WO2020138147A1 - 化合物、樹脂、組成物、レジストパターンの形成方法、回路パターン形成方法、及び精製方法 - Google Patents

化合物、樹脂、組成物、レジストパターンの形成方法、回路パターン形成方法、及び精製方法 Download PDF

Info

Publication number
WO2020138147A1
WO2020138147A1 PCT/JP2019/050775 JP2019050775W WO2020138147A1 WO 2020138147 A1 WO2020138147 A1 WO 2020138147A1 JP 2019050775 W JP2019050775 W JP 2019050775W WO 2020138147 A1 WO2020138147 A1 WO 2020138147A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
integer
carbon atoms
substituent
formula
Prior art date
Application number
PCT/JP2019/050775
Other languages
English (en)
French (fr)
Inventor
佐藤 隆
越後 雅敏
牧野嶋 高史
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to US17/418,537 priority Critical patent/US20220064137A1/en
Priority to CN201980086800.0A priority patent/CN113260645A/zh
Priority to KR1020217013361A priority patent/KR20210110289A/ko
Priority to JP2020563338A priority patent/JP7482377B2/ja
Publication of WO2020138147A1 publication Critical patent/WO2020138147A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/78Ring systems having three or more relevant rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/78Ring systems having three or more relevant rings
    • C07D311/80Dibenzopyrans; Hydrogenated dibenzopyrans
    • C07D311/82Xanthenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • C08G8/20Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with polyhydric phenols
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0382Macromolecular compounds which are rendered insoluble or differentially wettable the macromolecular compound being present in a chemically amplified negative photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/091Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers characterised by antireflection means or light filtering or absorbing means, e.g. anti-halation, contrast enhancement
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/094Multilayer resist systems, e.g. planarising layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor

