WO2020114304A1 - 一种混合无线网络及工作方法 - Google Patents

一种混合无线网络及工作方法 Download PDF

Info

Publication number
WO2020114304A1
WO2020114304A1 PCT/CN2019/121502 CN2019121502W WO2020114304A1 WO 2020114304 A1 WO2020114304 A1 WO 2020114304A1 CN 2019121502 W CN2019121502 W CN 2019121502W WO 2020114304 A1 WO2020114304 A1 WO 2020114304A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
radio frequency
signal
wireless network
energy
Prior art date
Application number
PCT/CN2019/121502
Other languages
English (en)
French (fr)
Inventor
刘竞升
龚世民
王晓东
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Publication of WO2020114304A1 publication Critical patent/WO2020114304A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/401Circuits for selecting or indicating operating mode

Definitions

  • the invention belongs to the technical field of wireless communication, and in particular relates to a hybrid wireless network and a working method.
  • wireless communication is becoming more and more popular.
  • many scholars are devoted to studying wireless sensors.
  • wireless sensors which can detect various physical quantities such as earthquake, electromagnetic, temperature, humidity, noise, light intensity, pressure, speed and direction of moving objects. Therefore, the application fields of wireless sensors include: military, aviation, environmental, medical, health care, household, industrial and other fields.
  • Wireless sensors need to replace the battery every specific time. This brings many problems to the operation and maintenance of wireless sensors.
  • Traditional wireless sensors mostly use traditional active communication methods (for example: WiFi, Bluetooth communication, etc.), where the communication module actively generates high-frequency local carrier signals, and then modulates the data to be transmitted into high-frequency carrier signals. The modulated high-frequency carrier signal will propagate outward through the antenna.
  • This active communication process requires digital-to-analog converters, microcontrollers, power amplifiers, etc. to work together, so the energy consumption of the entire communication process is very high.
  • the present invention proposes a hybrid wireless network that simultaneously integrates radio frequency energy collection and backscatter communication functions.
  • the network can autonomously collect radio frequency energy, thus not
  • the use of batteries to power the operation of the system not only simplifies the design of the system hardware, but also makes the system maintenance-free for a long time.
  • the technical solution for solving the above problems of the present invention is: a hybrid wireless network, and its special features are:
  • antenna module Including antenna module, first RF switch array, matching impedance module, backscattering impedance module, second RF switch array, data collection module, energy collection module, data transmission module, energy storage unit, single chip and protection circuit module;
  • the antenna module is connected to or disconnected from one end of the matching impedance module and the backscattering impedance module through the first radio frequency switch array; the other end of the matching impedance module and the backscattering impedance module can be connected to the data through the second radio frequency switch array, respectively One end of the collection module, energy collection module, and data transmission module is connected or disconnected; the other end of the data collection module, energy collection module, and data transmission module are respectively connected to the energy storage unit; the single chip microcomputer and the protection circuit module are respectively connected to the first radio frequency switch array , A second radio frequency switch array, a data collection module, a data transmission module, and an energy storage unit;
  • the antenna module is used for transmitting electromagnetic wave signals and receiving electromagnetic wave signals
  • the function of the matched impedance module is to match the output impedance of the antenna module with the input impedance of the energy collection module;
  • the function of the data collection module is to demodulate the data carried in the radio frequency signal and further perform filtering processing to remove the noise contained in the data. If the demodulated data is an analog signal, then the data collection module should convert it into a digital signal and record the data into the microcontroller. If the demodulated data itself is a digital signal, relevant digital signal processing should be done and the data should be recorded into the single chip microcomputer;
  • the function of the energy collection module is to convert the radio frequency signal into a direct current signal
  • the role of the data transmission module is to send data out
  • the energy storage unit module is used to store the collected radio frequency energy and supply energy to the entire hybrid wireless network
  • the single-chip module is used to control and optimize the entire system; the protection circuit module realizes real-time monitoring and protection of the working state of the entire hybrid wireless network.
  • the above energy harvesting module includes an RF-DC rectifier, a filter circuit and a voltage stabilizing circuit.
  • the data transmission module includes a digital-to-analog converter.
  • the backscattering load impedance includes N load impedance arrays with different impedance values.
  • the above backscattering load impedance includes two types of load impedances, and the two types of load impedances are Z 0 and Z 1, respectively .
