WO2020108120A1 - 玻璃加工模具及玻璃加工方法 - Google Patents

玻璃加工模具及玻璃加工方法 Download PDF

Info

Publication number
WO2020108120A1
WO2020108120A1 PCT/CN2019/110859 CN2019110859W WO2020108120A1 WO 2020108120 A1 WO2020108120 A1 WO 2020108120A1 CN 2019110859 W CN2019110859 W CN 2019110859W WO 2020108120 A1 WO2020108120 A1 WO 2020108120A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
glass
glass processing
lower mold
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/CN2019/110859
Other languages
English (en)
French (fr)
Inventor
但奇善
严绪东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AAC Technologies Holdings Shenzhen Co Ltd
Original Assignee
AAC Acoustic Technologies Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AAC Acoustic Technologies Shenzhen Co Ltd filed Critical AAC Acoustic Technologies Shenzhen Co Ltd
Publication of WO2020108120A1 publication Critical patent/WO2020108120A1/zh
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/02Re-forming glass sheets
    • C03B23/023Re-forming glass sheets by bending
    • C03B23/03Re-forming glass sheets by bending by press-bending between shaping moulds
    • C03B23/0302Re-forming glass sheets by bending by press-bending between shaping moulds between opposing full-face shaping moulds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B40/00Preventing adhesion between glass and glass or between glass and the means used to shape it, hold it or support it
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2215/00Press-moulding glass
    • C03B2215/02Press-mould materials
    • C03B2215/03Press-mould materials defined by material properties or parameters, e.g. relative CTE of mould parts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the invention belongs to the technical field of glass forming, and particularly relates to a glass processing mold and a glass processing method.
  • a glass processing mold is generally used to produce a three-dimensional glass product by hot bending.
  • the glass processing mold usually includes a lower mold with a cavity and an upper mold matched with the lower mold. After the mold is closed, the lower mold and the upper mold A gap with a preset shape is formed between them, so that the gap is used to limit the shape of the glass substrate in a hot-melt state to be shaped, and then cooled to form a three-dimensional glass product with a preset shape.
  • the glass processing mold in the related art will interfere with the upper mold or the lower mold during the cooling process, resulting in cracking of the glass product, and the yield is not high. At the same time, after the glass is formed, the glass is completely removed from the mold. One of the puzzles.
  • the technical problem to be solved by the present invention is to provide a glass processing mold and a glass processing method, which can prevent the three-dimensional glass product from cracking during the processing, improve the yield, and can be easily removed from the mold.
  • the present invention provides a glass processing mold for processing a planar glass structure into a three-dimensional glass structure.
  • the glass processing mold includes a lower mold having a cavity and an upper mold matched with the lower mold ,
  • the lower mold includes a bottom wall and a side wall that cooperates with the bottom wall to form the cavity, and the upper mold includes a bump.
  • the bump When the mold is closed, the bump extends into the cavity
  • the bottom wall and the side wall are spaced apart, the protrusion cooperates with the bottom wall and the side wall to form a molding space for molding a three-dimensional glass structure
  • the upper mold adopts a thermal expansion coefficient of 8 ⁇ 10 -6 It is made of a metal material of ⁇ 28 ⁇ 10 -6 K
  • the lower mold is made of a metal or graphite material with a thermal expansion coefficient of 5 ⁇ 10 -6 ⁇ 7.58 ⁇ 10 -6 K.
  • the bottom wall includes an inner surface at the bottom of the cavity
  • the side wall includes a first inner wall surface facing the cavity and connected to the inner surface, the first inner wall surface and the The inner surface is connected by a first arc with a radius of 0.3 to 1 mm
  • the bump includes a top surface facing the bottom wall, a first side surface extending from the top surface away from the bottom wall, so The top surface and the first side surface are transitionally connected by a second arc with a radius of 0.3 to 1 mm.
  • the radius of the first arc and the second arc are equal.
  • the radius of the first arc and the second arc are both 0.5 mm.
  • both the first inner wall surface and the first side surface are vertical surfaces
  • the protrusion further includes a second side surface extending from the first side surface toward the side wall, the second The sides are horizontal.
  • the angle between the inner surface and the first inner wall surface is set as ⁇ , where the value of ⁇ satisfies: 85° ⁇ 90°.
  • the upper mold further includes a frame for receiving the convex block, and the frame includes a retaining wall protruding toward the lower mold, and the retaining wall and the convex block are spaced apart to form a groove, When molding, the side wall of the lower mold is locked in the groove.
  • the upper mold further includes a gravity block for applying pressure to the convex block, and the gravity block is located above the convex block and received in the frame.
  • the invention also provides a glass processing method, including:
  • the glass processing mold being the glass processing mold described above;
  • Softening clamping the glass substrate between the upper mold and the lower mold of the glass processing mold, and heating the glass substrate and the glass processing mold to a glass softening temperature;
  • Clamping clamping the upper mold and the lower mold
  • Cooling cooling the glass substrate and the glass processing mold to room temperature
  • the cooling process includes cooling the glass substrate, the upper mold, and the lower mold until the glass substrate is hardened, and then cooling the glass substrate, the upper mold, and the lower mold to Room temperature.
  • the glass substrate, the upper mold and the lower mold are further heated to a preset temperature, and the preset temperature is 720°C to 780°C.
