WO2020135741A1 - 车辆自动驾驶时换道的控制方法、控制系统及车辆 - Google Patents

车辆自动驾驶时换道的控制方法、控制系统及车辆 Download PDF

Info

Publication number
WO2020135741A1
WO2020135741A1 PCT/CN2019/129283 CN2019129283W WO2020135741A1 WO 2020135741 A1 WO2020135741 A1 WO 2020135741A1 CN 2019129283 W CN2019129283 W CN 2019129283W WO 2020135741 A1 WO2020135741 A1 WO 2020135741A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
lane
speed
information
nearest
Prior art date
Application number
PCT/CN2019/129283
Other languages
English (en)
French (fr)
Inventor
葛建勇
张凯
和林
甄龙豹
常仕伟
王天培
张健
崔文锋
Original Assignee
长城汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长城汽车股份有限公司 filed Critical 长城汽车股份有限公司
Priority to EP19903773.0A priority Critical patent/EP3888986B1/en
Publication of WO2020135741A1 publication Critical patent/WO2020135741A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18163Lane change; Overtaking manoeuvres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/53Road markings, e.g. lane marker or crosswalk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/20Static objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4042Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/802Longitudinal distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/804Relative longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2555/00Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
    • B60W2555/60Traffic rules, e.g. speed limits or right of way
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed

Definitions

  • the present application relates to the technical field of vehicle automatic driving, and in particular to a control method, a control system, and a vehicle for lane change during vehicle automatic driving.
  • Vehicle unmanned driving refers to the perception of the road environment through the on-board sensing system, automatically planning the driving route and controlling the driving of the vehicle.
  • vehicle is driving autonomously, it is expected to maintain a stable vehicle degree to improve passenger comfort, in addition to avoid collision of the vehicle with other vehicles or obstacles. Therefore, there is an urgent need for a technology that can maintain a steady speed and avoid obstacles during automatic driving.
  • the first objective of the present application is to propose a control method for vehicle lane change during automatic driving.
  • This control method can prevent the vehicle from being caused by visual blind spots during lane change on the premise of ensuring passengers' riding comfort. collision.
  • a method for controlling lane change during automatic driving of a vehicle comprising the following steps: providing a road environment model in a preset range nearby, the road environment model including lane information, vehicle information, and obstacle information in a preset range near the vehicle Obtain vehicle information and obstacle information in front of the lane according to the road environment model; determine whether to generate a lane change intention based on the vehicle speed, vehicle information in front of the lane and obstacle information; if the change is generated Lane intention, the vehicle environment information in the adjacent lane is obtained through the road environment model; if the speed of the nearest vehicle in the adjacent lane is greater than the speed of the nearest vehicle in the current lane and the nearest in the adjacent lane The difference between the speed of the vehicle and the speed of the nearest preceding vehicle in the own lane is greater than the first preset speed difference, and the relative distance between the nearest preceding vehicle in the adjacent lane and the own vehicle is greater than the first preset Safety distance, no car in the side of the adjacent lane in the adjacent lane, and the estimated distance between the nearest vehicle in
  • the step of determining whether to generate a lane change intention based on the speed of the vehicle, the vehicle information in front of the lane, and the obstacle information specifically includes: if a vehicle appears in the preset range in front of the lane, obtain The speed of the nearest vehicle in the current lane, the relative distance between the vehicle and the nearest vehicle in the current lane; according to the speed of the own vehicle, the speed of the nearest vehicle in the current lane, the vehicle and the vehicle The relative distance between the nearest vehicles in the current lane is the first lane change expectation factor; if the first lane change expectation factor is less than a preset lane change expectation factor threshold, the lane change intention is generated.
  • the step of judging whether to generate a lane change intention based on the vehicle speed, the vehicle information in front of the lane and the obstacle information further includes: if a static obstacle appears in the preset range in front of the lane, Then obtain the relative distance between the own vehicle and the static obstacle; obtain the second lane-changing expectation factor according to the own vehicle speed and the relative distance between the own vehicle and the static obstacle; The second lane change expectation factor is less than a preset lane change expectation factor threshold, then the lane change intention is generated.
  • is the first lane-changing expectation factor
  • V_auto is the speed of the own vehicle
  • V_trg is the speed of the nearest vehicle in the own lane
  • Dis_rely is the distance between the own vehicle and the nearest vehicle in the own lane Relative distance
  • K is the preset time
  • K*V_auto is the expected safe driving distance of the lane
  • K1 is the coefficient related to vehicle speed
  • K2 is the coefficient related to distance
  • K1+K2 1.
  • the step of acquiring vehicle information in adjacent lanes through the road environment model if generating the lane change intention specifically includes: acquiring the traffic near the own vehicle if the lane change intention is generated Prompt information; according to the traffic prompt information near the vehicle, determine whether the vehicle changes lanes to the adjacent lane at the current speed to meet the traffic rules; if it conforms to the traffic rules, obtain the adjacent lanes through the road environment model Vehicle information inside.
  • the method for controlling lane change during automatic driving of the present application has the following advantages:
  • the control method for vehicle lane change during automatic driving described in this application first generates a road environment model in a preset range near the vehicle, and provides lane information, vehicle information, and obstacle information in the preset range near the vehicle on the road environment model .
  • the relative distance between the front car and the car, the speed of the closest rear car, and the relative distance between the closest rear car and the self car determine whether the car can change lanes to the adjacent lane without changing the speed. Control the vehicle to change lanes when changing lanes to adjacent lanes under the premise of speed change.
  • Another object of the present application is to propose a control system for changing lanes during automatic driving of a vehicle.
  • the control system can prevent vehicle collisions caused by visual blind areas during lane changing while ensuring passengers' riding comfort.
  • a control system for changing lanes during automatic driving of a vehicle comprising: a road environment model providing module for providing a road environment model in a preset range nearby, the road environment model including driving lane information in a preset range near the vehicle , Vehicle information and obstacle information;
  • the control module is used to obtain vehicle information and obstacle information in front of the own lane according to the road environment model; and then determine whether to generate a lane change intention based on the vehicle speed, vehicle information in front of the own lane and obstacle information; If the lane change intention is generated, the vehicle environment information of the adjacent lane is obtained through the road environment model; if the speed of the nearest preceding vehicle in the adjacent lane is greater than the speed of the nearest preceding vehicle in the own lane and the phase The difference between the speed of the nearest preceding vehicle in the adjacent lane and the speed of the nearest preceding vehicle in the own lane is greater than the first preset speed difference, and the relative distance between the nearest preceding vehicle in the adjacent lane and the own vehicle Is greater than the first preset safety distance, there is no car on the side of the own vehicle in the adjacent lane, and when the own vehicle changes lanes to the adjacent lane, the nearest car behind the adjacent lane and the vehicle If the estimated collision time between the vehicles exceeds the first preset collision time and the relative distance between the nearest vehicle
  • control module is specifically used to obtain the speed of the nearest vehicle in the current lane and the relative distance between the own vehicle and the nearest preceding vehicle in the own lane if a vehicle appears in the preset range in front of the own lane ; Get the first lane-changing expectation factor based on the speed of the own vehicle, the speed of the nearest vehicle in the own lane, and the relative distance between the own vehicle and the nearest vehicle in the own lane; if the first lane change If the expectation factor is less than the preset lane change expectation factor threshold, the lane change intention is generated.
  • control module is also used to obtain the relative distance between the own vehicle and the static obstacle if a static obstacle appears in the preset range in front of the own lane; according to the vehicle speed, The relative distance between the host vehicle and the static obstacle obtains a second lane change expectation factor; if the second lane change expectation factor is less than a preset lane change expectation factor threshold, the lane change intention is generated.
  • control module is further used to obtain traffic prompt information near the own vehicle if it is determined that a lane change is needed; according to the traffic prompt information near the own vehicle, it is judged that the own vehicle approaches the phase at the current speed Whether the lane change of the adjacent lane conforms to the traffic rules; if it conforms to the traffic rules, the vehicle information in the adjacent lane is obtained through the road environment model.
  • the control system for changing lanes during automatic driving of the vehicle has the same advantages as the control method for changing lanes during automatic driving of the vehicle compared to the prior art, and will not be repeated here.
  • Another object of the present application is to propose a vehicle.
  • This vehicle method can prevent a vehicle from colliding due to a visually blind area during lane change while ensuring passengers' riding comfort.
  • a vehicle is provided with a control system for changing lanes during automatic driving of the vehicle as described in the above embodiment.
  • the vehicle has the same advantages as the above-mentioned system for avoiding obstacles during automatic driving of the vehicle compared with the prior art, and will not be repeated here.
  • FIG. 1 is a flowchart of a method for controlling lane change during automatic driving of an embodiment of the present application
  • FIG. 2 is a structural block diagram of a control system for lane change during automatic driving of an embodiment of the present application.
  • FIG. 1 is a flowchart of a method for controlling lane change during automatic driving of an embodiment of the present application.
  • the method for controlling lane change during automatic driving of a vehicle includes the following steps:
  • S1 Provide a road environment model within a preset range near the vehicle.
  • the road environment model includes lane information, vehicle information, and obstacle information within the preset range near the vehicle.
  • the vehicle is provided with an environment awareness system, which replaces the driver's sensory system to extract current driving environment information such as road, vehicle position, size and position of obstacles through different sensors.
  • the above environmental information is filtered, correlated, tracked, filtered, etc. in order to obtain more accurate road information, object target position, size and other information, and finally generate a road environment model.
  • the road environment model outputs driving lane information, vehicle information, and obstacle information within a preset range (for example, 200 meters) in front of and behind the vehicle in real time.
  • S2 Obtain vehicle information and obstacle information in front of the lane according to the road environment model.
  • a vehicle appears within a preset range (for example, 200 meters) ahead in the current lane, the vehicle speed and position of the vehicle are output on the road environment model. If a static obstacle occurs within a preset range (for example, 200 meters) ahead in the current lane, the position of the static obstacle is output on the road environment model.
  • a preset range for example, 200 meters