  • the present invention also proposes a working method of the foregoing hybrid wireless network, which is special in that it includes a radio frequency energy collection step and a backscatter communication step:
  • the radio frequency energy collection step includes:
  • the antenna receives the radio frequency signal in the environmental space and converts it into a high-frequency analog electrical signal
  • the matched impedance module maximizes the energy of the received RF signal
  • the energy harvesting module converts radio frequency electrical signals into direct current electrical signals
  • the direct current signal charges the energy storage unit to realize energy collection
  • the backscatter communication step includes:
  • the single-chip microcomputer is used to control the on and off of the first RF array switch, so that the antenna module is connected to the load impedance Z 0.
  • the RF signal is transmitted to the antenna module of the hybrid wireless network, it is reflected back
  • the signal is:
  • V ref0 ⁇ 0 V in ;
  • V in represents the incident signal
  • ⁇ 0 is the load impedance Z corresponding to the antenna reflection coefficient is 0;
  • the single-chip microcomputer is used to control the on and off of the first radio frequency array switch, so that the antenna module is connected to the load impedance Z 1 , and when the radio frequency signal (environmental radio frequency signal or radio frequency signal of a specific radio frequency signal source) is transmitted After going to the antenna of the hybrid wireless network, the signal reflected back is:
  • V ref1 ⁇ 1 V in ;
  • V in represents the incident signal
  • ⁇ 1 is the antenna reflection coefficient corresponding to the load impedance Z 1 ;
  • the backscatter receiver judges the received signal. If the received signal is V ref0 , the corresponding data is "0"; if the received signal is V ref1 , the corresponding data is "1" .
  • a hybrid wireless network of the present invention integrates radio frequency energy collection and backscatter communication functions into the same system at the same time.
  • the hybrid wireless network can dynamically change its working mode, thereby The flexibility of the system is greatly increased, so it can be applied to more different application scenarios, such as: cognitive backscatter communication; single-layer backscatter communication; backscatter and active communication between devices; Backscatter relay communication; the present invention achieves self-sustainable supply of energy (ie, "passive") through the radio frequency energy collection function, and achieves a significant reduction in energy consumption in the communication process through backscatter communication.
  • FIG. 1 is a structural diagram of a hybrid wireless network of the present invention.
  • a hybrid wireless network includes an antenna module, a first RF switch array, a matching impedance module, a backscattering impedance module, a second RF switch array, a data collection module, an energy collection module, a data transmission module, and energy storage Unit, single chip and protection circuit module.
  • the first radio frequency switch array is the switch array B in FIG. 1
  • the second radio frequency switch array is the switch array S in FIG. 1.
  • the antenna module is connected to or disconnected from one end of the matching impedance module and the backscattering impedance module through the first radio frequency switch array; One end of the collection module, energy collection module, and data transmission module is connected or disconnected; the other end of the data collection module, energy collection module, and data transmission module are respectively connected to the energy storage unit; the single chip microcomputer and the protection circuit module are respectively connected to the first radio frequency switch array , A second radio frequency switch array, a data collection module, a data transmission module, and an energy storage unit.
  • the antenna module is used for transmitting electromagnetic wave signals and receiving electromagnetic wave signals.
  • the antenna module as a transmitting antenna can convert high-frequency currents or guided waves into radio waves, that is, free electromagnetic waves, and the generated free electromagnetic waves can be radiated to the surrounding space.
  • the antenna module When the antenna module is used as a receiving antenna, it can convert the received electromagnetic wave into a high-frequency current, thereby absorbing the energy of the electromagnetic wave or receiving the data carried in the electromagnetic wave.
  • the design of the antenna is generally different. Therefore, the antenna in the hybrid wireless network should be specially designed according to the specific operating frequency.
  • the function of the matched impedance module is to match the impedance of the antenna module with the input impedance of the energy collection module.
  • the impedances of the two match each other, the high-frequency analog electrical signal output from the antenna module can be completely transmitted to the energy storage module without generating any reflected voltage, thereby obtaining maximum energy.
  • the backscatter load impedance module is parallel to the matched impedance module.
  • This module contains two load impedances Z 0 and Z 1 .
  • the embodiment of the present invention is directed to two-state communication, that is, only two types of data ("0" and "1") can be transmitted during the communication process.
  • the backscatter load impedance module can also be set to a load impedance array (Z 0 , Z 1 , ..., Z N-1 ) containing N different impedance values.