Definitions

  • the present invention relates to compounds, resins and compositions containing them, as well as a resist pattern forming method, a circuit pattern forming method, and a purifying method.
  • the present invention also relates to a composition for use in forming a film for lithography and a film for resist, and a film forming method using the same.
  • Conventional general resist materials are polymeric resist materials capable of forming an amorphous film.
  • polymer-based resist materials such as polymethylmethacrylate and polyhydroxystyrene or polyalkylmethacrylate having an acid dissociable group are known.
  • a resist thin film produced by applying a solution of these resist materials on a substrate is irradiated with ultraviolet rays, far ultraviolet rays, electron beams, extreme ultraviolet rays, or the like to form a line pattern of about 10 to 100 nm. ..
  • the reaction mechanism of electron beam or extreme ultraviolet lithography is different from that of ordinary photolithography.
  • the aim is to form a fine pattern of several nm to tens of nm.
  • a resist material having higher sensitivity to the exposure light source is required.
  • it is required to further increase the sensitivity in terms of throughput.
  • an inorganic resist material containing a metal element such as titanium, tin, hafnium or zirconium has been proposed (for example, refer to Patent Document 1).
  • Patent Document 2 discloses, for example, a resist composition containing the following compound.
  • the following compounds in Patent Document 2 are produced by condensing 2 equivalents of an aromatic compound having a phenolic hydroxyl group with 1 equivalent of an aromatic aldehyde to form a xanthene ring derived from the aromatic compound having a phenolic hydroxyl group. Is a compound.
  • the conventionally developed resist composition has problems such as many film defects, insufficient sensitivity, insufficient etching resistance, and defective resist pattern.
  • the compound used in the resist composition disclosed in Patent Document 2 has high solubility in a safe solvent, good storage stability, and high sensitivity.
  • these resist compositions are required to have further improved functions, and in particular, resist compositions are required to have both high resolution and high sensitivity.
  • the present inventors have found that specific compounds and resins have high solubility in safe solvents, and these compounds are used for film formation for photography and film formation for resists. It was found that a film having both high resolution and high sensitivity can be formed when it is used in the composition, and the present invention has been completed. That is, the present invention is as follows.
  • a compound comprising a condensed skeleton of an aromatic compound represented by the formula (1-1) and an aromatic aldehyde represented by the formula (2-1).
  • A represents an aromatic ring
  • Each R independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, and a substituent.
  • the alkyl group, the aryl group, the alkenyl group, the alkynyl group, the alkoxy group may have an ether bond, a ketone bond or an ester bond, k is an integer of 0 or more, L is an integer of 1 or more.
  • B represents an aromatic ring
  • Each R independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, and a substituent.
  • the alkyl group, the aryl group, the alkenyl group, the alkynyl group, the alkoxy group may have an ether bond, a ketone bond or an ester bond
  • p is an integer of 0 or more
  • q is an integer of 1 or more
  • at least one hydroxyl group is bonded to the carbon atom adjacent to the carbon atom to which the formyl group is bonded.
  • the alkyl group, the aryl group, the alkenyl group, the alkynyl group, the alkoxy group may have an ether bond, a ketone bond or an ester bond, L is an integer of 1 or more, p is an integer of 0 or more, q is an integer of 1 or more, k is an integer of 0 or more.
  • the aromatic compound represented by the formula (1-1) is a compound represented by the following formula (1-2)
  • the aromatic aldehyde represented by the formula (2-1) is a compound represented by the following formula (2-2), The compound according to any one of [1] to [3].
  • Each R independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, and a substituent.
  • the alkyl group, the aryl group, the alkenyl group, the alkynyl group, the alkoxy group may have an ether bond, a ketone bond or an ester bond
  • m is an integer of 0 to 3
  • Each R independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, and a substituent.
  • the alkyl group, the aryl group, the alkenyl group, the alkynyl group, the alkoxy group may have an ether bond, a ketone bond or an ester bond
  • m is an integer of 0 to 3
  • n is an integer of 0 to 3
  • La′′ is an integer of 0 to 4 when m
  • the alkyl group, the aryl group, the alkenyl group, the alkynyl group, the alkoxy group may have an ether bond, a ketone bond or an ester bond
  • ka′′ is an integer of 0 to 6
  • La′′ is an integer of 0 to 6
  • kb′′ is an integer from 0 to 7
  • Lb′′ is an integer of 0 to 7
  • p′′ is an integer of 0 to 4
  • q′′ is an integer of 0 to 4.
  • A′ and A′′ represent the same aromatic ring
  • B' represents an aromatic ring
  • Each R independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, and a substituent.
  • the alkyl group, the aryl group, the alkenyl group, the alkynyl group, the alkoxy group may have an ether bond, a ketone bond or an ester bond
  • L is an integer of 1 or more
  • p is an integer of 0 or more
  • q is an integer of 1 or more
  • k is an integer of 0 or more
  • the —OR′ group is a hydroxy group, a crosslinkable group, or a dissociative group.
  • the alkyl group, the aryl group, the alkenyl group, the alkynyl group, the alkoxy group may have an ether bond, a ketone bond or an ester bond
  • L is an integer of 1 or more
  • p is an integer of 0 or more
  • q is an integer of 1 or more
  • k is an integer of 0 or more
  • the —OR′ group is a hydroxy group, a crosslinkable group, or a dissociative group.
  • the resin according to [10] which has a structure represented by the following formula (4).
  • L 2 is a divalent group having 1 to 60 carbon atoms
  • M is a unit structure derived from the compound described in any of [1] to [5].
  • composition according to any of [12] to [15], which is used for forming a resist film [18] The composition according to any one of [12] to [15], which is used for forming a resist underlayer film. [19] The composition according to any one of [12] to [15], which is used for forming an optical component.
  • a method for purifying the compound according to any one of [1] to [8] or the resin according to [10] or [11], A method for purification comprising an extraction step of bringing a solution containing the compound or resin and an organic solvent immiscible with water into contact with an acidic aqueous solution to perform extraction.
  • a compound used in a composition capable of providing a film having both high resolution and high sensitivity in forming a resist film, and a method for forming a resist pattern and a method for forming an insulating film using the composition. be able to.
  • this embodiment is an example for explaining the present invention, and the present invention is not limited to this embodiment.
  • the compound of the present embodiment is a compound obtained by a condensation reaction between an aromatic compound represented by formula (1-1) and an aromatic aldehyde represented by formula (1-2).
  • the compound of the present embodiment is a phenol contained in the compound obtained by the condensation reaction of the aromatic compound represented by the formula (1-1) and the aromatic aldehyde represented by the formula (1-2).
  • the phenolic hydroxyl group refers to a hydroxy group bonded to an aromatic ring.
  • the aromatic aldehyde represented by the formula (1-2) contains at least one phenolic hydroxyl group, and the at least one phenolic hydroxyl group is at a carbon atom adjacent to the carbon atom to which the formyl group (aldehyde group) is bonded. Join. Therefore, the compound obtained by the condensation reaction contains a xanthene skeleton formed by the aromatic compound represented by the formula (1-1) and the aromatic aldehyde represented by the formula (1-2).
  • the compound of the present embodiment includes the aromatic compound represented by the formula (1-1) and the aromatic compound represented by the formula (2-1), including the compound obtained by the condensation reaction and the derivative thereof. It is also referred to as a “compound containing a skeleton condensed with an aldehyde”.
  • A represents an aromatic ring
  • Each R independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, and a substituent.
  • the alkyl group, the aryl group, the alkenyl group, the alkynyl group, the alkoxy group may have an ether bond, a ketone bond or an ester bond, k is an integer of 0 or more, L is an integer of 1 or more.
  • B represents an aromatic ring
  • Each R independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, and a substituent.
  • the alkyl group, the aryl group, the alkenyl group, the alkynyl group, the alkoxy group may have an ether bond, a ketone bond or an ester bond
  • p is an integer of 0 or more
  • q is an integer of 1 or more
  • at least one hydroxyl group is bonded to the carbon atom adjacent to the carbon atom to which the formyl group is bonded.
  • the condensed skeleton of the aromatic compound represented by the formula (1-1) and the aromatic aldehyde represented by the formula (2-1) contains a xanthene skeleton.
  • This xanthene skeleton is preferably asymmetric with respect to the axis connecting the oxygen atom contained in the pyran ring in xanthene and the carbon of methylene contained in the pyrane ring.
  • asymmetric means that when the axis is a mirror surface, there is no relationship between the image and the mirror image on the left and right with the mirror surface separated.
  • “symmetrical” means that when the axis is a mirror surface, there is a relationship between the image and the mirror image on the left and right with the mirror surface separated.
  • the compound of the present embodiment is a xanthene compound or a derivative thereof obtained by a condensation reaction of an aromatic compound represented by the formula (1-1) and an aromatic aldehyde represented by the formula (1-2), and has a film density Can be increased.
  • the xanthene skeleton obtained by the condensation reaction of the aromatic compound represented by the formula (1-1) and the aromatic aldehyde represented by the formula (1-2) has asymmetry, so that the molecules are separated from each other. It is considered that this is because they are closely overlapped with each other, and the introduction positions of hydroxyl groups are varied, so that the bond formation when the resin is formed is dense.
  • a highly sensitive composition for lithography having a high light absorptivity used for lithography can be obtained. Therefore, a composition suitable for a lithography technique can be obtained, and although not particularly limited, it can be used for a film forming application for lithography, for example, a resist film forming application (that is, a “resist composition”). Furthermore, upper layer film forming applications (that is, “upper layer film forming composition”), intermediate layer forming applications (that is, “intermediate layer forming composition”), lower layer film forming applications (that is, “lower layer film forming composition”) It can be used for the object "). According to the composition of the present embodiment, a film having high sensitivity can be formed and a good resist pattern shape can be provided.
  • a in formula (1-1) and B in formula (2-1) each represent an aromatic ring and are not particularly limited, and examples thereof include benzene, naphthalene, anthracene, phenanthrene, tetracene, chrysene, triphenylene, Pyrene, pentacene, benzopyrene, coronene, azulene, fluorene and the like can be mentioned.
  • benzene, naphthalene and anthracene are preferable, and benzene and naphthalene are more preferable.
  • R in formula (1-1) and R in formula (2-1) each independently have an alkyl group having 1 to 30 carbon atoms, which may have a substituent, and a substituent.
  • the alkyl group, the aryl group, the alkenyl group, the alkynyl group, and the alkoxy group may include an ether bond, a ketone bond, or an ester bond.
  • the alkyl group having 1 to 30 carbon atoms in the present embodiment is not particularly limited, and examples thereof include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, t- Examples thereof include a butyl group, a cyclopropyl group and a cyclobutyl group.
  • examples of the alkyl group having 1 to 30 carbon atoms include a halogen atom, a nitro group, an amino group, a thiol group, a hydroxyl group, and hydrogen of a hydroxyl group.
  • -Butyl group, t-butyl group, cyclopropyl group, cyclobutyl group and the like can be mentioned.
  • the aryl group having 6 to 30 carbon atoms in the present embodiment is not particularly limited, and examples thereof include a phenyl group, a naphthalene group and a biphenyl group. Further, when the aryl group having 6 to 30 carbon atoms in the present embodiment has a substituent, examples of the aryl group having 6 to 30 carbon atoms include a halogen atom, a nitro group, an amino group, a thiol group, a hydroxyl group, and hydrogen of a hydroxyl group. Examples thereof include a phenyl group, a naphthalene group, and a biphenyl group having at least one kind of substituent selected from the group consisting of a group in which an atom is substituted with an acid dissociable group.
  • the alkenyl group having 2 to 30 carbon atoms in the present embodiment is not particularly limited, and examples thereof include a propenyl group and a butenyl group. Further, when the alkenyl group having 2 to 30 carbon atoms in the present embodiment has a substituent, examples of the alkenyl group having 2 to 30 carbon atoms include a halogen atom, a nitro group, an amino group, a thiol group, a hydroxyl group, and hydrogen of the hydroxyl group. Examples thereof include a propenyl group and a butenyl group having at least one kind of substituent selected from the group consisting of a group in which an atom is substituted with an acid dissociable group.
  • the alkynyl group having 2 to 30 carbon atoms in the present embodiment is not particularly limited, and examples thereof include a propynyl group and a butynyl group. Further, when the alkynyl group having 2 to 30 carbon atoms in the present embodiment has a substituent, examples of the alkynyl group having 2 to 30 carbon atoms include a halogen atom, a nitro group, an amino group, a thiol group, a hydroxyl group, and hydrogen of a hydroxyl group. Examples thereof include a propynyl group and a butynyl group having at least one kind of substituent selected from the group consisting of a group in which an atom is substituted with an acid dissociable group.
  • the alkoxy group having 1 to 30 carbon atoms in the present embodiment is not particularly limited, and examples thereof include a methoxy group, an ethoxy group, a propoxy group, a cyclohexyloxy group, a phenoxy group, a naphthaleneoxy group and a biphenyloxy group. Further, when the alkoxy group having 1 to 30 carbon atoms in the present embodiment has a substituent, examples of the alkoxy group having 1 to 30 carbon atoms include a halogen atom, a nitro group, an amino group, a thiol group, a hydroxyl group, and hydrogen of the hydroxyl group.
  • crosslinkable group in the present embodiment refers to a group that crosslinks in the presence or absence of a catalyst.
  • the crosslinkable group is not particularly limited, but includes, for example, an alkoxy group having 1 to 20 carbon atoms, a group having an allyl group, a group having a (meth)acryloyl group, a group having an epoxy (meth)acryloyl group, and a hydroxyl group.
  • a group having a urethane (meth)acryloyl group a group having a glycidyl group, a group having a vinylphenylmethyl group containing vinyl, a group having a group having various alkynyl groups, a group having a carbon-carbon double bond, carbon -A group having a carbon triple bond and groups containing these groups) are preferable.
  • the group having an allyl group is not particularly limited, and examples thereof include groups represented by the following formula (X-1).
  • n X1 is an integer of 1 to 5.
  • the group having a (meth)acryloyl group is not particularly limited, and examples thereof include a group represented by the following formula (X-2).
  • n X2 is an integer of 1 to 5
  • R X is a hydrogen atom or a methyl group.
  • the group having an epoxy (meth)acryloyl group is not particularly limited, and examples thereof include a group represented by the following formula (X-3).
  • the epoxy (meth)acryloyl group refers to a group formed by a reaction between an epoxy (meth)acrylate and a hydroxyl group.
  • n x3 is an integer of 0 to 5
  • R x is a hydrogen atom or a methyl group.
  • the group having a urethane (meth)acryloyl group is not particularly limited, and examples thereof include a group represented by the following formula (X-4).
  • n x4 is an integer of 0 to 5
  • s is an integer of 0 to 3
  • R x is a hydrogen atom or a methyl group.
  • the group having a hydroxyl group is not particularly limited, and examples thereof include a group represented by the following formula (X-5).
  • n x5 is an integer of 1 to 5.
  • the group having a glycidyl group is not particularly limited, and examples thereof include a group represented by the following formula (X-6).
  • n x6 is an integer of 1 to 5.
  • the group having a vinylphenylmethyl-containing group is not particularly limited, and examples thereof include a group represented by the following formula (X-7).
  • n x7 is an integer of 1 to 5.
  • the group having various alkynyl groups is not particularly limited, and examples thereof include groups represented by the following formula (X-8).
  • n x8 is an integer of 1 to 5.
  • Examples of the carbon-carbon double bond-containing group include a (meth)acryloyl group, a substituted or unsubstituted vinylphenyl group, and a group represented by the following formula (X-9-1).
  • Examples of the carbon-carbon triple bond-containing group include a substituted or unsubstituted ethynyl group, a substituted or unsubstituted propargyl group, and a group represented by the following formulas (X-9-2) and (X-9-3). And the like.
  • R X9A , R X9B and R X9C are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • R X9D , R X9E and R X9F are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 20 carbon atoms. is there.
  • a (meth)acryloyl group, an epoxy (meth)acryloyl group, a urethane (meth)acryloyl group, a group having a glycidyl group, and a group containing a styrene group are preferable, and (meth)acryloyl Group, an epoxy (meth)acryloyl group, and a urethane (meth)acryloyl group are more preferable, and a (meth)acryloyl group is still more preferable.
  • groups having various alkynyl groups are also preferable.
  • the “dissociative group” in the present embodiment means a group that dissociates in the presence or absence of a catalyst.
  • the acid dissociable group refers to a group that is cleaved in the presence of an acid to change the alkali-soluble group and the like.
  • the alkali-soluble group is not particularly limited, and examples thereof include a phenolic hydroxyl group, a carboxyl group, a sulfonic acid group, a hexafluoroisopropanol group, and the like. Among them, from the viewpoint of easy availability of the introduction reagent, a phenolic hydroxyl group and a carboxyl group.
  • a group is preferable, and a phenolic hydroxyl group is more preferable.
  • the acid dissociable group preferably has a property of causing a cleavage reaction in a chain in the presence of an acid in order to enable pattern formation with high sensitivity and high resolution.
  • the acid dissociable group is not particularly limited, but may be appropriately selected from those proposed in hydroxystyrene resins, (meth)acrylic acid resins and the like used in chemically amplified resist compositions for KrF and ArF. Can be used. Specific examples of the acid-dissociable group include those described in WO2016/158168.
  • the acid dissociable group has a property of dissociating with an acid, 1-substituted ethyl group, 1-substituted-n-propyl group, 1-branched alkyl group, silyl group, acyl group, 1-substituted alkoxymethyl group, cyclic Suitable examples include an ether group, an alkoxycarbonyl group, and an alkoxycarbonylalkyl group.
  • an alkyl group having 1 to 30 carbon atoms which may have a substituent an aryl group having 6 to 30 carbon atoms which may have a substituent, and a carbon number 2 which may have a substituent.
  • a alkenyl group having 1 to 30 carbon atoms, an alkynyl group having 2 to 30 carbon atoms which may have a substituent, and an alkoxy group having 1 to 30 carbon atoms which may have a substituent include a halogen atom,
  • amino group, thiol group, hydroxyl group, and group in which hydrogen atom of hydroxyl group is substituted with an acid dissociable group for example, cyano group, heterocyclic group, linear aliphatic hydrocarbon group, branched fat Group hydrocarbon group, cycloaliphatic hydrocarbon group, aryl group, aralkyl group, alkoxy group, amino group, alkenyl group, alkynyl group, acyl group, alkoxycarbonyl
  • the aromatic ring represented by A in the formula (1-1) and B represented by the formula (2-1) preferably has at least one hydrogen group on the aromatic ring.
  • the number of substituents (R, OH group, OR′) on the aromatic ring is an integer according to the type of aromatic ring. Therefore, the upper limit of the index indicating the number of substituents on the aromatic ring is not particularly limited and is determined according to the type of aromatic ring.
  • the condensed skeleton obtained by the condensation reaction between the aromatic compound represented by the formula (1-1) and the aromatic aldehyde represented by the formula (2-1) is represented by the formula (3-1). A compound is obtained.
  • A′ and A′′ are the same as A in the above formula (1-1), B′ is the same as B in the above formula (2-1),
  • Each R independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, and a substituent.
  • the alkyl group, the aryl group, the alkenyl group, the alkynyl group, the alkoxy group may have an ether bond, a ketone bond or an ester bond, L is an integer of 1 or more, p is an integer of 0 or more, q is an integer of 1 or more, k is an integer of 0 or more)
  • R, m, L, p and q are synonymous with R, m, L, p and q in the formula (1-1) or the formula (2-1).
  • L is preferably an integer of 2 or more.
  • L is an integer of 2 or more, the introduction position of the hydroxyl group in the compound of the present embodiment is diversified, and the bond formation in the resin tends to be dense.
  • the upper limit of L is a value appropriately determined according to the number of carbon atoms of A′ and A′′, but is usually 10 or less, 9 or less, 7 or less, and 6 or less. It may be.
  • the upper limit of p is a value appropriately determined according to the carbon number of B′, but is usually 10 or less, 6 or less, 4 or less, and 2 or less. May be
  • the upper limit of q is a value appropriately determined according to the carbon number of B′, but is usually 10 or less, 6 or less, 4 or less, or 2 or less. May be
  • the upper limit of k is a value appropriately determined according to the number of carbon atoms of A′ and A′′, but is usually 10 or less, 6 or less, or 4 or less. It may be 2 or less.
  • the aromatic compound represented by the formula (1-1) is preferably a compound represented by the formula (1-2) from the viewpoint of reactivity.
  • Each R independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, and a substituent.
  • the alkyl group, the aryl group, the alkenyl group, the alkynyl group, the alkoxy group may have an ether bond, a ketone bond or an ester bond
  • m is an integer of 0 to 3
  • the aromatic aldehyde represented by the formula (2-1) is preferably the aromatic aldehyde represented by the formula (2-2) from the viewpoint of reactivity.
  • Each R independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, and a substituent.
  • At least one of Rs in formula (1-1) or formula (2-1) is preferably a halogen atom, a nitro group, a crosslinkable group or a thiol group, and a halogen atom. Is more preferable, and at least one selected from the group consisting of chlorine, bromine, and iodine is more preferable.
  • Each R independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, and a substituent.
  • the condensed skeleton in this embodiment is preferably represented by the following formula (3-3).
  • the bond formation when it becomes a resin becomes dense, and as a result, the film density is increased and the absorptivity of light used for lithography is high, A highly sensitive lithographic composition tends to be obtained.
  • Each R independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, and a substituent.
  • the alkyl group, the aryl group, the alkenyl group, the alkynyl group, the alkoxy group may have an ether bond, a ketone bond or an ester bond, ka′′ is an integer of 0 to 6, La′′ is an integer of 0 to 6, kb′′ is an integer from 0 to 7, Lb′′ is an integer
  • the compound of this embodiment is also a compound represented by the formula (I).
  • A′ and A′′ represent the same aromatic ring
  • B' represents an aromatic ring
  • Each R independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, and a substituent.
  • the alkyl group, the aryl group, the alkenyl group, the alkynyl group, the alkoxy group may have an ether bond, a ketone bond or an ester bond
  • L is an integer of 1 or more
  • p is an integer of 0 or more
  • q is an integer of 1 or more
  • k is an integer of 0 or more
  • the —OR′ group is a hydroxy group, a crosslinkable group, or a dissociative group.
  • A′ and A′′ are the same aromatic ring, but the bond form with the adjacent ring and the substituents may not be the same.
  • Examples of the aromatic ring represented by A′, A′′, and B′ in the formula (I) include the same aromatic rings as those represented by the formula (1-1) and the formula (1-2). , And similar preferable aromatic rings can be mentioned.
  • Specific examples of the aromatic ring represented by A′, A′′, and B′ in the formula (I) include structures represented by the following formula (A-0).
  • the aromatic ring represented by the formula (A-0) is a structure schematically showing the aromatic ring and includes an isomer structure.
  • Specific examples of the aromatic ring represented by the formula (A-0) include structures represented by (A-1).
  • R in the formula (I) has an optionally substituted alkyl group having 1 to 30 carbon atoms, an optionally substituted aryl group having 6 to 30 carbon atoms, and an optionally substituted group.
  • the group and the dissociative group are an alkyl group having 1 to 30 carbon atoms which may have a substituent in the formulas (1-1) and (1-2), and a carbon which may have a substituent.
  • Examples of the alkoxy group having 1 to 30 carbon atoms, the crosslinkable group, and the dissociable group that may be mentioned include the same preferable groups.
  • the —OR′ group in formula (I) is a hydroxy group (—OH), a crosslinkable group, or a dissociable group.
  • the crosslinkable group include the same groups as the crosslinkable group in the formulas (1-1) and (1-2), and the same preferable groups can be mentioned.
  • the dissociative group include the same groups as the dissociative groups in Formula (1-1) and Formula (1-2), and the same preferable groups can be exemplified.
  • This xanthene skeleton is preferably asymmetric with respect to the axis connecting the oxygen atom contained in the pyran ring in xanthene and the carbon of methylene contained in the pyrane ring.
  • asymmetric means that when the axis is a mirror surface, there is no relationship between the image and the mirror image on the left and right with the mirror surface separated.
  • symmetrical means that when the axis is a mirror surface, there is a relationship between the image and the mirror image on the left and right with the mirror surface separated.
  • the compound represented by formula (I) of the present embodiment is preferably a compound represented by formula (3-2), in which case the —OH group in the compound represented by formula (3-2) is May be a crosslinkable group and/or a dissociative group.
  • the compound of this embodiment preferably contains a condensed skeleton having the following structure.
  • the following structure corresponds to “ring A′-pyran ring ( ⁇ ring A′′)-ring B′” in the formula (I) of the present embodiment.
  • the compound of this embodiment more preferably contains a condensed skeleton having the following structure.
  • the compound of this embodiment is preferably represented by the formula (I′).
  • R, L, p, q, k, and —OR′ have the same meanings as R, L, p, q, k, and —OR′ in the formula (I), and the same preferable groups, It can be a number.
  • Each R independently has an alkyl group having 1 to 30 carbon atoms which may have a substituent, an aryl group having 6 to 30 carbon atoms which may have a substituent, and a substituent.
  • the alkyl group, the aryl group, the alkenyl group, the alkynyl group, the alkoxy group may have an ether bond, a ketone bond or an ester bond
  • L is an integer of 1 or more
  • p is an integer of 0 or more
  • q is an integer of 1 or more
  • k is an integer of 0 or more
  • the —OR′ group is a hydroxy group, a crosslinkable group, or a dissociative group.
  • the compound represented by the formula (I′) is preferably represented by the formula (I′′).
  • R, L, p, q, k, and —OR′ have the same meanings as R, L, p, q, k, and —OR′ in the formula (I), and the same preferable groups, It can be a number.
  • the compound represented by the formula (I′′) is preferably represented by the following formula.
  • R and —OR′ have the same meanings as R and —OR′ in the formula (I) and may be the same preferable groups.
  • R in formulas (I′′-1) to (I′′-6) is preferably an alkyl group having 1 to 30 carbon atoms which may have a substituent, and a carbon number which may have a substituent.
  • An aryl group having 6 to 30 carbon atoms, an alkenyl group having 2 to 30 carbon atoms which may have a substituent, an alkynyl group having 2 to 30 carbon atoms which may have a substituent, and a substituent Is an alkoxy group having 1 to 30 carbon atoms or a halogen atom, more preferably an aryl group having 6 to 30 carbon atoms which may have a substituent, or a halogen atom.
  • the acid catalyst used in the reaction can be appropriately selected and used from known acid catalysts and is not particularly limited.
  • inorganic acids and organic acids are widely known.
  • inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, hydrobromic acid, hydrofluoric acid; oxalic acid, malonic acid, succinic acid, adipic acid, Sebacic acid, citric acid, fumaric acid, maleic acid, formic acid, p-toluenesulfonic acid, methanesulfonic acid, trifluoroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, naphthalenesulfonic acid, naphthalenedisulfonic acid And the like; Lewis acids such as zinc chloride, aluminum chloride, iron chloride, and boron trifluoride; solid acids such as silicotungstic acid, phosphotungstic acid,
  • organic acids and solid acids are preferable from the viewpoint of production efficiency, and hydrochloric acid or sulfuric acid is more preferably used from the viewpoint of easy availability and easy handling.
  • the acid catalyst may be used alone or in combination of two or more.
  • the amount of the acid catalyst used is not particularly limited and can be appropriately set according to the type of raw material used, the type of catalyst used, and the reaction conditions, but is not limited to 0.01 to 100 parts by mass with respect to 100 parts by mass of the reaction raw material. It is preferably part.
  • a reaction solvent may be used in the reaction.
  • the reaction solvent is not particularly limited as long as it does not interfere with the reaction, and can be appropriately selected and used from known solvents.
  • Examples of the reaction solvent include water, methanol, ethanol, propanol, butanol, tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, ethylene glycol diethyl ether and the like.
  • the reaction solvents may be used alone or in combination of two or more as a mixed solvent.
  • the amount of these reaction solvents used is not particularly limited and can be appropriately set depending on the type of raw materials used, the type of catalyst used, and the reaction conditions, but is not limited to 0 to 2000 parts by mass relative to 100 parts by mass of the reaction raw materials. The range is preferably.
  • the reaction temperature in the above reaction can be appropriately selected according to the reactivity of the reaction raw material and is not particularly limited, but is usually in the range of 10 to 200°C. From the viewpoint of efficiently obtaining the compound of the present embodiment, the reaction temperature is preferably 60 to 200°C.
  • the reaction method may be appropriately selected from known methods and is not particularly limited.
  • the aromatic compound represented by the formula (1-1) and the aromatic aldehyde represented by the formula (2-1) are used. And a method of charging the catalyst all at once, a method of dropping the aromatic compound represented by the formula (1-1) and the aromatic aldehyde represented by the formula (2-1) into the system in the presence of the catalyst, etc. There is.
  • the obtained compound can be isolated according to a conventional method without any particular limitation. For example, in order to remove unreacted raw materials, catalysts, etc. existing in the system, the temperature inside the reaction vessel is raised to 130 to 230° C., and a general method such as removing volatile matter at about 1 to 50 mmHg is used. By collecting, the target compound can be obtained.
  • Preferable reaction conditions include 1.0 mol to an excess amount of the aromatic compound represented by the formula (1-1) and 1 mol of the aromatic compound represented by the formula (2-1), and an acid catalyst.
  • the conditions are such that 0.001 to 1 mol is used and the reaction is carried out at normal pressure at 50 to 150° C. for about 20 minutes to 100 hours.
  • the desired product can be isolated by a known method.
  • the reaction solution is concentrated, pure water is added to precipitate a reaction product, and the reaction product is cooled to room temperature and then separated by filtration. The obtained solid matter is filtered and dried, and then silica gel or the like is removed.
  • the column chromatography used, the by-product is separated and purified, and the solvent is distilled off, filtered and dried to obtain the target compound of the formula (3-1).
  • the compound of this embodiment can be used as it is as a film forming composition for lithography.
  • a resin obtained by using the compound of this embodiment as a monomer can also be used as a film forming composition for lithography.
  • One of the present embodiments is a resin, and the resin is a resin having a unit structure derived from the compound of the present embodiment.
  • the resin of the present embodiment is, for example, a resin obtained by reacting the compound of the present embodiment with a compound having a crosslinking reactivity.
  • Examples of the resin obtained by using the compound of the present embodiment as a monomer include a resin having a structure represented by the following formula (4).
  • the composition of the present embodiment may contain a resin having a structure represented by formula (4).
  • L 2 is a divalent group having 1 to 60 carbon atoms
  • M is a unit structure derived from the compound of the present embodiment.
  • the resin of this embodiment is obtained by reacting the compound of this embodiment with a compound having a crosslinking reactivity.
  • the compound having cross-linking reactivity is not particularly limited as long as it can oligomerize or polymerize the compound of the present embodiment, and known compounds having cross-linking reactivity can be used.
  • Examples of the compound having a cross-linking reactivity include aldehydes, ketones, carboxylic acids, carboxylic acid halides, halogen-containing compounds, amino compounds, imino compounds, isocyanates, unsaturated hydrocarbon group-containing compounds, and the like. These may be used alone or in combination of two or more.
  • the resin obtained by using the compound of the present embodiment as a monomer include, for example, a resin obtained by novolacizing the compound of the present embodiment by a condensation reaction with an aldehyde and/or a ketone which is a compound having a crosslinking reactivity.
  • the aldehyde used for novolacizing the compound of the present embodiment is not particularly limited, for example, formaldehyde, trioxane, paraformaldehyde, benzaldehyde, acetaldehyde, propyl aldehyde, phenylacetaldehyde, phenylpropyl aldehyde, hydroxybenzaldehyde, chlorobenzaldehyde, Examples thereof include nitrobenzaldehyde, methylbenzaldehyde, ethylbenzaldehyde, butylbenzaldehyde, biphenylaldehyde, naphthaldehyde, anthracenecarbaldehyde, phenanthrenecarbaldehyde, pyrenecarbaldehyde and furfural.
  • the ketone used when the compound of the present embodiment is converted into a novolak is not particularly limited, but acetone, 2-butanone, 2-heptanone, 3-heptanone, 4-heptanone, cyclopentanone (CPN), cyclohexanone (CHN) , Acetophenone, benzophenone, phenylnaphthyl ketone and the like. Of these, formaldehyde is preferred. In addition, these aldehydes and/or ketones can be used individually by 1 type or in combination of 2 or more types. The amount of the aldehyde and/or ketone used is not particularly limited, but is preferably 0.2 to 5 mol, and more preferably 0.5 to 2 mol with respect to 1 mol of the compound of the present embodiment.
  • a catalyst can also be used in the condensation reaction of the compound of this embodiment with an aldehyde and/or a ketone.
  • the acid catalyst used here is not particularly limited and can be appropriately selected and used from known acid catalysts.
  • As the acid catalyst inorganic acids and organic acids are widely known.
  • inorganic acids such as hydrochloric acid, sulfuric acid, phosphoric acid, hydrobromic acid and hydrofluoric acid; oxalic acid, malonic acid, succinic acid, adipic acid, Sebacic acid, citric acid, fumaric acid, maleic acid, formic acid, p-toluenesulfonic acid, methanesulfonic acid, trifluoroacetic acid, dichloroacetic acid, trichloroacetic acid, trifluoromethanesulfonic acid, benzenesulfonic acid, naphthalenesulfonic acid, naphthalenedisulfonic acid And the like; Lewis acids such as zinc chloride, aluminum chloride, iron chloride, and boron trifluoride; solid acids such as silicotungstic acid, phosphotungstic acid, silicomolybdic acid, and phosphomolybdic acid; and the like.
  • organic acids and solid acids are preferable from the viewpoint of production efficiency, and hydrochloric acid or sulfuric acid is more preferable from the viewpoint of production such as availability and handling.
  • the acid catalyst may be used alone or in combination of two or more.
  • the amount of the acid catalyst used can be appropriately set according to the type of raw material used, the type of catalyst used, and reaction conditions, and is not particularly limited, but is 0.01 to 100 per 100 parts by mass of the reaction raw material. It is preferably part by mass.
  • indene hydroxyindene, benzofuran, hydroxyanthracene, acenaphthylene, biphenyl, bisphenol, trisphenol, dicyclopentadiene, tetrahydroindene, 4-vinylcyclohexene, norbornadiene, 5-vinylnorborna-2-ene, ⁇ -pinene, ⁇ -pinene
  • aldehyde is not always necessary.
  • a reaction solvent may be used in the condensation reaction of the compound of the present embodiment with an aldehyde and/or a ketone.
  • the reaction solvent in this polycondensation is not particularly limited and can be appropriately selected and used from known solvents.
  • the reaction solvent include water, methanol, ethanol, propanol, butanol, tetrahydrofuran, dioxane and the like.
  • the reaction solvents may be used alone or in combination of two or more as a mixed solvent.
  • the amount of these reaction solvents used is not particularly limited and can be appropriately set depending on the type of raw materials used, the type of catalyst used, and the reaction conditions, but is not limited to 0 to 2000 parts by mass relative to 100 parts by mass of the reaction raw materials. The range is preferably.
  • the reaction temperature can be appropriately selected according to the reactivity of the reaction raw material and is not particularly limited, but is usually in the range of 10 to 200°C.
  • the reaction method can be used by appropriately selecting a known method and is not particularly limited, but the compound of the present embodiment, a method of charging the aldehyde and/or ketone, and the catalyst in a batch, the compound of the present embodiment, There is a method of dropping aldehyde and/or ketone into the system in the presence of a catalyst.
  • the obtained resin can be isolated according to a conventional method without any particular limitation.
  • the temperature inside the reaction vessel is raised to 130 to 230° C., and a general method such as removing volatile matter at about 1 to 50 mmHg is used. By taking it, the target resin can be obtained.
  • the resin having the structure represented by the formula (4) may be a homopolymer of the compound of the present embodiment or a copolymer with another phenol compound.
  • Other phenol compounds are not particularly limited as long as they can be copolymerized, for example, phenol, cresol, dimethylphenol, trimethylphenol, butylphenol, phenylphenol, diphenylphenol, naphthylphenol, resorcinol, methylresorcinol, catechol, butylcatechol. , Methoxyphenol, methoxyphenol, propylphenol, pyrogallol, thymol and the like.
