WO2020108595A1 - Hot-rolled high-strength steel plate with high surface quality and low yield ratio and manufacturing method therefor - Google Patents
Hot-rolled high-strength steel plate with high surface quality and low yield ratio and manufacturing method therefor Download PDFInfo
- Publication number
- WO2020108595A1 WO2020108595A1 PCT/CN2019/121864 CN2019121864W WO2020108595A1 WO 2020108595 A1 WO2020108595 A1 WO 2020108595A1 CN 2019121864 W CN2019121864 W CN 2019121864W WO 2020108595 A1 WO2020108595 A1 WO 2020108595A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hot
- strength steel
- surface quality
- yield ratio
- steel sheet
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/04—Making ferrous alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
Definitions
- the invention belongs to automobile steel, and particularly relates to a hot-rolled high-strength steel plate with high surface quality and low yield ratio and a manufacturing method, and is particularly suitable for automobile exterior parts such as car wheels.
- Hot rolled steel plate is mainly used for car chassis, wheels, suspension and its surrounding parts, and its weight accounts for more than 25% of the total weight of the car body. Due to the increase in strength, the capacity of equipment used in the manufacture of many parts is also facing increased pressure. Therefore, it is hoped that materials with low yield strength and high tensile strength can be obtained to solve the contradictions faced. At the same time, many parts used in these parts have both appearance parts such as wheels and coated parts, which require good coatability of the steel plate surface.
- the traditional dual-phase steel has a structure of ferrite + martensite. It has a low yield ratio, no yield platform, high work hardening rate, high baking hardening, long fatigue life, good welding performance, etc. Excellent performance, in order to obtain the desired structure and good performance, usually add Si to the ingredients to expand the ferrite formation area. But at the same time, the addition of Si also caused the formation of sharp olivine crystals composed of FeO-Fe 2 SiO 4 on the surface of the hot-rolled steel sheet. This crystal cannot be removed cleanly during descaling, leaving the surface of the steel sheet in the rolling direction One by one "red iron sheet” defects, see Figure 1. Therefore, there is an urgent need for a steel grade that not only has the advantages of low yield ratio, high work hardening rate, etc. unique to dual-phase steel, but also has high surface quality to meet the requirements of the appearance and coating of automobile chassis and automobile wheels.
- Taiwanese patent TWI300443B proposes a hot-rolled steel plate manufacturing process with a composition of 0.01-0.08% C, Si ⁇ 0.9%, Mn 0.5-1.6%, A1 1.2%, Cr 0.3-1.2%, which is cooled in two stages. In the first stage, the steel plate is cooled at a speed of 2-15°C/s from 8-40s to 730°C, and then the steel plate is cooled to a temperature below 300°C at a cooling rate of 20-150°C/s.
- German patent DE10327383C5 discloses a method for producing hot-rolled dual-phase steel plate, the composition of the steel is: 0.01-0.08% C, ⁇ 0.9% Si, 0.5-1.9% Mn, ⁇ 1.2% Al, 0.3- 1.2% Cr, the rest is Fe, finish rolling under A3 at 50-100°C, then cool to ferrite area at 30-150°C/s, and cool for 5 seconds, then cool at 30-150°C/s To 300°C.
- the purpose of the present invention is to provide a hot-rolled high-strength steel plate with high surface quality and low yield ratio and a manufacturing method, which does not require heat treatment and can be directly produced by a general hot-rolling production line.
- the high-strength steel plate has a simple cooling process after hot rolling, uniform performance, good shape, good cold workability and welding performance, low production cost, and good surface quality, which can meet the requirements of the appearance and coating of automobile chassis and automobile wheels.
- the "high surface quality" mentioned in the present invention means that the surface has no defects of red iron skin.
- the structure of the hot-rolled high-strength steel plate of the present invention is ferrite and martensite, wherein the volume fraction content of martensite is 15-20%, and the aspect ratio of ferrite of more than 80% in ferrite ⁇ 1.5.
