WO2020125336A1 - 一种镜头畸变中心标定设备及方法 - Google Patents

一种镜头畸变中心标定设备及方法 Download PDF

Info

Publication number
WO2020125336A1
WO2020125336A1 PCT/CN2019/120837 CN2019120837W WO2020125336A1 WO 2020125336 A1 WO2020125336 A1 WO 2020125336A1 CN 2019120837 W CN2019120837 W CN 2019120837W WO 2020125336 A1 WO2020125336 A1 WO 2020125336A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
driving mechanism
calibration
rotating frame
distortion center
Prior art date
Application number
PCT/CN2019/120837
Other languages
English (en)
French (fr)
Inventor
杨成林
何洪鑫
赵芳
Original Assignee
苏州艾微视图像科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州艾微视图像科技有限公司 filed Critical 苏州艾微视图像科技有限公司
Priority to US17/297,175 priority Critical patent/US11828674B2/en
Publication of WO2020125336A1 publication Critical patent/WO2020125336A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0207Details of measuring devices
    • G01M11/0214Details of devices holding the object to be tested
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/62Optical apparatus specially adapted for adjusting optical elements during the assembly of optical systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D18/00Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B43/00Testing correct operation of photographic apparatus or parts thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration

Definitions

  • the invention relates to the field of calibration devices for visual measurement and imaging systems, and in particular to a lens distortion center calibration device and method.
  • the lens is mostly used in image acquisition systems. Due to the angle tilt of the lens and sensor during assembly, the lens distortion center cannot coincide with the sensor center, and the distortion center position cannot be determined. The distortion center position cannot be determined, which is not conducive to the later stage of the image Processing, so the distortion center needs to be calibrated.
  • Zero Zhengyou calibration refers to the single-plane checkerboard camera calibration method proposed by Professor Zhang Zhengyou in 1998. This method requires a checkerboard calibration board. By changing the camera and checkerboard Calibrate the relative position between the plates to obtain three different photos, and use matlab or opencv to calculate the distortion center of the lens. Most of the current calibration is to manually adjust the checkerboard calibration board, which has a large workload, low efficiency, and poor stability of the calibration result.
  • one object of the present invention is to provide a safe, reliable, and stable lens distortion center calibration device, which adopts the following technical solutions:
  • a lens distortion center calibration device includes a rotating frame, a first driving mechanism, and a second driving mechanism.
  • the first driving mechanism is connected to the rotating frame.
  • the first driving mechanism is used to drive the rotating frame to rotate.
  • a calibration plate is provided in the rotating frame, the calibration plate and the rotating frame are connected by a rotating shaft, the second driving mechanism is connected to the calibration plate, and the second driving mechanism is used to drive the calibration plate relative to the rotation
  • the frame rotates, and the front end of the calibration plate is provided with a lens placement platform for placing the lens.
  • an arc-shaped guide rail is provided at the bottom of the rotating frame, the bottom of the rotating frame is slidingly connected to the arc-shaped guide rail, and the center of the arc-shaped guide rail is rotated
  • the shafts are on the same straight line, and the first driving mechanism is used to drive the rotating frame to rotate on the arc-shaped guide rail.
  • the calibration plate includes a checkerboard layer, AR glass, and a panel light source, the AR glass is fixed on the panel light source, and the checkerboard layer is laminated on the AR glass.