  • S3 Determine whether to generate a lane change intention based on the vehicle speed, the vehicle information in front of the lane, and the obstacle information.
  • step S3 includes:
  • S3-1-1 If a vehicle appears in the preset range in front of the lane, obtain the speed of the nearest vehicle in the lane and the relative distance between the vehicle and the nearest vehicle in the lane.
  • S3-1-2 The first lane change expectation factor is obtained based on the speed of the vehicle, the speed of the nearest vehicle in the lane, and the relative distance between the vehicle and the nearest vehicle in the lane.
  • the first lane change expectation factor is obtained by the following formula:
  • is the first lane change expectation factor
  • V_auto is the speed of the vehicle
  • V_trg is the speed of the nearest vehicle in the lane
  • Dis_rely is the relative distance between the vehicle and the nearest vehicle in the lane
  • K is the preset time
  • K *V_auto is the expected safe driving distance of the lane
  • K1 is a coefficient related to vehicle speed
  • K2 is a coefficient related to distance
  • K1 ⁇ (0,1), K2 ⁇ (0,1) and K1+K2 1.
  • step S3 further includes:
  • S3-2-2 Obtain the second lane change expectation factor based on the speed of the vehicle and the relative distance between the vehicle and the static obstacle;
  • the second lane change expectation factor is obtained by the following formula:
  • ⁇ s is the second lane change expectation factor
  • V_auto is the speed of the vehicle
  • Dis_s is the relative distance between the vehicle and the static obstacle
  • K is the preset time
  • K*V_auto is the desired safe driving distance of the lane
  • K2 is preferred The value is 1.
  • the vehicle environment information of the adjacent lane is obtained through the road environment model.
  • the vehicle information in the adjacent lane includes the speed and position of the nearest preceding vehicle in the adjacent lane, and the speed and position of the nearest trailing vehicle in the adjacent lane.
  • step S4 specifically includes:
  • S4-2 According to the traffic prompt information near the vehicle, determine whether the vehicle is changing to the adjacent lane at the current speed to comply with the traffic rules.
  • a traffic warning sign or lane line near the vehicle indicates that the vehicle cannot change lanes to the adjacent lane, it is determined that the vehicle changes lanes to the adjacent lane at the current speed and does not comply with the traffic rules.
  • the current speed of the vehicle is 110km/h
  • the nearby warning sign indicates that the maximum speed limit of the adjacent lane is 90km/h. It is determined that the vehicle is changing to the adjacent lane at the current speed and does not comply with the traffic rules. .
  • the current lane of the vehicle only has a left lane or only a right lane, it is only necessary to determine whether the vehicle can change lanes without changing the speed of only one side of the vehicle; if there are both left and right lanes , You need to obtain the vehicle information in the left and right lanes separately, and you need to preset rules to determine whether the lanes on both sides can be changed without changing speed.
  • a lane where a vehicle currently travels has both a left lane and a right lane.
  • step S5-1-1 If there is no car on the left side of the vehicle, go to step S5-1-2, otherwise it is judged that the left lane cannot be changed without deceleration.
  • step S5-1-2 Obtain the speed of the nearest car in the left lane, and determine whether the difference between the speed V1 of the nearest car in the left lane and the speed V2 of the nearest car in the lane is greater than the first preset speed difference,
  • the first preset vehicle speed difference is preferably 5 km/h. If V1-V2>5, step S5-1-3 is entered, otherwise it is judged that the left lane cannot be changed without deceleration.
  • step S5-1-3 Obtain the position of the nearest preceding vehicle in the left lane, calculate the relative distance between the own vehicle and the nearest preceding vehicle in the left lane, and determine whether the relative distance is greater than the first preset safety distance.
  • the first set safety distance is K3*V_auto, and K3 is preferably 0.6. If the relative distance between the own vehicle and the nearest preceding vehicle in the left lane is greater than K3*V_auto, step S5-1-4 is entered, otherwise it is judged that the lane cannot be changed to the left lane without deceleration.
  • S5-1-4 Obtain the speed and position of the nearest rear car in the left lane, and determine the estimated collision time (relative distance/relative distance) between the own car and the nearest rear car in the left lane when changing the car to the left lane Speed), if the estimated collision time between the own car and the nearest rear car in the left lane is greater than the first preset collision time (preferably a value of 2 seconds), then proceed to step S5-1-5, otherwise it is judged that the left The side lane does not slow down and change lanes.
  • the first preset collision time preferably a value of 2 seconds
  • step S5-1-5 Calculate the relative distance between the vehicle and the nearest rear car in the left lane, if the relative distance between the vehicle and the nearest rear car in the left lane is greater than the second preset safety distance (second setting The safety distance is K4*V_auto, and K4 is preferably 0.3), it is determined that the lane can be changed without deceleration to the left lane and the vehicle is controlled to change lane without deceleration to the left lane, otherwise step S5-2 is entered.
  • second setting The safety distance is K4*V_auto, and K4 is preferably 0.3
  • S5-2 Refer to the step of judging whether the vehicle is changing to the left lane without decelerating the lane, and then determine whether the vehicle can change lane to the right lane without deceleration. The vehicle changes lanes without slowing down to the right lane.
  • the method for controlling lane changes during automatic driving of the present application first generates a road environment model in a preset range near the vehicle, and provides lane information, vehicle information, and obstacle information in the preset range near the vehicle on the road environment model.
  • the relative distance between the front car and the car, the speed of the closest rear car, and the relative distance between the closest rear car and the self car determine whether the car can change lanes to the adjacent lane without changing the speed. Control the vehicle to change lanes when changing lanes to adjacent lanes under the premise of speed change.
  • FIG. 2 is a structural block diagram of a control system for lane change during automatic driving of an embodiment of the present application.
  • the system for avoiding obstacles during automatic driving of a vehicle includes: a road environment model providing module 210 and a control module 220.
  • the road environment model providing module 210 is used to provide a road environment model in a preset range near the vehicle.
  • the road environment model includes lane information, vehicle information, and obstacle information within a preset range near the vehicle.
  • the control module 220 is used to obtain vehicle information and obstacle information in front of the lane according to the road environment model; and then determine whether to generate a lane change intention based on the vehicle speed, vehicle information in front of the lane and obstacle information; if a lane change is generated Intent, the vehicle information in the adjacent lane is obtained through the road environment model; if the speed of the nearest car in the adjacent lane is greater than the speed of the nearest car in the lane and the speed of the nearest preceding car in the adjacent lane is the same as the nearest in the lane The difference in vehicle speed is greater than the first preset speed difference, the relative distance between the nearest preceding vehicle in the adjacent lane and the own vehicle is greater than the first preset safety distance, and the adjacent lane is located on the side of the vehicle When the vehicle is changing la
  • control module 220 is specifically configured to obtain the speed of the nearest vehicle in the current lane and the relative distance between the vehicle and the nearest vehicle in the current lane if a vehicle appears in the preset range in front of the lane;
  • the first lane change expectation factor is obtained based on the vehicle speed, the speed of the nearest vehicle in the lane, and the relative distance between the vehicle and the nearest vehicle in the lane; if the first lane change expectation factor is less than the preset lane change expectation factor threshold, Then a lane change intention is generated.
  • control module 220 is also used to obtain the relative distance between the own vehicle and the static obstacle if a static obstacle occurs within a preset range in front of the own lane; according to the own vehicle speed, the own vehicle and The relative distance between the static obstacles obtains the second lane-changing expectation factor; if the second lane-changing expectation factor is less than the preset lane-changing expectation factor threshold, a lane-changing intention is generated.
  • the first lane change expectation factor is obtained by the following formula:
  • is the first lane change expectation factor
  • V_auto is the speed of the vehicle
  • V_trg is the speed of the nearest vehicle in the lane
  • Dis_rely is the relative distance between the vehicle and the nearest vehicle in the lane
  • K is the preset time
  • K *V_auto is the expected safe driving distance of the lane
  • K1 is a coefficient related to vehicle speed
  • K2 is a coefficient related to distance
  • K1 ⁇ (0,1), K2 ⁇ (0,1) and K1+K2 1.
  • control module 220 is also used to obtain traffic prompt information near the vehicle if it is determined that the lane needs to be changed; according to the traffic prompt information near the vehicle, it is determined that the vehicle changes to the adjacent lane at the current speed Whether the road conforms to the traffic rules; if it conforms to the traffic rules, the vehicle information in the adjacent lane is obtained through the road environment model.
  • the control system for vehicle lane change during automatic driving of the present application first generates a road environment model in a preset range near the vehicle, and provides lane information, vehicle information, and obstacle information in the preset range near the vehicle on the road environment model.
  • the relative distance between the front car and the car, the speed of the closest rear car, and the relative distance between the closest rear car and the self car determine whether the car can change lanes to the adjacent lane without changing the speed. Control the vehicle to change lanes when changing lanes to adjacent lanes under the premise of speed change.
  • control system for lane change during automatic driving of the embodiment of the present application is similar to the specific implementation of the control method for lane change during automatic driving of the embodiment of the present application.
  • control method for lane change during automatic driving of the embodiment of the present application please refer to the method section Description, in order to reduce redundancy, I will not repeat them here.
  • the embodiment of the present application also discloses a vehicle provided with a control system for lane change during automatic driving of the vehicle as in any of the above embodiments.
  • the vehicle can judge whether it can pass according to the position and size of the obstacle on the current driving road.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)