- the hot-rolled high-strength steel sheet of the present invention has a tensile strength ⁇ 590 MPa, preferably ⁇ 600 MPa; an elongation ⁇ 20%, preferably ⁇ 24%; a yield ratio ⁇ 0.6, preferably ⁇ 0.58.
- the tensile strength of the hot-rolled high-strength steel sheet of the present invention is in the range of 590-900 MPa.
- C It is used to form sufficient carbide strengthening phase to ensure the strength level of steel. If the C content is less than 0.045%, the strength cannot meet the requirements, and if the C content is more than 0.085%, it is detrimental to the welding performance and formability. Preferably, the C content is 0.045-0.082%.
- the conventional dual-phase steel As a material for automobile chassis and wheels, the conventional dual-phase steel must have sufficient strength and excellent elongation, but due to the high Si content in the conventional dual-phase steel, red iron skin defects appear on the surface. In order to avoid this defect in dual-phase steel, a low Si composition is required. In the present invention, it is required to control the Si content to 0.15% or less. In some embodiments, preferably, the Si content is 0.05-0.14%.
- Mn It is a solid solution strengthening element. If the Mn content is less than 1.0%, the strength of the steel is insufficient; if the Mn content is more than 1.5%, the plasticity of the steel is reduced. Preferably, the Mn content is 1.06-1.5%
- Mn+20C 2.2-3.2%, below 2.2%, the volume fraction content of martensite is less than 15%, and above 3.2%, the volume fraction content of martensite exceeds 20%.
- Mn+20C 2.3-3.1%.
- P It is an impurity element in steel, and the content should be as low as possible. Preferably, P ⁇ 0.015%.
- S It is also an impurity element in steel, and the content of S in steel is usually required to be 0.001% or less.
- Al It is a deoxidizing element in steel, reducing oxide inclusions in steel and pure steel, which is beneficial to improve the formability of steel plates. At the same time, adding higher content of Al can partially replace the role of Si. Therefore, in the present invention, the Al content is 0.5-2.0%. In some embodiments, the Al content is 1.0-2.0%.
- Ti It is an element that effectively refines grains and improves strength and toughness. It exists in steel in the form of carbides and carbonitrides. However, too much elements such as Ti and carbonitrides in low-carbon steel will affect the subsequent phase transformation, so the content of alloying elements needs to be controlled at the upper limit, preferably Ti ⁇ 0.03%. In some embodiments, the steel sheet of the present invention contains 0.01-0.03% Ti.
- the grain boundary strengthening element can effectively increase the strength of the ferrite matrix.
- the B content if the B content is too high, it will cause hot embrittlement and affect the welding performance and hot workability of the steel. Therefore, the B content needs to be strictly controlled.
- the boron content in the low alloy high strength wear-resistant steel of the present invention is ⁇ 0.0005%.
- the manufacturing method of the hot-rolled high-strength steel plate with high surface quality and low yield ratio according to the present invention includes the following steps:
- the steel sheet is cooled to 600 to 750°C at a cooling rate of 50 to 150°C/s or more, and then cooled in the air at a cooling rate of 1 to 10°C/s for 2 to 10 seconds, and then again at 50 -The cooling speed of -200°C/s is cooled to 50 ⁇ 300°C and coiled, then air-cooled to room temperature.
- the heating temperature is lower than 1150°C, the micro-alloying element is not sufficiently dissolved, and the effect of the micro-alloying element is not fully utilized, and the strength is reduced. If the heating temperature is higher than 1250°C, the grains are likely to be coarsened, which is detrimental to improving the toughness of the steel plate.
- the slab is rough-rolled in the austenite re-grain boundary area, and the austenite grains are refined by recrystallization after rolling deformation.
- the deformation of the steel plate is 80-95%, and the final rolling temperature is controlled at austenite.
- the crystallization zone 780 ⁇ 850°C through the rolling deformation of the austenite low temperature zone, the deformation zone is formed in the austenite grains and the carbon nitride of the microalloy element is induced by the strain to refine the phase transformation product of the austenite To improve the toughness of the steel plate.