  • a double-sided tape is provided between the checkerboard layer and the AR glass.
  • the AR glass includes tempered glass and an AR film plated on the tempered glass.
  • a lifting mechanism is further included, and the lifting mechanism is used to adjust the height of the lens placement platform.
  • the lifting mechanism includes a sleeve, a screw, and a hand wheel, the sleeve and the screw both penetrate the lens placement platform from a vertical direction, and the hand wheel is connected to the screw, so The hand wheel drives the screw to rotate, and the screw adjusts the height of the lens placement platform.
  • a slide seat is provided at the bottom of the lens placement platform, and the slide seat is used to adjust the distance between the lens placement platform and the calibration plate.
  • both the first drive mechanism and the second drive mechanism include a rotating electrical machine.
  • the second purpose of the present invention is to provide a safe, reliable and stable lens distortion center calibration division method, which adopts the following technical solutions:
  • a lens distortion center calibration division method applied to any one of the calibration devices described above, includes the following steps:
  • the lens distortion center calibration device of the present invention drives the rotating frame to rotate through a first driving mechanism, and a calibration plate is provided in the rotating frame, the calibration plate rotating frame is connected through a rotating shaft, and a second driving mechanism is provided to drive the calibration plate to rotate relative to the rotating frame.
  • a lens placement platform is provided at the front of the calibration board. The relative position between the calibration plate and the lens can be adjusted through the cooperation of the first driving mechanism and the second driving mechanism, so that the lens can obtain different photos to achieve the calibration of lens distortion.
  • FIG. 1 is a schematic diagram of the overall structure of a lens distortion center calibration device in an embodiment of the present invention
  • FIG. 2 is a schematic diagram 1 of a partial structure of a lens distortion center calibration device in an embodiment of the present invention
  • FIG. 3 is a second schematic diagram of a partial structure of a lens distortion center calibration device in an embodiment of the present invention.
  • Marking description 100, first frame; 110, beam; 120, mounting seat; 130, first drive mechanism; 140, rotating frame; 150, calibration plate; 160, second drive mechanism; 170, worktable; 180, Arc guide rail; 200, second frame; 210, lens placement platform; 220, sliding seat; 231, upper mounting plate; 232, lower mounting plate; 233, screw rod; 234, casing; 235, hand wheel; 240, computer; 250, monitor.
  • the lens distortion center calibration device in this embodiment, includes a rotating frame 140, a first driving mechanism 130, a second driving mechanism 160, the first driving mechanism 130 and the rotation
  • the frame 140 is connected.
  • the first driving mechanism 130 is used to drive the rotating frame 140 to rotate.
  • the rotating frame 140 is provided with a calibration plate 150.
  • the calibration plate 150 is connected to the rotating frame 140 through a rotating shaft.
  • the second driving mechanism 160 is connected to the calibration plate 150.
  • the second driving mechanism 160 is used to drive the calibration plate 150 to rotate relative to the rotating frame 140.
  • the front end of the calibration plate 150 is provided with a lens placement platform 210 for placing the lens.
  • the first driving mechanism 130 and the second driving mechanism 160 Both include rotating electrical machines.
  • the lens distortion center calibration device further includes a first frame 100.
  • a beam 110 is provided on the first frame 100.
  • a mounting base 120 is fixed on the beam 110.
  • the first driving mechanism 130 is fixedly connected to the mounting base 120.