Abstract

一种车辆自动驾驶时换道的控制方法、控制系统及车辆,该控制方法包括:提供车辆附近预设范围的道路环境模型;根据该道路环境模型获取本车道内前方的车辆信息和障碍物信息;根据本车车速、本车道内前方的车辆信息和障碍物信息判断该车辆是否生成换道意图;如果判断生成换道意图,则通过该道路环境模型获取相邻车道内车辆信息;根据本车车速和相邻车道内车辆信息判断控制是否可以当前车速向相邻车道换道。该控制方法和系统可以在保证乘客乘车舒适性的前提下,避免车辆在换道中因视觉盲区引起车辆碰撞。

Description

车辆自动驾驶时换道的控制方法、控制系统及车辆
相关申请的交叉引用
本申请基于申请号为201811647226.5,申请日为2018年12月29日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及车辆自动驾驶技术领域,特别涉及一种车辆自动驾驶时换道的控制方法、控制系统及车辆。
背景技术
车辆无人驾驶指通过车载传感系统感知道路环境,自动规划行车路线并控制车辆行驶。当车辆自动驾驶时,期望可以保持平稳的车度以提升乘客的舒适感,此外还要避免车辆与其他车辆或障碍物发生碰撞。因此亟需一种在自动驾驶时既可以保持平稳车速又可以躲避障碍物的技术。
发明内容
有鉴于此,本申请的第一个目的在于提出一种车辆自动驾驶时换道的控制方法,该控制方法可以在保证乘客乘车舒适性的前提下,避免车辆在换道中因视觉盲区引起车辆碰撞。
为达到上述目的,本申请的技术方案是这样实现的:
一种车辆自动驾驶时换道的控制方法,包括以下步骤:提供附近预设范围的道路环境模型,所述道路环境模型包括本车附近预设范围内的行车道信息、车辆信息和障碍物信息;根据所述道路环境模型获取本车道内前方的车辆信息和障碍物信息;根据本车车速、所述本车道内前方的车辆信息和障碍物信息判断是否生成换道意图;如果生成所述换道意图,则通过所述道路环境模型获取相邻车道内车辆信息;如果所述相邻车道内最近前车的车速大于所述本车道内最近前车的车速且所述相邻车道内最近前车的车速与所述本车道内最近前车的车速的差值大于第一预设车速差值、所述相邻车道内最近前车与所述本车之间的相对距离大于第一预设安全距离、所述相邻车道内位于所述本车的侧方位置无车、在所述本车向相邻车道换道时所述相邻车道最近后车与所述本车之间的预计碰撞时间超过第一预设碰撞时间且所述相邻车道最近后车与所述本车之间的相对距离大于第二预设安全距离,则控制所述本车以当前车速向所述相邻车道换道。
进一步的,所述根据本车车速、所述本车道内前方的车辆信息和障碍物信息判断是否生成换道意图的步骤,具体包括:如果本车道前方所述预设范围内出现车辆,则获取本车道最近前车的车速、所述本车与所述本车道最近前车之间的相对距离;根据所述本车车速、所述本车道最近前车的车速、所述本车与所述本车道最近前车之间的相对距离得到第一换道期望因子;如果所述第一换道期望因子小于预设换道期望因子阈值,则生成所述换道意图。
进一步的,所述根据本车车速、所述本车道内前方的车辆信息和障碍物信息判断是否生成换道意图的步骤,还包括:如果本车道前方所述预设范围内出现静态障碍物,则获取所述本车与所述静态障碍物之间的相对距离;根据所述本车车速、所述本车与所述静态障碍物之间的相对距离得到第二换道期望因子;如果所述第二换道期望因子小于预设换道期望因子阈值,则生成所述换道意图。
进一步的,所述第一换道期望因子通过以下公式得到:
β=K1*(V_auto/V_trg)+K2*(Dis_rely/K*V_auto)
其中,β为所述第一换道期望因子,V_auto为所述本车车速、V_trg为所述本车道最近前车的车速,Dis_rely为所述本车与所述本车道最近前车之间的相对距离,K为预设时间,K*V_auto为本车道期望安全行车距离,K1为与车速相关的系数,K2为与距离相关的系数,K1∈(0,1),K2∈(0,1)且K1+K2=1。
进一步的,所述如果生成所述换道意图,则通过所述道路环境模型获取相邻车道内车辆信息的步骤,具体包括:如果生成所述换道意图,则获取所述本车附近的交通提示信息;根据所述本车附近的交通提示信息判断所述本车以当前车速向所述相邻车道换道是否符合交通规则;如果符合交通规则,则通过所述道路环境模型获取相邻车道内车辆信息。
相对于现有技术,本申请所述的车辆自动驾驶时换道的控制方法具有以下优势:
本申请所述的车辆自动驾驶时换道的控制方法,首先生成车辆附近预设范围的道路环境模型,在道路环境模型上提供车辆附近预设范围内的行车道信息、车辆信息和障碍物信息。为保持本车匀速行驶,在本车道内出现障碍物或前车速度慢需要换道时,通过道路环境模型获取相邻车道内附近的车辆信息,判断相邻车道内最近前车的车速、最近前车与本车之间的相对距离、最近后车的车速、最近后车与本车之间的相对距离判断本车是否可以在不变速前提下向相邻车道换道,进而在可以在不变速前提下向相邻车道换道时控制车辆换道。
本申请的另一个目的在于提出一种车辆自动驾驶时换道的控制系统,该控制系统可以在保证乘客乘车舒适性的前提下,避免车辆在换道中因视觉盲区引起车辆碰撞。
为达到上述目的,本申请的技术方案是这样实现的:
一种车辆自动驾驶时换道的控制系统,包括:道路环境模型提供模块,用于提供附近预设范围的道路环境模型,所述道路环境模型包括所述车辆附近预设范围内的行车道信息、车辆信息和障碍物信息;
控制模块,用于根据所述道路环境模型获取本车道内前方的车辆信息和障碍物信息;进而根据本车车速、所述本车道内前方的车辆信息和障碍物信息判断是否生成换道意图;如果生成所述换道意图,则通过所述道路环境模型获取相邻车道内车辆信息;如果所述相邻车道内最近前车的车速大于所述本车道内最近前车的车速且所述相邻车道内最近前车的车速与所述本车道内最近前车的车速的差值大于第一预设车速差值、所述相邻车道内最近前车与所述本车之间的相对距离大于第一预设安全距离、所述相邻车道内位于所述本车的侧方位置无车、在所述本车向相邻车道换道时所述相邻车道最近后车与所述本车之间的预计碰撞时间超过第一预设碰撞时间且所述相邻车道最近后车与所述本车之间的相对距离大于第二预设安全距离,则控制所述本车以当前车速向所述相邻车道换道。