- the steel plate is cooled to 600-750°C at a cooling rate of 50-150°C/s or more (two-phase region of ferrite + austenite), and cooled at a cooling rate of 1-10°C/s in air for 2-10 Seconds, such as 3 to 10 seconds, part of the austenite is transformed into equiaxed ferrite in this temperature range (over 80% ferrite aspect ratio ⁇ 1.5), and then the steel plate is at 50-200°C/s
- the cooling rate is cooled to 50-300°C, preferably 70-300°C, and the material is passed through the bainite zone into the martensite zone, and finally about 15-20% of martensite is formed.
- the Si content in the composition is less than 0.10%.
- 0.5-2.0% Al needs to be added to make up, which can effectively improve the surface quality of the steel plate. See Figure 2. If the coiling temperature is higher than 300°C, a large amount of bainite is likely to appear in the microstructure of the steel plate, making the strength of the high-strength steel lower than 590MPa.
- the hot-rolled high-strength steel plate of the invention adopts a relatively simple composition design, substitutes Al for Si to improve the surface quality of the steel plate, does not use the more expensive elements such as Nb, Mo, Cr, etc., and the alloy cost is low; in the production process, A relatively simple production process is adopted. After hot rolling, a segmented cooling mode is added to the conventional laminar cooling process, which is easy to produce.
- the steel plate of the present invention produced according to the above composition design and process design has high strength ( ⁇ 590MPa), low yield strength (yield ratio ⁇ 0.6) and good surface quality, so that the steel plate of the present invention needs good appearance and good in manufacturing
- the coating performance of automobile chassis and wheel parts has unique advantages.
- Fig. 1 is a photograph of "red iron skin” defects on the surface of the steel sheet of Comparative Example 1.
- Fig. 2 is a photograph of the surface of a steel plate in Example 1 of the present invention.
- Figure 3 is a metallographic photograph of Example 3 of the present invention.
- Table 1 is the chemical composition of steels A to G of the present invention, and H steel is a comparative steel of JPH09263885A.
- the slab is heated at 1150-1250°C and then rolled in the austenite zone with a rolling deformation of 80-95%; the steel sheet after the final rolling is 50-150°C/s or more
- the cooling rate is cooled to 600 ⁇ 750°C, and then air-cooled for 3-10 seconds.
- the air cooling rate is controlled within the range of 1 ⁇ 10°C/s, and then cooled to 50 ⁇ 300°C again at a cooling rate of 50-200°C/s. Take up and cool to room temperature.
- Table 2 shows the process control during rolling and the mechanical properties of the obtained steel plate with a thickness of 3 mm. The mechanical properties were tested according to the GB6397-86 standard.
- the comparative example is the dual-phase steel plate of Japanese Patent JPH09263885A.
- the steel plate of the present invention has a clean surface without the defects of “red iron skin” shown in FIG. 1, and the surface quality is high, which can meet the requirements of the appearance and coating of automobile chassis and automobile wheels.
- the structure of the steel plate of Example 3 is ferrite and martensite, wherein the dark color is martensite, and the volume percentage thereof is in the range of 15-20%.
- the tensile lengths of the tensile samples of the examples and the comparative examples are both 50 mm; Comparative Example 1 corresponds to Comparative Example 8 of JPH09263885A; Comparative Example 2 corresponds to Example 6 of JPH09263885A
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
Claims (8)
- 一种高表面质量、低屈强比热轧高强度钢板,其成分重量百分比为:C 0.045-0.085%、Si≤0.15%、Mn 1.0~1.5%、P≤0.05%、S≤0.001%、Al 0.5~2.0%、N≤0.0060%;Ti≤0.03%、B≤0.0005%,其余是Fe和不可避免的杂质;且,Mn+20C=2.2-3.2%。A hot-rolled high-strength steel plate with high surface quality and low yield ratio. The weight percentage of the components is: C 0.045-0.085%, Si ≤ 0.15%, Mn 1.0-1.5%, P ≤ 0.05%, S ≤ 0.001%, Al 0.5~2.0%, N≤0.0060%; Ti≤0.03%, B≤0.0005%, the rest are Fe and inevitable impurities; and, Mn+20C=2.2-3.2%.