  • the upper mold is made of a metal material with a thermal expansion coefficient of 8 ⁇ 10 -6 ⁇ 28 ⁇ 10 -6 K
  • the lower mold has a thermal expansion coefficient of 5 ⁇ 10 -6 ⁇ 7.58 ⁇ 10 -6 K made of metal or graphite material
  • the difference between the thermal expansion coefficient of the upper mold and the lower mold and the glass is used to avoid interference between the three-dimensional glass product and the mold during the cooling process
  • the three-dimensional glass products are easy to take out to prevent the three-dimensional glass products from cracking and improve the yield. At the same time, they can also realize the automatic separation of the three-dimensional glass products and the mold, simplifying the processing steps.
  • FIG. 1 is a three-dimensional structural schematic diagram of a glass processing mold of the present invention
  • FIG. 2 is a schematic diagram of the exploded structure of the glass processing mold of the present invention.
  • FIG. 3 is a schematic cross-sectional structure diagram of the upper mold and the lower mold of the glass processing mold of the present invention before mold clamping;
  • FIG. 4 is a schematic cross-sectional structure diagram of the upper mold and the lower mold of the glass processing mold of the present invention after mold clamping;
  • FIG. 6 is a schematic diagram of the state of step S2 in the glass processing method of the present invention.
  • step S3 is a schematic diagram of the state of step S3 in the glass processing method of the present invention.
  • FIG. 8 is a schematic structural view of a flat glass formed by the glass processing mold of the present invention.
  • FIGS. 1 to 4 are schematic structural views of a glass processing mold provided by the present invention, used for bending a flat glass substrate into a three-dimensional glass structure with a receiving space.
  • the glass processing mold 100 includes a lower mold 1 having a cavity 10 and an upper mold 3 that cooperates with the lower mold 1.
  • the lower mold 1 includes a bottom wall 11 and cooperates with the bottom wall 11 to form the mold
  • the upper mold 3 includes a bump 31. When the mold is closed, the bump 31 extends into the cavity 10 and is spaced apart from the bottom wall 11 and the side wall 12.
  • the protrusion 31 cooperates with the bottom wall 11 and the side wall 12 to form a molding space 20 for molding a three-dimensional glass structure.
  • the bottom wall 11 includes an inner surface 111 at the bottom of the cavity 10
  • the side wall 12 includes an upper surface 121, a first inner wall surface facing the cavity 10 and connected to the inner surface 111 122 and a second inner wall surface 123 connecting the upper surface 121 and the first inner wall surface 122, the second inner wall surface 123 is a stepped surface, and the first inner wall surface 122 and the inner surface 111 have a radius of The first arc 110 of 0.3 to 1 mm is transitionally connected;
  • the bump 31 includes a top surface 311 directly facing the bottom wall 11, and a first side surface 312 extending from the top surface 311 in a direction away from the bottom wall 11 And the second side surface 313 extending from the first side surface 312 toward the side wall 12, and similarly, the top surface 311 and the first side surface 312 pass through the second arc 310 with a radius of 0.3-1 mm Transitional connection, during mold clamping, the second side surface 313 partially abuts on the second inner wall surface 123, the inner surface
  • the forming space 20 is used to limit the shape of the glass substrate in a hot-melt state to form it. After the glass substrate is cooled, it can be formed into a three-dimensional glass product with a preset shape.
  • the angle between the inner surface 111 and the first inner wall surface 122 is set to ⁇ , where the value of ⁇ satisfies: 85° ⁇ 90°.
  • the first inner wall surface 122 and the inner surface 111 and the top surface 311 and the first side surface 312 are all connected by a circular arc transition, which can not only prevent the glass substrate from cracking during the hot bending process, but also make the molding After the 3D glass products have a smooth overall appearance, improve the beauty and grip of the 3D glass products.
  • the radii of the first arc 110 and the second arc 310 are equal. More preferably, the radii of the first arc 110 and the second arc 310 are both 0.5 mm.
  • the upper mold 3 is made of a metal material with a thermal expansion coefficient of 8 ⁇ 10 -6 ⁇ 28 ⁇ 10 -6 K
  • the lower mold 1 is made of a metal with a thermal expansion coefficient of 5 ⁇ 10 -6 ⁇ 7.58 ⁇ 10 -6 K Or graphite material, therefore, during cooling, the upper mold 3 located inside the three-dimensional glass product shrinks faster than the glass, thereby preventing the glass from shrinking too fast and being squeezed from the inside by the upper mold 3, located in the three-dimensional
  • the shrinkage speed of the lower mold 1 on the outside of the glass product will be lower than that of glass, thereby preventing the lower mold 1 from squeezing the glass from the outside due to excessive shrinkage, so the three-dimensional glass product will not be in contact with the upper mold 3 or the lower When the mold 1 interferes, the three-dimensional glass product is easy to take out, preventing the three-dimensional glass product from cracking and improving the yield.
  • the size of the bump 31 of the upper mold 3 is smaller than the internal size of the glass substrate and the size of the cavity 10 It is larger than the external dimensions of the glass substrate, so the glass substrate can be automatically demolded from the glass processing mold 100, thereby simplifying the processing steps.
  • both the first inner wall surface 122 and the first side surface 312 are vertical surfaces, and the second side surface 313 is a horizontal plane.
  • the upper mold 3 further includes a frame 32 for accommodating the convex block 31, the frame 32 includes a retaining wall 321 protruding toward the lower mold 1, the retaining wall and the convex block 31
  • the grooves 34 are formed at intervals. When the molds are closed, the side walls 12 of the lower mold 1 are locked in the grooves 34.