  • the bottom of the rotating frame 140 is provided with an arc-shaped guide rail 180, and the bottom of the rotating frame 140 is slidingly connected with the arc-shaped guide rail 180, and the center of the arc-shaped guide rail 180 is on the same straight line as the rotation axis of the rotating frame 140.
  • a driving mechanism 130 is used to drive the rotating frame to rotate on the arc-shaped guide rail 180, that is, to rotate in the vertical direction. The stability of the rotating frame 140 during rotation can be increased.
  • the calibration board 150 includes a checkerboard layer, AR glass and a panel light source.
  • the AR glass is fixed on the panel light source.
  • the checkerboard layer is pressed onto the AR glass with 3M double-sided adhesive to ensure the flatness of the checkerboard layer ,
  • AR glass includes tempered glass and AR film coated on tempered glass, its role is to increase the transmittance and reduce the reflectance.
  • the lens distortion center calibration device further includes a second frame 200, and a sliding seat 220 is provided on the second frame 200, and a lifting mechanism is provided on the sliding seat 220.
  • the lifting mechanism includes an upper mounting plate 231, a lower mounting plate 232, and a sleeve
  • the tube 233, the screw 234 and the hand wheel 235, the sleeve 233 and the screw 234 are provided between the mounting plate 231 and the lower mounting plate 232, the sleeve 234 and the screw 233 both penetrate the lens placement platform 210 from the vertical direction, There is a gap between the tube 234 and the lens placement platform 210, the sleeve 234 is used to cooperate with the screw 233 to restrict the lens placement platform 210 in the horizontal direction, the hand wheel 235 is connected to the screw 234, and the hand wheel 235 can drive the screw 234 to rotate The screw 234 drives the lens placement platform 210 to move up and down.
  • the second rack 200 is also provided with a computer 240 and a display 250.
  • the first drive mechanism 130, the second drive mechanism 160 and the lens to be tested are all connected to the computer 240, and the computer 240 is used to control the first drive mechanism 130 and the second drive
  • the mechanism 160 rotates, and controls the lens to be tested to shoot, and calculates the distortion center of the lens to be tested according to the captured picture.
  • This embodiment also discloses the following lens distortion center calibration division method, which is applied to the above calibration device and includes the following steps:
  • the first driving mechanism, the second driving mechanism and the lens to be tested are all connected to the computer, the computer controls the rotation of the first driving mechanism and the second driving mechanism, and the computer controls the lens to be tested to shoot.
  • the computer controls the rotation of the first driving mechanism and the second driving mechanism to adjust the calibration plate to a predetermined position, the predetermined position is at least three, and is stored in the computer, in this embodiment, the predetermined position is 25, Take 25 photos from the lens to be tested. It can realize batch calibration, high calibration accuracy and high calibration efficiency.
  • the lens distortion center calibration device of the present invention drives the rotating frame to rotate through a first driving mechanism, and a calibration plate is provided in the rotating frame, the calibration plate rotating frame is connected through a rotating shaft, and a second driving mechanism is provided to drive the calibration plate to rotate relative to the rotating frame.
  • a lens placement platform is provided at the front of the calibration board. The relative position between the calibration plate and the lens can be adjusted through the cooperation of the first driving mechanism and the second driving mechanism, so that the lens can obtain different photos to achieve the calibration of lens distortion.

