the method for configuring the second downlink control information or triggering the terminal device to send the first uplink control information, and details are not described herein again.
  • the third downlink control information is the dynamic downlink control information DCI of the physical layer, such as UL grant or DL grant.
  • the DCI is scrambled by other RNTIs than the CS-RNTI, for example, C-RNTI or MCS-C-RNTI scrambling.
  • the third downlink control information may be high-level signaling that configures the uplink control information, or semi-static DCI signaling that configures the terminal device to send the uplink control information (such as CS-RNTI scrambled downlink grant DL grant ).
  • the second uplink data information includes data information sent by a fourth downlink control information scheduling or configuration terminal device, where the second uplink data information corresponds to the second priority
  • the level is expressed by satisfying one or more of the following conditions: the third bit field in the fourth downlink control information indicates or configures that the second uplink data information corresponds to the second priority, the Four downlink control information are located in the second search space, the fourth downlink control information is located in the second PDCCH opportunity set, the fourth downlink control information corresponds to the second DCI format, and the fourth downlink control information corresponds to the second RNTI ;
  • the method for configuring or scheduling the terminal device to send the second uplink data information by the fourth downlink control information is similar to the method for configuring or scheduling the terminal device to send the first uplink data information by the first downlink control information, and details are not described herein again.
  • the fourth downlink control information is dynamic downlink control information DCI of the physical layer, such as uplink grant UL.
  • the UL grant is scrambling for other RNTIs than CS-RNTI, such as C-RNTI or MCS-C-RNTI scrambling.
  • the fourth downlink control information may be information that configures the uplink channel to the terminal device for sending information in GF mode, for example, may be high-level signaling, semi-static UL grant, or high-level signaling and Semi-static UL grant.
  • the third uplink control information includes fifth downlink control information to configure or trigger uplink control information sent by the terminal device, where the third uplink control information corresponds to the first priority Is expressed by satisfying one or more of the following conditions: a fifth bit field in the fifth downlink control information indicates or configures that the third uplink control information corresponds to the first priority, the The fifth downlink control information is located in the first search space, the fifth downlink control information is located in the first PDCCH opportunity set, the fifth downlink control information corresponds to the first DCI format, and the fifth downlink control information corresponds to the first RNTI.
  • the method for configuring the fifth downlink control information or triggering the terminal device to send the third uplink control information is similar to the method for configuring the second downlink control information or triggering the terminal device to send the first uplink control information, and details are not described herein again.
  • the fifth downlink control information is dynamic downlink control information DCI of the physical layer, such as UL grant or DL grant.
  • the DCI is scrambled by other RNTIs than the CS-RNTI, for example, C-RNTI or MCS-C-RNTI scrambling.
  • the fifth downlink control information may be high-level signaling that configures the uplink control information, or semi-static DCI signaling that configures the terminal device to send the uplink control information (such as CS-RNTI scrambled downlink grant DL grant) ).
  • the first uplink control information includes one or more of the following information: hybrid automatic repeat request confirmation HARQ-ACK information corresponding to the first priority, corresponding to the first priority CSI information of channel state information and SR information of scheduling request corresponding to the first priority;
  • the first uplink control information is HARQ-ACK information corresponding to the first priority, or the first uplink control information is CSI information corresponding to the first priority, or the first uplink control information is corresponding to the first Priority SR information.
  • the first uplink control information is a combination of at least two of the aforementioned HARQ-ACK information corresponding to the first priority, CSI information corresponding to the first priority, and SR information corresponding to the first priority.
  • the first uplink control information is HARQ-ACK information corresponding to the first priority and the SR information corresponding to the first priority, or the first uplink control information is HARQ-ACK information and the corresponding to the first priority CSI information corresponding to the first priority, or the first uplink control information is CSI information corresponding to the first priority and SR information corresponding to the first priority, or the first uplink control information is corresponding to the first Priority HARQ-ACK information and CSI information corresponding to the first priority and SR information corresponding to the first priority.
  • the CSI information corresponding to the first priority may be CSI part 1 information corresponding to the first priority, or CSI part 2 information corresponding to the first priority, or may correspond to the first priority.
  • CSI may include two parts of information: CSI part 1 and CSI part 2, CSI part 1 may include high-priority CSI information, and CSI part 2 may include low-priority CSI information.
  • CSI part 1 includes channel state information reference signal resource indicator (CSI-RS resource indicator (CRI), rank indicator (Rank indicator), RI), and channel quality indicator (CQI) of the first transport block (codeword)
  • CSI part 2 includes at least one of CQI information of the second transport block and Precoding Matrix Indicator (PMI) information.
  • CSI part 1 includes at least one of RI information, CQI information, and non-zero wideband amplitude coefficient (non-zero wideband amplitude coefficient) information
  • CSI part 2 includes PMI information.
  • the second uplink control information includes one or more of the following information: HARQ-ACK information corresponding to the second priority, CSI information corresponding to the second priority, and corresponding to The second priority SR information.
  • the second uplink control information is HARQ-ACK information corresponding to the second priority, or the second uplink control information is CSI information corresponding to the second priority, or the second uplink control information is corresponding to the second Priority SR information.
  • the second uplink control information is a combination of at least two of the aforementioned HARQ-ACK information corresponding to the second priority, CSI information corresponding to the second priority, and SR information corresponding to the second priority.
  • the second uplink control information is HARQ-ACK information corresponding to the second priority and SR information corresponding to the second priority, or the second uplink control information is HARQ-ACK information and the second priority corresponding to the second priority CSI information corresponding to the second priority, or the second uplink control information is CSI information corresponding to the second priority and SR information corresponding to the second priority, or the second uplink control information is corresponding to the second The HARQ-ACK information of the priority and the CSI information corresponding to the second priority and the SR information corresponding to the second priority.
  • the CSI information corresponding to the second priority may be CSI part 1 information corresponding to the second priority, or CSI part 2 information corresponding to the second priority, or may correspond to the second priority.
  • the x-th uplink control information is ⁇ information corresponding to the x-th priority
  • the x-th uplink control information is all ⁇ information corresponding to the x-th priority on the uplink channel.
  • the x-th uplink control information is a part of the ⁇ information corresponding to the x-th priority on the uplink channel.
  • the above x is one or two.
  • the third uplink control information is all ⁇ information corresponding to the first priority carried on the uplink channel.
  • the ⁇ information or ⁇ information may be HARQ-ACK information, or CSI information, or SR information, or HARQ-ACK information and CSI information, or HARQ-ACK information and SR information, or CSI information and SR information, or HARQ-ACK Information and CSI information and SR information.
  • the ⁇ information is different from the ⁇ information.
  • the ⁇ information is HARQ-ACK information corresponding to the first priority
  • the ⁇ information is CSI information corresponding to the first priority.
  • the uplink channel is an uplink channel in frequency hopping mode
  • the first time-frequency resource, the second time-frequency resource, and the third time-frequency resource may all be located in the same
  • the resources above the hop, the first upstream information, the second upstream information, and the third upstream information (if present) are all information located above the same hop.
  • the first uplink data information may be all uplink data information corresponding to the first priority carried on the hop.
  • the first uplink control information may be all uplink control information carried on the hop and corresponding to the first priority.
  • the second uplink data information may be all uplink data information corresponding to the second priority carried on the hop.
  • the second uplink control information may be all uplink control information carried on the hop and corresponding to the second priority.
  • the xth uplink control information is ⁇ information corresponding to the xth priority
  • the xth uplink control information is all the ⁇ information corresponding to the xth priority carried on the hop.
  • the third uplink control information is all ⁇ information corresponding to the first priority carried on the hop.
  • the second downlink control information configures or schedules the terminal device to send first downlink data information corresponding to a first priority
  • the HARQ-ACK information corresponding to the first priority is HARQ-ACK information for the first downlink data information; that is, the first priority of the first uplink control information is indicated by the priority of the first downlink data configured or scheduled by the second downlink control information.
  • the third downlink control information configures or schedules the terminal device to send second downlink data information corresponding to a second priority
  • the HARQ-ACK information corresponding to the second priority is for HARQ-ACK information of the second downlink data information; that is, the second priority of the second uplink control information is indicated by the priority of the second downlink data configured or scheduled by the third downlink control information.
  • the first downlink data information may be later in time than the second downlink data information, that is, the PDSCH carrying the first downlink data information is later than the PDSCH carrying the second downlink data information.
  • the URLLC service arrives later than the eMBB service, but requires a smaller HARQ-ACK feedback delay, Therefore, the HARQ-ACK corresponding to the URLLC service and the HARQ-ACK corresponding to the eMBB service may collide in the same time unit.
  • the network device in the embodiment of the present application may notify the terminal device of the priority corresponding to the first uplink information/second uplink information in any one of the following five ways:
  • the first bit field in the first downlink control information indicates that the first uplink data information corresponds to the first priority. That is, the first downlink control information explicitly notifies that the first uplink data information scheduled or configured by the first downlink control information corresponds to the first priority.
  • the second bit field in the second downlink control information indicates that the first uplink control information corresponds to the first priority.
  • the second bit field in the second downlink control information indicates that the first downlink data information corresponds to the first priority, so an indirect indication (which may also be referred to as an implicit indication) is directed to the first uplink targeted by the second downlink control information
  • the control information corresponds to the first priority.
  • the fifth bit field in the fifth downlink control information indicates that the third uplink control information corresponds to the first priority.
  • the position of the first bit field in the first downlink control information is the same as the position of the second bit field in the second downlink control information.
  • the position of the fifth bit field in the fifth downlink control information and the position of the second bit field in the second downlink control information may be the same.
  • the third bit field in the third downlink control information indicates that the second uplink control information corresponds to the second priority.
  • the third bit field in the third downlink control information indicates that the second downlink data information corresponds to the second priority, so an indirect indication (which may also be referred to as an implicit indication) is directed to the second uplink control targeted by the third downlink control information
  • an indirect indication (which may also be referred to as an implicit indication) is directed to the second uplink control targeted by the third downlink control information
  • the information corresponds to the second priority.
  • the position of the third bit field in the third downlink control information is the same as the position of the second bit field in the second downlink control information. It should be understood that the value of the second bit field is different from the value of the third bit field, so that the terminal device determines different priorities according to the different values of the bit field.
  • the position of the third bit field in the third downlink control information is the same as the position of the fifth bit field in the fifth downlink control information.
  • the fourth bit field in the fourth downlink control information indicates that the second uplink data information corresponds to the second priority. That is, the fourth downlink control information explicitly notifies that the second uplink data information scheduled or configured by the fourth downlink control information corresponds to the second priority.
  • the position of the first bit field in the first downlink control information is the same as the position of the fourth bit field in the fourth downlink control information.
  • the downlink control information (such as the first downlink control information or the second downlink control information or the fifth downlink control information) is used to indicate the priority bit field (such as the first bit field or the second bit field or the fifth Bit field) is set to '0', which represents the uplink data information (such as the first uplink data information) or the uplink control information configured or scheduled or triggered by the downlink control information (such as the first downlink control information or the second downlink control information) (Eg, the first uplink control information or the third uplink control information) corresponds to the first priority
  • the bit field eg, the third bit field or the third bit control field
  • the four-bit field is set to '1', which means that the uplink data information or uplink control information (such as second uplink data information or second uplink control information) configured or scheduled or triggered by the downlink control information corresponds to the second priority.
  • the first downlink control information is located in a first search space (search space).
  • search space is an area where the terminal device blindly detects DCI in the PDCCH.
  • the search space may be a user search space (UE specific search space, USS) or a public search space (common search space, CSS).
  • the second downlink control information is located in the first search space. It should be understood that the PDCCH where the first downlink control information and the second downlink control information are located may be the same or different, but the search space in the PDCCH may be the first search space.
  • the fifth downlink control information is located in the first search space.
  • the third downlink control information is located in the second search space, and similarly, the fourth downlink control information is located in the second search space.
  • the second search space is different from the first search space.
  • the second search space is USS
  • the first search space is CSS.
  • the terminal device detects the downlink control information in the CSS, it represents the uplink data information (for example, the first downlink control information or the second downlink control information or the fifth downlink control information) configured or scheduled or triggered by the downlink control information (for example, First uplink data information) or uplink control information (such as first uplink control information or third uplink control information) corresponds to the first priority, if the terminal device detects downlink control information (such as third downlink control information or third Four downlink control information), it means that the uplink data information (such as the second new data mentioned above) or uplink control information (such as the second uplink control information) configured or scheduled or triggered by the downlink control information corresponds to the second priority.
  • the uplink data information for example, the first downlink control information or the second downlink control information or the fifth downlink control information
  • the terminal device detects downlink control information (such as third downlink control information or third Four downlink control information)
  • the uplink data information such as the second new data mentioned above
  • uplink control information such as
  • the second search space is CSS
  • the first search space is USS.
  • the terminal device detects downlink control information (such as first downlink control information or second downlink control information or fifth downlink control information) in the USS, it represents the uplink data information configured or scheduled or triggered by the downlink control information (such as First uplink data information) or uplink control information (such as first uplink control information or third uplink control information) corresponds to the first priority
  • downlink control information such as third downlink control information or third Four downlink control information
  • the uplink data information or uplink control information configured or scheduled or triggered by the downlink control information corresponds to the second priority.
  • the first downlink control information is located in the first PDCCH opportunity (PDCCH occasion) set.
  • the PDCCH opportunity set in this application is also called PDCCH monitoring opportunity (PDCCH monitoring opportunity), and refers to a set of time-frequency resources that the network device allocates to the terminal device to monitor the PDCCH.
  • the terminal device monitors the DCI in the PDCCH opportunity set configured by the network device, but does not monitor the DCI in the time unit outside the PDCCH opportunity set.
  • the second downlink control information is located in the first PDCCH opportunity set. It should be understood that the PDCCH where the first downlink control information and the second downlink control information are located may be the same or different, but both are located in the same first PDCCH opportunity set.
  • the fifth downlink control information is located in the first PDCCH opportunity set.
  • the third downlink control information is located in the second PDCCH opportunity set; the fourth downlink control information is located in the second PDCCH opportunity set.
  • the downlink control information detected by the terminal device in different PDCCH opportunity sets respectively corresponds to different priorities.
  • the time-frequency resources included in the second PDCCH opportunity set are different from the time-frequency resources included in the first PDCCH opportunity set, for example, the time units included in the first PDCCH opportunity set and the second PDCCH opportunity set correspond to The cycle is different. Therefore, the downlink control information detected by the terminal device in the first PDCCH opportunity set is the downlink control information corresponding to the first priority, and the downlink control information detected in the second PDCCH opportunity set is the downlink control information corresponding to the second priority.
  • the first downlink control information corresponds to a first downlink control information format (DCI format).
  • DCI format refers to the DCI format used to carry downlink control information.
  • the second downlink control information corresponds to the first DCI format.
  • the fifth downlink control information corresponds to the first DCI format.
  • the third downlink control information corresponds to the second DCI format
  • the fourth downlink control information corresponds to the second DCI foumat.
  • the different DCI formats detected by the terminal device respectively correspond to different priorities.
  • the first DCI format is different from the second DCI format, for example, the payload size of the first DCI format is smaller than the payload size of the second DCI format.
  • the first DCI format is DCI format 0_0 or DCI format 1_0
  • the first DCI format is DCI format 1_0 or DCI format 1_1.
  • the first downlink control information corresponds to the first radio network temporary identifier RNTI.
  • the RNTI is used to scramble the identification of downlink control information, and different types of control information correspond to different RNTIs.
  • the second downlink control information corresponds to the first radio network temporary identifier RNTI.
  • the fifth downlink control information corresponds to the first radio network temporary identifier RNTI.
  • the third downlink control information corresponds to the second RNTI
  • the fourth downlink control information corresponds to the second RNTI.
  • the downlink control information detected by the terminal device using different RNTIs respectively corresponds to different priorities.
  • the second RNTI is C-RNTI or CS-RNTI.
  • the first RNTI is another RNTI other than C-RNTI or another RNTI other than CS-RNTI, for example, the second RNTI is MCS-C-RNTI.
  • the terminal device detects downlink control information (such as first downlink control information or second downlink control information or fifth downlink control information) in the first PDCCH opportunity set, or detected downlink control information (such as the first The downlink control information or the second downlink control information or the fifth downlink control information) corresponding to the first DCI format or corresponding to the first RNTI represents uplink data information (such as the first uplink data information) configured or scheduled or triggered by the downlink control information ) Or uplink control information (such as first uplink control information or third uplink control information) corresponding to the first priority.
  • downlink control information such as first downlink control information or second downlink control information or fifth downlink control information
  • detected downlink control information such as the first The downlink control information or the second downlink control information or the fifth downlink control information
  • uplink data information such as the first uplink data information
  • uplink control information such as first uplink control information or third uplink control information
  • the terminal device detects downlink control information (such as third downlink control information) in the second PDCCH opportunity set, or the detected downlink control information (such as third downlink control information) corresponds to the second DCI format or corresponds to the second RNTI . It means that the uplink data information or uplink control information (such as second uplink control information) configured or scheduled or triggered by the downlink control information corresponds to the second priority.
  • downlink control information such as third downlink control information
  • the detected downlink control information such as third downlink control information
  • the first priority is higher than the second priority, which may be reflected in the mapping relationship between the first uplink information and the second uplink control information on the first uplink channel.
  • the information mapping method and the information transmission method of the embodiment of the present application are described respectively.
  • mapping order between them includes the following two kinds of mapping order (that is, mapping order 1 and mapping order 2).
  • information A is the first uplink data information (time-frequency resource #A is the first time-frequency resource), or information A is the first uplink control information (time-frequency resource #A is the first time-frequency resource ), or, information A is the second uplink control information (time-frequency resource #A is the second time-frequency resource), or information A is the second data information (time-frequency resource #A is the second time-frequency Resource), or information A is the third uplink control information (time-frequency resource #A is the third time-frequency resource).
  • Information B is different from information A; information B is the first uplink data information (time-frequency resource #B is the first time-frequency resource), and information B is the first uplink control information (time-frequency resource #B is the first Time-frequency resource), or information B is the second uplink control information (time-frequency resource #B is the first time-frequency resource), information B is the second data information, or information B is the third uplink control Information (time-frequency resource #B is the above-mentioned third time-frequency resource).
  • the time-frequency resource #A may be the time-frequency resource to which the information encoded and modulated by the information A is mapped. It should be understood that after the information A is mapped, part or all of the time-frequency resource in the time-frequency resource #A may be hit. Or, the time-frequency resource #A may be the time-frequency resource to which the time-frequency resource to which the information encoded and modulated by the information A is mapped is punctured by other information.
  • the time-frequency resource #B may be the time-frequency resource to which the information encoded and modulated by the information B is mapped.
  • time-frequency resource #B may be punctured;
  • the time-frequency resource #B may be the time-frequency resource to which the time-frequency resource to which the information after the information B is coded and modulated is mapped is punctured by other information.
  • Time-frequency resource carrying information B is later than the time-frequency resource carrying information A, or in other words, time-frequency resource #B is later than time-frequency resource #A.
  • time-frequency resource #A is earlier than time-frequency resource #B in the time domain, and/or time-frequency resource #A is lower than time-frequency resource #B in the frequency domain.
  • time-frequency resource used to carry (or map) information B is later than the time-frequency resource used to carry (or map) information A means that information B is located behind information A in the mapping order, or , Information B is later than Information A, or Information B is mapped behind Information A.
  • mapping sequence mentioned in this application is: frequency domain first time domain (frequency first time second) or frequency first time second.
  • the mapping order in the time domain is the time sequence or the order of the time domain symbols from small to large
  • the mapping order in the frequency domain is the order of the subcarrier sequence numbers from small to large or the frequency from low to high.
  • mapping order of the embodiments of the present application is not limited to the form of time domain followed by frequency domain, and may also be mapped in the order of frequency domain followed by time domain.
  • the sequence after modulation and coding of the information is sequentially mapped to the upstream channel according to the mapping order of frequency domain and time domain.
  • the time domain can be mapped in ascending order of time domain symbol sequence numbers
  • the frequency domain can be mapped in ascending order of subcarrier sequence numbers.
  • the sequence corresponding to the information is sequentially mapped (from small to large according to the sequence number) on the available subcarriers of the same time-domain symbol. If all available subcarriers on a time-domain symbol are mapped, Then continue mapping on the available subcarriers of the latter time domain symbol.
  • j is greater than or equal to 0, j is less than or equal to A, A is the number of modulation symbols after modulation and coding of information A, the information A
  • the time domain symbol corresponding to the earlier modulation symbol aj is earlier than the time domain symbol corresponding to the later modulation symbol aj+1 in the information A, or, when the time domain symbols corresponding to aj and aj+1 are the same, the subcarrier corresponding to aj
  • the sequence number is less than the subcarrier sequence number corresponding to aj+1.
  • time-frequency resource #B is included in the remaining time-frequency resources other than time-frequency resource #A on the uplink channel.
  • all the available time-frequency resources of the uplink channel are time-frequency resources #P
  • the time-frequency resources used to carry information A are time-frequency resources #A
  • the time-frequency resources #A are the frequency-frequency resources #P
  • Time sequence maps the time-frequency resource occupied by information A; then time-frequency resource #B used to carry information B is included in time-frequency resources other than time-frequency resource #P excluding time-frequency resource #A.
  • time-frequency resource #A does not need to consider avoidance information B, it occupies an earlier time-domain symbol or a lower frequency than time-frequency resource #B.
  • the time-frequency resource #A is the time-frequency resource occupied by the mapping of the information A in the time-frequency resource #P according to the mapping order of frequency-first time-time;
  • the time-frequency resource #B is the removal of the information B in the time-frequency resource #P Among the time-frequency resources other than time-frequency resource #A, the time-frequency resources occupied by mapping are mapped in the order of frequency-first-time-time mapping.
  • the time-domain symbol corresponding to RE#b is later than the time-domain symbol corresponding to RE#a (for example, RE#b and RE#a is located in a different time domain symbol)
  • RE#b is later in time than RE#a.
  • RE#b is higher in frequency than RE#a (or the subcarrier sequence number corresponding to RE#b is greater than the subcarrier sequence number corresponding to RE#a), for example, RE#b and RE#a are located in the same time domain symbol , RE#b is higher than RE#a in frequency.
  • RE#b in time-frequency resource #B may be the starting RE of time-frequency resource #B, that is, the RE corresponding to b1, or the ending RE of time-frequency resource #B, that is, the RE corresponding to bB, or It is any RE in time-frequency resource #B;
  • RE#a in time-frequency resource #A can be the starting RE of time-frequency resource #A, that is, the RE corresponding to a1, or the end of time-frequency resource #A
  • the RE, that is, the RE corresponding to aA may also be any RE in the time-frequency resource #A.
  • RE#a may be the RE of time-frequency resource #A, located at the beginning RE of the time-domain symbol (real-time resource #A is in the time-domain symbol (The RE with the smallest subcarrier number among the corresponding subcarriers on the Internet) can also be the RE of time-frequency resource #A, located at the end RE of the time-domain symbol (the corresponding sub-carrier of instant-frequency resource #A on the time-domain symbol)
  • the RE with the largest subcarrier sequence number may also be any RE located on the time domain symbol in the RE of time-frequency resource #A.
  • RE#b can be the RE of the time-frequency resource #B, located at the starting RE of the time-domain symbol (the RE with the smallest sub-carrier sequence number among the corresponding sub-carriers of the instant-frequency resource #B on the time-domain symbol), or It can be the RE of the time-frequency resource #B, located at the end RE of the time-domain symbol (the RE with the largest sub-carrier sequence number among the corresponding subcarriers of the instant-frequency resource #B on the time-domain symbol), or it can be the time-frequency In the RE of resource #B, any RE located on the time domain symbol.
  • the first time-domain symbol of time-frequency resource #B is the last time-domain symbol of time-frequency resource #A.
  • the last symbol of the first time-frequency resource (time-frequency resource #A) is symbol #1, which is equal to the first symbol of the second time-frequency resource (time-frequency resource #B).
  • the starting RE of time-frequency resource #B is the first RE of the last time-domain symbol of time-frequency resource #A (that is, the RE with the smallest subcarrier sequence number).
  • the first time-domain symbol of time-frequency resource #B is the next time-domain symbol of the last time-domain symbol of time-frequency resource #A.
  • the last symbol of the first time-frequency resource (time-frequency resource #A) is the symbol #1
  • the first symbol of the second time-frequency resource (time-frequency resource #B) is the symbol #2, the next symbol of symbol #1.
  • the starting RE of time-frequency resource #B is the first RE of the next time-domain symbol of the last time-domain symbol of time-frequency resource #A.
  • the start RE (the RE corresponding to b1) of the time-frequency resource #B is the earliest RE corresponding to the mapping order of frequency-first time-of-time among the time-frequency resources other than time-frequency resource #P excluding time-frequency resource #A.
  • the starting RE of time-frequency resource #B is the next RE of the first RE (that is, the RE with the smallest subcarrier number) in the last symbol of time-frequency resource #A.
  • the first RE in the last symbol of the first time-frequency resource (time-frequency resource #A) is symbol #1, subcarrier #0
  • the second time-frequency resource (time-frequency resource The starting RE of #B) is symbol #1, subcarrier #1, and is the next RE of the starting RE of the first time-frequency resource.
  • the start RE of time-frequency resource #B is the next RE of the end RE of time-frequency resource #A, or the start RE of time-frequency resource #B is the next RE of the last symbol of frequency resource #A
  • the end RE of the first time-frequency resource (time-frequency resource #A) is the symbol #1, the subcarrier #11, and the start of the second time-frequency resource (time-frequency resource #B) RE) is symbol #2, subcarrier #0, and it is the next RE that is the end RE of the first time-frequency resource.
  • next RE refers to the next RE mapped in the mapping order of the frequency domain and then the time domain.
  • RE#b is the next RE of RE#a
  • RE#b and RE#a are located in the same time domain symbol
  • the subcarrier (subcarrier number i) corresponding to RE#b may be corresponding to RE#a
  • the next subcarrier of the subcarrier (subcarrier number i+1) may also be a subcarrier that can be used for uplink information mapping on the time domain symbol and is not occupied by the time-frequency resource #A.
  • the subcarrier with the smallest carrier sequence number, or the time-domain symbol corresponding to RE#b is the next symbol of the time-domain symbol corresponding to RE#a.
  • the time-frequency resource #B is: starting from the first time-domain symbol after the earliest set of consecutive time-domain symbols carrying the DMRS or the earliest time-domain symbol not carrying the DMRS on the uplink channel, at On the other time-frequency resources except time-frequency resource #A on the uplink channel, the time-frequency resources occupied by the information B are mapped in the order of the frequency domain and then the time domain. Since the time-frequency resource #A used to carry the information A needs to be skipped when mapping the information B, the time-frequency resource #B is determined according to the time-frequency resource #A.
  • the uplink channel is a PUCCH, that is, information A and information B are both mapped on the PUCCH
  • RB is a granularity of time-frequency resources carrying uplink control information.
  • the time-frequency resource mapped by the information B is located behind the time-frequency resource mapped by the information A in the resource mapping order of the uplink channel.
  • the mapping order here refers to the order from high to low in frequency (the time-frequency resource mapped by information A is higher in frequency than the time-frequency resource mapped by information B), or the order from low to high (information A The time-frequency resources mapped are lower in frequency than the time-frequency resources mapped by information B).
  • the start RB mapped by information B is later than the end RB mapped by information A.
  • the start RB mapped by information B is the next RB of the end RB mapped by information A.
  • the next RB mentioned here refers to the next RB of the end RB mapped by the information A in the RB set included in the PUCCH channel.
  • the start RB mapped by information B is the next RB in the RB set included in the PUCCH channel, the RB sequence number is greater than the end RB mapped by information A, or the RB set in the RB set is less than the map mapped by information A
  • the next RB that ends the RB is later than the end RB mapped by information A.
  • the start RB mapped by information B is the next RB of the end RB mapped by information A.
  • the next RB mentioned here refers to the next RB of the end RB mapped by the information A in the RB set included in the PUCCH channel.
  • the time-frequency resource carrying information A corresponds to RB#k to RB#k+x
  • the time-frequency resource carrying information B corresponds to RB#k+x+1 to RB#k+x+1+y, or RB#k -1-y to RB#k-1, where x is an integer greater than or equal to zero, y is an integer greater than or equal to zero, and k is an integer greater than or equal to zero.
  • the start time domain symbol mapped by information B is later than the end time domain symbol mapped by information A.
  • the time-frequency resource carrying information A corresponds to symbol #k' to symbol #k'+x'
  • the time-frequency resource carrying information B corresponds to symbol #k'+x'+1 to symbol #k'+x'+1 +y', or symbol #k'-1-y' to symbol #k'-1, where x'is an integer greater than or equal to zero, y'is an integer greater than or equal to zero, and k'is an integer greater than or equal to zero.
  • the start RB mapped by information B is later in time than the start RB mapped by information A, or the end RB mapped by information B is later in time than the end RB mapped by information A. Further, the starting RB mapped by the information B is the next RB of the starting RB mapped by the information A.
  • the time interval between the time-domain symbol corresponding to time-frequency resource #A and the demodulation reference signal DMRS symbol of the uplink channel is less than the time-domain symbol corresponding to the second time-frequency resource and the DMRS symbol
  • the time interval between, and/or, time-frequency resource #A is lower than time-frequency resource #B in the frequency domain.
  • the time interval between time-frequency resource #B and the symbol carrying DMRS (referred to as DMRS#1) on the upstream channel is greater than the distance between time-frequency resource #A and the symbol carrying DMRS#1 (or time interval). More specifically, for RE#b in time-frequency resource #B and RE#a in time-frequency resource #A, the time interval between the time-domain symbol where RE#b is located and the time-domain symbol where DMRS#1 is located is greater than The time interval between the time domain symbol where RE#a is located and the time domain symbol where DMRS#1 is located (for example, when RE#b and RE#a are located in different time domain symbols), for example, RE#b and RE#a are located in different In the case of time domain symbols, the time interval between RE#b and DMRS#1 is greater than the time interval between RE#a and DMRS#1.
  • RE#b is higher in frequency than RE#a (or the subcarrier sequence number corresponding to RE#b is greater than the subcarrier sequence number corresponding to RE#a), for example, RE#b and RE#a are located in the same time domain symbol , RE#b is higher than RE#a in frequency.
  • the definitions of RE#a and RE#b are as described above and will not be repeated here.
  • the DMRS#1 is the earliest DMRS carried on the uplink channel.
  • the DMRS#1 is any DMRS on the upstream channel.
  • the start RE/RB (or end RE/RB) mapped by the above information means that, according to the mapping order or mapping steps of information to time-frequency resources, the above information is first mapped to RE/RB (or the last RE/RB mapped to) or the earliest RE/RB (or the latest RE/RB) among the time-frequency resources used to carry the above information.
  • the starting RE/RB is the mapping order of the frequency domain first and then the time domain. Among the time-frequency resources used to map this information, it corresponds to the earliest time domain symbol in the time domain and the lowest frequency (the smallest subcarrier number). RE/RB of the subcarrier.
  • End RE/RB refers to the mapping order of the frequency domain and then the time domain.
  • the latest time-domain symbol in the time domain and the highest in frequency (maximum subcarrier number/RB number) Maximum) RE/RB is the latest time-domain symbol in the time domain and the highest in frequency (maximum subcarrier number/RB number) Maximum) RE/RB.
  • Mapping sequence 2 The mapping of information B to the upstream channel is later than the mapping of information A to the upstream channel in the mapping step.
  • the mapping of the terminal device to the information B is later than the mapping to the information A in the mapping step.
  • the terminal device maps the information A first, and then maps the information B after the information A is mapped.
  • information A and information B can be multiplexed on the upstream channel in a rate matching manner.
  • time-frequency resources for carrying information D (time-frequency resource #D) and time-frequency resources for carrying information C (time-frequency resource #C )
  • time-frequency resource #D time-frequency resource
  • time-frequency resource #C time-frequency resource #C
  • the information C may be the first uplink data information (time-frequency resource #C is the first time-frequency resource), or the information C may be the first uplink control information (time-frequency resource #C is the first time Frequency resource), or information C may be the second uplink control information (time-frequency resource #C is the second time-frequency resource), or information C may be the second uplink data information (time-frequency resource #C is The second time-frequency resource), or information C is the third uplink control information (time-frequency resource #C is the third time-frequency resource).
  • Information D is different from information C; information D may be the first uplink data information (time-frequency resource #D is the first time-frequency resource), and information D is the first uplink control information (time-frequency resource #D is the first A time-frequency resource), information D is the second uplink control information (time-frequency resource #D is the second time-frequency resource), information D is the second uplink data information (time-frequency resource #D is the second time Frequency resource), or information D is the third uplink control information (time-frequency resource #D is the third time-frequency resource).
  • Mapping method 1 Information C and information D are multiplexed on the upstream channel in a rate matching manner.
  • the terminal device maps the information C to the time-frequency resource #C after encoding, and maps the information D to the time-frequency resource #D after encoding.
  • the information is not discarded.
  • the time-frequency resource #D carries the complete information of the information D
  • the time-frequency resource #C carries the complete information of the information C.
  • the complete information here refers to the complete information after encoding the uplink information (for example, information C or information D).
  • the uplink information is based on the corresponding time-frequency resource (for example, information C is based on time-frequency resource #C, or information D is based on time Frequency resource #D)
  • the encoded information obtained after encoding, wherein encoding according to the corresponding time-frequency resource specifically refers to determining the code rate of the uplink information according to the corresponding time-frequency resource size.
  • time-frequency resource #C and time-frequency resource #D do not overlap.
  • the size of time-frequency resource #C is determined according to the size of information C (ie, the number of bits). For example, the number of REs included in time-frequency resource #C increases linearly as the number of bits of information C increases.
  • the size of the time-frequency resource #D is determined according to the size of the information D (ie, the number of bits). For example, the number of REs included in the time-frequency resource #D increases linearly as the number of bits of information D increases.
  • the time-frequency position of the time-frequency resource #C in the uplink channel depends on the size of the time-frequency resource #D and the time-frequency position of the time-frequency resource #D in the uplink channel.
  • the time-frequency position of the time-frequency resource #C in the uplink channel is determined. For example, when the time-frequency position of the time-frequency resource #D in which the terminal device transmits information D on the uplink channel is different, the time-frequency position of the time-frequency resource #C is different.
  • time-frequency position of time-frequency resource #C in the upstream channel depends on the size of information D (that is, the number of bits of information D, such as the number of system information bits). And/or, the time-frequency position of time-frequency resource #C in the uplink channel depends on whether the terminal device sends information D on the uplink channel.
  • the time-frequency position of time-frequency resource #D in the uplink channel depends on the size of information C (that is, the number of bits of information C, for example, the number of system information bits). And/or, the time-frequency position of the time-frequency resource #D in the uplink channel depends on whether the terminal device sends information C on the uplink channel.
  • the time-frequency position of the time-frequency resource #D in the upstream channel is determined.
  • the time-frequency position of the time-frequency resource #D in the uplink channel is determined according to whether the terminal device transmits information C on the uplink channel. For example, when the terminal device transmits information C on the uplink channel and when the terminal device does not transmit information C on the uplink channel, the time-frequency position of time-frequency resource #D is different. For another example, when the terminal device transmits information C corresponding to different number of bits on the uplink channel, the time-frequency position of the time-frequency resource #D is different.
  • information C is first uplink information
  • information D is second uplink information.
  • the terminal device may use a rate matching method to map the first uplink information and the second uplink information to the first time-frequency resource and the second time-frequency resource, respectively, and to The first uplink information is sent on a time-frequency resource, and the second uplink information is sent on the second time-frequency resource.
  • mapping the first uplink information to the first time-frequency resource in a rate matching manner and mapping the second uplink information to the second time-frequency resource may include: The terminal device first maps the first uplink information on the first time-frequency resource, and then maps the second uplink information on the second time-frequency resource.
  • the network device receives the first uplink information sent by the terminal device on the first time-frequency resource, and receives the second uplink information sent by the terminal device on the second time-frequency resource Where the first uplink information and the second uplink information are mapped to the first time-frequency resource and the second time-frequency resource in a rate matching manner.
  • Mapping method 2 information C punch information D. It is also referred to that the terminal device punctures some or all of the information D that has been mapped to the upstream channel for mapping information C. Also known as, information C is punctured on time-frequency resource #C used to carry information C and has been mapped to information D, or information C has been mapped to information D on time-frequency resource #C used to carry information C Partially punched.
  • the terminal device first maps information D on time-frequency resource #D, and then the terminal device maps information C on time-frequency resource #C, and discards the information D that has been mapped on time-frequency resource #D' Information, where time-frequency resource #D' is a time-frequency resource where time-frequency resource C and time-frequency resource #D overlap (for example, time-frequency resource #D' is a first overlapping time-frequency resource or a second overlapping time-frequency resource).
  • mapping of information D to the upstream channel is earlier than the mapping of information C to the upstream channel in the mapping step.
  • the size of the time-frequency resource #C is determined according to the size of the information C.
  • the number of REs included in time-frequency resource #C increases linearly as the number of bits of information C increases.
  • the size of the time-frequency resource #D is determined according to the size of the information D.
  • the number of REs included in the time-frequency resource #D increases linearly as the number of bits of information D increases.
  • the time-frequency resource #C is a time-frequency resource for carrying information C
  • the time-frequency resource #D is a time-frequency resource for carrying information D
  • time-frequency resource #D is a time-frequency resource for carrying information D
  • the terminal device first maps the information D to the time-frequency resource #D, and then maps the information C to the time-frequency resource #C, and the punctured information D has been mapped to the time-frequency resource #C and time-frequency resource #D overlapping resource #D Partial information on'(or discard part of information on overlapping resource #D'). That is, the terminal device punctures a part of the information that the information D has previously mapped onto the overlapping resource #D' on the overlapping resource #D' for mapping information C.
  • time-frequency resource #D and the time-frequency resource #C may partially overlap, that is, the time-frequency resource (eg, overlapping RE set) where the time-frequency resource #D and the time-frequency resource #C overlap is the time-frequency resource #D Part of, and part of time-frequency resource #C.
  • Time-frequency resource #D may include time-frequency resource #C, that is, all REs of time-frequency resource #C are included in time-frequency resource #D, and at this time, time-frequency resource #D' which overlaps the two is time-frequency resource # C.
  • Time-frequency resource #C may also include time-frequency resource #D, that is, all REs of time-frequency resource #D are included in time-frequency resource #C, and at this time, time-frequency resource #D' where the two overlap is a time-frequency resource #D.
  • time-frequency resource #D carries part of the information after coding of information D.
  • the information after the D encoding is mapped to the overlapping time-frequency resource of time-frequency resource #C and time-frequency resource #D is discarded.
  • the non-overlapping time-frequency resource #D is the time-frequency resource #D except when overlapping Time-frequency resources other than frequency resource #D'. At this time, it can be said that the terminal device sends information D on the non-overlapping time-frequency resource #D".
  • the information D sent on the non-overlapping time-frequency resource #D" corresponds to the system information of the information D, that is, before encoding. Information; or, a portion of the information D transmitted on the non-overlapping time-frequency resource #D".
  • the portion of the information D specifically refers to a portion of the information after the information D is coded and modulated.
  • discarding may also be referred to as puncture.
  • the information C puncturing information D is also referred to as the information C override information D.
  • the specific mapping process may be that the terminal device is on the second time-frequency resource Mapping the second uplink information, the terminal device maps the first uplink information on the first time-frequency resource, and discards the information that the second uplink information has been mapped on the first overlapping time-frequency resource,
  • the first overlapping time-frequency resource is a time-frequency resource where the first time-frequency resource and the second time-frequency resource overlap.
  • the terminal device After mapping the information, the terminal device sends the first uplink information on the first time-frequency resource, and sends the second uplink information on the first non-overlapping time-frequency resource, and the first non-overlapping
  • the time-frequency resource is a time-frequency resource other than the first overlapping time-frequency resource in the second time-frequency resource.
  • the information sent by the terminal device on the first non-overlapping time-frequency resource is part of the second uplink information.
  • the network device receiving the information sent by the terminal device on the first time-frequency resource and the second time-frequency resource includes:
  • the second uplink information is that the terminal device is mapped onto the second time-frequency resource, and when the information that the second uplink information has been mapped onto the first overlapping time-frequency resource is discarded ,
  • the information sent on the first non-overlapping time-frequency resource, the first uplink information is the information that the terminal device discards the information that the second uplink information has been mapped onto the first overlapping time-frequency resource In this case, the information mapped onto the first time-frequency resource.
  • the terminal device is in the first time.
  • the sending information on the frequency resource and the second time-frequency resource may include: the terminal device sending the first uplink information on the first time-frequency resource.
  • the information sent by the terminal device on the uplink channel does not include the second uplink information. That is to say, all the second uplink information mapped on the second time-frequency resource is punctured by the first uplink information.
  • the network device receiving the information sent by the terminal device on the first time-frequency resource and the second time-frequency resource includes: the network device receiving the terminal on the first time-frequency resource The device sends the first uplink information. At this time, the information received by the network device on the uplink channel does not include the first uplink information.
  • the specific mapping process may be mapping the first time-frequency resource First uplink information; mapping the second uplink information on the second time-frequency resource; discarding the information that the first uplink information has been mapped on the second overlapping time-frequency resource, wherein the second overlapping time-frequency
  • the resource is a time-frequency resource where the first time-frequency resource and the second time-frequency resource overlap.
  • the terminal device After mapping the information, the terminal device sends the first uplink information on the second non-overlapping time-frequency resource, and sends the second uplink information on the second time-frequency resource, and the second non-overlapping time-frequency
  • the resources are time-frequency resources other than the second overlapping time-frequency resources in the first time-frequency resources.
  • the information sent by the terminal device on the second non-overlapping time-frequency resource is part of the first uplink information.
  • the network device receiving the information sent by the terminal device on the first time-frequency resource and the second time-frequency resource includes:
  • the first uplink information is that the terminal device is mapped onto the first time-frequency resource, and when the information that the first uplink information has been mapped onto the second overlapping time-frequency resource is discarded ,
  • the information sent on the second non-overlapping time-frequency resource, the second uplink information is information that the terminal device discards the information that the first uplink information has been mapped onto the second overlapping time-frequency resource In this case, the information mapped onto the second time-frequency resource.
  • the terminal device is in the first The sending information on the time-frequency resource and the second time-frequency resource includes: the terminal device sending the second uplink information on the second time-frequency resource.
  • the information sent by the terminal device on the uplink channel does not include the first uplink information. That is to say, all the first uplink information mapped on the first time-frequency resource is punctured by the second uplink information.
  • the network device receiving the information sent by the terminal device on the first time-frequency resource and the second time-frequency resource includes: the network device receiving the terminal on the second time-frequency resource The device sends the second uplink information. At this time, the information received by the network device on the uplink channel does not include the second uplink information.
  • mapping method 3 When mapping the information D, the terminal device avoids the reserved time-frequency resource #C for carrying the information C. Among them, the time-frequency resource #C used to carry information C is also called a reserved resource of information C.
  • voidance in this application means that the terminal device skips the reserved time-frequency resource for carrying the information C when mapping the information D, and maps the information D on the resources after the reserved resource.
  • Time-frequency resource #C is a reserved resource of information C, which means that time-frequency resource #C is used to carry or send potential information C. That is, if the terminal device sends (or needs to) send information C on the upstream channel, then send the message C on time-frequency resource #C; if the terminal device is not (or does not need to) send on the upstream channel Information C, you can send other uplink information on time-frequency resource #C, or do not send (or not map) any information.
  • mapping of information D to the upstream channel is earlier than the mapping of information C to the upstream channel in the mapping step. Regardless of whether the terminal device needs to send the information C on the uplink channel, it will avoid the reserved resources of the information C when mapping the information D.
  • the reserved resource may be used for other uplink information other than mapping information C and information D, such as uplink control information or uplink data information, such as UL-SCH information and or CSI part 2 information. Or, the reserved resource may not map any information.
  • time-frequency resource #C and time-frequency resource #D do not overlap.
  • the information C is mapped to the reserved resource, for example, the punctured The other upstream information mapped onto the reserved resource; if the terminal device does not need to send the information C on the upstream channel (or the information sent by the terminal device on the upstream channel does not include the information C), it is not in the Mapping information C on the reserved resource, for example, sending the above other uplink information on the reserved resource or not mapping the uplink information, or that the information sent by the terminal device on the reserved resource does not include the information C.
  • the time-frequency position of the time-frequency resource #C in the uplink channel is predefined or pre-configured by the network device, and/or, the size of the time-frequency resource #C is predefined or pre-configured by the network device. That is, the size of the time-frequency resource #C is not determined according to the size of the information C.
  • the size of the time-frequency resource #D is determined according to the size of the information D.
  • the number of REs included in the time-frequency resource #D increases linearly as the number of bits of information D increases.
  • the time-frequency position of the time-frequency resource #C in the uplink channel is indicated by the network device, and/or the size of the time-frequency resource #C is indicated by the network device.
  • the time-frequency position of time-frequency resource #C in the uplink channel does not depend on the size of time-frequency resource #D and the time-frequency position of time-frequency resource #D in the uplink channel.
  • the factor for determining the time-frequency position of the time-frequency resource #C in the uplink channel does not include the size of the time-frequency resource #D and the time-frequency position of the time-frequency resource #D in the uplink channel.
  • the time-frequency position of the time-frequency resource #C is the same.
  • time-frequency position of time-frequency resource #C in the uplink channel does not depend on the size of information D (that is, the number of bits of information D, such as the number of system information bits). And/or, the time-frequency position of the time-frequency resource #C in the uplink channel does not depend on whether the terminal device sends information D on the uplink channel.
  • the time-frequency position of time-frequency resource #D in the upstream channel does not depend on the size of information C (ie, the number of bits of information C, such as the number of system information bits). And/or, the time-frequency position of the time-frequency resource #D in the uplink channel does not depend on whether the terminal device sends information C on the uplink channel.
  • the factor used to determine the time-frequency position of the time-frequency resource #D in the upstream channel does not include the size of the information C.
  • the factor for determining the time-frequency position of the time-frequency resource #D in the uplink channel does not include whether the terminal device sends information C on the uplink channel. For example, when the terminal device transmits information C on the uplink channel and when the terminal device does not transmit information C on the uplink channel, the time-frequency position of time-frequency resource #D is the same. For another example, when the terminal device transmits information C corresponding to different number of bits on the uplink channel, the time-frequency position of the time-frequency resource # is the same.
  • the time-frequency position of time-frequency resource #C and the time-frequency position of time-frequency resource #D are independent of each other, and the time-frequency position of time-frequency resource #C determined by the terminal device and the time-frequency of time-frequency resource #D
  • the position will not be wrong, that is, the time-frequency position of a certain time-frequency resource (time-frequency resource #C or time-frequency resource #D) will not be wrong due to the corresponding upstream information (information C or information D) payload understanding (such as DCI Receive error) and erroneously determine the size and or location of another time-frequency resource, thereby affecting the decoding performance of each other.
  • avoidance may also be referred to as skip.
  • the information C is the first uplink information
  • the information D is the second uplink information.
  • the first time-frequency resource and the second time-frequency resource do not overlap, and the second uplink information avoids the first uplink information. That is, when the terminal device maps the second uplink information on the uplink channel, the first time-frequency resource is avoided, regardless of whether the terminal device (needs) to send the uplink channel on the uplink channel The first uplink information.
  • the first time-frequency resource is pre-defined or pre-configured by the network device.
  • the size and/or location of the first time-frequency resource is predefined or pre-configured by the network device.
  • the method further includes: on the second time-frequency resource The second uplink information is mapped on the first uplink frequency information, and the first uplink information is mapped on the first time-frequency resource.
  • the sending information on the first time-frequency resource and the second time-frequency resource includes: sending the first uplink information on the first time-frequency resource, and sending the first uplink information on the second time-frequency resource Sending the second uplink information on the resource. It should be understood that in this case, the embodiment of the present application may first map the second uplink information, and then map the first uplink information.
  • receiving, by the network device, the information sent by the terminal device on the first time-frequency resource and the second time-frequency resource includes: receiving, on the first time-frequency resource, the information sent by the terminal device The first uplink information is received on the second time-frequency resource by the second uplink information sent by the terminal device.
  • the method further includes: at the second time The second uplink information is mapped on the frequency resource, and the fourth uplink information is mapped on the first time-frequency resource, and the fourth uplink information is different from the first uplink information.
  • the sending information on the first time-frequency resource and the second time-frequency resource includes: sending the fourth uplink information on the first time-frequency resource, and sending the second uplink information on the second time-frequency resource Sending the second uplink information on the resource.
  • the second uplink information is mapped first, and then the fourth uplink information is mapped.
  • the fourth uplink information is different from the first uplink information, such as UL-SCH information (corresponding to the first priority or the second priority), or (corresponding to the first priority or the second priority) ) CSI Part 2 information.
  • receiving, by the network device, the information sent by the terminal device on the first time-frequency resource and the second time-frequency resource includes: receiving, on the first time-frequency resource, the information sent by the terminal device The fourth uplink information, receiving the second uplink information sent by the terminal device on the second time-frequency resource.
  • the information C is first uplink information
  • the information D is second uplink information.
  • the first time-frequency resource and the second time-frequency resource do not overlap, and the first uplink information avoids the second uplink information. That is, when the terminal device maps the first uplink information on the uplink channel, the second time-frequency resource is avoided, regardless of whether the terminal device (needs) to send the uplink channel information on the uplink channel Second uplink information.
  • the second time-frequency resource is pre-defined or pre-configured by the network device.
  • the size and/or location of the second time-frequency resource is pre-defined or pre-configured by the network device.
  • the method further includes: on the first time-frequency resource The first uplink information is mapped onto the second uplink information, and the second uplink information is mapped onto the second time-frequency resource.
  • the sending information on the first time-frequency resource and the second time-frequency resource includes: sending the first uplink information on the first time-frequency resource, and sending the first uplink information on the second time-frequency resource Sending the second uplink information on the resource. It should be understood that in this case, the embodiment of the present application first maps the first uplink information, and then maps the second uplink information.
  • receiving, by the network device, the information sent by the terminal device on the first time-frequency resource and the second time-frequency resource includes: receiving, on the first time-frequency resource, the information sent by the terminal device The first uplink information is received on the second time-frequency resource by the second uplink information sent by the terminal device.
  • the method further includes: at the first time The first uplink information is mapped on the frequency resource, and the fifth uplink information is mapped on the second time-frequency resource, and the fifth uplink information is different from the second uplink information.
  • the sending information on the first time-frequency resource and the second time-frequency resource includes: the terminal device sending the first uplink information on the first time-frequency resource, in the The fifth uplink information is sent on the second time-frequency resource. It should be understood that in this case, the first uplink information is mapped first, and then the fifth uplink information is mapped. It should be understood that the fifth uplink information is different from the second uplink information, such as UL-SCH information (corresponding to the first priority or the second priority), or (corresponding to the first priority or the second priority ) CSI Part 2 information.
  • receiving, by the network device, the information sent by the terminal device on the first time-frequency resource and the second time-frequency resource includes: receiving, on the first time-frequency resource, the information sent by the terminal device The first uplink information is received on the second time-frequency resource by the fifth uplink information sent by the terminal device.
  • the first uplink information is first uplink data information corresponding to a first priority
  • the second uplink information is second uplink control information corresponding to a second priority.
  • the first aforementioned information is the first aforementioned control information corresponding to the first priority
  • the second upstream information is the second upstream control information corresponding to the second priority.
  • the first uplink information is HARQ-ACK information corresponding to the first priority; for another example, the first uplink information is HARQ-ACK information corresponding to the first priority and SR information corresponding to the first priority.
  • the second uplink information is HARQ-ACK information corresponding to the second priority.
  • the second uplink information is HARQ-ACK information corresponding to the second priority and SR information corresponding to the second priority.
  • the terminal device may also send the uplink data information of the first priority after the HARQ-ACK information corresponding to the second priority on the uplink channel.
  • the terminal device may also determine the third time-frequency resource on the uplink channel, and send information on the third time-frequency resource. For example, the terminal device sends third uplink information on the third resource.
  • the third uplink information includes third uplink control information corresponding to a first priority, the third uplink control information and the first uplink control information are independently encoded, and the third uplink control information and the second The upstream control information is encoded independently.
  • the second time-domain resource is earlier than the third time-frequency resource in the time domain, and/or, the second time-frequency resource is lower than the third time-domain resource in the frequency domain;
  • the time interval between the time domain symbol corresponding to the second time-frequency resource and the demodulation reference signal DMRS symbol of the uplink channel is less than the time interval symbol corresponding to the third time-frequency resource and the DMRS symbol
  • the time interval, and/or, the second time-frequency resource is lower than the third time-frequency resource in the frequency domain.
  • scenario two also includes: the terminal device sends information (eg, third uplink information) on the third time-frequency resource.
  • the network device receives information (eg, third uplink information) on the third time-frequency resource.
  • the third uplink information is different from the first uplink information.
  • the first uplink information includes HARQ-ACK information corresponding to the first priority (or HARQ-ACK information corresponding to the first priority and SR information corresponding to the first priority), and the second uplink The information includes HARQ-ACK information corresponding to the second priority (or HARQ-ACK information corresponding to the second priority and SR information corresponding to the second priority), and the third uplink information includes information corresponding to the second priority One priority CSI information.
  • the third uplink information includes CSI part 1 information corresponding to the first priority and CSI part 2 information corresponding to the first priority.
  • the third uplink information is CSI part 2 information corresponding to the first priority.
  • the first uplink information is CSI information corresponding to the first priority
  • the second uplink information is HARQ-ACK information corresponding to the second priority (or HARQ-ACK information corresponding to the second priority and corresponding second priority Level SR information).
  • the terminal device may also send the HARQ-ACK information of the first priority on the uplink channel before the HARQ-ACK information of the second priority.
  • the first uplink information and the second uplink information may be combined in various ways.
  • the first uplink information is first uplink data information corresponding to a first priority
  • the second uplink information is second uplink control information corresponding to a second priority.
  • the uplink channel is an uplink traffic channel PUSCH
  • the first uplink information is the first uplink data information.
  • the first priority is higher than the second priority, which is reflected in that the second time-frequency resource is later than the first time-frequency resource.
  • the first time-frequency resource is earlier than the second time-frequency resource in the time domain, and/or, the first time-frequency resource is lower than the second time-domain resource in the frequency domain.
  • the above resource relationship may correspond to the case where the uplink channel is PUSCH, and the embodiments of the present application are not limited thereto.
  • the time interval between the time-domain symbol corresponding to the first time-frequency resource and the demodulation reference signal DMRS symbol of the uplink channel is less than the time-domain symbol corresponding to the second time-frequency resource and the DMRS symbol
  • the time interval, and/or, the first time-frequency resource is lower than the second time-frequency resource in the frequency domain.
  • the above resource relationship may correspond to the case where the uplink channel is PUCCH, and the embodiments of the present application are not limited thereto.
  • mapping sequence 1 and mapping sequence 2 For the description of the second time-frequency resource later than the first time-frequency resource, see the mapping sequence 1 and mapping sequence 2 above, that is, the information A in the foregoing is first uplink data information, and the information B is second uplink control information, Time-frequency resource #A is the first time-frequency resource, and time-frequency resource #B is the corresponding description of the second time-frequency resource.
  • the time-frequency resource #A is a time-frequency resource other than the time-frequency resource overlapping the second time-frequency resource in the first time-frequency resource.
  • Frequency resource #B is the second time-frequency resource; or, time-frequency resource #A is the first time-frequency resource, and time-frequency resource #B is the second time-frequency resource except for time-frequency resources that overlap with the first time-frequency resource Time-frequency resources.
  • the h time-domain symbols corresponding to the second time-frequency resource are the last h time-domain symbols of the uplink channel, and h is an integer greater than or equal to 1. That is, the second uplink control information is mapped to the tail of the uplink channel. Furthermore, h is less than the number of symbols included in the uplink channel for mapping uplink information (e.g., data information and control information).
  • the first uplink data information is UL-SCH information on the PUSCH.
  • the time-frequency resource used to carry the uplink data information is later than the time-frequency resource used to carry the uplink control information, considering that the typical position of the DMRS of the upstream channel is Front (loaeded), that is, on the earliest symbol of the upstream channel, such that the upstream control information is closer to the DMRS, and the accuracy of the upstream control information channel estimation is higher, so the demodulation performance of the upstream control information is better than the upstream data information.
  • the first uplink data information corresponds to the first priority and the second uplink control information corresponds to the first priority
  • the first uplink data information is mapped behind the second uplink control information, it will cause The position of the time-frequency resource mapped by the first uplink data information is far from the DMRS, which impairs the demodulation performance of the first uplink data information. Therefore, in order to reflect that the first priority is higher than the second priority and better protect the performance of the upstream data information of the first priority, this application maps the second upstream control information behind the first upstream data information, that is, the first The second time-frequency resource is later than the first time-frequency resource. This can ensure that the first uplink data information corresponding to the high priority is closer to the DMRS, which is beneficial to ensure the demodulation performance of the first uplink data information.
  • the uplink channel is PUSCH, including 7 time domain symbols (#0 to #6) and 12 subcarriers (#0 to #11).
  • the DMRS is located in the first symbol, symbol #0, and the PUSCH includes the first uplink data information (that is, the UL-SCH corresponding to URLLC) and the second uplink control information (for example, the HARQ-ACK corresponding to eMBB).
  • the terminal device starts with the next symbol after the symbol carrying the DMRS, symbol #1, maps the UL-SCH corresponding to URLLC first in the mapping order of frequency first, then time, and then follows the frequency first and then time on the remaining resources. Mapping order, mapping HARQ-ACK corresponding to eMBB.
  • mapping HARQ-ACK mapping HARQ-ACK corresponding to eMBB.
  • HARQ-ACK corresponding to URLLC occupies symbols #1 to #5, so HARQ-ACK corresponding to eMBB is mapped from subcarrier #0 of symbol #6.
  • HARQ-ACK corresponding to URLLC is full of symbols #1 to #5 and subcarriers #0, #2,...#10 of symbol #6, and the remaining subcarriers are #1,#3 ,...#11, therefore, HARQ-ACK corresponding to eMBB is mapped from subcarrier #1 of symbol #6, and mapped to the remaining subcarriers of symbol #6.
  • the first uplink data information and the second uplink control information are multiplexed on the PUSCH in a rate-matching manner.
  • the information C in the above mapping method 1 may be set as the second uplink control information
  • the information D is set as the first uplink data information.
  • the second uplink control information punctures the portion where the UL-SCH information on the PUSCH is mapped to the second time-frequency resource on the second time-frequency resource.
  • the first uplink data information is UL-SCH information other than the punctured information among the UL-SCH information on the PUSCH.
  • the second uplink control information performs puncturing on the second time-frequency resource on part of the information mapped from the first uplink data information to the second time-frequency resource. That is, the terminal device first maps the first uplink data information on the first time-frequency resource, and then the terminal device maps the second uplink control information on the second time-frequency resource, And discard the information that the first uplink data information has been mapped onto the second overlapping time-frequency resource, where the second overlapping time-frequency resource is a time-frequency resource where the first time-frequency resource and the second time-frequency resource overlap .