  • the function of the data collection module is to extract the data carried in the radio frequency signal and convert it into a digital electrical signal. After processing by the module, the information contained in the radio frequency signal is converted into digital electrical signals, and these digital electrical signals are stored in the single-chip microcomputer.
  • the function of the energy collection module is to convert the radio frequency signal into a direct current signal.
  • the energy harvesting module includes hardware circuits such as RF-DC rectifiers, filter circuits and voltage stabilizing circuits.
  • the role of the data transmission module is to send data out.
  • the digital signal from the single-chip microcomputer is modulated onto the carrier signal in this module.
  • the generated carrier signal carries the information that needs to be transmitted. It will be transmitted out through the antenna to realize the active communication process.
  • This module will contain hardware circuits such as digital-to-analog converters.
  • the energy storage unit module is used to store the collected radio frequency energy and supply energy to the entire hybrid wireless network.
  • the energy storage module can also be equipped with a power management circuit, so that the power in the system can be well managed.
  • the SCM module is used to control and optimize the entire system, and its work is provided by the energy storage module.
  • the single-chip module must have high-speed data processing capability, and can quickly select the corresponding operation according to the situation; the protection circuit module realizes real-time monitoring and protection of the working state of the entire hybrid wireless network.
  • the hybrid wireless network can receive 10 milliwatts of power within 1 meter.
  • the network can also achieve two-way backscatter communication at 100 kbps and a distance of 1 meter.
  • the present invention also provides a working method of the above-mentioned hybrid wireless network, which includes a radio frequency energy collection step and a backscatter communication step:
  • the radio frequency energy collection step includes:
  • the digital output port of the single-chip microcomputer module is connected to the signal access ports of the first radio frequency switch array and the second radio frequency switch array, and the single chip computer outputs digital signals with a certain magnitude to control the first radio frequency switch array and the second radio frequency switch array.
  • the RF switch array B and the RF switch array S are switched to: B 1 and S 2 , and the antenna module, the matched impedance module, the energy collection module and the energy storage unit are connected;
  • the antenna receives radio frequency signals in the environmental space (for example: base station signals, WiFi hotspot signals, television signals) and converts them into high-frequency analog electrical signals; if the hybrid wireless network collects it from a special radio frequency signal source RF signal, then the antenna needs to be designed according to the frequency of the RF signal sent by the signal source. When the RF signal emitted by the special RF signal source reaches the antenna, it will also be converted into a high-frequency analog electrical signal by the antenna.
  • radio frequency signals in the environmental space for example: base station signals, WiFi hotspot signals, television signals
  • step 1.3) The high-frequency analog electrical signal obtained from step 1.2) will pass through the matched impedance module to the energy collection module, and the matched impedance module maximizes the energy of the analog electrical signal that reaches the energy collection module.
  • the energy collection module converts the arrival of the analog electrical signal into a DC electrical signal
  • the direct current signal charges the energy storage unit to realize energy collection
  • Backscatter communication can be carried out using special radio frequency signals or environmental radio frequency signals (for example: WiFi signals, base station signals, etc.).
  • the backscatter communication step includes:
  • the digital output port of the MCU module is connected to the signal access ports of the first RF switch array and the second RF switch array.
  • the MCU controls the RF switch array B to switch between B 2 and B 3 by outputting a digital signal with a specific amplitude And disconnect the RF switch array S (without touching any contact);
  • the single-chip microcomputer is used to control the on and off of the first RF array switch, so that the antenna module is connected to the load impedance Z 0 , and when the RF signal is transmitted to the antenna module of the hybrid wireless network, it is reflected back outward
  • the signal is:
  • V ref0 ⁇ 0 V in ;
  • V in represents the incident signal
  • ⁇ 0 is the load impedance Z corresponding to the antenna reflection coefficient is 0;
  • the single-chip microcomputer is used to control the on and off of the first radio frequency array switch, so that the antenna module is connected to the load impedance Z 1 , and when the radio frequency signal (environmental radio frequency signal or radio frequency signal of a specific radio frequency signal source) is transmitted After going to the antenna of the hybrid wireless network, the signal reflected back is:
  • V ref1 ⁇ 1 V in ;
  • V in represents the incident signal
  • ⁇ 1 is the antenna reflection coefficient corresponding to the load impedance Z 1 ;
  • the backscatter receiver judges the received signal, if the received signal is V ref0 , the corresponding data is "0"; if the received signal is V ref1 , the corresponding data is "1" .
  • the hybrid wireless network achieves passive communication of data.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Transceivers (AREA)