  • the upper mold 3 further includes a gravity block 33 for applying pressure to the convex block 31.
  • the gravity block 33 is located above the convex block 31 and is received in the frame 32.
  • the upper mold 3 is provided with a separate structure to facilitate replacement when the upper mold 3 is damaged.
  • the bump 31 is more easily damaged, and only a single component needs to be replaced.
  • the materials of the convex block 31, the frame 32 and the gravity block 33 may be the same or different, as long as metal materials satisfying the thermal expansion coefficient of 8 ⁇ 10 ⁇ 6 to 28 ⁇ 10 ⁇ 6 K are feasible.
  • the present invention also provides a glass processing method, as shown in FIG. 5, including:
  • Step S1 Provide a flat glass substrate 200 and a glass processing mold 100, where the glass processing mold 100 is the glass processing mold 100 described above;
  • the glass processing mold 100 includes a lower mold 1 having a cavity 10 and an upper mold 3 matched with the lower mold 1, the upper mold 3 adopting a thermal expansion coefficient of 8 ⁇ 10 -6 ⁇ 28 ⁇ 10 It is made of a metal material of -6 K, and the lower mold 1 is made of a metal or graphite material with a thermal expansion coefficient of 5 ⁇ 10 -6 to 7.58 ⁇ 10 -6 K.
  • Step S2 softening: the glass substrate 200 is sandwiched between the lower mold 1 and the upper mold 3 of the glass processing mold 100, and the glass substrate and the glass processing mold 100 are heated until the glass is softened temperature;
  • the periphery of the glass substrate 200 is held on the second inner wall surface 123 of the lower mold 1, and the softening temperature is usually 700° C. or higher, preferably 700° C.
  • the glass is processed
  • the mold 100 is in a mold-open state, the upper mold 3 has not yet extended into the cavity 10, and the glass substrate is clamped between the upper mold 3 and the lower mold 1 when it is in a hardened state, Prepare for the subsequent mold clamping.
  • Step S3 mold clamping: clamping the lower mold and the upper mold
  • the glass substrate 200 is in a softened state, and as the upper mold 3 and the lower mold 1 are closed, the glass substrate 200 is heated under the closing pressure Bend to form a three-dimensional glass structure including a body portion 51 and a bent portion 52 that extends from the body portion 51, and is ultimately limited to the molding space 20 formed by the lower mold 1 and the upper mold 3 being clamped together .
  • Step S4 Re-heating: the glass substrate 200 and the glass processing mold 100 are continuously raised to a preset temperature, and the preset temperature is 720°C to 780°C;
  • the upper mold 3 is made of a metal material with a thermal expansion coefficient of 8 ⁇ 10 -6 ⁇ 28 ⁇ 10 -6 K
  • the lower mold 1 uses a thermal expansion coefficient of 5 ⁇ 10 -6 ⁇ 7.58 ⁇ 10 -6 K is made of metal or graphite material
  • the thermal expansion coefficient of glass is 7.58 ⁇ 10 -6 K, so the expansion speed of the upper mold 3 is higher than that of glass, and the expansion speed of the lower mold 1 is lower than that of glass.
  • the upper mold 3 and the lower mold 1 give the glass substrate 200 a certain pressure from the inner and outer sides, so that the glass substrate is more easily formed by hot bending.
  • Step S5 Cooling: cooling the glass substrate 200 and the glass processing mold 100 to room temperature;
  • the cooling stage is divided into two stages.
  • the glass substrate 200 changes from a softened state to a hardened state. At this time, the glass substrate 200 closely adheres to the upper mold 3 and the lower mold 1.
  • the glass substrate 200 shrinks with its own thermal expansion coefficient. Since the thermal expansion coefficient of the upper mold 3 is greater than that of glass, the upper mold 3 shrinks faster than the glass substrate 200.
  • the upper mold The external size of the bump 31 of 3 will be reduced to be smaller than the size of the inner cavity of the glass substrate 200, so that the upper mold 3 is separated from the lower mold 1, and the thermal expansion coefficient of the lower mold 1 is smaller than that of glass ,
  • the lower mold 1 shrinks slower than the glass substrate 200, the inner size of the cavity 10 of the lower mold 1 is larger than the outer size of the glass substrate 200, the lower mold 1 and the glass substrate 200 is automatically released, so during cooling, the glass substrate 200 will not be pressed by any part of the glass processing mold 100 to prevent the glass substrate 200 from cracking.
  • the glass substrate 200 is in During cooling, it is automatically separated from the lower mold 1 and the upper mold 3.
  • Step S6 Demoulding: The glass substrate 200 is separated from the lower mold 1 and the upper mold 3 to complete demolding.
  • the glass substrate 200 After demolding, the glass substrate 200 has been formed from a planar glass structure into a three-dimensional glass structure. As shown in FIG. 8, it includes a body portion 51 and a bent portion 52 bent from the edge of the body portion 51.
  • the body portion 51 cooperates with the bending portion 52 to form a receiving space 53 with one end open, and the bending portion 52 and the body portion 51 are connected in an arc-shaped transition.
  • the body portion 51 has a flat plate shape, and the internal angle ⁇ between the bending portion 52 and the body portion 51 and toward the receiving space 53 is between 85° and 90°.
  • the upper mold 3 is made of a metal material having a thermal expansion coefficient of 8 ⁇ 10 -6 ⁇ 28 ⁇ 10 -6 K
  • the lower mold 1 uses a thermal expansion coefficient It is made of metal or graphite material of 5 ⁇ 10 -6 ⁇ 7.58 ⁇ 10 -6 K, and the difference between the thermal expansion coefficients of the upper mold 3 and the lower mold 1 and the glass is used to avoid the three-dimensional glass products and molds during the cooling process There is interference between them, the 3D glass product is easy to take out, to prevent the 3D glass product from cracking, improve the yield, and at the same time it can also realize the automatic separation of the 3D glass product and the mold, simplifying the processing steps.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