进一步的,所述控制模块具体用于如果本车道前方所述预设范围内出现车辆,则获取本车道最近前车的车速、所述本车与所述本车道最近前车之间的相对距离;根据所述本车车速、所述本车道最近前车的车速、所述本车与所述本车道最近前车之间的相对距离得到第一换道期望因子;如果所述第一换道期望因子小于预设换道期望因子阈值,则生成所述换道意图。
进一步的,所述控制模块还用于如果本车道前方所述预设范围内出现静态障碍物,则获取所述本车与所述静态障碍物之间的相对距离;根据所述本车车速、所述本车与所述静态障碍物之间的相对距离得到第二换道期望因子;如果所述第二换道期望因子小于预设换道期望因子阈值,则生成所述换道意图。
进一步的,所述控制模块还用于如果判断需要换道,则获取所述本车附近的交通提示信息;根据所述本车附近的交通提示信息判断所述本车以当前车速向所述相邻车道换道是否符合交通规则;如果符合交通规则,则通过所述道路环境模型获取相邻车道内车辆信息。
所述的车辆自动驾驶时换道的控制系统与上述的车辆自动驾驶时换道的控制方法相对于现有技术所具有的优势相同,在此不再赘述。
本申请的又一个目的在于提出一种车辆,该车辆方法可以在保证乘客乘车舒适性的前提下,避免车辆在换道中因视觉盲区引起车辆碰撞。
为达到上述目的,本申请的技术方案是这样实现的:
一种车辆,设置有如上述实施例所述的车辆自动驾驶时换道的控制系统。
所述的车辆与上述的车辆自动驾驶时避障的系统相对于现有技术所具有的优势相同,在此不再赘述。
附图说明
构成本申请的一部分的附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请实施例的车辆自动驾驶时换道的控制方法的流程图;
图2为本申请实施例的车辆自动驾驶时换道的控制系统的结构框图。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
下面将参考附图并结合实施例来详细说明本申请。
图1为本申请实施例的车辆自动驾驶时换道的控制方法的流程图。
如图1所示,根据本申请实施例的车辆自动驾驶时换道的控制方法,包括如下步骤:
S1:提供车辆附近预设范围的道路环境模型,道路环境模型包括车辆附近预设范围内的行车道信息、车辆信息和障碍物信息。
具体地,车辆上设置有环境感知系统,环境感知系统替代驾驶员感官系统通过不同传感器提取道路、车辆位置、障碍物的尺寸和位置等当前行驶环境信息。将上述环境信息进行筛选、关联、追踪、过滤等处理以便获得更为精确的道路信息、物体目标位置、尺寸等信息,最终生成道路环境模型。其中,道路环境模型实时输出车辆前、后方预设范围(例如200米)内的行车道信息、车辆信息和障碍物信息。
S2:根据道路环境模型获取本车道内前方的车辆信息和障碍物信息。
具体地,如果本车道内前方预设范围(例如200米)内出现车辆,则在道路环境模型上输出该车辆的车速和位置。如果本车道内前方预设范围(例如200米)内出现静态障碍物,则在道路环境模型上输出该静态障碍物的位置。
S3:根据本车车速、本车道内前方的车辆信息和障碍物信息判断是否生成换道意图。
在本申请的一个实施例中,步骤S3包括:
S3-1-1:如果本车道前方预设范围内出现车辆,则获取本车道最近前车的车速、本车与本车道最近前车之间的相对距离。
S3-1-2:根据本车车速、本车道最近前车的车速、本车与本车道最近前车之间的相对距离得到第一换道期望因子。
在本申请的一个实施例中,第一换道期望因子通过以下公式得到:
β=K1*(V_auto/V_trg)+K2*(Dis_rely/K*V_auto)
其中,β为第一换道期望因子,V_auto为本车车速、V_trg为本车道最近前车的车速,Dis_rely为本车与本车道最近前车之间的相对距离,K为预设时间,K*V_auto为本车道期望安全行车距离,K1为与车速相关的系数,K2为与距离相关的系数,K1∈(0,1),K2∈(0,1)且K1+K2=1。
S3-1-3:如果第一换道期望因子小于预设换道期望因子阈值η,即β<η时,则生成换道意图。
在本申请的一个实施例中,步骤S3还包括:
S3-2-1:如果本车道前方预设范围内出现静态障碍物,则获取本车与静态障碍物之间的相对距离。
S3-2-2:根据本车车速、本车与静态障碍物之间的相对距离得到第二换道期望因子;
在本申请的一个实施例中,第二换道期望因子通过以下公式得到:
βs=K1*(Dis_s/K*V_auto)
其中,βs为第二换道期望因子,V_auto为本车车速,Dis_s为本车与静态障碍物之间的相对距离,K为预设时间,K*V_auto为本车道期望安全行车距离,K2优选取值1。
S3-2-3:如果第二换道期望因子小于预设换道期望因子阈值,即βs<η时,则生成换道意图。
S4:如果生成换道意图,则通过道路环境模型获取相邻车道内车辆信息。其中,相邻车道内车辆信息包括相邻车道内最近前车的车速和位置、相邻车道内最近后车的车速和位置。
在本申请的而一个实施例中,步骤S4具体包括:
S4-1:如果生成换道意图,则获取本车附近的交通提示信息,例如交通提示牌上的交通提示信息和表示车辆是否可以换道的车道线信息。
S4-2:根据本车附近的交通提示信息判断本车以当前车速向相邻车道换道是否符合交通规则。
在一些示例中,本车附近的交通提示牌提示或车道线指示本车不可向相邻车道换道、则判断本车以当前车速向相邻车道换道不符合交通规则。
在另一些示例中,本车当前车速为110km/h,而附近的提示牌提示相邻车道的最高限速为90km/h,则判断本车以当前车速向相邻车道换道不符合交通规则。
S4-3:如果符合交通规则,则通过道路环境模型获取相邻车道内车辆信息。
S5:如果相邻车道内最近前车的车速大于本车道内最近前车的车速且相邻车道内最近前车的车速与本车道内最近前车的车速的差值大于第一预设车速差值、相邻车道内最近前车与本车之间的相对距离大于第一预设安全距离、相邻车道内位于本车的侧方位置无车、 在本车向相邻车道换道时相邻车道最近后车与本车之间的预计碰撞时间超过第一预设碰撞时间且相邻车道最近后车与本车之间的相对距离大于第二预设安全距离,则控制本车以当前车速向相邻车道换道。
具体的,如果车辆当前行驶的车道仅存在左侧车道或仅存在右侧车道,则只需要判断车辆是否可以向仅存在的一侧车辆不变速换道;如果同时存在左侧车道和右侧车道,则需要分别获取左右车道内的车辆信息,且需要预设规则先后判断是否可以两侧车道进行不变速换道。
以车辆当前行驶的车道同时存在左侧车道和右侧车道为例。