Abstract

一种混合无线网络及工作方法,该混合无线网络包含天线模块、第一射频开关阵列、匹配阻抗模块、反向散射阻抗模块、第二射频开关阵列、数据收集模块、能量收集模块、数据发射模块、能量存储单元、单片机及保护电路模块。把射频能量收集和反向散射通信功能同时集成于同一系统中,通过控制射频开关阵列的切换,混合无线网络能够动态地改变其工作模式,从而系统的灵活性大大增加,因此能够被应用到更多的不同的应用场景上;该混合无线网络及工作方法,通过射频能量收集功能实现了能量的自我可持续供应,并且通过反向散射通信实现了通信过程能耗的大大降低。

Description

一种混合无线网络及工作方法 技术领域
本发明属于无线通信技术领域,具体涉及一种混合无线网络及工作方法。
背景技术
近来,无线通信的应用越来越普及。其中,很多学者致力于研究无线传感器。无线传感器包括很多类型,它可以探测地震、电磁、温度、湿度、噪声、光强度、压力、移动物体的速度和方向等多种多样的物理量。因此无线传感器的应用领域包括:军事、航空、环境、医疗、保健、家居、工业等领域。
现有的无线传感器依靠电池供电来维持正常工作。
因此,这些无线传感器需要每隔特定的时间更换电池。这给无线传感器运行维护带来很多问题。传统的无线传感器多采用传统的主动通信方式(例如:WiFi,蓝牙通信等),其中的通信模块主动产生高频的本地载波信号,然后把要传输的数据调制到高频的载波信号中。经过调制的高频载波信号会经过天线向外传播出去。这个主动通信过程需要数模转换器、微控制器、功率放大器等协同工作,所以整个通信的过程能耗十分高。
目前,无线通信网络的能量供应与运行功耗都是很重要的问题,很多学者都朝着改善能量供应与降低系统运行功耗的方向努力。
发明内容
为解决上述背景技术中存在的问题,本发明提出一种混合无线网络,同时集成了射频能量收集与反向散射通信功能,通过集成射频能量收集功能,该网络能够自主地收集射频能量,从而不需要使用电池来给系统的运行进行供电,这既简化了系统硬件的设计,也使得系统能够长期免于维护。
本发明解决上述问题的技术方案是:一种混合无线网络,其特殊之处在于:
包含天线模块、第一射频开关阵列、匹配阻抗模块、反向散射阻抗模块、第二射频开关阵列、数据收集模块、能量收集模块、数据发射模块、能量存储 单元、单片机及保护电路模块;
所述天线模块通过第一射频开关阵列分别与匹配阻抗模块、反向散射阻抗模块的一端连接或断开;匹配阻抗模块、反向散射阻抗模块的另一端可通过第二射频开关阵列分别与数据收集模块、能量收集模块、数据发射模块的一端连接或断开;数据收集模块、能量收集模块、数据发射模块的另一端分别与能量存储单元连接;单片机及保护电路模块分别与第一射频开关阵列、第二射频开关阵列、数据收集模块、数据发射模块、能量存储单元连接;
所述天线模块用于发射电磁波信号和接收电磁波信号;
匹配阻抗模块的作用是使天线模块的输出阻抗与能量收集模块的输入阻抗相匹配;
数据收集模块的作用是解调出射频信号中所携带的数据,并且进一步作滤波处理,除去数据中包含的噪音。如果解调出来的数据是模拟信号,那么数据收集模块要把它转换为数字信号,并把数据录入到单片机中。如果解调出来的数据本身是数字信号,则要作相关的数字信号处理,并把数据录入到单片机中;
能量收集模块的作用是把射频信号转化成直流电信号;
数据发射模块的作用是把数据向外发送;
能量存储单元模块用于存储收集到的射频能量,并给整个混合无线网络供应能量;
单片机模块用于控制并优化整个系统;保护电路模块实现对整个混合无线网络工作状态的实时监控与保护。
进一步地,上述能量收集模块包括射频-直流整流器、滤波电路和稳压电路。
进一步地,上述数据发射模块包括数模转换器。
进一步地,上述反向散射负载阻抗包括N个不同阻抗值的负载阻抗阵列。
进一步地,上述反向散射负载阻抗包括两种负载阻抗,两种负载阻抗分别为Z 0和Z 1
另外,本发明还提出一种上述混合无线网络的工作方法,其特殊之处在于,包括射频能量收集步骤和反向散射通信步骤:
所述射频能量收集步骤包括:
1.1)利用单片机模块控制第一射频开关阵列和第二射频开关阵列的通断,使天线模块、匹配阻抗模块、能量收集模块和能量存储单元连接;
1.2)天线接收环境空间中的射频信号,并转化成高频的模拟电信号;
1.3)匹配阻抗模块使得接收到的射频信号的能量最大化;
1.4)能量收集模块将射频电信号转化为直流电信号;
1.5)直流电信号对能量存储单元充电,实现了能量收集;
所述反向散射通信步骤包括:
2.1)利用单片机模块控制第二射频开关阵列全部断开;
若要传输的数据是“0”,利用单片机控制第一射频阵列开关的通断,使天线模块与负载阻抗Z 0相连接,当射频信号传送至混合无线网络的天线模块后,向外反射回去的信号是:
V ref0=η 0V in
其中,V in表示入射信号,η 0是对应于负载阻抗Z 0的天线反射系数;
若要传输的数据是“1”,利用单片机控制第一射频阵列开关的通断,使天线模块与负载阻抗Z 1相连接,当射频信号(环境射频信号或者特定射频信号源的射频信号)传送至混合无线网络的天线后,反射回去的信号是:
V ref1=η 1V in
其中,V in表示入射信号,η 1是对应于负载阻抗Z 1的天线反射系数;
2.2)反向散射接收器对接收到的信号进行判断,若接收到的信号为V ref0,则相应的数据是“0”;若接收到的信号为V ref1,则相应的数据是“1”。
本发明的优点:本发明一种混合无线网络,把射频能量收集和反向散射通信功能同时集成于同一系统中,通过控制射频开关阵列的切换,混合无线网络能够动态地改变其工作模式,从而系统的灵活性大大增加,因此能够被应用到 更多的不同的应用场景上,如:认知反向散射通信;单层反向散射通信;设备与设备间的反向散射与主动通信;反向散射中继通信;本发明通过射频能量收集功能实现了能量的自我可持续供应(亦即“无源化”),并且通过反向散射通信实现了通信过程能耗的大大降低。
附图说明
图1为本发明混合无线网络结构图。
具体实施方式
为使本发明实施方式的目的、技术方案和优点更加清楚,下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。因此,以下对在附图中提供的本发明的实施方式的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施方式。基于本发明中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。
参见图1,一种混合无线网络,包含天线模块、第一射频开关阵列、匹配阻抗模块、反向散射阻抗模块、第二射频开关阵列、数据收集模块、能量收集模块、数据发射模块、能量存储单元、单片机及保护电路模块。
所述第一射频开关阵列为图1中的开关阵列B,第二射频开关阵列为图1中的开关阵列S。
所述天线模块通过第一射频开关阵列分别与匹配阻抗模块、反向散射阻抗模块的一端连接或断开;匹配阻抗模块、反向散射阻抗模块的另一端可通过第二射频开关阵列分别与数据收集模块、能量收集模块、数据发射模块的一端连接或断开;数据收集模块、能量收集模块、数据发射模块的另一端分别与能量存储单元连接;单片机及保护电路模块分别与第一射频开关阵列、第二射频开 关阵列、数据收集模块、数据发射模块、能量存储单元连接。
所述天线模块用于发射电磁波信号和接收电磁波信号。在主动通信过程中,天线模块作为发射天线能够把高频的电流或导波转变为无线电波,亦即自由电磁波,产生的自由电磁波能够向空间周围辐射。当天线模块作为接收天线的时候,它能够把接收到的电磁波转化成高频电流,从而吸收电磁波的能量或者接收电磁波中携带的数据。对于不同频率的电磁波信号,天线的设计一般不同。因此,混合无线网络中的天线应该根据具体的工作频率专门设计。
匹配阻抗模块的作用是使天线模块的阻抗与能量收集模块的输入阻抗相匹配。当两者的阻抗相互匹配时,从天线模块中输出的高频模拟电信号则能够完全传递到能量存储模块中,不产生任何的反射电压,从而获得最大的能量。