本发明提供了一种玻璃加工模具及玻璃加工方法,用于将平面玻璃结构加工成三维玻璃结构,所述玻璃加工模具包括具有型腔的下模具和与所述下模具配合的上模具,所述下模具包括底壁和与所述底壁配合围成所述型腔的侧壁,所述上模具包括凸块,合模时,所述凸块伸入所述型腔并与所述底壁和所述侧壁间隔设置,所述凸块配合所述底壁和所述侧壁围成用于成型三维玻璃结构的成型空间,所述上模具采用热膨胀系数为8×10 -6~28×10 -6K的金属材料制成,所述下模具采用热膨胀系数为5×10 -6~7.58×10 -6K的金属或石墨材料制成。与相关技术相比,本发明提供的玻璃加工模具及玻璃加工方法,能够防止加工过程中三维玻璃产品开裂,提高成品率。

Description

玻璃加工模具及玻璃加工方法 技术领域
本发明属于玻璃成形技术领域,尤其涉及一种玻璃加工模具及玻璃加工方法。
背景技术
随着互联网时代的发展,电子设备的运用越来越多的进入人们的生活,比如手机、平板电脑、笔记本等。除了功能需求,人们对电子设备的外型要求也越来越高,电子设备的外壳越来越多的使用三维玻璃产品。
相关技术中,一般采用玻璃加工模具通过热弯成型来生产三维玻璃产品,该种玻璃加工模具通常包括具有型腔的下模具及与下模具配合的上模具,合模后,下模具与上模具之间会围成具有预设形状的间隙,从而利用该间隙来局限热熔状态的玻璃基材的形状使其成型,然后进行冷却以成型具有预设形状的三维玻璃产品。
技术问题
然而,相关技术中的玻璃加工模具在冷却过程中,会与上模具或下模具发生干涉,导致玻璃产品开裂,成品率不高,同时在玻璃成型后,从模具中完好地取出玻璃也是现如今的难题之一。
因此,有必要提供一种改进的玻璃加工模具及玻璃基材加工方法来解决上述问题。
技术解决方案
本发明要解决的技术问题是提供一种玻璃加工模具及玻璃加工方法,其能防止加工过程中三维玻璃产品开裂,提高成品率,且易于从模具中取出。
为解决上述技术问题,本发明提供了一种玻璃加工模具,用于将平面玻璃结构加工成三维玻璃结构,所述玻璃加工模具包括具有型腔的下模具和与所述下模具配合的上模具,所述下模具包括底壁和与所述底壁配合围成所述型腔的侧壁,所述上模具包括凸块,合模时,所述凸块伸入所述型腔并与所述底壁和所述侧壁间隔设置,所述凸块配合所述底壁和所述侧壁围成用于成型三维玻璃结构的成型空间,所述上模具采用热膨胀系数为8×10 -6~28×10 -6K的金属材料制成,所述下模具采用热膨胀系数为5×10 -6~7.58×10 -6K的金属或石墨材料制成。
优选的,所述底壁包括位于所述型腔底部的内表面,所述侧壁包括朝向所述型腔且与所述内表面相连的第一内壁面,所述第一内壁面与所述内表面通过半径为0.3~1mm的第一圆弧过渡连接;所述凸块包括正对所述底壁的顶面、自所述顶面朝背离所述底壁方向延伸的第一侧面,所述顶面与所述第一侧面通过半径为0.3~1mm的第二圆弧过渡连接。
优选的,所述第一圆弧与所述第二圆弧的半径相等。
优选的,所述第一圆弧与所述第二圆弧的半径均为0.5mm。
优选的,所述第一内壁面和所述第一侧面均为竖直面,所述凸块还包括自所述第一侧面向靠近所述侧壁方向延伸的第二侧面,所述第二侧面为水平面。
优选的,所述内表面与所述第一内壁面之间的夹角设为θ,其中θ值满足:85°≤θ≤90°。
优选的,所述上模具还包括用于收容所述凸块的框架,所述框架包括向所述下模具方向突出的挡墙,所述挡墙与所述凸块间隔设置形成凹槽,合模时,所述下模具的侧壁卡设于所述凹槽内。
优选的,所述上模具还包括用于向所述凸块施加压力的重力块,所述重力块位于所述凸块上方并收容于所述框架内。
本发明同时还提供一种玻璃加工方法,包括:
提供平面玻璃基材及玻璃加工模具,所述玻璃加工模具为上文所述的玻璃加工模具;
软化:将所述玻璃基材夹持于所述玻璃加工模具的上模具和下模具之间,并将所述玻璃基材及所述玻璃加工模具升温到玻璃软化温度;
合模:将所述上模具和所述下模具合模;
冷却:将所述玻璃基材和所述玻璃加工模具进行冷却至室温;
脱模:将所述玻璃基材与所述上模具和所述下模具分离,完成脱模。
优选的,所述冷却过程包括将所述玻璃基材与所述上模具和所述下模具冷却至玻璃基材硬化,再将所述玻璃基材与所述上模具和所述下模具冷却至室温。
优选的,在合模过程后进一步对所述玻璃基材与所述上模具和下模具升温至预设温度,所述预设温度为720℃~780℃。
有益效果