Abstract

本发明公开了一种镜头畸变中心标定设备及方法,该镜头畸变中心标定设备包括旋转框架、第一驱动机构、第二驱动机构,第一驱动机构与旋转框架连接,第一驱动机构用于驱动旋转框架转动,旋转框架内设有标定板,标定板与旋转框架通过转轴连接,第二驱动机构与标定板连接,第二驱动机构用于驱动标定板相对旋转框架转动,标定板的前端设有镜头放置平台。本发明的镜头畸变中心标定设备可通过第一驱动机构和第二驱动机构配合,调整标定板与镜头之间的相对位置,便于镜头获取不同的照片,以实现对镜头畸变的标定。

Description

一种镜头畸变中心标定设备及方法 技术领域
本发明涉及视觉测量成像系统标定装置领域,特别涉及一种镜头畸变中心标定设备及方法。
背景技术
图像采集系统大部分都会用到镜头,由于镜头与传感器在组装时存在角度倾斜,导致镜头畸变中心无法与传感器中心重合,且无法确定畸变中心位置,不能确定畸变中心位置,不利于对图像的后期处理,所以畸变中心需要标定出来。
目前行业内标定镜头畸变中心原理与方法大部分基于”张正友标定”,是指张正友教授1998年提出的单平面棋盘格的摄像机标定方法,该方法需要一个棋盘格标定板,通过改变摄像机与棋盘格标定板间的相对位置来获得三张不同的照片,用matlab或opencv可计算出镜头的畸变中心。目前的标定大多都是采用人工对棋盘格标定板进行调整,工作量大,效率低,且标定结果稳定性差。
发明内容
针对现有技术的不足,本发明目的在于提供之一在于提供一种安全可靠,稳定性强的镜头畸变中心标定设备,其采用如下技术方案:
一种镜头畸变中心标定设备,其包括旋转框架、第一驱动机构、第二驱动机构,所述第一驱动机构与旋转框架连接,所述第一驱动机构用于驱动所述旋转框架转动,所述旋转框架内设有标定板,所述标定板与所述旋转框架通过转轴连接,所述第二驱动机构与标定板连接,所述第二驱动机构用于驱动所述标定板相对所述旋转框架转动,所述标定板的前端设有镜头放置平台,用于放置镜头。
作为本发明的进一步改进,所述旋转框架底部设有圆弧型导轨,所述旋转框架的底部与所述圆弧形导轨滑动连接,所述圆弧形导轨的中心与所述旋转框 架的旋转轴在同一条直线上,所述第一驱动机构用于驱动所述旋转框架在所述圆弧形导轨上转动。
作为本发明的进一步改进,所述标定板包括棋盘格层、AR玻璃和面板光源,所述AR玻璃固定于面板光源上,所述棋盘格层压合在AR玻璃上。
作为本发明的进一步改进,所述棋盘格层与AR玻璃之间设有双面胶。
作为本发明的进一步改进,所述AR玻璃包括钢化玻璃和镀在钢化玻璃上的AR膜。
作为本发明的进一步改进,还包括升降机构,所述升降机构用于调节所述镜头放置平台的高度。
作为本发明的进一步改进,所述升降机构包括套管、丝杆和手轮,所述套管和丝杆均从竖直方向贯穿所述镜头放置平台,所述手轮与丝杆连接,所述手轮带动丝杆转动,所述丝杆调节所述镜头放置平台的高度。
作为本发明的进一步改进,所述镜头放置平台底部设有滑动座,所述滑动座用于调节所述镜头放置平台到所述标定板之间的距离。
作为本发明的进一步改进,所述第一驱动机构和第二驱动机构均包括旋转电机。
本发明目的在于提供之二在于提供一种安全可靠,稳定性强的镜头畸变中心标定分法,其采用如下技术方案:
一种镜头畸变中心标定分法,应用于上述任一所述的标定设备,其包括以下步骤:
将所述镜头标定设备置于暗室中,将待测镜头置于镜头放置平台上;
通过第一驱动机构和第二驱动机构调节标定板与待测镜头的相对位置,并控制待测镜头进行拍摄;
根据拍摄的图片计算出待测镜头的畸变中心。
本发明的有益效果:
本发明的镜头畸变中心标定设备通过第一驱动机构驱动旋转框架转动,并在旋转框架内设置标定板,标定板旋转框架通过转轴连接,设置第二驱动机构 用于驱动标定板相对旋转框架转动,在标定板的前端设有镜头放置平台。可通过第一驱动机构和第二驱动机构配合,调整标定板与镜头之间的相对位置,便于镜头获取不同的照片,以实现对镜头畸变的标定。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其他目的、特征和优点能够更明显易懂,以下特举较佳实施例,并匹配附图,详细说明如下。
附图说明
图1是本发明实施例中镜头畸变中心标定设备的整体结构示意图;
图2是本发明实施例中镜头畸变中心标定设备的局部结构示意图一;