  • the resin having the structure represented by the formula (4) may be a resin copolymerized with a polymerizable monomer in addition to the above-mentioned other phenol compounds.
  • a polymerizable monomer examples include, but are not limited to, naphthol, methylnaphthol, methoxynaphthol, dihydroxynaphthalene, indene, hydroxyindene, benzofuran, hydroxyanthracene, acenaphthylene, biphenyl, bisphenol, trisphenol, dicyclopentadiene, tetrahydroindene, 4 -Vinylcyclohexene, norbornadiene, vinylnorbornaene, pinene, limonene and the like can be mentioned.
  • the resin having the structure represented by the formula (4) is a binary or more (eg, quaternary to quaternary) copolymer of the compound of the present embodiment and the above-mentioned phenol, Even if it is a binary or more (for example, a quaternary to quaternary system) copolymer of the compound of the embodiment and the above-mentioned monomer, it is a ternary or more of the compound of the present embodiment, the above-mentioned phenol compound and the above-mentioned monomer. It may be a (eg, ternary to quaternary) copolymer.
  • the molecular weight of the resin having the structure represented by the formula (4) is not particularly limited, but the polystyrene-equivalent weight average molecular weight (Mw) is preferably 500 to 30,000, more preferably 750 to 20,000. .. From the viewpoint of increasing the crosslinking efficiency and suppressing the volatile components during baking, the resin having the structure represented by the formula (4) has a dispersity (weight average molecular weight Mw/number average molecular weight Mn) of 1.2 to It is preferably in the range of 7. The Mn can be obtained by the method described in Examples described later.
  • the resin having the structure represented by the formula (4) preferably has high solubility in a solvent from the viewpoint of facilitating application of a wet process. More specifically, when these compounds and/or resins use 1-methoxy-2-propanol (PGME) and/or propylene glycol monomethyl ether acetate (PGMEA) as a solvent, their solubility in the solvent is 10% by mass or more. Is preferred.
  • the solubility in PGME and/or PGMEA is defined as “mass of resin/(mass of resin+mass of solvent) ⁇ 100 (mass %)”. For example, when 10 g of the resin dissolves in 90 g of PGMEA, the solubility of the resin in PGMEA becomes "10% by mass or more", and when it does not dissolve, it becomes "less than 10% by mass”.
  • the compound of this embodiment and the resin of this embodiment can be purified by washing with an acidic aqueous solution.
  • One of the present embodiments is a method for purifying the compound of the present embodiment or the resin of the present embodiment (these are also referred to as film forming materials for lithography), and the purification method is the compound or resin, and water And an extraction step of bringing an acidic aqueous solution into contact with the solution to extract the solution.
  • the purification method of the present embodiment is performed by dissolving the film forming material for lithography in an organic solvent that is not miscible with water to obtain an organic phase, and bringing the organic phase into contact with an acidic aqueous solution for extraction treatment ( By carrying out one extraction step), the metal component contained in the organic phase containing the film forming material for lithography and the organic solvent is transferred to the aqueous phase, and then the organic phase and the aqueous phase are separated.
  • the contents of various metals in the film forming material for lithography of the present invention can be significantly reduced.
  • the organic solvent that is not miscible with water is not particularly limited, but an organic solvent that can be safely applied to the semiconductor manufacturing process is preferable.
  • the amount of the organic solvent used is usually about 1 to 100 times the amount of the compound used.
  • organic solvent used examples include those described in International Publication 2015/080240. Among these, toluene, 2-heptanone, cyclohexanone, cyclopentanone, methyl isobutyl ketone, propylene glycol monomethyl ether acetate, ethyl acetate and the like are preferable, and cyclohexanone and propylene glycol monomethyl ether acetate are particularly preferable. These organic solvents may be used alone or in combination of two or more.
  • the acidic aqueous solution is appropriately selected from commonly known aqueous solutions of organic and inorganic compounds dissolved in water. Examples thereof include those described in International Publication 2015/080240. These acidic aqueous solutions may be used alone or in combination of two or more. Examples of the acidic aqueous solution include a mineral acid aqueous solution and an organic acid aqueous solution. Examples of the aqueous solution of mineral acid include an aqueous solution containing at least one selected from the group consisting of hydrochloric acid, sulfuric acid, nitric acid and phosphoric acid.
  • organic acid aqueous solution examples include acetic acid, propionic acid, oxalic acid, malonic acid, succinic acid, fumaric acid, maleic acid, tartaric acid, citric acid, methanesulfonic acid, phenolsulfonic acid, p-toluenesulfonic acid and trifluoroacetic acid.
  • An aqueous solution containing at least one selected from the group consisting of The acidic aqueous solution is preferably an aqueous solution of sulfuric acid, nitric acid, and a carboxylic acid such as acetic acid, oxalic acid, tartaric acid, and citric acid. preferable.
  • polyvalent carboxylic acids such as oxalic acid, tartaric acid, and citric acid coordinate with metal ions and produce a chelating effect, so that more metals can be removed.
  • the water used here is preferably one having a low metal content, for example, ion-exchanged water, for the purpose of the present invention.
  • the pH of the acidic aqueous solution is not particularly limited, but if the acidity of the aqueous solution is too high, it may adversely affect the compound or resin used and is not preferred.
  • the pH range is about 0 to 5, more preferably about 0 to 3.
  • the amount of the acidic aqueous solution used is not particularly limited, but if the amount is too small, it is necessary to increase the number of extractions for metal removal, and conversely, if the amount of the aqueous solution is too large, the total amount of liquid increases and the operation is performed. The above problems may occur.
  • the amount of the aqueous solution used is usually 10 to 200 parts by mass, preferably 20 to 100 parts by mass, based on the compound solution.
  • the metal content can be extracted by bringing the acidic aqueous solution into contact with the solution (B) containing the compound and an organic solvent that is not miscible with water.
  • the temperature at the time of carrying out the extraction treatment is usually 20 to 90°C, preferably 30 to 80°C.
  • the extraction operation is performed by, for example, stirring and mixing well, and then allowing the mixture to stand. As a result, the metal content contained in the solution containing the compound to be used and the organic solvent is transferred to the aqueous phase. Further, by this operation, the acidity of the solution is lowered, and the deterioration of the compound used can be suppressed.
  • the solution phase containing the compound to be used and the organic solvent and the aqueous phase are separated, and the solution containing the organic solvent is recovered by decantation or the like.
  • the standing time is not particularly limited, but if the standing time is too short, the separation between the solution phase containing the organic solvent and the aqueous phase becomes poor, which is not preferable.
  • the standing time is 1 minute or longer, more preferably 10 minutes or longer, and further preferably 30 minutes or longer.
  • the extraction process may be performed only once, but it is also effective to repeat the operations of mixing, standing and separating a plurality of times.
  • the organic phase containing the organic solvent extracted and recovered from the aqueous solution is further subjected to an extraction treatment with water (second extraction treatment). It is preferable to perform the step).
  • the extraction operation is performed by allowing the mixture to mix well by stirring and then leaving it to stand. Then, the obtained solution is separated into a solution phase containing a compound and an organic solvent and an aqueous phase, so that the solution phase is recovered by decantation or the like.
  • the water used here is preferably one having a low metal content, for example, ion-exchanged water, for the purpose of the present invention.
  • the extraction treatment may be carried out only once, but it is also effective to repeat the operations of mixing, standing and separating a plurality of times. Further, the conditions such as the use ratio of the both in the extraction treatment, the temperature and the time are not particularly limited, but may be the same as the case of the contact treatment with the acidic aqueous solution.
  • the water mixed in the solution containing the compound and the organic solvent thus obtained can be easily removed by performing an operation such as vacuum distillation. If necessary, an organic solvent may be added to adjust the concentration of the compound to any concentration.
  • the method of obtaining only the target compound from the solution containing the obtained organic solvent can be performed by a known method such as removal under reduced pressure, separation by reprecipitation, and a combination thereof. If necessary, known treatments such as concentration operation, filtration operation, centrifugation operation, and drying operation can be performed. ..
  • composition of the present embodiment contains the compound of the present embodiment and/or the resin of the present embodiment, and if necessary, the base material (A), the solvent (S), the acid generator (C), the crosslinking agent ( It may contain other components such as G) and the acid diffusion controller (E).
  • the base material (A) the solvent (S), the acid generator (C), the crosslinking agent ( It may contain other components such as G) and the acid diffusion controller (E).
  • the “base material (A)” is a compound of the present embodiment or a compound (including a resin) other than the resin of the present embodiment, including g-line, i-line, KrF excimer laser (248 nm), It means a base material (for example, a base material for lithography or a base material for resist) applied as a resist for ArF excimer laser (193 nm), extreme ultraviolet (EUV) lithography (13.5 nm) or electron beam (EB).
  • a base material for example, a base material for lithography or a base material for resist
  • EUV extreme ultraviolet
  • the base material (A) in the present embodiment is not particularly limited, and examples thereof include phenol novolac resin, cresol novolac resin, hydroxystyrene resin, (meth)acrylic resin, hydroxystyrene-(meth)acrylic copolymer, cycloolefin- Examples thereof include a maleic anhydride copolymer, a cycloolefin, a vinyl ether-maleic anhydride copolymer, an inorganic resist material having a metal element such as titanium, tin, hafnium or zirconium, and derivatives thereof.
  • phenol novolac resin cresol novolac resin, hydroxystyrene resin, (meth)acrylic resin, hydroxystyrene-(meth)acrylic copolymer, and titanium, tin, hafnium and zirconium.
  • Inorganic resist materials having metal elements such as, and derivatives thereof are preferable.
  • the derivative is not particularly limited, and examples thereof include a derivative having a dissociable group introduced therein and a derivative having a crosslinkable group introduced therein.
  • the derivative having the dissociative group or the crosslinkable group introduced therein can exhibit a dissociation reaction or a crosslinking reaction by the action of light, an acid or the like.
  • Examples of the dissociative group and the crosslinkable group include the aromatic compound represented by the formula (1-1) and the dissociative group and crosslink contained in the aromatic aldehyde represented by the formula (2-1) in the present embodiment. Examples thereof include the same groups as the sexual group.
  • the weight average molecular weight of the base material (A) is preferably 200 to 4990, and more preferably 200 to 2990, from the viewpoint of reduction of defects in the film formed by using the composition and good pattern shape. 200 to 1490 is more preferable.
  • the weight average molecular weight a value obtained by measuring the polystyrene equivalent weight average molecular weight using GPC can be used.
  • the solvent in this embodiment is not particularly limited as long as it can dissolve at least the compound of this embodiment, and a known solvent can be appropriately used.
  • the solvent include ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol mono-n-propyl ether acetate, ethylene glycol mono-n-butyl ether acetate, and other ethylene glycol monoalkyl ether acetates; ethylene glycol monomethyl Ethylene glycol monoalkyl ethers such as ether and ethylene glycol monoethyl ether; propylene glycol monomethyl ether acetate (PGMEA), propylene glycol monoethyl ether acetate, propylene glycol mono-n-propyl ether acetate, propylene glycol mono-n-butyl ether acetate Propylene glycol monoalkyl ether acetates such as propylene glycol monomethyl ether (PGMEA), propylene
  • the solvent used in this embodiment is preferably a safe solvent, more preferably at least one selected from PGMEA, PGME, CHN, CPN, 2-heptanone, anisole, butyl acetate and ethyl lactate. , And more preferably at least one selected from PGMEA, PGME, CHN, CPN, and ethyl lactate.
  • the amount of the solid component and the amount of the solvent are not particularly limited, but preferably 1 to 80% by mass of the solid component and 20 to 99% by mass of the solvent with respect to the total mass of the amount of the solid component and the solvent. , More preferably 1 to 50% by mass of solid component and 50 to 99% by mass of solvent, further preferably 2 to 40% by mass of solid component and 60 to 98% by mass of solvent, and even more preferably 2 to 10% by mass of solid component. And 90 to 98% by mass of the solvent.
  • an acid is generated directly or indirectly by irradiation with any radiation selected from visible light, ultraviolet light, excimer laser, electron beam, extreme ultraviolet (EUV), X-ray and ion beam. It is preferable that one or more acid generators (C) are included.
  • the acid generator (C) is not particularly limited, but for example, those described in International Publication WO2013/024778 can be used.
  • the acid generator (C) may be used alone or in combination of two or more kinds.
  • the amount of the acid generator (C) used is preferably 0.001 to 49% by mass, more preferably 1 to 40% by mass, further preferably 3 to 30% by mass, and 10 to 25% by mass based on the total mass of the solid component. Even more preferable.
  • the acid generator (C) within the above range, a pattern profile with high sensitivity and low edge roughness tends to be obtained.
  • the method of generating the acid is not particularly limited. If excimer laser is used instead of ultraviolet rays such as g-rays and i-rays, finer processing is possible. Further, if electron beams, extreme ultraviolet rays, X-rays or ion beams are used as high energy rays, further fine processing is possible. Is possible.
  • an acid diffusion control agent (E) having a function of controlling the diffusion of an acid generated from an acid generator by irradiation of radiation in a resist film and preventing an undesired chemical reaction in an unexposed region (E). May be incorporated into the composition.
  • the acid diffusion controller (E) By using the acid diffusion controller (E), the storage stability of the composition of the present embodiment tends to be improved. Further, by using the acid diffusion controller (E), the resolution of the film formed by using the composition of the present embodiment can be improved, and the retention time before irradiation and the irradiation after irradiation can be improved.
  • the acid diffusion control agent (E) is not particularly limited, but examples thereof include radiation decomposable basic compounds such as nitrogen atom-containing basic compounds, basic sulfonium compounds, and basic iodonium compounds.
  • the acid diffusion control agent (E) is not particularly limited, but for example, those described in International Publication WO2013/024778 can be used.
  • the acid diffusion controller (E) can be used alone or in combination of two or more kinds.
  • the content of the acid diffusion controller (E) is preferably 0.001 to 49% by mass, more preferably 0.01 to 10% by mass, still more preferably 0.01 to 5% by mass, based on the total mass of the solid components. 0.01 to 3 mass% is particularly preferable.
  • the compounding amount of the acid diffusion controller (E) is within the above range, there is a tendency that deterioration of resolution, deterioration of pattern shape, dimensional fidelity, etc. can be prevented. Further, even if the leaving time from electron beam irradiation to heating after irradiation with radiation is long, it is possible to suppress the deterioration of the shape of the pattern upper layer portion.
  • the blending amount is 10% by mass or less, it tends to be possible to prevent deterioration in sensitivity, developability of the unexposed area, and the like. Further, by using such an acid diffusion control agent, the storage stability of the resist composition is improved and the resolution is improved, and the retention time before irradiation with radiation and the retention time after irradiation with radiation vary. A change in the line width of the resist pattern can be suppressed, and the process stability tends to be excellent.
  • the cross-linking agent (G) of the present embodiment is not particularly limited, but for example, those described in International Publication WO2013/024778 can be used.
  • the cross-linking agent (G) can be used alone or in combination of two or more kinds.
  • composition of the present embodiment As the other component (F), if necessary, a dissolution promoter, a dissolution controller, a sensitizer, a surfactant and an organic carboxylic acid or an oxo acid of phosphorus or its derivative, etc. One kind or two or more kinds of various additives can be added.
  • the dissolution accelerator is a component having an action of increasing the solubility of the solid component in the developing solution when the solubility of the solid component is too low, and appropriately increasing the dissolution rate of the compound during development.
  • the dissolution accelerator preferably has a low molecular weight, and examples thereof include a low molecular weight phenolic compound. Examples of the low molecular weight phenolic compound include bisphenols and tris(hydroxyphenyl)methane. These dissolution promoters can be used alone or in admixture of two or more.
  • the content of the dissolution accelerator is appropriately adjusted according to the type of the solid component used, but is preferably 0 to 49% by mass, more preferably 0 to 5% by mass, and 0 to 1% by mass based on the total mass of the solid component. % Is more preferable, and 0% by mass is even more preferable.
  • the dissolution control agent is a component having an action of controlling the solubility of the solid component when the solubility of the solid component in the developing solution is too high and appropriately reducing the dissolution rate during development.
  • a dissolution control agent those which do not chemically change in the steps such as baking of the resist film, irradiation of radiation and development are preferable.
  • the dissolution control agent is not particularly limited, and examples thereof include aromatic hydrocarbons such as phenanthrene, anthracene, and acenaphthene; ketones such as acetophenone, benzophenone, and phenylnaphthyl ketone; methylphenylsulfone, diphenylsulfone, dinaphthylsulfone, and the like. Examples thereof include sulfones. These dissolution control agents may be used alone or in combination of two or more.
  • the blending amount of the dissolution control agent is appropriately adjusted according to the kind of the compound used, but is preferably 0 to 49% by mass, more preferably 0 to 5% by mass, and 0 to 1% by mass based on the total mass of the solid components. Is more preferable, and 0 mass% is even more preferable.
  • the sensitizer has the function of absorbing the energy of the irradiated radiation and transmitting the energy to the acid generator (C), thereby increasing the amount of acid produced, thereby improving the apparent sensitivity of the resist. It is a component that causes. Examples of such a sensitizer include benzophenones, biacetyls, pyrenes, phenothiazines, and fluorenes, but are not particularly limited. These sensitizers may be used alone or in combination of two or more.
  • the compounding amount of the sensitizer is appropriately adjusted according to the type of the compound used, but is preferably 0 to 49% by mass, more preferably 0 to 5% by mass, and 0 to 1% by mass based on the total mass of the solid component. More preferably, 0 mass% is even more preferable.
  • the surfactant is a component that has an effect of improving the coating property and striation of the composition of the present embodiment, the developability of the resist, and the like.
  • the surfactant may be any of an anionic surfactant, a cationic surfactant, a nonionic surfactant or an amphoteric surfactant. Examples of preferred surfactants include nonionic surfactants.
  • the nonionic surfactant has good affinity with the solvent used for producing the composition of the present embodiment, and can further enhance the effect of the composition of the present embodiment.
  • nonionic surfactants include, but are not limited to, polyoxyethylene higher alkyl ethers, polyoxyethylene higher alkyl phenyl ethers, and higher fatty acid diesters of polyethylene glycol.
  • Commercially available products of these surfactants are as follows: F-top (manufactured by Gemco), Megafac (manufactured by Dainippon Ink and Chemicals, Inc.), Fluoride (manufactured by Sumitomo 3M), Asahi Guard , Surflon (above, manufactured by Asahi Glass Co., Ltd.), Pepol (manufactured by Toho Chemical Industry Co., Ltd.), KP (manufactured by Shin-Etsu Chemical Co., Ltd.), Polyflow (manufactured by Kyoeisha Oil and Fat Chemical Co., Ltd.) and the like.
  • the content of the surfactant is appropriately adjusted according to the type of the solid component used, but is preferably 0 to 49% by mass, more preferably 0 to 5% by mass, and 0 to 1% by mass based on the total mass of the solid component. % Is more preferable, and 0% by mass is even more preferable.
  • Organic carboxylic acid or phosphorus oxo acid or derivative thereof For the purpose of preventing sensitivity deterioration or improving the resist pattern shape, leaving stability, etc., an organic carboxylic acid or an oxo acid of phosphorus or its derivative can be further contained as an optional component.
  • the organic carboxylic acid, the oxo acid of phosphorus, or the derivative thereof may be used in combination with the acid diffusion controller, or may be used alone.
  • the organic carboxylic acid for example, malonic acid, citric acid, malic acid, succinic acid, benzoic acid, salicylic acid and the like are preferable.
  • Examples of phosphorus oxo acids or derivatives thereof include phosphoric acid, phosphoric acid di-n-butyl ester, phosphoric acid diphenyl ester, and other derivatives of phosphoric acid or their esters, phosphonic acid, phosphonic acid dimethyl ester, phosphonic acid di- Examples include phosphonic acids such as n-butyl ester, phenylphosphonic acid, phosphonic acid diphenyl ester, and phosphonic acid dibenzyl ester, and derivatives thereof such as phosphinic acid and phenylphosphinic acid such as phosphinic acid and derivatives thereof. Among these, phosphonic acid is particularly preferable.
  • the organic carboxylic acids or phosphorus oxo acids or derivatives thereof may be used alone or in combination of two or more.
  • the amount of the organic carboxylic acid or the phosphorus oxo acid or its derivative is appropriately adjusted according to the kind of the compound used, but is preferably 0 to 49% by mass, and 0 to 5% by mass based on the total mass of the solid component. More preferably, it is still more preferably 0 to 1% by mass, still more preferably 0% by mass.
  • the composition of the present embodiment may contain one or more additives other than the above-mentioned components, if necessary.
  • additives include dyes, pigments, and adhesion aids.
  • a dye or a pigment because the latent image in the exposed area can be visualized and the effect of halation during exposure can be mitigated.
  • an adhesion aid because the adhesion with the substrate can be improved.
  • an antihalation agent, a storage stabilizer, an antifoaming agent, a shape improving agent and the like, specifically 4-hydroxy-4′-methylchalcone and the like can be mentioned.
  • the total amount of the optional component (F) can be 0 to 99 mass% of the total mass of the solid component, preferably 0 to 49 mass%, more preferably 0 to 10 mass%. , 0 to 5% by mass is more preferable, 0 to 1% by mass is further preferable, and 0% by mass is even more preferable.
  • composition of this embodiment can be used for forming a film for lithography, a film for resist, a resist underlayer film, and an optical component.
  • the composition for forming a film for lithography and the composition for forming a film for a resist of the present embodiment are applied to a substrate, and then, if necessary, heated to evaporate the solvent, and then heated or irradiated with light to be desired.
  • the cured film can be formed.
  • the coating method of the composition for forming a film for lithography and the composition for forming a film for a resist of the present embodiment is arbitrary, and examples thereof include a spin coating method, a dipping method, a flow coating method, an inkjet method, a spray method, and a bar coating method.
  • a gravure coating method, a slit coating method, a roll coating method, a transfer printing method, a brush coating method, a blade coating method, an air knife coating method or the like can be appropriately adopted.
  • the heating temperature of the film is not particularly limited for the purpose of evaporating the solvent, and may be 40 to 400° C., for example.
  • the heating method is not particularly limited, and for example, a hot plate or an oven may be used to evaporate in the atmosphere, an inert gas such as nitrogen, or a suitable atmosphere such as vacuum.
  • the heating temperature and the heating time may be selected so as to be suitable for the intended process step of the electronic device, and the heating conditions may be selected so that the physical properties of the obtained film meet the required characteristics of the electronic device.
  • the conditions for light irradiation are not particularly limited, and appropriate irradiation energy and irradiation time may be adopted depending on the lithography film forming material and the resist film formation to be used.
  • the composition of this embodiment is used for forming a resist underlayer film and a resist pattern.
  • the resist pattern forming method of the present embodiment on the substrate, a film forming composition for lithography of the present embodiment, or a photoresist layer forming step of forming a photoresist layer using the resist film forming composition, And a developing step of irradiating a predetermined region of the photoresist layer formed by the photoresist layer forming step with radiation to perform development.
  • the resist pattern forming method of the present embodiment a lower layer film forming step of forming a lower layer film using the composition of the present embodiment on the substrate, at least on the lower layer film formed by the lower layer film forming step,
  • the method includes a photoresist layer forming step of forming one photoresist layer, and a step of irradiating a predetermined region of the photoresist layer formed by the photoresist layer forming step with radiation to perform development.
  • the composition is applied by an appropriate coating means such as a spin coater, a dip coater, or a roller coater, for example, a silicon wafer, metal, or plastic.
  • a resist film is formed by applying it on a substrate of glass, ceramics, etc., and if necessary, a heat treatment is performed in advance at a temperature of about 50° C. to 200° C., and then exposure is performed through a predetermined mask pattern.
  • the thickness of the coating film is, for example, about 0.1 to 20 ⁇ m, preferably about 0.3 to 2 ⁇ m. Light having various wavelengths such as ultraviolet rays and X-rays can be used for the exposure.
  • an F2 excimer laser (wavelength 157 nm), an ArF excimer laser (wavelength 193 nm) or a KrF excimer laser (wavelength 248 nm) is used.
  • Such as deep ultraviolet ray, extreme ultraviolet ray (wavelength 13n), X-ray, electron beam, etc. are appropriately selected and used.
  • the exposure conditions such as the exposure amount are appropriately selected according to the compounding composition of the resin and/or compound, the type of each additive, and the like.
  • the resist pattern of this embodiment is preferably an insulating film pattern.
  • a predetermined resist pattern is formed by developing with an alkaline developer under conditions of usually 10 to 50° C. for 10 to 200 seconds, preferably 20 to 25° C. for 15 to 90 seconds.
  • alkali developer examples include alkali metal hydroxide, ammonia water, alkylamines, alkanolamines, heterocyclic amines, tetraalkylammonium hydroxides, choline, 1,8-diazabicyclo-[5.
  • Alkaline compounds such as 4.0]-7-undecene and 1,5-diazabicyclo-[4.3.0]-5-nonene are usually used at a concentration of 1 to 10% by weight, preferably 1 to 3% by weight.
  • An alkaline aqueous solution dissolved so that is used is used.
  • a water-soluble organic solvent or a surfactant can be appropriately added to the developer containing the above alkaline aqueous solution.
  • one of the present embodiments is a lower layer film forming step of forming a lower layer film on the substrate using the composition of the present embodiment, and an intermediate layer film on the lower layer film formed by the lower layer film forming step.
  • Forming an intermediate layer film, a photoresist layer forming step of forming at least one photoresist layer on the intermediate layer film formed by the intermediate layer film forming step, and a photoresist layer forming step A predetermined pattern of the photoresist layer is irradiated with radiation and developed to form a resist pattern, and a resist pattern forming step is performed, and the intermediate layer film is etched using the resist pattern formed in the resist pattern forming step as a mask to form an intermediate layer.
  • a substrate pattern forming step of forming a pattern on the substrate by etching the substrate using the lower layer film pattern formed in the lower layer film pattern forming step as a mask
  • composition for forming optical parts since the film obtained from the composition containing the compound of this embodiment has a high refractive index, the compound and composition of this embodiment can also be used as an optical component forming composition to which a lithography technique is applied.
  • Optical parts are used in the form of films and sheets, as well as plastic lenses (prism lenses, lenticular lenses, microlenses, Fresnel lenses, viewing angle control lenses, contrast improving lenses, etc.), retardation films, electromagnetic shielding films, prisms.
  • a solid-state imaging device member for which a high refractive index is required, a buried film and a flattening film on a photodiode, a flattening film before and after a color filter, a microlens, a flattening film on a microlens, and a conformal film. can be suitably used as.
  • the molecular weight of the compound was measured by LC-MS analysis using Acquity UPLC/MALDI-Synapt HDMS manufactured by Water Co. In addition, gel permeation chromatography (GPC) analysis was performed under the following conditions to determine the polystyrene-equivalent weight average molecular weight (Mw), number average molecular weight (Mn), and dispersity (Mw/Mn).
  • GPC gel permeation chromatography
  • reaction liquid after completion of the reaction was concentrated, 100 g of pure water was added to the concentrated liquid to precipitate a reaction product, and after cooling to room temperature, filtration was performed to separate a solid substance.
  • the obtained solid was dried and then separated and purified by column chromatography to obtain 1.5 g of the following formula (X-27N35IB-MeBOC).
  • the obtained compound (X-27N35IB-MeBOC) was subjected to NMR measurement under the above-mentioned measurement conditions, the following peaks were found, and it was confirmed that the compound (X-27N35IB-MeBOC) had a chemical structure of the following formula (X-27N35IB-MeBOC).
  • the obtained resin (R-X-27N35IB) had Mn: 3970, Mw: 7250, and Mw/Mn: 1.89.
  • Synthesis of X-27N35IB-BOC The compound (X-27N35IB) obtained in Synthesis Example 1-1 was placed in a container having an inner volume of 200 mL equipped with a stirrer, a cooling tube, and a buret. 3 g (8.1 mmol) and 5.2 g (23.8 mmol) of di-t-butyl dicarbonate (manufactured by Aldrich) were charged in 100 mL of acetone, and 3.29 g (23.8 mmol) of potassium carbonate (manufactured by Aldrich). In addition, the contents were stirred at 20° C. for 6 hours for reaction to obtain a reaction solution.
  • the reaction liquid was concentrated, 500 g of pure water was added to precipitate a reaction product, and the reaction product was cooled to room temperature and then separated by filtration.
  • the obtained solid was filtered, dried, and separated and purified by column chromatography to obtain 3.2 g of the target compound (X-27N35IB-AL) represented by the following formula.
  • the obtained solid was filtered, dried, and then separated and purified by column chromatography to obtain 3.0 g of the target compound (X-27N35IB-Pr) represented by the following formula.
  • the obtained compound (X-27N35IB-Pr) was subjected to NMR measurement under the above-mentioned measurement conditions, and the following peaks were found to have the chemical structure of the following formula (X-27N35IB-Pr). confirmed.
  • Pattern evaluation of resist pattern (pattern formation)
  • the resist film obtained in (2) above is irradiated with an electron beam with a line-and-space setting of 1:1 at 50 nm intervals using an electron beam drawing device (ELS-7500, manufactured by Elionix Co., Ltd.). did.
  • ELS-7500 electron beam drawing device
  • the resist film was heated at 110° C. for 90 seconds, and immersed in a TMAH 2.38 mass% alkali developing solution for 60 seconds to perform development. Then, the resist film was washed with ultrapure water for 30 seconds and dried to form a resist pattern.
  • the shape of the obtained 50 nm L/S (1:1) resist pattern was observed using an electron microscope (S-4800) manufactured by Hitachi, Ltd.
  • RIE-10NR manufactured by Samco International Output: 50W Pressure: 20Pa Time: 2 min Etching gas
  • Ar gas flow rate: CF 4 gas flow rate: O 2 gas flow rate 50:5:5 (sccm)
  • the films obtained in the respective examples and comparative examples were subjected to an etching test under the above-mentioned conditions, and the etching rate at that time was measured. Then, the etching resistance was evaluated according to the following evaluation criteria with reference to the etching rate of the lower layer film produced using Novolac (“PSM4357” manufactured by Gunei Chemical Co., Ltd.). Evaluation Criteria A: The etching rate is lower than that of the novolak underlayer film.
  • C The etching rate is higher than that of the
  • Table 1 shows the results of evaluating the solubility of the compounds obtained in Synthesis Examples 1-1 to 1-16, 2, 3, and 4 and Synthesis Comparative Example 1 in a safe solvent by the above method.
  • Examples 1 to 23, Comparative Example 1 Lithographic compositions having the compositions shown in Table 2 below were prepared. Next, these lithographic compositions were spin-coated on a silicon substrate and then baked at 110° C. for 90 seconds to form resist films having a film thickness of 50 nm. The following were used as the acid generator, the acid diffusion controller, and the organic solvent. Acid generator: Midori Chemical Co., Ltd.
  • TPS-109 triphenylsulfonium nonafluoromethanesulfonate
  • Acid diffusion control agent Tri-n-octylamine (TOA) manufactured by Kanto Kagaku
  • Cross-linking agent Sanwa Chemical Nikarac MW-100LM
  • Organic solvent Propylene glycol monomethyl ether (PGME) manufactured by Kanto Kagaku
  • a film density of 1.7 or more was A, 1.4 or more and less than 1.7 was B, and less than 1.4 was C.
  • the measurement results are shown in Table 4. (Film density measurement conditions)
  • Device name PANalytical X-ray diffractometer Voltage/current: 45kV ⁇ 40mA
  • X-ray wavelength Cu K ⁇ 1 ray Incident spectroscope: X-ray focusing mirror + Ge220x2 crystal Analysis software: Bruker AXS LEPTOS 6.02
  • the EUV absorption rate per 40 nm was calculated from the film density obtained above and the mass absorption coefficient of the constituent elements. The calculation coefficients are shown in Table 4. The following website of the Lawrence Berkeley National Laboratory in the United States was used to calculate the EUV absorption rate. http://henke.lbl.gov/optical_constants/ http://henke.lbl.gov/optical_constants/filter2.html
  • the EUV absorptivity when transmitting 40 nm is defined as A when 30% or more, B when 20% or more and less than 30%, and C when less than 20%.
  • a compound represented by the following formula (PP-3) was synthesized in the same manner as in Synthesis Example 4, except that 4-hydroxybenzaldehyde was used instead of salicylaldehyde.
  • the film density, EUV absorption rate and refractive index were measured in the same manner as in Example 24. The results are shown in Table 4.
  • This polymer had a weight average molecular weight (Mw) of 12,000 and a dispersity (Mw/Mn) of 1.90.
  • Mw weight average molecular weight
  • Mw/Mn dispersity
  • the polystyrene-based monomer (compound AR1) is the base carbon of the benzene ring, and the methacrylate-based monomers (2-methyl-2-adamantyl methacrylate, ⁇ -butyrolactone methacrylic acid ester, and hydroxyadamantyl methacrylic acid ester) are carbonyl ester bonds.
  • the molar ratio was calculated based on each integral ratio.
  • a lower layer film forming liquid prepared in Examples 28 to 50 was applied onto a silicon wafer by a spin coater, and further heat-treated at 240° C. for 1 minute on a hot plate to form a lower layer film having a thickness of 100 nm.
  • a wafer with a lower layer film was formed.
  • the resist solution for evaluating the EUV sensitivity prepared as described above was applied onto the wafer with the lower layer film thus produced, and baked at 110° C. for 60 seconds to form a photoresist layer having a film thickness of 70 nm.
  • EUV exposure apparatus "EUVES-7000" (product name, Litho-made Tech Japan Co., Ltd.) in a mask-less, which increased the amount of exposure from 1mJ / cm 2 to 1mJ / cm 2 by 80mJ / cm 2 Of the resist film, followed by baking (PEB) at 110° C. for 90 seconds, developing with a 2.38 mass% tetramethylammonium hydroxide (TMAH) aqueous solution for 60 seconds, and performing shot exposure for 80 shots on the wafer. A wafer was obtained.
  • EUV exposure apparatus “EUVES-7000” (product name, Litho-made Tech Japan Co., Ltd.) in a mask-less, which increased the amount of exposure from 1mJ / cm 2 to 1mJ / cm 2 by 80mJ / cm 2 Of the resist film, followed by baking (PEB) at 110° C. for 90 seconds, developing with a 2.38 mass% tetramethylammonium hydroxide (TMAH) aqueous solution for 60
  • the film thickness was measured by an optical interference film thickness meter “OPTM” (product name, manufactured by Otsuka Electronics Co., Ltd.), profile data of the film thickness with respect to the exposure amount was acquired, and the film with respect to the exposure amount was obtained.
  • the exposure amount at which the slope of the thickness variation becomes the largest was calculated as a sensitivity value (mJ/cm 2 ) and used as an index of the EUV sensitivity of the resist.
  • the composition containing the compound of the present embodiment is a resist composition which retains good storage stability and thin film formability, and can impart a high sensitivity, high etching resistance and a good resist pattern shape. Further, the composition containing the compound of the present embodiment can be used for producing an underlayer film or the like having an effect of enhancing EUV sensitivity of a resist. Further, the compound of this embodiment can form a high-density film. Therefore, when these compounds or the like are used in a composition for forming a film for photography or for forming a film for a resist, it is possible to form a film having high resolution and high sensitivity, and various applications requiring these performances. In, it is widely and effectively available.
  • the compound and composition of the present invention have industrial applicability as a composition for forming a film for photography and a film forming for a resist, and various optical component materials.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Structural Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials For Photolithography (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本発明は、式(1-1)で表される芳香族化合物と、式(2-1)で表される芳香族アルデヒドとの縮合骨格を含む、化合物を提供する。 (式(1-1)中、 Aは、芳香族環を表し、 Rは、それぞれ独立して、アルキル基、アリール基、アルケニル基、アルキニル基、アルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、架橋性基、解離性基、又はチオール基であり、 kは、0以上の整数であり、 Lは、1以上の整数である。) (式(2-1)中、 Bは芳香族環を表し、 Rは、それぞれ独立して、アルキル基、アリール基、アルケニル基、アルキニル基、アルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、架橋性基、解離性基、又はチオール基であり、 pは、0以上の整数であり、 qは、1以上の整数であり、 ただし、少なくとも1つの水酸基は、ホルミル基が結合する炭素原子と隣り合う炭素原子に結合する。)