与相关技术相比,本发明的玻璃加工模具中,所述上模具采用热膨胀系数为8×10 -6~28×10 -6K的金属材料制成,所述下模具采用热膨胀系数为5×10 -6~7.58×10 -6K的金属或石墨材料制成,利用所述上模具和所述下模具与玻璃的热膨胀系数的差异来避免冷却过程中三维玻璃产品与模具之间发生干涉,三维玻璃产品易于取出,防止三维玻璃产品开裂,提高成品率,同时还可以实现三维玻璃产品与模具的自动分离,简化加工步骤。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:
图1为本发明玻璃加工模具的立体结构示意图;
图2为本发明玻璃加工模具的分解结构示意图;
图3为本发明玻璃加工模具的上模具与下模具合模前的剖面结构示意图;
图4为本发明玻璃加工模具的上模具与下模具合模后的剖面结构示意图;
图5为本发明玻璃加工方法的流程图;
图6为本发明玻璃加工方法中步骤S2的状态示意图;
图7为本发明玻璃加工方法中步骤S3的状态示意图;
图8为平面玻璃经本发明玻璃加工模具成型后的结构示意图。
本发明的实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
请同时参阅图1至图4,为本发明提供的玻璃加工模具的结构示意图,用于将平板状的玻璃基材弯折成具有收容空间的三维玻璃结构。所述玻璃加工模具100包括具有型腔10的下模具1和与所述下模具1配合的上模具3,所述下模具1包括底壁11和与所述底壁11配合围成所述型腔10的侧壁12,所述上模具3包括凸块31,合模时,所述凸块31伸入所述型腔10并与所述底壁11和所述侧壁12间隔设置,所述凸块31配合所述底壁11和所述侧壁12围成用于成型三维玻璃结构的成型空间20。
具体地,所述底壁11包括位于所述型腔10底部的内表面111,所述侧壁12包括上表面121、朝向所述型腔10且与所述内表面111相连的第一内壁面122和连接所述上表面121与所述第一内壁面122的第二内壁面123,所述第二内壁面123为台阶面,所述第一内壁面122与所述内表面111通过半径为0.3~1mm的第一圆弧110过渡连接;所述凸块31包括正对所述底壁11的顶面311、自所述顶面311朝背离所述底壁11方向延伸的第一侧面312及自所述第一侧面312向靠近所述侧壁12方向延伸的第二侧面313,同样的,所述顶面311与所述第一侧面312通过半径为0.3~1mm的第二圆弧310过渡连接,合模时,所述第二侧面313部分抵接于所述第二内壁面123上,所述内表面111、所述第一内壁面122、所述顶面311、所述第一侧面312及所述第二侧面313共同围成所述成型空间20。所述成型空间20用于局限热熔状态的玻璃基材的形状使其成型,玻璃基材冷却后便可以成型为具有预设形状三维玻璃产品。所述内表面111与所述第一内壁面122之间的夹角设为θ,其中θ值满足:85°≤θ≤90°。
将所述第一内壁面122与所述内表面111以及所述顶面311与所述第一侧面312均通过圆弧过渡连接,既可以避免玻璃基材在热弯过程开裂,又可以使成型后的三维玻璃产品具有流畅的整体外观,提高三维玻璃产品的美感与握感。优选地,所述第一圆弧110和所述第二圆弧310的半径相等,更优地,所述第一圆弧110与所述第二圆弧310的半径均为0.5mm。
所述上模具3采用热膨胀系数为8×10 -6~28×10 -6K的金属材料制成,所述下模具1采用热膨胀系数为5×10 -6~7.58×10 -6K的金属或石墨材料制成,因此,在冷却过程中,位于三维玻璃产品内侧的所述上模具3的收缩速度大于玻璃,从而防止玻璃收缩过快而被所述上模具3从内侧挤压,位于三维玻璃产品外侧的所述下模具1的收缩速度会小于玻璃,从而防止所述下模具1因收缩过快而从外侧挤压玻璃,所以三维玻璃产品不会与所述上模具3或所述下模具1发生干涉,三维玻璃产品易于取出,防止三维玻璃产品开裂,提高了成品率;开模时,所述上模具3的凸块31尺寸小于玻璃基材的内部尺寸,所述型腔10尺寸大于玻璃基材的外部尺寸,因此玻璃基材可与所述玻璃加工模具100自动脱模,从而简化加工步骤。
在优选实施例中,所述第一内壁面122和所述第一侧面312均为垂直面,所述第二侧面313为水平面。
优选地,所述上模具3还包括用于收容所述凸块31的框架32,所述框架32包括向所述下模具1方向突出的挡墙321,所述挡墙与所述凸块31间隔设置形成凹槽34,合模时,所述下模具1的侧壁12卡设于所述凹槽34内。