  • the first uplink data information is UL-SCH information or system information before coding on the PUSCH. For details, please refer to the foregoing description of the mapping method 2.
  • the information C in the above mapping method 2 may be set as the second uplink control information, and the information D is set as the first uplink data information.
  • the mapping method of this application can be obtained.
  • the first time-frequency resource includes a second time-frequency resource, that is, the second time-frequency resource is equal to the second overlapping time-frequency resource.
  • the second uplink control information and the first uplink data information are multiplexed on the PUSCH in a rate-matching manner (that is, mapping manner 1).
  • the second uplink control information punctures the first uplink data information, that is, the mapping method 2 is used for mapping.
  • the second payload threshold is 2 bits. That is, the second time-frequency resource is later than the first time-frequency resource in the mapping order, but the first uplink data information with higher priority is still punctured by the second uplink control information with lower priority.
  • the punctured information is lower priority information, but the first upstream data information is punctured by the second upstream control information because on the one hand, the payload of the first upstream data information is usually much larger than the second upstream control information Payload size, so the first uplink data information is relatively less punctured; on the other hand, the time-frequency resources mapped by the first uplink data information include the time-frequency resources of the second uplink control information, so if you take the first If the first uplink data information punches the second uplink control information, all the second uplink control information will be destroyed.
  • the second uplink control information is mapped by puncturing the first uplink data information, and the transmission of the low-priority control information can be realized while ensuring the transmission of the high-priority first uplink data information.
  • the embodiment of the present application may also perform resource mapping in a manner that the first uplink data information avoids the reserved resources of the second uplink control information.
  • mapping mode 3 the information C in the above mapping mode 3 may be set as the second uplink control information, and the information D is set as the first uplink data information.
  • the mapping method of this application can be obtained.
  • the second uplink control information is HARQ-ACK information corresponding to the second priority, SR information corresponding to the second priority, and CSI part 1 information corresponding to the second priority At least one message.
  • the second uplink control information is HARQ-ACK information corresponding to the second priority and/or SR information corresponding to the second priority, and the embodiments of the present application are not limited thereto.
  • the first above-mentioned information is first uplink control information corresponding to the first priority
  • the second uplink information is second uplink control information corresponding to the second priority.
  • the uplink channel is PUSCH or PUCCH.
  • the first uplink control information is HARQ-ACK information corresponding to the first priority, or SR information corresponding to the first priority, or HARQ-ACK information corresponding to the first priority and corresponding to SR information of the first priority.
  • the second uplink control information corresponds to HARQ-ACK information of the second priority, or SR information corresponding to the second priority, or HARQ-ACK information corresponding to the second priority and to the second SR information of the second priority.
  • the second time-frequency resource is a time-frequency resource determined according to the first time-frequency resource, where the start time-frequency resource (eg, start RE or start RB) of the second time-frequency resource
  • the location is determined by the first time-frequency resource, such as the mapping sequence 1 described above. Since the uplink control information follows a predefined mapping sequence, the positions of other REs or RBs of the second time-frequency resource are also determined by the first time-frequency resource.
  • the second time-frequency resource is later than the first time-frequency resource.
  • mapping sequence 1 or mapping sequence 2 that is, the information A in the foregoing is set as the first uplink control information, and the information B is set as the second uplink control information.
  • Time-frequency resource #A is set to the first time-frequency resource
  • time-frequency resource #B is set to the corresponding description of the second time-frequency resource.
  • time-frequency resource #A is the first time-frequency resource
  • time-frequency resource #B is the second time-frequency resource divided by the first time Time-frequency resources other than time-frequency resources where frequency resources overlap
  • time-frequency resources #A are time-frequency resources other than time-frequency resources that overlap with second time-frequency resources in the first time-frequency resources, time-frequency resources #B It is the corresponding description of the second time-frequency resource.
  • the second time-frequency resource is a time-frequency resource determined according to the first time-frequency resource means that the second time-frequency resource is a time other than the first time-frequency resource on the uplink channel of the terminal device The time-frequency resource determined in the frequency resource.
  • the second time-frequency resource is excluded After the first time-frequency resource (for example, in a rate matching manner, a punctured manner, or a way to avoid reserved resources), the remaining time-frequency resources of the upstream channel are determined, so it can be regarded as based on the first time-frequency resources definite.
  • the position of the first time-frequency resource of the first uplink control information is not determined by the second time-frequency resource.
  • the position of the first time-frequency resource here refers to the start time-frequency resource (start RE or start RB) of the first time-frequency resource.
  • start RE start RE
  • the starting RE of the first time-frequency resource is the starting RE used to map HARQ-ACK information on the uplink channel.
  • the starting RE of the first time-frequency resource corresponds to the first time-domain symbol after the earliest DMRS symbol in the time domain, and corresponds to the subcarrier with the smallest subcarrier number in the frequency domain.
  • the starting RB of the first time-frequency resource is the starting RB used for mapping uplink control information on the uplink channel. For example, the PRB with the highest frequency or the PRB with the lowest frequency among the PRBs occupied by the PUCCH.
  • the terminal device may erroneously judge the time-frequency resource mapped by the uplink control information due to erroneously receiving DCI, for example, the downlink control information used to trigger the uplink control information is not detected, or the uplink control is misunderstood due to the misdetection of DCI The number of information bits, so the terminal device may erroneously determine the physical resource location to which the uplink control information is mapped.
  • the terminal considering the different priorities of the first uplink control information and the second uplink control information, the transmission reliability target of the eMBB service corresponding to the first priority is lower than that of the URLLC service corresponding to the second priority, the terminal
  • the possibility that the device erroneously receives the DCI corresponding to the second uplink control information is greater than the possibility of erroneously receiving the DCI corresponding to the first uplink control information. Therefore, the second time-frequency resource is determined by the first time-frequency resource.
  • the second time-frequency resource is later than the first time-frequency resource.
  • the advantage is that it can be ensured that the position of the first time-frequency resource is not dependent on the second time. Frequency resources, so that the terminal device will not further affect the accuracy of determining the location of the first time-frequency resource by erroneously determining the location of the second time-frequency resource, thereby better ensuring the transmission reliability of the first uplink control information.
  • the terminal device determines the first
  • the end position of the second time-frequency resource is different from the end position of the second time-frequency resource expected by the network device, which will result in the position of the first time-frequency resource determined by the terminal device according to the second time-frequency resource and the first position expected by the network device
  • the positions of the time-frequency resources are different, thereby affecting the decoding performance of the first uplink control information.
  • the uplink channel is PUSCH, including 7 time domain symbols (#0 to #6) and 12 subcarriers (#0 to #11).
  • DMRS is located on the first symbol, symbol #0, and the PUSCH includes the first uplink control information (that is, HARQ-ACK corresponding to URLLC), the second uplink control information (that is, HARQ-ACK corresponding to eMBB), and the corresponding URLLC's UL-SCH.
  • the terminal device starts with the next symbol after the symbol carrying the DMRS, symbol #1, and maps the HARQ-ACK (that is, the first uplink control information) corresponding to URLLC according to the mapping order of frequency first and then time.
  • the HARQ-ACK (ie, the second uplink control information) corresponding to the eMBB is mapped on the resource according to the mapping order of frequency first.
  • the HARQ-ACK corresponding to URLLC occupies symbol #1, so the HARQ-ACK corresponding to eMBB is mapped from subcarrier #0 of symbol #2.
  • HARQ-ACK corresponding to URLLC occupies subcarriers #0,#2,...#10 of symbol #1, and the remaining subcarriers are #1,#3,...#11, and therefore correspond to
  • the HARQ-ACK of eMBB starts mapping from subcarrier #1 of symbol #1, and maps to the remaining subcarriers of symbol #1 and symbol #2.
  • mapping manner or multiplexing manner of the second time-frequency resource and the first time-frequency resource may specifically include the following methods.
  • the second uplink control information and the first uplink control information are multiplexed on the PUSCH in a rate-matching manner.
  • the information C is the first uplink control information
  • the information D is the second uplink control information.
  • Time-frequency resource #C is the first time-frequency resource
  • time-frequency resource #D is the corresponding description of the second time-frequency resource.
  • the step of mapping the first uplink control information is located before the step of mapping the second uplink control information.
  • the second uplink control information and the first uplink control information are multiplexed on the PUSCH in a rate-matching manner.
  • the puncturing mapping method is used, that is, the first uplink control information punctures the second uplink control information; or the avoiding mapping method is used, namely The second uplink control information avoids the reserved resources of the first uplink control information.
  • the first payload threshold is 2 bits. Further, the first payload threshold is equal to the second payload threshold.
  • the terminal device includes the first uplink control information in the information sent on the uplink channel, before the terminal device sends the information on the first time-frequency resource and the second time-frequency resource, it includes :
  • the terminal device maps the second uplink control information to the second time-frequency resource and the first time-frequency resource
  • the terminal device maps the first uplink control information to the first time-frequency resource, and discards the information that the second uplink control information is mapped to the first time-frequency resource.
  • the UE performs puncturing on the first time-frequency resource on part of the information previously mapped to the first time-frequency resource by the second uplink control information, for mapping the first uplink control information. Therefore, the second uplink control information loses part of the information because it is punctured by the first uplink control information on the first time-frequency resource.
  • the step of mapping the second uplink control information is located before the step of mapping the first uplink control information.
  • the first uplink control information puncturing and the second uplink control information please refer to the above mapping method 2 for specific explanation.
  • the first uplink control information corresponds to information C
  • the second uplink control information corresponds to information D.
  • Time-frequency resource #C is the first time-frequency resource
  • time-frequency resource #D is the second time-frequency resource.
  • the first uplink control information puncturing the second uplink control information is similar to the method of puncturing the CSI part 2 or UL-SCH of HARQ-ACK information of equal priority in the prior art.
  • the uplink channel is PUSCH and includes 7 time domain symbols (#0 to #6) and 12 subcarriers (#0 to #11).
  • DMRS is located on the first symbol, symbol #0, and the PUSCH includes the first uplink control information (that is, HARQ-ACK corresponding to URLLC), the second uplink control information (that is, HARQ-ACK corresponding to eMBB), and the corresponding URLLC's UL-SCH.
  • the first step of the terminal equipment starts from the next symbol after the symbol carrying DMRS, that is, symbol #1, and maps the HARQ-ACK corresponding to eMBB according to the mapping sequence of frequency first and time, occupying the symbols #1 and #2. All subcarriers.
  • the second step a part of the subcarriers #0 to #11 of symbol #1 that have been mapped to correspond to the HARQ-ACK information of URLLC.
  • the information actually sent by the terminal device is HARQ-ACK information corresponding to URLLC and HARQ-ACK corresponding to eMBB remaining after puncturing.
  • the first time-frequency resource is the time-frequency resource of the second uplink control information that has been punctured by the first uplink control information, that is, all subcarriers of symbol #1
  • the second time-frequency resource is the second mapping in the first step. Time-frequency resources of uplink control information, that is, all subcarriers of symbol #1 and symbol #2.
  • the second uplink control information avoids the reserved resources of the first uplink control information:
  • the terminal device maps the second uplink control information to the second time-frequency resource, and the information mapped by the terminal device on the first time-frequency resource does not include the first uplink control information ;
  • the terminal device If the terminal device includes the first uplink control information in the information sent on the uplink channel, the terminal device maps the second uplink control information to the second time-frequency resource, and The terminal device maps the first uplink control information to the first time-frequency resource.
  • the reserved resource of the first uplink control information is the first time-frequency resource.
  • the reserved resources of the first uplink control information are time-frequency resources determined according to a predefined or pre-configured payload size, for example, the predefined payload size is the first payload threshold.
  • the time-frequency resources actually required by the first uplink control information may be less than or equal to the reserved resources of the first uplink control information.
  • the step of mapping the second uplink control information is located before the step of mapping the first uplink control information.
  • the first uplink control information corresponds to information C
  • the second uplink control information corresponds to information D.
  • Time-frequency resource #C is the first time-frequency resource
  • time-frequency resource #D is the second time-frequency resource.
  • the second uplink control information avoidance of the first uplink control information is similar to the method for reserving resources of the same priority CSI part 1 information avoidance HARQ-ACK information in the prior art.
  • the uplink channel is PUSCH and includes 7 time-domain symbols (#0 to #6) and 12 subcarriers (#0 to #11).
  • DMRS is located on the first symbol, symbol #0
  • the PUSCH includes the first uplink control information (that is, HARQ-ACK corresponding to URLLC), the second uplink control information (that is, HARQ-ACK corresponding to eMBB), and the corresponding URLLC's UL-SCH.
  • the terminal device starts from the next symbol after the symbol carrying DMRS, symbol #1, skips the reserved resource corresponding to URLLC HARQ-ACK, namely symbol #1, and maps the mapping in the order of frequency first and time first.
  • HARQ-ACK for eMBB occupies all subcarriers of symbol #2.
  • the UL-SCH information is mapped from the next symbol after the symbol carrying the DMRS, that is, symbol #1, mapped in the order of frequency first, and then skipped, and the symbol # that has been mapped to the HARQ-ACK information corresponding to eMBB is skipped 2. If the terminal device needs to send HARQ-ACK corresponding to URLLC on the PUSCH, as shown in FIG.
  • the HARQ-ACK corresponding to URLLC is punctured with UL-SCH information on symbol #1; if the terminal device It is not necessary to send HARQ-ACK corresponding to URLLC on the PUSCH, as shown in FIG. 9(b), the terminal device sends UL-SCH on symbol #1.
  • the first uplink control information avoids the reserved resource mapping method of the second uplink control information:
  • the reserved resource of the second uplink control information is the second time-frequency resource.
  • the position of the first time-frequency resource of the first uplink control information can be made independent of The second time-frequency resource of the second uplink control information.
  • the embodiments of the present application It is also possible to make the first uplink control information avoid the reserved resource corresponding to the second uplink control information during mapping, wherein the size and time-frequency position of the reserved resource are predefined or pre-configured.
  • the first uplink control information will not be mapped on the reserved resource; because of the reserved resource
  • the size and/or time-frequency location does not depend on the payload of the second uplink control information, so the time-frequency resource location mapped by the first uplink control information is also not affected by the payload of the second uplink control information, thereby ensuring the first Reliability of decoding upstream control information.
  • the reserved resource of the second uplink control information is a time-frequency resource determined according to a predefined or pre-configured payload size, for example, the predefined payload size is a second payload threshold.
  • the time-frequency resources actually required to be occupied by the second uplink control information may be less than or equal to the reserved resources of the second uplink control information.
  • the step of mapping the first uplink control information is located before the step of mapping the second uplink control information.
  • the second uplink control information corresponds to information C
  • the first uplink control information corresponds to information D.
  • Time-frequency resource #C is the second time-frequency resource
  • time-frequency resource #D is the first time-frequency resource.
  • the uplink channel further includes a third time-frequency resource
  • the third time-frequency resource is a time-frequency resource used to carry third uplink control information corresponding to the first priority.
  • the third uplink control information is CSI information
  • the third time-frequency resource is a time-frequency resource determined according to the second time-frequency resource.
  • the third uplink control information may be CSI part 1 information, CSI part 2 information, or CSI part 1 information and CSI part 2 information.
  • the third time-frequency resource excludes the second time-frequency resource (for example, in a rate matching manner, a punctured manner, The way of avoiding reserved resources) is determined in the remaining time-frequency resources of the uplink channel afterwards, so it can be regarded as being determined according to the second time-frequency resources.
  • the third time-frequency resource is later than the second time-frequency resource.
  • the information A is the second uplink control information
  • the information B is the third uplink control information.
  • Time-frequency resource #A is the second time-frequency resource
  • time-frequency resource #B is the third time-frequency resource.
  • time-frequency resource #A is the second time-frequency resource
  • time-frequency resource #B is the third time-frequency resource divided by the second time Time-frequency resources other than time-frequency resources where frequency resources overlap; or, time-frequency resources #A are time-frequency resources other than time-frequency resources that overlap with third time-frequency resources in the second time-frequency resources, time-frequency resources #B It is the third time-frequency resource.
  • the mapping order of the second uplink control information corresponding to the second priority is between the first uplink control information information corresponding to the first priority and the CSI information corresponding to the first priority.
  • the SR information corresponding to the second priority is responsible for reporting the transmission requirements of the data information, so although the importance of the second uplink control information is lower than HARQ-ACK and or SR information corresponding to the first priority, but higher than the CSI information corresponding to the first priority (since CSI information does not directly affect whether the uplink data information can be sent in time like SR information, nor HARQ-ACK information directly affects whether the downlink data information is received correctly), so the mapping order should be located after the first uplink control information (HARQ-ACK and or SR) corresponding to the first priority, and located corresponding to the first priority
  • the third upstream control information of the level that is, before the CSI information. This helps to ensure the demodulation performance of HARQ-ACK and or SR
  • the uplink channel is PUSCH and includes 7 time-domain symbols (#0 to #6) and 12 subcarriers (#0 to #11).
  • the DMRS is located in the first symbol, symbol #0, and the PUSCH includes the first uplink control information (that is, HARQ-ACK corresponding to URLLC), the third uplink control information (that is, CSI corresponding to URLLC), and the second uplink Control information (ie HARQ-ACK corresponding to eMBB), and UL-SCH corresponding to URLLC.
  • the terminal equipment starts with the next symbol after the symbol bearing DMRS, symbol #1, maps the HARQ-ACK corresponding to URLLC first according to the mapping order of frequency first and then time, and then follows the frequency first and time later on the remaining resources Mapping sequence, mapping HARQ-ACK corresponding to eMBB, and then continuing to map CSI corresponding to URLLC on the remaining resources.
  • HARQ-ACK corresponding to eMBB occupies symbol #2, so the CSI corresponding to URLLC is mapped from subcarrier #0 of symbol #3.
  • FIG. 10(a) HARQ-ACK corresponding to eMBB occupies symbol #2, so the CSI corresponding to URLLC is mapped from subcarrier #0 of symbol #3.
  • HARQ-ACK corresponding to eMBB occupies subcarriers #0, #2, ...#10 of symbol #2 and symbol #3, and the remaining subcarriers are #1,#3,...#11 Therefore, the CSI corresponding to URLLC is mapped from subcarrier #1 of symbol #3, onto the remaining subcarriers of symbol #3, and onto symbol #4.
  • mapping method between the second uplink control information and the third uplink control information may also include the following three types:
  • the second uplink control information and the third uplink control information are multiplexed on the PUSCH in a rate matching manner.
  • information C is second uplink control information
  • information D is third uplink control information.
  • Time-frequency resource #C is the second time-frequency resource
  • time-frequency resource #D is the third time-frequency resource.
  • the second uplink control information and the third uplink control information are multiplexed on the PUSCH in a rate-matching manner.
  • the second uplink control information punctures the third uplink control information, or the third uplink control information avoids the reserved resources of the second uplink control information .
  • the second uplink control information punctures the third uplink control information on the second time-frequency resource. Further, the third uplink control information is CSI part 2.
  • Information C is the second uplink control information
  • information D is the third uplink control information.
  • Time-frequency resource #C is the second time-frequency resource
  • time-frequency resource #D is the third time-frequency resource.
  • the third uplink control information avoids the reserved resources of the second uplink control information.
  • the third uplink control information is CSI part 1.
  • the reserved resource of the second uplink control information is the second time-frequency resource.
  • the reserved resource of the second uplink control information is a time-frequency resource determined according to a predefined or pre-configured payload size, for example, the predefined payload size is a second payload threshold.
  • the time-frequency resources actually required to be occupied by the second uplink control information may be less than or equal to the reserved resources of the second uplink control information.
  • mapping method 3 information C is second uplink control information, and information D is third uplink control information.
  • Time-frequency resource #C is the second time-frequency resource, and time-frequency resource #D is the third time-frequency resource.
  • the second uplink control information avoids the reserved resources of the third uplink control information. For details, see the previous mapping method 3.
  • Information C is the third uplink control information
  • information D is the second uplink control information.
  • Time-frequency resource #C is the third time-frequency resource
  • time-frequency resource #D is the second time-frequency resource.
  • the first uplink information is CSI information corresponding to a first priority
  • the second uplink information is HARQ-ACK information corresponding to a second priority.
  • the uplink channel is PUSCH or PUCCH
  • the first uplink information is first uplink control information corresponding to a first priority.
  • the first uplink control information includes CSI information corresponding to a first priority.
  • the second uplink control information includes HARQ-ACK information corresponding to the second priority;
  • the second time-frequency resource is a time-frequency resource determined according to the first time-frequency resource.
  • the first uplink control information is CSI information corresponding to the first priority, or CSI information corresponding to the first priority and HARQ-ACK information corresponding to the first priority, or corresponding to the first The CSI information of the first priority and the SR information corresponding to the first priority.
  • the CSI information here can be CSI part 1, or CSI part 2, or CSI part 1 and CSI part 2.
  • the first uplink control information is HARQ-ACK corresponding to the first priority (if present), SR corresponding to the first priority (if present), corresponding to the first priority CSI part 1 (if present) joint coding information.
  • the first uplink control information is CSI part 1 information corresponding to the first priority, or CSI part 2 information.
  • the second time-frequency resource is later than the first time-frequency resource.
  • Information A is the first uplink control information
  • information B is the second uplink control information.
  • Time-frequency resource #A is the first time-frequency resource
  • time-frequency resource #B is the second time-frequency resource.
  • time-frequency resource #A is the first time-frequency resource
  • time-frequency resource #B is the second time-frequency resource divided by the first time-frequency resource Time-frequency resources other than overlapping time-frequency resources
  • time-frequency resource #A is a time-frequency resource other than the time-frequency resource overlapping with the second time-frequency resource in the first time-frequency resource
  • time-frequency resource #B is the first 2. Time-frequency resources.
  • the second time-frequency resources are determined from the remaining time-frequency resources of the upstream channel after excluding the first time-frequency resources (for example, in a rate-matching method, a punctured method, and a way to avoid reserved resources) , It can be regarded as determined according to the first time-frequency resource.
  • the first The mapping of uplink control information should have priority over the second uplink control information (HARQ-ACK information and or SR information).
  • the second time-frequency resource is determined by the first time-frequency resource, for example, the second time-frequency resource is later than the first time
  • the advantage of frequency resources is that it can ensure that the position of the first time-frequency resource is not dependent on the second time-frequency resource, so that the terminal device will not further affect the determination of the first time-frequency because of the wrong judgment of the position of the second time-frequency resource.
  • the accuracy of the location of the resource so as to better ensure the transmission reliability of the first uplink control information (for example, CSI information).
  • the second time-frequency resource is later than the first time-frequency resource can also ensure that the first uplink control information is closer to the DMRS, ensuring that the CSI information corresponding to the URLLC service is received more accurately, thereby effectively protecting the URLLC link Adaptive.
  • the uplink channel is PUSCH and includes 7 time domain symbols (#0 to #6) and 12 subcarriers (#0 to #11).
  • DMRS is located in the first symbol, symbol #0, PUSCH includes HARQ-ACK corresponding to URLLC, first uplink control information (that is, CSI corresponding to URLLC), and second uplink control information (that is, HARQ-corresponding to eMBB) ACK), and UL-SCH corresponding to URLLC.
  • the terminal equipment starts with the next symbol after the symbol bearing DMRS, symbol #1, maps the HARQ-ACK corresponding to URLLC first according to the mapping order of frequency first and then time, and then follows the frequency first and time later on the remaining resources Mapping order, mapping the CSI corresponding to URLLC, and then mapping the HARQ-ACK corresponding to eMBB in the remaining resources in the mapping order of frequency first.
  • the CSI corresponding to URLLC occupies symbol #2, so HARQ-ACK corresponding to eMBB is mapped from subcarrier #0 of symbol #3.
  • the CSI occupies subcarriers #0, #2,...#10 of the symbol #2 and symbol #3 of URLLC, and the remaining subcarriers are #1,#3,...#11, so
  • the HARQ-ACK corresponding to eMBB is mapped starting from subcarrier #1 of symbol #3 and mapped to the remaining subcarriers of symbol #1.
  • the mapping method of the second time-frequency resource and the first time-frequency resource may also specifically include the following methods.
  • the terminal equipment includes the second uplink control information in the information sent on the uplink channel
  • the second uplink control information and the first uplink control information are multiplexed on the PUSCH in a rate-matching manner. Similar to the rate matching mapping method in scenario 2, for details, please refer to the description of mapping method 1 above.
  • the information C in the foregoing may be set as the first uplink control information
  • the information D is the second uplink control information.
  • Time-frequency resource #C is the first time-frequency resource
  • time-frequency resource #D is the second time-frequency resource.
  • the second uplink control information and the first uplink control information are The rate matching method (rate matching mapping method) is multiplexed on the PUSCH.
  • the second uplink control information punctures the first uplink control information (first puncturing mapping method), or, the second uplink control information avoids The reserved resources of the first uplink control information (first avoidance mapping method); or, if the payload of the first uplink control information is not greater than the first payload threshold, the first uplink control information punctures the second uplink control information ( The second puncturing mapping method), or the first uplink control information avoids the reserved resources of the second uplink control information (second avoidance mapping method).
  • the second uplink control information punctures the first uplink control information on the second time-frequency resource. If the terminal device includes the second uplink control information in the information sent on the uplink channel, before the terminal device sends the information on the first time-frequency resource and the second time-frequency resource, it includes :
  • the terminal device maps the first uplink control information to the second time-frequency resource and the first time-frequency resource
  • the terminal device maps the second uplink control information to the second time-frequency resource, and discards the information that the first uplink control information is mapped to the first time-frequency resource.
  • the method similar to the scenario 2 is the puncturing mapping method.
  • the mapping method 2 that is, to set the foregoing information C as the second uplink control information, and the information D as the first uplink control information.
  • Time-frequency resource #C is the second time-frequency resource
  • time-frequency resource #D is the first time-frequency resource.
  • the second uplink control information is later than the first uplink data information, but the reason why the first uplink data information punctures the second uplink control information, the second time-frequency resource is later than the first time-frequency in the mapping order Resources, but the first uplink control information with higher priority is still punctured by the second uplink control information with lower priority. That is, the second time-frequency resource is located at the tail of the first time-frequency resource, and the second uplink control information punctures the first uplink control information at the tail of the first time-frequency resource.
  • Second puncturing mapping method the first uplink control information punctures the second uplink control information on the first time-frequency resource.
  • Time-frequency resource #C is the first time-frequency resource
  • time-frequency resource #D is the second time-frequency resource.
  • the second uplink control information avoids the reserved resources of the first uplink control information.
  • the reserved resource of the first uplink control information is the first time-frequency resource.
  • the reserved resources of the first uplink control information are time-frequency resources determined according to a predefined or pre-configured payload size (for example, a first payload threshold).
  • the step of mapping the second uplink control information is located before the step of mapping the first uplink control information.
  • Time-frequency resource #C is the first time-frequency resource
  • time-frequency resource #D is the second time-frequency resource.
  • Second avoidance mapping method the first uplink control information avoids the reserved resources of the second uplink control information.
  • the reserved resource of the second uplink control information is the second time-frequency resource.
  • the reserved resource of the second uplink control information is a time-frequency resource determined according to a predefined or pre-configured payload size (for example, a second payload threshold), for example, the predefined payload size is a second payload threshold.
  • a predefined or pre-configured payload size for example, a second payload threshold
  • the step of mapping the first uplink control information is located before the step of mapping the second uplink control information.
  • the second uplink control information corresponds to information C
  • the first uplink control information corresponds to information D.
  • Time-frequency resource #C is the second time-frequency resource
  • time-frequency resource #D is the first time-frequency resource.
  • the first uplink control information is CSI part 2.
  • the second time-frequency resource is later than the time-frequency resource carrying the CSI part 2 corresponding to the first priority.
  • the second time-frequency resource may be earlier than the UL-SCH information corresponding to the first priority, that is, the priority of the second uplink control information mapping is between the CSI part 2 corresponding to the first priority and the second Between one priority UL-SCH.
  • the first uplink control information is CSI part 1.
  • the second time-frequency resource is later than the time-frequency resource carrying the CSI corresponding to the first priority 1 and earlier than the time-frequency resource carrying the CSI corresponding to the first priority 2.
  • the priority of the second uplink control information mapping is between CSI part 1 corresponding to the first priority and CSI part 2 corresponding to the first priority.
  • mapping the second uplink control information corresponding to the second priority to the CSI part 1 corresponding to the first priority (that is, the second time-frequency resource is later than the time-frequency resource of the CSI part 1), on the one hand
  • the transmission reliability of the more important channel state information CSI part 1 can be guaranteed.
  • the payload of the HARQ-ACK and or SR information included in the second uplink control information is small, the number of occupied resources is small, so the first The second uplink control information is mapped to the CSI part 2 corresponding to the first priority, and the performance impact to the CSI part 2 corresponding to the first priority is also small.
  • the second uplink control information is mapped behind the CSI part 2 corresponding to the first priority, because the number of resources occupied by the CSI part 2 is large, the location where the second uplink control information is mapped is far from the DMRS. Affect the reliability of the second uplink control information.
  • the second uplink control information may be multiplexed in a rate-matching manner with the CSI corresponding to the first priority 2 or may also puncture the mapped correspondence on the second time-frequency resource.
  • the CSI part 2 information at the first priority level can also cause the CSI part 2 information corresponding to the first priority level to avoid the reserved resources of the second uplink control information during mapping, similar to the second uplink control information and scenario 2 in scenario 2.
  • the multiplexing relationship between the third uplink control information will not be repeated here.
  • the uplink channel is PUSCH and includes 7 time-domain symbols (#0 to #6) and 12 subcarriers (#0 to #11).
  • DMRS is located in the first symbol, symbol #0
  • PUSCH includes HARQ-ACK corresponding to URLLC, first uplink control information (that is, CSI corresponding to URLLC), and second uplink control information (that is, HARQ-corresponding to eMBB) ACK), and UL-SCH corresponding to URLLC.
  • the terminal equipment starts with the next symbol after the symbol bearing DMRS, symbol #1, maps the HARQ-ACK corresponding to URLLC first according to the mapping order of frequency first and then time, and then follows the frequency first and time later on the remaining resources Mapping order, mapping CSI part 1 corresponding to URLLC, and then mapping the HARQ-ACK corresponding to eMBB on the remaining resources according to the mapping order of frequency and time, and then mapping the order of frequency and then time on the remaining resources , Map the CSI corresponding to URLLC2.
  • HARQ-ACK corresponding to eMBB occupies symbol #3, so the CSI corresponding to URLLC 2 is mapped from subcarrier #0 of symbol #4.
  • HARQ-ACK corresponding to eMBB occupies subcarriers #0, #2,...#10 of symbol #3 and symbol #4, and the remaining subcarriers are #1,#3,...#11 Therefore, CSI part 2 corresponding to URLLC is mapped starting from subcarrier #1 of symbol #4, and mapped to the remaining subcarriers of symbol #4 and symbol #5.
  • control information or data information corresponding to services of different priorities are independently encoded, and by determining the priorities of the two, the priority of control/service information corresponding to low-priority services is lower than high
  • the priority of the control/service information corresponding to the priority service, or the time/frequency domain position of the control/service information corresponding to the low priority service is later than the time/frequency domain position of the control/service information corresponding to the high priority service, In order to achieve a better balance of two different priority services.
  • FIG. 4 to FIG. 12 are only for helping those skilled in the art to understand the embodiments of the present invention, and are not intended to limit the embodiments of the present invention to the specific numerical values or specific scenarios illustrated. Those skilled in the art can obviously make various equivalent modifications or changes according to the examples given in FIGS. 4 to 12. For example, those skilled in the art can use the examples in FIGS. 4 to 12 to combine multiple embodiments. Modifications and changes such as combination splitting are also within the scope of the embodiments of the present invention.
  • the size of the sequence numbers of the above processes does not mean the order of execution, and the execution order of each process should be determined by its function and inherent logic, and should not be applied to the embodiments of the present application.
  • the implementation process constitutes no limitation.
  • the method implemented by the terminal device may also be implemented by components (such as chips or circuits) that can be used for the terminal, and the method implemented by the network device may also be implemented by the network device. Components (such as chips or circuits) to achieve.
  • the method of the embodiment of the present invention is described in detail with reference to FIGS. 1 to 12, and the communication device of the embodiment of the present invention is described below with reference to FIGS. 13 to 16.
  • the communication device 1300 may include:
  • Processing unit 1310 and transceiver unit 1320 are identical to processing unit 1310 and transceiver unit 1320.
  • the determining unit is used to determine a first time-frequency resource and a second time-frequency resource on the uplink channel, the first time-frequency resource is used to send first uplink information, and the second time-frequency resource is used to Sending second uplink information, wherein the first uplink information includes first uplink data information corresponding to a first priority and/or first uplink control information corresponding to a first priority, and the second uplink information includes Second uplink data information corresponding to the second priority and/or second uplink control information corresponding to the second priority, the first uplink information and the second uplink information are independently coded;
  • the transceiver unit is used to send information on the first time-frequency resource and the second time-frequency resource.
  • the terminal device independently encodes the control information or data information corresponding to services of different priorities, and by determining the priorities of the two, the priority of the control/service information corresponding to the services of low priority is lower than The priority of the control/service information corresponding to the high-priority service, or the time-frequency domain position of the control/service information corresponding to the low-priority service is later than the time-frequency domain position of the control/service information corresponding to the high-priority service , So as to achieve a better balance between the two different priority services.
  • the first uplink data information includes data information sent by the first downlink control information scheduling or configuration terminal device, where the first uplink data information corresponds to the first priority by satisfying the following conditions Expressed by one or more of: the first bit field in the first downlink control information indicates or configures that the first uplink data information corresponds to the first priority, and the first downlink The control information is located in the first search space, the first downlink control information is located in the first PDCCH opportunity set, the first downlink control information corresponds to the first DCI format, and the first downlink control information corresponds to the first RNTI;
  • the first uplink control information includes second downlink control information configuring or triggering uplink control information sent by a terminal device, wherein the first uplink control information corresponds to the first priority by satisfying one of the following conditions Or multiple types: the second bit field in the second downlink control information indicates or configures that the first uplink control information corresponds to the first priority, and the second downlink control information is located in the first search Space, the second downlink control information is located in the first PDCCH opportunity set, the second downlink control information corresponds to the first DCI format, and the second downlink control information corresponds to the first RNTI;
  • the second uplink control information includes third downlink control information configuring or triggering uplink control information sent by the terminal device, wherein the second uplink control information corresponds to the second priority by satisfying the following conditions Expressed by one or more of: the third bit field in the third downlink control information indicates or configures that the second uplink control information corresponds to the second priority, and the third downlink control information Located in a second search space, the third downlink control information is located in a second PDCCH opportunity set, the third downlink control information corresponds to a second DCI format, and the third downlink control information corresponds to a second RNTI;
  • the second uplink data information includes data information sent by a fourth downlink control information scheduling or configuration terminal device, where the second uplink data information corresponds to the second priority by satisfying one of the following conditions or Multiple representations: the fourth bit field in the fourth downlink control information indicates or configures that the second uplink data information corresponds to the second priority, and the fourth downlink control information is located in the second search space.
  • the fourth downlink control information is located in the second PDCCH opportunity set, the fourth downlink control information corresponds to the second DCI format, and the fourth downlink control information corresponds to the second RNTI.
  • the first uplink control information includes one or more of the following information: HARQ-ACK information corresponding to the first priority, and channel state information CSI information corresponding to the first priority , Corresponding to the first SR information;
  • the second uplink control information includes one or more of the following information: HARQ-ACK information corresponding to the second priority, CSI information corresponding to the second priority, and corresponding to the second Priority SR information.
  • the first time-frequency resource is earlier than the second time-frequency resource in the time domain, and/or, the first time-frequency resource is lower than the second time-domain resource in the frequency domain;
  • the time interval between the time domain symbol corresponding to the first time-frequency resource and the DMRS symbol of the uplink channel is less than the time interval between the time domain symbol corresponding to the second time-frequency resource and the DMRS symbol, and /Or, the first time-frequency resource is lower than the second time-frequency resource in the frequency domain.
  • the first uplink information includes first uplink control information corresponding to the first priority
  • the second uplink information includes second uplink control information corresponding to the second priority
  • the The processing unit is further configured to determine a third time-frequency resource on the uplink channel, where the third time-frequency resource is used by the terminal device to send third uplink information, and the third uplink information includes the first priority
  • Third uplink control information the third uplink control information and the first uplink control information are independently coded
  • the third uplink control information and the second uplink control information are independently coded
  • the transceiver unit is also used to Sending information on the third time-frequency resource
  • the second time-domain resource is earlier than the third time-frequency resource in the time domain, and/or, the second time-frequency resource is lower than the third time-domain resource in the frequency domain;
  • the time interval between the time domain symbol corresponding to the second time-frequency resource and the DMRS symbol of the uplink channel is less than the time interval between the time domain symbol corresponding to the third time-frequency resource and the DMRS symbol, and /Or, the second time-frequency resource is lower than the third time-frequency resource in the frequency domain.
  • the processing unit is further configured to, before sending and receiving information on the first time-frequency resource and the second time-frequency resource, the transceiver unit uses rate matching to convert the first uplink information and the Second uplink information is mapped onto the first time-frequency resource and the second time-frequency resource,
  • the transceiver unit is specifically configured to send the first uplink information on the first time-frequency resource and send the second uplink information on the second time-frequency resource.
  • the processing unit is further used before the transceiver unit sends information on the first time-frequency resource and the second time-frequency resource,
  • the first overlapping time-frequency resource is a time-frequency resource where the first time-frequency resource and the second time-frequency resource overlap ,
  • the transceiver unit is specifically configured to send the first uplink information on the first time-frequency resource, and send the second uplink information on the first non-overlapping time-frequency resource, when the first non-overlapping
  • the frequency resource is a time-frequency resource other than the first overlapping time-frequency resource in the second time-frequency resource.
  • the processing unit is further used before the transceiver unit sends information on the first time-frequency resource and the second time-frequency resource,
  • the second overlapping time-frequency resource is a time-frequency resource where the first time-frequency resource and the second time-frequency resource overlap ,
  • the transceiver unit is specifically configured to send the first uplink information on the second non-overlapping time-frequency resource, and send the second uplink information on the second time-frequency resource, when the second non-overlapping
  • the frequency resource is a time-frequency resource other than the second overlapping time-frequency resource in the first time-frequency resource.
  • the first time-frequency resource is a reserved resource corresponding to the first uplink information, and the first time-frequency resource and the second time-frequency resource do not overlap,
  • the processing unit is further used before the transceiver unit sends information on the first time-frequency resource and the second time-frequency resource,
  • the transceiver unit is specifically configured to send the first uplink information on the first time-frequency resource and send the second uplink information on the second time-frequency resource; or,
  • the processing unit is further used before the transceiver unit sends information on the first time-frequency resource and the second time-frequency resource,
  • the transceiver unit is specifically configured to send the fourth uplink information on the first time-frequency resource and send the second uplink information on the second time-frequency resource.
  • the first time-frequency resource is pre-defined or pre-configured by the network device.
  • the second time-frequency resource is a reserved resource corresponding to the second uplink information, and the first time-frequency resource and the second time-frequency resource do not overlap,
  • the processing unit is further used before the transceiver unit sends information on the first time-frequency resource and the second time-frequency resource,
  • the transceiver unit is specifically configured to send the first uplink information on the first time-frequency resource and send the second uplink information on the second time-frequency resource;
  • the processing unit is further used before the transceiver unit sends information on the first time-frequency resource and the second time-frequency resource,
  • the transceiver unit is specifically configured to send the first uplink information on the first time-frequency resource and send the fifth uplink information on the second time-frequency resource.
  • the second time-frequency resource is pre-defined or pre-configured by the network device.
  • the communication device 1300 provided by the present application may correspond to the process performed by the terminal device in the method embodiments of FIGS. 4 to 12 described above.
  • the communication apparatus described in FIG. 13 may be a terminal device, or may be a chip or an integrated circuit that can be used in the terminal device.
  • FIG. 14 is a schematic structural diagram of a terminal device according to an embodiment of the present application, which is convenient for understanding and illustration.
  • the terminal device uses a mobile phone as an example.
  • Fig. 14 shows only the main components of the terminal device.
  • the terminal device 1400 includes a processor, a memory, a control circuit, and an antenna.
  • the terminal device may further include input and output devices.
  • the control circuit may be provided in the processor, or may be located outside the processor and exist independently. The embodiments of the present application are not limited thereto.
  • the processor is mainly used to process the communication protocol and communication data, and control the entire terminal device, execute a software program, and process data of the software program, for example, to support the terminal device to perform the actions described in the foregoing method embodiments.
  • the memory is mainly used to store software programs and data.
  • the control circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • the control circuit and the antenna can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive user input data and output data to the user.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit processes the baseband signal after radio frequency processing, and then sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor.
  • the processor converts the baseband signal into data and processes the data.
  • FIG. 14 shows only one memory and processor.
  • the memory may also be referred to as a storage medium or a storage device, etc. This embodiment of the present application does not limit this. It should be understood that the memory may be integrated in the processor, or may be located outside the processor and exist independently, and the embodiments of the present application are not limited thereto.
  • the processor may include a baseband processor and a central processor.
  • the baseband processor is mainly used to process communication protocols and communication data
  • the central processor is mainly used to control and execute the entire terminal device.
  • the processor in FIG. 14 may integrate the functions of the baseband processor and the central processor, and those skilled in the art may understand that the baseband processor and the central processor may also be independent processors, which are interconnected through technologies such as a bus.
  • the terminal device may include multiple baseband processors to adapt to different network standards, the terminal device may include multiple central processors to enhance its processing capability, and various components of the terminal device may be connected through various buses.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processor may also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and the communication data may be built in the processor, or may be stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the antenna and the control circuit with the transceiver function can be regarded as the transceiver unit 141 of the terminal device 1400, for example, to support the terminal device to perform the transceiver function performed by the terminal device in the implementation of the method shown in FIGS. 4 to 12 .
  • the processor having a processing function is regarded as the processing unit 142 of the terminal device 1400, which corresponds to the processing unit 1310 in FIG.
  • the terminal device 1400 includes a transceiving unit 141 and a processing unit 142.
  • the transceiver unit may also be referred to as a transceiver, transceiver, transceiver device, etc., and this transceiver unit corresponds to the transceiver unit 1320 in FIG. 13.
  • the device used to implement the receiving function in the transceiver unit 141 can be regarded as a receiving unit
  • the device used to implement the sending function in the transceiver unit 141 can be regarded as a sending unit, that is, the transceiver unit 141 includes a receiving unit and a sending unit
  • the receiving unit may also be called a receiver, an input port, a receiving circuit, etc.
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the processing unit 142 may be used to execute instructions stored in the memory to control the transceiver unit 141 to receive signals and/or send signals to complete the functions of the terminal device in the foregoing method embodiments.
  • the function of the transceiving unit 141 may be implemented through a transceiving circuit or a dedicated chip for transceiving. It can be understood that the transceiver unit may also be an interface circuit.
  • terminal device 1400 shown in FIG. 14 can implement various processes involving the terminal device in the method embodiments of FIGS. 4 to 14.
  • the operations and/or functions of each module in the terminal device 1400 are respectively to implement the corresponding processes in the above method embodiments.
  • the device 1500 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the device 1500 may include:
  • Processing unit 1510 and transceiver unit 1520 are identical to Processing unit 1510 and transceiver unit 1520.
  • the first time-frequency resource is used to carry first uplink information
  • the second time-frequency resource is used to carry second uplink information
  • the first uplink information includes first uplink data information corresponding to a first priority and/or first uplink control information corresponding to a first priority
  • the second uplink information includes a corresponding second priority
  • the second uplink data information and/or the second uplink control information corresponding to the second priority, the first uplink information and the second uplink information are independently encoded;
  • control information or data information corresponding to services of different priorities are independently encoded, and by determining the priorities of the two, the priority of control/service information corresponding to low-priority services is lower than that of high-priority
  • the priority of control/service information corresponding to high-level services, or the time-frequency domain position of control/service information corresponding to low-priority services is later than the time-frequency domain position of control/service information corresponding to high-priority services, thereby Achieve the effect of better balancing two different priority services.
  • the first uplink data information includes data information that the first downlink control information schedules or configures to send by the terminal device, where the first uplink data information corresponds to the first priority by satisfying Expressed by one or more of the following conditions: the first bit field in the first downlink control indicates or configures that the first uplink data information corresponds to the first priority, and the first The row control information is located in the first search space, the first downlink control information is located in the first physical downlink control channel PDCCH opportunity set, the first downlink control information corresponds to the first DCI format, and the first downlink The control information corresponds to the first RNTI;
  • the first uplink control information includes second downlink control information configuring or triggering uplink control information sent by the terminal device, wherein the first uplink control information corresponds to the first priority by satisfying the following conditions
  • the second bit field in the second downlink control information indicates or configures that the first uplink control information corresponds to the first priority
  • the second downlink control information is located in the A search space
  • the second downlink control information is located in a first PDCCH opportunity set
  • the second downlink control information corresponds to a first DCI format
  • the second downlink control information corresponds to a first RNTI
  • the second uplink control information includes third downlink control information to configure or trigger uplink control information sent by the terminal device, wherein the second uplink control information corresponds to the second priority by satisfying the following Expressed by one or more of the conditions: a third bit field in the third downlink control information indicates or configures that the second uplink control information corresponds to the second priority, and the third downlink control The information is located in a second search space, the third downlink control information is located in a second PDCCH opportunity set, the third downlink control information corresponds to a second DCI format, and the third downlink control information corresponds to a second RNTI;
  • the second uplink data information includes fourth downlink control information to schedule or configure data information sent by the terminal device, wherein the second uplink data information corresponds to the second priority by satisfying one of the following conditions Represented by one or more types: the fourth bit field in the fourth downlink control indicates or configures that the second uplink data information corresponds to the second priority, and the fourth downlink control information is located in the second search In space, the fourth downlink control information is located in the second PDCCH opportunity set, the fourth downlink control information corresponds to the second DCI format, and the fourth downlink control information corresponds to the second RNTI.
  • the first uplink control information includes one or more of the following information: HARQ-ACK information corresponding to the first priority, and channel state information CSI information corresponding to the first priority , SR information corresponding to the first priority;
  • the second uplink control information includes one or more of the following information: HARQ-ACK information corresponding to the second priority, CSI information corresponding to the second priority, and corresponding to the second Priority SR information.
  • the first time-frequency resource is earlier than the second time-frequency resource in the time domain, and/or, the first time-frequency resource is lower than the second time-domain resource in the frequency domain;
  • the time interval between the time domain symbol corresponding to the first time-frequency resource and the DMRS symbol of the uplink channel is less than the time interval between the time domain symbol corresponding to the second time-frequency resource and the DMRS symbol, and /Or, the first time-frequency resource is lower than the second time-frequency resource in the frequency domain.
  • the first uplink information includes first uplink control information corresponding to the first priority
  • the second uplink information includes second uplink control information corresponding to the second priority
  • the The processing unit is further configured to determine a third time-frequency resource on the uplink channel, where the third time-frequency resource is used by the terminal device to send third uplink information, and the third uplink information includes the first priority
  • the third uplink control information, the third uplink control information and the first uplink control information are independently coded, the third uplink control information and the second uplink control information are independently coded,
  • the transceiving unit is also used to receive information from the terminal device on the third time-frequency resource;
  • the second time-domain resource is earlier than the third time-frequency resource in the time domain, and/or, the second time-frequency resource is lower than the third time-domain resource in the frequency domain;
  • the time interval between the time domain symbol corresponding to the second time-frequency resource and the DMRS symbol of the uplink channel is less than the time interval between the time domain symbol corresponding to the third time-frequency resource and the DMRS symbol, and /Or, the second time-frequency resource is lower than the third time-frequency resource in the frequency domain.
  • the transceiver unit is specifically configured to receive the first uplink information sent by the terminal device on the first time-frequency resource, and receive the first uplink information sent by the terminal device on the second time-frequency resource The second uplink information,
  • the first uplink information and the second uplink information are mapped onto the first time-frequency resource and the second time-frequency resource in a rate matching manner.
  • the transceiver unit is specifically configured to receive the first uplink information sent by the terminal device on the first time-frequency resource, and receive all the information sent by the terminal device on the first non-overlapping time-frequency resource. Describe the second uplink information,
  • the first non-overlapping time-frequency resource is a time-frequency resource other than the first overlapping time-frequency resource in the second time-frequency resource
  • the first overlapping time-frequency resource is the first time-frequency resource and Time-frequency resources where the second time-frequency resources overlap
  • the second uplink information is mapped to the second time-frequency resource by the terminal device, and the second uplink information has been mapped to the first
  • the information sent on the first non-overlapping time-frequency resources, the first uplink information is that the terminal device has mapped the In the case of the information on the first overlapping time-frequency resource, it is mapped to the information on the first time-frequency resource.
  • the transceiving unit is specifically configured to receive the first uplink information sent by the terminal device on a second non-overlapping time-frequency resource, and receive all the information sent by the terminal device on the second time-frequency resource. Describe the second uplink information,
  • the second non-overlapping time-frequency resource is a time-frequency resource other than the second overlapping time-frequency resource in the first time-frequency resource
  • the second overlapping time-frequency resource is the first time-frequency resource and Time-frequency resources where the second time-frequency resources overlap
  • the first uplink information is mapped to the first time-frequency resource by the terminal device, and the first uplink information has been mapped to the first
  • the information sent on the second non-overlapping time-frequency resources, the second uplink information is that the terminal device has mapped the In the case of the information on the second overlapping time-frequency resource, it is mapped to the information on the second time-frequency resource.
  • the first time-frequency resource is a reserved resource corresponding to the first uplink information, and the first time-frequency resource and the second time-frequency resource do not overlap,
  • the second uplink information is mapped on the second time-frequency resource, and the first uplink information is mapped on the first time-frequency resource ,
  • the transceiver unit is specifically configured to receive the first uplink information sent by the terminal device on the first time-frequency resource, and receive the first uplink information sent by the terminal device on the second time-frequency resource Second uplink information;
  • the second uplink information is mapped on the second time-frequency resource, and the fourth uplink information is mapped on the first time-frequency resource, The fourth uplink information is different from the first uplink information
  • the transceiving unit is specifically configured to receive the fourth uplink information sent by the terminal device on the first time-frequency resource, and receive the message sent by the terminal device on the second time-frequency resource. Second uplink information.
  • the first time-frequency resource is pre-defined or pre-configured by the network device.
  • the second time-frequency resource is a reserved resource corresponding to the second uplink information, and the first time-frequency resource and the second time-frequency resource do not overlap,
  • the transceiver unit is specifically configured to receive the first uplink information sent by the terminal device on the first time-frequency resource, and receive the first uplink information sent by the terminal device on the second time-frequency resource Second uplink information;
  • the first uplink information is mapped on the first time-frequency resource
  • the fifth uplink information is mapped on the second time-frequency resource
  • the fifth uplink information is different from the second uplink information
  • the transceiver unit is specifically configured to receive the first uplink information sent by the terminal device on the first time-frequency resource, and receive the first uplink information sent by the terminal device on the second time-frequency resource Fifth uplink information.
  • the second time-frequency resource is pre-defined or pre-configured by the network device.
  • the communication apparatus 1500 provided by the present application may correspond to the process performed by the network device in the method embodiments of FIGS. 4 to 12 described above.
  • the communication apparatus shown in FIG. 15 may be a network device, or may be a chip or an integrated circuit that can be used in the network device.
  • FIG. 16 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • it may be a schematic structural diagram of a base station.
  • the network device 1600 may be applied to the system shown in FIG. 1 to perform the functions of the network device in the above method embodiments.
  • the network device 1600 may include one or more radio frequency units, such as a remote radio unit (RRU) 161 and one or more baseband units (BBU) (also called digital units, digital units, DU) ) 162.
  • the RRU 161 may be called a transceiver unit 161, corresponding to the transceiver unit 1520 in FIG. 15, optionally, the transceiver unit may also be called a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 1611 And the radio frequency unit 1612.
  • the RRU161 part is mainly used for the transmission and reception of radio frequency signals and the conversion of radio frequency signals and baseband signals, for example, for sending precoding matrix information to terminal devices.
  • the BBU162 part is mainly used for baseband processing and controlling the base station.
  • the RRU161 and the BBU162 may be physically arranged together, or may be physically separated, that is, distributed base stations. It can be understood that the transceiver unit may also be an interface circuit.
  • the BBU 162 is the control center of the base station, and may also be referred to as the processing unit 162, which may correspond to the processing unit 1510 in FIG. 15 and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, spread spectrum, and so on.
  • the BBU processing unit
  • the BBU may be used to control the base station to perform the operation flow on the network device in the above method embodiments.
  • the BBU162 may be composed of one or more boards, and the plurality of boards may jointly support a wireless access network of a single access standard (such as an LTE network), or may support wireless networks of different access standards respectively. Access network (such as LTE network, 5G network or other networks).
  • the BBU162 also includes a memory 1621 and a processor 1622.
  • the memory 1621 is used to store necessary instructions and data.
  • the processor 1622 is used to control the base station to perform necessary actions, for example, to control the base station to perform the operation flow on the network device in the foregoing method embodiment.
  • the memory may be integrated in the processor, or may be located outside the processor and exist independently, and the embodiments of the present application are not limited thereto.
  • the memory 1621 and the processor 1622 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It is also possible that multiple boards share the same memory and processor. In addition, each board can also be provided with necessary circuits.
  • the network device 1600 shown in FIG. 16 can implement various processes involving the network device in the method embodiments of FIGS. 4 to 12.
  • the operations and/or functions of each module in the network device 1600 are respectively for implementing the corresponding processes in the above method embodiments.
  • An embodiment of the present application further provides a processing device, including a processor and an interface; the processor is configured to execute the communication method in any of the foregoing method embodiments.
  • the above processing device may be a chip.
  • the processing device may be a field-programmable gate array (Field-Programmable Gate Array, FPGA), a dedicated integrated chip (Application Specific Integrated Circuit, ASIC), or a system chip (System on Chip, SoC), or It can be a central processor (Central Processor Unit, CPU), a network processor (Network Processor, NP), a digital signal processing circuit (Digital Signal Processor, DSP), or a microcontroller (Micro Controller) Unit, MCU), can also be a programmable controller (Programmable Logic Device, PLD) or other integrated chip.
  • FPGA Field-Programmable Gate Array
  • ASIC Application Specific Integrated Circuit
  • SoC System on Chip
  • CPU Central Processor Unit
  • NP Network Processor
  • DSP Digital Signal Processor
  • MCU microcontroller
  • PLD programmable Logic Device
  • each step of the above method may be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the steps of the method disclosed in conjunction with the embodiments of the present application may be directly embodied and executed by a hardware processor, or may be executed and completed by a combination of hardware and software modules in the processor.
  • the software module may be located in a mature storage medium in the art, such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, an electrically erasable programmable memory, and a register.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. In order to avoid repetition, they are not described in detail here.
  • the processor in the embodiment of the present invention may be an integrated circuit chip, which has a signal processing capability.
  • the steps of the foregoing method embodiments may be completed by instructions in the form of hardware integrated logic circuits or software in the processor.
  • the aforementioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an existing programmable gate array (FPGA), or other available Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA existing programmable gate array
  • Programming logic devices discrete gates or transistor logic devices, discrete hardware components.
  • the disclosed methods, steps, and logical block diagrams in the embodiments of the present invention may be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in conjunction with the embodiments of the present invention may be directly embodied and executed by a hardware decoding processor, or may be executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature storage medium in the art, such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, an electrically erasable programmable memory, and a register.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present invention may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electronically Erasable programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (random access memory, RAM), which acts as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate synchronous dynamic random access memory double data SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory direct Rambus RAM, DR RAM
  • direct Rambus RAM direct Rambus RAM
  • An embodiment of the present application further provides a communication system, which includes the foregoing network device and terminal device.
  • An embodiment of the present application also provides a computer-readable medium on which a computer program is stored, and when the computer program is executed by a computer, the method in any of the foregoing method embodiments is implemented.
  • An embodiment of the present application also provides a computer program product that implements the method in any of the above method embodiments when the computer program product is executed by a computer.
  • the computer program product includes one or more computer instructions. When the computer instructions are loaded and executed on the computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, computer, server or data center Transmission to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including one or more available medium integrated servers, data centers, and the like.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (DVD)), or a semiconductor medium (for example, a solid state disk, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (DVD)
  • DVD high-density digital video disc
  • SSD solid state disk
  • the network device in each of the above device embodiments corresponds exactly to the network device or terminal device in the terminal device and method embodiments, and the corresponding steps are performed by the corresponding modules or units, for example, the sending module (transmitter) method performs the sending in the method embodiment , The receiving module (receiver) executes the steps received in the method embodiment, and other steps than sending and receiving may be executed by the processing module (processor).
  • the function of the specific module can refer to the corresponding method embodiment.
  • the sending module and the receiving module may form a transceiver module, and the transmitter and the receiver may form a transceiver to jointly realize the sending and receiving function; the processor may be one or more.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • the character “/” generally indicates that the related object is a “or” relationship.
  • “At least one of the following” or similar expressions refers to any combination of these items, including any combination of single items or plural items.
  • At least one item (a) in a, b, or c can represent: a, b, c, ab, ac, bc, or abc, where a, b, c can be a single or multiple .
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable file, an execution thread, a program, and/or a computer.
  • the application running on the computing device and the computing device can be components.
  • One or more components can reside in a process and/or thread of execution, and a component can be localized on one computer and/or distributed between 2 or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • the component may, for example, be based on a signal having one or more data packets (eg, data from two components that interact with another component between a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through signals) Communicate through local and/or remote processes.
  • data packets eg, data from two components that interact with another component between a local system, a distributed system, and/or a network, such as the Internet that interacts with other systems through signals
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical, or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种传输上行信息的方法和通信装置,该方法包括确定上行信道上的第一时频资源和第二时频资源,第一时频资源用于发送第一上行信息,第二时频资源用于发送第二上行信息,其中,第一上行信息包括对应于第一优先级的第一上行数据信息和/或对应于第一优先级的第一上行控制信息,第二上行信息包括对应于第二优先级的第二上行数据信息和/或对应于第二优先级的第二上行控制信息,第一上行信息和第二上行信息独立编码;在第一时频资源和第二时频资源上发送信息。本申请实施例终端设备对第一上行信息和第二上行信息分别独立编码并使用不同的资源发送信息,能够达到更好地均衡两种不同优先级业务的效果。