Description

化合物、樹脂、組成物、レジストパターンの形成方法、回路パターン形成方法、及び精製方法
 本発明は、化合物、樹脂及びそれらを含む組成物、並びに、レジストパターンの形成方法、回路パターン形成方法、及び精製方法に関する。また、本発明は、特にリソグラフィー用膜形成用途、レジスト用膜形成用途に用いられる組成物、及び、これを用いた膜形成方法に関する。
 近年、半導体素子や液晶表示素子の製造においては、リソグラフィー技術の進歩によって急速に半導体(パターン)や画素の微細化が進んでいる。画素の微細化の手法としては一般に露光光源の短波長化が行われている。
 画素の微細化の手法としては、従来、g線、i線に代表される紫外線が用いられていたが、現在ではKrFエキシマレーザー(248nm)やArFエキシマレーザー(193nm)等の遠紫外線露光が量産の中心になってきており、さらには極端紫外線(EUV:Extreme Ultraviolet)リソグラフィー(13.5nm)の導入が進んできている。また、微細パターンの形成のために電子線(EB:Electron Beam)も用いられる。
 これまでの一般的なレジスト材料は、アモルファス膜を形成可能な高分子系レジスト材料である。これまでの一般的なレジスト材料としては、例えば、ポリメチルメタクリレートや、酸解離性基を有するポリヒドロキシスチレン又はポリアルキルメタクリレート等の高分子系レジスト材料が知られている。
 従来、これらレジスト材料の溶液を基板上に塗布することによって作製したレジスト薄膜に、紫外線、遠紫外線、電子線、極端紫外線等を照射することにより、10~100nm程度のラインパターンを形成している。
 また、電子線又は極端紫外線によるリソグラフィーは、反応メカニズムが通常の光リソグラフィーと異なる。さらに、電子線又は極端紫外線によるリソグラフィーにおいては、数nm~十数nmの微細なパターン形成を目標としている。このようにレジストパターン寸法が小さくなると、露光光源に対してさらに高感度であるレジスト材料が求められる。特に極端紫外線によるリソグラフィーでは、スループットの点でさらなる高感度化を図ることが求められている。
 上述のような問題を改善するレジスト材料としては、チタン、スズ、ハフニウムやジルコニウム等の金属元素を有する無機レジスト材料が提案されている(例えば、特許文献1参照)。
 また、特許文献2には、例えば、以下の化合物を含むレジスト組成物が開示されている。特許文献2における以下の化合物は、芳香族アルデヒド1当量に対し、フェノール性水酸基を有する芳香族化合物2当量を縮合し、フェノール性水酸基を有する芳香族化合物に由来するキサンテン環を形成することにより製造される化合物である。
Figure JPOXMLDOC01-appb-C000011
特開2015-108781号公報 国際公開2016/158168号パンフレット
 従来開発されたレジスト組成物には、膜の欠陥が多い、感度不足、エッチング耐性不足又はレジストパターン不良といった課題がある。
 また、特許文献2に開示されているレジスト組成物に用いられる前記化合物は、安全溶媒に対する溶解性が高く、保存安定性が良好であり、高感度である。
 しかしながら、これらのレジスト組成物はさらに機能を高めることが求められており、特に、レジスト組成物には高解像度と高感度の両立が求められている。
 上記事情に鑑み、本発明は、高解像度と高感度とを両立する膜を形成できる組成物、並びに、これを用いたレジストパターンの形成方法及び絶縁膜の形成方法を提供することを目的とする。
 本発明者らは上述の課題を解決するため鋭意検討した結果、特定の化合物及び樹脂が、安全溶媒に対する溶解性が高く、且つ、これら化合物等をフォトグラフィー用膜形成用途やレジスト用膜形成用途の組成物に用いた場合に、高解像度と高感度とを両立する膜を形成できることを見出し、本発明を完成するに至った。
 すなわち、本発明は次のとおりである。
[1]
 式(1-1)で表される芳香族化合物と、式(2-1)で表される芳香族アルデヒドとの縮合骨格を含む、化合物。
Figure JPOXMLDOC01-appb-C000012
(式(1-1)中、
 Aは、芳香族環を表し、
 Rは、それぞれ独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、架橋性基、解離性基、又はチオール基であり、
 前記アルキル基、前記アリール基、前記アルケニル基、前記アルキニル基、前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
 kは、0以上の整数であり、
 Lは、1以上の整数である。)
Figure JPOXMLDOC01-appb-C000013
(式(2-1)中、
 Bは芳香族環を表し、
 Rは、それぞれ独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、架橋性基、解離性基、又はチオール基であり、
 前記アルキル基、前記アリール基、前記アルケニル基、前記アルキニル基、前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
 pは、0以上の整数であり、
 qは、1以上の整数であり、
 ただし、少なくとも1つの水酸基は、ホルミル基が結合する炭素原子と隣り合う炭素原子に結合する。)
[2]
 前記縮合骨格が、非対称性を有する、[1]に記載の化合物。
[3]
 前記縮合骨格が、式(3-1)で表される、[1]又は[2]に記載の化合物。
Figure JPOXMLDOC01-appb-C000014
(式(3-1)中、
 A’、A’’は、前記式(1-1)におけるAと同じであり、
 B’は、前記式(2-1)におけるBと同じであり、
 Rは、それぞれ独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、架橋性基、解離性基、又はチオール基であり、
 前記アルキル基、前記アリール基、前記アルケニル基、前記アルキニル基、前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
 Lは、1以上の整数であり、
 pは、0以上の整数であり、
 qは、1以上の整数であり、
 kは、0以上の整数である。)
[4]
 式(1-1)で表される芳香族化合物が、下記式(1-2)の化合物であり、
 式(2-1)で表される芳香族アルデヒドが、下記式(2-2)の化合物である、
 [1]~[3]のいずれかに記載の化合物。
Figure JPOXMLDOC01-appb-C000015
(式(1-2)中、
 Rは、それぞれ独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、架橋性基、解離性基、又はチオール基であり、
 前記アルキル基、前記アリール基、前記アルケニル基、前記アルキニル基、前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
 mは、0~3の整数であり、
 k’は、m=0とき0~5の整数、m=1のとき0~7の整数、m=2のとき0~9の整数、m=3のとき0~11の整数であり、
 L’は、m=0とき1~5の整数、m=1のとき1~7の整数、m=2のとき1~9の整数、m=3のとき1~11の整数である。)
Figure JPOXMLDOC01-appb-C000016
(式(2-2)中、
 Rは、それぞれ独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、架橋性基、解離性基、又はチオール基であり、
 前記アルキル基、前記アリール基、前記アルケニル基、前記アルキニル基、前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
 nは、0~3の整数であり、
 p’は、n=0のとき0~4の整数、n=1のとき0~6の整数、n=2のとき0~8の整数、n=3のとき0~10の整数であり、
 q’は、n=0のとき1~5の整数、n=1のとき1~7の整数、n=2のとき1~9の整数、n=3のとき1~11の整数である。)
[5]
 前記縮合骨格が、下記式(3-2)で表される、[1]~[4]のいずれかに記載の化合物。
Figure JPOXMLDOC01-appb-C000017
(式(3-2)中、
 Rは、それぞれ独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、架橋性基、解離性基、又はチオール基であり、
 前記アルキル基、前記アリール基、前記アルケニル基、前記アルキニル基、前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
 mは、0~3の整数であり、
 nは、0~3の整数であり、
 ka”は、m=0とき0~4の整数、m=1のとき0~6の整数、m=2のとき0~8の整数、m=3のとき0~10の整数であり、
 La”は、m=0とき0~4の整数、m=1のとき0~6の整数、m=2のとき0~10の整数、m=3のとき0~10の整数であり、
 kb”は、m=0とき0~5の整数、m=1のとき0~7の整数、m=2のとき0~9の整数、m=3のとき0~11の整数であり、
 Lb”は、m=0とき0~5の整数、m=1のとき0~7の整数、m=2のとき0~9の整数、m=3のとき0~11の整数であり、
 p”は、n=0のとき0~4の整数、n=1のとき0~6の整数、n=2のとき0~8の整数、n=3のとき0~10の整数であり、
 q”は、n=0のとき0~4の整数、n=1のとき0~6の整数、n=2のとき0~8の整数、n=3のとき0~10の整数である。)
[6]
 前記縮合骨格が、下記式(3-3)で表される、[1]~[5]のいずれかに記載の化合物。
Figure JPOXMLDOC01-appb-C000018
(式(3-3)中、
 Rは、それぞれ独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、架橋性基、解離性基、又はチオール基であり、
 前記アルキル基、前記アリール基、前記アルケニル基、前記アルキニル基、前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
 ka”は、0~6の整数であり、
 La”は、0~6の整数であり、
 kb”は、0~7の整数であり、
 Lb”は、0~7の整数であり、
 p”は、0~4の整数であり、
 q”は、0~4の整数である。)
[7]
 式(I)で表される化合物。
Figure JPOXMLDOC01-appb-C000019
(式(I)中、
 A’、A’’は、同一の芳香族環を表し、
 B’は、芳香族環を表し、
 Rは、それぞれ独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、架橋性基、解離性基、又はチオール基であり、
 前記アルキル基、前記アリール基、前記アルケニル基、前記アルキニル基、前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
 Lは、1以上の整数であり、
 pは、0以上の整数であり、
 qは、1以上の整数であり、
 kは、0以上の整数であり、
 -OR’基は、ヒドロキシ基、架橋性基、又は、解離性基である。)
[8]
 式(I’)により表される、[7]に記載の化合物。
Figure JPOXMLDOC01-appb-C000020
(式(I’)中、
 Rは、それぞれ独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、架橋性基、解離性基、又はチオール基であり、
 前記アルキル基、前記アリール基、前記アルケニル基、前記アルキニル基、前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
 Lは、1以上の整数であり、
 pは、0以上の整数であり、
 qは、1以上の整数であり、
 kは、0以上の整数であり、
 -OR’基は、ヒドロキシ基、架橋性基、又は、解離性基である。)
[9]
 式(1-1)で表されるフェノールと、式(2-1)で表される芳香族アルデヒドとを縮合反応を行い、式(3-1)で表される骨格を得る工程を含む、
 [1]~[8]のいずれかに記載の化合物の製造方法。
[10]
 [1]~[8]のいずれかに記載の化合物に由来する構成単位を有する、樹脂。
[11]
 下記式(4)で表される構造を有する、[10]に記載の樹脂。
Figure JPOXMLDOC01-appb-C000021
(式(4)中、Lは炭素数1~60の二価の基であり、Mは、[1]~[5]のいずれかに記載の化合物に由来する単位構造である。)
[12]
 [1]~[8]のいずれかに記載の化合物、及び/又は[10]又は[11]に記載の樹脂を含む、組成物。
[13]
 溶媒をさらに含有する、[12]に記載の組成物。
[14]
 酸発生剤をさらに含有する、[12]又は[13]に記載の組成物。
[15]
 架橋剤をさらに含有する、[12]~[14]のいずれかに記載の組成物。
[16]
 リソグラフィー用膜形成に用いられる、[12]~[15]のいずれかに記載の組成物。
[17]
 レジスト用膜形成に用いられる、[12]~[15]のいずれかに記載の組成物。
[18]
 レジスト下層膜形成に用いられる、[12]~[15]のいずれかに記載の組成物。
[19]
 光学部品形成に用いられる、[12]~[15]のいずれかに記載の組成物。
[20]
 基板上に、[16]又は[17]に記載の組成物を用いてフォトレジスト層を形成するフォトレジスト層形成工程と、
 該フォトレジスト層形成工程により形成したフォトレジスト層の所定の領域に放射線を照射し、現像を行う現像工程と、
を含む、レジストパターン形成方法。
[21]
 レジストパターンが、絶縁膜パターンである、[20]に記載のレジストパターン形成方法。
[22]
 基板上に、[16]又は[18]に記載の組成物を用いて下層膜を形成する下層膜形成工程と、
 該下層膜形成工程により形成した下層膜上に、少なくとも1層のフォトレジスト層を形成するフォトレジスト層形成工程と、
 該フォトレジスト層形成工程により形成したフォトレジスト層の所定の領域に放射線を照射し、現像を行う工程と、
を含む、レジストパターン形成方法。
[23]
 基板上に、[16]又は[18]に記載の組成物を用いて下層膜を形成する下層膜形成工程と、
 該下層膜形成工程により形成した下層膜上に、中間層膜を形成する中間層膜形成工程と、
 該中間層膜形成工程により形成した中間層膜上に、少なくとも1層のフォトレジスト層を形成するフォトレジスト層形成工程と、
 該フォトレジスト層形成工程により形成したフォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成するレジストパターン形成工程と、
 該レジストパターン形成工程により形成したレジストパターンをマスクとして前記中間層膜をエッチングして中間層膜パターンを形成する中間層膜パターン形成工程と、
 該中間層膜パターン形成工程により形成した中間層膜パターンをマスクとして前記下層膜をエッチングして下層膜パターンを形成する下層膜パターン形成工程と、
 該下層膜パターン形成工程により形成した下層膜パターンをマスクとして前記基板をエッチングして基板にパターンを形成する基板パターン形成工程と、
を含む、回路パターン形成方法。
[24]
 [1]~[8]のいずれかに記載の化合物又は[10]又は[11]に記載の樹脂の精製方法であって、
 前記化合物又は樹脂、及び水と任意に混和しない有機溶媒とを含む溶液と、酸性の水溶液とを接触させて抽出する抽出工程を含む、精製方法。
 本発明により、レジスト膜の形成において高解像度及び高感度を両立する膜を提供できる組成物に用いられる化合物、並びに、当該組成物を用いたレジストパターンの形成方法及び絶縁膜の形成方法を提供することができる。
 以下、本発明の実施の形態について説明する(以下、「本実施形態」と称する場合がある)。なお、本実施形態は、本発明を説明するための例示であり、本発明は本実施形態のみに限定されるものではない。
[化合物]
 本実施形態の化合物は、式(1-1)で表される芳香族化合物と、式(1-2)で表される芳香族アルデヒドとの縮合反応によって得られる化合物である。また、本実施形態の化合物は、前記式(1-1)で表される芳香族化合物と、式(1-2)で表される芳香族アルデヒドとの縮合反応によって得られる化合物に含まれるフェノール性水酸基の誘導化した誘導体を含む。ここでフェノール性水酸基とは、芳香族環に結合するヒドロキシ基を指す。
 式(1-2)で表される芳香族アルデヒドは、フェノール性水酸基を少なくとも1つ含有し、少なくとも1つのフェノール性水酸基は、ホルミル基(アルデヒド基)が結合する炭素原子と隣り合う炭素原子に結合する。したがって、前記縮合反応によって得られる化合物は、式(1-1)で表される芳香族化合物と、式(1-2)で表される芳香族アルデヒドとによって形成されるキサンテン骨格を含む。
 本実施形態の化合物は、前記縮合反応によって得られる化合物とその誘導体とを含めて、「式(1-1)で表される芳香族化合物と、式(2-1)で表される芳香族アルデヒドとの縮合骨格を含む化合物」ともいう。
Figure JPOXMLDOC01-appb-C000022
(式(1-1)中、
 Aは、芳香族環を表し、
 Rは、それぞれ独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、架橋性基、解離性基、又はチオール基であり、
 前記アルキル基、前記アリール基、前記アルケニル基、前記アルキニル基、前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
 kは、0以上の整数であり、
 Lは、1以上の整数である。)
Figure JPOXMLDOC01-appb-C000023
(式(2-1)中、
 Bは、芳香族環を表し、
 Rは、それぞれ独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、架橋性基、解離性基、又はチオール基であり、
 前記アルキル基、前記アリール基、前記アルケニル基、前記アルキニル基、前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
 pは、0以上の整数であり、
 qは、1以上の整数であり、
 ただし、少なくとも1つの水酸基は、ホルミル基が結合する炭素原子と隣り合う炭素原子に結合する。)
 式(1-1)で表される芳香族化合物と、式(2-1)で表される芳香族アルデヒドとの縮合骨格は、キサンテン骨格を含む。このキサンテン骨格は、キサンテン中のピラン環に含まれる酸素原子と、当該ピラン環に含まれるメチレンの炭素とを結んだ軸に対して、非対称であることが好ましい。ここで「非対称」であるとは、上記の軸を鏡面としたときに、鏡面を隔てた左右で像と鏡像の関係にはないことを指す。一方で、「対称」であるとは、上記の軸を鏡面としたときに、鏡面を隔てた左右で像と鏡像の関係にあることを指す。
 本実施形態の化合物は、式(1-1)で表される芳香族化合物と式(1-2)で表される芳香族アルデヒドの縮合反応により得られるキサンテン化合物及びその誘導体であり、膜密度を高めることができる。これは、式(1-1)で表される芳香族化合物と式(1-2)で表される芳香族アルデヒドの縮合反応により得られるキサンテン骨格は、非対称性が生まれることにより、分子同士が密接に重なり、また、水酸基の導入位置が多様となり樹脂となったときの結合の形成が密になるためであると考えられる。
 膜密度が高まることにより、リソグラフィーに用いる光の吸収率が高く、高感度なリソグラフィー用組成物が得られる。このため、リソグラフィー技術に好適な組成物が得られ、特に限定されるものではないが、リソグラフィー用膜形成用途、例えば、レジスト膜形成用途(即ち、“レジスト組成物”)に用いることができる。更には、上層膜形成用途(即ち、“上層膜形成用組成物”)、中間層形成用途(即ち、“中間層形成用組成物”)、下層膜形成用途(即ち、“下層膜形成用組成物”)等に用いることができる。本実施形態の組成物によれば、高い感度を有する膜を形成でき、かつ良好なレジストパターン形状を付与することも可能である。
 式(1-1)中のA、及び式(2-1)中のBは、それぞれ芳香族環を表し、特に限定されないが、例えば、ベンゼン、ナフタレン、アントラセン、フェナントレン、テトラセン、クリセン、トリフェニレン、ピレン、ペンタセン、ベンゾピレン、コロネン、アズレン、フルオレン等が挙げられる。これらの中でも、好ましくはベンゼン、ナフタレン、アントラセン、より好ましくはベンゼン、ナフタレンである。
 式(1-1)中のR、及び式(2-1)中のRは、それぞれ独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、架橋性基、解離性基、又はチオール基である。
 前記アルキル基、前記アリール基、前記アルケニル基、前記アルキニル基、前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよい。
 本実施形態における炭素数1~30のアルキル基としては、特に限定されないが、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、シクロプロピル基、シクロブチル基等が挙げられる。
 さらに、本実施形態における炭素数1~30のアルキル基が置換基を有する場合、炭素数1~30のアルキル基としては、ハロゲン原子、ニトロ基、アミノ基、チオール基、水酸基、及び水酸基の水素原子が酸解離性基で置換された基等からなる群より選択される少なくとも1種の置換基を有する、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、シクロプロピル基、シクロブチル基等が挙げられる。
 本実施形態における炭素数6~30のアリール基としては、特に限定されないが、例えば、フェニル基、ナフタレン基、ビフェニル基等が挙げられる。
 さらに、本実施形態における炭素数6~30のアリール基が置換基を有する場合、炭素数6~30のアリール基としては、ハロゲン原子、ニトロ基、アミノ基、チオール基、水酸基、及び水酸基の水素原子が酸解離性基で置換された基等からなる群より選択される少なくとも1種の置換基を有する、フェニル基、ナフタレン基、ビフェニル基等が挙げられる。
 本実施形態における炭素数2~30のアルケニル基としては、特に限定されないが、例えば、プロペニル基、ブテニル基等が挙げられる。
 さらに、本実施形態における炭素数2~30のアルケニル基が置換基を有する場合、炭素数2~30のアルケニル基としては、ハロゲン原子、ニトロ基、アミノ基、チオール基、水酸基、及び水酸基の水素原子が酸解離性基で置換された基等からなる群より選択される少なくとも1種の置換基を有する、プロペニル基、ブテニル基等が挙げられる。
 本実施形態における炭素数2~30のアルキニル基としては、特に限定されないが、例えば、プロピニル基、ブチニル基等が挙げられる。
 さらに、本実施形態における炭素数2~30のアルキニル基が置換基を有する場合、炭素数2~30のアルキニル基としては、ハロゲン原子、ニトロ基、アミノ基、チオール基、水酸基、及び水酸基の水素原子が酸解離性基で置換された基等からなる群より選択される少なくとも1種の置換基を有する、プロピニル基、ブチニル基等が挙げられる。
 本実施形態における炭素数1~30のアルコキシ基としては、特に限定されないが、例えば、メトキシ基、エトキシ基、プロポキシ基、シクロヘキシロキシ基、フェノキシ基、ナフタレンオキシ基、ビフェニルオキシ基等が挙げられる。
 さらに、本実施形態における炭素数1~30のアルコキシ基が置換基を有する場合、炭素数1~30のアルコキシ基としては、ハロゲン原子、ニトロ基、アミノ基、チオール基、水酸基、及び水酸基の水素原子が酸解離性基で置換された基等からなる群より選択される少なくとも1種の置換基を有する、メトキシ基、エトキシ基、プロポキシ基、シクロヘキシロキシ基、フェノキシ基、ナフタレンオキシ基、ビフェニルオキシ基等が挙げられる。
 本実施形態における「架橋性基」とは、触媒存在下又は無触媒下で架橋する基をいう。架橋性基としては、特に限定されないが、例えば、炭素数1~20のアルコキシ基、アリル基を有する基、(メタ)アクリロイル基を有する基、エポキシ(メタ)アクリロイル基を有する基、水酸基を有する基、ウレタン(メタ)アクリロイル基を有する基、グリシジル基を有する基、含ビニルフェニルメチル基を有する基、各種アルキニル基を有する基を有する基、炭素-炭素二重結合を有する基、炭素-炭素三重結合を有する基、及びこれらの基を含む基等が挙げられる。上記これらの基を含む基としては、上記の基のアルコキシ基-OR(Rは、アリル基を有する基、(メタ)アクリロイル基を有する基、エポキシ(メタ)アクリロイル基を有する基、水酸基を有する基、ウレタン(メタ)アクリロイル基を有する基、グリシジル基を有する基、含ビニルフェニルメチル基を有する基、各種アルキニル基を有する基を有する基、炭素-炭素二重結合を有する基、炭素-炭素三重結合を有する基、及びこれらの基を含む基である。)が好適に挙げられる。
 アリル基を有する基としては、特に限定されないが、例えば、下記式(X-1)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000024
(式(X-1)において、nX1は、1~5の整数である。)
 (メタ)アクリロイル基を有する基としては、特に限定されないが、例えば、下記式(X-2)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000025
(式(X-2)において、nX2は、1~5の整数であり、Rは水素原子、又はメチル基である。)
 エポキシ(メタ)アクリロイル基を有する基としては、特に限定されないが、例えば、下記式(X-3)で表される基が挙げられる。ここで、エポキシ(メタ)アクリロイル基とは、エポキシ(メタ)アクリレートと水酸基が反応して生成する基をいう。
Figure JPOXMLDOC01-appb-C000026
(式(X-3)において、nx3は、0~5の整数であり、Rは水素原子、又はメチル基である。)
 ウレタン(メタ)アクリロイル基を有する基としては、特に限定されないが、例えば、下記式(X-4)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000027
(一般式(X-4)において、nx4は、0~5の整数であり、sは、0~3の整数であり、Rは水素原子、又はメチル基である。)
 水酸基を有する基としては、特に限定されないが、例えば、下記式(X-5)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000028
(一般式(X-5)において、nx5は、1~5の整数である。)
 グリシジル基を有する基としては、特に限定されないが、例えば、下記式(X-6)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000029
(式(X-6)において、nx6は、1~5の整数である。)
 含ビニルフェニルメチル基を有する基としては、特に限定されないが、例えば、下記式(X-7)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000030
(式(X-7)において、nx7は、1~5の整数である。)
 各種アルキニル基を有する基としては、特に限定されないが、例えば、下記式(X-8)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000031
(式(X-8)において、nx8は、1~5の整数である。)
 上記炭素-炭素二重結合含有基としては、例えば、(メタ)アクリロイル基、置換又は非置換のビニルフェニル基、下記式(X-9-1)で表される基等が挙げられる。また、上記炭素-炭素三重結合含有基としては、例えば、置換又は非置換のエチニル基、置換又は非置換のプロパルギル基、下記式(X-9-2)、(X-9-3)で表される基等が挙げられる。
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
 上記式(X-9-1)中、RX9A、RX9B及びRX9Cは、それぞれ独立して、水素原子又は炭素数1~20の1価の炭化水素基である。上記式(X-9-2)、(X-9-3)中、RX9D、RX9E及びRX9Fは、それぞれ独立して、水素原子又は炭素数1~20の1価の炭化水素基である。
 上記の中でも、紫外線硬化性の観点から、(メタ)アクリロイル基、エポキシ(メタ)アクリロイル基、ウレタン(メタ)アクリロイル基、グリシジル基を有する基、スチレン基を含有する基が好ましく、(メタ)アクリロイル基、エポキシ(メタ)アクリロイル基、ウレタン(メタ)アクリロイル基がより好ましく、(メタ)アクリロイル基がさらに好ましい。また、耐熱性の観点から、各種アルキニル基を有する基も好ましい。
 本実施形態における「解離性基」とは、触媒存在下又は無触媒下で解離する基をいう。解離性基の中でも、酸解離性基とは、酸の存在下で開裂して、アルカリ可溶性基等に変化を生じる基をいう。
 アルカリ可溶性基としては、特に限定されないが、例えば、フェノール性水酸基、カルボキシル基、スルホン酸基、ヘキサフルオロイソプロパノール基等が挙げられ、中でも、導入試薬の入手容易性の観点から、フェノール性水酸基及びカルボキシル基が好ましく、フェノール性水酸基がより好ましい。
 酸解離性基は、高感度且つ高解像度なパターン形成を可能にするために、酸の存在下で連鎖的に開裂反応を起こす性質を有することが好ましい。
 酸解離性基としては、特に限定されないが、例えば、KrFやArF用の化学増幅型レジスト組成物に用いられるヒドロキシスチレン樹脂、(メタ)アクリル酸樹脂等において提案されているものの中から適宜選択して用いることができる。
 酸解離性基の具体例としては、国際公開第2016/158168号に記載のものを挙げることができる。酸解離性基としては、酸により解離する性質を有する、1-置換エチル基、1-置換-n-プロピル基、1-分岐アルキル基、シリル基、アシル基、1-置換アルコキシメチル基、環状エーテル基、アルコキシカルボニル基、及びアルコキシカルボニルアルキル基等が好適に挙げられる。
 また、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基における置換基としては、ハロゲン原子、ニトロ基、アミノ基、チオール基、水酸基、及び水酸基の水素原子が酸解離性基で置換された基に加え、例えば、シアノ基、複素環基、直鎖状脂肪族炭化水素基、分岐状脂肪族炭化水素基、環状脂肪族炭化水素基、アリール基、アラルキル基、アルコキシ基、アミノ基、アルケニル基、アルキニル基、アシル基、アルコキシカルボニル基、アルキロイルオキシ基、アリーロイルオキシ基、アルキルシリル基、架橋性基、酸解離性基等も挙げられる。
 式(1-1)中のA及び式(2-1)中のBの芳香族環は、芳香環上に少なくとも一つの水素基を有していることが好ましい。
 また、本実施形態において、芳香族環上の置換基(R、OH基、OR’)の数は、芳香族環の種類に応じた整数である。したがって、芳香族環上の置換基の数を指す指数の上限値は、特に制限されず、芳香族環の種類に応じて決まる。
 また、式(1-1)で表される芳香族化合物と、式(2-1)で表される芳香族アルデヒドの縮合反応により得られる縮合骨格としては、式(3-1)で表される化合物が得られる。
Figure JPOXMLDOC01-appb-C000035
(式(3-1)中、
 A’、A’’は、前記式(1-1)におけるAと同じであり、
 B’は、前記式(2-1)におけるBと同じであり、
 Rは、それぞれ独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、架橋性基、解離性基、又はチオール基であり、
 前記アルキル基、前記アリール基、前記アルケニル基、前記アルキニル基、前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
 Lは、1以上の整数であり、
 pは、0以上の整数であり、
 qは、1以上の整数であり、
 kは、0以上の整数である)
 式(3-1)中、R、m、L、p、qは、前記式(1-1)、あるいは前記式(2-1)におけるR、m、L、p、qと同義である。
 本実施形態において、Lは、2以上の整数であることが好ましい。Lが2以上の整数であることにより、本実施形態の化合物における水酸基の導入位置が多様となり、樹脂となったときの結合の形成が密になる傾向にある。Lの上限は、A’、A’’の炭素数に応じて適宜決められる値であるが、通常10以下であり、9以下であってもよく、7以下であってもよく、6以下であってもよい。
 本実施形態において、pの上限は、B’の炭素数に応じて適宜決められる値であるが、通常10以下であり、6以下であってもよく、4以下であってもよく、2以下であってもよい。
 本実施形態において、qの上限は、B’の炭素数に応じて適宜決められる値であるが、通常10以下であり、6以下であってもよく、4以下であってもよく、2以下であってもよい。
 本実施形態において、kの上限は、A’、A’’の炭素数に応じて適宜決められる値であるが、通常10以下であり、6以下であってもよく、4以下であってもよく、2以下であってもよい。
 式(1-1)で表される芳香族化合物は、反応性の観点から、式(1-2)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000036
(式(1-2)中、
 Rは、それぞれ独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、架橋性基、解離性基、又はチオール基であり、
 前記アルキル基、前記アリール基、前記アルケニル基、前記アルキニル基、前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
 mは、0~3の整数であり、
 k’は、m=0とき0~5の整数、m=1のとき0~7の整数、m=2のとき0~9の整数、m=3のとき0~11の整数であり、
 L’は、m=0とき1~5の整数、m=1のとき1~7の整数、m=2のとき1~9の整数、m=3のとき1~11の整数である。)
 k’とL’との和は、
 m=0とき1~5の整数、m=1のとき1~7の整数、m=2のとき1~9の整数、m=3のとき1~11の整数であってもよく、
 m=0とき1~4の整数、m=1のとき1~6の整数、m=2のとき1~8の整数、m=3のとき1~10の整数であってもよく、
 m=0とき1~3の整数、m=1のとき1~5の整数、m=2のとき1~7の整数、m=3のとき1~9の整数であってもよい。
 式(2-1)で表される芳香族アルデヒドは、反応性の観点から、式(2-2)で表される芳香族アルデヒドであることが好ましい。
Figure JPOXMLDOC01-appb-C000037
(式(2-2)中、
 Rは、それぞれ独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、架橋性基、解離性基、又はチオール基であり、
 前記アルキル基、前記アリール基、前記アルケニル基、前記アルキニル基、前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
 nは、0~3の整数であり、
 p’は、n=0のとき0~4の整数、n=1のとき0~6の整数、n=2のとき0~8の整数、n=3のとき0~10の整数であり、
 q’は、n=0のとき1~5の整数、n=1のとき1~7の整数、n=2のとき1~9の整数、n=3のとき1~11の整数である。)
 p’とq’との和は、
 m=0とき1~5の整数、m=1のとき1~7の整数、m=2のとき1~9の整数、m=3のとき1~11の整数であってもよく、
 m=0とき1~4の整数、m=1のとき1~6の整数、m=2のとき1~8の整数、m=3のとき1~10の整数であってもよく、
 m=0とき1~3の整数、m=1のとき1~5の整数、m=2のとき1~7の整数、m=3のとき1~9の整数であってもよい。
 式(1-1)あるいは式(2-1)中のRのうち少なくとも1つは、膜密度を高める観点から、ハロゲン原子、ニトロ基、架橋性基、チオール基であることが好ましく、ハロゲン原子であることがより好ましく、塩素、臭素、ヨウ素からなる群より選ばれる少なくとも1種であることがさらに好ましい。
 本実施形態における縮合骨格は、製造容易性の観点から、式(3-2)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000038
(式(3-2)中、
 Rは、それぞれ独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、架橋性基、解離性基、又はチオール基であり、
 前記アルキル基、前記アリール基、前記アルケニル基、前記アルキニル基、前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
 mは、0~3の整数であり、
 nは、0~3の整数であり、
 ka”は、m=0とき0~4の整数、m=1のとき0~6の整数、m=2のとき0~8の整数、m=3のとき0~10の整数であり、
 La”は、m=0とき0~4の整数、m=1のとき0~6の整数、m=2のとき0~10の整数、m=3のとき0~10の整数であり、
 kb”は、m=0とき0~5の整数、m=1のとき0~7の整数、m=2のとき0~9の整数、m=3のとき0~11の整数であり、
 Lb”は、m=0とき0~5の整数、m=1のとき0~7の整数、m=2のとき0~9の整数、m=3のとき0~11の整数であり、
 p”は、n=0のとき0~4の整数、n=1のとき0~6の整数、n=2のとき0~8の整数、n=3のとき0~10の整数であり、
 q”は、n=0のとき0~4の整数、n=1のとき0~6の整数、n=2のとき0~8の整数、n=3のとき0~10の整数である。)
 ka”及びLa”の和は、
 m=0とき0~4の整数、m=1のとき0~6の整数、m=2のとき0~8の整数、m=3のとき0~10の整数であってもよく、
 m=0とき0~3の整数、m=1のとき0~5の整数、m=2のとき0~7の整数、m=3のとき0~9の整数であってもよく、
 m=0とき0~2の整数、m=1のとき0~4の整数、m=2のとき0~6の整数、m=3のとき0~8の整数であってもよい。
 kb”及びLb”の和は、
 m=0とき0~5の整数、m=1のとき0~7の整数、m=2のとき0~9の整数、m=3のとき0~11の整数であってもよく、
 m=0とき1~5の整数、m=1のとき1~7の整数、m=2のとき1~9の整数、m=3のとき1~11の整数であってもよく、
 m=0とき1~4の整数、m=1のとき1~6の整数、m=2のとき1~8の整数、m=3のとき1~10の整数であってもよく、
 m=0とき1~3の整数、m=1のとき1~5の整数、m=2のとき1~7の整数、m=3のとき1~10の整数であってもよい。
 p”及びq”の和は、
 n=0のとき0~4の整数、n=1のとき0~6の整数、n=2のとき0~8の整数、n=3のとき0~10の整数であってもよく、
 n=0のとき0~3の整数、n=1のとき0~5の整数、n=2のとき0~7の整数、n=3のとき0~9の整数であってもよく、
 n=0のとき0~2の整数、n=1のとき0~4の整数、n=2のとき0~6の整数、n=3のとき0~8の整数であってもよい。
 ここで、式(3-2)で表される化合物は、芳香族環部分として、以下の式(A-0)で表される構造を含む。式(A-0)で表される芳香族環は、芳香族環を模式的に表した構造であり、異性体構造を含む。式(A-0)で表される芳香族環としては、具体的には、(A-1)に示す構造が挙げられる。
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
 本実施形態における縮合骨格は、下記式(3-3)で表されることが好ましい。下記式(3-3)で表される縮合骨格を含む化合物は、樹脂となったときの結合の形成が密になり、その結果、膜密度が高まり、リソグラフィーに用いる光の吸収率が高く、高感度なリソグラフィー用組成物が得られる傾向にある。
Figure JPOXMLDOC01-appb-C000041
 式(3-3)中、
 Rは、それぞれ独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、架橋性基、解離性基、又はチオール基であり、
 前記アルキル基、前記アリール基、前記アルケニル基、前記アルキニル基、前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
 ka”は、0~6の整数であり、
 La”は、0~6の整数であり、
 kb”は、0~7の整数であり、
 Lb”は、0~7の整数であり、
 p”は、0~4の整数であり、
 q”は、0~4の整数である。
 本実施形態の化合物は、式(I)で表される化合物でもある。
Figure JPOXMLDOC01-appb-C000042
 式(I)中、
 A’、A’’は、同一の芳香族環を表し、
 B’は、芳香族環を表し、
 Rは、それぞれ独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、架橋性基、解離性基、又はチオール基であり、
 前記アルキル基、前記アリール基、前記アルケニル基、前記アルキニル基、前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
 Lは、1以上の整数であり、
 pは、0以上の整数であり、
 qは、1以上の整数であり、
 kは、0以上の整数であり、
 -OR’基は、ヒドロキシ基、架橋性基、又は、解離性基である。
 式(I)における、A’とA’’とは、同一の芳香族環であるが、隣接する環との結合形式、及び置換基は同一でなくてもよい。
 式(I)における、A’、A’’及びB’の芳香族環は、式(1-1)及び式(1-2)における芳香族環と同様の芳香族環を例示することができ、同様の好ましい芳香族環を挙げることができる。
 また、式(I)における、A’、A’’及びB’の芳香族環として、具体的には、以下の式(A-0)で表される構造を挙げることができる。式(A-0)で表される芳香族環は、芳香族環を模式的に表した構造であり、異性体構造を含む。式(A-0)で表される芳香族環としては、具体的には、(A-1)に示す構造が挙げられる。
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
 式(I)におけるRの、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、架橋性基、及び解離性基は、式(1-1)及び式(1-2)における置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、架橋性基、及び解離性基と同様の基を例示することができ、同様の好ましい基を挙げることができる。
 式(I)中の-OR’基は、ヒドロキシ基(-OH)、架橋性基、又は、解離性基である。架橋性基としては、式(1-1)及び式(1-2)における架橋性基と同様の基を例示することができ、同様の好ましい基を挙げることができる。解離性基としては、式(1-1)及び式(1-2)における解離性基と同様の基を例示することができ、同様の好ましい基を挙げることができる。
 式(I)で表される化合物が含むキサンテン骨格(環A’-ピラン環-環B’)を含む。このキサンテン骨格は、キサンテン中のピラン環に含まれる酸素原子と、当該ピラン環に含まれるメチレンの炭素とを結んだ軸に対して、非対称であることが好ましい。ここで「非対称」であるとは、上記の軸を鏡面としたときに、鏡面を隔てた左右で像と鏡像の関係にはないことを指す。一方で、「対称」であるとは、上記の軸を鏡面としたときに、鏡面を隔てた左右で像と鏡像の関係にあることを指す。
 本実施形態の式(I)で表される化合物は、式(3-2)で表される化合物であることが好ましく、このとき式(3-2)で表される化合物中の-OH基は、架橋性基及び/又は解離性基であってもよい。
 本実施形態の化合物は、以下の構造の縮合骨格を含むことが好ましい。以下の構造は、本実施形態の式(I)における「環A’-ピラン環(-環A’’)-環B’」に相当する。
Figure JPOXMLDOC01-appb-C000045
 本実施形態の化合物は、以下の構造の縮合骨格を含むことがより好ましい。
Figure JPOXMLDOC01-appb-C000046
 上記の縮合骨格を含むとき、本実施形態の化合物は式(I’)により表されることが好ましい。
Figure JPOXMLDOC01-appb-C000047
 式(I’)中、R、L、p、q、k、-OR’は、式(I)におけるR、L、p、q、k、-OR’と同義であり、同様の好ましい基、数値であることができる。
 具体的には、式(I’)中、
 Rは、それぞれ独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、架橋性基、解離性基、又はチオール基であり、
 前記アルキル基、前記アリール基、前記アルケニル基、前記アルキニル基、前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
 Lは、1以上の整数であり、
 pは、0以上の整数であり、
 qは、1以上の整数であり、
 kは、0以上の整数であり、
 -OR’基は、ヒドロキシ基、架橋性基、又は、解離性基である。
 式(I’)により表される化合物は、好ましくは式(I”)により表される。
Figure JPOXMLDOC01-appb-C000048
 式(I”)中、R、L、p、q、k、-OR’は、式(I)におけるR、L、p、q、k、-OR’と同義であり、同様の好ましい基、数値であることができる。
 また、式(I”)で表される化合物は、好ましくは以下の式で表される。
Figure JPOXMLDOC01-appb-C000049
 式(I”-1)~(I”-6)中、R、-OR’は、式(I)におけるR、-OR’と同義であり、同様の好ましい基であることができる。
 式(I”-1)~(I”-6)におけるRは、好ましくは、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子であり、より好ましくは置換基を有していてもよい炭素数6~30のアリール基、ハロゲン原子である。
 本実施形態の化合物は、具体的には下記に例示される。ただし、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
[化合物の製造方法]
 式(1-1)で表される芳香族化合物と、式(2-1)で表される芳香族アルデヒドとの反応は、公知の手法を適宜適用することができ、その反応手法は特に限定されない。本実施形態の化合物の製造方法は、式(1-1)で表される芳香族化合物と、式(2-1)の縮合反応を行い、式(3-1)で表される骨格を得る工程を含む。本実施形態の化合物の製造方法は、例えば、常圧下、酸触媒下にて縮合反応させるが好ましい。また、反応は、必要に応じて、加圧下で行ってもよい。
 前記反応に用いる酸触媒については、公知の酸触媒から適宜選択して用いることができ、特に限定されない。酸触媒としては、無機酸及び有機酸が広く知られており、例えば、塩酸、硫酸、リン酸、臭化水素酸、フッ酸等の無機酸;シュウ酸、マロン酸、こはく酸、アジピン酸、セバシン酸、クエン酸、フマル酸、マレイン酸、蟻酸、p-トルエンスルホン酸、メタンスルホン酸、トリフルオロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、ナフタレンジスルホン酸等の有機酸;塩化亜鉛、塩化アルミニウム、塩化鉄、三フッ化ホウ素等のルイス酸、或いはケイタングステン酸、リンタングステン酸、ケイモリブデン酸又はリンモリブデン酸等の固体酸;等が挙げられる。
 これらの中でも、製造の効率性の観点から、有機酸及び固体酸が好ましく、入手の容易さや取り扱い易さ等の観点から、塩酸又は硫酸を用いることがより好ましい。酸触媒は、1種を単独で又は2種以上を組み合わせて用いることができる。
 また、酸触媒の使用量は、使用する原料及び使用する触媒の種類、さらには反応条件等に応じて適宜設定でき特に限定されないが、反応原料100質量部に対して、0.01~100質量部であることが好ましい。
 前記反応の際には、反応溶媒を用いてもよい。反応溶媒としては、反応を妨げないものであれば特に限定されず、公知の溶媒の中から適宜選択して用いることができる。反応溶媒としては、例えば、水、メタノール、エタノール、プロパノール、ブタノール、テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル等が挙げられる。なお、反応溶媒は、1種を単独で或いは2種以上を組み合わせて混合溶媒として用いることができる。
 また、これらの反応溶媒の使用量は、使用する原料及び使用する触媒の種類、さらには反応条件等に応じて適宜設定でき特に限定されないが、反応原料100質量部に対して0~2000質量部の範囲であることが好ましい。
 前記反応における反応温度は、反応原料の反応性に応じて適宜選択することができ、特に限定されないが、通常10~200℃の範囲である。本実施形態の化合物を効率的に得る観点から、反応温度は、好ましくは60~200℃である。
 なお、反応方法は、公知の手法を適宜選択して用いることができ特に限定されないが、式(1-1)で表される芳香族化合物、式(2-1)で表される芳香族アルデヒド、及び触媒を一括で仕込む方法、式(1-1)で表される芳香族化合物及び式(2-1)で表される芳香族アルデヒドを触媒存在下の系内に滴下していく方法等がある。縮合反応終了後、得られた化合物の単離は、常法にしたがって行うことができ、特に限定されない。例えば、系内に存在する未反応原料、触媒等を除去するために、反応容器内の温度を130~230℃にまで上昇させ、1~50mmHg程度で揮発分を除去する等の一般的手法を採ることにより、目的物である化合物を得ることができる。
 好ましい反応条件としては、式(2-1)で表される芳香族アルデヒド1モルに対し、式(1-1)で表される芳香族化合物を1.0モル~過剰量、及び酸触媒を0.001~1モル使用し、常圧で、50~150℃、20分間~100時間程度反応させる条件が挙げられる。
 反応終了後、公知の方法により目的物を単離することができる。例えば、反応液を濃縮し、純水を加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離させ、得られた固形物を濾過し、乾燥させた後、シリカゲル等を用いるカラムクロマトグラフィーにより、副生成物と分離精製し、溶媒留去、濾過、乾燥を行うことによって、目的物である式(3-1)で表される化合物を得ることができる。
[本実施形態の化合物をモノマーとして得られる樹脂]
 本実施形態の化合物は、そのまま、リソグラフィー用膜形成組成物として使用することができる。また、本実施形態の化合物をモノマーとして得られる樹脂も、リソグラフィー用膜形成組成物として使用することができる。本実施形態の一つは、樹脂であり、当該樹脂は、本実施形態の化合物に由来する単位構造を有する樹脂である。本実施形態の樹脂は、例えば、本実施形態の化合物と架橋反応性のある化合物とを反応させて得られる樹脂である。
 本実施形態の化合物をモノマーとし得られる樹脂としては、例えば、以下の式(4)に表される構造を有する樹脂が挙げられる。本実施形態の組成物は、式(4)に表される構造を有する樹脂を含有してもよい。
Figure JPOXMLDOC01-appb-C000061
(式(4)中、Lは炭素数1~60の二価の基であり、Mは本実施形態の化合物に由来する単位構造である。)
[本実施形態の化合物をモノマーとして得られる樹脂の製造方法]
 本実施形態の樹脂は、本実施形態の化合物を架橋反応性のある化合物と反応させることにより得られる。
 架橋反応性のある化合物としては、本実施形態の化合物をオリゴマー化又はポリマー化し得るものであれば特に制限されず、公知の架橋反応性のある化合物を使用することができる。架橋反応性のある化合物としては、例えば、アルデヒド、ケトン、カルボン酸、カルボン酸ハライド、ハロゲン含有化合物、アミノ化合物、イミノ化合物、イソシアネート、不飽和炭化水素基含有化合物等が挙げられる。これらは1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 本実施形態の化合物をモノマーとして得られる樹脂の具体例としては、例えば、本実施形態の化合物を架橋反応性のある化合物であるアルデヒド及び/又はケトンとの縮合反応等によってノボラック化した樹脂が挙げられる。
 本実施形態の化合物をノボラック化する際に用いるアルデヒドとしては、特に限定されないが、例えば、ホルムアルデヒド、トリオキサン、パラホルムアルデヒド、ベンズアルデヒド、アセトアルデヒド、プロピルアルデヒド、フェニルアセトアルデヒド、フェニルプロピルアルデヒド、ヒドロキシベンズアルデヒド、クロロベンズアルデヒド、ニトロベンズアルデヒド、メチルベンズアルデヒド、エチルベンズアルデヒド、ブチルベンズアルデヒド、ビフェニルアルデヒド、ナフトアルデヒド、アントラセンカルボアルデヒド、フェナントレンカルボアルデヒド、ピレンカルボアルデヒド、フルフラール等が挙げられる。
 本実施形態の化合物をノボラック化する際に用いるケトンとしては、特に限定されないが、アセトン、2-ブタノン、2-ヘプタノン、3-ヘプタノン、4-ヘプタノン、シクロペンタノン(CPN)、シクロヘキサノン(CHN)、アセトフェノン、ベンゾフェノン、フェニルナフチルケトン等が挙げられる。
 これらの中でも、ホルムアルデヒドが好ましい。
 なお、これらのアルデヒド及び/又はケトンは、1種を単独で又は2種以上を組み合わせて用いることができる。また、前記アルデヒド及び/又はケトンの使用量は、特に限定されないが、本実施形態の化合物1モルに対して、好ましくは0.2~5モル、より好ましくは0.5~2モルである。
 本実施形態の化合物とアルデヒド及び/又はケトンとの縮合反応において、触媒を用いることもできる。ここで使用する酸触媒としては、特に限定されず、公知の酸触媒から適宜選択して用いることができる。
 酸触媒としては、無機酸や有機酸が広く知られており、例えば、塩酸、硫酸、リン酸、臭化水素酸、フッ酸等の無機酸;シュウ酸、マロン酸、こはく酸、アジピン酸、セバシン酸、クエン酸、フマル酸、マレイン酸、蟻酸、p-トルエンスルホン酸、メタンスルホン酸、トリフルオロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、ナフタレンジスルホン酸等の有機酸;塩化亜鉛、塩化アルミニウム、塩化鉄、三フッ化ホウ素等のルイス酸、或いはケイタングステン酸、リンタングステン酸、ケイモリブデン酸又はリンモリブデン酸等の固体酸;等が挙げられる。
 これらの中でも、製造の効率性の観点から、有機酸及び固体酸が好ましく、入手の容易さや取り扱い易さ等の製造上の観点から、塩酸又は硫酸がより好ましい。酸触媒は、1種を単独で又は2種以上を組み合わせて用いることができる。
 また、酸触媒の使用量は、使用する原料及び使用する触媒の種類、さらには反応条件等に応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して、0.01~100質量部であることが好ましい。但し、インデン、ヒドロキシインデン、ベンゾフラン、ヒドロキシアントラセン、アセナフチレン、ビフェニル、ビスフェノール、トリスフェノール、ジシクロペンタジエン、テトラヒドロインデン、4-ビニルシクロヘキセン、ノルボルナジエン、5-ビニルノルボルナ-2-エン、α-ピネン、β-ピネン、リモネン等の非共役二重結合を有する化合物との共重合反応の場合は、必ずしもアルデヒドは必要ない。
 本実施形態の化合物とアルデヒド及び/又はケトンとの縮合反応において、反応溶媒を用いることもできる。この重縮合における反応溶媒としては、特に限定されず、公知の溶媒の中から適宜選択して用いることができる。反応溶媒としては、例えば、水、メタノール、エタノール、プロパノール、ブタノール、テトラヒドロフラン、ジオキサン等が挙げられる。なお、反応溶媒は、1種を単独で或いは2種以上を組み合わせて混合溶媒として用いることができる。
 また、これらの反応溶媒の使用量は、使用する原料及び使用する触媒の種類、さらには反応条件等に応じて適宜設定でき特に限定されないが、反応原料100質量部に対して0~2000質量部の範囲であることが好ましい。
 反応温度は、反応原料の反応性に応じて適宜選択することができ、特に限定されないが、通常10~200℃の範囲である。
 なお、反応方法は、公知の手法を適宜選択して用いることができ、特に限定されないが、本実施形態の化合物、アルデヒド及び/又はケトン、並びに触媒を一括で仕込む方法、本実施形態の化合物、アルデヒド及び/又はケトンを触媒存在下の系内に滴下していく方法がある。
 重合反応終了後、得られた樹脂の単離は、常法にしたがって行うことができ、特に限定されない。例えば、系内に存在する未反応原料、触媒等を除去するために、反応容器内の温度を130~230℃にまで上昇させ、1~50mmHg程度で揮発分を除去する等の一般的手法を採ることにより、目的物である樹脂を得ることができる。
 式(4)で表される構造を有する樹脂は、本実施形態の化合物の単独重合体であってもよく、他のフェノール化合物との共重合体であってもよい。
 他のフェノール化合物としては、共重合可能であれば特に限定されないが、例えば、フェノール、クレゾール、ジメチルフェノール、トリメチルフェノール、ブチルフェノール、フェニルフェノール、ジフェニルフェノール、ナフチルフェノール、レゾルシノール、メチルレゾルシノール、カテコール、ブチルカテコール、メトキシフェノール、メトキシフェノール、プロピルフェノール、ピロガロール、チモール等が挙げられる。
 また、式(4)で表される構造を有する樹脂は、上述した他のフェノール化合物以外に、重合可能なモノマーと共重合させた樹脂であってもよい。かかるモノマーとしては、特に限定されないが、例えば、ナフトール、メチルナフトール、メトキシナフトール、ジヒドロキシナフタレン、インデン、ヒドロキシインデン、ベンゾフラン、ヒドロキシアントラセン、アセナフチレン、ビフェニル、ビスフェノール、トリスフェノール、ジシクロペンタジエン、テトラヒドロインデン、4-ビニルシクロヘキセン、ノルボルナジエン、ビニルノルボルナエン、ピネン、リモネン等が挙げられるが。なお、式(4)で表される構造を有する樹脂は、本実施形態の化合物と上述したフェノール類との二元以上の(例えば、二~四元系)共重合体であっても、本実施形態の化合物と上述したモノマーとの二元以上(例えば、二~四元系)共重合体であっても、本実施形態の化合物と上述したフェノール化合物と上述したモノマーとの三元以上の(例えば、三~四元系)共重合体であってもよい。
 式(4)で表される構造を有する樹脂の分子量は、特に限定されないが、ポリスチレン換算の重量平均分子量(Mw)が、好ましくは500~30,000、より好ましくは750~20,000である。また、架橋効率を高めるとともにベーク中の揮発成分を抑制する観点から、式(4)で表される構造を有する樹脂は、分散度(重量平均分子量Mw/数平均分子量Mn)が1.2~7の範囲であることが好ましい。
 なお、前記Mnは、後述する実施例に記載の方法により求めることができる。
 式(4)で表される構造を有する樹脂は、湿式プロセスの適用がより容易になる等の観点から、溶媒に対する溶解性が高いものであることが好ましい。より具体的には、これら化合物及び/又は樹脂は、1-メトキシ-2-プロパノール(PGME)及び/又はプロピレングリコールモノメチルエーテルアセテート(PGMEA)を溶媒とする場合、当該溶媒に対する溶解度が10質量%以上であることが好ましい。ここで、PGME及び/又はPGMEAに対する溶解度は、「樹脂の質量/(樹脂の質量+溶媒の質量)×100(質量%)」と定義される。例えば、前記樹脂10gがPGMEA90gに対して溶解する場合は、前記樹脂のPGMEAに対する溶解度は、「10質量%以上」となり、溶解しない場合は、「10質量%未満」となる。