图3是本发明实施例中镜头畸变中心标定设备的局部结构示意图二。
标记说明:100、第一机架;110、横梁;120、安装座;130、第一驱动机构;140、旋转框架;150、标定板;160、第二驱动机构;170、工作台;180、圆弧型导轨;200、第二机架;210、镜头放置平台;220、滑动座;231、上安装板;232、下安装板;233、丝杆;234、套管;235、手轮;240、计算机;250、显示器。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
如图1-3所示,为本实施例中的镜头畸变中心标定设备,该镜头畸变中心标定设备包括旋转框架140、第一驱动机构130、第二驱动机构160,第一驱动机构130与旋转框架140连接,第一驱动机构130用于驱动旋转框架140转动,旋转框架140内设有标定板150,标定板150与旋转框架140通过转轴连接,第二驱动机构160与标定板150连接,第二驱动机构160用于驱动标定板150相对旋转框架140转动,标定板150的前端设有镜头放置平台210,用于放置镜头,在本实施例中,第一驱动机构130和第二驱动机构160均包括旋转电机。
该镜头畸变中心标定设备还包括第一机架100,第一机架100上设有横梁 110,横梁110上固定有安装座120,第一驱动机构130与安装座120固定连接。
优选的,旋转框架140底部设有圆弧型导轨180,旋转框架140的底部与圆弧形导轨180滑动连接,圆弧形导轨180的中心与旋转框架140的旋转轴在同一条直线上,第一驱动机构130用于驱动旋转框架在圆弧形导轨180上转动,即沿竖直方向旋转。可增加旋转框架140在转动时的稳定性。
在本实施例中,标定板150包括棋盘格层、AR玻璃和面板光源,AR玻璃固定于面板光源上,棋盘格层采用3M双面胶压合在AR玻璃上,保证棋盘格层的平整度,AR玻璃包括钢化玻璃和镀在钢化玻璃上的AR膜,其作用是增大透射率减少反射率。
该镜头畸变中心标定设备还包括第二机架200,第二机架200上设有滑动座220,滑动座220上设有升降机构,该升降机构包括上安装板231、下安装板232、套管233、丝杆234和手轮235,套管233和丝杆234设于安装板231和下安装板232之间,套管234和丝杆233均从竖直方向贯穿镜头放置平台210,套管234与镜头放置平台210之间设有间隙,套管234用于与丝杆233配合在水平方向限制镜头放置平台210,手轮235与丝杆234连接,手轮235可带动丝杆234转动,丝杆234带动镜头放置平台210升降。
第二机架200上还设有计算机240和显示器250,第一驱动机构130、第二驱动机构160和待测镜头均与计算机240连接,计算机240用于控制第一驱动机构130和第二驱动机构160转动,并控制待测镜头进行拍摄,并根据拍摄的图片计算出待测镜头的畸变中心。
本实施例还公开了以下镜头畸变中心标定分法,应用于上述标定设备,其包括以下步骤:
S1、将镜头标定设备置于暗室中,将待测镜头置于镜头放置平台上;
在暗室环境测试时,可以有效减少环境反光,保证计算结果稳定性,避免环境光或固定光源反光对计算结果造成影响。
S2、通过第一驱动机构和第二驱动机构调节标定板与待测镜头的相对位置,并控制待测镜头进行拍摄;
具体的,第一驱动机构、第二驱动机构和待测镜头均与计算机连接,通过 计算机控制第一驱动机构和第二驱动机构转动,通过计算机控制待测镜头进行拍摄。优选的,计算机控制第一驱动机构和第二驱动机构转动,将标定板调整至预定位置,该预定位置至少三个,并存储在计算机中,在本实施例中,该预定位置为25个,由待测镜头拍摄25张照片。可实现批量标定,标定精度高,标定效率高。
S3、根据拍摄的图片计算出待测镜头的畸变中心。
具体的,使用matlab或opencv计算出待测镜头的畸变中心。
本发明的镜头畸变中心标定设备通过第一驱动机构驱动旋转框架转动,并在旋转框架内设置标定板,标定板旋转框架通过转轴连接,设置第二驱动机构用于驱动标定板相对旋转框架转动,在标定板的前端设有镜头放置平台。可通过第一驱动机构和第二驱动机构配合,调整标定板与镜头之间的相对位置,便于镜头获取不同的照片,以实现对镜头畸变的标定。
以上实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (10)