- 如权利要求1所述的高表面质量、低屈强比热轧高强度钢板,其特征在于,所述热轧高强度钢板的抗拉强度≥590MPa,屈强比≤0.6。The hot-rolled high-strength steel sheet with high surface quality and low yield ratio according to claim 1, wherein the hot-rolled high-strength steel sheet has a tensile strength ≥590 MPa and a yield ratio ≤0.6.
- 如权利要求1所述的高表面质量、低屈强比热轧高强度钢板,其特征在于,所述热轧高强度钢板的抗拉强度≥600MPa,屈强比≤0.58。The hot-rolled high-strength steel sheet with high surface quality and low yield ratio according to claim 1, wherein the hot-rolled high-strength steel sheet has a tensile strength ≥600 MPa and a yield ratio ≤0.58.
- 如权利要求1所述的高表面质量、低屈强比热轧高强度钢板,其特征在于,其成分重量百分比为:C,0.045-0.082%;Si,0.05-0.14%;Mn,1.06~1.5%;P≤0.015%;S≤0.001%;Al,0.5~2.0%;N≤0.0060%;Ti≤0.03%、B≤0.0005%,其余是Fe和不可避免的杂质;且,Mn+20C=2.3-3.1%。The hot-rolled high-strength steel sheet with high surface quality and low yield ratio according to claim 1, characterized in that the weight percentage of the components is: C, 0.045-0.082%; Si, 0.05-0.14%; Mn, 1.06~1.5 %; P ≤ 0.015%; S ≤ 0.001%; Al, 0.5 ~ 2.0%; N ≤ 0.0060%; Ti ≤ 0.03%, B ≤ 0.0005%, the rest are Fe and inevitable impurities; and, Mn+20C=2.3 -3.1%.
- 如权利要求1-4中任一项所述的高表面质量、低屈强比热轧高强度钢板,其特征在于,所述热轧高强度钢板的组织为铁素体和马氏体,其中,马氏体的体积百分数为15-20%,铁素体中80%以上的铁素体的长宽比≤1.5。The hot-rolled high-strength steel sheet with high surface quality and low yield ratio according to any one of claims 1 to 4, wherein the structure of the hot-rolled high-strength steel sheet is ferrite and martensite, wherein The volume percentage of martensite is 15-20%, and the aspect ratio of more than 80% of ferrite in ferrite is ≤1.5.
- 如权利要求1所述的高表面质量、低屈强比热轧高强度钢板,其特征在于,所述热轧高强度钢板的延伸率≥20%。The hot-rolled high-strength steel sheet with high surface quality and low yield ratio according to claim 1, wherein the elongation of the hot-rolled high-strength steel sheet is ≥20%.
- 如权利要求1所述的高表面质量、低屈强比热轧高强度钢板的制造方法,其特征是:包括如下步骤:The method for manufacturing a hot-rolled high-strength steel sheet with high surface quality and low yield ratio according to claim 1, characterized in that it includes the following steps:1)按权利要求1所述成分冶炼、铸造成铸坯;1) Smelting and casting into billets according to the composition of claim 1;2)铸坯经1150~1250℃加热后,在奥氏体区进行轧制,轧制变形量80-95%,终轧温度780~850℃;2) After the slab is heated at 1150~1250℃, it is rolled in the austenite zone, the rolling deformation is 80-95%, and the final rolling temperature is 780~850℃;3)终轧后的钢板以50~150℃/s以上的冷却速度冷到600~750℃,随后以1~10℃/s的冷却速度在空气中冷却2~10秒钟,随后再次以50~200℃/s的冷却速度冷却至50~300℃并卷取,然后空冷至室温。3) After finishing rolling, the steel sheet is cooled to 600 to 750°C at a cooling rate of 50 to 150°C/s or more, and then cooled in the air at a cooling rate of 1 to 10°C/s for 2 to 10 seconds, and then again at 50 The cooling rate of ~200℃/s is cooled to 50~300℃ and coiled, and then air-cooled to room temperature.