更优地,所述上模具3还包括用于向所述凸块31施加压力的重力块33,所述重力块33位于所述凸块31上方并收容于所述框架32内。将所述上模具3设置成分体结构,方便在所述上模具3发生损坏时随意更换,特别是所述凸块31更容易损坏,只需更换单个部件即可。所述凸块31、框架32和重力块33的材质可以相同也可以不同,只要满足热膨胀系数在8×10 -6~28×10 -6K的金属材料都可行。
本发明还提供一种玻璃加工方法,如图5所示,包括:
步骤S1、提供平面玻璃基材200及玻璃加工模具100,所述玻璃加工模具100为上文所述玻璃加工模具100;
如上所述,所述玻璃加工模具100包括具有型腔10的下模具1和与所述下模具1配合的上模具3,所述上模具3采用热膨胀系数为8×10 -6~28×10 -6K的金属材料制成,所述下模具1采用热膨胀系数为5×10 -6~7.58×10 -6K的金属或石墨材料制成。
步骤S2、软化:将所述玻璃基材200夹持于所述玻璃加工模具100的下模具1和上模具3之间,并将所述玻璃基材及所述玻璃加工模具100升温到玻璃软化温度;
具体地,如图6所示,玻璃基材200的周缘固持于所述下模具1的第二内壁面123上,软化温度通常为700℃以上,优选为700℃,此过程中所述玻璃加工模具100为开模状态,所述上模具3尚未伸入所述型腔10内,所述玻璃基材为硬化状态时将其夹持于所述上模具3和所述下模具1之间,为后续的合模做准备。
步骤S3、合模:将所述下模具和所述上模具合模;
如图7所示,此过程中,所述玻璃基材200为软化状态,随着所述上模具3和所述下模具1的合模,所述玻璃基材200在合模压力下被热弯形成包括本体部51和自所述本体部51弯折延伸的弯折部52的三维玻璃结构,并最终被局限在所述下模具1和所述上模具3合模形成的成型空间20内。
步骤S4、再升温:将所述玻璃基材200及所述玻璃加工模具100继续升高至预设温度,预设温度为720℃~780℃;
在继续升温过程中,由于所述上模具3采用热膨胀系数为8×10 -6~28×10 -6K的金属材料制成,所述下模具1采用热膨胀系数为5×10 -6~7.58×10 -6K的金属或石墨材料制成,玻璃的热膨胀系数为7.58×10 -6K,因此所述上模具3的膨胀速度大于玻璃,所述下模具1的膨胀速度小于玻璃,所述上模具3和所述下模具1从内、外两侧给予所述玻璃基材200一定的压力,从而使得玻璃基材更容易被热弯成型。
步骤S5、冷却:将所述玻璃基材200和所述玻璃加工模具100进行冷却至室温;
冷却阶段分为两个阶段,第一阶段中,所述玻璃基材200由软化状态变为硬化状态,此时所述玻璃基材200紧贴所述上模具3和所述下模具1,第二阶段中,所述玻璃基材200随着自身的热膨胀系数收缩,由于所述上模具3的热膨胀系数大于玻璃,所述上模具3比所述玻璃基材200收缩更快,所述上模具3的凸块31的外部尺寸会缩小至小于所述玻璃基材200的内腔尺寸,从而将所述上模具3与所述下模具1脱离开,同时所述下模具1的热膨胀系数小于玻璃,所述下模具1比所述玻璃基材200收缩慢,所述下模具1的型腔10的内部尺寸大于所述玻璃基材200的外部尺寸,所述下模具1与所述玻璃基材200自动脱开,因此冷却过程中,所述玻璃基材200不会受到所述玻璃加工模具100中任一部件的压迫,防止所述玻璃基材200开裂,同时,所述玻璃基材200在冷却过程中与所述下模具1和所述上模具3自动分离。
步骤S6、脱模:将所述玻璃基材200与所述下模具1和所述上模具3分离,完成脱模。
脱模后,所述玻璃基板200已由平面玻璃结构成型为三维玻璃结构,如图8所示,其包括本体部51和自所述本体部51边缘弯折延伸的弯折部52,所述本体部51配合所述弯折部52共同围成一端开口的收容空间53,所述弯折部52与所述本体部51呈弧形过渡连接。优选的,所述本体部51为平板状,所述弯折部52与所述本体部51之间且朝向所述收容空间53一侧的内夹角α在85°~90°之间。
与相关技术相比,本发明的玻璃加工模具100中,所述上模具3采用热膨胀系数为8×10 -6~28×10 -6K的金属材料制成,所述下模具1采用热膨胀系数为5×10 -6~7.58×10 -6K的金属或石墨材料制成,利用所述上模具3和所述下模具1与玻璃的热膨胀系数的差异来避免冷却过程中三维玻璃产品与模具之间发生干涉,三维玻璃产品易于取出,防止三维玻璃产品开裂,提高成品率,同时还可以实现三维玻璃产品与模具的自动分离,简化加工步骤。
以上所述的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。