[精製方法]
 本実施形態の化合物及び本実施形態の樹脂は、酸性水溶液で洗浄して精製することが可能である。本実施形態の一つは、本実施形態の化合物又は本実施形態の樹脂(これらをリソグラフィー用膜形成材料ともいう)の精製方法であり、当該精製方法は、前記化合物又は樹脂、及び水と任意に混和しない有機溶媒とを含む溶液と、酸性の水溶液とを接触させて抽出する抽出工程を含む。
 本実施形態の精製方法は、具体的には、リソグラフィー用膜形成材料を水と任意に混和しない有機溶媒に溶解させて有機相を得て、その有機相を酸性水溶液と接触させ抽出処理(第一抽出工程)を行うことにより、リソグラフィー用膜形成材料と有機溶媒とを含む有機相に含まれる金属分を水相に移行させたのち、有機相と水相とを分離する工程を含む。該精製により本発明のリソグラフィー用膜形成材料の種々の金属の含有量を著しく低減させることができる。
 水と任意に混和しない前記有機溶媒としては、特に限定されないが、半導体製造プロセスに安全に適用できる有機溶媒が好ましい。使用する有機溶媒の量は、使用する該化合物に対して、通常1~100質量倍程度使用される。
 使用される有機溶媒の具体例としては、例えば、国際公開2015/080240に記載のものが挙げられる。これらの中でも、トルエン、2-ヘプタノン、シクロヘキサノン、シクロペンタノン、メチルイソブチルケトン、プロピレングリコールモノメチルエーテルアセテート、酢酸エチル等が好ましく、特にシクロヘキサノン、プロピレングリコールモノメチルエーテルアセテートが好ましい。これらの有機溶媒はそれぞれ単独で用いることもできるし、また2種以上を混合して用いることもできる。
 前記酸性の水溶液としては、一般に知られる有機、無機系化合物を水に溶解させた水溶液の中から適宜選択される。例えば、国際公開2015/080240に記載のものが挙げられる。これら酸性の水溶液は、それぞれ単独で用いることもできるし、また2種以上を組み合わせて用いることもできる。酸性の水溶液としては、例えば、鉱酸水溶液及び有機酸水溶液を挙げることができる。鉱酸水溶液としては、例えば、塩酸、硫酸、硝酸及びリン酸からなる群より選ばれる1種以上を含む水溶液を挙げることができる。有機酸水溶液としては、例えば、酢酸、プロピオン酸、蓚酸、マロン酸、コハク酸、フマル酸、マレイン酸、酒石酸、クエン酸、メタンスルホン酸、フェノールスルホン酸、p-トルエンスルホン酸及びトリフルオロ酢酸からなる群より選ばれる1種以上を含む水溶液を挙げることができる。また、酸性の水溶液としては、硫酸、硝酸、及び酢酸、蓚酸、酒石酸、クエン酸等のカルボン酸の水溶液が好ましく、さらに、硫酸、蓚酸、酒石酸、クエン酸の水溶液が好ましく、特に蓚酸の水溶液が好ましい。蓚酸、酒石酸、クエン酸等の多価カルボン酸は金属イオンに配位し、キレート効果が生じるために、より金属を除去できると考えられる。また、ここで用いる水は、本発明の目的に沿って、金属含有量の少ないもの、例えばイオン交換水等が好ましい。
 前記酸性の水溶液のpHは特に制限されないが、水溶液の酸性度があまり大きくなると、使用する化合物又は樹脂に悪影響を及ぼすことがあり好ましくない。通常、pH範囲は0~5程度であり、より好ましくはpH0~3程度である。
 前記酸性の水溶液の使用量は特に制限されないが、その量があまりに少ないと、金属除去のための抽出回数多くする必要があり、逆に水溶液の量があまりに多いと全体の液量が多くなり操作上の問題を生ずることがある。水溶液の使用量は、通常、化合物の溶液に対して10~200質量部であり、好ましくは20~100質量部である。
 前記酸性の水溶液と、化合物及び水と任意に混和しない有機溶媒を含む溶液(B)とを接触させることにより金属分を抽出することができる。
 前記抽出処理を行う際の温度は通常、20~90℃であり、好ましくは30~80℃の範囲である。抽出操作は、例えば、撹拌等により、よく混合させたあと、静置することにより行われる。これにより、使用する該化合物と有機溶媒を含む溶液に含まれていた金属分が水相に移行する。また本操作により、溶液の酸性度が低下し、使用する該化合物の変質を抑制することができる。
 抽出処理後、使用する該化合物及び有機溶媒を含む溶液相と、水相とに分離させ、デカンテーション等により有機溶媒を含む溶液を回収する。静置する時間は特に制限されないが、静置する時間があまりに短いと有機溶媒を含む溶液相と水相との分離が悪くなり好ましくない。通常、静置する時間は1分間以上であり、より好ましくは10分間以上であり、さらに好ましくは30分間以上である。また、抽出処理は1回だけでもかまわないが、混合、静置、分離という操作を複数回繰り返して行うのも有効である。
 酸性の水溶液を用いてこのような抽出処理を行った場合は、処理を行ったあとに、該水溶液から抽出し、回収した有機溶媒を含む有機相は、さらに水との抽出処理(第二抽出工程)を行うことが好ましい。抽出操作は、撹拌等により、よく混合させたあと、静置することにより行われる。そして得られる溶液は、化合物と有機溶媒とを含む溶液相と、水相とに分離するのでデカンテーション等により溶液相を回収する。また、ここで用いる水は、本発明の目的に沿って、金属含有量の少ないもの、例えばイオン交換水等が好ましい。抽出処理は1回だけでもかまわないが、混合、静置、分離という操作を複数回繰り返して行うのも有効である。また、抽出処理における両者の使用割合や、温度、時間等の条件は特に制限されないが、先の酸性の水溶液との接触処理の場合と同様で構わない。
 こうして得られた、化合物と有機溶媒とを含む溶液に混入する水分は減圧蒸留等の操作を施すことにより容易に除去できる。また、必要により有機溶媒を加え、化合物の濃度を任意の濃度に調整することができる。
 得られた有機溶媒を含む溶液から、目的化合物のみを得る方法は、減圧除去、再沈殿による分離、及びそれらの組み合わせ等、公知の方法で行うことができる。必要に応じて、濃縮操作、ろ過操作、遠心分離操作、乾燥操作等の公知の処理を行うことができる。 
[組成物]
 本実施形態の組成物は、本実施形態の化合物及び/又は本実施形態の樹脂を含み、必要に応じて、基材(A)、溶媒(S)、酸発生剤(C)、架橋剤(G)、酸拡散制御剤(E)等の他の成分を含んでいてもよい。以下、各成分について説明する。
(基材(A))
 本実施形態において「基材(A)」とは、本実施形態の化合物又は本実施形態の樹脂以外の化合物(樹脂を含む)であって、g線、i線、KrFエキシマレーザー(248nm)、ArFエキシマレーザー(193nm)、極端紫外線(EUV)リソグラフィー(13.5nm)や電子線(EB)用レジストとして適用される基材(例えば、リソグラフィー用基材やレジスト用基材)を意味する。
 本実施形態における基材(A)としては特に限定されず、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ヒドロキシスチレン樹脂、(メタ)アクリル樹脂、ヒドロキシスチレン-(メタ)アクリル共重合体、シクロオレフィン-マレイン酸無水物共重合体、シクロオレフィン、ビニルエーテル-マレイン酸無水物共重合体、及び、チタン、スズ、ハフニウムやジルコニウム等の金属元素を有する無機レジスト材料、並びに、それらの誘導体が挙げられる。
 その中でも得られるレジストパターンの形状の観点から、フェノールノボラック樹脂、クレゾールノボラック樹脂、ヒドロキシスチレン樹脂、(メタ)アクリル樹脂、ヒドロキシスチレン-(メタ)アクリル共重合体、及び、チタン、スズ、ハフニウムやジルコニウム等の金属元素を有する無機レジスト材料、並びに、これらの誘導体が好ましい。
 前記誘導体としては、特に限定されるものではないが、例えば、解離性基を導入した誘導体や架橋性基を導入した誘導体等が挙げられる。前記解離性基や架橋性基を導入した誘導体は、光や酸等の作用によって解離反応や架橋反応を発現させることができる。解離性基及び架橋性基としては、本実施形態における、式(1-1)で表される芳香族化合物、式(2-1)で表される芳香族アルデヒドに含まれる解離性基及び架橋性基と同様の基を例示できる。
 本実施形態において、基材(A)の重量平均分子量は、組成物を用いて形成した膜の欠陥の低減、及び、良好なパターン形状の観点から、200~4990が好ましく、200~2990がより好ましく、200~1490がさらに好ましい。前記重量平均分子量は、GPCを用いてポリスチレン換算の重量平均分子量を測定した値を用いることができる。
[溶媒(S)]
 本実施形態における溶媒は、本実施形態の化合物が少なくとも溶解するものであれば特に限定されず、公知の溶媒を適宜用いることができる。溶媒としては、例えば、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノ-n-プロピルエーテルアセテート、エチレングリコールモノ-n-ブチルエーテルアセテート等のエチレングリコールモノアルキルエーテルアセテート類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル等のエチレングリコールモノアルキルエーテル類;プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノ-n-プロピルエーテルアセテート、プロピレングリコールモノ-n-ブチルエーテルアセテート等のプロピレングリコールモノアルキルエーテルアセテート類;プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノエチルエーテル等のプロピレングリコールモノアルキルエーテル類;乳酸メチル、乳酸エチル、乳酸n-プロピル、乳酸n-ブチル、乳酸n-アミル等の乳酸エステル類;酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸n-ブチル、酢酸n-アミル、酢酸n-ヘキシル、プロピオン酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類;3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシ-2-メチルプロピオン酸メチル、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、3-メトキシ-3-メチルプロピオン酸ブチル、3-メトキシ-3-メチル酪酸ブチル、アセト酢酸メチル、ピルビン酸メチル、ピルビン酸エチル等の他のエステル類;トルエン、キシレン等の芳香族炭化水素類;アセトン、2-ブタノン、2-ヘプタノン、3-ヘプタノン、4-ヘプタノン、シクロペンタノン(CPN)、シクロヘキサノン(CHN)等のケトン類;N,N-ジメチルホルムアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類;γ-ラクトン等のラクトン類等を挙げることができる。本実施形態で使用される溶媒は、安全溶媒であることが好ましく、より好ましくは、PGMEA、PGME、CHN、CPN、2-ヘプタノン、アニソ-ル、酢酸ブチル及び乳酸エチルから選ばれる少なくとも一種であり、さらに好ましくはPGMEA、PGME、CHN、CPN及び乳酸エチルから選ばれる少なくとも一種である。
 本実施形態において固形成分の量と溶媒との量は、特に限定されないが、固形成分の量と溶媒との合計質量に対して、好ましくは固形成分1~80質量%及び溶媒20~99質量%、より好ましくは固形成分1~50質量%及び溶媒50~99質量%、さらに好ましくは固形成分2~40質量%及び溶媒60~98質量%であり、よりさらに好ましくは固形成分2~10質量%及び溶媒90~98質量%である。
[酸発生剤(C)]
 本実施形態の組成物において、可視光線、紫外線、エキシマレーザー、電子線、極端紫外線(EUV)、X線及びイオンビ-ムから選ばれるいずれかの放射線の照射により直接的又は間接的に酸を発生する酸発生剤(C)を一種以上含むことが好ましい。酸発生剤(C)は、特に限定されないが、例えば、国際公開WO2013/024778号に記載のものを用いることができる。酸発生剤(C)は、単独で又は2種以上を使用することができる。
 酸発生剤(C)の使用量は、固形成分全質量の0.001~49質量%が好ましく、1~40質量%がより好ましく、3~30質量%がさらに好ましく、10~25質量%がよりさらに好ましい。酸発生剤(C)を前記範囲内で使用することにより、高感度でかつ低エッジラフネスのパターンプロファイルが得られる傾向にある。本実施形態では、系内に酸が発生すれば、酸の発生方法は特に限定されない。g線、i線等の紫外線の代わりにエキシマレーザーを使用すれば、より微細加工が可能であり、また高エネルギー線として電子線、極端紫外線、X線、イオンビ-ムを使用すればさらなる微細加工が可能である。
[酸拡散制御剤(E)]
 本実施形態においては、放射線照射により酸発生剤から生じた酸のレジスト膜中における拡散を制御して、未露光領域での好ましくない化学反応を阻止する作用等を有する酸拡散制御剤(E)を組成物に配合してもよい。酸拡散制御剤(E)を使用することによって、本実施形態の組成物の貯蔵安定性を向上させることができる傾向にある。また、酸拡散制御剤(E)を使用することによって、本実施形態の組成物を用いて形成した膜の解像度を向上させることができるとともに、放射線照射前の引き置き時間と放射線照射後の引き置き時間との変動によるレジストパターンの線幅変化を抑えることができ、プロセス安定性に優れたものとなる傾向にある。酸拡散制御剤(E)としては、特に限定されないが、窒素原子含有塩基性化合物、塩基性スルホニウム化合物、塩基性ヨ-ドニウム化合物等の放射線分解性塩基性化合物が挙げられる。
 酸拡散制御剤(E)としては、特に限定されないが、例えば、国際公開WO2013/024778号に記載のものを用いることができる。酸拡散制御剤(E)は、単独で又は2種以上を使用することができる。
 酸拡散制御剤(E)の配合量は、固形成分全質量の0.001~49質量%が好ましく、0.01~10質量%がより好ましく、0.01~5質量%がさらに好ましく、0.01~3質量%が特に好ましい。酸拡散制御剤(E)の配合量が前記範囲内であると、解像度の低下、パターン形状、寸法忠実度等の劣化を防止することができる傾向にある。さらに、電子線照射から放射線照射後加熱までの引き置き時間が長くなっても、パターン上層部の形状が劣化することを抑制することができる。また、配合量が10質量%以下であると、感度、未露光部の現像性等の低下を防ぐことができる傾向にある。またこの様な酸拡散制御剤を使用することにより、レジスト組成物の貯蔵安定性が向上し、また解像度が向上するとともに、放射線照射前の引き置き時間、放射線照射後の引き置き時間の変動によるレジストパターンの線幅変化を抑えることができ、プロセス安定性に優れたものとなる傾向にある。
[架橋剤(G)]
 本実施形態の架橋剤(G)は、特に限定されないが、例えば、国際公開WO2013/024778号に記載のものを用いることができる。架橋剤(G)は、単独で又は2種以上を使用することができる。
[その他の成分(F)]
 本実施形態の組成物には、その他の成分(F)として、必要に応じて、溶解促進剤、溶解制御剤、増感剤、界面活性剤及び有機カルボン酸又はリンのオキソ酸若しくはその誘導体等の各種添加剤を1種又は2種以上添加することができる。
(溶解促進剤)
 溶解促進剤は、固形成分の現像液に対する溶解性が低すぎる場合に、その溶解性を高めて、現像時の前記化合物の溶解速度を適度に増大させる作用を有する成分である。前記溶解促進剤としては、低分子量のものが好ましく、例えば、低分子量のフェノール性化合物を挙げることができる。低分子量のフェノール性化合物としては、例えば、ビスフェノール類、トリス(ヒドロキシフェニル)メタン等を挙げることができる。これらの溶解促進剤は、単独で又は2種以上を混合して使用することができる。
 溶解促進剤の配合量は、使用する前記固形成分の種類に応じて適宜調節されるが、固形成分全質量の0~49質量%が好ましく、0~5質量%がより好ましく、0~1質量%がさらに好ましく、0質量%がよりさらに好ましい。
(溶解制御剤)
 溶解制御剤は、固形成分の現像液に対する溶解性が高すぎる場合に、その溶解性を制御して現像時の溶解速度を適度に減少させる作用を有する成分である。このような溶解制御剤としては、レジスト被膜の焼成、放射線照射、現像等の工程において化学変化しないものが好ましい。
 溶解制御剤としては、特に限定されないが、例えば、フェナントレン、アントラセン、アセナフテン等の芳香族炭化水素類;アセトフェノン、ベンゾフェノン、フェニルナフチルケトン等のケトン類;メチルフェニルスルホン、ジフェニルスルホン、ジナフチルスルホン等のスルホン類等を挙げることができる。これらの溶解制御剤は、単独で又は2種以上を使用することができる。
 溶解制御剤の配合量は、使用する前記化合物の種類に応じて適宜調節されるが、固形成分全質量の0~49質量%が好ましく、0~5質量%がより好ましく、0~1質量%がさらに好ましく、0質量%がよりさらに好ましい。
(増感剤)
 増感剤は、照射された放射線のエネルギーを吸収して、そのエネルギーを酸発生剤(C)に伝達し、それにより酸の生成量を増加する作用を有し、レジストの見掛けの感度を向上させる成分である。このような増感剤としては、例えば、ベンゾフェノン類、ビアセチル類、ピレン類、フェノチアジン類、フルオレン類等を挙げることができるが、特に限定はされない。これらの増感剤は、単独で又は2種以上を使用することができる。
 増感剤の配合量は使用する前記化合物の種類に応じて適宜調節されるが、固形成分全質量の0~49質量%が好ましく、0~5質量%がより好ましく、0~1質量%がさらに好ましく、0質量%がよりさらに好ましい。
(界面活性剤)
 界面活性剤は、本実施形態の組成物の塗布性やストリエーション、レジストの現像性等を改良する作用を有する成分である。界面活性剤は、アニオン系界面活性剤、カチオン系界面活性剤、ノニオン系界面活性剤又は両性界面活性剤のいずれでもよい。好ましい界面活性剤としては、ノニオン系界面活性剤が挙げられる。ノニオン系界面活性剤は、本実施形態の組成物の製造に用いる溶媒との親和性がよく、本実施形態の組成物の効果をより高めることができる。ノニオン系界面活性剤の例としては、ポリオキシエチレン高級アルキルエーテル類、ポリオキシエチレン高級アルキルフェニルエーテル類、ポリエチレングリコールの高級脂肪酸ジエステル類等が挙げられるが、特に限定されない。これら界面活性剤の市販品としては、以下商品名で、エフトップ(ジェムコ社製)、メガファック(大日本インキ化学工業社製)、フロラ-ド(住友スリ-エム社製)、アサヒガ-ド、サ-フロン(以上、旭硝子社製)、ペポ-ル(東邦化学工業社製)、KP(信越化学工業社製)、ポリフロ-(共栄社油脂化学工業社製)等を挙げることができる。
 界面活性剤の配合量は、使用する前記固形成分の種類に応じて適宜調節されるが、固形成分全質量の0~49質量%が好ましく、0~5質量%がより好ましく、0~1質量%がさらに好ましく、0質量%がよりさらに好ましい。
(有機カルボン酸又はリンのオキソ酸若しくはその誘導体)
 感度劣化防止又はレジストパターン形状、引き置き安定性等の向上の目的で、さらに任意の成分として、有機カルボン酸又はリンのオキソ酸若しくはその誘導体を含有させることができる。なお、有機カルボン酸又はリンのオキソ酸若しくはその誘導体は、酸拡散制御剤と併用することもできるし、単独で用いてもよい。有機カルボン酸としては、例えば、マロン酸、クエン酸、リンゴ酸、コハク酸、安息香酸、サリチル酸等が好適である。リンのオキソ酸若しくはその誘導体としては、リン酸、リン酸ジ-n-ブチルエステル、リン酸ジフェニルエステル等のリン酸又はそれらのエステル等の誘導体、ホスホン酸、ホスホン酸ジメチルエステル、ホスホン酸ジ-n-ブチルエステル、フェニルホスホン酸、ホスホン酸ジフェニルエステル、ホスホン酸ジベンジルエステル等のホスホン酸又はそれらのエステル等の誘導体、ホスフィン酸、フェニルホスフィン酸等のホスフィン酸及びそれらのエステル等の誘導体が挙げられ、これらの中でも特にホスホン酸が好ましい。
 有機カルボン酸又はリンのオキソ酸若しくはその誘導体は、単独で又は2種以上を使用することができる。有機カルボン酸又はリンのオキソ酸若しくはその誘導体の配合量は、使用する前記化合物の種類に応じて適宜調節されるが、固形成分全質量の0~49質量%が好ましく、0~5質量%がより好ましく、0~1質量%がさらに好ましく、0質量%がよりさらに好ましい。
(その他添加剤)
 さらに、本実施形態の組成物には、必要に応じて、上述した成分以外の添加剤を1種又は2種以上配合することができる。このような添加剤としては、例えば、染料、顔料、及び接着助剤等が挙げられる。例えば、染料又は顔料を配合すると、露光部の潜像を可視化させて、露光時のハレ-ションの影響を緩和できるので好ましい。また、接着助剤を配合すると、基板との接着性を改善することができるので好ましい。さらに、他の添加剤としては、ハレーション防止剤、保存安定剤、消泡剤、形状改良剤等、具体的には4-ヒドロキシ-4’-メチルカルコン等を挙げることができる。
 本実施形態の組成物において、任意成分(F)の合計量は、固形成分全質量の0~99質量%とすることができ、0~49質量%が好ましく、0~10質量%がより好ましく、0~5質量%がさらに好ましく、0~1質量%がさらに好ましく、0質量%がよりさらに好ましい。
 本実施形態の組成物は、リソグラフィー用膜形成、レジスト用膜形成、レジスト下層膜形成、光学部品形成に用いることができる。
[リソグラフィー用膜形成用組成物、レジスト用膜形成用組成物]
 本実施形態のリソグラフィー用膜形成用組成物及びレジスト用膜形成用組成物は、基材に塗布し、その後、必要に応じて加熱して溶媒を蒸発させた後、加熱又は光照射して所望の硬化膜を形成することができる。本実施形態のリソグラフィー用膜形成用組成物、及びレジスト用膜形成用組成物の塗布方法は任意であり、例えば、スピンコート法、ディップ法、フローコート法、インクジェット法、スプレー法、バーコート法、グラビアコート法、スリットコート法、ロールコート法、転写印刷法、刷毛塗り、ブレードコート法、エアーナイフコート法等の方法を適宜採用できる。
 前記膜の加熱温度は、溶媒を蒸発させる目的では特に限定されず、例えば、40~400℃で行うことができる。加熱方法としては、特に限定されるものではなく、例えば、ホットプレートやオーブンを用いて、大気、窒素等の不活性ガス、真空中等の適切な雰囲気下で蒸発させればよい。加熱温度及び加熱時間は、目的とする電子デバイスのプロセス工程に適合した条件を選択すればよく、得られる膜の物性値が電子デバイスの要求特性に適合するような加熱条件を選択すればよい。光照射する場合の条件も特に限定されるものではなく、用いるリソグラフィー用膜形成材料及びレジスト用膜形成に応じて、適宜な照射エネルギー及び照射時間を採用すればよい。
[レジスト下層膜及びレジストパターンの形成方法]
 本実施形態の組成物は、レジスト下層膜及びレジストパターンの形成に用いられる。
 本実施形態のレジストパターン形成方法は、基板上に、本実施形態のリソグラフィー用膜形成用組成物、又はレジスト用膜形成用組成物を用いてフォトレジスト層を形成するフォトレジスト層形成工程と、該フォトレジスト層形成工程により形成したフォトレジスト層の所定の領域に放射線を照射し、現像を行う現像工程と、を含む。
 また、本実施形態のレジストパターン形成方法は、基板上に、本実施形態の組成物を用いて下層膜を形成する下層膜形成工程と、該下層膜形成工程により形成した下層膜上に、少なくとも1層のフォトレジスト層を形成するフォトレジスト層形成工程と、該フォトレジスト層形成工程により形成したフォトレジスト層の所定の領域に放射線を照射し、現像を行う工程と、を含む。
 本実施形態の組成物からレジストパターン及び下層膜を形成するには、具体的には、当該組成物を、スピンコータ、ディップコータ、ローラコータ等の適宜の塗布手段によって、例えば、シリコンウェハー、金属、プラスチック、ガラス、セラミック等の基板上に塗布することにより、レジスト被膜を形成し、場合により予め50℃~200℃程度の温度で加熱処理を行ったのち、所定のマスクパターンを介して露光する。塗膜の厚みは、例えば0.1~20μm、好ましくは0.3~2μm程度である。露光には、種々の波長の光線、例えば、紫外線、X線等が利用でき、例えば、光源としては、F2エキシマレーザー(波長157nm)、ArFエキシマレーザー(波長193nm)やKrFエキシマレーザー(波長248nm)等の遠紫外線、極端紫外線(波長13n)、X線、電子線等を適宜選択し使用する。また、露光量等の露光条件は、上記の樹脂及び/又は化合物の配合組成、各添加剤の種類等に応じて、適宜選定される。
 本実施形態のレジストパターンは、絶縁膜パターンであることが好ましい。
 本実施形態においては、高精度の微細パターンを安定して形成するために、露光後に、50~200℃の温度で30秒以上加熱処理を行うことが好ましい。この場合、温度が50℃未満では、基板の種類による感度のばらつきが広がるおそれがある。その後、アルカリ現像液により、通常、10~50℃で10~200秒、好ましくは20~25℃で15~90秒の条件で現像することにより、所定のレジストパターンを形成する。
 上記アルカリ現像液としては、例えば、アルカリ金属水酸化物、アンモニア水、アルキルアミン類、アルカノールアミン類、複素環式アミン類、テトラアルキルアンモニウムヒドロキシド類、コリン、1,8-ジアザビシクロ-[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ-[4.3.0]-5-ノネン等のアルカリ性化合物を、通常、1~10重量%、好ましくは1~3重量%の濃度となるよう溶解したアルカリ性水溶液が使用される。また、上記アルカリ性水溶液からなる現像液には、水溶性有機溶剤や界面活性剤を適宜添加することもできる。
 また、本実施形態の一つは、基板上に、本実施形態の組成物を用いて下層膜を形成する下層膜形成工程と、該下層膜形成工程により形成した下層膜上に、中間層膜を形成する中間層膜形成工程と、該中間層膜形成工程により形成した中間層膜上に、少なくとも1層のフォトレジスト層を形成するフォトレジスト層形成工程と、該フォトレジスト層形成工程により形成したフォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成するレジストパターン形成工程と、該レジストパターン形成工程により形成したレジストパターンをマスクとして前記中間層膜をエッチングして中間層膜パターンを形成する中間層膜パターン形成工程と、該中間層膜パターン形成工程により形成した中間層膜パターンをマスクとして前記下層膜をエッチングして下層膜パターンを形成する下層膜パターン形成工程と、該下層膜パターン形成工程により形成した下層膜パターンをマスクとして前記基板をエッチングして基板にパターンを形成する基板パターン形成工程と、を含む、回路パターン形成方法である。
[光学部品形成用組成物]
 また、本実施形態の化合物を含む組成物から得られる膜は屈折率も高くなるため、本実施形態の化合物、及び組成物は、リソグラフィー技術を応用した光学部品形成組成物としても使用できる。光学部品は、フィルム状、シート状で使われるほか、プラスチックレンズ(プリズムレンズ、レンチキュラーレンズ、マイクロレンズ、フレネルレンズ、視野角制御レンズ、コントラスト向上レンズ等)、位相差フィルム、電磁波シールド用フィルム、プリズム、光ファイバー、フレキシブルプリント配線用ソルダーレジスト、メッキレジスト、多層プリント配線板用層間絶縁膜、感光性光導波路、液晶ディスプレイ、有機エレクトロルミネッセンス(EL)ディスプレイ、光半導体(LED)素子、固体撮像素子、有機薄膜太陽電池、色素増感太陽電池、及び有機薄膜トランジスタ(TFT)として有用である。特に高屈折率が求められている固体撮像素子の部材である、フォトダイオード上の埋め込み膜及び平坦化膜、カラーフィルター前後の平坦化膜、マイクロレンズ、マイクロレンズ上の平坦化膜及びコンフォーマル膜として好適に利用できる。
 以下、本発明を実施例及び比較例によりさらに詳しく説明するが、本発明はこれらの実施例によって何ら限定されるものではない。
[分子量]
 化合物の分子量は、Water社製Acquity UPLC/MALDI-Synapt HDMSを用いて、LC-MS分析により測定した。
 また、以下の条件でゲル浸透クロマトグラフィー(GPC)分析を行い、ポリスチレン換算の重量平均分子量(Mw)、数平均分子量(Mn)、及び分散度(Mw/Mn)を求めた。
 装置:Shodex GPC-101型(昭和電工(株)製)
 カラム:KF-80M×3
 溶離液:THF 1mL/min
 温度:40℃
[化合物の構造]
 化合物の構造は、Bruker社製「Advance600II spectrometer」を用いて、以下の条件で、H-NMR測定を行い、確認した。
  周波数:400MHz
  溶媒:d6-DMSO
  内部標準:TMS
  測定温度:23℃
<合成実施例1-1> X-27N35IBの合成
 攪拌機、冷却管、及びビュレットを備えた内容積1Lの容器に、2,7-ジヒドロキシナフタレン(シグマ-アルドリッチ社製試薬)24g(150mmol)と、3,5-ジヨードサリチルアルデヒド(東京化成工業社製試薬)25.4g(71mmol)と、1-メトキシ-2-プロパノール200mLとを仕込み、メタンスルホン酸(関東化学社製試薬)1.3g(14mmol)を加えて、反応液を調製した。この反応液を90℃で5時間攪拌して反応を行った。反応終了後、反応液に純水1.7Lを加え、酢酸エチルにより抽出、濃縮し、溶液を得た。得られた溶液を、カラムクロマトによる分離精製を行うことにより、下記式で表される目的化合物(X-27N35IB)9.2g(純度98.7%、収率20%)を得た。
 得られた化合物(X-27N35IB)について、前記方法により分子量を測定した結果、658であった。また、前記測定条件でH-NMR測定を行ったところ、以下のピークが見いだされたことから、下記式(X-27N35IB)の化学構造を有することを確認した。
 H-NMR(d6-DMSO):δ(ppm) 10.4(1H、-OH)、9.8(1H、-OH)、9.5(1H、-OH)、6.7~8.0(12H、Ph)、6.2(1H、Methine)
Figure JPOXMLDOC01-appb-C000062
<合成実施例1-2> X-27N35IB-MeBOCの合成
 攪拌機、冷却管、及びビュレットを備えた内容積200mLの容器に、上記で得られた化合物(X-27N35IB)5.3g(8.1mmol)とブロモ酢酸t-ブチル(アルドリッチ社製)5.4g(27mmol)、アセトン100mLを仕込み、炭酸カリウム(アルドリッチ社製)3.8g(27mmol)、及び18-クラウン-6 0.8gを加えて、内容物を還流下で3時間攪拌して反応を行った。次に、反応終了後の反応液を濃縮し、濃縮液に純水100gを加えて反応生成物を析出させ、室温まで冷却した後、ろ過を行って固形物を分離した。
 得られた固形物を乾燥させて後、カラムクロマトによる分離精製を行って、下記式(X-27N35IB-MeBOC)を1.5g得た。