Description

传输上行信息的方法和通信装置
本申请要求于2019年1月11日提交中国专利局、申请号为201910028377.0、申请名称为“传输上行信息的方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,特别涉及一种传输上行信息的方法和通信装置。
背景技术
未来依托于无线通信的新业务需求中,增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)、车联网、远程医疗、工业控制、电力传输通信等,相比于传统的视频传输等移动宽带(mobile broadband,MBB)业务,对于传输时延和传输可靠性提出了更高的需求。为了更好地支持这些低时延、高可靠的业务类型,新空口(new radio,NR)引入了超低时延高可靠(ultra reliability low latency communication,URLLC)特性。
同一终端设备可以同时支持URLLC业务以及增强移动宽带(enhanced mobile broad band,eMBB)业务,且两种业务可以动态切换,网络设备可以通过下行控制信息(downlink control information,DCI)指示物理层下行共享信道(Physical Downlink Shared Channel,PDSCH)或物理层上行共享信道(Physical Uplink Shared Channel,PUSCH)对应的业务类型,也可以通过控制信令配置或DCI动态指示对应于URLLC业务或eMBB业务的信道状态信息(Channel state information,CSI)资源。由于两种业务之间的动态切换,两种业务对应的上行信息(上行数据信道或上行控制信息)有可能出现时域上发生碰撞的情况,例如针对eMBB的上行控制信息(Uplink control information,UCI)(例如eMBB对应的混合自动重传请求确认(Hybrid Automatic Repeat request-Acknowledgement,HARQ-ACK)信息和或CSI信息和或调度请求(Scheduling Request,SR)信息)和针对URLLC的UCI(例如URLLC对应的HARQ-ACK信息和或CSI信息和或SR信息)碰撞,或者,针对eMBB的UCI与URLLC业务对应的PUSCH碰撞,或者,针对URLLC的UCI与eMBB业务对应的PUSCH碰撞。
在两种上行信息发生碰撞的情况下,如何发送上行信息,成为亟待解决的问题。
发明内容
本申请提供一种传输上行信息的方法和通信装置,能够在两种上行信息发生碰撞的情况下,实现两种信息的发送。
第一方面,提供了一种传输上行信息的方法,该方法包括:
确定上行信道上的第一时频资源和第二时频资源,所述第一时频资源用于发送第一上行信息,所述第二时频资源用于发送第二上行信息,其中,所述第一上行信息包括对应于第一优先级的第一上行数据信息和/或对应于第一优先级的第一上行控制信息,所述第二 上行信息包括对应于第二优先级的第二上行数据信息和/或对应于第二优先级的第二上行控制信息,所述第一上行信息和所述第二上行信息独立编码;
在所述第一时频资源和所述第二时频资源上发送信息。
本申请实施例中终端设备对不同优先级的业务所对应的控制信息或数据信息独立编码,并且通过确定两者的优先级,使低优先级业务所对应的控制/业务信息的优先级低于高优先级业务所对应的控制/业务信息的优先级,或者低优先级业务所对应的控制/业务信息的时频域位置晚于高优先级业务所对应的控制/业务信息的时频域位置,从而达到更好地均衡两种不同优先级业务的效果。
应理解,终端设备或网络设备在确定第一时频资源和第二时频资源时,可以是一起确定该两个时频资源,也可以是分别确定该两个资源,例如,可以先确定其中一个时频资源,然后在确定另一个时频资源,本申请实施例并不限于此。
应理解,本申请实施例中,该第一时频资源和该第二时频资源可以没有重叠,即没有相同的资源单元RE,该两个时频资源也可以有重叠,即具有至少一个相同的RE;该至少一个相同的RE称为第一重叠时频资源或第二重叠时频资源。例如,当第一上行信息打孔第二上行信息或者第二上行信息打孔第一上行信息的情况时,打孔掉的资源可以称为第一重叠时频资源或第二重叠时频资源。
进一步地,第一时频资源和第二时频资源也可以具有包含关系,例如,该第一时频资源包括第二时频资源,或者,该第二时频资源包括该第一时频资源,本申请实施例并不限于此。
在第一时域资源和第二时域资源没有重叠的情况下,所述第一时频资源在时域上早于所述第二时频资源,和/或,所述第一时频资源在频域上低于所述第二时域资源;
或者,所述第一时频资源对应的时域符号与所述上行信道的解调参考信号DMRS符号之间的时间间隔小于所述第二时频资源对应的时域符号与所述DMRS符号之间的时间间隔,和/或,所述第一时频资源在频域上低于所述第二时频资源。
应理解,本申请实施例中,第一优先级可以对应于高优先级业务,第二优先级可以对应于低优先级业务。本申请实施例中主要描述了在第一优先级业务与第二优先级业务碰撞时,如何发送上行信息的方案。
例如,第一优先级对应于URLLC业务,第二优先级对应于eMBB业务。再例如,第一上行数据信息是对应于URLLC业务的数据信息,第一上行控制信息是对应于URLLC业务的上行控制信息,第二上行控制信息是对应于eMBB业务的上行控制信息,第二上述数据信息是对应于eMBB业务的上行数据信息。
本申请实施例中的第一上行信息或第二上行信息可以是编码前的信息,或者称为信元信息或者称为系统信息(systematic bits)。终端设备发送的可以是第一上行信息或第二上行信息编码后的部分信息或全部信息。这种情况下,即使终端设备未发送全部的该上行信息编码后的信息,例如,该上行信息编码后的信息映射到该时频资源后,在该时频资源的一部分时频资源上被其他上行信息打孔,使得终端设备实际只发送了该上行信息编码后的信息的一部分,但是考虑到网络设备接收到该上行信息编码后的信息的一部分,仍然可能(例如,通过解码)恢复出该上行信息全部的编码前信息(即,网络设备潜在地可以通过该上行信息编码后信息的一部分得到该上行信息全部的编码前信息)。因此,这种情况下,仍然可以称该时频资源承载全部的该上行信息。
可选的,本申请实施例中的第一上行信息或第二上行信息也可以是编码后的信息。
可选的,本申请实施例中,时频资源承载上行信息的一部分信息可以理解为该上行信息一部分映射到该时频资源上,该上行信息的另一部分信息映射到该上行信道的其他时频资源上,或映射到其他上行信道上,或者,该另一部分信息没有映射,本申请实施例并不限于此。
对于某个上行信息(例如第一上行数据信息,或第一上行控制信息,或第二上行数据信息,或第二上行控制信息,或第三上行控制信息),该上行信息为独立编码的上行信息是指:终端设备根据该上行信息的系统信息比特生成编码信息(例如CRC和或编码比特),形成编码后的信息序列。进一步地,该上行信息为独立编码的上行信息是指:终端设备不根据该上行信息以外的其他系统信息比特生成编码信息。
应理解,本申请实施例中,第一上行信息和第二上行信息独立编码是指:终端设备分别对该第一上行信息和该第二上行信息进行编码。在分别完成对两者的编码和调制之后,再将两者映射到该上行信道上。具体的,第一上行信息对应的编码信息(例如校验比特parity bits)由第一上行信息对应的的系统信息比特确定而与第二上行信息的系统信息比特(systematic bits)无关,第二上行信息对应的编码信息(例如CRC比特或编码比特parity bits)由第二上行信息对应的系统信息比特(systematic bits)确定而与第一上行信息的系统信息比特无关。
进一步的,某一种上行信息(例如第一上行数据信息、或第一上行控制信息、或第二上行控制信息、第二上行数据信息或第三上行控制信息)中所包括的所有信息是联合编码的信息。
上述的联合编码是指:该种上行信息对应的编码信息由该种上行信息包括的所有系统信息比特生成。若该种上行信息中包括多类信息,则终端设备对该种上行信息所包括的多类信息联合编码,该种上行信息对应的CRC和或编码信息由该多类信息共同生成。例如,若该种上行信息中包括HARQ-ACK信息和SR信息,则该种上行信息是这两类信息联合编码的信息。
也就是说在本申请实施例中不同的上行信息可以独立编码,同一上行信息中的所有信息进行联合编码。
结合第一方面,在第一方面的一种实现方式中,所述第一上行数据信息包括第一下行控制信息调度或配置终端设备发送的数据信息,其中,所述第一上行数据信息对应于所述第一优先级是通过满足以下条件中的一种或多种来表示的:所述第一下行控制信息中的第一比特域指示或配置所述第一上行数据信息对应于所述第一优先级,所述第一下行控制信息位于第一搜索空间,所述第一下行控制信息位于第一物理下行控制信道PDCCH机会集合,所述第一下行控制信息对应第一下行控制信息格式DCI format,以及,所述第一下行控制信息对应第一无线网络临时标识RNTI;
或者,
所述第一上行控制信息包括第二下行控制信息配置或触发终端设备发送的上行控制信息,其中,所述第一上行控制信息对应于所述第一优先级是通过满足以下条件中的一种或多种来表示的:所述第二下行控制信息中的第二比特域指示或配置所述第一上行控制信息对应于所述第一优先级,所述第二下行控制信息位于第一搜索空间,所述第二下行控制信息位于第一PDCCH机会集合,所述第二下行控制信息对应第一DCI format,以及,所 述第二下行控制信息对应第一RNTI;
结合第一方面,在第一方面的一种实现方式中,所述第二上行控制信息包括第三下行控制信息配置或触发终端设备发送的上行控制信息,其中,所述第二上行控制信息对应于所述第二优先级是通过满足以下条件中的一种或多种来表示的:所述第三下行控制信息中的第三比特域指示或配置所述第二上行控制信息对应于所述第二优先级,所述第三下行控制信息位于第二搜索空间,所述第三下行控制信息位于第二PDCCH机会集合,所述第三下行控制信息对应第二DCI format,以及,所述第三下行控制信息对应第二RNTI;
或者,
所述第二上行数据信息包括第四下行控制信息调度或配置终端设备发送的数据信息,其中,所述第二上行数据信息对应于所述第二优先级是通过满足以下条件中的一种或多种来表示的:所述第四下行控制信息中的第四比特域指示或配置所述第二上行数据信息对应于第二优先级,所述第四下行控制信息位于第二搜索空间,所述第四下行控制信息位于第二PDCCH机会集合,所述第四下行控制信息对应第二DCI format,以及,所述第四下行控制信息对应第二RNTI。
结合第一方面,在第一方面的一种实现方式中,所述第一上行控制信息包括以下信息中的一种或多种:对应于所述第一优先级的混合自动重传请求确认HARQ-ACK信息、对应于所述第一优先级的信道状态信息CSI信息、对应于第一优先级的调度请求SR信息;
所述第二上行控制信息包括以下信息中的一种或多种:对应于所述第二优先级的HARQ-ACK信息、对应于所述第二优先级的CSI信息、对应于所述第二优先级的SR信息。
结合第一方面,在第一方面的一种实现方式中,所述第一时频资源在时域上早于所述第二时频资源,和/或,所述第一时频资源在频域上低于所述第二时域资源;
或者,
所述第一时频资源对应的时域符号与所述上行信道的解调参考信号DMRS符号之间的时间间隔小于所述第二时频资源对应的时域符号与所述DMRS符号之间的时间间隔,和/或,所述第一时频资源在频域上低于所述第二时频资源。
结合第一方面,在第一方面的一种实现方式中,所述第一上行信息包括对应于所述第一优先级的第一上行控制信息,所述第二上行信息包括对应于所述第二优先级的第二上行控制信息,所述方法还包括:
确定所述上行信道上的第三时频资源,所述第三时频资源用于所述终端设备发送第三上行信息,所述第三上行信息包括对应于第一优先级的第三上行控制信息,所述第三上行控制信息和所述第一上行控制信息独立编码,所述第三上行控制信息和所述第二上行控制信息独立编码,
在所述第三时频资源上发送信息;
其中,所述第二时域资源在时域上早于所述第三时频资源,和/或,所述第二时频资源在频域上低于所述第三时域资源;
或者,
所述第二时频资源对应的时域符号与所述上行信道的解调参考信号DMRS符号之间的时间间隔小于所述第三时频资源对应的时域符号与所述DMRS符号之间的时间间隔,和/或,所述第二时频资源在频域上低于所述第三时频资源。
结合第一方面,在第一方面的一种实现方式中,在所述第一时频资源和所述第二时频资源上发送信息之前,所述方法还包括:
使用速率匹配的方式将所述第一上行信息和所述第二上行信息分别映射到所述第一时频资源上和所述第二时频资源上,
其中,所述在所述第一时频资源和所述第二时频资源上发送信息,包括:
在所述第一时频资源上发送所述第一上行信息,在所述第二时频资源上发送所述第二上行信息。
因此,本申请实施例采用速率匹配的方式发送第一上行信息和第二上行信息,且第一上行信息和第二上行信息独立编码,例如,第一上行信息采用低压缩率的编码方式,第二上行信息采用高压缩率的编码方式,能够保证高优先级业务和第优先级业务的同时传输的情况下,均衡不同优先级业务占用的资源开销。
结合第一方面,在第一方面的一种实现方式中,在所述第一时频资源和所述第二时频资源上发送信息之前,所述方法还包括:
在所述第二时频资源上映射所述第二上行信息,
在所述第一时频资源上映射所述第一上行信息,
丢弃所述第二上行信息已经映射到第一重叠时频资源上的信息,其中所述第一重叠时频资源为所述第一时频资源和所述第二时频资源重叠的时频资源,
其中,所述在所述第一时频资源和所述第二时频资源上发送信息,包括:
在所述第一时频资源上发送所述第一上行信息,在第一未重叠时频资源上发送所述第二上行信息,所述第一未重叠时频资源为所述第二时频资源中除所述第一重叠时频资源以外的时频资源。
因此,本申请实施例采用打孔第二上行数据信息的方式映射第一上行控制信息,能够在保证高优先级业务的第一上行信息的传输。
结合第一方面,在第一方面的一种实现方式中,在所述第一时频资源和所述第二时频资源上发送信息之前,所述方法还包括:
在所述第一时频资源上映射所述第一上行信息;
在所述第二时频资源上映射所述第二上行信息;
丢弃所述第一上行信息已经映射到第二重叠时频资源上的信息,其中所述第二重叠时频资源为所述第一时频资源和所述第二时频资源重叠的时频资源,
其中,所述在所述第一时频资源和所述第二时频资源上发送信息,包括:
在第二未重叠时频资源上发送所述第一上行信息,在所述第二时频资源上发送所述第二上行信息,所述第二未重叠时频资源为所述第一时频资源中除所述第二重叠时频资源以外的时频资源。
因此,本申请实施例采用打孔第一上行数据信息的方式映射第二上行控制信息,能够在保证传输高优先级的第一上行数据信息的情况下,同时实现传输低优先级的控制信息。
结合第一方面,在第一方面的一种实现方式中,所述第一时频资源为对应于所述第一上行信息的预留资源,所述第一时频资源和所述第二时频资源没有重叠,
当在所述上行信道上发送所述第一上行信息时,在所述第一时频资源和所述第二时频资源上发送信息之前,所述方法还包括:
在所述第二时频资源上映射所述第二上行信息,且在所述第一时频资源上映射所述第 一上行信息,
其中,所述在所述第一时频资源和所述第二时频资源上发送信息,包括:
在所述第一时频资源上发送所述第一上行信息,在所述第二时频资源上发送所述第二上行信息;或者,
当不在所述上行信道上发送所述第一上行信息时,在所述第一时频资源和所述第二时频资源上发送信息之前,所述方法还包括:
在所述第二时频资源上映射所述第二上行信息,且在所述第一时频资源上映射第四上行信息,所述第四上行信息与所述第一上行信息不同;
其中,所述在所述第一时频资源和所述第二时频资源上发送信息,包括:
在所述第一时频资源上发送所述第四上行信息,在所述第二时频资源上发送所述第二上行信息。
结合第一方面,在第一方面的一种实现方式中,所述第一时频资源为预定义或者网络设备预配置的。
本申请实施例通过预留第一资源,在映射第二上行信息时避让第一资源,能够保证第一信息的传输不受第二信息的影响,保证第一信息的可靠性。
结合第一方面,在第一方面的一种实现方式中,所述第二时频资源为对应于所述第二上行信息的预留资源,所述第一时频资源和所述第二时频资源没有重叠,
当在所述上行信道上发送所述第二上行信息时,在所述第一时频资源和所述第二时频资源上发送信息之前,所述方法还包括:
在所述第一时频资源上映射所述第一上行信息,且在所述第二时频资源上映射所述第二上行信息,
其中,所述在所述第一时频资源和所述第二时频资源上发送信息,包括:
在所述第一时频资源上发送所述第一上行信息,在所述第二时频资源上发送所述第二上行信息;
或者,
当不在所述上行信道上发送所述第二上行信息时,在所述第一时频资源和所述第二时频资源上发送信息之前,所述方法还包括:
在所述第一时频资源上映射所述第一上行信息,且在所述第二时频资源上映射第五上行信息,所述第五上行信息与所述第二上行信息不同,
其中,所述在所述第一时频资源和所述第二时频资源上发送信息,包括:
在所述第一时频资源上发送所述第一上行信息,在所述第二时频资源上发送所述第五上行信息。
结合第一方面,在第一方面的一种实现方式中,所述第二时频资源为预定义或者网络设备预配置的。
本申请实施例通过预留第二资源,在映射第一上行信息时避让第二资源,能够保证第二信息的传输不受第一信息的影响,保证第二信息的可靠性。
第二方面,提供了一种传输上行信息的方法,该方法包括确定上行信道上的第一时频资源和第二时频资源,所述第一时频资源用于承载第一上行信息,所述第二时频资源用于承载第二上行信息,其中,所述第一上行信息包括对应于第一优先级的第一上行数据信息和/或对应于第一优先级的第一上行控制信息,所述第二上行信息包括对应于第二优先级 的第二上行数据信息和/或对应于第二优先级的第二上行控制信息,所述第一上行信息和所述第二上行信息独立编码;
在所述第一时频资源和所述第二时频资源上接收来自于所述终端设备的信息。
其中,第一时频资源用于承载第一上行信息也可以理解为第一时频资源用于终端设备发送所述第一上行信息;第二时频资源用于承载第二上行信息也可以理解为第二时频资源用于终端设备发送所述第二上行信息。
本申请实施例中对不同优先级的业务所对应的控制信息或数据信息独立编码,并且通过确定两者的优先级,使低优先级业务所对应的控制/业务信息的优先级低于高优先级业务所对应的控制/业务信息的优先级,或者低优先级业务所对应的控制/业务信息的时频域位置晚于高优先级业务所对应的控制/业务信息的时频域位置,从而达到更好地均衡两种不同优先级业务的效果。
应理解,第二方面的执行主体可以为网络设备,第二方面的具体内容与可以由终端设备执行的第一方面的内容对应,第二方面相应特征以及达到的有益效果可以参考第一方面的描述,为避免重复,此处适当省略详细描述。
结合第二方面,在第二方面的一种实现方式中,所述第一上行数据信息包括第一下行控制信息调度或配置所述终端设备发送的数据信息,其中,所述第一上行数据信息对应于所述第一优先级是通过满足以下条件中的一种或多种来表示的:所述第一下行控制中的第一比特域指示或配置所述第一上行数据信息对应于所述第一优先级,所述第一下行控制信息位于第一搜索空间,所述第一下行控制信息位于第一物理下行控制信道PDCCH机会集合,所述第一下行控制信息对应第一下行控制信息格式DCI format,以及,所述第一下行控制信息对应第一无线网络临时标识RNTI;
或者,
所述第一上行控制信息包括第二下行控制信息配置或触发所述终端设备发送的上行控制信息,其中,所述第一上行控制信息对应于所述第一优先级是通过满足以下条件中的一种或多种来表示的:所述第二下行控制信息中的第二比特域指示或配置所述第一上行控制信息对应于所述第一优先级,所述第二下行控制信息位于第一搜索空间,所述第二下行控制信息位于第一PDCCH机会集合,所述第二下行控制信息对应第一DCI format,以及,所述第二下行控制信息对应第一RNTI;
结合第二方面,在第二方面的一种实现方式中,所述第二上行控制信息包括第三下行控制信息配置或触发所述终端设备发送的上行控制信息,其中,述第二上行控制信息对应于所述第二优先级是通过满足以下条件中的一种或多种来表示的:所述第三下行控制信息中的第三比特域指示或配置所述第二上行控制信息对应于所述第二优先级,所述第三下行控制信息位于第二搜索空间,所述第三下行控制信息位于第二PDCCH机会集合,所述第三下行控制信息对应第二DCI format,以及,所述第三下行控制信息对应第二RNTI;
或者,
所述第二上行数据信息包括第四下行控制信息调度或配置所述终端设备发送的数据信息,其中,所述第二上行数据信息对应于所述第二优先级是通过满足以下条件中的一种或多种来表示的:所述第四下行控制中的第四比特域指示或配置所述第二上行数据信息对应于所述第二优先级,所述第四下行控制信息位于第二搜索空间,所述第四下行控制信息位于第二PDCCH机会集合,所述第四下行控制信息对应第二DCI format,以及,所述第 四下行控制信息对应第二RNTI。
结合第二方面,在第二方面的一种实现方式中,所述第一上行控制信息包括以下信息中的一种或多种:对应于所述第一优先级的混合自动重传请求确认HARQ-ACK信息、对应于所述第一优先级的信道状态信息CSI信息、对应于第一优先级的调度请求SR信息;
所述第二上行控制信息包括以下信息中的一种或多种:对应于所述第二优先级的HARQ-ACK信息、对应于所述第二优先级的CSI信息、对应于所述第二优先级的SR信息。
结合第二方面,在第二方面的一种实现方式中,所述第一时频资源在时域上早于所述第二时频资源,和/或,所述第一时频资源在频域上低于所述第二时域资源;
或者,
所述第一时频资源对应的时域符号与所述上行信道的解调参考信号DMRS符号之间的时间间隔小于所述第二时频资源对应的时域符号与所述DMRS符号之间的时间间隔,和/或,所述第一时频资源在频域上低于所述第二时频资源。
结合第二方面,在第二方面的一种实现方式中,所述第一上行信息包括对应于所述第一优先级的第一上行控制信息,所述第二上行信息包括对应于所述第二优先级的第二上行控制信息,所述方法还包括:
确定所述上行信道上的第三时频资源,所述第三时频资源用于所述终端设备发送第三上行信息,所述第三上行信息包括对应于第一优先级的第三上行控制信息,所述第三上行控制信息和所述第一上行控制信息独立编码,所述第三上行控制信息和所述第二上行控制信息独立编码,
在所述第三时频资源上接收来自于所述终端设备的信息;
其中,所述第二时域资源在时域上早于所述第三时频资源,和/或,所述第二时频资源在频域上低于所述第三时域资源;
或者,
所述第二时频资源对应的时域符号与所述上行信道的解调参考信号DMRS符号之间的时间间隔小于所述第三时频资源对应的时域符号与所述DMRS符号之间的时间间隔,和/或,所述第二时频资源在频域上低于所述第三时频资源。
结合第二方面,在第二方面的一种实现方式中,所述在所述第一时频资源和所述第二时频资源上接收来自于所述终端设备的信息,包括:
在所述第一时频资源上接收来自于所述终端设备的所述第一上行信息,在所述第二时频资源上接收来自于所述终端设备的所述第二上行信息,
其中,所述第一上行信息和所述第二上行信息是采用速率匹配的方式映射到所述第一时频资源和所述第二时频资源上的。
结合第二方面,在第二方面的一种实现方式中,所述在所述第一时频资源和所述第二时频资源上接收来自于所述终端设备的信息,包括:
在所述第一时频资源上接收来自于所述终端设备的所述第一上行信息,在第一未重叠时频资源上接收来自于所述终端设备的所述第二上行信息,
其中,所述第一未重叠时频资源为所述第二时频资源中除第一重叠时频资源以外的时频资源,所述第一重叠时频资源为所述第一时频资源和所述第二时频资源重叠的时频资源,所述第二上行信息为所述终端设备映射到所述第二时频资源上,且在丢弃所述第二上 行信息已经映射到所述第一重叠时频资源上的信息的情况下,在所述第一未重叠时频资源上发送的信息,所述第一上行信息为所述终端设备在丢弃所述第二上行信息已经映射到所述第一重叠时频资源上的信息的情况下,映射到所述第一时频资源上的信息。
结合第二方面,在第二方面的一种实现方式中,所述在所述第一时频资源和所述第二时频资源上接收来自于所述终端设备的信息,包括:
在第二未重叠时频资源上接收来自于所述终端设备的所述第一上行信息,在所述第二时频资源上接收来自于所述终端设备的所述第二上行信息,
其中,所述第二未重叠时频资源为所述第一时频资源中除第二重叠时频资源以外的时频资源,所述第二重叠时频资源为所述第一时频资源和所述第二时频资源重叠的时频资源,所述第一上行信息为所述终端设备映射到所述第一时频资源上,且在丢弃所述第一上行信息已经映射到所述第二重叠时频资源上的信息的情况下,在所述第二未重叠时频资源上发送的信息,所述第二上行信息为所述终端设备在丢弃所述第一上行信息已经映射到所述第二重叠时频资源上的信息的情况下,映射到所述第二时频资源上的信息。
结合第二方面,在第二方面的一种实现方式中,所述第一时频资源为对应于所述第一上行信息的预留资源,所述第一时频资源和所述第二时频资源没有重叠,
在所述上行信道上承载所述第一上行信息的情况下,所述第二上行信息映射在所述第二时频资源上,所述第一上行信息映射在所述第一时频资源上,
其中,所述在所述第一时频资源和所述第二时频资源上接收来自于所述终端设备的信息,包括:
在所述第一时频资源上接收来自于所述终端设备的所述第一上行信息,在所述第二时频资源上接收来自于所述终端设备的所述第二上行信息;
或者,
在所述上行信道上不承载所述第一上行信息的情况下,所述第二上行信息映射在所述第二时频资源上,第四上行信息映射在所述第一时频资源上,所述第四上行信息与所述第一上行信息不同,
其中,所述在所述第一时频资源和所述第二时频资源上接收来自于所述终端设备的信息,包括:
在所述第一时频资源上接收来自于所述终端设备的所述第四上行信息,在所述第二时频资源上接收来自于所述终端设备的所述第二上行信息。
结合第二方面,在第二方面的一种实现方式中,所述第一时频资源为预定义或者网络设备预配置的。
结合第二方面,在第二方面的一种实现方式中,所述第二时频资源为对应于所述第二上行信息的预留资源,所述第一时频资源和所述第二时频资源没有重叠,
在所述上行信道上承载所述第二上行信息的情况下,所述第一上行信息映射在所述第一时频资源上,所述第二上行信息映射在所述第二时频资源上其中,所述在所述第一时频资源和所述第二时频资源上接收来自于所述终端设备的信息,包括:
在所述第一时频资源上接收来自于所述终端设备的所述第一上行信息,在所述第二时频资源上接收来自于所述终端设备的所述第二上行信息;
或者,
在所述上行信道上不承载所述第二上行信息的情况下,所述第一上行信息映射在所述 第一时频资源上,第五上行信息映射在所述第二时频资源上,所述第五上行信息与所述第二上行信息不同,
其中,所述在所述第一时频资源和所述第二时频资源上接收来自于所述终端设备的信息,包括:
在所述第一时频资源上接收来自于所述终端设备的所述第一上行信息,在所述第二时频资源上接收来自于所述终端设备的所述第五上行信息。
结合第二方面,在第二方面的一种实现方式中,所述第二时频资源为预定义或者网络设备预配置的。
第三方面,提供了一种通信装置,包括用于执行第一方面或第一方面中任一种可能实现方式中的方法的各个模块或单元。
在一种实现方式中,该通信装置为终端设备。
第四方面,提供了一种通信装置,包括用于执行第二方面或第二方面中任一种可能实现方式中方法的各个模块或单元。
在一种实现方式中,该通信装置为网络设备。
第五方面,提供了一种通信装置,包括收发器、处理器和存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该网络设备执行第一方面及其可能实现方式中的方法。
在一种实现方式中,该通信装置为终端设备。
第六方面,提供了一种通信装置,包括收发器、处理器和存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该终端设备执行第二方面及其可能实现方式中的方法。
在一种实现方式中,该通信装置为网络设备。
第七方面,提供了一种计算机可读介质,其上存储有计算机程序,该计算机程序被计算机执行时实现第一方面及其可能实现方式中的方法。
第八方面,提供了一种计算机可读介质,其上存储有计算机程序,该计算机程序被计算机执行时实现第二方面及其可能实现方式中的方法。
第九方面,提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现第一方面及其可能实现方式中的方法。
第十方面,提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现第二方面及其可能实现方式中的方法。
第十一方面,提供了一种处理装置,包括处理器和接口。
第十二方面,提供了一种处理装置,包括处理器、接口和存储器。
在第十一方面或第十二方面中,该处理器,用于作为上述第一方面至第二方面或第一方面至第二方面的任一可能的实现方式中的方法的执行主体来执行这些方法,其中相关的数据交互过程(例如发送或者接收数据传输)是通过上述接口来完成的。在具体实现过程中,上述接口可以进一步通过收发器来完成上述数据交互过程。
应理解,上述十一方面或第十二方面中的处理装置可以是一个芯片,该处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第十三方面,提供了一种系统,包括前述的终端设备和网络设备。
附图说明
图1是本申请实施例可应用的场景示意图。
图2是一种上行信息传输示意图。
图3是另一上行信息传输示意图。
图4是根据本申请一个实施例的传输上行信息的方法示意图。
图5是根据本申请一个实施例的上行信息传输示意图。
图6是根据本申请另一实施例的上行信息传输示意图。
图7是根据本申请另一实施例的上行信息传输示意图。
图8是根据本申请另一实施例的上行信息传输示意图。
图9是根据本申请另一实施例的上行信息传输示意图。
图10是根据本申请另一实施例的上行信息传输示意图。
图11是根据本申请另一实施例的上行信息传输示意图。
图12是根据本申请另一实施例的上行信息传输示意图。
图13是本申请一种通信装置的示意框图。
图14是本申请一种终端设备的示意框图。
图15是本申请另一种通信装置的示意框图。
图16是本申请一种网络设备的示意框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信(global system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)等。
图1示出了适用于本申请实施例的发送和接收的方法和装置的通信系统100的示意图。如图所示,该通信系统100可以包括至少一个网络设备,例如图1所示的网络设备110;该通信系统100还可以包括至少一个终端设备,例如图1所示的终端设备120。网络设备110与终端设备120可通过无线链路通信。
各通信设备,如图1中的网络设备110或终端设备120,可以配置多个天线。该多个天线可以包括至少一个用于发送信号的发射天线和至少一个用于接收信号的接收天线。另外,各通信设备还附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。因此,网络设备与终端设备之间可通过多天线技术通信。
应理解,该无线通信系统中的网络设备可以是任意一种具有无线收发功能的设备。该 设备包括但不限于:可以是全球移动通信(global system for mobile communications,GSM)系统或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(evolved NodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,例如,NR系统中传输接收点(transmission and reception point,TRP)或传输点(transmission point,TP)、NR系统中的基站(gNB)、5G系统中的基站的一个或一组(包括多个天线面板)天线面板等。本申请实施例对此并未特别限定。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+CU发送的(例如,由CU确定高层信息并后发给DU,由DU发送该高层信息)。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
还应理解,该无线通信系统中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端以及未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备, 或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
本申请中对于使用单数表示的元素旨在用于表示“一个或多个”,而并非仅表示“一个且仅一个”,除非有特别说明。“一些”可以是指一个或多个。
应理解,在下文示出的实施例中,第一、第二、第三、第四以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。
本申请的技术方案可以应用于无线通信系统中,例如,图1中所示的通信系统100。处于无线通信系统中的两个通信装置之间可具有无线通信连接关系。该通信装置中的一个例如可以对应于图1中所示的网络设备110,如可以为网络设备110或者配置于网络设备110中的芯片,该两个通信装置中的另一个例如可以对应于图1中的终端设备120,如可以为终端设备120或者配置于终端设备120中的芯片。
在该通信系统中,终端设备可以同时支持URLLC业务以及eMBB业务,两种业务对应的两个上行信息(可以上行数据信道或上行控制信息)有可能出现时域上发生碰撞的情况,在发生碰撞的情况下,终端设备如何发送上行信息成为亟待解决的问题。
一种解决方案中,当低优先级(例如eMBB)业务对应的上行数据信道或上行控制信息与高优先级(例如URLLC)业务对应的上行数据信道或上行控制信息碰撞时,终端设备将停止发送低优先级业务对应的上行数据信道或上行控制信息。
例如,如图2中(a)所示针对eMBB的UCI和针对URLLC的UCI碰撞时,终端设备丢掉针对eMBB的UCI,只发送针对URLLC的UCI。
再例如,如图2中(b)所示针对eMBB的UCI与URLLC业务对应的PUSCH碰撞时,丢掉针对eMBB的UCI,只发送URLLC对应的PUSCH。
再例如,如图2中(c)所示,针对URLLC的UCI与eMBB业务对应的PUSCH碰撞时,丢掉eMBB业务对应的PUSCH,只发送针对URLLC的UCI。
在这种方案中,虽然保证了URLLC业务的高优先级,且实现较为简单,但是缺点在于丢掉eMBB的UCI,尤其是较为重要的HARQ-ACK信息,会导致eMBB业务性能受损严重。
另一种解决方案中,当低优先级(例如eMBB)业务对应的上行控制信息与高优先级(例如URLLC)业务对应的上行控制信息碰撞时,终端设备将低优先级业务对应的上行控制信息与到高优先级业对应的上行控制信息联合编码后发送。联合编码是指:两种UCI的编码前信息合并(例如,两种UCI以串联的形式合并)之后再进行编码,编码信息位和或校验信息位由两种UCI的编码前信息共同确定。
例如图3所示,当eMBB HARQ-ACK信息与URLLC HARQ-ACK信息碰撞时,终端设备将两者联合编码之后,映射到URLLC PUSCH上。
这种方案中虽然两种业务的信息都可以发送,但是由于eMBB业务和URLLC业务对于可靠性的要求不同,通常而言URLLC对应的HARQ-ACK信息的码率低于eMBB对应的HARQ-ACK信息的码率,以保证更高的可靠性。当eMBB的HARQ-ACK信息和URLLC的HARQ-ACK信息进行联合编码时,只能选择一种调制编码方式进行调制编码。如果选择较高可靠性的调制编码方式,则对eMBB HARQ-ACK信息使用该调制编码方式需要使用较多的时频资源,造成资源浪费;如果选择较低可靠性的调制编码方式,则对URLLC HARQ-ACK信息使用该调制编码方式无法保证其高可靠传输。
本申请实施例提供了一种传输上行信息的方法,能够解决低优先级(例如eMBB)业务对应的上行数据信道或上行控制信息与高优先级(例如URLLC)业务对应的上行数据信道或上行控制信息碰撞时丢掉eMBB业务对应的信息对eMBB性能影响严重的问题,并解决将低优先级业务对应的上行控制信息与高优先级业务对应的上行控制信息联合编码导致难以均衡两种上行控制信息所占资源及可靠性的问题。
具体而言,本申请提出一种针对两类不同优先级的业务对应的控制信息或数据信息发生碰撞的场景下的上行信息的发送方法,终端设备对不同优先级的业务所对应的控制信息或数据信息独立编码,并且通过确定两者的优先级,使低优先级业务所对应的控制/业务信息的优先级低于高优先级业务所对应的控制/业务信息的优先级,或者低优先级业务所对应的控制/业务信息的时频域位置晚于高优先级业务所对应的控制/业务信息的时频域位置,从而达到更好地均衡两种不同优先级业务的效果。
以下,不失一般性,首先以一个终端设备与网络设备之间的上行传输过程为例详细说明本申请实施例。可以理解,处于无线通信系统中的任意一个终端设备或者配置于终端设备中的芯片均可以基于相同的方法发送上行信息,处于无线通信系统中的任意一个网络设备或者配置于网络设备中的芯片均可以基于相同的方法接收上行信息。本申请对此不做限定。
应理解,本申请实施例中“碰撞”表示不同业务的上行信息需要通过同一信道传输,换句话说,对应于不同业务或不同优先级的上行信息需要在相同的时频资源发送,导致信息碰撞。本申请实施例中信息“碰撞”也可以称为信息冲突,本申请实施例并不限于此。
图4是从网络设备与终端设备交互的角度示出的接收和发送信号的方法400的示意性流程图。如图4所示的方法400包括:
410,终端设备确定上行信道上的第一时频资源和第二时频资源,所述第一时频资源用于发送第一上行信息,所述第二时频资源用于发送第二上行信息,其中,所述第一上行信息包括对应于第一优先级的第一上行数据信息和/或对应于第一优先级的第一上行控制信息,所述第二上行信息包括对应于第二优先级的第二上行数据信息和/或对应于第二优先级的第二上行控制信息,所述第一上行信息和所述第二上行信息独立编码;
相对应地,网络设备确定该第一时频资源和该第二时频资源,针对网络设备而言,该第一时频资源可用于接收第一上行信息,第二时频资源用于接收第二上行信息。
应理解,终端设备或网络设备在确定第一时频资源和第二时频资源时,可以是同时确定该两个时频资源,也可以是分别确定该两个资源,例如,可以先确定其中一个时频资源,然后再确定另一个时频资源,本申请实施例并不限于此。
应理解,本申请实施例中,该第一时频资源和该第二时频资源可以没有重叠,即该第一时频资源和该第二时频资源不包括相同的资源粒子(resource element,RE);该两个时 频资源也可以有重叠,即该第一时频资源和该第二时频资源包括至少一个相同的RE;该至少一个相同的RE称为重叠时频资源(例如,为下文中的第一重叠时频资源或第二重叠时频资源)。例如,当第一上行信息打孔第二上行信息或者第二上行信息打孔第一上行信息的情况时,打孔掉的资源可以称为重叠时频资源。
类似的,下文中出现的第三时频资源和上述第二时频资源可以没有重叠,也可以有重叠,本申请实施例并不限于此。
本申请中,打孔(puncture)也可以称为覆盖或丢弃。信息C打孔信息D也称为信息C覆盖(override)信息D。
进一步地,第一时频资源和第二时频资源也可以具有包含关系,例如,该第一时频资源包括第二时频资源,或者,该第二时频资源包括该第一时频资源,本申请实施例并不限于此。
在第一时域资源和第二时域资源没有重叠的情况下,所述第一时频资源在时域上早于所述第二时频资源,和/或,所述第一时频资源在频域上低于所述第二时域资源;
或者,所述第一时频资源对应的时域符号与所述上行信道的解调参考信号(demodulation reference signal,DMRS)符号之间的时间间隔小于所述第二时频资源对应的时域符号与所述DMRS符号之间的时间间隔,和/或,所述第一时频资源在频域上低于所述第二时频资源。
应理解,本申请实施例中,第一优先级可以对应于高优先级业务,第二优先级可以对应于低优先级业务。
例如,第一优先级对应于URLLC业务,第二优先级对应于eMBB业务。再例如,第一上行数据信息是对应于URLLC业务的数据信息,第一上行控制信息是对应于URLLC业务的上行控制信息,第二上行控制信息是对应于eMBB业务的上行控制信息,第二上述数据信息是对应于eMBB业务的上行数据信息。
应理解,本申请实施例中,为了描述的简便,下文中仅以第一优先级业务为URLLC业务,第二优先级业务为eMBB业务为例进行举例说明。但申请实施例并不限于此,本申请实施例中,第一优先级业务和第二优先级业务还可以为其他业务。
420,终端设备在所述第一时频资源和所述第二时频资源上发送信息。
相对应地,网络设备在该第一时频资源和该第二时频资源上接收信息。
因此,本申请实施例中针对两类不同优先级的上行信息发生碰撞的情况下,终端设备对第一上行信息和第二上行信息分别独立编码并使用不同的资源发送信息,能够达到更好地均衡两种不同优先级业务的效果。
应理解,该第一上行信息可以为对应于第一优先级的第一上行数据信息,也可以为对应于第一优先级的第一上行控制信息,也可以包括上述两者即包括第一优先级的第一上行数据信息和第一上行控制信息。
该第二上行信息可以为对应于第二优先级的第二上行数据信息,也可以为对应于第二优先级的第二上行控制信息,也可以包括上述两者即包括第二优先级的第二上行数据信息和第二上行控制信息。
类似的,第三上行信息可以为对应于第一优先级的第三上行控制信息,也可以包括对应于第一优先级的第三上行控制信息且包括对应于第一优先级且不同于第一上行信息的其他上行控制信息。
应理解,本申请实施例中,上行信道可以为PUSCH,该上行信道也可以为PUCCH,本申请实施例并不限于此。
例如,在一种实现方式中,该上行信道为PUSCH。
可选的,该PUSCH上可以承载第一上行控制信息和第二上行控制信息。
可选地,该PUSCH上可以承载第一上行数据信息和第二上行控制信息。
可选地,该PUSCH上可以承载第一上行控制信息和第二上行数据信息。
可选地,该PUSCH上可以承载第一上行数据信息和第二上行数据信息。
可选地,该PUSCH上还可以承载对应于第一优先级的上行数据信息(Uplink Shared Channel,UL-SCH)。具体的,该PUSCH可以是承载URLLC业务的PUSCH。例如,该UL-SCH为第一上行数据信息。
可选地,该PUSCH上还可以承载对应于第二优先级的上行数据信息UL-SCH。具体的,该PUSCH是承载eMBB业务的PUSCH。例如,该UL-SCH为第二上行数据信息。
可选的,该上行信道可以为PUSCH,该PUSCH上承载第一上行控制信息和第二上行控制信息,但不承载上行数据信息。即,该PUSCH是不承载上行数据信息的PUSCH(PUSCH without UL-SCH)。
