WO2020103508A1 - 承载煤岩损伤演化的红外辐射量化表征方法 - Google Patents

承载煤岩损伤演化的红外辐射量化表征方法

Info

Publication number
WO2020103508A1
WO2020103508A1 PCT/CN2019/102488 CN2019102488W WO2020103508A1 WO 2020103508 A1 WO2020103508 A1 WO 2020103508A1 CN 2019102488 W CN2019102488 W CN 2019102488W WO 2020103508 A1 WO2020103508 A1 WO 2020103508A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared radiation
coal rock
rock
coal
bearing
Prior art date
Application number
PCT/CN2019/102488
Other languages
English (en)
French (fr)
Inventor
马立强
孙海
王烁康
倪艳笑
Original Assignee
中国矿业大学
江苏新月矿山技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学, 江苏新月矿山技术开发有限公司 filed Critical 中国矿业大学
Priority to CA3142064A priority Critical patent/CA3142064A1/en
Publication of WO2020103508A1 publication Critical patent/WO2020103508A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0003Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiant heat transfer of samples, e.g. emittance meter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/48Thermography; Techniques using wholly visual means

Definitions

  • the invention relates to an infrared radiation quantitative characterization method for bearing coal and rock damage evolution, belonging to the field of water-retaining coal mining and rock layer control.
  • the process of bearing stress, deformation and rupture of coal rock is a process of disorderly distribution of micro-defects dispersed inside to orderly formation of macro cracks, which is also the source of infrared radiation changes on the surface of coal rock.
  • the rupture of each individual element of coal rock will have a contribution to the change of infrared radiation.
  • the prior art only the qualitative analysis of infrared radiation on the surface of coal rock has been performed, and no suitable infrared radiation characterization parameters have been found to achieve fine calibration of damage parameters, nor has a quantitative characterization method been formed.
  • the purpose of the present invention is to provide an infrared radiation quantitative characterization method for carrying coal and rock damage evolution, which can dynamically and accurately evaluate coal and rock mass damage evolution through real-time monitoring of infrared radiation data of the excavation face.
  • the present invention provides a method for quantitatively characterizing infrared radiation bearing coal rock damage evolution, including the following steps:
  • the first step is to collect the original infrared radiation matrix sequence of coal rock
  • the second step is to establish the infrared radiation temperature change matrix sequence:
  • First-order forward difference processing is performed on the original infrared radiation matrix sequence in the first step to obtain the differential infrared radiation matrix sequence of coal rock, and the absolute value of each element in the differential infrared radiation matrix sequence is taken to obtain the infrared radiation temperature change matrix sequence;
  • F (i, j, p) is the infrared radiation temperature change matrix of frame p of coal rock
  • f (i, j, p) is the original infrared radiation matrix of frame p of coal rock
  • the third step is to take the maximum value of each frame in the infrared radiation temperature change matrix sequence of the coal rock as the threshold value of the infrared radiation change caused by the micro-elements destruction at the corresponding time of the coal rock infrared radiation temperature change matrix sequence:
  • M (p) is the threshold value of the infrared radiation temperature change matrix of the pth frame carrying coal rock due to the destruction of microelements
  • the fourth step is to count the infrared radiation count of the bearing coal rock due to the destruction of micro-elements:
  • the fifth step is to calculate the cumulative infrared radiation count of the bearing coal rock due to the destruction of micro-elements:
  • k is the frame number of the infrared radiation matrix sequence
  • N is the cumulative count of infrared radiation at the moment of total destruction of the bearing coal rock
  • m is the number of frames of the infrared radiation temperature change matrix sequence at the moment of the total failure of the bearing coal rock