 得られた化合物(X-27N35IB-MeBOC)について、前記測定条件でNMR測定を行ったところ、以下のピークが見いだされ、下記式(X-27N35IB-MeBOC)の化学構造を有することを確認した。
 H-NMR(d6-DMSO):δ(ppm)1.4(27H、O-C-CH)、4.9(6H、O-CH-C)、6.7~8.0(12H、Ph)、6.2(1H、Methine)
Figure JPOXMLDOC01-appb-C000063
<合成実施例1-3> 樹脂(R-X-27N35IB)の合成
 ジムロート冷却管、温度計及び攪拌翼を備えた、底抜きが可能な内容積1Lの四つ口フラスコを準備した。この四つ口フラスコに、窒素気流中、合成実施例1-1で得られた化合物(X-27N35IB)を25g(70mmol)、40質量%ホルマリン水溶液21.0g(ホルムアルデヒドとして280mmol、三菱ガス化学(株)製)及び98質量%硫酸(関東化学(株)製)0.97mLを仕込み、常圧下、100℃で還流させながら7時間反応させた。その後、希釈溶媒としてオルソキシレン(和光純薬工業(株)製試薬特級)180.0gを反応液に加え、静置後、下相の水相を除去した。さらに、中和及び水洗を行い、オルソキシレンを減圧下で留去することにより、褐色固体の樹脂(R-X-27N35IB)34.1gを得た。
 得られた樹脂(R-X-27N35IB)は、Mn:3970、Mw:7250、Mw/Mn:1.89であった。
<合成実施例1-4> X-27N35IB-BOCの合成
 攪拌機、冷却管、及びビュレットを備えた内容積200mLの容器に、合成実施例1-1で得られた化合物(X-27N35IB)5.3g(8.1mmol)とジ-t-ブチルジカーボネート(アルドリッチ社製)5.2g(23.8mmol)とをアセトン100mLに仕込み、炭酸カリウム(アルドリッチ社製)3.29g(23.8mmol)を加えて、内容物を20℃で6時間撹拌して反応を行って反応液を得た。次に反応液を濃縮し、濃縮液に純水100gを加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って固形物を分離した。
 得られた固形物を濾過し、乾燥させた後、カラムクロマトによる分離精製を行うことで、下記式で示される目的化合物(X-27N35IB-BOC)を0.8g得た。
 得られた化合物について、前記測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記式(X-27N35IB-BOC)の化学構造を有することを確認した。
H-NMR(d6-DMSO):δ(ppm)1.4(27H、O-C-CH)、5.3(1H、C-H)、6.9~7.9(12H、Ph-H)
Figure JPOXMLDOC01-appb-C000064
<合成実施例1-5> X-27N35IB-ALの合成
 攪拌機、冷却管及びビュレットを備えた内容積500mLの容器に、合成実施例1-1の方法により得られた化合物(X-27N35IB)5.3g(8.1mmol)、炭酸カリウム54g(39mmol)と、ジメチルホルムアミド200mLとを仕込み、アリルブロマイド77.6g(0.64mol)を加えて、反応液を110℃で24時間撹拌して反応を行った。次に、反応液を濃縮し、純水500gを加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離した。得られた固形物を濾過し、乾燥させた後、カラムクロマトによる分離精製を行うことにより、下記式で表される目的化合物(X-27N35IB-AL)を3.2g得た。
 得られた化合物について、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式(X-27N35IB-AL)の化学構造を有することを確認した。
H-NMR:(d6-DMSO、内部標準TMS):δ(ppm)6.8~7.8(12H,Ph-H)、6.1(3H,-CH=C)、5.3~5.4(7H,C-H、-C=CH2)、4.8(6H,-CH-)
Figure JPOXMLDOC01-appb-C000065
<合成実施例1-6> X-27N35IB-Acの合成
 上述のアリルブロマイド77.6g(0.64mol)の代わりにアクリル酸46.1g(0.64mol)を用いたこと以外は、合成実施例1-5と同様にして、下記式で表される目的化合物(X-27N35IB-Ac)4.0gを得た。
 得られた化合物について、前記測定条件でNMR測定を行ったところ、以下のピークが見出され、下記式(X-27N35IB-Ac)の化学構造を有することを確認した。
H-NMR:(d6-DMSO、内部標準TMS):δ(ppm)6.8~7.9(12H,Ph-H)、6.2(3H,=C-H)、6.1(3H、-CH=C)、5.7(3H、=C-H)、5.3(1H,C-H)
Figure JPOXMLDOC01-appb-C000066
<合成実施例1-7> X-27N35IB-Eaの合成
 攪拌機、冷却管及びビュレットを備えた内容積100mlの容器に合成実施例1-1で得られた化合物(X-27N35IB)6.6g(10mmol)と、グリシジルメタクリレート5.5g、トリエチルアミン0.45g、及びp-メトキシフェノール0.08gとを70mlメチルイソブチルケトンに仕込み、80℃に加温して撹拌した状態で、24時間撹拌して反応を行った。
 50℃まで冷却し、反応液を純水中に滴下して析出した固形物を濾過し、乾燥させた後、カラムクロマトグラフによる分離精製を行い、下記式で表される目的化合物(X-27N35IB-Ea)を1.8g得た。
 得られた化合物について、400MHz-H-NMRにより、下記式(X-27N35IB-Ea)の化学構造を有することを確認した。
H-NMR:(d-DMSO、内部標準TMS):δ(ppm)6.8~7.9(12H,Ph-H)、6.4~6.5(6H,C=CH)、5.8(5H,-OH)、5.3(1H,C-H)、4.7(3H、C-H)、4.0~4.4(12H,-CH-)、2.0(9H,-CH
Figure JPOXMLDOC01-appb-C000067
<合成実施例1-8> X-27N35IB-Uaの合成
 攪拌機、冷却管及びビュレットを備えた内容積100mLの容器に合成実施例1-1で得られた化合物(X-27N35IB)6.6g(10mmol)と、2-イソシアナトエチルメタクリレート5.5g、トリエチルアミン0.45g、及びp-メトキシフェノール0.08gとを70mLメチルイソブチルケトンに仕込み、80℃に加温して撹拌した状態で、24時間撹拌して反応を行った。50℃まで冷却し、反応液を純水中に滴下して析出した固形物を濾過し、乾燥させた後、カラムクロマトによる分離精製を行い、下記式で表される目的化合物(X-27N35IB-Ua)が1.5g得られた。得られた化合物について、400MHz-H-NMRにより、下記式(X-27N35IB-Ua)の化学構造を有することを確認した。
H-NMR:(d-DMSO、内部標準TMS):δ(ppm)8.8(3H,-NH-)、6.9~8.0(12H,Ph-H、)、6.4~6.5(6H,=CH)、5.3(1H,C-H)、3.6~4.1(6H,-CH-)、1.3~2.2(6H,-CH-)、2.0(9H,-CH
Figure JPOXMLDOC01-appb-C000068
<合成実施例1-9> X-27N35IB-Eの合成
 攪拌機、冷却管及びビュレットを備えた内容積200mLの容器に合成実施例1-1で得られた化合物(X-27N35IB)6.6g(10mmol)と炭酸カリウム10g(72mmol)とを60mLジメチルホルムアミドに仕込み、酢酸-2-クロロエチル5.0g(40.6mmol)を加えて、反応液を90℃で12時間撹拌して反応を行った。次に反応液を氷浴で冷却し結晶を析出させ、濾過を行って分離した。続いて攪拌機、冷却管及びビュレットを備えた内容積500mLの容器に上述の結晶30g、メタノール30g、THF100g及び24%水酸化ナトリウム水溶液を仕込み、反応液を還流下で4時間撹拌して反応を行った。その後、氷浴で冷却し、反応液を濃縮し析出した固形物を濾過し、乾燥させた後、カラムクロマトによる分離精製を行い、下記式で示される目的化合物(X-27N35IB-E)が3.2g得られた。得られた化合物について、400MHz-H-NMRにより下記式(X-27N35IB-E)の化学構造を有することを確認した。
H-NMR:(d-DMSO、内部標準TMS):δ(ppm)6.8~7.9(12H,Ph-H)、5.3(1H,C-H)、4.9(3H,-OH)、4.4(6H,-CH-)、3.7(6H,-CH-)
Figure JPOXMLDOC01-appb-C000069
<合成実施例1-10> X-27N35IB-PXの合成
 攪拌機、冷却管及びビュレットを備えた内容積1000mLの容器に合成実施例1-1で得られた化合物(X-27N35IB)27.6g(42mmol)と、ヨードアニソール47.2g、炭酸セシウム87.5g、ジメチルグリシム塩酸塩1.4g、及びヨウ化銅0.5gとを400mL、1,4-ジオキサンに仕込み、95℃に加温して22時間撹拌して反応を行った。次に不溶分をろ別し、ろ液を濃縮し純水中に滴下して析出した固形物を濾過し、乾燥させた後、カラムクロマトによる分離精製を行い、下記式で表される中間体化合物(X-27N35IB-M)が15g得られた。
Figure JPOXMLDOC01-appb-C000070
 次に、攪拌機、冷却管及びビュレットを備えた内容積1000mLの容器に上述の式(X-27N35IB-M)で表される化合物10gとピリジン塩酸塩80gを仕込み、190℃2時間撹拌して反応を行なった。次に温水160mLを追加し撹拌を行い、固体を析出させた。その後、酢酸エチル250mL、水100mLを加え撹拌、静置し、分液させた有機層を濃縮し、乾燥させた後、カラムクロマトによる分離精製を行い、下記式(X-27N35IB-PX)で表される目的化合物が6g得られた。
 得られた化合物について、400MHz-H-NMRにより、下記式(X-27N35IB-PX)の化学構造を有することを確認した。
H-NMR:(d-DMSO、内部標準TMS):δ(ppm)9.5(3H,O-H)、6.8~8.0(24H,Ph-H)、5.3(1H,C-H)
Figure JPOXMLDOC01-appb-C000071
<合成実施例1-11> X-27N35IB-PEの合成
 上述の式(X-27N35IB)で表される化合物の代わりに、上述の式(X-27N35IB-E)で表される化合物を用いたこと以外、合成実施例1-10と同様に反応させ、下記式(X-27N35IB-PE)で表される目的化合物を3g得た。
 得られた化合物について、400MHz-H-NMRにより、下記式(X-27N35IB-PE)の化学構造を有することを確認した。
H-NMR:(d-DMSO、内部標準TMS):δ(ppm)9.1(3H,O-H)、6.6~7.9(24H,Ph-H)、5.3(1H,C-H)、4.4(6H,-CH-)、3.1(6H,-CH-)
Figure JPOXMLDOC01-appb-C000072
<合成実施例1-12> X-27N35IB-Gの合成
 攪拌機、冷却管及びビュレットを備えた内容積100mlの容器に合成実施例1-1で得られた化合物(X-27N35IB)5.5g(8.4mmol)と炭酸カリウム3.7g(27mmol)とを100mlジメチルホルムアミドに加えた液を仕込み、さらにエピクロルヒドリン2.5g(27mmol)を加えて、得られた反応液を90℃で6.5時間撹拌して反応を行なった。次に反応液から固形分をろ過で除去し、氷浴で冷却し、結晶を析出させ、濾過し、乾燥させた後、カラムクロマトによる分離精製を行い、下記式(X-27N35IB-G)で表される目的化合物を1.8g得た。
 得られた化合物(X-27N35IB-G)について、上述の測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記式(X-27N35IB-G)の化学構造を有することを確認した。
H-NMR:(d-DMSO、内部標準TMS):δ(ppm)6.8~7.9(12H,Ph-H)、5.3(C-H)、4.0(6H,-CH-)、2.0~3.1(9H,-CH(CH)O)
Figure JPOXMLDOC01-appb-C000073
<合成実施例1-13> X-27N35IB-GEの合成
 前記式(X-27N35IB)で表される化合物の代わりに、前記式(X-27N35IB-E)で表される化合物を用いたこと以外、合成実施例1-12と同様に反応させ、下記式(X-27N35IB-GE)で表される目的化合物を1.4g得た。
 400MHz-H-NMRにより、下記式(X-27N35IB-GE)の化学構造を有することを確認した。
H-NMR:(d-DMSO、内部標準TMS):δ(ppm)6.8~7.9(12H,Ph-H)、5.3(C-H)、3.3~4.4(18H,-CH-)、2.3~2.8(9H,-CH(CH)O)
Figure JPOXMLDOC01-appb-C000074
<合成実施例1-14> X-27N35IB-SXの合成
 攪拌機、冷却管及びビュレットを備えた内容積100mlの容器に合成実施例1-1で得られた化合物(X-27N35IB)5.5g(8.4mmol)とビニルベンジルクロライド(商品名CMS-P;セイミケミカル(株)製)3.8gとを50mlジメチルホルムアミドに仕込み、50℃に加温して撹拌した状態で、28質量%ナトリウムメトキシド(メタノール溶液)5.0gを滴下ロートより20分間かけて加えて、反応液を50℃で1時間撹拌して反応を行った。次に28質量%ナトリウムメトキシド(メタノール溶液)1.0gを加え、反応液を60℃加温して3時間撹拌し、さらに85質量%燐酸1.0gを加え、10分間撹拌した後、40℃まで冷却し、反応液を純水中に滴下して析出した固形物を濾過し、乾燥させた後、カラムクロマトによる分離精製を行い、下記式で表される目的化合物(X-27N35IB-SX)が1.9g得られた。
 得られた化合物について、400MHz-H-NMRにより、下記式(X-27N35IB-SX)の化学構造を有することを確認した。
H-NMR:(d-DMSO、内部標準TMS):δ(ppm)6.9~7.9(24H,Ph-H)、6.7(3H、-CH=C)、5.8(3H、-C=CH)、5.2~5.3(10H、-CH-、-C=CH、C-H)
Figure JPOXMLDOC01-appb-C000075
<合成実施例1-15> X-27N35IB-SEの合成
 前記式(X-27N35IB)で表される化合物の代わりに、前記式(X-27N35IB-E)で表される化合物を用いたこと以外、合成実施例1-14と同様に反応させ、下記式で表される目的化合物(X-27N35IB-SE)を1.9g得た。
 得られた化合物について、400MHz-H-NMRにより、下記式(X-27N35IB-SE)の化学構造を有することを確認した。
H-NMR:(d-DMSO、内部標準TMS):δ(ppm)6.7~7.9(24H、Ph-H)、6.7(3H、-CH=C)、5.8(3H、-C=CH)、5.3(4H、C-H、-C=CH)、4.8(6H、-CH-)、4.4(6H、-CH-)、3.8(6H、-CH-)
Figure JPOXMLDOC01-appb-C000076
<合成実施例1-16> X-27N35IB-Prの合成
 攪拌機、冷却管及びビュレットを備えた内容積300mLの容器において、合成実施例1-1で得られた化合物(X-27N35IB)5.5g(8.4mmol)とプロパギルブロミド4.8g(40mmol)とを100mLのジメチルホルムアミドに仕込み、室温で3時間撹拌して反応を行って反応液を得た。次に反応液を濃縮し、濃縮液に純水300gを加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って固形物を分離した。
 得られた固形物を濾過し、乾燥させた後、カラムクロマトによる分離精製を行うことで、下記式で表される目的化合物(X-27N35IB-Pr)を3.0g得た。
 得られた化合物(X-27N35IB-Pr)について、上述の測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記式(X-27N35IB-Pr)の化学構造を有することを確認した。
H-NMR:(d-DMSO、内部標準TMS):δ(ppm):6.9~7.9(12H,Ph-H)、5.3(1H,C-H)、4.8(6H,-CH-)、3.4(3H,≡CH)
Figure JPOXMLDOC01-appb-C000077
<合成実施例2> X-27NSAの合成
 3,5-ジヨードサリチルアルデヒド25.4g(71mmol)の代わりに、サリチルアルデヒド8.67g(71mmol)を用いたこと以外、合成実施例1-1と同様に反応させ、下記式で表される目的化合物(X-27NSA)を2.2g得た。
 得られた化合物について、400MHz-H-NMRにより、下記式(X-27NSA)の化学構造を有することを確認した。
H-NMR:(d-DMSO、内部標準TMS):δ(ppm)9.2~9.7(3H、-O-H)、6.8~7.8(14H、Ph-H)、5.3(1H、C-H)
Figure JPOXMLDOC01-appb-C000078
<合成実施例3> X-27N4PSAの合成
 3,5-ジヨードサリチルアルデヒド25.4g(71mmol)の代わりに、4-フェニルサリチルアルデヒド14.1g(71mmol)を用いたこと以外、合成実施例1-1と同様に反応させ、下記式(X-27N4P)で表される目的化合物を1.7g得た。
 得られた化合物について、400MHz-H-NMRにより、下記式(X-27N4PSA)の化学構造を有することを確認した。
H-NMR:(d-DMSO、内部標準TMS):δ(ppm)9.2~9.7(3H、-O-H)、6.8~7.8(18H、Ph-H)、5.3(1H、C-H)
Figure JPOXMLDOC01-appb-C000079
<合成実施例4> X-26NSAの合成
 2,7-ジヒドロキシナフタレンの代わりに、2,6-ジヒドロキシナフタレンを用いたこと以外、合成実施例2と同様に反応させ、下記式(X-26NSA)で表される目的化合物(X-26NSA)が1.4g得られた。
 得られた化合物について、400mMhHz-1H-NMRにより、下記式(X-26NSA)の化学構造を有することを確認した。
1H-NMR:(d-DMSO、内部標準TMS): δ(ppm)9.2~9.7(3H、-O-H)、6.7~7.8(14H、Ph-H)、5.3(1H、C-H)
Figure JPOXMLDOC01-appb-C000080
<合成比較例1> AC-1の合成
 2-メチル-2-メタクリロイルオキシアダマンタン4.15g、メタクリルロイルオキシ-γ-ブチロラクトン3.00g、3-ヒドロキシ-1-アダマンチルメタクリレート2.08g、及び、アゾビスイソブチロニトリル0.38gを、テトラヒドロフラン80mLに溶解させて反応溶液とした。当該反応溶液を、窒素雰囲気下で、反応温度を63℃に保持して22時間重合させた後、反応溶液を400mLのn-ヘキサン中に滴下した。得られた生成樹脂を凝固精製し、生成した白色粉末をろ過した後、減圧下40℃で一晩乾燥させて、下記式で示されるAC-1を得た。
Figure JPOXMLDOC01-appb-C000081
 式AC-1中、“40”,“40”,“20”とは、各構成単位の比率を示すものであり、ブロック共重合体を示すものではない。
[評価方法]
(1)化合物の安全溶媒溶解度試験
 化合物のPGME、PGMEA及びCHNへの溶解性は、各溶媒への溶解量を用いて以下の基準で評価した。なお、溶解量の測定は23℃にて、化合物を試験管に精秤し、対象となる溶媒を所定の濃度となるよう加え、超音波洗浄機にて30分間超音波をかけ、その後の液の状態を目視にて観察することにより測定した。
 A:5.0質量% ≦ 溶解量
 B:2.0質量%≦ 溶解量 <5.0質量%
 C:溶解量 <2.0質量%
(2)レジスト組成物の保存安定性及び薄膜形成
 化合物を含むレジスト組成物の保存安定性は、レジスト組成物を作製後、23℃にて3日間静置し、析出の有無を目視にて観察することにより評価した。また、レジスト組成物を、清浄なシリコンウェハー上に回転塗布した後、110℃のホットプレート上で露光前ベーク(PB)して、厚さ50nmのレジスト膜を形成した。作製したレジスト組成物について、均一溶液であり薄膜形成が良好な場合には“A”、均一溶液だが薄膜に欠陥がある場合には“B”、析出がある場合は“C”と評価した。
(3)レジストパターンのパターン評価(パターン形成)
 上記(2)で得られたレジスト膜に対して、電子線描画装置(ELS-7500、(株)エリオニクス社製)を用いて、50nm間隔の1:1のラインアンドスペース設定の電子線を照射した。
 当該照射後に、レジスト膜を、それぞれ110℃、90秒間加熱し、TMAH2.38質量%アルカリ現像液に60秒間浸漬して現像を行った。その後、レジスト膜を、超純水で30秒間洗浄し、乾燥して、レジストパターンを形成した。
 得られた50nmL/S(1:1)のレジストパターンの形状を(株)日立製作所製電子顕微鏡(S-4800)を用いて観察した。現像後の『レジストパターン形状』については、パターン倒れがなく、矩形性が比較例1より良好なものを“A”とし、比較例1と同等又は劣るものを“C”として評価した。
 さらに、良好なパターン形状を描画可能な最小の電子線エネルギー量を『感度』として、比較例1より10%以上優れるものを“S”、10%未満であるが優れるものを“A”とし、比較例1と同等又は劣るものを“C”として評価した。
(4)エッチング耐性
 エッチング装置:サムコインターナショナル社製 RIE-10NR
 出力:50W
 圧力:20Pa
 時間:2min
 エッチングガス
 Arガス流量:CF4ガス流量:O2ガス流量=50:5:5(sccm)
 各実施例及び比較例で得られた膜について、上述の条件でエッチング試験をおこない、そのときのエッチングレートを測定した。そして、ノボラック(群栄化学社製「PSM4357」)を用いて作製した下層膜のエッチングレートを基準として、以下の評価基準でエッチング耐性を評価した。
評価基準
 A:ノボラックの下層膜に比べてエッチングレートが、小さい
 C:ノボラックの下層膜に比べてエッチングレートが、大きい
 前記合成実施例1-1~1-16、2、3、及び4、並びに合成比較例1で得られた化合物について、前記方法により安全溶媒への溶解性を評価した結果を表1に示す。
Figure JPOXMLDOC01-appb-T000082
[実施例1~23、比較例1]
 下記表2に示す組成のリソグラフィー用組成物を各々調整した。
 次に、これらのリソグラフィー用組成物をシリコン基板上に回転塗布し、その後、110℃で90秒間ベークして、膜厚50nmのレジスト膜を各々作製した。酸発生剤、酸拡散制御剤、及び有機溶媒については次のものを用いた。
 酸発生剤:みどり化学社製 トリフェニルスルホニウムノナフルオロメタンスルホナート(TPS-109)
 酸拡散制御剤:関東化学製 トリ-n-オクチルアミン(TOA)
 架橋剤:三和ケミカル製 ニカラックMW-100LM
 有機溶媒:関東化学製 プロピレングリコールモノメチルエーテル(PGME)
Figure JPOXMLDOC01-appb-T000083
 次いで、各々前述の方法によって評価を行った。評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000084
[実施例24~27]
<EUV吸収率の測定>
 合成実施例1の化合物(X-27N35IB)をPGMEに溶解し、シリコン基板上に回転塗布し、その後、110℃で90秒間ベークして、膜厚50nmの膜を作製した(実施例24)。合成実施例2の化合物(X-27NSA)、合成実施例3の化合物(X-27N4PSA)及び合成実施例4の化合物(X-26NSA)を用いて同様に実施例25、実施例26及び実施例27の膜を作製した。
 これらを以下の示す条件で、膜密度を測定した。膜密度が1.7以上をA、1.4以上1.7未満をB、1.4未満をCとした。測定結果を表4に示す。
(膜密度測定条件)
 装置名:PANalytical製 X線回折装置
 電圧・電流:45kV・40mA
 X線波長:Cu Kα1線
 入射分光器:X線集光ミラー+Ge220x2結晶
 解析ソフトウェア:Bruker AXS製 LEPTOS 6.02
 上記で得られた膜密度と、構成する元素の質量吸収係数から、40nm当たりのEUV吸収率を算出した。算出係数を表4に示す。なお、EUV吸収率の算出は、米国ローレンス・バークレー国立研究所の以下のWebサイトを利用した。
http://henke.lbl.gov/optical_constants/
http://henke.lbl.gov/optical_constants/filter2.html
40nmを透過するときのEUV吸収率が30%以上をA、20%以上30%未満をB、20%未満をCとした。
<屈折率の測定>
 合成実施例1の化合物(X-27N35IB)をPGMEに溶解し、清浄なシリコンウェハー上に回転塗布した後、110℃のオーブン中で加熱して、厚さ1μmの膜を形成した。その膜につき、ジェー・エー・ウーラム製多入射角分光エリプソメーターVASEにて、25℃における屈折率(λ=550nm)を測定した。調製した膜について、屈折率が1.70以上の場合には「A」、1.65以上1.70未満の場合には「B」、1.65未満の場合には「C」と評価した。測定結果を表4に示す。
[比較例2~5]
 実施例24における化合物(X-27N35IB)の代わりに、一般的なレジスト材料であるポリヒドロキシスチレン(Mw:8000、アルドリッチ社製)、及び、WO2016/158168に記載の方法により合成した下記式(PP-1)、(PP-2)で示す化合物を用いて、実施例24と同様に膜密度、EUV吸収率、屈折率を測定した。結果を表4に示す。
Figure JPOXMLDOC01-appb-C000085
Figure JPOXMLDOC01-appb-C000086
 下記式(PP-3)で表す化合物をサリチルアルデヒドの代わりに4-ヒドロキシベンズアルデヒドを用いたこと以外は、合成実施例4と同様にして合成した。このPP-3を用いて、実施例24と同様に膜密度、EUV吸収率、屈折率を測定した。結果を表4に示す。
Figure JPOXMLDOC01-appb-C000087
Figure JPOXMLDOC01-appb-T000088
[実施例28~50、比較例6]
<MAR1の合成>
 0.5gの化合物AR1と、2-メチル-2-アダマンチルメタクリレート3.0gと、γ-ブチロラクトンメタクリル酸エステル2.0gと、ヒドロキシアダマンチルメタクリル酸エステル1.5gとを45mLのテトラヒドロフランに溶解し、アゾビスイソブチロニトリル0.20gを加えた。12時間還流した後、反応溶液を2Lのn-ヘプタンに滴下した。析出した重合体を濾別、減圧乾燥を行い、白色な粉体状の下記式(MAR1)で表される重合体MAR1を得た。この重合体の重量平均分子量(Mw)は12,000、分散度(Mw/Mn)は1.90であった。また、13C-NMRを測定した結果、下記式(MA1)中の組成比(モル比)はa:b:c:d=40:30:15:15であった。なお、下記式(MA1)は、各構成単位の比率を示すために簡略的に記載されているが、各構成単位の配列順序はランダムであり、各構成単位がそれぞれ独立したブロックを形成しているブロック共重合体ではない。ポリスチレン系モノマー(化合物AR1)はベンゼン環の根元の炭素、メタアクリレート系のモノマー(2-メチル-2-アダマンチルメタクリレート、γ-ブチロラクトンメタクリル酸エステル、及び、ヒドロキシアダマンチルメタクリル酸エステル)はエステル結合のカルボニル炭素について、それぞれの積分比を基準にモル比を求めた。
Figure JPOXMLDOC01-appb-C000089
Figure JPOXMLDOC01-appb-C000090
(EUV感度評価用のレジスト液の作製)
 作製した重合体MAR1を5質量部、トリフェニルスルホニウムノナフルオロメタンスルホナート1質量部、トリブチルアミン0.2質量部、PGMEA80質量部、及びPGME12質量部を配合し溶液を調製した。
(下層膜形成液の作製)
 表5に記載の材料を用いたこと以外は、実施例1と同様の方法にて、下層膜形成液を調製し、実施例28~50及び比較例6の下層膜を作製した。
Figure JPOXMLDOC01-appb-T000091
[評価]
 上述の実施例28~50及び比較例6で得られた化合物又は重合体から得られた下層膜の評価は、以下のとおりに行った。結果を表6に示す。
(EUV感度評価)
 シリコンウエハ上に、実施例28~50で作製した下層膜形成液をスピンコーターで塗布し、さらにホットプレートで240℃、1分の条件で加熱処理を行い、膜厚100nmの下層膜が形成された、下層膜付きウエハを成膜した。
 さらに作製した下層膜付きウエハ上に、上述のようにして調製したEUV感度評価用のレジスト液を塗布し、110℃で60秒間ベークして膜厚70nmのフォトレジスト層を形成した。
 次いで、極端紫外線(EUV)露光装置「EUVES-7000」(製品名、リソテックジャパン株式会社製)で1mJ/cmから1mJ/cmずつ80mJ/cmまで露光量を増加させたマスクレスでのショット露光をした後、110℃で90秒間ベーク(PEB)し、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で60秒間現像し、ウェハ上に80ショット分のショット露光を行ったウェハを得た。得られた各ショット露光エリアについて、光干渉膜厚計「OPTM」(製品名、大塚電子株式会社製)により膜厚を測定し、露光量に対する膜厚のプロファイルデータを取得し、露光量に対する膜厚変動量の傾きが一番大きくなる露光量を感度値(mJ/cm)として算出し、レジストのEUV感度の指標とした。
Figure JPOXMLDOC01-appb-T000092
 本実施形態の化合物は、膜密度が高く、EUV吸収率及びEUV感度が高く、屈折率の高い膜が得られた。
 上述のように、本実施形態の化合物を含む組成物は、良好な保存安定性と薄膜形成性を保持し、高感度で高エッチング耐性かつ良好なレジストパターン形状を付与できるレジスト組成物である。また、本実施形態の化合物を含む組成物は、レジストのEUV感度を高める効果のある下層膜等の製造に用いることができる。また、本実施形態の化合物は、高密度の膜を形成可能である。
 そのため、これら化合物等をフォトグラフィー用膜形成用途やレジスト用膜形成用途の組成物に用いた場合に、高解像度と高感度を有する膜を形成可能であり、これらの性能が要求される各種用途において、広く且つ有効に利用可能である。
 本出願は、2018年12月28日出願の日本特許出願(特願2018-248508号)に基づくものであり、それらの内容はここに参照として取り込まれる。
 本発明の化合物、及び組成物は、フォトグラフィー用膜形成用途やレジスト用膜形成用途の組成物、各種光学部品材料としての産業上利用可能性を有する。
 