可替代地,在一种实现方式中,该上行信道为PUCCH。该PUCCH上承载第一上行控制信息和第二上行控制信息。
在一种实现方式中,所述终端设备在所述第一时频资源和所述第二时频资源上发送信息,包括:所述终端设备在所述第一时频资源上发送所述第一上行信息,且在所述第二时频资源上发送所述第二上行信息。
在另一种实现方式中,所述终端设备在所述第一时频资源和所述第二时频资源上发送信息,包括:所述终端设备在所述第一时频资源上发送所述第一上行信息,且在所述第二时频资源上不发送所述第二上行信息,而是发送了其他上行信息;或者,所述终端设备在所述第一时频资源上发送其他上行信息,且在所述第二时频资源上发送所述第二上行信息;或者,所述终端设备在所述第一时频资源上和所述第二时频资源上均发送其他上行信息。应理解,此处其他上行信息为不同于第一上行信息且不同于第二上行信息的上行信息。或者该其他上行信息为空信息,终端设备发送空信息表示终端设备不向网络设备发送上行信息。
具体而言,在本申请实施例中,某个时频资源(例如第一时频资源或第二时频资源或第三时频资源)为用于承载某个上行信息(例如第一上行信息、第二上行信息或第三上行信息)的时频资源,或者说,该时频资源可以用于终端设备发送该上行信息,具体是指:该时频资源可以用于承载或者说发送潜在的该上行信息。若终端设备在(或者说需要在)该上行信道上发送该上行信息,则在该时频资源上发送该上行信息;若终端设备不在(或者说不需要在)该上行信道上发送该上行信息,则可以在该时频资源上发送其他上行信息,或者不发送(或者说不映射)任何信息。
其中,终端设备需要在该上行信道上发送该上行信息具体可以是指:终端设备接收到该上行信息所对应的下行控制信息,该下行控制信息用于调度或触发或配置该终端设备发送该上行信息;例如,后文描述的第一下行控制信息调度或配置终端设备发送第一上行数据信息,或第二下行控制信息触发或配置终端设备发送第一上行控制信息,或第三下行控制信息触发或配置终端设备发送第二上行控制信息,或者第四下行控制信息触发或配置终 端设备发送第二上行数据信息。
应理解,对于上述时频资源,若终端设备在该时频资源上发送该上行信息,则对于该时频资源对应的其中一个时域符号上,该上行信息可以映射到该时域符号上的所有频域资源上,也可以映射到该时域符号上的一部分频域资源上,例如该时域符号上的一部分子载波上,本申请实施例并不限于此。
应理解,上述时频资源为用于发送上述上行信息的时频资源,可以理解为该时频资源可以用于承载全部的该上行信息,也可以理解为该时频资源可以用于承载该上行信息的一部分信息,本申请实施例并不限于此。
可选的,本申请实施例中的上述上行信息可以是编码前的信息,或者称为信元信息或者称为系统信息(system information)。该编码前的信息可以包括循环冗余校验(cyclic redundancy check,CRC)比特,也可以不包括CRC比特。在有些场景下,终端设备发送的上述上行信息是该上行信息编码后信息的部分信息或全部信息。这种情况下,即使终端设备未发送全部的该上行信息编码后的信息,例如,该上行信息编码后的信息映射到该时频资源后,在该时频资源的一部分时频资源上被其他上行信息打孔,使得终端设备实际只发送了该上行信息编码后的信息的一部分,但是考虑到网络设备接收到该上行信息编码后的信息的一部分,仍然可以(例如,通过解码)恢复出该上行信息全部的编码前信息(即,网络设备潜在地可以通过该上行信息编码后信息的一部分得到该上行信息全部的编码前信息)。因此,这种情况下,仍然可以称该时频资源承载全部的该上行信息(例如,第一上行信息或第二上行信息)。
可选的,本申请实施例中的第一上行信息或第二上行信息也可以是编码后的信息。
可选的,本申请实施例中,时频资源承载上行信息的一部分信息可以理解为该上行信息的一部分信息映射到该时频资源上,该上行信息的另一部分信息映射到该上行信道的其他时频资源上,或映射到其他上行信道上,或者,该另一部分信息没有映射或映射后被丢弃,本申请实施例并不限于此。
下面对本申请实施例中的第一上行数据信息、第一上行控制信息、第二上行控制信息和第二上行数据信息进行详细说明。
可选的,第一上行数据信息为该上行信道上的全部对应于第一优先级的上行数据信息,或者,第一上行数据信息为该上行信道上的部分对应于第一优先级的上行数据信息。
进一步的,该第一上行数据信息为独立编码的上行数据信息。
可选的,第一上行控制信息为该上行信道上的全部对应于第一优先级的上行控制信息,或者,第一上行控制信息为该上行信道上的对应于第一优先级的上行控制信息中的一部分。
进一步的,该第一上行控制信息为独立编码的控制信息。
可选地,第二上行数据信息为该上行信道上的全部对应于第二优先级的上行数据信息,或者,第二上行数据信息为该上行信道上的部分对应于第二优先级的上行数据信息。
进一步的,该第一上行数据信息为独立编码的上行数据信息。
可选的,第二上行控制信息为该上行信道上的全部对应于第二优先级的上行控制信息,或者,第二上行控制信息为该上行信道上的对应于第二优先级的上行控制信息中的一部分。
进一步的,该第二上行控制信息为独立编码的控制信息。
可选的,第三上行控制信息也可以为独立编码的控制信息。
对于某个上行信息(例如第一上行数据信息,或第一上行控制信息,或第二上行数据信息,或第二上行控制信息,或第三上行控制信息),该上行信息为独立编码的上行信息是指:终端设备根据该上行信息的系统信息比特生成编码信息(例如CRC和或编码比特),形成编码后的信息序列。进一步地,该上行信息为独立编码的上行信息是指:终端设备仅根据该上行信息的系统信息比特生成编码信息,或者说终端设备不根据该上行信息以外的其他信息的系统信息比特生成该编码信息。
应理解,本申请实施例中,第一上行信息和第二上行信息独立编码是指:终端设备分别对该第一上行信息和该第二上行信息进行编码。在分别完成对两者的编码和调制之后,再将两者映射到该上行信道上。具体的,第一上行信息对应的编码信息(例如校验比特parity bits)由第一上行信息对应的的系统信息比特确定而与第二上行信息的系统信息比特(systematic bits)无关,第二上行信息对应的编码信息(例如CRC比特或编码比特parity bits)由第二上行信息对应的系统信息比特(systematic bits)确定而与第一上行信息的系统信息比特无关。
类似的,第一上行信息和第三上行信息独立编码是指:终端设备分别对该第一上行信息和该第三上行信息进行编码。第二上行信息和第三上行信息独立编码是指:终端设备分别对该第二上行信息和该第三上行信息进行编码
进一步的,某一种上行信息(例如第一上行数据信息、或第一上行控制信息、或第二上行控制信息、第二上行数据信息或第三上行控制信息)中所包括的所有信息可以是联合编码的信息。
上述的联合编码是指:该种上行信息对应的编码信息由该种上行信息包括的所有系统信息比特生成。若该种上行信息中包括多类信息,则终端设备对该种上行信息所包括的多类信息联合编码,该种上行信息对应的CRC和或编码信息由该多类信息共同生成。例如,若该种上行信息中包括HARQ-ACK信息和SR信息,则该种上行信息是这两类信息联合编码的信息。
也就是说在本申请实施例中不同的上行信息可以独立编码,同一上行信息中的所有信息进行联合编码。
可选地,在一种实现方式中,所述第一上行数据信息包括第一下行控制信息调度或配置终端设备发送的数据信息,其中,所述第一上行数据信息对应于所述第一优先级是通过满足以下条件中的一种或多种来表示的:所述第一下行控制信息中的第一比特域指示或配置所述第一上行数据信息对应于所述第一优先级,所述第一下行控制信息位于第一搜索空间,所述第一下行控制信息位于第一物理下行控制信道PDCCH机会集合,所述第一下行控制信息对应第一下行控制信息格式DCI format,以及,所述第一下行控制信息对应第一无线网络临时标识(radio network tempory identity,RNTI)。
例如,第一下行控制信息为物理层的动态DCI,例如上行授权(uplink grant,UL grant)。具体的,该UL grant为配置调度的无线网络临时标识(configured scheduling radio network temporary identifier,CS-RNTI)以外的其他RNTI加扰,例如小区无线网络临时标识(cell radio network temporary identifier,C-RNTI)或调制编码策略无线网络临时标识(modulation and coding scheme RNTI,MCS-C-RNTI)加扰。
再例如,第一下行控制信息可以是将该上行信道配置给终端设备用于以免调度许可 (grantfree,GF)方式发送信息的信息,例如可以是高层信令,也可以是半静态上行授权UL grant,也可以是高层信令及半静态UL grant(例如CS-RNTI加扰的UL grant)。
可选地,在一种实现方式中,所述第一上行控制信息包括第二下行控制信息配置或触发终端设备发送的上行控制信息,其中,所述第一上行控制信息对应于所述第一优先级是通过满足以下条件中的一种或多种来表示的:所述第二下行控制信息中的第二比特域指示或配置所述第一上行控制信息对应于所述第一优先级,所述第二下行控制信息位于第一搜索空间,所述第二下行控制信息位于第一PDCCH机会集合,所述第二下行控制信息对应第一DCI format,以及,所述第二下行控制信息对应第一RNTI;
在一种实现方式中,类似于网络设备通过第一下行控制信息配置终端设备发送第一上行数据信息,该第二下行控制信息可以是配置该上行控制信息的高层信令,也可以是配置或触发终端设备发送该上行控制信息的半静态DCI信令(例如CS-RNTI加扰的下行授权(downlink grant,DL grant)。例如,若该第一上行控制信息包括周期信道状态信息(channel state information,CSI)信息或SR信息,该周期CSI信息或SR信息为高层信令配置终端设备发送的信息,用于发送该CSI信息或SR信息的时间单元(例如时隙)为周期性的。再例如,网络设备可以通过第二下行控制信息配置基于半持续调度(semi persistant scheduling,SPS)的下行数据信息(即SPS PDSCH)给该终端设备,该SPS PDSCH是周期性的,此时,终端设备针对该周期性的SPS PDSCH反馈的HARQ-ACK信息也是周期性的,因此若该第一上行控制信息包括该HARQ-ACK信息,可以认为该HARQ-ACK信息是该第二下行控制信息配置或触发该终端设备发送的。
在另一种实现方式中,第二下行控制信息可以是触发或者说指示终端设备发送该上行控制信息的控制信令。具体的,第二下行控制信息为物理层的下行控制信息DCI,例如UL grant或DL grant。更具体的,该UL grant或DL grant为CS-RNTI以外的其他RNTI加扰,例如C-RNTI或MCS-C-RNTI加扰。例如,若该第一上行控制信息包括非周期CSI信息,该非周期CSI信息为DL grant或UL grant触发终端设备发送的。再例如,网络设备可以通过第二下行控制信息调度PDSCH给该终端设备,终端设备检测到该第二下行控制信息后反馈对应的HARQ-ACK信息,因此若该第一上行控制信息包括HARQ-ACK信息,则可以认为该HARQ-ACK信息是该第二下行控制信息触发该终端设备发送的。
可选地,在一种实现方式中,所述第二上行控制信息包括第三下行控制信息配置或触发终端设备发送的上行控制信息,其中,所述第二上行控制信息对应于所述第二优先级是通过满足以下条件中的一种或多种来表示的:所述第三下行控制信息中的第四比特域指示或配置所述第二上行控制信息对应于所述第二优先级,所述第三下行控制信息位于第二搜索空间,所述第三下行控制信息位于第二PDCCH机会集合,所述第三下行控制信息对应第二DCI format,以及,所述第三下行控制信息对应第二RNTI。
应理解,第三下行控制信息配置或触发终端设备发送第二上行控制信息的方法类似于第二下行控制信息配置或触发终端设备发送第一上行控制信息的方法,不再赘述。
例如,第三下行控制信息为物理层的动态下行控制信息DCI,例如为UL grant或DL grant。具体的,该DCI为CS-RNTI以外的其他RNTI加扰,例如C-RNTI或MCS-C-RNTI加扰。
再例如,该第三下行控制信息可以是配置该上行控制信息的高层信令,也可以是配置终端设备发送该上行控制信息的半静态DCI信令(例如CS-RNTI加扰的下行授权DL  grant)。
可选地,在一种实现方式中,所述第二上行数据信息包括第四下行控制信息调度或配置终端设备发送的数据信息,其中,所述第二上行数据信息对应于所述第二优先级是通过满足以下条件中的一种或多种来表示的:所述第四下行控制信息中的第三比特域指示或配置所述第二上行数据信息对应于第二优先级,所述第四下行控制信息位于第二搜索空间,所述第四下行控制信息位于第二PDCCH机会集合,所述第四下行控制信息对应第二DCI format,以及,所述第四下行控制信息对应第二RNTI;
应理解,第四下行控制信息配置或调度终端设备发送第二上行数据信息的方法类似于第一下行控制信息配置或调度终端设备发送第一上行数据信息的方法,不再赘述。
例如,第四下行控制信息为物理层的动态下行控制信息DCI,例如上行授权UL grant。具体的,该UL grant为CS-RNTI以外的其他RNTI加扰,例如C-RNTI或MCS-C-RNTI加扰。
再例如,第四下行控制信息可以是将该上行信道配置给终端设备用于以GF方式发送信息的信息,例如可以是高层信令,也可以是半静态UL grant,也可以是高层信令及半静态UL grant。
可选地,在一种实现方式中,第三上行控制信息包括第五下行控制信息配置或触发终端设备发送的上行控制信息,其中,所述第三上行控制信息对应于所述第一优先级是通过满足以下条件中的一种或多种来表示的:所述第五下行控制信息中的第五比特域指示或配置所述第三上行控制信息对应于所述第一优先级,所述第五下行控制信息位于第一搜索空间,所述第五下行控制信息位于第一PDCCH机会集合,所述第五下行控制信息对应第一DCI format,以及,所述第五下行控制信息对应第一RNTI。
应理解,第五下行控制信息配置或触发终端设备发送第三上行控制信息的方法类似于第二下行控制信息配置或触发终端设备发送第一上行控制信息的方法,不再赘述。
例如,第五下行控制信息为物理层的动态下行控制信息DCI,例如为UL grant或DL grant。具体的,该DCI为CS-RNTI以外的其他RNTI加扰,例如C-RNTI或MCS-C-RNTI加扰。
再例如,该第五下行控制信息可以是配置该上行控制信息的高层信令,也可以是配置终端设备发送该上行控制信息的半静态DCI信令(例如CS-RNTI加扰的下行授权DL grant)。
可选地,所述第一上行控制信息包括以下信息中的一种或多种:对应于所述第一优先级的混合自动重传请求确认HARQ-ACK信息、对应于所述第一优先级的信道状态信息CSI信息、对应于第一优先级的调度请求SR信息;
例如,第一上行控制信息是对应于第一优先级的HARQ-ACK信息,或者,第一上行控制信息是对应于第一优先级的CSI信息,或者,第一上行控制信息是对应于第一优先级的SR信息。
再例如,第一上行控制信息是上述对应于第一优先级的HARQ-ACK信息、对应于第一优先级的CSI信息、和对应于第一优先级的SR信息中的至少两种的组合。例如,第一上行控制信息是对应于第一优先级的HARQ-ACK信息和对应于第一优先级的SR信息,或者,第一上行控制信息是对应于第一优先级的HARQ-ACK信息和对应于第一优先级的CSI信息,或者,第一上行控制信息是对应于第一优先级的CSI信息和对应于第一优先级 的SR信息,或者,第一上行控制信息是对应于第一优先级的HARQ-ACK信息和对应于第一优先级的CSI信息和对应于第一优先级的SR信息。
可选的,上述对应于第一优先级的CSI信息可以是对应于第一优先级的CSI part 1信息,也可以是对应于第一优先级的CSI part 2信息,也可以是对应于第一优先级的CSI part 1信息和对应于第一优先级的CSI part 2信息。
应理解,本申请实施例中,CSI可以包括两部分信息:CSI part 1和CSI part 2,CSI part 1可以包括高优先级的CSI信息,CSI part 2可以包括低优先级的CSI信息。例如CSI part 1包括信道状态信息参考信号资源指示(CSI-RS resource indicator,CRI)、秩指示(Rank indicator,RI)、第一个传输块(codeword)的信道质量指示(Channel quality indicator,CQI)信息中的至少一种,CSI part 2包括第二个传输块的CQI信息、预编码矩阵指示(Precoding matrix indicator,PMI)信息中的至少一种。再例如,CSI part 1包括RI信息、CQI信息以及非零宽带幅度系数(non-zero wideband amplitude coefficients)信息中的至少一种,CSI part 2包括PMI信息。
可选地,所述第二上行控制信息包括以下信息中的一种或多种:对应于所述第二优先级的HARQ-ACK信息、对应于所述第二优先级的CSI信息、对应于所述第二优先级的SR信息。
例如,第二上行控制信息是对应于第二优先级的HARQ-ACK信息,或者,第二上行控制信息是对应于第二优先级的CSI信息,或者,第二上行控制信息是对应于第二优先级的SR信息。
再例如,第二上行控制信息是上述对应于第二优先级的HARQ-ACK信息、对应于第二优先级的CSI信息、和对应于第二优先级的SR信息中的至少两种的组合。例如,第二上行控制信息是对应于第二优先级的HARQ-ACK信息和对应于第二优先级的SR信息,或者,第二上行控制信息是对应于第二优先级的HARQ-ACK信息和对应于第二优先级的CSI信息,或者,第二上行控制信息是对应于第二优先级的CSI信息和对应于第二优先级的SR信息,或者,第二上行控制信息是对应于第二优先级的HARQ-ACK信息和对应于第二优先级的CSI信息和对应于第二优先级的SR信息。
可选的,上述对应于第二优先级的CSI信息可以是对应于第二优先级的CSI part 1信息,也可以是对应于第二优先级的CSI part 2信息,也可以是对应于第二优先级的CSI part 1信息和对应于第二优先级的CSI part 2信息。
进一步的,若第x上行控制信息是对应于第x优先级的α信息,第x上行控制信息为该上行信道上的全部对应于第x优先级的α信息。或者,第x上行控制信息为该上行信道上对应于第x优先级的α信息中的一部分。上述x为一或二。类似的,第三上行控制信息为该上行信道上面承载的全部对应于第一优先级的β信息。上述α信息或β信息可以为HARQ-ACK信息、或CSI信息、或SR信息,或HARQ-ACK信息以及CSI信息,或HARQ-ACK信息以及SR信息,或CSI信息以及SR信息,或HARQ-ACK信息以及CSI信息以及SR信息。对于第一上行控制信息和第三上行控制信息,β信息与α信息不同,例如,α信息为对应第一优先级的HARQ-ACK信息,β信息为对应第一优先级的CSI信息。
可选的,若该上行信道为跳频(frequency hopping)模式的上行信道,第一时频资源、第二时频资源、第三时频资源(若存在第三上行信息)可以都是位于同一跳(hop)上面 的资源,第一上行信息、第二上行信息、第三上行信息(若存在)都是位于该同一跳上面的信息。
进一步的,第一上行数据信息可以是该跳上面承载的全部对应于第一优先级的上行数据信息。该第一上行控制信息可以是该跳上面承载的全部对应于第一优先级的上行控制信息。
进一步的,第二上行数据信息可以是该跳上面承载的全部对应于第二优先级的上行数据信息。该第二上行控制信息可以是该跳上面承载的全部对应于第二优先级的上行控制信息。
更进一步的,若第x上行控制信息是对应于第x优先级的α信息,第x上行控制信息为该跳上面承载的全部对应于第x优先级的α信息。上述x和α的定义如前所述。
类似的,第三上行控制信息为该跳上面承载的全部对应于第一优先级的β信息。
在一种实现方式中,所述第二下行控制信息配置或调度所述终端设备发送对应于第一优先级的第一下行数据信息,所述对应于第一优先级的HARQ-ACK信息为针对所述第一下行数据信息的HARQ-ACK信息;也就是说第一上行控制信息的第一优先级是通过第二下行控制信息配置或调度的第一下行数据的优先级表示的。
在一种实现方式中,所述第三下行控制信息配置或调度所述终端设备发送对应于第二优先级的第二下行数据信息,所述对应于第二优先级的HARQ-ACK信息为针对所述第二下行数据信息的HARQ-ACK信息;也就是说第二上行控制信息的第二优先级是通过第三下行控制信息配置或调度的第二下行数据的优先级表示的。
进一步的,所述第一下行数据信息在时间上可以晚于所述第二下行数据信息,即承载所述第一下行数据信息的PDSCH晚于承载所述第二下行数据信息的PDSCH。考虑到第一下行数据信息为高优先级的URLLC业务,第二下行数据信息为低优先级的eMBB业务时,URLLC业务比eMBB业务晚到达,但需要较小的HARQ-ACK反馈时延,因此对应于URLLC业务的HARQ-ACK和对应于eMBB业务的HARQ-ACK可能在同一时间单元发生碰撞。
具体地,在实际应用中,本申请实施例中网络设备可以通过以下五种方式中的任一中方式通知终端设备第一上行信息/第二上行信息所对应的优先级:
方式1)第一下行控制信息中的第一比特域指示所述第一上行数据信息对应于第一优先级。也就是说,第一下行控制信息显式地通知该第一下行控制信息所调度或配置的第一上行数据信息对应于第一优先级。
类似的,第二下行控制信息中的第二比特域指示所述第一上行控制信息对应于第一优先级。具体的,第二下行控制信息中的第二比特域指示第一下行数据信息对应第一优先级,因此间接指示(也可以称为隐式指示)该第二下行控制信息针对的第一上行控制信息对应于第一优先级。
类似的,第五下行控制信息中的第五比特域指示所述第三上行控制信息对应于第一优先级。
进一步的,该第一比特域在该第一下行控制信息中的位置与该第二比特域在该第二下行控制信息中的位置相同。该第五比特域在该第五下行控制信息中的位置与该第二比特域在该第二下行控制信息中的位置可以相同。
为了使终端设备根据下行控制信息能够区别第一优先级和第二优先级,所述第三下行 控制信息中的第三比特域指示所述第二上行控制信息对应于第二优先级。具体的,第三下行控制信息中的第三比特域指示第二下行数据信息对应第二优先级,因此间接指示(也可以称为隐式指示)该第三下行控制信息针对的第二上行控制信息对应于第二优先级。
进一步的,该第三比特域在该第三下行控制信息中的位置与该第二比特域在该第二下行控制信息中的位置相同。应理解,第二比特域的取值与第三比特域的取值不同,以便终端设备根据比特域的不同取值确定不同的优先级。
进一步的,该第三比特域在该第三下行控制信息中的位置与该第五比特域在该第五下行控制信息中的位置相同。
类似的,第四下行控制信息中的第四比特域指示所述第二上行数据信息对应于第二优先级。也就是说,第四下行控制信息显式地通知该第四下行控制信息所调度或配置的第二上行数据信息对应于第二优先级。
进一步的,该第一比特域在该第一下行控制信息中的位置与该第四比特域在该第四下行控制信息中的位置相同。
例如,若下行控制信息(例如第一下行控制信息或第二下行控制信息或第五下行控制信息)中用于指示优先级的比特域(例如第一比特域或第二比特域或第五比特域)置’0’,则代表该下行控制信息(例如第一下行控制信息或第二下行控制信息)配置或调度或触发的上行数据信息(例如第一上行数据信息)或上行控制信息(例如第一上行控制信息或第三上行控制信息)对应第一优先级,若下行控制信息(例如第三下行控制信息或第四下行控制信息)中的比特域(例如第三比特域或第四比特域)置’1’,则代表该下行控制信息配置或调度或触发的上行数据信息或上行控制信息(例如第二上行数据信息或第二上行控制信息)对应第二优先级。
方式2)所述第一下行控制信息位于第一搜索空间(search space)。例如,第一下行控制信息为DCI。应理解,搜索空间是终端设备在PDCCH中盲检测DCI的区域。搜索空间可以是用户搜索空间(UE specific search space,USS)或公共搜索空间(common search space,CSS)。
类似的,该第二下行控制信息位于该第一搜索空间。应理解,第一下行控制信息与第二下行控制信息所在的PDCCH可以相同或不同,但在PDCCH中的搜索空间都可以是第一搜索空间。
类似的,该第五下行控制信息位于该第一搜索空间。
为了区别第一优先级和第二优先级,该第三下行控制信息位于第二搜索空间,类似地,该第四下行控制信息位于第二搜索空间。进一步的,该第二搜索空间与该第一搜索空间不同。例如,该第二搜索空间为USS,该第一搜索空间为CSS。若终端设备在CSS中检测到下行控制信息,则代表该下行控制信息(例如第一下行控制信息或第二下行控制信息或第五下行控制信息)配置或调度或触发的上行数据信息(例如第一上行数据信息)或上行控制信息(例如第一上行控制信息或第三上行控制信息)对应第一优先级,若终端设备在USS中检测到下行控制信息(例如第三下行控制信息或第四下行控制信息),则代表该下行控制信息配置或调度或触发的上行数据信息(例如第二上述数据新)或上行控制信息(例如第二上行控制信息)对应第二优先级。
再例如,该第二搜索空间为CSS,该第一搜索空间为USS。若终端设备在USS中检测到下行控制信息(例如第一下行控制信息或第二下行控制信息或第五下行控制信息), 则代表该下行控制信息配置或调度或触发的上行数据信息(例如第一上行数据信息)或上行控制信息(例如第一上行控制信息或第三上行控制信息)对应第一优先级,若终端设备在CSS中检测到下行控制信息(例如第三下行控制信息或第四下行控制信息),则代表该下行控制信息配置或调度或触发的上行数据信息或上行控制信息(例如第二上行控制信息)对应第二优先级。
方式3)所述第一下行控制信息位于第一PDCCH机会(PDCCH occasion)集合。本申请中PDCCH机会集合也称为PDCCH监测机会(PDCCH monitoring occasion),是指网络设备配置给该终端设备的用于监测(monitor)PDCCH的时频资源的集合。终端设备在网络设备配置的PDCCH机会集合中监测DCI,而不在PDCCH机会集合以外的时间单元监测DCI。
类似的,该第二下行控制信息位于第一PDCCH机会集合。应理解,第一下行控制信息与第二下行控制信息所在的PDCCH可以相同或不同,但都位于相同的第一PDCCH机会集合中。
类似的,该第五下行控制信息位于第一PDCCH机会集合。
为了区别第一优先级和第二优先级,所述第三下行控制信息位于第二PDCCH机会集合;所述第四下行控制信息位于第二PDCCH机会集合。也就是说,终端设备在不同的PDCCH机会集合中检测到的下行控制信息分别对应不同的优先级。进一步的,该第二PDCCH机会集合所包括的时频资源与第一PDCCH机会集合所包括的时频资源不同,例如该第一PDCCH机会集合和该第二PDCCH机会集合所包括的时间单元对应的周期不同。因此终端设备在第一PDCCH机会集合中检测到的下行控制信息为对应第一优先级的下行控制信息,在第二PDCCH机会集合中检测到的下行控制信息为对应第二优先级的下行控制信息。
方式4)所述第一下行控制信息对应第一下行控制信息格式(DCI format)。DCI format是指用于承载下行控制信息的DCI格式。
类似的,该第二下行控制信息对应第一DCI format。
类似的,该第五下行控制信息对应第一DCI format。
为了区别第一优先级和第二优先级,所述第三下行控制信息对应第二DCI format,所述第四下行控制信息对应第二DCI foumat。也就是说,终端设备检测到的不同DCI format分别对应不同的优先级。进一步的,该第一DCI format与第二DCI format不同,例如第一DCI format的有效载荷大小(payload size)小于第二DCI format的payload size。再例如,第一DCI format为DCI format 0_0或DCI format 1_0,第一DCI format为DCI format 1_0或DCI format 1_1。
方式5)所述第一下行控制信息对应第一无线网络临时标识RNTI。RNTI用于加扰下行控制信息的标识,不同RNTI对应的控制信息类型不同。
类似的,第二下行控制信息对应第一无线网络临时标识RNTI。
类似的,第五下行控制信息对应第一无线网络临时标识RNTI。
为了区别第一优先级和第二优先级,所述第三下行控制信息对应第二RNTI,第四下行控制信息对应第二RNTI。也就是说,终端设备检测到的使用不同RNTI的下行控制信息分别对应不同的优先级。
进一步的,该第二RNTI为C-RNTI或CS-RNTI。
进一步的,该第一RNTI是C-RNTI以外的其他RNTI或CS-RNTI以外的其他RNTI,例如该第二RNTI为MCS-C-RNTI。
例如,若终端设备在第一PDCCH机会集合中监测到下行控制信息(例如第一下行控制信息或第二下行控制信息或第五下行控制信息),或者检测到的下行控制信息(例如第一下行控制信息或第二下行控制信息或第五下行控制信息)对应第一DCI format或对应第一RNTI,则代表该下行控制信息配置或调度或触发的上行数据信息(例如第一上行数据信息)或上行控制信息(例如第一上行控制信息或第三上行控制信息)对应第一优先级。若终端设备在第二PDCCH机会集合中检测到的下行控制信息(例如第三下行控制信息),或者检测到的下行控制信息(例如第三下行控制信息)对应第二DCI format或对应第二RNTI,则代表该下行控制信息配置或调度或触发的上行数据信息或上行控制信息(例如第二上行控制信息)对应第二优先级。
对于第一优先级高于第二优先级,可以体现在在第一上行信道上第一上行信息和第二上行控制信息之间的映射关系上。具体地,下面针对第一上行信息和第二上行信息的不同信息形式,结合具体的场景例子,分别描述本申请实施例信息映射的方式及发送信息的方法。
首先,在描述具体场景实施例之前,对本申请实施例的信息映射顺序和映射方式说明如下:
对于承载在该上行信道,且独立编码的信息A和信息B,用于承载信息B的时频资源(时频资源#B)与用于承载信息A的时频资源(时频资源#A)之间的映射顺序,包括以下2种映射顺序(即映射顺序1和映射顺序2)。
其中,信息A为上述第一上行数据信息(时频资源#A为上述第一时频资源),或者,信息A为上述第一上行控制信息(时频资源#A为上述第一时频资源),或者,信息A为上述第二上行控制信息(时频资源#A为上述第二时频资源),或者,信息A为上述第二数据信息(时频资源#A为上述第二时频资源),或者,信息A为上述第三上行控制信息(时频资源#A为上述第三时频资源)。信息B与信息A不同;信息B为上述第一上行数据信息(时频资源#B为上述第一时频资源),信息B为上述第一上行控制信息(时频资源#B为上述第一时频资源),或者,信息B为上述第二上行控制信息(时频资源#B为上述第一时频资源),信息B为上述第二数据信息,或者,信息B为上述第三上行控制信息(时频资源#B为上述第三时频资源)。
另外,时频资源#A可以是信息A编码调制后的信息所映射到的时频资源,应理解,在映射完信息A后,时频资源#A中的部分或全部时频资源可以被打孔;或者,时频资源#A也可以是信息A编码调制后的信息所映射到的时频资源被其他信息打孔后剩余的时频资源。时频资源#B可以是信息B编码调制后的信息所映射到的时频资源,应理解,在映射完信息B后,时频资源#B中的部分或全部时频资源可以被打孔;或者,时频资源#B也可以是信息B编码调制后的信息所映射到的时频资源被其他信息打孔后剩余的时频资源。
映射顺序1:承载信息B的时频资源晚于承载信息A的时频资源,或者说,时频资源#B晚于时频资源#A。
可选的,时频资源#A在时域上早于时频资源#B,和/或,时频资源#A在频域上低于时频资源#B。
应理解,用于承载(或者说映射)信息B的时频资源晚于用于承载(或者说映射)信 息A的时频资源是指:信息B在映射顺序上位于信息A的后面,或者说,信息B晚于信息A,或者说,信息B映射到信息A后面。
本申请所说的映射顺序为:先频域后时域(frequency first time second)或者说先频后时。其中,时域上的映射顺序是时间先后顺序或者时域符号从小到大的顺序,频域上的映射顺序是子载波序号从小到大的顺序或者频率从低到高的顺序。
应理解,本申请实施例的映射顺序不限于先时域后频域的形式,也可以按照先频域后时域的顺序映射。
应理解,对于某一种信息(信息A或信息B)在该上行信道上的映射,也是按照先频域后时域的映射顺序,依序将该信息调制编码之后的序列映射到该上行信道上。进一步的,时域上可以按照时域符号序号从小到大的顺序映射,频域上可以按照子载波序号从小到大的顺序映射。更进一步的,将该信息对应的序列依序(按照序号从小到大)优先在同一个时域符号的可用子载波上进行映射,若一个时域符号上可用的子载波都映射满了之后,则在后一个时域符号的可用子载波上继续映射。
例如,对于信息A调制编码之后的信息序列a1,a2,…aj,…aA,j大于或等于0,j小于或等于A,A为信息A调制编码之后的调制符号个数,信息A中较早的调制符号aj对应的时域符号早于信息A中较晚的调制符号aj+1对应的时域符号,或者,当aj和aj+1对应的时域符号相同时,aj对应的子载波序号小于aj+1对应的子载波序号。
类似的,对于信息B调制编码之后的信息序列b1,b2,…bj,…bB,j大于或等于0,j小于或等于B,B为信息B调制编码之后的调制符号个数,信息B中较早的调制符号bj对应的时域符号早于信息B中较晚的调制符号bj+1对应的时域符号,或者,当bj和bj+1对应的时域符号相同时,bj对应的子载波序号小于bj+1对应的子载波序号。
可选的,时频资源#B包含在该上行信道上,时频资源#A以外的剩余时频资源中。例如上行信道全部可用的时频资源为时频资源#P,用于承载信息A的时频资源为时频资源#A,该时频资源#A为在时频资源#P上按照先频后时的顺序映射信息A所占的时频资源;则用于承载信息B的时频资源#B包含在时频资源#P去除时频资源#A以外的时频资源中。按照先频后时的映射顺序,时频资源#A由于不需要考虑避让信息B,因此相比于时频资源#B占用了更早的时域符号或更低的频率。
进一步的,时频资源#A为信息A在时频资源#P中按照先频后时的映射顺序进行映射所占的时频资源;时频资源#B为信息B在时频资源#P去除时频资源#A以外的时频资源中按照先频后时的映射顺序进行映射所占的时频资源。
进一步的,对于时频资源#B中的RE#b以及时频资源#A中的RE#a,RE#b对应的时域符号晚于RE#a对应的时域符号(例如RE#b与RE#a位于不同时域符号时)例如,RE#b与RE#a位于不同的时域符号上的情况下,RE#b在时间上晚于RE#a。或者,RE#b在频率上高于RE#a(或称为RE#b对应的子载波序号大于RE#a对应的子载波序号),例如,RE#b与RE#a位于相同时域符号时,RE#b在频率上高于RE#a。
其中,时频资源#B中的RE#b可以是时频资源#B的起始RE,即b1对应的RE,也可以是时频资源#B的结束RE,即bB对应的RE,也可以是时频资源#B中的任意一个RE;时频资源#A中的RE#a可以是时频资源#A的起始RE,即a1对应的RE,也可以是时频资源#A的结束RE,即aA对应的RE,也可以是时频资源#A中的任意一个RE。
若RE#a和RE#b位于同一个时域符号,则RE#a可以为时频资源#A的RE中,位于 该时域符号的起始RE(即时频资源#A在该时域符号上对应的子载波中,子载波序号最小的RE),也可以为时频资源#A的RE中,位于该时域符号的结束RE(即时频资源#A在该时域符号上对应的子载波中,子载波序号最大的RE),也可以为时频资源#A的RE中,位于该时域符号上的任意一个RE。RE#b可以为时频资源#B的RE中,位于该时域符号的起始RE(即时频资源#B在该时域符号上对应的子载波中,子载波序号最小的RE),也可以为时频资源#B的RE中,位于该时域符号的结束RE(即时频资源#B在该时域符号上对应的子载波中,子载波序号最大的RE),也可以为时频资源#B的RE中,位于该时域符号上的任意一个RE。
可选的,时频资源#B的第一个时域符号为时频资源#A的最后一个时域符号。如图5中(b)所示,第一时频资源(时频资源#A)的最后一个符号为符号#1,等于第二时频资源(时频资源#B)的第一个符号。
例如,时频资源#B的起始RE为时频资源#A的最后一个时域符号的第一个RE(即子载波序号最小的RE)。
可选的,时频资源#B的第一个时域符号为时频资源#A的最后一个时域符号的下一个时域符号。如图5中(a)所示,第一时频资源(时频资源#A)的最后一个符号为符号#1,第二时频资源(时频资源#B)的第一个符号为符号#2,为符号#1的下一个符号。
例如,时频资源#B的起始RE为时频资源#A的最后一个时域符号的下一个时域符号的第一个RE。
进一步的,时频资源#B的起始RE(b1对应的RE)为时频资源#P去除时频资源#A以外的时频资源中按照先频后时的映射顺序对应的最早的RE。
例如,时频资源#B的起始RE为时频资源#A的最后一个符号中第一个RE(即子载波序号最小的RE)的下一个RE。如图5中(b)所示,第一时频资源(时频资源#A)的最后一个符号中第一个RE为符号#1,子载波#0,第二时频资源(时频资源#B)的起始RE)为符号#1,子载波#1,为第一时频资源的起始RE的下一个RE。
再例如,时频资源#B的起始RE为时频资源#A的结束RE的下一个RE,或者,时频资源#B的起始RE为频资源#A的最后一个符号的下一个时域符号的第一个(子载波序号最小的)RE。如图5中(a)所示,第一时频资源(时频资源#A)的结束RE为符号#1,子载波#11,第二时频资源(时频资源#B)的起始RE)为符号#2,子载波#0,为为第一时频资源的结束RE的下一个RE。
应理解,此处下一个RE是指按照先频域后时域的映射顺序映射的下一个RE。例如,若RE#b为RE#a的下一个RE,则RE#b和RE#a位于同一个时域符号,RE#b对应的子载波(子载波序号i)可以是RE#a对应的子载波的下一个子载波(子载波序号i+1),也可以是在该时域符号上可以用于上行信息映射的子载波,且未被时频资源#A占用的子载波中,子载波序号最小的子载波,或者,RE#b对应的时域符号为RE#a对应的时域符号的下一个符号。
可选的,时频资源#B为:从该上行信道的最早的一组连续的承载DMRS的时域符号之后的第一个时域符号或最早的一个不承载DMRS的时域符号开始,在该上行信道上除时频资源#A以外的其余时频资源上,按照先频域后时域的顺序映射信息B所占的时频资源。由于映射信息B时需要跳过用于承载信息A的时频资源#A,因此时频资源#B为根据时频资源#A所确定的。
在一种实现方式中,当该上行信道为PUCCH,即,信息A和信息B都映射在PUCCH上时,RB为承载上行控制信息的时频资源颗粒度。此时,信息B所映射的时频资源在该上行信道的资源映射顺序上位于信息A所映射的时频资源的后面。例如,这里的映射顺序是指频率上从高到低的顺序(信息A所映射的时频资源在频率上高于信息B所映射的时频资源),或者从低到高的顺序(信息A所映射的时频资源在频率上低于信息B所映射的时频资源)。
可选的,信息B所映射的起始RB晚于信息A所映射的结束RB。进一步的,信息B所映射的起始RB为信息A所映射的结束RB的下一个RB。这里所说的下一个RB是指该PUCCH信道中所包括的RB集合中信息A所映射的结束RB的下一个RB。例如,信息B所映射的起始RB为该PUCCH信道中所包括的RB集合中,RB序号大于信息A所映射的结束RB的下一个RB,或者为该RB集合中RB序号小于信息A所映射的结束RB的下一个RB。例如,承载信息A的时频资源对应RB#k至RB#k+x,承载信息B的时频资源对应RB#k+x+1至RB#k+x+1+y,或RB#k-1-y至RB#k-1,其中x为大于或等于零的整数,y为大于或等于零的整数,k为大于或等于零的整数。
可选的,信息B所映射的起始时域符号晚于信息A所映射的结束时域符号。例如,承载信息A的时频资源对应符号#k’至符号#k’+x’,承载信息B的时频资源对应符号#k’+x’+1至符号#k’+x’+1+y’,或符号#k’-1-y’至符号#k’-1,其中x’为大于或等于零的整数,y’为大于或等于零的整数,k’为大于或等于零的整数。
可选的,信息B所映射的起始RB在时间上晚于信息A所映射的起始RB,或者,信息B所映射的结束RB在时间上晚于信息A所映射的结束RB。进一步的,信息B所映射的起始RB为信息A所映射的起始RB的下一个RB。
可选的,时频资源#A对应的时域符号与所述上行信道的解调参考信号DMRS符号之间的时间间隔小于所述第二时频资源对应的时域符号与所述DMRS符号之间的时间间隔,和/或,时频资源#A在频域上低于时频资源#B。
具体的,时频资源#B与该上行信道上承载DMRS(称为DMRS#1)的符号之间的时间间隔大于时频资源#A与承载该DMRS#1的符号之间的距离(或者称时间间隔)。更具体的,对于时频资源#B中的RE#b以及时频资源#A中的RE#a,RE#b所在的时域符号与DMRS#1所在的时域符号之间的时间间隔大于RE#a所在的时域符号与DMRS#1所在的时域符号之间的时间间隔(例如RE#b与RE#a位于不同时域符号时),例如RE#b与RE#a位于不同的时域符号上的情况下,RE#b与DMRS#1的时间间隔大于RE#a与DMRS#1的时间间隔。或者,RE#b在频率上高于RE#a(或称为RE#b对应的子载波序号大于RE#a对应的子载波序号),例如,RE#b与RE#a位于相同时域符号时,RE#b在频率上高于RE#a。RE#a和RE#b的定义如前所述,不再赘述。
可选的,该DMRS#1为该上行信道上承载的最早的DMRS。可选的,该DMRS#1为该上行信道上的任意一个DMRS。
应理解,上述信息(例如信息A或信息B)所映射的起始RE/RB(或结束RE/RB)是指,按照信息到时频资源的映射顺序或者映射步骤,上述信息最先映射到的RE/RB(或最后映射到的RE/RB)或者用于承载上述信息的时频资源中最早的RE/RB(或最晚的RE/RB)。例如,起始RE/RB为按照先频域后时域的映射顺序,用于映射该信息的时频资源中,对应于时域上最早的时域符号以及频率上最低(子载波序号最小)的子载波的 RE/RB。结束RE/RB为按照先频域后时域的映射顺序,用于映射该信息的时频资源中,对应于时域上最晚的时域符号以及频率上最高(子载波序号最大/RB序号最大)的RE/RB。
映射顺序2:信息B到该上行信道的映射,在映射步骤上晚于信息A到该上行信道的映射。
可选的,终端设备对信息B的映射,在映射步骤上晚于对信息A的映射。例如,终端设备先映射信息A,在映射完成信息A之后再映射信息B。
进一步的,信息A和信息B可以以速率匹配的方式在该上行信道上进行复用。