反向散射负载阻抗模块与匹配阻抗模块位置相平行,该模块包含两种负载阻抗Z 0和Z 1。本发明实施例中针对二状态通信,即通信过程只能传输两种类型的数据(“0”和“1”)。根据应用场景的不同,反向散射负载阻抗模块也可以被设置成包含N个不同阻抗值的负载阻抗阵列(Z 0,Z 1,…,Z N-1)。
数据收集模块的作用是提取射频信号中所携带的数据,并转换成数字电信号。经过该模块的处理,射频信号中包含的信息被转换成数字电信号,这些数字电信号会被存储到单片机中。
能量收集模块的作用是把射频信号转化成直流电信号。能量收集模块包括射频-直流整流器、滤波电路和稳压电路等硬件电路。
数据发射模块的作用是把数据向外发送。来自于单片机的数字信号在此模块中被调制到载波信号上,产生的载波信号携带了需要传送的信息,它会经过天线向外发射,实现主动通信过程。该模块中会包含数模转换器等硬件电路。
能量存储单元模块用于存储收集到的射频能量,并给整个混合无线网络供应能量。能量存储模块中还可以具备电能管理电路,从而使得系统中的电能能够被很好地管理。
单片机模块用于控制并优化整个系统,它的工作由能量存储模块提供能量。该单片机模块必须具备高速的数据处理能力,而且能够根据情况快速选择相应的操作;保护电路模块实现对整个混合无线网络工作状态的实时监控与保护。
本实验经过仿真与实验的验证,证实该混合无线网络能够在1米范围内接收10毫瓦的功率。与此同时,该网络也可以实现100kbps、距离为1米的双向反向散射通信。
另外,本发明还提出一种上述混合无线网络的工作方法,包括射频能量收集步骤和反向散射通信步骤:
所述射频能量收集步骤包括:
1.1)单片机模块的数字输出端口与第一射频开关阵列和第二射频开关阵列的信号接入端口连接,单片机会输出具有一定幅度大小的数字信号控制第一射频开关阵列和第二射频开关阵列的通断,使得射频开关阵列B和射频开关阵列S切换至:B 1和S 2,使天线模块、匹配阻抗模块、能量收集模块和能量存储单元连接;
1.2)天线接收环境空间中的射频信号(例如:基站信号,WiFi热点信号,电视机信号),并转化成高频的模拟电信号;若混合无线网络收集的是从专门射频信号源中发出的射频信号,那么天线需要根据该信号源发出的射频信号的频率进行设计。当专门射频信号源发出的射频信号到达天线后,它也会被天线转化成高频的模拟电信号。
1.3)从步骤1.2)中获取的高频模拟电信号会经过匹配阻抗模块到达能量收集模块,匹配阻抗模块使得到达能量收集模块的模拟电信号的能量最大。
1.4)能量收集模块将模拟电信号到达转化成直流电信号;
1.5)直流电信号对能量存储单元充电,实现了能量收集;
反向散射通信可以利用专门射频信号或者环境射频信号(例如:WiFi信号、基站信号等)来进行。所述反向散射通信步骤包括:
2.1)单片机模块的数字输出端口与第一射频开关阵列和第二射频开关阵列的信号接入端口相连接,单片机通过输出具有特定幅度的数字信号控制射频开关阵列B切换于B 2和B 3之间,并断开射频开关阵列S(不接触到任何一个触点);
若要传输的数据是“0”,利用单片机控制第一射频阵列开关的通断,使天线模块与负载阻抗Z 0相连接,当射频信号传送至混合无线网络的天线模块后,向外反射回去的信号是:
V ref0=η 0V in
其中,V in表示入射信号,η 0是对应于负载阻抗Z 0的天线反射系数;
若要传输的数据是“1”,利用单片机控制第一射频阵列开关的通断,使天线模块与负载阻抗Z 1相连接,当射频信号(环境射频信号或者特定射频信号源的射频信号)传送至混合无线网络的天线后,反射回去的信号是:
V ref1=η 1V in
其中,V in表示入射信号,η 1是对应于负载阻抗Z 1的天线反射系数;
2.2)反向散射接收器对接收到的信号进行判断,若接收到的信号为V ref0,则相应的数据是“0”;若接收到的信号为V ref1,则相应的数据是“1”。
通过反向散射通信过程,混合无线网络实现了数据的被动通信。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的系统领域,均同理包括在本发明的专利保护范围内。