- 如权利要求7所述的高表面质量、低屈强比热轧高强度钢板的制造方法,其特征是:所述钢板的成分重量百分比为:C,0.045-0.082%;Si,0.05-0.14%; Mn,1.06~1.5%;P≤0.015%;S≤0.001%;Al,0.5~2.0%;N≤0.0060%;Ti≤0.03%、B≤0.0005%,其余是Fe和不可避免的杂质;且,Mn+20C=2.3-3.1%。The method for manufacturing a hot-rolled high-strength steel sheet with high surface quality and low yield ratio according to claim 7, wherein the weight percentage of the steel sheet is: C, 0.045-0.082%; Si, 0.05-0.14% ; Mn, 1.06 to 1.5%; P ≤ 0.015%; S ≤ 0.001%; Al, 0.5 to 2.0%; N ≤ 0.0060%; Ti ≤ 0.03%, B ≤ 0.0005%, the rest is Fe and inevitable impurities; and , Mn+20C=2.3-3.1%.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112019005950.5T DE112019005950T5 (en) | 2018-11-30 | 2019-11-29 | HOT-ROLLED STEEL PLATE WITH HIGH SURFACE CONDITIONS, LOW YIELD RATIO AND HIGH STRENGTH AND METHOD OF MANUFACTURING THE SAME |
BR112021008309-0A BR112021008309A2 (en) | 2018-11-30 | 2019-11-29 | high strength hot rolled steel sheet with high surface quality and low yield ratio and production method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811453372.4A CN109576581A (en) | 2018-11-30 | 2018-11-30 | A kind of great surface quality, low yield strength ratio hot-rolled high-strength steel plate and manufacturing method |
CN201811453372.4 | 2018-11-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020108595A1 true WO2020108595A1 (en) | 2020-06-04 |
Family
ID=65925814
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/121864 WO2020108595A1 (en) | 2018-11-30 | 2019-11-29 | Hot-rolled high-strength steel plate with high surface quality and low yield ratio and manufacturing method therefor |
Country Status (4)
Country | Link |
---|---|
CN (1) | CN109576581A (en) |
BR (1) | BR112021008309A2 (en) |
DE (1) | DE112019005950T5 (en) |
WO (1) | WO2020108595A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114457282A (en) * | 2020-11-09 | 2022-05-10 | 上海梅山钢铁股份有限公司 | Hot-rolled steel plate for 415 MPa-grade yield strength longitudinal welded pipe |
CN115029629A (en) * | 2022-05-23 | 2022-09-09 | 首钢京唐钢铁联合有限责任公司 | High-quality surface quality steel and production method thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109576581A (en) * | 2018-11-30 | 2019-04-05 | 宝山钢铁股份有限公司 | A kind of great surface quality, low yield strength ratio hot-rolled high-strength steel plate and manufacturing method |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1648277A (en) * | 2004-01-29 | 2005-08-03 | 杰富意钢铁株式会社 | High strength steel sheet and method for manufacturing same |
US20080099109A1 (en) * | 2006-10-31 | 2008-05-01 | Hyundai Motor Company | High-strength steel sheets with excellent formability and method for manufacturing the same |
KR20110046689A (en) * | 2009-10-29 | 2011-05-06 | 현대제철 주식회사 | Steel sheet having excellent low yield ratio property, and method for producing the same |
CN102212743A (en) * | 2011-05-28 | 2011-10-12 | 内蒙古包钢钢联股份有限公司 | Low-yield-ratio hot-rolled dual-phase steel plate with tensile strength of 600MPa and manufacturing method thereof |
CN103710635A (en) * | 2013-12-20 | 2014-04-09 | 鞍钢股份有限公司 | 600 MPa-level chromium-niobium-containing hot-rolled dual-phase steel plate and production method thereof |
JP2015086415A (en) * | 2013-10-29 | 2015-05-07 | 新日鐵住金株式会社 | High strength hot rolled steel sheet excellent in balance of elongation and hole-expandability and manufacturing method therefor |
CN109576581A (en) * | 2018-11-30 | 2019-04-05 | 宝山钢铁股份有限公司 | A kind of great surface quality, low yield strength ratio hot-rolled high-strength steel plate and manufacturing method |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB639786A (en) | 1946-02-21 | 1950-07-05 | Richmond Piece Dye Works Inc | Improvement in suction dryers for textile fabrics in the piece |