对于承载在该上行信道上,且独立编码的信息C和信息D,用于承载信息D的时频资源(时频资源#D)与用于承载信息C的时频资源(时频资源#C)之间的映射方式,可以包括以下3种映射方式(即映射方式1至映射方式3)。
其中,信息C可以为上述第一上行数据信息(时频资源#C为上述第一时频资源),或者,信息C可以为上述第一上行控制信息(时频资源#C为上述第一时频资源),或者,信息C可以为上述第二上行控制信息(时频资源#C为上述第二时频资源),或者,信息C可以为上述第二上行数据信息(时频资源#C为上述第二时频资源),或者,信息C为上述第三上行控制信息(时频资源#C为上述第三时频资源)。信息D与信息C不同;信息D可以为上述第一上行数据信息(时频资源#D为上述第一时频资源),信息D为上述第一上行控制信息(时频资源#D为上述第一时频资源),信息D为上述第二上行控制信息(时频资源#D为上述第二时频资源),信息D为上述第二上行数据信息(时频资源#D为上述第二时频资源),或者,信息D为上述第三上行控制信息(时频资源#D为上述第三时频资源)。
映射方式1:信息C和信息D以速率匹配的方式在该上行信道上复用。
也就是说,终端设备将信息C编码之后映射到时频资源#C上,并将信息D编码之后映射到时频资源#D上。信息C和信息D在映射或者说复用完成后,并不丢弃信息。或者说,终端设备完成对信息D的映射之后,不会使用信息C对已经映射的信息D进行打孔。或者说,时频资源#D上承载的是信息D的完整信息,时频资源#C上承载的是信息C的完整信息。这里的完整信息是指对上行信息(例如信息C或信息D)编码之后的完整信息,例如,该上行信息根据对应的时频资源(例如信息C根据时频资源#C,或信息D根据时频资源#D)大小进行编码之后得到的编码后信息,其中,根据对应的时频资源大小进行编码具体是指,根据对应的时频资源大小确定该上行信息的码率。
进一步的,时频资源#C和时频资源#D没有重叠。
可选的,时频资源#C的大小根据信息C的大小(即,比特数目)确定。例如,时频资源#C包括的RE数目随信息C的比特数目增加而线性增加。
可选的,时频资源#D的大小根据信息D的大小(即,比特数目)确定。例如,时频资源#D包括的RE数目随信息D的比特数目增加而线性增加。
可选的,时频资源#C在该上行信道中的时频位置依赖于时频资源#D的大小和或时频资源#D在该上行信道中的时频位置。
或者说,根据时频资源#D的大小和或时频资源#D在该上行信道中的时频位置,确定时频资源#C在该上行信道中的时频位置。例如,终端设备在该上行信道上发送信息D的时频资源#D的时频位置不同的情况下,时频资源#C的时频位置是不同的。
进一步的,时频资源#C在该上行信道中的时频位置依赖于信息D的大小(即,信息 D的比特数目,例如系统信息比特数目)。和/或,时频资源#C在该上行信道中的时频位置依赖于终端设备是否在该上行信道上发送信息D。
可选的,时频资源#D在该上行信道中的时频位置依赖于信息C的大小(即,信息C的比特数目,例如系统信息比特数目)。和/或,时频资源#D在该上行信道中的时频位置依赖于终端设备是否在该上行信道上发送信息C。
或者说,根据信息C的大小,确定时频资源#D在该上行信道中的时频位置。另外,根据终端设备是否在该上行信道上发送信息C,确定时频资源#D在该上行信道中的时频位置。例如,终端设备在该上行信道上发送信息C的情况下,以及终端设备不在该上行信道上发送信息C的情况下,时频资源#D的时频位置是不同的。再例如,终端设备在该上行信道上发送对应于不同比特数的信息C的情况下,时频资源#D的时频位置是不同的。
例如,信息C为第一上行信息,信息D为第二上行信息。所述终端设备可以使用速率匹配的方式将所述第一上行信息和所述第二上行信息分别映射到所述第一时频资源上和所述第二时频资源上,并在所述第一时频资源上发送所述第一上行信息,在所述第二时频资源上发送所述第二上行信息。
应理解,所述终端设备使用速率匹配的方式将所述第一上行信息映射到第一时频资源上,并将所述第二上行信息映射到所述第二时频资源上,可以包括:所述终端设备先在所述第一时频资源上映射所述第一上行信息,之后在所述第二时频资源上映射所述第二上行信息。
对应的,网络设备在所述第一时频资源上接收所述终端设备发送的所述第一上行信息,在所述第二时频资源上接收所述终端设备发送的所述第二上行信息,其中,所述第一上行信息和所述第二上行信息是采用速率匹配的方式映射到所述第一时频资源和所述第二时频资源上的。
映射方式2:信息C打孔信息D。也称为,终端设备对已经映射到该上行信道的信息D的部分或全部信息进行打孔,用于映射信息C。也称为,信息C在用于承载信息C的时频资源#C上打孔已经映射上去的信息D,或者信息C对信息D已经映射到用于承载信息C的时频资源#C上的部分进行打孔。
或者说,所述终端设备先在时频资源#D上映射信息D,之后所述终端设备在时频资源#C上映射信息C,并丢弃信息D已经映射到时频资源#D’上的信息,其中时频资源#D’为时频资源C和时频资源#D重叠的时频资源(例如时频资源#D’为第一重叠时频资源或第二重叠时频资源)。
此时,信息D到该上行信道的映射,在映射步骤上早于信息C到该上行信道的映射。
可选的,时频资源#C的大小根据信息C的大小确定。例如,时频资源#C包括的RE数目随信息C的比特数目增加而线性增加。
可选的,时频资源#D的大小根据信息D的大小确定。例如,时频资源#D包括的RE数目随信息D的比特数目增加而线性增加。
具体的,假设时频资源#C为用于承载信息C的时频资源,时频资源#D为用于承载信息D的时频资源,时频资源#D。终端设备先将信息D映射到时频资源#D上,然后将信息C映射到时频资源#C上,打孔信息D已经映射到时频资源#C和时频资源#D重叠资源#D’上的部分信息(或者说丢弃重叠资源#D’上的部分信息)。即,终端设备在重叠资源#D’上对信息D先前映射到该重叠资源#D’上的部分信息进行打孔,用于映射信息C。
应理解,时频资源#D与时频资源#C可以部分重叠,即,时频资源#D与时频资源#C重叠的时频资源(例如重叠的RE集合)为时频资源#D的一部分,且为时频资源#C的一部分。时频资源#D可以包括时频资源#C,即,时频资源#C的所有RE都包括在时频资源#D中,此时两者重叠的时频资源#D’为时频资源#C。时频资源#C也可以包括时频资源#D,即,时频资源#D的所有RE都包括在时频资源#C中,此时两者重叠的时频资源#D’为时频资源#D。
应理解,在信息C打孔信息D之后,时频资源#D,或者说未重叠的时频资源#D”,上承载的是信息D编码后信息的部分信息,在被打孔前,信息D编码后的信息映射到时频资源#C和时频资源#D的重叠时频资源上的信息被丢弃。其中,未重叠的时频资源#D”为时频资源#D中除重叠时频资源#D’以外的时频资源。此时可以称,终端设备在未重叠时频资源#D”上发送信息D。其中,在未重叠时频资源#D”上所发送的信息D对应于信息D的系统信息,即编码前的信息;或者说,未重叠时频资源#D”上所发送的信息D的一部分,这里,信息D的一部分具体是指信息D编码调制之后的信息的一部分。
本申请中,丢弃也可以称为打孔(puncture)。信息C打孔信息D也称为信息C覆盖(override)信息D。
例如,以信息C为第一上行信息,信息D为第二上行信息为例,且信息C打孔信息D为例,具体地映射过程可以为所述终端设备在所述第二时频资源上映射所述第二上行信息,所述终端设备在所述第一时频资源上映射所述第一上行信息,并丢弃所述第二上行信息已经映射到第一重叠时频资源上的信息,其中所述第一重叠时频资源为所述第一时频资源和所述第二时频资源重叠的时频资源。在映射完信息后,所述终端设备在所述第一时频资源上发送所述第一上行信息,在第一未重叠时频资源上发送所述第二上行信息,所述第一未重叠时频资源为所述第二时频资源中除所述第一重叠时频资源以外的时频资源。
这里,终端设备在第一未重叠时频资源上发送的信息为第二上行信息的一部分。
对应的,所述网络设备在所述第一时频资源和所述第二时频资源上接收终端设备发送的信息,包括:
在所述第一时频资源上接收所述终端设备发送所述第一上行信息,在第一未重叠时频资源上接收所述终端设备发送的所述第二上行信息,
其中,所述第二上行信息为所述终端设备映射到所述第二时频资源上,且在丢弃所述第二上行信息已经映射到所述第一重叠时频资源上的信息的情况下,在所述第一未重叠时频资源上发送的信息,所述第一上行信息为所述终端设备在丢弃所述第二上行信息已经映射到所述第一重叠时频资源上的信息的情况下,映射到所述第一时频资源上的信息。
需要说明的是若所述第二时频资源包括在所述第一时频资源中(即,第二时频资源等于第一重叠时频资源),则所述终端设备在所述第一时频资源和所述第二时频资源上发送信息,可以包括:所述终端设备在所述第一时频资源上发送所述第一上行信息。此时,所述终端设备在该上行信道上发送的信息中不包括所述第二上行信息。也就是说,第二时频资源上映射的第二上行信息全部被第一上行信息打孔。
对应的,所述网络设备在所述第一时频资源和所述第二时频资源上接收终端设备发送的信息,包括:所述网络设备在所述第一时频资源上接收所述终端设备发送所述第一上行信息。此时网络设备在该上行信道上接收的信息中不包括所述第一上行信息。
再例如,以信息C为第一上行信息,信道D为第二上行信息为例,且信息D打孔信 息C为例,具体地映射过程可以为在所述第一时频资源上映射所述第一上行信息;在所述第二时频资源上映射所述第二上行信息;丢弃所述第一上行信息已经映射到第二重叠时频资源上的信息,其中所述第二重叠时频资源为所述第一时频资源和所述第二时频资源重叠的时频资源。在映射完信息后,终端设备在第二未重叠时频资源上发送所述第一上行信息,在所述第二时频资源上发送所述第二上行信息,所述第二未重叠时频资源为所述第一时频资源中除所述第二重叠时频资源以外的时频资源。
这里,终端设备在第二未重叠时频资源上发送的信息为第一上行信息的一部分。
对应的,所述网络设备在所述第一时频资源和所述第二时频资源上接收终端设备发送的信息,包括:
在第二未重叠时频资源上接收所述终端设备发送所述第一上行信息,在所述第二时频资源上接收所述终端设备发送的所述第二上行信息,
其中,所述第一上行信息为所述终端设备映射到所述第一时频资源上,且在丢弃所述第一上行信息已经映射到所述第二重叠时频资源上的信息的情况下,在所述第二未重叠时频资源上发送的信息,所述第二上行信息为所述终端设备在丢弃所述第一上行信息已经映射到所述第二重叠时频资源上的信息的情况下,映射到所述第二时频资源上的信息。
需要说明的是,若所述第一时频资源包括在所述第二时频资源中(即,第一时频资源等于第二重叠时频资源),则所述终端设备在所述第一时频资源和所述第二时频资源上发送信息,包括:所述终端设备在所述第二时频资源上发送所述第二上行信息。此时,所述终端设备在该上行信道上发送的信息中不包括所述第一上行信息。也就是说,第一时频资源上映射的第一上行信息全部被第二上行信息打孔。
对应的,所述网络设备在所述第一时频资源和所述第二时频资源上接收终端设备发送的信息,包括:所述网络设备在所述第二时频资源上接收所述终端设备发送所述第二上行信息。此时网络设备在该上行信道上接收的信息中不包括所述第二上行信息。
映射方式3:终端设备在对信息D进行映射时,避让预留的用于承载信息C的时频资源#C。其中,用于承载信息C的时频资源#C也称为信息C的预留资源。
应理解,本申请中“避让”表示终端设备在映射信息D时跳过预留的用于承载信息C的时频资源,将信息D映射在该预留的资源之后的资源上。
时频资源#C为信息C的预留资源是指,时频资源#C用于承载或者说发送潜在的信息C。也就是说,若终端设备在(或者说需要在)该上行信道上发送信息C,则在时频资源#C上发送信息C;若终端设备不在(或者说不需要在)该上行信道上发送信息C,则可以在时频资源#C上发送其他上行信息,或者不发送(或者说不映射)任何信息。
此时,信息D到该上行信道的映射,在映射步骤上早于信息C到该上行信道的映射。不论终端设备是否需要在该上行信道上发送信息C,都会在对信息D进行映射时避让信息C的预留资源。
在映射信息C之前,该预留资源可以用于映射信息C和信息D以外的其他上行信息,例如上行控制信息或上行数据信息,具体如UL-SCH信息和或CSI part 2信息。或者,该预留资源可以不映射任何信息。
进一步的,时频资源#C和时频资源#D没有重叠。
若终端设备实际需要在该上行信道上发送信息C(或者说,终端设备在该上行信道上发送的信息中包括信息C),则将信息C映射到该预留资源上,例如,打孔已经映射到该 预留资源上的上述其他上行信息;若终端设备不需要在该上行信道上发送信息C(或者说,终端设备在该上行信道上发送的信息中不包括信息C),则不在该预留资源上映射信息C,例如,在该预留资源上发送上述其他上行信息或不映射上行信息,或者说,终端设备在该预留资源上发送的信息中不包含该信息C。
可选的,时频资源#C在该上行信道中的时频位置为预定义或网络设备预配置的,和/或,时频资源#C的大小为预定义或网络设备预配置的。也就是说,时频资源#C的大小不根据信息C的大小确定。
可选的,时频资源#D的大小根据信息D的大小确定。例如,时频资源#D包括的RE数目随信息D的比特数目增加而线性增加。
可选的,时频资源#C在该上行信道中的时频位置为网络设备指示的,和/或,时频资源#C的大小为网络设备指示的。
因此,不论终端设备在该上行信道上发送信息C的大小(比特数目)是多少,都会在对信息D进行映射时避让位于预定义或预配置的位置,以及对应预定义或预配置的位置大小的信息C的预留资源。
一方面,时频资源#C在该上行信道中的时频位置不依赖于时频资源#D的大小和或时频资源#D在该上行信道中的时频位置。
或者说,用于确定时频资源#C在该上行信道中的时频位置的因素中,不包括时频资源#D的大小和或时频资源#D在该上行信道中的时频位置。例如,终端设备在该上行信道上发送信息D的时频资源#D的时频位置不同的情况下,时频资源#C的时频位置是相同的。
进一步的,时频资源#C在该上行信道中的时频位置不依赖于信息D的大小(即,信息D的比特数目,例如系统信息比特数目)。和/或,时频资源#C在该上行信道中的时频位置不依赖于终端设备是否在该上行信道上发送信息D。
另一方面,时频资源#D在该上行信道中的时频位置不依赖于信息C的大小(即,信息C的比特数目,例如系统信息比特数目)。和/或,时频资源#D在该上行信道中的时频位置不依赖于终端设备是否在该上行信道上发送信息C。
或者说,用于确定时频资源#D在该上行信道中的时频位置的因素中,不包括信息C的大小。和/或,用于确定时频资源#D在该上行信道中的时频位置的因素中,不包括终端设备是否在该上行信道上发送信息C。例如,终端设备在该上行信道上发送信息C的情况下,以及终端设备不在该上行信道上发送信息C的情况下,时频资源#D的时频位置是相同的。再例如,终端设备在该上行信道上发送对应于不同比特数的信息C的情况下,时频资源#的时频位置是相同的。
本申请实施例中,时频资源#C的时频位置和时频资源#D的时频位置互相独立,终端设备确定的时频资源#C的时频位置和时频资源#D的时频位置不会出错,即,不会因为某一时频资源(时频资源#C或时频资源#D)的时频位置因为对应的上行信息(信息C或信息D)payload size理解出错(例如DCI接收错误)而错误地确定另一时频资源的大小和或位置,从而彼此影响解码性能。
本申请中,避让也可以称为跳过(skip)。
例如,信息C为第一上行信息,信息D为第二上行信息为例,所述第一时频资源和所述第二时频资源没有重叠,第二上行信息避让第一上行信息。也就是说,所述终端设备在所述上行信道上映射所述第二上行信息时,避让所述第一时频资源,不论所述终端设备 是否(需要)在所述上行信道上发送所述第一上行信息。
应理解,所述第一时频资源为预定义或者网络设备预配置的。换句话说,该第一时频资源的大小和/或位置为预定义或者网络设备预配置的。
若在所述上行信道上发送所述第一上行信息,在所述第一时频资源和所述第二时频资源上发送信息之前,所述方法还包括:在所述第二时频资源上映射所述第二上行信息,且在所述第一时频资源上映射所述第一上行信息。其中,所述在所述第一时频资源和所述第二时频资源上发送信息,包括:在所述第一时频资源上发送所述第一上行信息,在所述第二时频资源上发送所述第二上行信息。应理解,这种情况下,本申请实施例可以先映射第二上行信息,再映射第一上行信息。
对应的,所述网络设备在所述第一时频资源和所述第二时频资源上接收终端设备发送的信息,包括:在所述第一时频资源上接收所述终端设备发送的所述第一上行信息,在所述第二时频资源上接收所述终端设备发送的所述第二上行信息。
或者,若不在所述上行信道上发送所述第一上行信息,在所述第一时频资源和所述第二时频资源上发送信息之前,所述方法还包括:在所述第二时频资源上映射所述第二上行信息,且在所述第一时频资源上映射第四上行信息,所述第四上行信息与所述第一上行信息不同。其中,所述在所述第一时频资源和所述第二时频资源上发送信息,包括:在所述第一时频资源上发送所述第四上行信息,在所述第二时频资源上发送所述第二上行信息。应理解,这种情况下,先映射第二上行信息,再映射第四上行信息。应理解,该第四上行信息与第一上行信息不同,例如为(对应于第一优先级或第二优先级的)UL-SCH信息,或(对应于第一优先级或第二优先级的)CSI part 2信息。
对应的,所述网络设备在所述第一时频资源和所述第二时频资源上接收终端设备发送的信息,包括:在所述第一时频资源上接收所述终端设备发送的所述第四上行信息,在所述第二时频资源上接收所述终端设备发送的所述第二上行信息。
再例如,信息C为第一上行信息,信息D为第二上行信息为例,所述第一时频资源和所述第二时频资源没有重叠,第一上行信息避让第二上行信息。也就是说,所述终端设备在所述上行信道上映射所述第一上行信息时,避让所述第二时频资源,不论所述终端设备是否(需要)在所述上行信道上发送所述第二上行信息。
应理解,所述第二时频资源为预定义或者网络设备预配置的。换句话说,该第二时频资源的大小和/或位置为预定义或者网络设备预配置的。
若在所述上行信道上发送所述第二上行信息,在所述第一时频资源和所述第二时频资源上发送信息之前,所述方法还包括:在所述第一时频资源上映射所述第一上行信息,且在所述第二时频资源上映射所述第二上行信息。其中,所述在所述第一时频资源和所述第二时频资源上发送信息,包括:在所述第一时频资源上发送所述第一上行信息,在所述第二时频资源上发送所述第二上行信息。应理解,这种情况下,本申请实施例先映射第一上行信息,再映射第二上行信息。
对应的,所述网络设备在所述第一时频资源和所述第二时频资源上接收终端设备发送的信息,包括:在所述第一时频资源上接收所述终端设备发送的所述第一上行信息,在所述第二时频资源上接收所述终端设备发送的所述第二上行信息。
或者,若不在所述上行信道上发送所述第二上行信息,在所述第一时频资源和所述第二时频资源上发送信息之前,所述方法还包括:在所述第一时频资源上映射所述第一上行 信息,且在所述第二时频资源上映射第五上行信息,所述第五上行信息与所述第二上行信息不同。其中,所述在所述第一时频资源和所述第二时频资源上发送信息,包括:所述终端设备在所述第一时频资源上发送所述第一上行信息,在所述第二时频资源上发送所述第五上行信息。应理解,这种情况下,先映射第一上行信息,再映射第五上行信息。应理解,该第五上行信息与与第二上行信息不同,例如为(对应于第一优先级或第二优先级的)UL-SCH信息,或(对应于第一优先级或第二优先级的)CSI part 2信息。
对应的,所述网络设备在所述第一时频资源和所述第二时频资源上接收终端设备发送的信息,包括:在所述第一时频资源上接收所述终端设备发送的所述第一上行信息,在所述第二时频资源上接收所述终端设备发送的所述第五上行信息。
下面结合具体地场景,描述本申请实施例的具体上行信息的映射方式及发送方法。具体地,在描述具体地上行信息的映射和发送方法之前,首先描述本申请实施例可应用的具体场景,作为示例而非限定,本申请实施例可以应用与以下三个场景中:
场景一为:
所述第一上行信息为对应第一优先级的第一上行数据信息,所述第二上行信息为对应第二优先级的第二上行控制信息。
场景二为:
第一上述信息为对应第一优先级的第一上述控制信息,第二上行信息为对应第二优先级的第二上行控制信息。
例如,所述第一上行信息为对应第一优先级的HARQ-ACK信息;再例如,所述第一上行信息为对应第一优先级的HARQ-ACK信息和对应第一优先级的SR信息。
例如,所述第二上行信息为对应第二优先级的HARQ-ACK信息。再例如,所述第二上行信息为对应第二优先级的HARQ-ACK信息和对应第二优先级的SR信息。
可选地,在场景二中,终端设备在上行信道上还可以在对应第二优先级的HARQ-ACK信息之后发送第一优先级的上行数据信息。
可选地,在场景二中,终端设备在上行信道上还可以确定第三时频资源,并在第三时频资源上发送信息。例如,终端设备在第三资源上发送第三上行信息。
所述第三上行信息包括对应于第一优先级的第三上行控制信息,所述第三上行控制信息和所述第一上行控制信息独立编码,所述第三上行控制信息和所述第二上行控制信息独立编码。
其中,所述第二时域资源在时域上早于所述第三时频资源,和/或,所述第二时频资源在频域上低于所述第三时域资源;
或者,
所述第二时频资源对应的时域符号与所述上行信道的解调参考信号DMRS符号之间的时间间隔小于所述第三时频资源对应的时域符号与所述DMRS符号之间的时间间隔,和/或,所述第二时频资源在频域上低于所述第三时频资源。
因此,场景二还包括:终端设备在第三时频资源上发送信息(例如第三上行信息)。对应的,网络设备在第三时频资源上接收信息(例如第三上行信息)。
所述第三上行信息与第一上行信息不同。
例如,所述第一上行信息包括对应于所述第一优先级的HARQ-ACK信息(或对应第一优先级的HARQ-ACK信息和对应第一优先级的SR信息),所述第二上行信息包括对 应于所述第二优先级的HARQ-ACK信息(或对应第二优先级的HARQ-ACK信息和对应第二优先级的SR信息),所述第三上行信息包括对应于所述第一优先级的CSI信息。
进一步的,第三上行信息包括对应于所述第一优先级的CSI part 1信息和对应于所述第一优先级的CSI part 2信息。可选的,第三上行信息为对应于所述第一优先级的CSI part 2信息。
场景3为:
所述第一上行信息为对应第一优先级的CSI信息,所述第二上行信息为对应第二优先级的HARQ-ACK信息(或对应第二优先级的HARQ-ACK信息和对应第二优先级的SR信息)。
可选地,在场景三中,终端设备还可以在上行信道上在第二优先级的HARQ-ACK信息之前发送第一优先级的HARQ-ACK信息。
应理解,本申请实施例中,第一上行信息和第二上行信息可以进行各种组合。
下面将分别结合上述3个具体场景的例子,分别描述本申请实施例中的上行信息的映射方法和上行信息发送方法。
场景1:所述第一上行信息为对应第一优先级的第一上行数据信息,所述第二上行信息为对应第二优先级的第二上行控制信息。
具体的,所述上行信道为上行业务信道PUSCH,所述第一上行信息为所述第一上行数据信息。
在这种情况下,所述第一优先级高于所述第二优先级,体现在:所述第二时频资源晚于所述第一时频资源。
具体而言,所述第一时频资源在时域上早于所述第二时频资源,和/或,所述第一时频资源在频域上低于所述第二时域资源。
例如,上述资源关系可以对应于上行信道为PUSCH的情况,本申请实施例并不限于此。
或者,
所述第一时频资源对应的时域符号与所述上行信道的解调参考信号DMRS符号之间的时间间隔小于所述第二时频资源对应的时域符号与所述DMRS符号之间的时间间隔,和/或,所述第一时频资源在频域上低于所述第二时频资源。
例如,上述资源关系可以对应于上行信道为PUCCH的情况,本申请实施例并不限于此。
其中,对于第二时频资源晚于第一时频资源的阐述见前文的映射顺序1、映射顺序2,即前文中的信息A为第一上行数据信息,信息B为第二上行控制信息,时频资源#A为第一时频资源,时频资源#B为第二时频资源的相应描述。
或者,在第一时频资源和第二时频资源重叠的情况下,时频资源#A为第一时频资源中除与第二时频资源重叠的时频资源以外的时频资源,时频资源#B为第二时频资源;或者,时频资源#A为第一时频资源,时频资源#B为第二时频资源中除与第一时频资源重叠的时频资源以外的时频资源。
进一步的,第二时频资源对应的h个时域符号为该上行信道的最后h个时域符号,h为大于或等于1的整数。也就是说,该第二上行控制信息映射到该上行信道的尾部。更进一步的,h小于该上行信道包括的所有用于映射上行信息(例如数据信息和控制信息)的 符号个数。
可选地,在一种实现方式中,第一上行数据信息为该PUSCH上的UL-SCH信息。
应理解,对于同等优先级的上行数据信息和上行控制信息,用于承载上行数据信息的时频资源晚于用于承载上行控制信息的时频资源,考虑到上行信道的DMRS的典型位置为前置(front loaeded)的,即在上行信道最早的符号上,这样上行控制信息距离DMRS更近,对上行控制信息信道估计的准确度更高,因此上行控制信息解调性能好于上行数据信息。
但是,考虑到场景1中,第一上行数据信息对应于第一优先级,第二上行控制信息对应于第一优先级,若将第一上行数据信息映射在第二上行控制信息后面,会导致第一上行数据信息映射的时频资源位置距离DMRS较远,损害第一上行数据信息的解调性能。因此,为了体现第一优先级高于第二优先级,更好地保护第一优先级的上行数据信息的性能,本申请将第二上行控制信息映射在第一上行数据信息后面,即,第二时频资源晚于第一时频资源。这样可以保证对应于高优先级的第一上行数据信息距离DMRS更近,有利于保证第一上行数据信息的解调性能。
例如图6所示,上行信道为PUSCH,包括7个时域符号(#0~#6)和12个子载波(#0~#11)。DMRS位于第一个符号,即符号#0,PUSCH上包括第一上行数据信息(即对应于URLLC的UL-SCH),以及第二上行控制信息(例如,对应于eMBB的HARQ-ACK)。终端设备从承载DMRS的符号之后的下一个符号,即符号#1开始,先按照先频后时的映射顺序,映射对应于URLLC的UL-SCH,然后在剩余的资源上按照先频后时的映射顺序,映射对应于eMBB的HARQ-ACK。其中,在图6(a)中,对应于URLLC的HARQ-ACK占满符号#1~#5,因此对应于eMBB的的HARQ-ACK从符号#6的子载波#0开始映射。在图6(b)中,对应于URLLC的HARQ-ACK占满符号#1~#5以及符号#6的子载波#0,#2,…#10,剩余的子载波为#1,#3,…#11,因此对应于eMBB的的HARQ-ACK从符号#6的子载波#1开始映射,映射到符号#6剩余的子载波上。
可选的,第一上行数据信息与第二上行控制信息以速率匹配的方式在PUSCH上复用。具体参见前文映射方式1的阐述,具体可以将上述映射方式1中的信息C设置为第二上行控制信息,信息D设置为第一上行数据信息。时频资源#C设置为第二时频资源,时频资源#D设置为第一时频资源,即可得到本申请的映射方式。
可选的,第二上行控制信息在第二时频资源上对该PUSCH上的UL-SCH信息映射到第二时频资源上的部分进行打孔。第一上行数据信息为该PUSCH上的UL-SCH信息中,除被打孔的信息以外的UL-SCH信息。
可选的,第二上行控制信息在第二时频资源上对第一上行数据信息映射到第二时频资源上的部分信息进行打孔。也就是说,所述终端设备先在所述第一时频资源上映射所述第一上行数据信息,之后所述终端设备在所述第二时频资源上映射所述第二上行控制信息,并丢弃第一上行数据信息已经映射到第二重叠时频资源上的信息,其中所述第二重叠时频资源为所述第一时频资源和所述第二时频资源重叠的时频资源。其中,第一上行数据信息为该PUSCH上的编码前的UL-SCH信息或者说系统信息。具体参见前文映射方式2的阐述,具体可以将上述映射方式2中的信息C设置为第二上行控制信息,信息D设置为第一上行数据信息。时频资源#C设置为第二时频资源,时频资源#D设置为第一时频资源,即可得到本申请的映射方式。进一步的,第一时频资源包括第二时频资源,也就是说,第 二时频资源等于第二重叠时频资源。
进一步的,若第二上行控制信息的payload size大于第二有效载荷门限,则第二上行控制信息与第一上行数据信息以速率匹配的方式(即映射方式1)在PUSCH上复用。反过来,若第二上行控制信息的payload size不大于第二有效载荷门限,则第二上行控制信息打孔第一上行数据信息,即采用上述映射方式2进行映射。例如,该第二有效载荷门限为2比特。也就是说,第二时频资源在映射顺序上晚于第一时频资源,但是优先级较高的第一上行数据信息仍然被优先级较低第二上行控制信息打孔。通常来讲被打孔的信息为优先级较低的信息,但是第一上行数据信息被第二上行控制信息打孔是因为一方面第一上行数据信息的payload size通常远大于第二上行控制信息的payload size,因此相对而言第一上行数据信息被打孔损失较小;另一方面第一上行数据信息所映射的时频资源包括了第二上行控制信息的时频资源,因此如果拿第一上行数据信息打孔第二上行控制信息,则全部的第二上行控制信息都会被打掉。
因此,本申请实施例采用打孔第一上行数据信息的方式映射第二上行控制信息,能够在保证传输高优先级的第一上行数据信息的情况下,同时实现传输低优先级的控制信息。
可选的,本申请实施例还可以采用第一上行数据信息避让第二上行控制信息的预留资源的方式进行资源映射。具体参见前文映射方式3的阐述,具体可以将上述映射方式3中的信息C设置为第二上行控制信息,信息D设置为第一上行数据信息。时频资源#C设置为第二时频资源,时频资源#D设置为第一时频资源,即可得到本申请的映射方式。
对于场景1,进一步的,所述第二上行控制信息为对应于第二优先级的HARQ-ACK信息,对应于第二优先级的SR信息,对应于第二优先级的CSI part 1信息中的至少一种信息。或者,所述第二上行控制信息为对应于第二优先级的HARQ-ACK信息和/或对应于第二优先级的SR信息,本申请实施例并不限于此。
场景二为:
第一上述信息为对应第一优先级的第一上行控制信息,第二上行信息为对应第二优先级的第二上行控制信息。
在本场景下,所述上行信道为PUSCH或PUCCH。
可选的,所述第一上行控制信息为对应于第一优先级的HARQ-ACK信息,或对应于第一优先级的SR信息,或对应于第一优先级的HARQ-ACK信息和对应于第一优先级的SR信息。
可选的,所述第二上行控制信息对应于第二优先级的HARQ-ACK信息,或对应于第二优先级的SR信息,或对应于第二优先级的HARQ-ACK信息和对应于第二优先级的SR信息。
可选的,所述第二时频资源为根据所述第一时频资源确定的时频资源,其中,第二时频资源的起始时频资源(例如起始RE或起始RB)的位置由第一时频资源决定,例如前文的映射顺序1所述。由于上行控制信息遵从预定义的映射顺序,因此进而第二时频资源的其他RE或RB的位置也是由第一时频资源确定的。
具体的,所述第二时频资源晚于所述第一时频资源。具体阐述见前文的映射顺序1或映射顺序2,即前文中的信息A设置为第一上行控制信息,信息B设置为第二上行控制信息。时频资源#A设置为第一时频资源,时频资源#B设置为第二时频资源的相应描述。
或者,在第一时频资源和第二时频资源重叠的情况下,前文中时频资源#A为第一时 频资源,时频资源#B为第二时频资源中除与第一时频资源重叠的时频资源以外的时频资源;或者,时频资源#A为第一时频资源中除与第二时频资源重叠的时频资源以外的时频资源,时频资源#B为第二时频资源的相应描述。
可选的,所述第二时频资源为根据所述第一时频资源确定的时频资源是指,第二时频资源为终端设备在该上行信道上第一时频资源以外的其他时频资源中确定的时频资源。不论终端设备对第一上行控制信息和第二上行控制信息进行映射时的复用关系为哪种(例如前文中的映射方式1至3中的任一种),第二时频资源都是排除第一时频资源(例如以速率匹配的方式、被打孔的方式、避让预留资源的方式)之后该上行信道剩余的时频资源中确定的,因此可以看成是根据第一时频资源确定的。
相对而言,第一上行控制信息的第一时频资源的位置并不由第二时频资源决定。具体的,这里的第一时频资源的位置是指第一时频资源的起始时频资源(起始RE或起始RB)。例如,若该上行信道为PUSCH,所述第一时频资源的起始RE为所述上行信道上用于映射HARQ-ACK信息的起始RE。具体的,所述第一时频资源的起始RE在时域上对应最早的DMRS符号之后的第一个时域符号,频域上对应子载波序号最小的子载波。再例如,若该上行信道为PUCCH,所述第一时频资源的起始RB为所述上行信道上用于映射上行控制信息的起始RB。例如该PUCCH所占的PRB中频率最高的PRB或频率最低的PRB。
考虑到终端设备有可能由于错误接收DCI而错误地判断上行控制信息所映射的时频资源,例如没有检测到用于触发上行控制信息的下行控制信息,或者由于误检DCI而错误理解了上行控制信息的比特数,因此终端设备可能错误判断该上行控制信息所映射的物理资源位置。另外,考虑到第一上行控制信息和第二上行控制信息所对应的优先级的不同,对应于第一优先级的eMBB业务的传输可靠性目标低于对应于第二优先级的URLLC业务,终端设备错误接收第二上行控制信息对应的DCI的可能性大于错误接收第一上行控制信息对应的DCI的可能性。因此,使第二时频资源由第一时频资源确定,例如第二时频资源晚于第一时频资源的好处在于:可以保证第一时频资源的位置的确定不依赖于第二时频资源,从而终端设备不会因为错误地判断第二时频资源的位置而进一步影响确定第一时频资源的位置的准确性,从而更好地确保第一上行控制信息的传输可靠性。
相比而言,若使第一时频资源的位置由第二时频资源的位置决定,例如使第二上行控制信息映射的第二时频资源早于第一上行控制信息所映射的第一时频资源,如果终端设备没有检测到用于触发第二上行控制信息的第二下行控制信息,或者由于误检DCI而错误理解了第二上行控制信息的比特数,从而使得终端设备确定的第二时频资源的结束位置与网络设备期待的第二时频资源的结束位置不同,则会导致终端设备根据第二时频资源所确定的第一时频资源的位置与网络设备期待的第一时频资源的位置不同,从而影响第一上行控制信息的解码性能。
例如,如图7所示,上行信道为PUSCH,包括7个时域符号(#0~#6)和12个子载波(#0~#11)。DMRS位于第一个符号,即符号#0,PUSCH上包括第一上行控制信息(即对应于URLLC的HARQ-ACK),第二上行控制信息(即对应于eMBB的HARQ-ACK),以及对应于URLLC的UL-SCH。终端设备从承载DMRS的符号之后的下一个符号,即符号#1开始,先按照先频后时的映射顺序,映射对应于URLLC的HARQ-ACK(即第一上行控制信息),然后在剩余的资源上按照先频后时的映射顺序,映射对应于eMBB的HARQ-ACK(即第二上行控制信息)。其中,在图7(a)中,对应于URLLC的HARQ-ACK 占满符号#1,因此对应于eMBB的的HARQ-ACK从符号#2的子载波#0开始映射。在图7(b)中,对应于URLLC的HARQ-ACK占用符号#1的子载波#0,#2,…#10,剩余的子载波为#1,#3,…#11,因此对应于eMBB的的HARQ-ACK从符号#1的子载波#1开始映射,映射到符号#1剩余的子载波上,以及符号#2上。
当该上行信道为PUSCH时,所述第二时频资源与所述第一时频资源的映射方式或者说复用方式,可以具体包括以下几种方法。
(1)速率匹配的方式:
若所述终端设备在PUSCH上发送的信息中包括所述第一上行控制信息,所述第二上行控制信息与所述第一上行控制信息以速率匹配的方式在PUSCH上复用。具体阐述见前文的映射方式1,即前文中信息C为第一上行控制信息,信息D为第二上行控制信息。时频资源#C为第一时频资源,时频资源#D为第二时频资源的相应描述。
对应的,在映射步骤上,映射第一上行控制信息的步骤位于映射第二上行控制信息的步骤前面。
进一步的,若第一上行控制信息的payload size大于第一有效载荷门限,则第二上行控制信息与第一上行控制信息以速率匹配的方式在PUSCH上复用。反过来,若第一上行控制信息的payload size不大于第一有效载荷门限,则采用打孔映射的方式,即第一上行控制信息打孔第二上行控制信息;或采用避免的映射方式,即第二上行控制信息避让第一上行控制信息的预留资源。
例如,该第一有效载荷门限为2比特。进一步的,第一有效载荷门限等于第二有效载荷门限。
(2)打孔的映射方式,即第一上行控制信息打孔第二上行控制信息:
若所述终端设备在所述上行信道上发送的信息中包括所述第一上行控制信息,所述终端设备在所述第一时频资源和所述第二时频资源上发送信息之前,包括:
所述终端设备将所述第二上行控制信息映射到所述第二时频资源和所述第一时频资源上;
所述终端设备将所述第一上行控制信息映射到所述第一时频资源上,丢弃所述第二上行控制信息映射到所述第一时频资源上的信息。
换句话说,UE在第一时频资源上对第二上行控制信息先前映射到第一时频资源上的部分信息进行打孔,用于映射第一上行控制信息。因此,第二上行控制信息由于在第一时频资源上被第一上行控制信息打孔而丢失一部分信息。
对应的,在映射步骤上,映射第二上行控制信息的步骤位于映射第一上行控制信息的步骤前面。
第一上行控制信息打孔第二上行控制信息的具体阐述参见前文的映射方式2。其中第一上行控制信息对应信息C,第二上行控制信息对应信息D。时频资源#C为第一时频资源,时频资源#D为第二时频资源。
对于打孔的映射方式,第一上行控制信息打孔第二上行控制信息类似于现有技术中同等优先级的HARQ-ACK信息打孔CSI part 2或UL-SCH的方法。
例如图8所示,上行信道为PUSCH,包括7个时域符号(#0~#6)和12个子载波(#0~#11)。DMRS位于第一个符号,即符号#0,PUSCH上包括第一上行控制信息(即对应于URLLC的HARQ-ACK),第二上行控制信息(即对应于eMBB的HARQ-ACK), 以及对应于URLLC的UL-SCH。终端设备第一步从承载DMRS的符号之后的下一个符号,即符号#1开始,先按照先频后时的映射顺序,映射对应于eMBB的HARQ-ACK,占用符号#1和符号#2的所有子载波。然后,第二步在符号#1的子载波#0~#11上打孔已经映射上去的一部分对应于URLLC的HARQ-ACK信息。终端设备实际发送的信息为对应于URLLC的HARQ-ACK信息以及对应于eMBB的HARQ-ACK被打孔后剩余的部分。其中,第一时频资源为第一上行控制信息打孔已经映射的第二上行控制信息的时频资源,即符号#1的所有子载波,第二时频资源为在第一步映射第二上行控制信息的时频资源,即符号#1和符号#2的所有子载波。
(3)第二上行控制信息避让第一上行控制信息的预留资源:
若所述终端设备在所述上行信道上发送的信息中不包括所述第一上行控制信息,所述终端设备在所述第一时频资源和所述第二时频资源上发送信息之前,包括:
所述终端设备将所述第二上行控制信息映射到所述第二时频资源上,且所述终端设备在所述第一时频资源上映射的信息中不包含所述第一上行控制信息;
若所述终端设备在所述上行信道上发送的信息中包括所述第一上行控制信息,则所述终端设备将所述第二上行控制信息映射到所述第二时频资源上,且所述终端设备将所述第一上行控制信息映射到所述第一时频资源上。
其中,第一上行控制信息的预留资源即为第一时频资源。
应理解,第一上行控制信息的预留资源是按照预定义或预配置的payload size确定的时频资源,例如该预定义的payload size为第一有效载荷门限。第一上行控制信息实际需要占用的时频资源可以小于或等于该第一上行控制信息的预留资源。
对应的,在映射步骤上,映射第二上行控制信息的步骤位于映射第一上行控制信息的步骤前面。
第二上行控制信息避让第一上行控制信息的具体阐述参见前文的映射方式3。其中第一上行控制信息对应信息C,第二上行控制信息对应信息D。时频资源#C为第一时频资源,时频资源#D为第二时频资源。
对于避让的映射方式,第二上行控制信息避让第一上行控制信息类似于现有技术中同等优先级的CSI part 1信息避让HARQ-ACK信息预留资源的方法。
例如图9所示,上行信道为PUSCH,包括7个时域符号(#0~#6)和12个子载波(#0~#11)。DMRS位于第一个符号,即符号#0,PUSCH上包括第一上行控制信息(即对应于URLLC的HARQ-ACK),第二上行控制信息(即对应于eMBB的HARQ-ACK),以及对应于URLLC的UL-SCH。对应于URLLC的HARQ-ACK的预留资源为符号#1的子载波#0~#11,为根据第一有效载荷门限=2比特计算出来的时频资源。终端设备从承载DMRS的符号之后的下一个符号,即符号#1开始,跳过对应于URLLC的HARQ-ACK的预留资源,即符号#1,先按照先频后时的映射顺序,映射对应于eMBB的HARQ-ACK,占用符号#2的所有子载波。然后,将UL-SCH信息从承载DMRS的符号之后的下一个符号,即符号#1开始,按照先频后时的顺序映射,并跳过已经映射了对应于eMBB的HARQ-ACK信息的符号#2。若终端设备需要在该PUSCH上发送对应于URLLC的HARQ-ACK,如图9(a)所示,则将对应于URLLC的HARQ-ACK在符号#1上打孔UL-SCH信息;若终端设备不需要在该PUSCH上发送对应于URLLC的HARQ-ACK,如图9(b)所示,则终端设备在符号#1上发送UL-SCH。
(4)第一上行控制信息避让第二上行控制信息的预留资源的映射方式:
其中,第二上行控制信息的预留资源即为第二时频资源。
考虑到为了避免由于对第二上行控制信息的比特数判断错误而导致对第一上行控制信息的映射位置理解错误的问题,可以使第一上行控制信息的第一时频资源的位置不依赖于第二上行控制信息的第二时频资源。除了前面限定两者之间时频资源的时域早晚关系或频域高低的关系,或者限定两者之间映射方式的为前述的映射方式(1)至(3)之外,本申请实施例中还可以使第一上行控制信息在映射时避让第二上行控制信息对应的预留资源,其中该预留资源的大小和或时频位置为预定义或预配置的。这样,不论终端设备实际是否需要发送第二上行控制信息、实际需要发送多大payload size的第二上行控制信息,都不会将第一上行控制信息映射在该预留资源上;由于该预留资源的大小和或时频位置不依赖于第二上行控制信息的payload size,因此第一上行控制信息所映射的时频资源位置也不受第二上行控制信息的payload size的影响,从而确保第一上行控制信息解码的可靠性。
应理解,第二上行控制信息的预留资源是按照预定义或预配置的payload size确定的时频资源,例如该预定义的payload size为第二有效载荷门限。第二上行控制信息实际需要占用的时频资源可以小于或等于该第二上行控制信息的预留资源。
对应的,在映射步骤上,映射第一上行控制信息的步骤位于映射第二上行控制信息的步骤前面。
第一上行控制信息避让第二上行控制信息的具体阐述参见后文的映射方式3。其中第二上行控制信息对应信息C,第一上行控制信息对应信息D。时频资源#C为第二时频资源,时频资源#D为第一时频资源。
进一步的,作为另一实施例,所述上行信道还包括第三时频资源,所述第三时频资源为用于承载对应于第一优先级的第三上行控制信息的时频资源。具体的,所述第三上行控制信息为CSI信息,所述第三时频资源为根据所述第二时频资源确定的时频资源。