Claims (6)

  1. 一种混合无线网络,其特征在于:
    包含天线模块、第一射频开关阵列、匹配阻抗模块、反向散射阻抗模块、第二射频开关阵列、数据收集模块、能量收集模块、数据发射模块、能量存储单元、单片机模块及保护电路模块;
    所述天线模块通过第一射频开关阵列分别与匹配阻抗模块、反向散射阻抗模块的一端连接或断开;匹配阻抗模块、反向散射阻抗模块的另一端可通过第二射频开关阵列分别与数据收集模块、能量收集模块、数据发射模块的一端连接或断开;数据收集模块、能量收集模块、数据发射模块的另一端分别与能量存储单元连接;单片机及保护电路模块分别与第一射频开关阵列、第二射频开关阵列、数据收集模块、数据发射模块、能量存储单元连接;
    所述天线模块用于发射电磁波信号和接收电磁波信号;
    匹配阻抗模块的作用是使天线模块的阻抗与能量收集模块的输入阻抗相匹配;
    数据收集模块的作用是提取射频信号中所携带的数据,并转换成数字电信号;
    能量收集模块的作用是把射频信号转化成直流电信号;
    数据发射模块的作用是把数据向外发送;
    能量存储单元模块用于存储收集到的射频能量,并给整个混合无线网络供应能量;
    单片机模块用于控制并优化整个系统;保护电路模块实现对整个混合无线网络工作状态的实时监控与保护。
  2. 根据权利要求1所述的一种混合无线网络,其特征在于:所述能量收集模块包括射频-直流整流器、滤波电路和稳压电路。
  3. 根据权利要求1所述的一种混合无线网络,其特征在于:所述数据发射模块包括数模转换器。
  4. 根据权利要求1至3任一所述的一种混合无线网络,其特征在于:所述反向散射负载阻抗包括N个不同阻抗值的负载阻抗阵列。
  5. 根据权利要求4所述的一种混合无线网络,其特征在于:所述反向散射负载阻抗包括两种负载阻抗,两种负载阻抗分别为Z 0和Z 1
  6. 一种混合无线网络的工作方法,其特征在于:所述包括射频能量收集步骤和反向散射通信步骤:
    所述射频能量收集步骤包括:
    1.1)利用单片机模块控制第一射频开关阵列和第二射频开关阵列的通断,使天线模块、匹配阻抗模块、能量收集模块和能量存储单元连接;
    1.2)天线接收环境空间中的射频信号,并转化成高频的模拟电信号;
    1.3)匹配阻抗模块使得模拟电信号的能量最大;
    1.4)能量收集模块将射频信号转化成直流电信号;
    1.5)直流电信号对能量存储单元充电,实现了能量收集;
    所述反向散射通信步骤包括:
    2.1)利用单片机模块控制第二射频开关阵列全部断开;
    若要传输的数据是“0”,利用单片机控制第一射频阵列开关的通断,使天线模块与负载阻抗Z 0相连接,当射频信号传送至混合无线网络的天线模块后,向外反射回去的信号是:
    V ref0=η 0V in
    其中,V in表示入射信号,η 0是对应于负载阻抗Z 0的天线反射系数;
    若要传输的数据是“1”,利用单片机控制第一射频阵列开关的通断,使天线模块与负载阻抗Z 1相连接,当射频信号(环境射频信号或者特定射频信号源的射频信号)传送至混合无线网络的天线后,反射回去的信号是:
    V ref1=η 1V in
    其中,V in表示入射信号,η 1是对应于负载阻抗Z 1的天线反射系数;
    2.2)反向散射接收器对接收到的信号进行判断,若接收到的信号为V ref0,则相应的数据是“0”;若接收到的信号为V ref1,则相应的数据是“1”。
PCT/CN2019/121502 2018-12-04 2019-11-28 一种混合无线网络及工作方法 WO2020114304A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811473052.5A CN109450478A (zh) 2018-12-04 2018-12-04 一种混合无线网络及工作方法
CN201811473052.5 2018-12-04

Publications (1)