Claims (11)

  1. 一种玻璃加工模具,用于将平面玻璃结构加工成三维玻璃结构,其特征在于,所述玻璃加工模具包括具有型腔的下模具和与所述下模具配合的上模具,所述下模具包括底壁和与所述底壁配合围成所述型腔的侧壁,所述上模具包括凸块,合模时,所述凸块伸入所述型腔并与所述底壁和所述侧壁间隔设置,所述凸块配合所述底壁和所述侧壁围成用于成型三维玻璃结构的成型空间,所述上模具采用热膨胀系数为8×10 -6~28×10 -6K的金属材料制成,所述下模具采用热膨胀系数为5×10 -6~7.58×10 -6K的金属或石墨材料制成。
  2. 根据权利要求1所述的玻璃加工模具,其特征在于,所述底壁包括位于所述型腔底部的内表面,所述侧壁包括朝向所述型腔且与所述内表面相连的第一内壁面,所述第一内壁面与所述内表面通过半径为0.3~1mm的第一圆弧过渡连接;所述凸块包括正对所述底壁的顶面、自所述顶面朝背离所述底壁方向延伸的第一侧面,所述顶面与所述第一侧面通过半径为0.3~1mm的第二圆弧过渡连接。
  3. 根据权利要求2所述的玻璃加工模具,其特征在于,所述第一圆弧与所述第二圆弧的半径相等。
  4. 根据权利要求3所述的玻璃加工模具,其特征在于,所述第一圆弧与所述第二圆弧的半径均为0.5mm。
  5. 根据权利要求2所述的玻璃加工模具,其特征在于,所述第一内壁面和所述第一侧面均为竖直面,所述凸块还包括自所述第一侧面向靠近所述侧壁方向延伸的第二侧面,所述第二侧面为水平面。
  6. 根据权利要求2所述的玻璃加工模具,其特征在于,所述内表面与所述第一内壁面之间的夹角设为θ,其中θ值满足:85°≤θ≤90°。
  7. 根据权利要求1所述的玻璃加工模具,其特征在于,所述上模具还包括用于收容所述凸块的框架,所述框架包括向所述下模具方向突出的挡墙,所述挡墙与所述凸块间隔设置形成凹槽,合模时,所述下模具的侧壁卡设于所述凹槽内。
  8. 根据权利要求7所述的玻璃加工模具,其特征在于,所述上模具还包括用于向所述凸块施加压力的重力块,所述重力块位于所述凸块上方并收容于所述框架内。
  9. 一种玻璃加工方法,其特征在于,包括:
    提供平面玻璃基材及玻璃加工模具,所述玻璃加工模具为权利1-8任一项所述的玻璃加工模具;
    软化:将所述玻璃基材夹持于所述玻璃加工模具的上模具和下模具之间,并将所述玻璃基材及所述玻璃加工模具升温到玻璃软化温度;
    合模:将所述上模具和所述下模具合模;
    冷却:将所述玻璃基材和所述玻璃加工模具进行冷却至室温;
    脱模:将所述玻璃基材与所述上模具和所述下模具分离,完成脱模。
  10. 根据权利要求9所述的玻璃加工方法,其特征在于,所述冷却过程包括将所述玻璃基材与所述上模具和所述下模具冷却至玻璃基材硬化,再将所述玻璃基材与所述上模具和所述下模具冷却至室温。
  11. 根据权利要求9所述的玻璃加工方法,其特征在于,在合模过程后进一步对所述玻璃基材与所述上模具和下模具升温至预设温度,所述预设温度为720℃~780℃。
     
PCT/CN2019/110859 2018-11-27 2019-10-12 玻璃加工模具及玻璃加工方法 Ceased WO2020108120A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811422742.8 2018-11-27
CN201811422742.8A CN109133588A (zh) 2018-11-27 2018-11-27 玻璃加工模具及玻璃加工方法

Publications (1)

Publication Number Publication Date
WO2020108120A1 true WO2020108120A1 (zh) 2020-06-04

Family

ID=64806234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/110859 Ceased WO2020108120A1 (zh) 2018-11-27 2019-10-12 玻璃加工模具及玻璃加工方法

Country Status (3)

Country Link
US (1) US20200165152A1 (zh)
CN (1) CN109133588A (zh)
WO (1) WO2020108120A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109133588A (zh) * 2018-11-27 2019-01-04 瑞声光学科技(常州)有限公司 玻璃加工模具及玻璃加工方法
WO2021003602A1 (zh) * 2019-07-05 2021-01-14 瑞声声学科技(深圳)有限公司 激励器
CN110712334B (zh) * 2019-12-01 2024-12-31 世泰仕塑料有限公司 一种竖向剪切式半溢料模压结构
KR102822940B1 (ko) * 2020-11-04 2025-06-20 삼성디스플레이 주식회사 윈도우 성형 장치 및 이를 이용한 윈도우 성형 방법
CN113698077A (zh) * 2021-10-28 2021-11-26 启东金耀億华玻纤材料有限公司 一种多曲面弯钢化玻璃的加工装置及其加工方法
CN114374128A (zh) * 2021-12-27 2022-04-19 西安赛尔电子材料科技有限公司 一种应用于钛封电连接器的封装模具