例如,该第三上行控制信息可以是CSI part 1信息,也可以是CSI par 2信息,也可以是CSI part 1信息和CSI part 2信息。
类似于前面阐述的第二时频资源是根据第一时频资源确定的时频资源,第三时频资源都是排除第二时频资源(例如以速率匹配的方式、被打孔的方式、避让预留资源的方式)之后该上行信道剩余的时频资源中确定的,因此可以看成是根据第二时频资源确定的。
更进一步的,所述第三时频资源晚于所述第二时频资源。具体阐述见前文的映射顺序1、2,即前文中信息A为第二上行控制信息,信息B为第三上行控制信息。时频资源#A为第二时频资源,时频资源#B为第三时频资源。或者,在第二时频资源和第三时频资源重叠的情况下,前文中时频资源#A为第二时频资源,时频资源#B为第三时频资源中除与第二时频资源重叠的时频资源以外的时频资源;或者,时频资源#A为第二时频资源中除与第三时频资源重叠的时频资源以外的时频资源,时频资源#B为第三时频资源。
也就是说,对应于第二优先级的第二上行控制信息的映射顺序位于对应于第一优先级的第一上行控制信息信息和对应于第一优先级的CSI信息之间。考虑到对应于第二优先级的HARQ-ACK信息负责反馈数据信息是否正确接收,对应于第二优先级的SR信息负责上报数据信息的发送需求,因此第二上行控制信息的重要性虽然低于对应于第一优先级的HARQ-ACK和或SR信息,但是要高于对应第一优先级的CSI信息(由于CSI信息并不像SR信息那样直接影响上行数据信息是否能及时发送,也不像HARQ-ACK信息那样直 接影响下行数据信息是否正确接收),因此其映射顺序应该位于对应于第一优先级的第一上行控制信息(HARQ-ACK和或SR)之后,且位于对应于第一优先级的第三上行控制信息,即CSI信息之前。这样有助于保障两种优先级的HARQ-ACK信息和或SR信息的解调性能。
例如图10所示,上行信道为PUSCH,包括7个时域符号(#0~#6)和12个子载波(#0~#11)。DMRS位于第一个符号,即符号#0,PUSCH上包括对应于第一上行控制信息(即对应于URLLC的HARQ-ACK),第三上行控制信息(即对应于URLLC的CSI),第二上行控制信息(即对应于eMBB的HARQ-ACK),以及对应于URLLC的UL-SCH。终端设备从承载DMRS的符号之后的下一个符号,即符号#1开始,先按照先频后时的映射顺序,映射对应于URLLC的HARQ-ACK,然后在剩余的资源上按照先频后时的映射顺序,映射对应于eMBB的HARQ-ACK,然后在剩余的资源上继续映射对应于URLLC的CSI。其中,在图10(a)中,对应于eMBB的HARQ-ACK占满符号#2,因此对应于URLLC的的CSI从符号#3的子载波#0开始映射。在图10(b)中,对应于eMBB的HARQ-ACK占用符号#2以及符号#3的子载波#0,#2,…#10,剩余的子载波为#1,#3,…#11,因此对应于URLLC的的CSI从符号#3的子载波#1开始映射,映射到符号#3剩余的子载波上,以及符号#4上。
与第一上行控制信息与第二上行控制信息的映射方式类似,当该上行信道为PUSCH时,第二上行控制信息和第三上行控制信息之间的映射方式也可以包括以下三种:
(1)第二上行控制信息和第三上行控制信息以速率匹配的方式在该PUSCH上复用。具体阐述见前文的映射方式1,信息C为第二上行控制信息,信息D为第三上行控制信息。时频资源#C为第二时频资源,时频资源#D为第三时频资源。
进一步的,若第二上行控制信息的payload size大于第二有效载荷门限,则第二上行控制信息与第三上行控制信息以速率匹配的方式在PUSCH上复用。反过来,若第二上行控制信息的payload size不大于第二有效载荷门限,则第二上行控制信息打孔第三上行控制信息,或第三上行控制信息避让第二上行控制信息的预留资源。
(2)第二上行控制信息在第二时频资源上打孔第三上行控制信息。进一步的,该第三上行控制信息为CSI part 2。
具体阐述见前文的映射方式2,信息C为第二上行控制信息,信息D为第三上行控制信息。时频资源#C为第二时频资源,时频资源#D为第三时频资源。
(3)第三上行控制信息避让第二上行控制信息的预留资源。
进一步的,该第三上行控制信息为CSI part 1。
其中,第二上行控制信息的预留资源即为第二时频资源。
应理解,第二上行控制信息的预留资源是按照预定义或预配置的payload size确定的时频资源,例如该预定义的payload size为第二有效载荷门限。第二上行控制信息实际需要占用的时频资源可以小于或等于该第二上行控制信息的预留资源。
具体阐述见前文的映射方式3,信息C为第二上行控制信息,信息D为第三上行控制信息。时频资源#C为第二时频资源,时频资源#D为第三时频资源。
(4)第二上行控制信息避让第三上行控制信息的预留资源。具体阐述见前文的映射方式3,信息C为第三上行控制信息,信息D为第二上行控制信息。时频资源#C为第三时频资源,时频资源#D为第二时频资源。
场景3:所述第一上行信息为对应第一优先级的CSI信息,所述第二上行信息为对应第二优先级的HARQ-ACK信息。
例如,所述上行信道为PUSCH或PUCCH,所述第一上行信息为对应于第一优先级的第一上行控制信息,所述第一上行控制信息包括对应于第一优先级的CSI信息,所述第二上行控制信息包括对应于第二优先级的HARQ-ACK信息;
可选的,所述第二时频资源为根据所述第一时频资源确定的时频资源。
可选的,所述第一上行控制信息为对应于第一优先级的CSI信息,或,对应于第一优先级的CSI信息和对应于第一优先级的HARQ-ACK信息,或对应于第一优先级的CSI信息和对应于第一优先级的SR信息。这里的CSI信息可以是CSI part 1,或者CSI part 2,或者CSI part 1和CSI part 2。
例如,若该上行信道为PUCCH,则第一上行控制信息为对应于第一优先级的HARQ-ACK(若存在)、对应于第一优先级的SR(若存在)、对应于第一优先级的CSI part 1(若存在)的联合编码信息。
再例如,若该上行信道为PUSCH,则第一上行控制信息为对应于第一优先级的CSI part 1信息,或CSI part 2信息。
具体的,所述第二时频资源晚于所述第一时频资源。具体阐述见前文的映射顺序1或2,信息A为第一上行控制信息,信息B为第二上行控制信息。时频资源#A为第一时频资源,时频资源#B为第二时频资源。或者,在第一时频资源和第二时频资源重叠的情况下,时频资源#A为第一时频资源,时频资源#B为第二时频资源中除与第一时频资源重叠的时频资源以外的时频资源;或者,时频资源#A为第一时频资源中除与第二时频资源重叠的时频资源以外的时频资源,时频资源#B为第二时频资源。
类似于场景2,第二时频资源都是排除第一时频资源(例如以速率匹配的方式、被打孔的方式、避让预留资源的方式)之后该上行信道剩余的时频资源中确定的,因此可以看成是根据第一时频资源确定的。
虽然同等优先级的HARQ-ACK信息和或SR信息的优先级高于CSI信息,但是考虑到第一上行控制信息所对应的优先级低于与第二上行控制信息所对应的优先级,第一上行控制信息(例如CSI信息)的映射应该优先于第二上行控制信息(HARQ-ACK信息和或SR信息)。这样,类似于场景2中两种不同优先级的HARQ-ACK信息之间的映射关系的阐述,使第二时频资源由第一时频资源确定,例如第二时频资源晚于第一时频资源的好处在于:可以保证第一时频资源的位置的确定不依赖于第二时频资源,从而终端设备不会因为错误地判断第二时频资源的位置而进一步影响确定第一时频资源的位置的准确性,从而更好地确保第一上行控制信息(例如CSI信息)的传输可靠性。另一方面,第二时频资源晚于第一时频资源还可以保障第一上行控制信息距离DMRS更近,确保对应于URLLC业务的CSI信息更准确地被接收,从而有效保障URLLC的链路自适应。
例如图11所示,上行信道为PUSCH,包括7个时域符号(#0~#6)和12个子载波(#0~#11)。DMRS位于第一个符号,即符号#0,PUSCH上包括对应于URLLC的HARQ-ACK,第一上行控制信息(即对应于URLLC的CSI),第二上行控制信息(即对应于eMBB的HARQ-ACK),以及对应于URLLC的UL-SCH。终端设备从承载DMRS的符号之后的下一个符号,即符号#1开始,先按照先频后时的映射顺序,映射对应于URLLC的HARQ-ACK,然后在剩余的资源上按照先频后时的映射顺序,映射对应于 URLLC的CSI,然后在剩余的资源上按照先频后时的映射顺序,映射对应于eMBB的HARQ-ACK。其中,在图11(a)中,对应于URLLC的CSI占满符号#2,因此对应于eMBB的的HARQ-ACK从符号#3的子载波#0开始映射。在图11(b)中,对应于URLLC的CSI占用符号#2以及符号#3的子载波#0,#2,…#10,剩余的子载波为#1,#3,…#11,因此对应于eMBB的的HARQ-ACK从符号#3的子载波#1开始映射,映射到符号#1剩余的子载波上。
类似于场景2,当该上行信道为PUSCH时,所述第二时频资源与所述第一时频资源的映射方式也可以具体包括以下几种方法。
(1)速率匹配映射方式:
若所述终端设备在所述上行信道上发送的信息中包括所述第二上行控制信息,所述第二上行控制信息与所述第一上行控制信息以速率匹配的方式在PUSCH上复用。类似于场景2的速率匹配映射方式,具体参见前文映射方式1的阐述,具体可以设置前文中的信息C为第一上行控制信息,信息D为第二上行控制信息。时频资源#C为第一时频资源,时频资源#D为第二时频资源。
进一步的,若第二上行控制信息的payload size大于第二有效载荷门限,或者,若第一上行控制信息的payload size大于第一有效载荷门限,则第二上行控制信息与第一上行控制信息以速率匹配的方式(速率匹配映射方式)在PUSCH上复用。反过来,若第二上行控制信息的payload size不大于第二有效载荷门限,则第二上行控制信息打孔第一上行控制信息(第一打孔映射方式),或,第二上行控制信息避让第一上行控制信息的预留资源(第一避让映射方式);或者,若第一上行控制信息的payload size不大于第一有效载荷门限,则第一上行控制信息打孔第二上行控制信息(第二打孔映射方式),或第一上行控制信息避让第二上行控制信息的预留资源(第二避让映射方式)。
(2)第一打孔映射方式:第二上行控制信息在第二时频资源上打孔第一上行控制信息。若所述终端设备在所述上行信道上发送的信息中包括所述第二上行控制信息,所述终端设备在所述第一时频资源和所述第二时频资源上发送信息之前,包括:
所述终端设备将所述第一上行控制信息映射到所述第二时频资源和所述第一时频资源上;
所述终端设备将所述第二上行控制信息映射到所述第二时频资源上,丢弃所述第一上行控制信息映射到所述第一时频资源上的信息。
类似于场景2的方法打孔映射方式,具体参见前文文映射方式2的阐述,即设置前文信息C为第二上行控制信息,信息D为第一上行控制信息。时频资源#C为第二时频资源,时频资源#D为第一时频资源。
类似于场景1中,第二上行控制信息晚于第一上行数据信息,但第一上行数据信息打孔第二上行控制信息的原因,第二时频资源在映射顺序上晚于第一时频资源,但是优先级较高的第一上行控制信息仍然被优先级较低第二上行控制信息打孔。也就是说,第二时频资源位于第一时频资源的尾部,第二上行控制信息在第一时频资源的尾部打孔第一上行控制信息。
(3)第二打孔映射方式:第一上行控制信息在第一时频资源上打孔第二上行控制信息。
具体参见前文映射方式2的阐述,即设置前文中信息C为第一上行控制信息,信息D为第二上行控制信息。时频资源#C为第一时频资源,时频资源#D为第二时频资源。
(4)第一避让映射方式:第二上行控制信息避让第一上行控制信息的预留资源。
其中,第一上行控制信息的预留资源即为第一时频资源。
应理解,第一上行控制信息的预留资源是按照预定义或预配置的payload size(例如第一有效载荷门限)确定的时频资源。
对应的,在映射步骤上,映射第二上行控制信息的步骤位于映射第一上行控制信息的步骤前面。
第二上行控制信息避让第一上行控制信息的具体阐述参见前文的映射方式3。即设置前文中第一上行控制信息对应信息C,第二上行控制信息对应信息D。时频资源#C为第一时频资源,时频资源#D为第二时频资源。
(5)第二避让映射方式:第一上行控制信息避让第二上行控制信息的预留资源。
其中,第二上行控制信息的预留资源即为第二时频资源。
应理解,第二上行控制信息的预留资源是按照预定义或预配置的payload size(例如第二有效载荷门限)确定的时频资源,例如该预定义的payload size为第二有效载荷门限。
对应的,在映射步骤上,映射第一上行控制信息的步骤位于映射第二上行控制信息的步骤前面。
第一上行控制信息避让第二上行控制信息的具体阐述参见前文的映射方式3。其中第二上行控制信息对应信息C,第一上行控制信息对应信息D。时频资源#C为第二时频资源,时频资源#D为第一时频资源。
可选的,该第一上行控制信息为CSI part 2。也就是说,第二时频资源晚于承载对应于第一优先级的CSI part 2的时频资源。此时,第二时频资源可以早于对应于第一优先级的UL-SCH信息,即,第二上行控制信息映射的优先级介于对应于第一优先级的CSI part 2与对应于第一优先级的UL-SCH之间。
可选的,该第一上行控制信息为CSI part 1。也就是说,第二时频资源晚于承载对应于第一优先级的CSI part 1的时频资源,且早于承载对应于第一优先级的CSI part 2的时频资源。或者说,第二上行控制信息映射的优先级介于对应于第一优先级的CSI part 1与对应于第一优先级的CSI part 2之间。考虑到CSI part 2中所承载的信息的payload比较大,而且承载的是PMI等优先级较低、对性能影响较小的控制信息,而CSI part 1中所承载的信息的payload较小,且承载的是CQI、RI等优先级较高、对性能影响较大的控制信息。因此,将对应于第二优先级的第二上行控制信息映射到对应于第一优先级的CSI part 1后面(即,第二时频资源晚于该CSI part 1的时频资源),一方面可以保障了较为重要的信道状态信息CSI part 1的传输可靠性,另一方面由于第二上行控制信息所包括的HARQ-ACK和或SR信息的payload较小,所占资源数目较少,因此第二上行控制信息映射到对应于第一优先级的CSI part 2前面,给对应于第一优先级的CSI part 2带来的性能影响也较小。反过来,如果将第二上行控制信息映射到对应于第一优先级的CSI part 2后面,由于CSI part 2所占的资源数目较多,导致第二上行控制信息映射的位置距离DMRS较远,影响第二上行控制信息的可靠性。
进一步的,若该上行信道为PUSCH,第二上行控制信息可以与对应于第一优先级的CSI part 2以速率匹配的方式复用,也可以在第二时频资源上打孔已经映射的对应于第一优先级的CSI part 2信息,也可以使对应于第一优先级的CSI part 2信息在映射时避让第二上行控制信息的预留资源,类似于场景2中第二上行控制信息与第三上行控制信息之间的 复用关系,不再赘述。
例如图12所示,上行信道为PUSCH,包括7个时域符号(#0~#6)和12个子载波(#0~#11)。DMRS位于第一个符号,即符号#0,PUSCH上包括对应于URLLC的HARQ-ACK,第一上行控制信息(即对应于URLLC的CSI),第二上行控制信息(即对应于eMBB的HARQ-ACK),以及对应于URLLC的UL-SCH。终端设备从承载DMRS的符号之后的下一个符号,即符号#1开始,先按照先频后时的映射顺序,映射对应于URLLC的HARQ-ACK,然后在剩余的资源上按照先频后时的映射顺序,映射对应于URLLC的CSI part 1,然后在剩余的资源上按照先频后时的映射顺序,映射对应于eMBB的HARQ-ACK,然后在剩余的资源上按照先频后时的映射顺序,映射对应于URLLC的CSI part 2。其中,在图12(a)中,对应于eMBB的HARQ-ACK占满符号#3,因此对应于URLLC的CSI part 2从符号#4的子载波#0开始映射。在图12(b)中,对应于eMBB的HARQ-ACK占用符号#3以及符号#4的子载波#0,#2,…#10,剩余的子载波为#1,#3,…#11,因此对应于URLLC的CSI part 2从符号#4的子载波#1开始映射,映射到符号#4剩余的子载波上以及符号#5上。
本申请实施例中,对不同优先级的业务所对应的控制信息或数据信息独立编码,并且通过确定两者的优先级,使低优先级业务所对应的控制/业务信息的优先级低于高优先级业务所对应的控制/业务信息的优先级,或者低优先级业务所对应的控制/业务信息的时频域位置晚于高优先级业务所对应的控制/业务信息的时频域位置,从而达到更好地均衡两种不同优先级业务的效果。
应理解,上文中图4至图12的例子,仅仅是为了帮助本领域技术人员理解本发明实施例,而非要将本发明实施例限于所例示的具体数值或具体场景。本领域技术人员根据所给出的图4至图12的例子,显然可以进行各种等价的修改或变化,例如,本领域技术人员可以根据图4至图12的例子,将多个实施例进行组合拆分等,本申请实施例这样的修改或变化也落入本发明实施例的范围内。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
可以理解的是,上述各个方法实施例中,由终端设备实现的方法,也可以由可用于终端的部件(例如芯片或者电路)实现,由网络设备实现的方法,也可以由可用于网络设备的部件(例如芯片或者电路)实现。上文中,结合图1至图12详细描述了本发明实施例的方法,下面结合图13至图16描述本发明实施例的通信装置。
图13为本申请实施例提供的一种通信装置的结构示意图,该通信装置1300可以包括:
处理单元1310和收发单元1320。
具体地,所述确定单元用于确定上行信道上的第一时频资源和第二时频资源,所述第一时频资源用于发送第一上行信息,所述第二时频资源用于发送第二上行信息,其中,所述第一上行信息包括对应于第一优先级的第一上行数据信息和/或对应于第一优先级的第一上行控制信息,所述第二上行信息包括对应于第二优先级的第二上行数据信息和/或对应于第二优先级的第二上行控制信息,所述第一上行信息和所述第二上行信息独立编码;
所述收发单元用于在所述第一时频资源和所述第二时频资源上发送信息。
本申请实施例中终端设备对不同优先级的业务所对应的控制信息或数据信息独立编码,并且通过确定两者的优先级,使低优先级业务所对应的控制/业务信息的优先级低于高优先级业务所对应的控制/业务信息的优先级,或者低优先级业务所对应的控制/业务信息的时频域位置晚于高优先级业务所对应的控制/业务信息的时频域位置,从而达到更好地均衡两种不同优先级业务的效果。
可选地,所述第一上行数据信息包括第一下行控制信息调度或配置终端设备发送的数据信息,其中,所述第一上行数据信息对应于所述第一优先级是通过满足以下条件中的一种或多种来表示的:所述第一下行控制信息中的第一比特域指示或配置所述第一上行数据信息对应于所述第一优先级,所述第一下行控制信息位于第一搜索空间,所述第一下行控制信息位于第一PDCCH机会集合,所述第一下行控制信息对应第一DCI format,以及,所述第一下行控制信息对应第一RNTI;
或者,
所述第一上行控制信息包括第二下行控制信息配置或触发终端设备发送的上行控制信息,其中,所述第一上行控制信息对应于所述第一优先级是通过满足以下条件中的一种或多种来表示的:所述第二下行控制信息中的第二比特域指示或配置所述第一上行控制信息对应于所述第一优先级,所述第二下行控制信息位于第一搜索空间,所述第二下行控制信息位于第一PDCCH机会集合,所述第二下行控制信息对应第一DCI format,以及,所述第二下行控制信息对应第一RNTI;
可选地,所述第二上行控制信息包括第三下行控制信息配置或触发终端设备发送的上行控制信息,其中,所述第二上行控制信息对应于所述第二优先级是通过满足以下条件中的一种或多种来表示的:所述第三下行控制信息中的第三比特域指示或配置所述第二上行控制信息对应于所述第二优先级,所述第三下行控制信息位于第二搜索空间,所述第三下行控制信息位于第二PDCCH机会集合,所述第三下行控制信息对应第二DCI format,以及,所述第三下行控制信息对应第二RNTI;
或者,
所述第二上行数据信息包括第四下行控制信息调度或配置终端设备发送的数据信息,其中,所述第二上行数据信息对应于所述第二优先级是通过满足以下条件中的一种或多种来表示的:所述第四下行控制信息中的第四比特域指示或配置所述第二上行数据信息对应于第二优先级,所述第四下行控制信息位于第二搜索空间,所述第四下行控制信息位于第二PDCCH机会集合,所述第四下行控制信息对应第二DCI format,以及,所述第四下行控制信息对应第二RNTI。
可选地,所述第一上行控制信息包括以下信息中的一种或多种:对应于所述第一优先级的HARQ-ACK信息、对应于所述第一优先级的信道状态信息CSI信息、对应于第一SR信息;
所述第二上行控制信息包括以下信息中的一种或多种:对应于所述第二优先级的HARQ-ACK信息、对应于所述第二优先级的CSI信息、对应于所述第二优先级的SR信息。
可选地,所述第一时频资源在时域上早于所述第二时频资源,和/或,所述第一时频资源在频域上低于所述第二时域资源;
或者,
所述第一时频资源对应的时域符号与所述上行信道的DMRS符号之间的时间间隔小于所述第二时频资源对应的时域符号与所述DMRS符号之间的时间间隔,和/或,所述第一时频资源在频域上低于所述第二时频资源。
可选地,所述第一上行信息包括对应于所述第一优先级的第一上行控制信息,所述第二上行信息包括对应于所述第二优先级的第二上行控制信息,所述处理单元还用于确定所述上行信道上的第三时频资源,所述第三时频资源用于所述终端设备发送第三上行信息,所述第三上行信息包括对应于第一优先级的第三上行控制信息,所述第三上行控制信息和所述第一上行控制信息独立编码,所述第三上行控制信息和所述第二上行控制信息独立编码,所述收发单元还用于在所述第三时频资源上发送信息;
其中,所述第二时域资源在时域上早于所述第三时频资源,和/或,所述第二时频资源在频域上低于所述第三时域资源;
或者,
所述第二时频资源对应的时域符号与所述上行信道的DMRS符号之间的时间间隔小于所述第三时频资源对应的时域符号与所述DMRS符号之间的时间间隔,和/或,所述第二时频资源在频域上低于所述第三时频资源。
可选地,所述处理单元还用于在收发单元在所述第一时频资源和所述第二时频资源上发送信息之前,使用速率匹配的方式将所述第一上行信息和所述第二上行信息分别映射到所述第一时频资源上和所述第二时频资源上,
其中,所述收发单元具体用于在所述第一时频资源上发送所述第一上行信息,在所述第二时频资源上发送所述第二上行信息。
可选地,所述处理单元还用于在收发单元在所述第一时频资源和所述第二时频资源上发送信息之前,
在所述第二时频资源上映射所述第二上行信息,
在所述第一时频资源上映射所述第一上行信息,
丢弃所述第二上行信息已经映射到第一重叠时频资源上的信息,其中所述第一重叠时频资源为所述第一时频资源和所述第二时频资源重叠的时频资源,
其中,所述收发单元具体用于在所述第一时频资源上发送所述第一上行信息,在第一未重叠时频资源上发送所述第二上行信息,所述第一未重叠时频资源为所述第二时频资源中除所述第一重叠时频资源以外的时频资源。
可选地,所述处理单元还用于在收发单元在所述第一时频资源和所述第二时频资源上发送信息之前,
在所述第一时频资源上映射所述第一上行信息;
在所述第二时频资源上映射所述第二上行信息;
丢弃所述第一上行信息已经映射到第二重叠时频资源上的信息,其中所述第二重叠时频资源为所述第一时频资源和所述第二时频资源重叠的时频资源,
其中,所述收发单元具体用于在第二未重叠时频资源上发送所述第一上行信息,在所述第二时频资源上发送所述第二上行信息,所述第二未重叠时频资源为所述第一时频资源中除所述第二重叠时频资源以外的时频资源。
可选地,所述第一时频资源为对应于所述第一上行信息的预留资源,所述第一时频资源和所述第二时频资源没有重叠,
若在所述上行信道上发送所述第一上行信息,所述处理单元还用于在收发单元在所述第一时频资源和所述第二时频资源上发送信息之前,
在所述第二时频资源上映射所述第二上行信息,且在所述第一时频资源上映射所述第一上行信息,
其中,所述收发单元具体用于在所述第一时频资源上发送所述第一上行信息,在所述第二时频资源上发送所述第二上行信息;或者,
若不在所述上行信道上发送所述第一上行信息,所述处理单元还用于在收发单元在所述第一时频资源和所述第二时频资源上发送信息之前,
在所述第二时频资源上映射所述第二上行信息,且在所述第一时频资源上映射第四上行信息,所述第四上行信息与所述第一上行信息不同;
其中,所述收发单元具体用于在所述第一时频资源上发送所述第四上行信息,在所述第二时频资源上发送所述第二上行信息。
可选地,所述第一时频资源为预定义或者网络设备预配置的。
可选地,所述第二时频资源为对应于所述第二上行信息的预留资源,所述第一时频资源和所述第二时频资源没有重叠,
若在所述上行信道上发送所述第二上行信息,所述处理单元还用于在收发单元在所述第一时频资源和所述第二时频资源上发送信息之前,
在所述第一时频资源上映射所述第一上行信息,且在所述第二时频资源上映射所述第二上行信息,
其中,所述收发单元具体用于在所述第一时频资源上发送所述第一上行信息,在所述第二时频资源上发送所述第二上行信息;
或者,
若不在所述上行信道上发送所述第二上行信息,所述处理单元还用于在收发单元在所述第一时频资源和所述第二时频资源上发送信息之前,
在所述第一时频资源上映射所述第一上行信息,且在所述第二时频资源上映射第五上行信息,所述第五上行信息与所述第二上行信息不同,
其中,所述收发单元具体用于在所述第一时频资源上发送所述第一上行信息,在所述第二时频资源上发送所述第五上行信息。
可选地,所述第二时频资源为预定义或者网络设备预配置的。
本申请提供的通信装置1300可以对应上述图4至图12方法实施例中终端设备执行的过程,该通信装置中的各个单元/模块的功能可以参见上文中的描述,此处适当省略详细描述。
应理解,图13所述的通信装置可以是终端设备,也可以是可用于终端设备中的芯片或集成电路。
以通信装置为终端设备为例,图14为本申请实施例提供的一种终端设备的结构示意图,便于理解和图示方便,图14中,终端设备以手机作为例子。图14仅示出了终端设备的主要部件。如图14所示终端设备1400包括处理器、存储器、控制电路和天线,可选地,该终端设备还可以包括输入输出装置。应理解,该控制电路可以设置在处理器中,也可以位于处理器之外,独立存在,本申请实施例并不限于此。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据, 例如用于支持终端设备执行上述方法实施例中所描述的动作。存储器主要用于存储软件程序和数据。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图14仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。应理解,该存储器可以集成在处理器中,也可以位于该处理器之外,独立存在,本申请实施例并不限于此。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图14中的处理器可以集成基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在本申请实施例中,可以将具有收发功能的天线和控制电路视为终端设备1400的收发单元141,例如,用于支持终端设备执行如图4至图12方法实施中终端设备执行的收发功能。将具有处理功能的处理器视为终端设备1400的处理单元142,其与图13中的处理单元1310对应。如图14所示,终端设备1400包括收发单元141和处理单元142。收发单元也可以称为收发器、收发机、收发装置等,该收发单元与图13中的收发单元1320对应。可选的,可以将收发单元141中用于实现接收功能的器件视为接收单元,将收发单元141中用于实现发送功能的器件视为发送单元,即收发单元141包括接收单元和发送单元,接收单元也可以称为接收机、输入口、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
处理单元142可用于执行该存储器存储的指令,以控制收发单元141接收信号和/或发送信号,完成上述方法实施例中终端设备的功能。作为一种实现方式,收发单元141的功能可以考虑通过收发电路或者收发的专用芯片实现。可以理解的是,收发单元也可以是接口电路。
应理解,图14所示的终端设备1400能够实现图4至图14方法实施例中涉及终端设备的各个过程。终端设备1400中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详 述描述。
图15为本申请实施例提供的一种通信装置的结构示意图,该装置1500可包括:
处理单元1510和收发单元1520。
具体地,确定上行信道上的第一时频资源和第二时频资源,所述第一时频资源用于承载第一上行信息,所述第二时频资源用于承载第二上行信息,其中,所述第一上行信息包括对应于第一优先级的第一上行数据信息和/或对应于第一优先级的第一上行控制信息,所述第二上行信息包括对应于第二优先级的第二上行数据信息和/或对应于第二优先级的第二上行控制信息,所述第一上行信息和所述第二上行信息独立编码;
在所述第一时频资源和所述第二时频资源上接收来自于所述终端设备的信息。
本申请实施例中对不同优先级的业务所对应的控制信息或数据信息独立编码,并且通过确定两者的优先级,使低优先级业务所对应的控制/业务信息的优先级低于高优先级业务所对应的控制/业务信息的优先级,或者低优先级业务所对应的控制/业务信息的时频域位置晚于高优先级业务所对应的控制/业务信息的时频域位置,从而达到更好地均衡两种不同优先级业务的效果。
可选地,所述第一上行数据信息包括第一下行控制信息调度或配置所述终端设备发送的数据信息,其中,所述第一上行数据信息对应于所述第一优先级是通过满足以下条件中的一种或多种来表示的:所述第一下行控制中的第一比特域指示或配置所述第一上行数据信息对应于所述第一优先级,所述第一下行控制信息位于第一搜索空间,所述第一下行控制信息位于第一物理下行控制信道PDCCH机会集合,所述第一下行控制信息对应第一DCI format,以及,所述第一下行控制信息对应第一RNTI;
或者,
所述第一上行控制信息包括第二下行控制信息配置或触发所述终端设备发送的上行控制信息,其中,所述第一上行控制信息对应于所述第一优先级是通过满足以下条件中的一种或多种来表示的:所述第二下行控制信息中的第二比特域指示或配置所述第一上行控制信息对应于所述第一优先级,所述第二下行控制信息位于第一搜索空间,所述第二下行控制信息位于第一PDCCH机会集合,所述第二下行控制信息对应第一DCI format,以及,所述第二下行控制信息对应第一RNTI;
可选地,所述第二上行控制信息包括第三下行控制信息配置或触发所述终端设备发送的上行控制信息,其中,述第二上行控制信息对应于所述第二优先级是通过满足以下条件中的一种或多种来表示的:所述第三下行控制信息中的第三比特域指示或配置所述第二上行控制信息对应于所述第二优先级,所述第三下行控制信息位于第二搜索空间,所述第三下行控制信息位于第二PDCCH机会集合,所述第三下行控制信息对应第二DCI format,以及,所述第三下行控制信息对应第二RNTI;
或者,
所述第二上行数据信息包括第四下行控制信息调度或配置所述终端设备发送的数据信息,其中,所述第二上行数据信息对应于所述第二优先级是通过满足以下条件中的一种或多种来表示的:所述第四下行控制中的第四比特域指示或配置所述第二上行数据信息对应于所述第二优先级,所述第四下行控制信息位于第二搜索空间,所述第四下行控制信息位于第二PDCCH机会集合,所述第四下行控制信息对应第二DCI format,以及,所述第四下行控制信息对应第二RNTI。
可选地,所述第一上行控制信息包括以下信息中的一种或多种:对应于所述第一优先级的HARQ-ACK信息、对应于所述第一优先级的信道状态信息CSI信息、对应于第一优先级的SR信息;
所述第二上行控制信息包括以下信息中的一种或多种:对应于所述第二优先级的HARQ-ACK信息、对应于所述第二优先级的CSI信息、对应于所述第二优先级的SR信息。
可选地,所述第一时频资源在时域上早于所述第二时频资源,和/或,所述第一时频资源在频域上低于所述第二时域资源;
或者,
所述第一时频资源对应的时域符号与所述上行信道的DMRS符号之间的时间间隔小于所述第二时频资源对应的时域符号与所述DMRS符号之间的时间间隔,和/或,所述第一时频资源在频域上低于所述第二时频资源。
可选地,所述第一上行信息包括对应于所述第一优先级的第一上行控制信息,所述第二上行信息包括对应于所述第二优先级的第二上行控制信息,所述处理单元还用于确定所述上行信道上的第三时频资源,所述第三时频资源用于所述终端设备发送第三上行信息,所述第三上行信息包括对应于第一优先级的第三上行控制信息,所述第三上行控制信息和所述第一上行控制信息独立编码,所述第三上行控制信息和所述第二上行控制信息独立编码,
所述收发单元还用于在所述第三时频资源上从所述终端设备接收信息;
其中,所述第二时域资源在时域上早于所述第三时频资源,和/或,所述第二时频资源在频域上低于所述第三时域资源;
或者,
所述第二时频资源对应的时域符号与所述上行信道的DMRS符号之间的时间间隔小于所述第三时频资源对应的时域符号与所述DMRS符号之间的时间间隔,和/或,所述第二时频资源在频域上低于所述第三时频资源。
可选地,所述收发单元具体用于在所述第一时频资源上接收所述终端设备发送的所述第一上行信息,在所述第二时频资源上接收所述终端设备发送的所述第二上行信息,
其中,所述第一上行信息和所述第二上行信息是采用速率匹配的方式映射到所述第一时频资源和所述第二时频资源上的。
可选地,所述收发单元具体用于在所述第一时频资源上接收所述终端设备发送所述第一上行信息,在第一未重叠时频资源上接收所述终端设备发送的所述第二上行信息,
其中,所述第一未重叠时频资源为所述第二时频资源中除第一重叠时频资源以外的时频资源,所述第一重叠时频资源为所述第一时频资源和所述第二时频资源重叠的时频资源,所述第二上行信息为所述终端设备映射到所述第二时频资源上,且在丢弃所述第二上行信息已经映射到所述第一重叠时频资源上的信息的情况下,在所述第一未重叠时频资源上发送的信息,所述第一上行信息为所述终端设备在丢弃所述第二上行信息已经映射到所述第一重叠时频资源上的信息的情况下,映射到所述第一时频资源上的信息。
可选地,所述收发单元具体用于在第二未重叠时频资源上接收所述终端设备发送所述第一上行信息,在所述第二时频资源上接收所述终端设备发送的所述第二上行信息,
其中,所述第二未重叠时频资源为所述第一时频资源中除第二重叠时频资源以外的时 频资源,所述第二重叠时频资源为所述第一时频资源和所述第二时频资源重叠的时频资源,所述第一上行信息为所述终端设备映射到所述第一时频资源上,且在丢弃所述第一上行信息已经映射到所述第二重叠时频资源上的信息的情况下,在所述第二未重叠时频资源上发送的信息,所述第二上行信息为所述终端设备在丢弃所述第一上行信息已经映射到所述第二重叠时频资源上的信息的情况下,映射到所述第二时频资源上的信息。
可选地,所述第一时频资源为对应于所述第一上行信息的预留资源,所述第一时频资源和所述第二时频资源没有重叠,
在所述上行信道上承载所述第一上行信息的情况下,所述第二上行信息映射在所述第二时频资源上,所述第一上行信息映射在所述第一时频资源上,
其中,所述收发单元具体用于在所述第一时频资源上接收所述终端设备发送的所述第一上行信息,在所述第二时频资源上接收所述终端设备发送的所述第二上行信息;
或者,
在所述上行信道上不承载所述第一上行信息的情况下,所述第二上行信息映射在所述第二时频资源上,第四上行信息映射在所述第一时频资源上,所述第四上行信息与所述第一上行信息不同,
其中,所述收发单元具体用于在所述第一时频资源上接收所述终端设备发送的所述第四上行信息,在所述第二时频资源上接收所述终端设备发送的所述第二上行信息。
可选地,所述第一时频资源为预定义或者网络设备预配置的。
可选地,所述第二时频资源为对应于所述第二上行信息的预留资源,所述第一时频资源和所述第二时频资源没有重叠,
在所述上行信道上承载所述第二上行信息的情况下,所述第一上行信息映射在所述第一时频资源上,所述第二上行信息映射在所述第二时频资源上其中,所述收发单元具体用于在所述第一时频资源上接收所述终端设备发送的所述第一上行信息,在所述第二时频资源上接收所述终端设备发送的所述第二上行信息;
或者,
在所述上行信道上不承载所述第二上行信息的情况下,所述第一上行信息映射在所述第一时频资源上,第五上行信息映射在所述第二时频资源上,所述第五上行信息与所述第二上行信息不同,
其中,所述收发单元具体用于在所述第一时频资源上接收所述终端设备发送的所述第一上行信息,在所述第二时频资源上接收所述终端设备发送的所述第五上行信息。
可选地,所述第二时频资源为预定义或者网络设备预配置的。
本申请提供的通信装置1500可以对应上述图4至图12方法实施例中网络设备执行的过程,该通信装置中的各个单元/模块的功能可以参见上文中的描述,此处适当省略详细描述。
应理解,图15所述的通信装置可以是网络设备,也可以是可用于网络设备中的芯片或集成电路。
以通信装置为与终端设备通信的网络设备为例,图16为本申请实施例提供的一种网络设备的结构示意图,例如可以为基站的结构示意图。如图16所示,该网络设备1600可应用于如图1所示的系统中,执行上述方法实施例中网络设备的功能。
网络设备1600可以包括一个或多个射频单元,如远端射频单元(remote radio unit, RRU)161和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)162。所述RRU161可以称为收发单元161,与图15中的收发单元1520对应,可选地,该收发单元还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线1611和射频单元1612。所述RRU161部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送预编码矩阵信息。所述BBU162部分主要用于进行基带处理,对基站进行控制等。所述RRU161与BBU162可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。可以理解的是,收发单元也可以是接口电路。
所述BBU162为基站的控制中心,也可以称为处理单元162,可以与图15中的处理单元1510对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程。
在一个示例中,所述BBU162可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU162还包括存储器1621和处理器1622。所述存储器1621用以存储必要的指令和数据。所述处理器1622用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。应理解,该存储器可以集成在处理器中,也可以位于该处理器之外,独立存在,本申请实施例并不限于此。所述存储器1621和处理器1622可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
应理解,图16所示的网络设备1600能够实现图4至图12方法实施例中涉及网络设备的各个过程。网络设备1600中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
本申请实施例还提供了一种处理装置,包括处理器和接口;所述处理器,用于执行上述任一方法实施例中的通信的方法。
应理解,上述处理装置可以是一个芯片。例如,该处理装置可以是现场可编程门阵列(Field-Programmable Gate Array,FPGA),可以是专用集成芯片(Application Specific Integrated Circuit,ASIC),还可以是系统芯片(System on Chip,SoC),还可以是中央处理器(Central Processor Unit,CPU),还可以是网络处理器(Network Processor,NP),还可以是数字信号处理电路(Digital Signal Processor,DSP),还可以是微控制器(Micro Controller Unit,MCU),还可以是可编程控制器(Programmable Logic Device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本发明实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。 在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本发明实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供一种通信系统,其包括前述的网络设备和终端设备。
本申请实施例还提供了一种计算机可读介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述任一方法实施例中的方法。
本申请实施例还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例中的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬 盘(solid state disk,SSD))等。
应理解,上文中描述了通信系统中下行传输时通信的方法,但本申请并不限于此,可选地,在上行传输时也可以采用上文类似的方案,为避免重复,此处不再赘述。
上述各个装置实施例中网络设备与终端设备和方法实施例中的网络设备或终端设备完全对应,由相应的模块或单元执行相应的步骤,例如发送模块(发射器)方法执行方法实施例中发送的步骤,接收模块(接收器)执行方法实施例中接收的步骤,除发送接收外的其它步骤可以由处理模块(处理器)执行。具体模块的功能可以参考相应的方法实施例。发送模块和接收模块可以组成收发模块,发射器和接收器可以组成收发器,共同实现收发功能;处理器可以为一个或多个。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的 划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (55)