S5-1-1:如果本车左侧方无车,则进入步骤S5-1-2,否则判断不可向左侧车道不减速换道。
S5-1-2:获取左侧车道内最近前车的车速,判断左侧车道内最近前车的车速V1-本车道内最近前车的车速V2之差是否大于第一预设车速差值,此处第一预设车速差值优选为5km/h。如果V1-V2>5,则进入步骤S5-1-3,否则判断不可向左侧车道不减速换道。
S5-1-3:获取左侧车道内最近前车的位置,计算得到本车与左侧车道内最近前车之间的相对距离,判断相对距离是否大于第一预设安全距离。示例性的,第一设安全距离为K3*V_auto,K3优选取0.6。如果本车与左侧车道内最近前车之间的相对距离大于K3*V_auto,则进入步骤S5-1-4,否则判断不可向左侧车道不减速换道。
S5-1-4:获取左侧车道内最近后车的车速和位置,判断本车向左侧车道换道时本车与左侧车道内最近后车之间的预计碰撞时间(相对距离/相对速度),如果本车与左侧车道内最近后车之间的预计碰撞时间大于第一预设碰撞时间(优选取值为2秒),则进入步骤S5-1-5,否则判断不可向左侧车道不减速换道。
S5-1-5:计算本车与左侧车道内最近后车之间的相对距离,如果本车与左侧车道内最近后车之间的相对距离大于第二预设安全距离(第二设安全距离为K4*V_auto,K4优选取0.3),则判断可向左侧车道不减速换道并控制车辆向左侧车道不减速换道,否则进入步骤S5-2。
S5-2:参照判断本车向左侧车道是否以进行不减速换道的步骤判断本车是否可以向右侧车道不减速换道,进而在车辆可向右侧车道不变道换道并控制车辆向右侧车道不减速换道。
本申请的车辆自动驾驶时换道的控制方法,首先生成车辆附近预设范围的道路环境模型,在道路环境模型上提供车辆附近预设范围内的行车道信息、车辆信息和障碍物信息。为保持本车匀速行驶,在本车道内出现障碍物或前车速度慢需要换道时,通过道路环境模型获取相邻车道内附近的车辆信息,判断相邻车道内最近前车的车速、最近前车与本车之间的相对距离、最近后车的车速、最近后车与本车之间的相对距离判断本车是否可以在不 变速前提下向相邻车道换道,进而在可以在不变速前提下向相邻车道换道时控制车辆换道。
图2为本申请实施例的车辆自动驾驶时换道的控制系统的结构框图。。如图2所示,本申请实施例的车辆自动驾驶时避障的系统,包括:道路环境模型提供模块210和控制模块220。
其中,道路环境模型提供模块210用于提供车辆附近预设范围的道路环境模型。其中,道路环境模型包括车辆附近预设范围内的行车道信息、车辆信息和障碍物信息。控制模块220用于根据道路环境模型获取本车道内前方的车辆信息和障碍物信息;进而根据本车车速、本车道内前方的车辆信息和障碍物信息判断是否生成换道意图;如果生成换道意图,则通过道路环境模型获取相邻车道内车辆信息;如果相邻车道内最近前车的车速大于本车道内最近前车的车速且相邻车道内最近前车的车速与本车道内最近前车的车速的差值大于第一预设车速差值、相邻车道内最近前车与本车之间的相对距离大于第一预设安全距离、相邻车道内位于本车的侧方位置无车、在本车向相邻车道换道时相邻车道最近后车与本车之间的预计碰撞时间超过第一预设碰撞时间且相邻车道最近后车与本车之间的相对距离大于第二预设安全距离,则控制本车以当前车速向相邻车道换道。
在本申请的一个实施例中,控制模块220具体用于如果本车道前方预设范围内出现车辆,则获取本车道最近前车的车速、本车与本车道最近前车之间的相对距离;根据本车车速、本车道最近前车的车速、本车与本车道最近前车之间的相对距离得到第一换道期望因子;如果第一换道期望因子小于预设换道期望因子阈值,则生成换道意图。
在本申请的一个实施例中,控制模块220还用于如果本车道前方预设范围内出现静态障碍物,则获取本车与静态障碍物之间的相对距离;根据本车车速、本车与静态障碍物之间的相对距离得到第二换道期望因子;如果第二换道期望因子小于预设换道期望因子阈值,则生成换道意图。
在本申请的一个实施例中,第一换道期望因子通过以下公式得到:
β=K1*(V_auto/V_trg)+K2*(Dis_rely/K*V_auto)
其中,β为第一换道期望因子,V_auto为本车车速、V_trg为本车道最近前车的车速,Dis_rely为本车与本车道最近前车之间的相对距离,K为预设时间,K*V_auto为本车道期望安全行车距离,K1为与车速相关的系数,K2为与距离相关的系数,K1∈(0,1),K2∈(0,1)且K1+K2=1。
在本申请的一个实施例中,控制模块220还用于如果判断需要换道,则获取本车附近的交通提示信息;根据本车附近的交通提示信息判断本车以当前车速向相邻车道换道是否符合交通规则;如果符合交通规则,则通过道路环境模型获取相邻车道内车辆信息。
本申请的车辆自动驾驶时换道的控制系统,首先生成车辆附近预设范围的道路环境模 型,在道路环境模型上提供车辆附近预设范围内的行车道信息、车辆信息和障碍物信息。为保持本车匀速行驶,在本车道内出现障碍物或前车速度慢需要换道时,通过道路环境模型获取相邻车道内附近的车辆信息,判断相邻车道内最近前车的车速、最近前车与本车之间的相对距离、最近后车的车速、最近后车与本车之间的相对距离判断本车是否可以在不变速前提下向相邻车道换道,进而在可以在不变速前提下向相邻车道换道时控制车辆换道。
需要说明的是,本申请实施例的车辆自动驾驶时换道的控制系统的具体实现方式与本申请实施例的车辆自动驾驶时换道的控制方法的具体实现方式类似,具体请参见方法部分的描述,为了减少冗余,此处不做赘述。
本申请的实施例还公开了一种车辆,设置有如上述任意一个实施例中的车辆自动驾驶时换道的控制系统。该车辆可以根据当前行驶道路的障碍物位置和尺寸判断是否可以通行。
另外,根据本申请实施例的车辆的其它构成以及作用对于本领域的普通技术人员而言都是已知的,为了减少冗余,此处不做赘述。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种车辆自动驾驶时换道的控制方法,其特征在于,包括以下步骤:
    提供附近预设范围的道路环境模型,所述道路环境模型包括本车附近预设范围内的行车道信息、车辆信息和障碍物信息;
    根据所述道路环境模型获取本车道内前方的车辆信息和障碍物信息;
    根据本车车速、所述本车道内前方的车辆信息和障碍物信息判断是否生成换道意图;