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103420566A (zh) * 2012-05-21 2013-12-04 铼钻科技股份有限公司 立体玻璃及其制造方法
CN205740729U (zh) * 2016-06-23 2016-11-30 蓝思科技股份有限公司 平板产品热弯成型为带两条以上曲边产品的模具及成型机
CN206109197U (zh) * 2016-10-27 2017-04-19 三砥新材(深圳)有限公司 一种3d曲面玻璃盖板热弯石墨模具结构
CN206204145U (zh) * 2016-09-30 2017-05-31 蓝思科技(长沙)有限公司 一种三板成型的热弯模具
CN108117251A (zh) * 2018-01-03 2018-06-05 瑞声精密制造科技(常州)有限公司 一种玻璃加工模具及玻璃加工方法
CN109133588A (zh) * 2018-11-27 2019-01-04 瑞声光学科技(常州)有限公司 玻璃加工模具及玻璃加工方法
CN109836030A (zh) * 2017-11-24 2019-06-04 汕头比亚迪电子有限公司 一种3d玻璃热弯模具和3d玻璃成型方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102410792B1 (ko) * 2015-10-20 2022-06-20 엘지전자 주식회사 벤딩 성형용 금형 및 이를 이용하는 벤딩 성형하는 방법
CN108811496A (zh) * 2017-03-06 2018-11-13 阿格拉斯有限公司 曲面板玻璃的成型方法及装置
CN206858425U (zh) * 2017-07-03 2018-01-09 蓝思科技(长沙)有限公司 一种热弯模具
CN108545916A (zh) * 2018-06-22 2018-09-18 惠州达特尔机器人有限公司 一种玻璃板热弯成型机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103420566A (zh) * 2012-05-21 2013-12-04 铼钻科技股份有限公司 立体玻璃及其制造方法
CN205740729U (zh) * 2016-06-23 2016-11-30 蓝思科技股份有限公司 平板产品热弯成型为带两条以上曲边产品的模具及成型机
CN206204145U (zh) * 2016-09-30 2017-05-31 蓝思科技(长沙)有限公司 一种三板成型的热弯模具
CN206109197U (zh) * 2016-10-27 2017-04-19 三砥新材(深圳)有限公司 一种3d曲面玻璃盖板热弯石墨模具结构
CN109836030A (zh) * 2017-11-24 2019-06-04 汕头比亚迪电子有限公司 一种3d玻璃热弯模具和3d玻璃成型方法
CN108117251A (zh) * 2018-01-03 2018-06-05 瑞声精密制造科技(常州)有限公司 一种玻璃加工模具及玻璃加工方法
CN109133588A (zh) * 2018-11-27 2019-01-04 瑞声光学科技(常州)有限公司 玻璃加工模具及玻璃加工方法

Also Published As

Publication number Publication date
US20200165152A1 (en) 2020-05-28
CN109133588A (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
WO2020108120A1 (zh) 玻璃加工模具及玻璃加工方法
WO2020108121A1 (zh) 倒扣玻璃板的加工模具及加工方法
CN108117251A (zh) 一种玻璃加工模具及玻璃加工方法
JP2023016925A (ja) 3dカバーガラス、およびその成形用金型
CN109836030B (zh) 一种3d玻璃热弯模具和3d玻璃成型方法
CN109111092A (zh) 玻璃基材加工模具及玻璃基材加工方法
CN106396352A (zh) 曲面玻璃热弯模具、曲面玻璃热弯制备系统以及工艺
CN207016664U (zh) 一种手机曲面玻璃的分体成型模具
CN114590989B (zh) 成型模具、制备玻璃壳体的方法和电子装置
WO2021138975A1 (zh) 玻璃产品成型模具、成型设备及加工方法
CN220788383U (zh) 玻璃热弯成型模具
CN205328855U (zh) 立体模造玻璃连续成型装置
CN207862171U (zh) 一种模具
CN103663932A (zh) 成型模具、使用该成型模具的玻璃成型装置及玻璃成型方法
CN207330729U (zh) 模造立体玻璃模具
CN113620571B (zh) 热成型模具、壳体及电子设备
CN214781475U (zh) 一种3d手机玻璃盖板成型模具
CN108996897A (zh) 一种热弯汽车曲面玻璃的方法
CN205528395U (zh) 立体模造玻璃连续成型装置的加热装置
CN116118056A (zh) 一种基于记忆芯模的复材进气道产品成型工装
CN112079555B (zh) 3d玻璃成型模具及3d玻璃成型系统
CN208427542U (zh) 连接叉模具
CN217972977U (zh) 一种玻璃产品的成型模具
CN116395943A (zh) 成型模具、玻璃盖板的成型方法及玻璃盖板
WO2020103611A1 (zh) 玻璃镜片及使用该玻璃镜片的镜头模组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19889593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19889593

Country of ref document: EP

Kind code of ref document: A1