JPH09263885A (en) | 1996-03-29 | 1997-10-07 | Kawasaki Steel Corp | High strength hot rolled steel plate excellent in workability and its production |
DE10327383C5 (en) | 2003-06-18 | 2013-10-17 | Aceria Compacta De Bizkaia S.A. | Plant for the production of hot strip with dual phase structure |
CN101928881A (en) * | 2009-06-26 | 2010-12-29 | 宝山钢铁股份有限公司 | Hot rolling high-chambering steel plate with tensile strength of 590 MPa and manufacturing process thereof |
CN101660089A (en) * | 2009-09-22 | 2010-03-03 | 武汉钢铁(集团)公司 | Tensile strength 600MPa grade aluminum system cold-rolled dual phase steel |
CN102912244A (en) * | 2012-10-23 | 2013-02-06 | 鞍钢股份有限公司 | Hot-rolled dual-phase steel plate with 780 MPa-grade tensile strength and manufacturing method thereof |
CN104561812B (en) * | 2014-12-26 | 2016-08-17 | 北京科技大学 | A kind of 1000MPa level high alumina hot dip galvanized dual phase steel and preparation method thereof |
CN105220065B (en) * | 2015-10-16 | 2017-08-25 | 宝山钢铁股份有限公司 | A kind of high hole expansibility low yield strength ratio hot-rolled high-strength steel plate and its manufacture method |
CN108624818A (en) * | 2017-03-24 | 2018-10-09 | 宝山钢铁股份有限公司 | 400-500MPa grades high uniform elongation hot continuous-milling steel plate and its manufacturing method |
CN107326276B (en) * | 2017-06-19 | 2019-06-07 | 武汉钢铁有限公司 | A kind of 500~600MPa of tensile strength grades of hot rolling high-strength light dual phase steels and its manufacturing method |
-
2018
- 2018-11-30 CN CN201811453372.4A patent/CN109576581A/en active Pending
-
2019
- 2019-11-29 DE DE112019005950.5T patent/DE112019005950T5/en active Pending
- 2019-11-29 BR BR112021008309-0A patent/BR112021008309A2/en unknown
- 2019-11-29 WO PCT/CN2019/121864 patent/WO2020108595A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1648277A (en) * | 2004-01-29 | 2005-08-03 | 杰富意钢铁株式会社 | High strength steel sheet and method for manufacturing same |
US20080099109A1 (en) * | 2006-10-31 | 2008-05-01 | Hyundai Motor Company | High-strength steel sheets with excellent formability and method for manufacturing the same |
KR20110046689A (en) * | 2009-10-29 | 2011-05-06 | 현대제철 주식회사 | Steel sheet having excellent low yield ratio property, and method for producing the same |
CN102212743A (en) * | 2011-05-28 | 2011-10-12 | 内蒙古包钢钢联股份有限公司 | Low-yield-ratio hot-rolled dual-phase steel plate with tensile strength of 600MPa and manufacturing method thereof |
JP2015086415A (en) * | 2013-10-29 | 2015-05-07 | 新日鐵住金株式会社 | High strength hot rolled steel sheet excellent in balance of elongation and hole-expandability and manufacturing method therefor |
CN103710635A (en) * | 2013-12-20 | 2014-04-09 | 鞍钢股份有限公司 | 600 MPa-level chromium-niobium-containing hot-rolled dual-phase steel plate and production method thereof |
CN109576581A (en) * | 2018-11-30 | 2019-04-05 | 宝山钢铁股份有限公司 | A kind of great surface quality, low yield strength ratio hot-rolled high-strength steel plate and manufacturing method |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114457282A (en) * | 2020-11-09 | 2022-05-10 | 上海梅山钢铁股份有限公司 | Hot-rolled steel plate for 415 MPa-grade yield strength longitudinal welded pipe |
CN115029629A (en) * | 2022-05-23 | 2022-09-09 | 首钢京唐钢铁联合有限责任公司 | High-quality surface quality steel and production method thereof |
CN115029629B (en) * | 2022-05-23 | 2023-10-24 | 首钢京唐钢铁联合有限责任公司 | High-quality surface quality steel and production method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN109576581A (en) | 2019-04-05 |
BR112021008309A2 (en) | 2021-08-03 |