  1. 一种镜头畸变中心标定设备,其特征在于:包括旋转框架、第一驱动机构、第二驱动机构,所述第一驱动机构与旋转框架连接,所述第一驱动机构用于驱动所述旋转框架转动,所述旋转框架内设有标定板,所述标定板与所述旋转框架通过转轴连接,所述第二驱动机构与标定板连接,所述第二驱动机构用于驱动所述标定板相对所述旋转框架转动,所述标定板的前端设有镜头放置平台,用于放置镜头。
  2. 如权利要求1所述的镜头畸变中心标定设备,其特征在于,所述旋转框架底部设有圆弧型导轨,所述旋转框架的底部与所述圆弧形导轨滑动连接,所述圆弧形导轨的中心与所述旋转框架的旋转轴在同一条直线上,所述第一驱动机构用于驱动所述旋转框架在所述圆弧形导轨上转动。
  3. 如权利要求1所述的镜头畸变中心标定设备,其特征在于,所述标定板包括棋盘格层、AR玻璃和面板光源,所述AR玻璃固定于面板光源上,所述棋盘格层压合在AR玻璃上。
  4. 如权利要求3所述的镜头畸变中心标定设备,其特征在于,所述棋盘格层与AR玻璃之间设有双面胶。
  5. 如权利要求4所述的镜头畸变中心标定设备,其特征在于,所述AR玻璃包括钢化玻璃和镀在钢化玻璃上的AR膜。
  6. 如权利要求1所述的镜头畸变中心标定设备,其特征在于,还包括升降机构,所述升降机构用于调节所述镜头放置平台的高度。
  7. 如权利要求6所述的镜头畸变中心标定设备,其特征在于,所述升降机构包括套管、丝杆和手轮,所述套管和丝杆均从竖直方向贯穿所述镜头放置平台,所述手轮与丝杆连接,所述手轮带动丝杆转动,所述丝杆调节所述镜头放置平台的高度。
  8. 如权利要求1所述的镜头畸变中心标定设备,其特征在于,所述镜头放置平台底部设有滑动座,所述滑动座用于调节所述镜头放置平台到所述标定板之间的距离。
  9. 如权利要求1所述的镜头畸变中心标定设备,其特征在于,所述第一驱 动机构和第二驱动机构均包括旋转电机。
  10. 一种镜头畸变中心标定方法,应用于上述权利要求1-9任一所述的标定设备,其特征在于,包括以下步骤:
    将所述镜头标定设备置于暗室中,将待测镜头置于镜头放置平台上;
    通过第一驱动机构和第二驱动机构调节标定板与待测镜头的相对位置,并控制待测镜头进行拍摄;
    根据拍摄的图片计算出待测镜头的畸变中心。
PCT/CN2019/120837 2018-12-18 2019-11-26 一种镜头畸变中心标定设备及方法 WO2020125336A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/297,175 US11828674B2 (en) 2018-12-18 2019-11-26 Device and method for calibrating lens distortion center