  1. 一种传输上行信息的方法,其特征在于,包括:
    确定上行信道上的第一时频资源和第二时频资源,所述第一时频资源用于发送第一上行信息,所述第二时频资源用于发送第二上行信息,其中,所述第一上行信息包括对应于第一优先级的第一上行数据信息和/或对应于第一优先级的第一上行控制信息,所述第二上行信息包括对应于第二优先级的第二上行数据信息和/或对应于第二优先级的第二上行控制信息,所述第一上行信息和所述第二上行信息独立编码;
    在所述第一时频资源和所述第二时频资源上发送信息。
  2. 根据权利要求1所述的方法,其特征在于,
    所述第一上行数据信息包括第一下行控制信息调度或配置终端设备发送的数据信息,其中,所述第一上行数据信息对应于所述第一优先级是通过满足以下条件中的一种或多种来表示的:所述第一下行控制信息中的第一比特域指示或配置所述第一上行数据信息对应于所述第一优先级,所述第一下行控制信息位于第一搜索空间,所述第一下行控制信息位于第一物理下行控制信道PDCCH机会集合,所述第一下行控制信息对应第一下行控制信息格式DCI format,以及,所述第一下行控制信息对应第一无线网络临时标识RNTI;
    或者,
    所述第一上行控制信息包括第二下行控制信息配置或触发终端设备发送的上行控制信息,其中,所述第一上行控制信息对应于所述第一优先级是通过满足以下条件中的一种或多种来表示的:所述第二下行控制信息中的第二比特域指示或配置所述第一上行控制信息对应于所述第一优先级,所述第二下行控制信息位于第一搜索空间,所述第二下行控制信息位于第一PDCCH机会集合,所述第二下行控制信息对应第一DCI format,以及,所述第二下行控制信息对应第一RNTI。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述第二上行控制信息包括第三下行控制信息配置或触发终端设备发送的上行控制信息,其中,所述第二上行控制信息对应于所述第二优先级是通过满足以下条件中的一种或多种来表示的:所述第三下行控制信息中的第三比特域指示或配置所述第二上行控制信息对应于所述第二优先级,所述第三下行控制信息位于第二搜索空间,所述第三下行控制信息位于第二PDCCH机会集合,所述第三下行控制信息对应第二DCI format,以及,所述第三下行控制信息对应第二RNTI;
    或者,
    所述第二上行数据信息包括第四下行控制信息调度或配置终端设备发送的数据信息,其中,所述第二上行数据信息对应于所述第二优先级是通过满足以下条件中的一种或多种来表示的:所述第四下行控制信息中的第四比特域指示或配置所述第二上行数据信息对应于第二优先级,所述第四下行控制信息位于第二搜索空间,所述第四下行控制信息位于第二PDCCH机会集合,所述第四下行控制信息对应第二DCI format,以及,所述第四下行控制信息对应第二RNTI。
  4. 根据权利要求2或3所述的方法,其特征在于,
    所述第一上行控制信息包括以下信息中的一种或多种:对应于所述第一优先级的混合 自动重传请求确认HARQ-ACK信息、对应于所述第一优先级的信道状态信息CSI信息、对应于第一优先级的调度请求SR信息;
    所述第二上行控制信息包括以下信息中的一种或多种:对应于所述第二优先级的HARQ-ACK信息、对应于所述第二优先级的CSI信息、对应于所述第二优先级的SR信息。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,
    所述第一时频资源在时域上早于所述第二时频资源,和/或,所述第一时频资源在频域上低于所述第二时域资源;
    或者,
    所述第一时频资源对应的时域符号与所述上行信道的解调参考信号DMRS符号之间的时间间隔小于所述第二时频资源对应的时域符号与所述DMRS符号之间的时间间隔,和/或,所述第一时频资源在频域上低于所述第二时频资源。
  6. 根据权利要求5所述的方法,其特征在于,所述第一上行信息包括对应于所述第一优先级的第一上行控制信息,所述第二上行信息包括对应于所述第二优先级的第二上行控制信息,所述方法还包括:
    确定所述上行信道上的第三时频资源,所述第三时频资源用于发送第三上行信息,所述第三上行信息包括对应于第一优先级的第三上行控制信息,所述第三上行控制信息和所述第一上行控制信息独立编码,所述第三上行控制信息和所述第二上行控制信息独立编码,
    在所述第三时频资源上发送信息;
    其中,所述第二时域资源在时域上早于所述第三时频资源,和/或,所述第二时频资源在频域上低于所述第三时域资源;
    或者,
    所述第二时频资源对应的时域符号与所述上行信道的解调参考信号DMRS符号之间的时间间隔小于所述第三时频资源对应的时域符号与所述DMRS符号之间的时间间隔,和/或,所述第二时频资源在频域上低于所述第三时频资源。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,在所述第一时频资源和所述第二时频资源上发送信息之前,所述方法还包括:
    使用速率匹配的方式将所述第一上行信息和所述第二上行信息分别映射到所述第一时频资源上和所述第二时频资源上,
    其中,所述在所述第一时频资源和所述第二时频资源上发送信息,包括:
    在所述第一时频资源上发送所述第一上行信息,在所述第二时频资源上发送所述第二上行信息。
  8. 根据权利要求1至6中任一项所述的方法,其特征在于,在所述第一时频资源和所述第二时频资源上发送信息之前,所述方法还包括:
    在所述第二时频资源上映射所述第二上行信息;
    在所述第一时频资源上映射所述第一上行信息,并丢弃所述第二上行信息已经映射到第一重叠时频资源上的信息,其中所述第一重叠时频资源为所述第一时频资源和所述第二时频资源重叠的时频资源,
    其中,所述在所述第一时频资源和所述第二时频资源上发送信息,包括:
    在所述第一时频资源上发送所述第一上行信息,在第一未重叠时频资源上发送所述第二上行信息,所述第一未重叠时频资源为所述第二时频资源中除所述第一重叠时频资源以外的时频资源。
  9. 根据权利要求1至6中任一项所述的方法,其特征在于,在所述第一时频资源和所述第二时频资源上发送信息之前,所述方法还包括:
    在所述第一时频资源上映射所述第一上行信息;
    在所述第二时频资源上映射所述第二上行信息,并丢弃所述第一上行信息已经映射到第二重叠时频资源上的信息,其中所述第二重叠时频资源为所述第一时频资源和所述第二时频资源重叠的时频资源,
    其中,所述在所述第一时频资源和所述第二时频资源上发送信息,包括:
    在第二未重叠时频资源上发送所述第一上行信息,在所述第二时频资源上发送所述第二上行信息,所述第二未重叠时频资源为所述第一时频资源中除所述第二重叠时频资源以外的时频资源。
  10. 根据权利要求1至6中任一项所述的方法,其特征在于,所述第一时频资源为对应于所述第一上行信息的预留资源,所述第一时频资源和所述第二时频资源没有重叠,当在所述上行信道上发送所述第一上行信息时,在所述第一时频资源和所述第二时频资源上发送信息之前,所述方法还包括:
    在所述第二时频资源上映射所述第二上行信息,且在所述第一时频资源上映射所述第一上行信息,
    其中,所述在所述第一时频资源和所述第二时频资源上发送信息,包括:
    在所述第一时频资源上发送所述第一上行信息,在所述第二时频资源上发送所述第二上行信息;或者,
    当不在所述上行信道上发送所述第一上行信息时,在所述第一时频资源和所述第二时频资源上发送信息之前,所述方法还包括:
    在所述第二时频资源上映射所述第二上行信息,且在所述第一时频资源上映射第四上行信息,所述第四上行信息与所述第一上行信息不同;
    其中,所述在所述第一时频资源和所述第二时频资源上发送信息,包括:
    在所述第一时频资源上发送所述第四上行信息,在所述第二时频资源上发送所述第二上行信息。
  11. 根据权利要求10所述的方法,其特征在于,
    所述第一时频资源为预定义或者网络设备预配置的。
  12. 根据权利要求1至6中任一项所述的方法,其特征在于,所述第二时频资源为对应于所述第二上行信息的预留资源,所述第一时频资源和所述第二时频资源没有重叠,当在所述上行信道上发送所述第二上行信息时,在所述第一时频资源和所述第二时频资源上发送信息之前,所述方法还包括:
    在所述第一时频资源上映射所述第一上行信息,且在所述第二时频资源上映射所述第二上行信息,
    其中,所述在所述第一时频资源和所述第二时频资源上发送信息,包括:
    在所述第一时频资源上发送所述第一上行信息,在所述第二时频资源上发送所述第二上行信息;
    或者,
    当不在所述上行信道上发送所述第二上行信息时,在所述第一时频资源和所述第二时频资源上发送信息之前,所述方法还包括:
    在所述第一时频资源上映射所述第一上行信息,且在所述第二时频资源上映射第五上行信息,所述第五上行信息与所述第二上行信息不同,
    其中,所述在所述第一时频资源和所述第二时频资源上发送信息,包括:
    所述终端设备在所述第一时频资源上发送所述第一上行信息,在所述第二时频资源上发送所述第五上行信息。
  13. 根据权利要求12所述的方法,其特征在于,
    所述第二时频资源为预定义或者网络设备预配置的。
  14. 一种传输上行信息的方法,其特征在于,包括:
    确定上行信道上的第一时频资源和第二时频资源,所述第一时频资源用于承载第一上行信息,所述第二时频资源用于承载第二上行信息,其中,所述第一上行信息包括对应于第一优先级的第一上行数据信息和/或对应于第一优先级的第一上行控制信息,所述第二上行信息包括对应于第二优先级的第二上行数据信息和/或对应于第二优先级的第二上行控制信息,所述第一上行信息和所述第二上行信息独立编码;
    在所述第一时频资源和所述第二时频资源上接收来自于所述终端设备的信息。
  15. 根据权利要求14所述的方法,其特征在于,
    所述第一上行数据信息包括第一下行控制信息调度或配置所述终端设备发送的数据信息,其中,所述第一上行数据信息对应于所述第一优先级是通过满足以下条件中的一种或多种来表示的:所述第一下行控制中的第一比特域指示或配置所述第一上行数据信息对应于所述第一优先级,所述第一下行控制信息位于第一搜索空间,所述第一下行控制信息位于第一物理下行控制信道PDCCH机会集合,所述第一下行控制信息对应第一下行控制信息格式DCI format,以及,所述第一下行控制信息对应第一无线网络临时标识RNTI;
    或者,
    所述第一上行控制信息包括第二下行控制信息配置或触发所述终端设备发送的上行控制信息,其中,所述第一上行控制信息对应于所述第一优先级是通过满足以下条件中的一种或多种来表示的:所述第二下行控制信息中的第二比特域指示或配置所述第一上行控制信息对应于所述第一优先级,所述第二下行控制信息位于第一搜索空间,所述第二下行控制信息位于第一PDCCH机会集合,所述第二下行控制信息对应第一DCI format,以及,所述第二下行控制信息对应第一RNTI。
  16. 根据权利要求15所述的方法,其特征在于,
    所述第二上行控制信息包括第三下行控制信息配置或触发所述终端设备发送的上行控制信息,其中,述第二上行控制信息对应于所述第二优先级是通过满足以下条件中的一种或多种来表示的:所述第三下行控制信息中的第三比特域指示或配置所述第二上行控制信息对应于所述第二优先级,所述第三下行控制信息位于第二搜索空间,所述第三下行控制信息位于第二PDCCH机会集合,所述第三下行控制信息对应第二DCI format,以及,所述第三下行控制信息对应第二RNTI;
    或者,
    所述第二上行数据信息包括第四下行控制信息调度或配置所述终端设备发送的数据 信息,其中,所述第二上行数据信息对应于所述第二优先级是通过满足以下条件中的一种或多种来表示的:所述第四下行控制中的第四比特域指示或配置所述第二上行数据信息对应于所述第二优先级,所述第四下行控制信息位于第二搜索空间,所述第四下行控制信息位于第二PDCCH机会集合,所述第四下行控制信息对应第二DCI format,以及,所述第四下行控制信息对应第二RNTI。
  17. 根据权利要求15或16所述的方法,其特征在于,
    所述第一上行控制信息包括以下信息中的一种或多种:对应于所述第一优先级的混合自动重传请求确认HARQ-ACK信息、对应于所述第一优先级的信道状态信息CSI信息、对应于第一优先级的调度请求SR信息;
    所述第二上行控制信息包括以下信息中的一种或多种:对应于所述第二优先级的HARQ-ACK信息、对应于所述第二优先级的CSI信息、对应于所述第二优先级的SR信息。
  18. 根据权利要求14至17中任一项所述的方法,其特征在于,
    所述第一时频资源在时域上早于所述第二时频资源,和/或,所述第一时频资源在频域上低于所述第二时域资源;
    或者,
    所述第一时频资源对应的时域符号与所述上行信道的解调参考信号DMRS符号之间的时间间隔小于所述第二时频资源对应的时域符号与所述DMRS符号之间的时间间隔,和/或,所述第一时频资源在频域上低于所述第二时频资源。
  19. 根据权利要求18所述的方法,其特征在于,所述第一上行信息包括对应于所述第一优先级的第一上行控制信息,所述第二上行信息包括对应于所述第二优先级的第二上行控制信息,所述方法还包括:
    确定所述上行信道上的第三时频资源,所述第三时频资源用于所述终端设备发送第三上行信息,所述第三上行信息包括对应于第一优先级的第三上行控制信息,所述第三上行控制信息和所述第一上行控制信息独立编码,所述第三上行控制信息和所述第二上行控制信息独立编码,
    在所述第三时频资源上接收来自于所述终端设备的信息;
    其中,所述第二时域资源在时域上早于所述第三时频资源,和/或,所述第二时频资源在频域上低于所述第三时域资源;
    或者,
    所述第二时频资源对应的时域符号与所述上行信道的解调参考信号DMRS符号之间的时间间隔小于所述第三时频资源对应的时域符号与所述DMRS符号之间的时间间隔,和/或,所述第二时频资源在频域上低于所述第三时频资源。
  20. 根据权利要求14至19中任一项所述的方法,其特征在于,所述在所述第一时频资源和所述第二时频资源上接收来自于所述终端设备的信息,包括:
    在所述第一时频资源上接收来自于所述终端设备的所述第一上行信息,在所述第二时频资源上接收来自于所述终端设备的所述第二上行信息,
    其中,所述第一上行信息和所述第二上行信息是采用速率匹配的方式映射到所述第一时频资源和所述第二时频资源上的。
  21. 根据权利要求14至19中任一项所述的方法,其特征在于,所述在所述第一时频 资源和所述第二时频资源上接收来自于所述终端设备的信息,包括:
    在所述第一时频资源上接收来自于所述终端设备的所述第一上行信息,在第一未重叠时频资源上接收来自于所述终端设备的所述第二上行信息,
    其中,所述第一未重叠时频资源为所述第二时频资源中除第一重叠时频资源以外的时频资源,所述第一重叠时频资源为所述第一时频资源和所述第二时频资源重叠的时频资源,所述第二上行信息为所述终端设备映射到所述第二时频资源上,且在丢弃所述第二上行信息已经映射到所述第一重叠时频资源上的信息的情况下,在所述第一未重叠时频资源上发送的信息,所述第一上行信息为所述终端设备在丢弃所述第二上行信息已经映射到所述第一重叠时频资源上的信息的情况下,映射到所述第一时频资源上的信息。
  22. 根据权利要求14至19中任一项所述的方法,其特征在于,所述在所述第一时频资源和所述第二时频资源上接收来自于所述终端设备的信息,包括:
    在第二未重叠时频资源上接收来自于所述终端设备的所述第一上行信息,在所述第二时频资源上接收来自于所述终端设备的所述第二上行信息,
    其中,所述第二未重叠时频资源为所述第一时频资源中除第二重叠时频资源以外的时频资源,所述第二重叠时频资源为所述第一时频资源和所述第二时频资源重叠的时频资源,所述第一上行信息为所述终端设备映射到所述第一时频资源上,且在丢弃所述第一上行信息已经映射到所述第二重叠时频资源上的信息的情况下,在所述第二未重叠时频资源上发送的信息,所述第二上行信息为所述终端设备在丢弃所述第一上行信息已经映射到所述第二重叠时频资源上的信息的情况下,映射到所述第二时频资源上的信息。
  23. 根据权利要求14至19中任一项所述的方法,其特征在于,所述第一时频资源为对应于所述第一上行信息的预留资源,所述第一时频资源和所述第二时频资源没有重叠,
    当所述上行信道上承载所述第一上行信息时,所述第二上行信息映射在所述第二时频资源上,所述第一上行信息映射在所述第一时频资源上,
    其中,所述在所述第一时频资源和所述第二时频资源上接收来自于所述终端设备的信息,包括:
    在所述第一时频资源上接收来自于所述终端设备的所述第一上行信息,在所述第二时频资源上接收来自于所述终端设备的所述第二上行信息;
    或者,
    当所述上行信道上不承载所述第一上行信息时,所述第二上行信息映射在所述第二时频资源上,第四上行信息映射在所述第一时频资源上,所述第四上行信息与所述第一上行信息不同,
    其中,所述在所述第一时频资源和所述第二时频资源上接收来自于所述终端设备的信息,包括:
    在所述第一时频资源上接收来自于所述终端设备的所述第四上行信息,在所述第二时频资源上接收来自于所述终端设备的所述第二上行信息。
  24. 根据权利要求23所述的方法,其特征在于,
    所述第一时频资源为预定义或者网络设备预配置的。
  25. 根据权利要求14至19中任一项所述的方法,其特征在于,所述第二时频资源为对应于所述第二上行信息的预留资源,所述第一时频资源和所述第二时频资源没有重叠,
    当所述上行信道上承载所述第二上行信息时,所述第一上行信息映射在所述第一时频 资源上,所述第二上行信息映射在所述第二时频资源上,
    其中,所述在所述第一时频资源和所述第二时频资源上接收来自于所述终端设备的信息,包括:
    在所述第一时频资源上接收来自于所述终端设备的所述第一上行信息,在所述第二时频资源上接收来自于所述终端设备的所述第二上行信息;
    或者,
    在所述上行信道上不承载所述第二上行信息的情况下,所述第一上行信息映射在所述第一时频资源上,第五上行信息映射在所述第二时频资源上,所述第五上行信息与所述第二上行信息不同,
    其中,所述在所述第一时频资源和所述第二时频资源上接收来自于所述终端设备的信息,包括:
    在所述第一时频资源上接收来自于所述终端设备的所述第一上行信息,在所述第二时频资源上接收来自于所述终端设备的所述第五上行信息。
  26. 根据权利要求25所述的方法,其特征在于,
    所述第二时频资源为预定义或者网络设备预配置的。
  27. 一种通信装置,其特征在于,包括:
    处理单元和收发单元;
    其中,处理单元用于确定上行信道上的第一时频资源和第二时频资源,所述第一时频资源用于发送第一上行信息,所述第二时频资源用于发送第二上行信息,其中,所述第一上行信息包括对应于第一优先级的第一上行数据信息和/或对应于第一优先级的第一上行控制信息,所述第二上行信息包括对应于第二优先级的第二上行数据信息和/或对应于第二优先级的第二上行控制信息,所述第一上行信息和所述第二上行信息独立编码;
    收发单元用于在所述第一时频资源和所述第二时频资源上发送信息。
  28. 根据权利要求27所述的通信装置,其特征在于,
    所述第一上行数据信息包括第一下行控制信息调度或配置终端设备发送的数据信息,其中,所述第一上行数据信息对应于所述第一优先级是通过满足以下条件中的一种或多种来表示的:所述第一下行控制信息中的第一比特域指示或配置所述第一上行数据信息对应于所述第一优先级,所述第一下行控制信息位于第一搜索空间,所述第一下行控制信息位于第一物理下行控制信道PDCCH机会集合,所述第一下行控制信息对应第一下行控制信息格式DCI format,以及,所述第一下行控制信息对应第一无线网络临时标识RNTI;
    或者,
    所述第一上行控制信息包括第二下行控制信息配置或触发终端设备发送的上行控制信息,其中,所述第一上行控制信息对应于所述第一优先级是通过满足以下条件中的一种或多种来表示的:所述第二下行控制信息中的第二比特域指示或配置所述第一上行控制信息对应于所述第一优先级,所述第二下行控制信息位于第一搜索空间,所述第二下行控制信息位于第一PDCCH机会集合,所述第二下行控制信息对应第一DCI format,以及,所述第二下行控制信息对应第一RNTI。
  29. 根据权利要求27或28所述的通信装置,其特征在于,
    所述第二上行控制信息包括第三下行控制信息配置或触发终端设备发送的上行控制信息,其中,所述第二上行控制信息对应于所述第二优先级是通过满足以下条件中的一种 或多种来表示的:所述第三下行控制信息中的第三比特域指示或配置所述第二上行控制信息对应于所述第二优先级,所述第三下行控制信息位于第二搜索空间,所述第三下行控制信息位于第二PDCCH机会集合,所述第三下行控制信息对应第二DCI format,以及,所述第三下行控制信息对应第二RNTI;
    或者,
    所述第二上行数据信息包括第四下行控制信息调度或配置终端设备发送的数据信息,其中,所述第二上行数据信息对应于所述第二优先级是通过满足以下条件中的一种或多种来表示的:所述第四下行控制信息中的第四比特域指示或配置所述第二上行数据信息对应于第二优先级,所述第四下行控制信息位于第二搜索空间,所述第四下行控制信息位于第二PDCCH机会集合,所述第四下行控制信息对应第二DCI format,以及,所述第四下行控制信息对应第二RNTI。
  30. 根据权利要求28或29所述的通信装置,其特征在于,
    所述第一上行控制信息包括以下信息中的一种或多种:对应于所述第一优先级的混合自动重传请求确认HARQ-ACK信息、对应于所述第一优先级的信道状态信息CSI信息、对应于第一优先级的调度请求SR信息;
    所述第二上行控制信息包括以下信息中的一种或多种:对应于所述第二优先级的
    HARQ-ACK信息、对应于所述第二优先级的CSI信息、对应于所述第二优先级的SR信息。
  31. 根据权利要求27至30中任一项所述的通信装置,其特征在于,
    所述第一时频资源在时域上早于所述第二时频资源,和/或,所述第一时频资源在频域上低于所述第二时域资源;
    或者,
    所述第一时频资源对应的时域符号与所述上行信道的解调参考信号DMRS符号之间的时间间隔小于所述第二时频资源对应的时域符号与所述DMRS符号之间的时间间隔,和/或,所述第一时频资源在频域上低于所述第二时频资源。
  32. 根据权利要求31所述的通信装置,其特征在于,所述第一上行信息包括对应于所述第一优先级的第一上行控制信息,所述第二上行信息包括对应于所述第二优先级的第二上行控制信息,所述处理单元还用于:
    确定所述上行信道上的第三时频资源,所述第三时频资源用于发送第三上行信息,所述第三上行信息包括对应于第一优先级的第三上行控制信息,所述第三上行控制信息和所述第一上行控制信息独立编码,所述第三上行控制信息和所述第二上行控制信息独立编码,
    在所述第三时频资源上发送信息;
    其中,所述第二时域资源在时域上早于所述第三时频资源,和/或,所述第二时频资源在频域上低于所述第三时域资源;
    或者,
    所述第二时频资源对应的时域符号与所述上行信道的解调参考信号DMRS符号之间的时间间隔小于所述第三时频资源对应的时域符号与所述DMRS符号之间的时间间隔,和/或,所述第二时频资源在频域上低于所述第三时频资源。
  33. 根据权利要求27至32中任一项所述的通信装置,其特征在于,所述在所述第一 时频资源和所述第二时频资源上发送信息之前,所述处理单元还用于:
    使用速率匹配的方式将所述第一上行信息和所述第二上行信息分别映射到所述第一时频资源上和所述第二时频资源上,
    其中,所述在所述第一时频资源和所述第二时频资源上发送信息,包括:
    在所述第一时频资源上发送所述第一上行信息,在所述第二时频资源上发送所述第二上行信息。
  34. 根据权利要求27至32中任一项所述的通信装置,其特征在于,所述在所述第一时频资源和所述第二时频资源上发送信息之前,所述处理单元还用于:
    在所述第二时频资源上映射所述第二上行信息;
    在所述第一时频资源上映射所述第一上行信息,并丢弃所述第二上行信息已经映射到第一重叠时频资源上的信息,其中所述第一重叠时频资源为所述第一时频资源和所述第二时频资源重叠的时频资源,
    其中,所述在所述第一时频资源和所述第二时频资源上发送信息,包括:
    在所述第一时频资源上发送所述第一上行信息,在第一未重叠时频资源上发送所述第二上行信息,所述第一未重叠时频资源为所述第二时频资源中除所述第一重叠时频资源以外的时频资源。
  35. 根据权利要求27至32中任一项所述的通信装置,其特征在于,所述在所述第一时频资源和所述第二时频资源上发送信息之前,所述处理单元还用于:
    在所述第一时频资源上映射所述第一上行信息;
    在所述第二时频资源上映射所述第二上行信息,并丢弃所述第一上行信息已经映射到第二重叠时频资源上的信息,其中所述第二重叠时频资源为所述第一时频资源和所述第二时频资源重叠的时频资源,
    其中,所述在所述第一时频资源和所述第二时频资源上发送信息,包括:
    在第二未重叠时频资源上发送所述第一上行信息,在所述第二时频资源上发送所述第二上行信息,所述第二未重叠时频资源为所述第一时频资源中除所述第二重叠时频资源以外的时频资源。
  36. 根据权利要求27至32中任一项所述的通信装置,其特征在于,所述第一时频资源为对应于所述第一上行信息的预留资源,所述第一时频资源和所述第二时频资源没有重叠,
    当所述收发单元在所述上行信道上发送所述第一上行信息时,所述在所述第一时频资源和所述第二时频资源上发送信息之前,所述处理单元还用于:
    在所述第二时频资源上映射所述第二上行信息,且在所述第一时频资源上映射所述第一上行信息,
    其中,所述在所述第一时频资源和所述第二时频资源上发送信息,包括:
    在所述第一时频资源上发送所述第一上行信息,在所述第二时频资源上发送所述第二上行信息;或者,
    当所述收发单元不在所述上行信道上发送所述第一上行信息时,所述在所述第一时频资源和所述第二时频资源上发送信息之前,所述处理单元还用于:
    在所述第二时频资源上映射所述第二上行信息,且在所述第一时频资源上映射第四上行信息,所述第四上行信息与所述第一上行信息不同;
    其中,所述在所述第一时频资源和所述第二时频资源上发送信息,包括:
    在所述第一时频资源上发送所述第四上行信息,在所述第二时频资源上发送所述第二上行信息。
  37. 根据权利要求36所述的通信装置,其特征在于,
    所述第一时频资源为预定义或者网络设备预配置的。
  38. 根据权利要求27至32中任一项所述的通信装置,其特征在于,所述第二时频资源为对应于所述第二上行信息的预留资源,所述第一时频资源和所述第二时频资源没有重叠,
    当所述收发单元在所述上行信道上发送所述第二上行信息时,所述在所述第一时频资源和所述第二时频资源上发送信息之前,所述处理单元还用于:
    在所述第一时频资源上映射所述第一上行信息,且在所述第二时频资源上映射所述第二上行信息,
    其中,所述在所述第一时频资源和所述第二时频资源上发送信息,包括:
    在所述第一时频资源上发送所述第一上行信息,在所述第二时频资源上发送所述第二上行信息;
    或者,
    当所述收发单元不在所述上行信道上发送所述第二上行信息时,所述在所述第一时频资源和所述第二时频资源上发送信息之前,所述处理单元还用于:
    在所述第一时频资源上映射所述第一上行信息,且在所述第二时频资源上映射第五上行信息,所述第五上行信息与所述第二上行信息不同,
    其中,所述在所述第一时频资源和所述第二时频资源上发送信息,包括:
    在所述第一时频资源上发送所述第一上行信息,在所述第二时频资源上发送所述第五上行信息。
  39. 根据权利要求38所述的通信装置,其特征在于,
    所述第二时频资源为预定义或者网络设备预配置的。
  40. 一种通信装置,其特征在于,包括:
    处理单元和收发单元;
    其中,所述处理单元用于确定上行信道上的第一时频资源和第二时频资源,所述第一时频资源用于承载第一上行信息,所述第二时频资源用于承载第二上行信息,其中,所述第一上行信息包括对应于第一优先级的第一上行数据信息和/或对应于第一优先级的第一上行控制信息,所述第二上行信息包括对应于第二优先级的第二上行数据信息和/或对应于第二优先级的第二上行控制信息,所述第一上行信息和所述第二上行信息独立编码;
    所述收发单元用于在所述第一时频资源和所述第二时频资源上接收来自于所述终端设备的信息。
  41. 根据权利要求40所述的通信装置,其特征在于,
    所述第一上行数据信息包括第一下行控制信息调度或配置所述终端设备发送的数据信息,其中,所述第一上行数据信息对应于所述第一优先级是通过满足以下条件中的一种或多种来表示的:所述第一下行控制中的第一比特域指示或配置所述第一上行数据信息对应于所述第一优先级,所述第一下行控制信息位于第一搜索空间,所述第一下行控制信息位于第一物理下行控制信道PDCCH机会集合,所述第一下行控制信息对应第一下行控制 信息格式DCI format,以及,所述第一下行控制信息对应第一无线网络临时标识RNTI;
    或者,
    所述第一上行控制信息包括第二下行控制信息配置或触发所述终端设备发送的上行控制信息,其中,所述第一上行控制信息对应于所述第一优先级是通过满足以下条件中的一种或多种来表示的:所述第二下行控制信息中的第二比特域指示或配置所述第一上行控制信息对应于所述第一优先级,所述第二下行控制信息位于第一搜索空间,所述第二下行控制信息位于第一PDCCH机会集合,所述第二下行控制信息对应第一DCI format,以及,所述第二下行控制信息对应第一RNTI。
  42. 根据权利要求41所述的通信装置,其特征在于,
    所述第二上行控制信息包括第三下行控制信息配置或触发所述终端设备发送的上行控制信息,其中,述第二上行控制信息对应于所述第二优先级是通过满足以下条件中的一种或多种来表示的:所述第三下行控制信息中的第三比特域指示或配置所述第二上行控制信息对应于所述第二优先级,所述第三下行控制信息位于第二搜索空间,所述第三下行控制信息位于第二PDCCH机会集合,所述第三下行控制信息对应第二DCI format,以及,所述第三下行控制信息对应第二RNTI;
    或者,
    所述第二上行数据信息包括第四下行控制信息调度或配置所述终端设备发送的数据信息,其中,所述第二上行数据信息对应于所述第二优先级是通过满足以下条件中的一种或多种来表示的:所述第四下行控制中的第四比特域指示或配置所述第二上行数据信息对应于所述第二优先级,所述第四下行控制信息位于第二搜索空间,所述第四下行控制信息位于第二PDCCH机会集合,所述第四下行控制信息对应第二DCI format,以及,所述第四下行控制信息对应第二RNTI。
  43. 根据权利要求41或42所述的通信装置,其特征在于,
    所述第一上行控制信息包括以下信息中的一种或多种:对应于所述第一优先级的混合自动重传请求确认HARQ-ACK信息、对应于所述第一优先级的信道状态信息CSI信息、对应于第一优先级的调度请求SR信息;
    所述第二上行控制信息包括以下信息中的一种或多种:对应于所述第二优先级的HARQ-ACK信息、对应于所述第二优先级的CSI信息、对应于所述第二优先级的SR信息。
  44. 根据权利要求40至43中任一项所述的通信装置,其特征在于,
    所述第一时频资源在时域上早于所述第二时频资源,和/或,所述第一时频资源在频域上低于所述第二时域资源;
    或者,
    所述第一时频资源对应的时域符号与所述上行信道的解调参考信号DMRS符号之间的时间间隔小于所述第二时频资源对应的时域符号与所述DMRS符号之间的时间间隔,和/或,所述第一时频资源在频域上低于所述第二时频资源。
  45. 根据权利要求44所述的通信装置,其特征在于,所述第一上行信息包括对应于所述第一优先级的第一上行控制信息,所述第二上行信息包括对应于所述第二优先级的第二上行控制信息,所述处理单元还用于:
    确定所述上行信道上的第三时频资源,所述第三时频资源用于所述终端设备发送第三 上行信息,所述第三上行信息包括对应于第一优先级的第三上行控制信息,所述第三上行控制信息和所述第一上行控制信息独立编码,所述第三上行控制信息和所述第二上行控制信息独立编码,
    在所述第三时频资源上接收来自于所述终端设备的信息;
    其中,所述第二时域资源在时域上早于所述第三时频资源,和/或,所述第二时频资源在频域上低于所述第三时域资源;
    或者,
    所述第二时频资源对应的时域符号与所述上行信道的解调参考信号DMRS符号之间的时间间隔小于所述第三时频资源对应的时域符号与所述DMRS符号之间的时间间隔,和/或,所述第二时频资源在频域上低于所述第三时频资源。
  46. 根据权利要求40至45中任一项所述的通信装置,其特征在于,所述在所述第一时频资源和所述第二时频资源上接收来自于所述终端设备的信息,包括:
    在所述第一时频资源上接收来自于所述终端设备的所述第一上行信息,在所述第二时频资源上接收来自于所述终端设备的所述第二上行信息,
    其中,所述第一上行信息和所述第二上行信息是采用速率匹配的方式映射到所述第一时频资源和所述第二时频资源上的。
  47. 根据权利要求40至45中任一项所述的通信装置,其特征在于,所述在所述第一时频资源和所述第二时频资源上接收来自于所述终端设备的信息,包括:
    在所述第一时频资源上接收来自于所述终端设备的所述第一上行信息,在第一未重叠时频资源上接收来自于所述终端设备的所述第二上行信息,
    其中,所述第一未重叠时频资源为所述第二时频资源中除第一重叠时频资源以外的时频资源,所述第一重叠时频资源为所述第一时频资源和所述第二时频资源重叠的时频资源,所述第二上行信息为所述终端设备映射到所述第二时频资源上,且在丢弃所述第二上行信息已经映射到所述第一重叠时频资源上的信息的情况下,在所述第一未重叠时频资源上发送的信息,所述第一上行信息为所述终端设备在丢弃所述第二上行信息已经映射到所述第一重叠时频资源上的信息的情况下,映射到所述第一时频资源上的信息。
  48. 根据权利要求40至45中任一项所述的通信装置,其特征在于,所述在所述第一时频资源和所述第二时频资源上接收来自于所述终端设备的信息,包括:
    在第二未重叠时频资源上接收来自于所述终端设备的所述第一上行信息,在所述第二时频资源上接收来自于所述终端设备的所述第二上行信息,
    其中,所述第二未重叠时频资源为所述第一时频资源中除第二重叠时频资源以外的时频资源,所述第二重叠时频资源为所述第一时频资源和所述第二时频资源重叠的时频资源,所述第一上行信息为所述终端设备映射到所述第一时频资源上,且在丢弃所述第一上行信息已经映射到所述第二重叠时频资源上的信息的情况下,在所述第二未重叠时频资源上发送的信息,所述第二上行信息为所述终端设备在丢弃所述第一上行信息已经映射到所述第二重叠时频资源上的信息的情况下,映射到所述第二时频资源上的信息。
  49. 根据权利要求40至45中任一项所述的通信装置,其特征在于,所述第一时频资源为对应于所述第一上行信息的预留资源,所述第一时频资源和所述第二时频资源没有重叠,
    当所述上行信道上承载所述第一上行信息时,所述第二上行信息映射在所述第二时频 资源上,所述第一上行信息映射在所述第一时频资源上,
    其中,所述在所述第一时频资源和所述第二时频资源上接收来自于所述终端设备的信息,包括:
    在所述第一时频资源上接收来自于所述终端设备的所述第一上行信息,在所述第二时频资源上接收来自于所述终端设备的所述第二上行信息;
    或者,
    当所述上行信道上不承载所述第一上行信息时,所述第二上行信息映射在所述第二时频资源上,第四上行信息映射在所述第一时频资源上,所述第四上行信息与所述第一上行信息不同,
    其中,所述在所述第一时频资源和所述第二时频资源上接收来自于所述终端设备的信息,包括:
    在所述第一时频资源上接收来自于所述终端设备的所述第四上行信息,在所述第二时频资源上接收来自于所述终端设备的所述第二上行信息。
  50. 根据权利要求49所述的通信装置,其特征在于,
    所述第一时频资源为预定义或者网络设备预配置的。
  51. 根据权利要求40至45中任一项所述的通信装置,其特征在于,所述第二时频资源为对应于所述第二上行信息的预留资源,所述第一时频资源和所述第二时频资源没有重叠,
    当所述上行信道上承载所述第二上行信息时,所述第一上行信息映射在所述第一时频资源上,所述第二上行信息映射在所述第二时频资源上,
    其中,所述在所述第一时频资源和所述第二时频资源上接收来自于所述终端设备的信息,包括:
    在所述第一时频资源上接收来自于所述终端设备的所述第一上行信息,在所述第二时频资源上接收来自于所述终端设备的所述第二上行信息;
    或者,
    在所述上行信道上不承载所述第二上行信息的情况下,所述第一上行信息映射在所述第一时频资源上,第五上行信息映射在所述第二时频资源上,所述第五上行信息与所述第二上行信息不同,
    其中,所述在所述第一时频资源和所述第二时频资源上接收来自于所述终端设备的信息,包括:
    在所述第一时频资源上接收来自于所述终端设备的所述第一上行信息,在所述第二时频资源上接收来自于所述终端设备的所述第五上行信息。
  52. 根据权利要求51所述的通信装置,其特征在于,
    所述第二时频资源为预定义或者网络设备预配置的。
  53. 一种通信装置,其特征在于,包括收发器、处理器和存储器,所述处理器用于控制所述收发器收发信号,所述存储器用于存储计算机程序,所述处理器用于从所述存储器中调用并运行所述计算机程序,使得所述通信装置执行如权利要求1-13中任一项所述的方法。
  54. 一种通信装置,其特征在于,包括收发器、处理器和存储器,所述处理器用于控制所述收发器收发信号,所述存储器用于存储计算机程序,所述处理器用于从所述存储器 中调用并运行所述计算机程序,使得所述通信装置执行如权利要求14至26中任一项所述的方法。
  55. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有程序指令,当其在处理器上运行时,执行如权利要求1-13或14至26中任一项所述的方法。
PCT/CN2019/126921 2019-01-11 2019-12-20 传输上行信息的方法和通信装置 WO2020143428A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19908299.1A EP3897053A4 (en) 2019-01-11 2019-12-20 METHOD FOR TRANSMITTING UPLINK INFORMATION, AND COMMUNICATION DEVICE
US17/371,489 US20210345373A1 (en) 2019-01-11 2021-07-09 Uplink information transmission method and communications apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910028377.0A CN111436128A (zh) 2019-01-11 2019-01-11 传输上行信息的方法和通信装置
CN201910028377.0 2019-01-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/371,489 Continuation US20210345373A1 (en) 2019-01-11 2021-07-09 Uplink information transmission method and communications apparatus