Claims (24)

  1.  式(1-1)で表される芳香族化合物と、式(2-1)で表される芳香族アルデヒドとの縮合骨格を含む、化合物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1-1)中、
     Aは、芳香族環を表し、
     Rは、それぞれ独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、架橋性基、解離性基、又はチオール基であり、
     前記アルキル基、前記アリール基、前記アルケニル基、前記アルキニル基、前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
     kは、0以上の整数であり、
     Lは、1以上の整数である。)
    Figure JPOXMLDOC01-appb-C000002
    (式(2-1)中、
     Bは芳香族環を表し、
     Rは、それぞれ独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、架橋性基、解離性基、又はチオール基であり、
     前記アルキル基、前記アリール基、前記アルケニル基、前記アルキニル基、前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
     pは、0以上の整数であり、
     qは、1以上の整数であり、
     ただし、少なくとも1つの水酸基は、ホルミル基が結合する炭素原子と隣り合う炭素原子に結合する。)
  2.  前記縮合骨格が、非対称性を有する、請求項1に記載の化合物。
  3.  前記縮合骨格が、式(3-1)で表される、請求項1又は2に記載の化合物。
    Figure JPOXMLDOC01-appb-C000003
    (式(3-1)中、
     A’、A’’は、前記式(1-1)におけるAと同じであり、
     B’は、前記式(2-1)におけるBと同じであり、
     Rは、それぞれ独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、架橋性基、解離性基、又はチオール基であり、
     前記アルキル基、前記アリール基、前記アルケニル基、前記アルキニル基、前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
     Lは、1以上の整数であり、
     pは、0以上の整数であり、
     qは、1以上の整数であり、
     kは、0以上の整数である。)
  4.  式(1-1)で表される芳香族化合物が、下記式(1-2)の化合物であり、
     式(2-1)で表される芳香族アルデヒドが、下記式(2-2)の化合物である、
     請求項1~3のいずれか一項に記載の化合物。
    Figure JPOXMLDOC01-appb-C000004
    (式(1-2)中、
     Rは、それぞれ独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、架橋性基、解離性基、又はチオール基であり、
     前記アルキル基、前記アリール基、前記アルケニル基、前記アルキニル基、前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
     mは、0~3の整数であり、
     k’は、m=0とき0~5の整数、m=1のとき0~7の整数、m=2のとき0~9の整数、m=3のとき0~11の整数であり、
     L’は、m=0とき1~5の整数、m=1のとき1~7の整数、m=2のとき1~9の整数、m=3のとき1~11の整数である。)
    Figure JPOXMLDOC01-appb-C000005
    (式(2-2)中、
     Rは、それぞれ独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、架橋性基、解離性基、又はチオール基であり、
     前記アルキル基、前記アリール基、前記アルケニル基、前記アルキニル基、前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
     nは、0~3の整数であり、
     p’は、n=0のとき0~4の整数、n=1のとき0~6の整数、n=2のとき0~8の整数、n=3のとき0~10の整数であり、
     q’は、n=0のとき1~5の整数、n=1のとき1~7の整数、n=2のとき1~9の整数、n=3のとき1~11の整数である。)
  5.  前記縮合骨格が、下記式(3-2)で表される、請求項1~4のいずれか一項に記載の化合物。
    Figure JPOXMLDOC01-appb-C000006
    (式(3-2)中、
     Rは、それぞれ独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、架橋性基、解離性基、又はチオール基であり、
     前記アルキル基、前記アリール基、前記アルケニル基、前記アルキニル基、前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
     mは、0~3の整数であり、
     nは、0~3の整数であり、
     ka”は、m=0とき0~4の整数、m=1のとき0~6の整数、m=2のとき0~8の整数、m=3のとき0~10の整数であり、
     La”は、m=0とき0~4の整数、m=1のとき0~6の整数、m=2のとき0~10の整数、m=3のとき0~10の整数であり、
     kb”は、m=0とき0~5の整数、m=1のとき0~7の整数、m=2のとき0~9の整数、m=3のとき0~11の整数であり、
     Lb”は、m=0とき0~5の整数、m=1のとき0~7の整数、m=2のとき0~9の整数、m=3のとき0~11の整数であり、
     p”は、n=0のとき0~4の整数、n=1のとき0~6の整数、n=2のとき0~8の整数、n=3のとき0~10の整数であり、
     q”は、n=0のとき0~4の整数、n=1のとき0~6の整数、n=2のとき0~8の整数、n=3のとき0~10の整数である。)
  6.  前記縮合骨格が、下記式(3-3)で表される、請求項1~5のいずれか一項に記載の化合物。
    Figure JPOXMLDOC01-appb-C000007
    (式(3-3)中、
     Rは、それぞれ独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、架橋性基、解離性基、又はチオール基であり、
     前記アルキル基、前記アリール基、前記アルケニル基、前記アルキニル基、前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
     ka”は、0~6の整数であり、
     La”は、0~6の整数であり、
     kb”は、0~7の整数であり、
     Lb”は、0~7の整数であり、
     p”は、0~4の整数であり、
     q”は、0~4の整数である。)
  7.  式(I)で表される化合物。
    Figure JPOXMLDOC01-appb-C000008
    (式(I)中、
     A’、A’’は、同一の芳香族環を表し、
     B’は、芳香族環を表し、
     Rは、それぞれ独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、架橋性基、解離性基、又はチオール基であり、
     前記アルキル基、前記アリール基、前記アルケニル基、前記アルキニル基、前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
     Lは、1以上の整数であり、
     pは、0以上の整数であり、
     qは、1以上の整数であり、
     kは、0以上の整数であり、
     -OR’基は、ヒドロキシ基、架橋性基、又は、解離性基である。)
  8.  式(I’)により表される、請求項7に記載の化合物。
    Figure JPOXMLDOC01-appb-C000009
    (式(I’)中、
     Rは、それぞれ独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、架橋性基、解離性基、又はチオール基であり、
     前記アルキル基、前記アリール基、前記アルケニル基、前記アルキニル基、前記アルコキシ基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
     Lは、1以上の整数であり、
     pは、0以上の整数であり、
     qは、1以上の整数であり、
     kは、0以上の整数であり、
     -OR’基は、ヒドロキシ基、架橋性基、又は、解離性基である。)
  9.  式(1-1)で表されるフェノールと、式(2-1)で表される芳香族アルデヒドとを縮合反応を行い、式(3-1)で表される骨格を得る工程を含む、
     請求項1~8のいずれか一項に記載の化合物の製造方法。
  10.  請求項1~8のいずれか一項に記載の化合物に由来する構成単位を有する、樹脂。
  11.  下記式(4)で表される構造を有する、請求項10に記載の樹脂。
    Figure JPOXMLDOC01-appb-C000010
    (式(4)中、Lは炭素数1~60の二価の基であり、Mは、請求項1~8のいずれか一項に記載の化合物に由来する単位構造である。)
  12.  請求項1~8のいずれか一項に記載の化合物、及び/又は請求項10又は11に記載の樹脂を含む、組成物。
  13.  溶媒をさらに含有する、請求項12に記載の組成物。
  14.  酸発生剤をさらに含有する、請求項12又は13に記載の組成物。
  15.  架橋剤をさらに含有する、請求項12~14のいずれか一項に記載の組成物。
  16.  リソグラフィー用膜形成に用いられる、請求項12~15のいずれか一項に記載の組成物。
  17.  レジスト用膜形成に用いられる、請求項12~15のいずれか一項に記載の組成物。
  18.  レジスト下層膜形成に用いられる、請求項12~15のいずれか一項に記載の組成物。
  19.  光学部品形成に用いられる、請求項12~15のいずれか一項に記載の組成物。
  20.  基板上に、請求項16又は17に記載の組成物を用いてフォトレジスト層を形成するフォトレジスト層形成工程と、
     該フォトレジスト層形成工程により形成したフォトレジスト層の所定の領域に放射線を照射し、現像を行う現像工程と、
    を含む、レジストパターン形成方法。
  21.  レジストパターンが、絶縁膜パターンである、請求項20に記載のレジストパターン形成方法。
  22.  基板上に、請求項16又は請求項18に記載の組成物を用いて下層膜を形成する下層膜形成工程と、
     該下層膜形成工程により形成した下層膜上に、少なくとも1層のフォトレジスト層を形成するフォトレジスト層形成工程と、
     該フォトレジスト層形成工程により形成したフォトレジスト層の所定の領域に放射線を照射し、現像を行う工程と、
    を含む、レジストパターン形成方法。
  23.  基板上に、請求項16又は請求項18に記載の組成物を用いて下層膜を形成する下層膜形成工程と、
     該下層膜形成工程により形成した下層膜上に、中間層膜を形成する中間層膜形成工程と、
     該中間層膜形成工程により形成した中間層膜上に、少なくとも1層のフォトレジスト層を形成するフォトレジスト層形成工程と、
     該フォトレジスト層形成工程により形成したフォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成するレジストパターン形成工程と、
     該レジストパターン形成工程により形成したレジストパターンをマスクとして前記中間層膜をエッチングして中間層膜パターンを形成する中間層膜パターン形成工程と、
     該中間層膜パターン形成工程により形成した中間層膜パターンをマスクとして前記下層膜をエッチングして下層膜パターンを形成する下層膜パターン形成工程と、
     該下層膜パターン形成工程により形成した下層膜パターンをマスクとして前記基板をエッチングして基板にパターンを形成する基板パターン形成工程と、
    を含む、回路パターン形成方法。
  24.  請求項1~8のいずれか一項に記載の化合物又は請求項10又は11に記載の樹脂の精製方法であって、
     前記化合物又は樹脂、及び水と任意に混和しない有機溶媒とを含む溶液と、酸性の水溶液とを接触させて抽出する抽出工程を含む、精製方法。
     