  • k is the frame number of the infrared radiation matrix sequence
  • Step 5 Quantitative characterization of infrared radiation carrying coal and rock damage parameters:
  • D (p) is the damage parameter of the pth frame carrying coal rock.
  • the invention determines the threshold value of the infrared radiation change caused by the micro-element damage of the bearing coal rock, selects the cumulative number of infrared radiation in the process of damage evolution of the bearing coal rock, constructs the quantitative characterization method of the infrared radiation of the bearing coal rock damage evolution, and realizes the utilization
  • the surface infrared radiation response information in the process of coal and rock damage characterizes the damage evolution.
  • Fig. 1 is a graph showing the time-varying damage parameters and stress of a load-bearing coal rock in the present invention.
  • the first step is to collect the original infrared radiation matrix sequence of coal rock:
  • Arrange the reference coal rock on the excavation face use infrared thermal imager to detect and store the surface infrared radiation information of the coal face of the excavation face and the reference coal rock, and obtain the original infrared radiation matrix sequence of the bearing coal rock and the reference coal rock.
  • the second step is to establish the infrared radiation temperature change matrix sequence:
  • First-order forward difference processing is performed on the original infrared radiation matrix sequence in the first step to obtain the differential infrared radiation matrix sequence of coal rock, and the absolute value of each element in the differential infrared radiation matrix sequence is taken to obtain the infrared radiation temperature change matrix sequence;
  • F (i, j, p) is the infrared radiation temperature change matrix of frame p of coal rock
  • f (i, j, p) is the original infrared radiation matrix of frame p of coal rock
  • i is the row number of the infrared radiation matrix
  • j is the column number of the infrared radiation matrix
  • the third step is to take the maximum value of each frame in the infrared radiation temperature change matrix sequence of the coal rock as the threshold value of the infrared radiation change caused by the micro-elements destruction at the corresponding time of the coal rock infrared radiation temperature change matrix sequence:
  • M (p) is the threshold value of the infrared radiation temperature change matrix of the pth frame carrying coal rock due to the destruction of microelements
  • the fourth step is to count the infrared radiation count of the bearing coal rock due to the destruction of micro-elements:
  • the fifth step is to calculate the cumulative infrared radiation count of the bearing coal rock due to the destruction of micro-elements:
  • the infrared radiation count Q of the bearing coal rock obtained in the fourth step is summed to obtain the cumulative infrared radiation count of the bearing coal rock, which is denoted as N, and the cumulative infrared radiation count of the p frame of the bearing coal rock is N (p):
  • k is the frame number of the infrared radiation matrix sequence
  • N is the cumulative count of infrared radiation at the moment of total destruction of the bearing coal rock
  • m is the number of frames of the infrared radiation temperature change matrix sequence at the moment of the total failure of the bearing coal rock
  • k is the frame number of the infrared radiation matrix sequence
  • Step 5 Quantitative characterization of infrared radiation carrying coal and rock damage parameters:
  • D (p) is the damage parameter of the pth frame carrying coal rock.
  • the invention determines the threshold value of the infrared radiation change caused by the micro-element damage of the bearing coal rock, selects the cumulative number of infrared radiation during the evolution of the damage of the bearing coal rock, constructs the quantitative characterization method of the infrared radiation of the damage evolution of the bearing coal rock, and realizes the utilization
  • the surface infrared radiation response information in the process of coal and rock damage characterizes the damage evolution.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