    如果生成所述换道意图,则通过所述道路环境模型获取相邻车道内车辆信息;
    如果所述相邻车道内最近前车的车速大于所述本车道内最近前车的车速且所述相邻车道内最近前车的车速与所述本车道内最近前车的车速的差值大于第一预设车速差值、所述相邻车道内最近前车与所述本车之间的相对距离大于第一预设安全距离、所述相邻车道内位于所述本车的侧方位置无车、在所述本车向相邻车道换道时所述相邻车道最近后车与所述本车之间的预计碰撞时间超过第一预设碰撞时间且所述相邻车道最近后车与所述本车之间的相对距离大于第二预设安全距离,则控制所述本车以当前车速向所述相邻车道换道。
  2. 根据权利要求1所述的车辆自动驾驶时换道的控制方法,其特征在于,所述根据本车车速、所述本车道内前方的车辆信息和障碍物信息判断是否生成换道意图的步骤,具体包括:
    如果本车道前方所述预设范围内出现车辆,则获取本车道最近前车的车速、所述本车与所述本车道最近前车之间的相对距离;
    根据所述本车车速、所述本车道最近前车的车速、所述本车与所述本车道最近前车之间的相对距离得到第一换道期望因子;
    如果所述第一换道期望因子小于预设换道期望因子阈值,则生成所述换道意图。
  3. 根据权利要求1或2中任一项所述的车辆自动驾驶时换道的控制方法,其特征在于,所述根据本车车速、所述本车道内前方的车辆信息和障碍物信息判断所述车辆是否需要换道的步骤,还包括:
    如果本车道前方所述预设范围内出现静态障碍物,则获取所述本车与所述静态障碍物之间的相对距离;
    根据所述本车车速、所述本车与所述静态障碍物之间的相对距离得到第二换道期望因子;
    如果所述第二换道期望因子小于预设换道期望因子阈值,则生成所述换道意图。
  4. 根据权利要求2所述的车辆自动驾驶时换道的控制方法,其特征在于,所述第一换道期望因子通过以下公式得到:
    β=K1*(V_auto/V_trg)+K2*(Dis_rely/K*V_auto)
    其中,β为所述第一换道期望因子,V_auto为所述本车车速、V_trg为所述本车道最近前车的车速,Dis_rely为所述本车与所述本车道最近前车之间的相对距离,K为预设时间,K*V_auto为本车道期望安全行车距离,K1为与车速相关的系数,K2为与距离相关的系数,K1∈(0,1),K2∈(0,1)且K1+K2=1。
  5. 根据权利要求1-4中任一项所述的车辆自动驾驶时换道的控制方法,其特征在于,所述生成所述换道意图,则通过所述道路环境模型获取相邻车道内车辆信息的步骤,具体包括:
    如果生成所述换道意图,则获取所述本车附近的交通提示信息;
    根据所述本车附近的交通提示信息判断所述本车以当前车速向所述相邻车道换道是否符合交通规则;
    如果符合交通规则,则通过所述道路环境模型获取相邻车道内车辆信息。
  6. 一种车辆自动驾驶时换道的控制系统,其特征在于,包括:
    道路环境模型提供模块,用于提供附近预设范围的道路环境模型,所述道路环境模型包括所述车辆附近预设范围内的行车道信息、车辆信息和障碍物信息;
    控制模块,用于根据所述道路环境模型获取本车道内前方的车辆信息和障碍物信息;进而根据本车车速、所述本车道内前方的车辆信息和障碍物信息判断是否生成换道意图;如果生成所述换道意图,则通过所述道路环境模型获取相邻车道内车辆信息;如果所述相邻车道内最近前车的车速大于所述本车道内最近前车的车速且所述相邻车道内最近前车的车速与所述本车道内最近前车的车速的差值大于第一预设车速差值、所述相邻车道内最近前车与所述本车之间的相对距离大于第一预设安全距离、所述相邻车道内位于所述本车的侧方位置无车、在所述本车向相邻车道换道时所述相邻车道最近后车与所述本车之间的预计碰撞时间超过第一预设碰撞时间且所述相邻车道最近后车与所述本车之间的相对距离大于第二预设安全距离,则控制所述本车以当前车速向所述相邻车道换道。
  7. 根据权利要求6所述的车辆自动驾驶时换道的控制系统,其特征在于,所述控制模块具体用于如果本车道前方所述预设范围内出现车辆,则获取本车道最近前车的车速、所述本车与所述本车道最近前车之间的相对距离;根据所述本车车速、所述本车道最近前车的车速、所述本车与所述本车道最近前车之间的相对距离得到第一换道期望因子;如果所述第一换道期望因子小于预设换道期望因子阈值,则生成所述换道意图。
  8. 根据权利要求6或7中任一项所述的车辆自动驾驶时换道的控制系统,其特征在于,所述控制模块还用于如果本车道前方所述预设范围内出现静态障碍物,则获取所述本车与所述静态障碍物之间的相对距离;根据所述本车车速、所述本车与所述静态障碍物之间的 相对距离得到第二换道期望因子;如果所述第二换道期望因子小于预设换道期望因子阈值,则生成所述换道意图。
  9. 根据权利要求6-8中任一项所述的车辆自动驾驶时换道的控制系统,其特征在于,所述控制模块还用于如果判断需要换道,则获取所述本车附近的交通提示信息;根据所述本车附近的交通提示信息判断所述本车以当前车速向所述相邻车道换道是否符合交通规则;如果符合交通规则,则通过所述道路环境模型获取相邻车道内车辆信息。
  10. 一种车辆,其特征在于,包括权利要求6-9中任一项所述的车辆自动驾驶时换道的控制系统。
PCT/CN2019/129283 2018-12-29 2019-12-27 车辆自动驾驶时换道的控制方法、控制系统及车辆 WO2020135741A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19903773.0A EP3888986B1 (en) 2018-12-29 2019-12-27 Control method and control system for lane changing during automatic driving of vehicle, and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811647226.5A CN110614994B (zh) 2018-12-29 2018-12-29 车辆自动驾驶时换道的控制方法、控制系统及车辆
CN201811647226.5 2018-12-29