PCT/JP2019/050775 2018-12-28 2019-12-25 化合物、樹脂、組成物、レジストパターンの形成方法、回路パターン形成方法、及び精製方法 WO2020138147A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/418,537 US20220064137A1 (en) 2018-12-28 2019-12-25 Compound, resin, composition, resist pattern formation method, circuit pattern formation method, and purification method
CN201980086800.0A CN113260645A (zh) 2018-12-28 2019-12-25 化合物、树脂、组合物、抗蚀图案的形成方法、电路图案形成方法、及纯化方法
KR1020217013361A KR20210110289A (ko) 2018-12-28 2019-12-25 화합물, 수지, 조성물, 레지스트 패턴의 형성방법, 회로패턴 형성방법, 및 정제방법
JP2020563338A JP7482377B2 (ja) 2018-12-28 2019-12-25 化合物、樹脂、組成物、レジストパターンの形成方法、回路パターン形成方法、及び精製方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-248508 2018-12-28
JP2018248508 2018-12-28

Publications (1)

Publication Number Publication Date
WO2020138147A1 true WO2020138147A1 (ja) 2020-07-02

Family

ID=71129386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050775 WO2020138147A1 (ja) 2018-12-28 2019-12-25 化合物、樹脂、組成物、レジストパターンの形成方法、回路パターン形成方法、及び精製方法

Country Status (6)

Country Link
US (1) US20220064137A1 (ja)
JP (1) JP7482377B2 (ja)
KR (1) KR20210110289A (ja)
CN (1) CN113260645A (ja)
TW (1) TW202035385A (ja)
WO (1) WO2020138147A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210397092A1 (en) * 2020-06-12 2021-12-23 Shin-Etsu Chemical Co., Ltd. Resist underlayer film material, patterning process, and method for forming resist underlayer film
WO2022009948A1 (ja) * 2020-07-08 2022-01-13 三菱瓦斯化学株式会社 リソグラフィー膜形成用組成物、レジストパターン形成方法、及び回路パターン形成方法
WO2024122296A1 (ja) * 2022-12-09 2024-06-13 住友化学株式会社 ビニル化合物、ビニル組成物、ビニル樹脂硬化物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板およびプリント配線板

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018101376A1 (ja) * 2016-11-30 2018-06-07 三菱瓦斯化学株式会社 化合物、樹脂、組成物並びにレジストパターン形成方法及び回路パターン形成方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6196897B2 (ja) 2013-12-05 2017-09-13 東京応化工業株式会社 ネガ型レジスト組成物、レジストパターン形成方法及び錯体
JP2016158168A (ja) 2015-02-25 2016-09-01 国立大学法人茨城大学 偏波変換器

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018101376A1 (ja) * 2016-11-30 2018-06-07 三菱瓦斯化学株式会社 化合物、樹脂、組成物並びにレジストパターン形成方法及び回路パターン形成方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
AKBARZADEH, ABOLFATH; TAHERI, MILAD; ZARE MINA: "One Pot Synthesis Of 3-Methyl-1-Phenyl-4-(3 ' -Methyl-1-Phenyl-4 ' , 5 ' -Dihydro-5 ' -Oxopyrazol-4 ' -yl-Pyrazolo [5, 4-d]-4H-1-Benzopyran Derivatives 1", JOURNAL OF THE CHEMICAL SOCIETY OF PAKISTAN, vol. 37, no. 2, 2015, pages 342 - 347, XP055722863 *
JIANAN JIN ,JIANMIN ZHANG ,WENLI SHANG ,SHIZHENG ZHU: "Synthesis of 14‐Fluorophenyl‐14H‐Dibenzo[a,j]xanthenes and Their Derivatives under Microwave Irradiation and Solvent‐free Conditions", CHINESE JOURNAL OF CHEMISTRY, vol. 29, no. 12, 22 December 2011 (2011-12-22), pages 2643 - 2649, XP055722852, ISSN: 1001-604X, DOI: 10.1002/cjoc.201180435 *
JIAO XIONG, JINJIN ZHANG, YANGYANG SUN, ZHONGRAN DAI, XIAOBO PAN, JINCAI WU: "Iso-selective ring-opening polymerization of rac-lactide catalyzed by crown ether complexes of sodium and potassium naphthalenolates", INORGANIC CHEMISTRY, vol. 54, no. 4, 2015, pages 1737 - 1743, XP055722843, ISSN: 0020-1669, DOI: :10.1021/ic502685f *
KAMAT SIDDHARTH R.; SALUNKHE RAJASHRI S.; CHOUDHARI PRAFFULA B.; DHAVALE RAKESH P.; MANE ANANDA H.; LOHAR TRUSHANT R: "Efficient synthesis of chromeno[2, 3-c]pyrazolyl-pyrazolol(s) in hydrotropic solution and their anti-infective potential", RESEARCH ON CHEMICAL INTERMEDIATES, vol. 44, no. 2, 15 November 2017 (2017-11-15), pages 1351 - 1362, XP036404995, ISSN: 0922-6168, DOI: 10.1007/s11164-017-3171-5 *
L. YU. UKHIN, O. V. SHISHKIN: "Synthesis of (2-hydroxy-5-nitrophenyl)di[1-(2-hydroxynaphthyl)] methane and 12-[1-(2-hydroxynaphthyl) ]-10-nitro-12H-benzo[a]xa nthene from 5-nitrosalicylaldehyde derivatives and beta-naphthol", RUSSIAN CHEMICAL BULLETIN, vol. 46, no. 7, 31 July 1997 (1997-07-31), pages 1281 - 1284, XP055722848 *
TÜLAY YILDIZ , HATICE BAŞPINAR KÜÇÜK: "An organocatalytic method for the synthesis of some novel xanthene derivatives by the intramolecular Friedel-Crafts reaction", RSC ADVANCES, vol. 7, no. 27, 15 March 2017 (2017-03-15), pages 16644 - 16649, XP055722857, ISSN: 2046-2069, DOI: 10.1039/C6RA27094H *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210397092A1 (en) * 2020-06-12 2021-12-23 Shin-Etsu Chemical Co., Ltd. Resist underlayer film material, patterning process, and method for forming resist underlayer film
US12013640B2 (en) * 2020-06-12 2024-06-18 Shin-Etsu Chemical Co., Ltd. Resist underlayer film material, patterning process, and method for forming resist underlayer film
WO2022009948A1 (ja) * 2020-07-08 2022-01-13 三菱瓦斯化学株式会社 リソグラフィー膜形成用組成物、レジストパターン形成方法、及び回路パターン形成方法
CN115836045A (zh) * 2020-07-08 2023-03-21 三菱瓦斯化学株式会社 光刻膜形成用组合物、抗蚀图案形成方法和电路图案形成方法
WO2024122296A1 (ja) * 2022-12-09 2024-06-13 住友化学株式会社 ビニル化合物、ビニル組成物、ビニル樹脂硬化物、プリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板およびプリント配線板

Also Published As

Publication number Publication date
CN113260645A (zh) 2021-08-13
KR20210110289A (ko) 2021-09-07
JP7482377B2 (ja) 2024-05-14
TW202035385A (zh) 2020-10-01
US20220064137A1 (en) 2022-03-03
JPWO2020138147A1 (ja) 2021-11-25

Similar Documents

Publication Publication Date Title
JP6877696B2 (ja) 化合物、樹脂、組成物、レジストパターン形成方法、及び、回路パターン形成方法
JP7212449B2 (ja) 化合物及びその製造方法、並びに、組成物、光学部品形成用組成物、リソグラフィー用膜形成組成物、レジスト組成物、レジストパターンの形成方法、感放射線性組成物、アモルファス膜の製造方法、リソグラフィー用下層膜形成材料、リソグラフィー用下層膜形成用組成物、リソグラフィー用下層膜の製造方法、レジストパターン形成方法、回路パターン形成方法、及び、精製方法
KR20190033537A (ko) 화합물, 수지, 조성물 그리고 레지스트패턴 형성방법 및 회로패턴 형성방법
WO2018016615A1 (ja) 化合物、樹脂、組成物並びにレジストパターン形成方法及び回路パターン形成方法
JP7482377B2 (ja) 化合物、樹脂、組成物、レジストパターンの形成方法、回路パターン形成方法、及び精製方法
JP6853957B2 (ja) 新規(メタ)アクリロイル化合物及びその製造方法
TW201902909A (zh) 化合物、包含化合物之阻劑組成物及使用其之圖型形成方法
JPWO2019142897A1 (ja) 化合物、樹脂、組成物及びパターン形成方法
CN112639020A (zh) 化合物、包含其的组合物、以及抗蚀图案的形成方法和绝缘膜的形成方法
WO2018016634A1 (ja) 化合物、樹脂及び組成物、並びにレジストパターン形成方法及び回路パターン形成方法
WO2018101377A1 (ja) 化合物、樹脂、組成物並びにレジストパターン形成方法及び回路パターン形成方法
KR20210049094A (ko) 화합물, 및 그것을 포함하는 조성물, 그리고, 레지스트패턴의 형성방법 및 절연막의 형성방법
JP7083455B2 (ja) 化合物、樹脂、組成物及びパターン形成方法
TW201900667A (zh) 阻劑組成物及使用其之圖型形成方法,以及化合物及樹脂
CN111655662B (zh) 化合物、树脂、组合物、抗蚀图案形成方法、电路图案形成方法和树脂的纯化方法
JP7090843B2 (ja) 化合物、樹脂、組成物、パターン形成方法及び精製方法
CN111630111A (zh) 组合物、以及抗蚀剂图案的形成方法和绝缘膜的形成方法
WO2020218599A1 (ja) 化合物、樹脂、組成物、レジストパターン形成方法、回路パターン形成方法及び精製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19902976

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020563338

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19902976

Country of ref document: EP

Kind code of ref document: A1