Publication Number Publication Date
WO2020114304A1 true WO2020114304A1 (zh) 2020-06-11

Family

ID=65556279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121502 WO2020114304A1 (zh) 2018-12-04 2019-11-28 一种混合无线网络及工作方法

Country Status (2)

Country Link
CN (1) CN109450478A (zh)
WO (1) WO2020114304A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023003548A1 (en) * 2021-07-21 2023-01-26 Hewlett-Packard Development Company, L.P. Electrical energy harvesting from radio frequency signals

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109450478A (zh) * 2018-12-04 2019-03-08 中国科学院深圳先进技术研究院 一种混合无线网络及工作方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103714359A (zh) * 2013-07-25 2014-04-09 范志广 基于无线通信终端的射频识别方法及系统
US20150091706A1 (en) * 2013-09-30 2015-04-02 Sergey Chemishkian Real-time wireless power transfer control for passive backscattering devices
CN109450478A (zh) * 2018-12-04 2019-03-08 中国科学院深圳先进技术研究院 一种混合无线网络及工作方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9245158B2 (en) * 2012-04-05 2016-01-26 Ricoh Co., Ltd. Low power radio frequency communication

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103714359A (zh) * 2013-07-25 2014-04-09 范志广 基于无线通信终端的射频识别方法及系统
US20150091706A1 (en) * 2013-09-30 2015-04-02 Sergey Chemishkian Real-time wireless power transfer control for passive backscattering devices
CN109450478A (zh) * 2018-12-04 2019-03-08 中国科学院深圳先进技术研究院 一种混合无线网络及工作方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JENS MASUCH ET AL: "An RF-to-DC Energy Harvester for Co-integration in a Low-power 2.4 GHz Transceiver Frontend", 2012 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 23 May 2012 (2012-05-23), pages 680 - 683, XP055713252, ISBN: 978-1-4673-0217-3, DOI: 10.1109/ISCAS.2012.6272124 *
XIAO LU ET AL: "Ambient Backscatter Assisted Wireless Powered Communications", IEEE WIRELESS COMMUNICATIONS, vol. 25, no. 2, 1 April 2018 (2018-04-01), pages 170 - 177, XP011682898, ISSN: 1536-1284, DOI: 10.1109/MWC.2017.1600398 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023003548A1 (en) * 2021-07-21 2023-01-26 Hewlett-Packard Development Company, L.P. Electrical energy harvesting from radio frequency signals

Also Published As

Publication number Publication date
CN109450478A (zh) 2019-03-08

Similar Documents

Publication Publication Date Title
CN101359933B (zh) Dc线载波通信器
WO2020114304A1 (zh) 一种混合无线网络及工作方法
WO2020114305A1 (zh) 一种无源传感器、无源传感器系统以及工作方法
CN204030732U (zh) 一种基于nfc的无线充电装置
LU102101B1 (en) Visible light communication and energy collection system
CN104113145A (zh) 接收装置以及同时进行射频能量提取和数据通信方法
CN201878140U (zh) 低压电力线载波通信模块
CN201904628U (zh) 无线充电及网络整合装置
US11038553B2 (en) EMC inductor-free RF front-end method and topology with power by field function for an inductively coupled communication system
CN207910774U (zh) 电力线载波与无线双模式通信模块
CN216016858U (zh) 一种用于WiFi无线自组网的射频模块
CN204615817U (zh) 一种微功率无线模块
CN116247948A (zh) 一种通信整流协同的后向反馈整流电路
CN212909570U (zh) 一种多模式多信道无线网关
JPS6143026A (ja) 受信電界制御送信方式
CN212305326U (zh) 一种高度集成化的NB-IoT无线通信模块
Prasad et al. IoT based visible light communication system for biomedical application
CN213585771U (zh) 一种低耗电量的半双工收发信机
CN209930253U (zh) 一种射频信号单工收发电路
CN207427099U (zh) 一种l波段超宽带收发放大器
CN218547335U (zh) 一种远距离无线传输低功耗电路
CN211580132U (zh) 一种传感器采集信号的传输装置
CN207690495U (zh) 一种高灵敏度语音识别系统
CN115336188A (zh) 基于反向散射的遥控设备和环境信息采集设备
CN205566660U (zh) 用于中继式远程传输的数据链设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19892142

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/11/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19892142

Country of ref document: EP

Kind code of ref document: A1