Publications (1)

Publication Number Publication Date
WO2020135741A1 true WO2020135741A1 (zh) 2020-07-02

Family

ID=68921104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/129283 WO2020135741A1 (zh) 2018-12-29 2019-12-27 车辆自动驾驶时换道的控制方法、控制系统及车辆

Country Status (3)

Country Link
EP (1) EP3888986B1 (zh)
CN (1) CN110614994B (zh)
WO (1) WO2020135741A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113771884A (zh) * 2021-11-09 2021-12-10 清华大学 基于侧向量化平衡指标的智能汽车拟人化轨迹规划方法
CN114084136A (zh) * 2020-08-05 2022-02-25 上海汽车集团股份有限公司 车辆变道过程中的纵向控制跟车目标选择方法及装置
CN114120685A (zh) * 2020-08-27 2022-03-01 郑州宇通客车股份有限公司 一种换道控制方法及装置

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111016902B (zh) * 2019-12-30 2021-07-06 重庆长安汽车股份有限公司 一种车辆换道时的车速辅助控制方法、系统及汽车
CN111275986B (zh) * 2020-01-22 2021-07-27 长安大学 一种车辆于加速车道自主汇入主干道的风险决策装置及方法
CN111301420A (zh) * 2020-02-18 2020-06-19 北京汽车集团有限公司 车辆换道控制方法、装置、可读存储介质及车辆
CN111258321A (zh) * 2020-03-13 2020-06-09 济南浪潮高新科技投资发展有限公司 车辆失控情况下的辅助安全驾驶系统及辅助安全驾驶方法
CN112672942B (zh) * 2020-03-23 2022-01-14 华为技术有限公司 一种车辆换道方法及相关设备
CN113808298B (zh) * 2020-06-17 2023-05-09 上海汽车集团股份有限公司 一种基于测试数据的车辆换道行为提取方法及系统
CN111661055B (zh) * 2020-06-17 2023-06-06 清华大学苏州汽车研究院(吴江) 一种自动驾驶车辆的换道控制方法和系统
CN111717199B (zh) * 2020-06-24 2021-09-17 中国第一汽车股份有限公司 自动换道避撞控制方法、装置、车辆及存储介质
CN111746543B (zh) * 2020-06-30 2021-09-10 三一专用汽车有限责任公司 车辆变道的控制方法、控制装置、车辆和可读存储介质
CN111959507A (zh) * 2020-07-06 2020-11-20 江铃汽车股份有限公司 一种变道控制方法、系统、可读存储介质及车辆
CN113954836B (zh) * 2020-07-20 2023-08-04 广州汽车集团股份有限公司 分段式导航换道方法及其系统、计算机设备、存储介质
CN111994071B (zh) * 2020-08-28 2022-05-10 大陆泰密克汽车系统(上海)有限公司 后向追尾主动避让方法、系统、存储介质
CN112441004B (zh) * 2020-11-30 2023-04-25 重庆长安汽车股份有限公司 自动驾驶换道的纵向规划方法、系统、车辆及存储介质
CN112644495B (zh) * 2020-12-07 2022-12-30 浙江合众新能源汽车有限公司 一种汽车智能辅助驾驶换道预警的计算方法
CN112721928A (zh) * 2021-01-18 2021-04-30 国汽智控(北京)科技有限公司 一种跟车策略确定方法、装置、电子设备及存储介质
CN112937584B (zh) * 2021-03-31 2022-06-03 重庆长安汽车股份有限公司 一种自动换道控制方法、装置及汽车
CN113147765A (zh) * 2021-04-30 2021-07-23 重庆工程职业技术学院 自动驾驶车辆的换道控制方法和装置
CN113313949B (zh) * 2021-05-31 2022-03-25 长安大学 一种高速公路出口匝道客货车协同控制方法、装置和设备
CN114093187B (zh) * 2021-11-26 2023-02-24 交通运输部公路科学研究所 自动驾驶车辆的风险预警控制方法以及智能网联系统
CN114103957B (zh) * 2021-12-22 2024-02-06 阿波罗智联(北京)科技有限公司 变道控制方法、装置、电子设备和存储介质
CN114299758A (zh) * 2021-12-30 2022-04-08 阿波罗智联(北京)科技有限公司 车辆控制方法及装置、设备、介质和产品
CN114454885B (zh) * 2022-02-28 2024-03-08 重庆长安汽车股份有限公司 一种主动创造换道条件的方法
CN114506342B (zh) * 2022-03-03 2023-12-05 东风悦享科技有限公司 一种自动驾驶变道决策的方法、系统及车辆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103754221A (zh) * 2014-01-24 2014-04-30 清华大学 一种车辆自适应巡航控制系统
CN106598053A (zh) * 2016-12-19 2017-04-26 驭势科技(北京)有限公司 一种自动驾驶车辆横向运动控制对象选择方法
JP2017088045A (ja) * 2015-11-13 2017-05-25 日立オートモティブシステムズ株式会社 走行制御装置
CN108313054A (zh) * 2018-01-05 2018-07-24 北京智行者科技有限公司 自动驾驶自主换道决策方法和装置及自动驾驶车辆
CN108829093A (zh) * 2018-04-27 2018-11-16 榛硕(武汉)智能科技有限公司 一种自动驾驶车辆横向运动控制方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3574235B2 (ja) * 1995-08-31 2004-10-06 本田技研工業株式会社 車両の操舵力補正装置
JP2009288941A (ja) * 2008-05-28 2009-12-10 Toyota Central R&D Labs Inc 視認行動評価装置及び運転行動評価装置
DE102012214979A1 (de) * 2012-08-23 2014-02-27 Robert Bosch Gmbh Spurwahlassistent zur Optimierung des Verkehrsflusses (Verkehrsflussassistent)
CN103496366B (zh) * 2013-09-09 2016-02-24 北京航空航天大学 一种基于车车协同的主动换道避撞控制方法与装置
EP3196861B1 (de) * 2016-01-19 2023-08-02 Continental Autonomous Mobility Germany GmbH Verfahren und vorrichtung zur unterstützung eines fahrspurwechsels bei einem fahrzeug
JP2017178217A (ja) * 2016-03-31 2017-10-05 株式会社デンソー 支援装置
CN106364486B (zh) * 2016-09-08 2019-08-27 江苏大学 一种基于危害分析的智能车辆变道控制方法
CN106845768B (zh) * 2016-12-16 2019-12-10 东南大学 基于生存分析参数分布的公交车旅行时间模型构建方法
CN107161155B (zh) * 2017-04-27 2019-04-12 大连理工大学 一种基于人工神经网络的车辆协同换道方法及其系统
CN109035862B (zh) * 2018-08-06 2020-04-14 清华大学 一种基于车车通信的多车协同换道控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103754221A (zh) * 2014-01-24 2014-04-30 清华大学 一种车辆自适应巡航控制系统
JP2017088045A (ja) * 2015-11-13 2017-05-25 日立オートモティブシステムズ株式会社 走行制御装置
CN106598053A (zh) * 2016-12-19 2017-04-26 驭势科技(北京)有限公司 一种自动驾驶车辆横向运动控制对象选择方法
CN108313054A (zh) * 2018-01-05 2018-07-24 北京智行者科技有限公司 自动驾驶自主换道决策方法和装置及自动驾驶车辆
CN108829093A (zh) * 2018-04-27 2018-11-16 榛硕(武汉)智能科技有限公司 一种自动驾驶车辆横向运动控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3888986A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114084136A (zh) * 2020-08-05 2022-02-25 上海汽车集团股份有限公司 车辆变道过程中的纵向控制跟车目标选择方法及装置
CN114084136B (zh) * 2020-08-05 2024-01-30 上海汽车集团股份有限公司 车辆变道过程中的纵向控制跟车目标选择方法及装置
CN114120685A (zh) * 2020-08-27 2022-03-01 郑州宇通客车股份有限公司 一种换道控制方法及装置
CN114120685B (zh) * 2020-08-27 2023-04-07 宇通客车股份有限公司 一种换道控制方法及装置
CN113771884A (zh) * 2021-11-09 2021-12-10 清华大学 基于侧向量化平衡指标的智能汽车拟人化轨迹规划方法

Also Published As

Publication number Publication date
EP3888986A4 (en) 2022-03-02
EP3888986B1 (en) 2024-06-26
CN110614994B (zh) 2021-01-22
CN110614994A (zh) 2019-12-27
EP3888986A1 (en) 2021-10-06

Similar Documents

Publication Publication Date Title
WO2020135741A1 (zh) 车辆自动驾驶时换道的控制方法、控制系统及车辆
US10845809B2 (en) Automatic driving device
JP6299872B2 (ja) 車両の走行制御装置及び方法
US9944294B2 (en) Vehicle traveling control apparatus
CN104417561B (zh) 情境感知威胁响应判定
JP5070171B2 (ja) 車両制御装置
JP6296162B2 (ja) 車両の走行制御装置及び方法
RU2671457C1 (ru) Устройство управления движением и способ управления движением
US8583341B2 (en) Method for the open-loop and closed-loop control of traffic flow
JP6304384B2 (ja) 車両の走行制御装置及び方法
EP3848271A1 (en) Travel control method and travel control device for vehicle
WO2019022201A1 (ja) 車載制御装置、走行速度の制御方法及びコンピュータプログラム
US11247677B2 (en) Vehicle control device for maintaining inter-vehicle spacing including during merging
JP7211127B2 (ja) 車両の旋回姿勢制御方法及び旋回姿勢制御装置
WO2016027347A1 (ja) 車両の走行制御装置及び方法
US11926260B2 (en) Method for operating a parking assistance function of a motor vehicle
JP6296161B2 (ja) 車両の走行制御装置及び方法
KR100798815B1 (ko) 자동주행을 위한 통합차량거동 시스템의 적용거리 실용화방법
CN103429478A (zh) 用于控制巡航控制的方法和系统
JP2017056765A (ja) 車両の運転支援装置
JP6264271B2 (ja) 車両走行制御装置
WO2023068162A1 (ja) 自動運行装置、合流車応答制御方法
JP2017138722A (ja) 走行制御装置
JP2023063239A (ja) 自動運行装置、合流車応答制御方法
JP2023553018A (ja) 自動走行中の車両の作動方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903773

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019903773

Country of ref document: EP

Effective date: 20210630