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811549243.5 2018-12-18
CN201811549243.5A CN109448063A (zh) 2018-12-18 2018-12-18 一种镜头畸变中心标定设备及方法

Publications (1)

Publication Number Publication Date
WO2020125336A1 true WO2020125336A1 (zh) 2020-06-25

Family

ID=65558785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/120837 WO2020125336A1 (zh) 2018-12-18 2019-11-26 一种镜头畸变中心标定设备及方法

Country Status (3)

Country Link
US (1) US11828674B2 (zh)
CN (1) CN109448063A (zh)
WO (1) WO2020125336A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115318904A (zh) * 2022-08-18 2022-11-11 浙江东宇电气股份有限公司 一种高压配电柜生产成型设备及工艺

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109448063A (zh) * 2018-12-18 2019-03-08 苏州艾微视图像科技有限公司 一种镜头畸变中心标定设备及方法
CN115016219B (zh) * 2022-05-30 2024-03-22 深圳市新四季信息技术有限公司 一种用于镜头调焦的测试装置
CN115390158B (zh) * 2022-09-08 2024-01-05 齐鲁工业大学 一种超声测井仪换能器标定装置及标定方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120169885A1 (en) * 2010-12-31 2012-07-05 Altek Corporation Camera Lens Calibration System
CN105654502A (zh) * 2016-03-30 2016-06-08 广州市盛光微电子有限公司 一种基于多镜头多传感器的全景相机标定装置和方法
CN106846415A (zh) * 2017-01-24 2017-06-13 长沙全度影像科技有限公司 一种多路鱼眼相机双目标定装置及方法
CN109448063A (zh) * 2018-12-18 2019-03-08 苏州艾微视图像科技有限公司 一种镜头畸变中心标定设备及方法
CN209000071U (zh) * 2018-12-18 2019-06-18 苏州艾微视图像科技有限公司 一种镜头畸变中心标定设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101052857A (zh) * 2005-03-07 2007-10-10 日本板硝子株式会社 透光性面板的透视变形检测装置以及检测方法
JP2008288869A (ja) * 2007-05-17 2008-11-27 Konica Minolta Holdings Inc キャリブレーション装置、キャリブレーション方法及びプログラム
CN101526336B (zh) * 2009-04-20 2011-08-24 陈炳生 基于量块的线结构光三维视觉传感器标定方法
CN103439230B (zh) * 2013-09-13 2015-07-01 山东省科学院海洋仪器仪表研究所 一种气泡参数测量方法及测量装置
CN106548477B (zh) * 2017-01-24 2019-03-29 长沙全度影像科技有限公司 一种基于立体标定靶的多路鱼眼相机标定装置及方法
CN206772290U (zh) * 2017-04-18 2017-12-19 南京工业职业技术学院 一种光电式全景三维测量仪
CN107808400B (zh) * 2017-10-24 2021-11-26 上海交通大学 一种摄像机标定系统及其标定方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120169885A1 (en) * 2010-12-31 2012-07-05 Altek Corporation Camera Lens Calibration System
CN105654502A (zh) * 2016-03-30 2016-06-08 广州市盛光微电子有限公司 一种基于多镜头多传感器的全景相机标定装置和方法
CN106846415A (zh) * 2017-01-24 2017-06-13 长沙全度影像科技有限公司 一种多路鱼眼相机双目标定装置及方法
CN109448063A (zh) * 2018-12-18 2019-03-08 苏州艾微视图像科技有限公司 一种镜头畸变中心标定设备及方法
CN209000071U (zh) * 2018-12-18 2019-06-18 苏州艾微视图像科技有限公司 一种镜头畸变中心标定设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115318904A (zh) * 2022-08-18 2022-11-11 浙江东宇电气股份有限公司 一种高压配电柜生产成型设备及工艺
CN115318904B (zh) * 2022-08-18 2023-11-17 浙江东宇电气股份有限公司 一种高压配电柜生产成型设备及工艺

Also Published As

Publication number Publication date
US20220028044A1 (en) 2022-01-27
CN109448063A (zh) 2019-03-08
US11828674B2 (en) 2023-11-28

Similar Documents

Publication Publication Date Title
WO2020125336A1 (zh) 一种镜头畸变中心标定设备及方法
KR101225443B1 (ko) 회전가능한 원호형 카메라 프레임를 이용하여 제품의 변형량을 측정하는 장치 및 이를 이용한 변형량 측정 방법
CN110398849B (zh) 一种液晶显示屏光学检测系统
WO2019090821A1 (zh) 基板检查设备及基板检查方法
CN204287670U (zh) 偏光片视觉对位装置
CN112261246B (zh) 一种自动摄影方法及其相应的摄影装置
CN108489715A (zh) 一种面板的自动光学检测设备
CN209000071U (zh) 一种镜头畸变中心标定设备
CN203101022U (zh) 一种中继镜检测装置
CN218865752U (zh) 一种视觉检测平台
US11300507B2 (en) Optical measurement device and method
CN207066342U (zh) 一种精度测量治具
CN214306249U (zh) 一种用于电影屏幕清晰度调节的双机结合装置
WO2022099583A1 (zh) 一种基于自适应远心镜头的光学检测系统
CN108594495A (zh) 一种全角度lcd宏观检查机
TW201833534A (zh) 面板點燈檢查裝置
CN114088354A (zh) 一种电子后视镜测试系统
CN203672337U (zh) 一种红外探测器灵敏面偏心测量仪
CN218972272U (zh) 一种产品多角度视觉检测装置
CN206695747U (zh) 一种大视野影像测量仪
JP2001059795A5 (zh)
CN220018728U (zh) 一种大视角下显示屏反射图片采集装置
TWI408352B (zh) 光學特性量測裝置
CN220626237U (zh) 一种外观检测装置
CN215525559U (zh) 一种防窥膜检测设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19899273

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19899273

Country of ref document: EP

Kind code of ref document: A1