Publications (1)

Publication Number Publication Date
WO2020143428A1 true WO2020143428A1 (zh) 2020-07-16

Family

ID=71520887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126921 WO2020143428A1 (zh) 2019-01-11 2019-12-20 传输上行信息的方法和通信装置

Country Status (4)

Country Link
US (1) US20210345373A1 (zh)
EP (1) EP3897053A4 (zh)
CN (1) CN111436128A (zh)
WO (1) WO2020143428A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113949483A (zh) * 2020-07-18 2022-01-18 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2022115606A1 (en) * 2020-11-25 2022-06-02 Qualcomm Incorporated Multiplexing high priority and low priority uplink control information on a physical uplink shared channel
EP4210408A4 (en) * 2020-09-23 2024-03-06 Shanghai Langbo Comm Tech Co Ltd METHOD AND APPARATUS FOR USE IN A WIRELESS COMMUNICATIONS NODE

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021022533A1 (zh) * 2019-08-07 2021-02-11 Oppo广东移动通信有限公司 无线通信的方法、终端设备和网络设备
US11974284B2 (en) * 2020-05-01 2024-04-30 Qualcomm Incorporated Handling of non-numeric data to flow control feedback timing
WO2022032627A1 (en) * 2020-08-14 2022-02-17 Qualcomm Incorporated Channel state information (csi) processing for ue intiated csi and downlink grant csi
CN114285536A (zh) * 2020-09-27 2022-04-05 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2022082499A1 (zh) * 2020-10-21 2022-04-28 华为技术有限公司 一种上行控制信息的传输方法及装置
CN114765798A (zh) * 2021-01-13 2022-07-19 维沃移动通信有限公司 信道信息发送方法、信道信息接收方法及相关设备
CN114793152A (zh) * 2021-01-26 2022-07-26 北京紫光展锐通信技术有限公司 一种上行控制信息的传输方法及相关装置
US20220321266A1 (en) * 2021-04-05 2022-10-06 Qualcomm Incorporated Hybrid automatic repeat request (harq) feedback for dynamic multi-slot physical downlink shared channel (pdsch)
CN115707136A (zh) * 2021-08-06 2023-02-17 华为技术有限公司 控制信息的传输方法和装置
CN115734375A (zh) * 2021-08-25 2023-03-03 中兴通讯股份有限公司 数据发送方法、数据接收方法、网络设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180049193A1 (en) * 2016-08-12 2018-02-15 Telefonaktiebolaget Lm Ericsson (Publ) Systems and methods of handling collisions between multiple semi-persistent grants
CN108024365A (zh) * 2016-11-03 2018-05-11 华为技术有限公司 一种信息传输方法及设备
CN108111199A (zh) * 2017-05-05 2018-06-01 中兴通讯股份有限公司 信道状态信息的反馈、接收方法及装置、设备、存储介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3566516A1 (en) * 2017-01-06 2019-11-13 IDAC Holdings, Inc. URLLC AND eMBB DATA MULTIPLEXING COMMUNICATIONS
US10772085B2 (en) * 2017-05-04 2020-09-08 Sharp Kabushiki Kaisha Short PUCCH formats and scheduling request (SR) transmission for 5th generation (5G) new radio access technology (NR)
WO2018231728A1 (en) * 2017-06-14 2018-12-20 Idac Holdings, Inc. Reliable control signaling

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180049193A1 (en) * 2016-08-12 2018-02-15 Telefonaktiebolaget Lm Ericsson (Publ) Systems and methods of handling collisions between multiple semi-persistent grants
CN108024365A (zh) * 2016-11-03 2018-05-11 华为技术有限公司 一种信息传输方法及设备
CN108111199A (zh) * 2017-05-05 2018-06-01 中兴通讯股份有限公司 信道状态信息的反馈、接收方法及装置、设备、存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3897053A4
ZTE: "Simultaneous Transmission in sTTI", 3GPP DRAFT; R1-1707274, 19 May 2017 (2017-05-19), Hangzhou P.R China, pages 1 - 8, XP051261759 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113949483A (zh) * 2020-07-18 2022-01-18 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113949483B (zh) * 2020-07-18 2023-04-07 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
EP4210408A4 (en) * 2020-09-23 2024-03-06 Shanghai Langbo Comm Tech Co Ltd METHOD AND APPARATUS FOR USE IN A WIRELESS COMMUNICATIONS NODE
WO2022115606A1 (en) * 2020-11-25 2022-06-02 Qualcomm Incorporated Multiplexing high priority and low priority uplink control information on a physical uplink shared channel

Also Published As

Publication number Publication date
EP3897053A1 (en) 2021-10-20
US20210345373A1 (en) 2021-11-04
EP3897053A4 (en) 2022-01-26
CN111436128A (zh) 2020-07-21

Similar Documents

Publication Publication Date Title
WO2020143428A1 (zh) 传输上行信息的方法和通信装置
US11464019B2 (en) Downlink control information transmission method, device and network equipment
RU2746224C1 (ru) Способ и оборудование для передачи и приема сигнала в системе мобильной связи
WO2020143524A1 (zh) 传输下行信道的方法和装置
JP7370977B2 (ja) データ再伝送に関するコードブックフィードバック
WO2020200078A1 (zh) 传输上行信息的方法和通信装置
EP4191920A1 (en) Method and apparatus for transmitting and receiving signal in mobile communication system
US11695506B2 (en) Method and apparatus for transmission or reception of data in communication system
WO2020200162A1 (zh) 确定反馈信息的方法和通信装置
WO2019233339A1 (zh) 传输信息的方法和通信设备
WO2020164570A1 (zh) 物理上行共享信道的传输方法、终端及网络设备
US20220061076A1 (en) Method for transmitting hybrid automatic repeat request harq feedback information and communications apparatus
WO2020211752A1 (zh) 上行传输方法和通信装置
US20240121786A1 (en) Method and apparatus for mapping uplink control information in wireless communication system
JP2020523893A (ja) 通信方法、端末デバイス、及びネットワークデバイス
WO2020063767A1 (zh) 上行免动态授权传输的配置方法及通信装置
US20230370195A1 (en) Method and apparatus for transmission or reception of data in communication system
WO2018228600A1 (zh) 一种发送和接收数据的方法和装置
CN110635870A (zh) 生成混合自动重传请求harq信息的方法和装置
WO2021017765A1 (zh) 通信方法和通信装置
CN113517946A (zh) 一种通信方法及装置
US20220015092A1 (en) Communication Method and Apparatus
WO2021159979A1 (zh) 混合自动重传请求确认码本的反馈方法及装置
WO2020143813A1 (zh) 传输信息的方法和装置
WO2020199767A1 (zh) 通信方法、通信装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19908299

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019908299

Country of ref document: EP

Effective date: 20210712