DE112019005950T5 (en) | 2021-08-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108504958B (en) | 690 MPa-grade hot-rolled thick-specification low-yield-ratio automobile spoke steel and preparation method thereof | |
CN113106338B (en) | Preparation method of ultrahigh-strength high-plasticity hot stamping formed steel | |
WO2021036271A1 (en) | High-temperature-resistant 400hb wear-resistant steel plate and method for production thereof | |
WO2020108595A1 (en) | Hot-rolled high-strength steel plate with high surface quality and low yield ratio and manufacturing method therefor | |
CN114107792B (en) | 780 MPa-grade high-surface ultrahigh-reaming steel and manufacturing method thereof | |
WO2022152158A1 (en) | High-strength and toughness free-cutting non-quenched and tempered round steel and manufacturing method therefor | |
CN110629114A (en) | Low-cost high-strength high-toughness bridge steel and preparation method thereof | |
CN112831731A (en) | Online quenching complex phase structure hot-rolled wear-resistant steel and preparation method thereof | |
JP2024502743A (en) | Steel for Zeppa type universal joint retainer and its manufacturing method | |
WO2022042727A1 (en) | 780 mpa-grade ultra-high reaming steel having high surface quality and high performance stability, and manufacturing method therefor | |
CN113073251A (en) | Manufacturing method of 590 MPa-grade hot-rolled complex phase steel for thick-specification high-fatigue-performance automobile spoke | |
WO2021136355A1 (en) | Low-silicon and low-carbon equivalent gpa grade multi-phase steel plate/steel strip and manufacturing method therefor | |
CN111334720B (en) | High Al wear-resistant steel strip with good cold formability and production method thereof | |
CN111172466A (en) | Plasticity-enhanced cold-rolled dual-phase steel with tensile strength of 590MPa and production method thereof | |
CN107326276A (en) | A kind of 500 ~ 600MPa of tensile strength grades of hot rolling high-strength light dual phase steels and its manufacture method | |
CN112410671A (en) | Production method for producing steel for rim by adopting complex phase structure | |
CN115572897A (en) | 1500 MPa-grade commercial automobile box steel plate and manufacturing method thereof | |
CN115094322A (en) | 80 mm-thick 690 MPa-grade ultrahigh-strength and toughness marine steel plate and preparation method thereof | |
CN113122770B (en) | Low-carbon low-cost ultrahigh-strength complex phase steel plate/steel strip and manufacturing method thereof | |
CN112176256A (en) | High-impact-toughness automobile beam steel belt and production method thereof | |
JP2001303172A (en) | Case hardening boron steel for cold forging free from formation of abnormal structure in carburiazation and its producing method | |
CN110616375A (en) | Niobium-vanadium-containing 550 MPa-grade thick weathering steel and production method thereof | |
CN111363901A (en) | Ferrite-martensite hot-rolled dual-phase steel with high surface quality and manufacturing method thereof | |
CN113604739A (en) | Steel for car driving shaft ball cage for precision forming and manufacturing method thereof | |
CN110952040B (en) | Production method of EH460 grade 150-inch thick steel plate with thickness of 200mm |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19888318 Country of ref document: EP Kind code of ref document: A1 |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112021008309 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112021008309 Country of ref document: BR Kind code of ref document: A2 Effective date: 20210429 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19888318 Country of ref document: EP Kind code of ref document: A1 |