本发明公开了一种承载煤岩损伤演化的红外辐射量化表征方法,此方法以参照煤岩红外辐射变温矩阵中的最大值,作为承载煤岩因微元破坏导致红外辐射变化的门槛值,筛选出承载煤岩损伤演化过程中的红外辐射累计数,基于连续损伤力学理论,构建承载煤岩损伤演化的红外辐射量化表征方法,通过实时监测红外辐射数据,可以动态精准评价煤岩体损伤演化的实时过程、提升矿山安全生产水平以及提高现代岩石力学与工程领域煤岩体监测的稳定性和精准度。

Description

承载煤岩损伤演化的红外辐射量化表征方法 技术领域
本发明涉及一种承载煤岩损伤演化的红外辐射量化表征方法,属于保水采煤与岩层控制领域。
背景技术
煤岩承载受力、变形及破裂的过程,是一个从内部弥散的微缺陷无序分布向有序发展,最终形成宏观裂纹的过程,这也是导致煤岩表面红外辐射发生变化的根源。煤岩每一个体元的破裂都会对红外辐射的变化有一份贡献,煤岩损伤演化程度与其表面红外辐射响应信息之间存在着规律性的量化关系。因此,通过观测煤岩表面红外辐射,能够及时掌握煤岩的变形情况,预测煤岩体的损伤演化程度。但是,现有技术中只是对煤岩表面红外辐射进行定性分析,尚未找到合适红外辐射表征参数去实现损伤参数的精细标定,更没有形成量化表征方法。
发明内容
本发明目的在于提供一种承载煤岩损伤演化的红外辐射量化表征方法,能够通过实时监测采掘面红外辐射数据,动态精准评价煤岩体损伤演化。
为实现上述目的,本发明一种承载煤岩损伤演化的红外辐射量化表征方法,包括以下步骤:
第一步、采集煤岩的原始红外辐射矩阵序列;
第二步、建立红外辐射变温矩阵序列:
对第一步中的原始红外辐射矩阵序列进行一阶前向差分处理,得到煤岩的差分红外辐射矩阵序列,对差分红外辐射矩阵序列中每个元素取绝对值,得到红外辐射变温矩阵序列;
F(i,j,p)=|f(i,j,p+1)-f(i,j,p)|
其中:F(i,j,p)为煤岩第p帧的红外辐射变温矩阵,
f(i,j,p)为煤岩第p帧的原始红外辐射矩阵,
i为红外辐射矩阵的行号;j为红外辐射矩阵的列号;
第三步、取参照煤岩的红外辐射变温矩阵序列中每一帧的最大值,作为承载煤岩红外辐射变温矩阵序列相应时刻因微元破坏导致红外辐射变化的门槛值:
M(p)=Max(F(i,j,p))
其中:M(p)为承载煤岩第p帧红外辐射变温矩阵因微元破坏导致红外辐射变化的门槛值;
第四步、统计承载煤岩因微元破坏的红外辐射计数:
对承载煤岩红外辐射变温矩阵序列中大于相应时刻门槛值的红外辐射点进行计数,记为Q,承载煤岩第p帧的红外辐射计数为Q(p);
第五步、计算承载煤岩因微元破坏的红外辐射累积计数:
对第四步中获得的承载煤岩红外辐射计数Q进行求和,得到承载煤岩的红外辐射累积计数,记为N,承载煤岩第p帧的红外辐射累积计数为N(p):
Figure PCTCN2019102488-appb-000001
其中:k为红外辐射矩阵序列的帧号;
承载煤岩全破坏时刻红外辐射累积计数为N(m):
Figure PCTCN2019102488-appb-000002
其中N为承载煤岩全破坏时刻红外辐射累积计数;m为承载煤岩全破坏时刻红外辐射变温矩阵序列的帧数;k为红外辐射矩阵序列的帧号;
第五步、承载煤岩损伤参量的红外辐射量化表征:
D(p)=N(p)/N(m)
其中:D(p)为承载煤岩第p帧的损伤参量。
本发明确定了承载煤岩因微元破坏导致红外辐射变化的门槛值,筛选出承载煤岩损伤演化过程中的红外辐射累计数,构建承载煤岩损伤演化的红外辐射量化表征方法,实现了利用煤岩损伤过程中表面红外辐射响应信息来表征损伤演化,通过实时监测红外辐射数据, 可以动态精准评价煤岩体损伤演化的实时过程、提升矿山安全生产水平以及提高现代岩石力学与工程领域煤岩体监测的稳定性和精准度。
附图说明
图1为本发明中某一承载煤岩损伤参量和应力随时间变化曲线图。
具体实施方式
下面结合附图对本发明进一步说明:
一种承载煤岩损伤演化的红外辐射量化表征方法,包括以下步骤:
第一步、采集煤岩的原始红外辐射矩阵序列:
在采掘面布置参照煤岩,利用红外热像仪探测并存储采掘面煤岩体和参照煤岩的表面红外辐射信息,得到承载煤岩和参照煤岩的原始红外辐射矩阵序列。
第二步、建立红外辐射变温矩阵序列:
对第一步中的原始红外辐射矩阵序列进行一阶前向差分处理,得到煤岩的差分红外辐射矩阵序列,对差分红外辐射矩阵序列中每个元素取绝对值,得到红外辐射变温矩阵序列;
F(i,j,p)=|f(i,j,p+1)-f(i,j,p)|
其中:F(i,j,p)为煤岩第p帧的红外辐射变温矩阵,
f(i,j,p)为煤岩第p帧的原始红外辐射矩阵,
i为红外辐射矩阵的行号;j为红外辐射矩阵的列号;
第三步、取参照煤岩的红外辐射变温矩阵序列中每一帧的最大值,作为承载煤岩红外辐射变温矩阵序列相应时刻因微元破坏导致红外辐射变化的门槛值:
M(p)=Max(F(i,j,p))
其中:M(p)为承载煤岩第p帧红外辐射变温矩阵因微元破坏导致红外辐射变化的门槛值;
第四步、统计承载煤岩因微元破坏的红外辐射计数:
对承载煤岩红外辐射变温矩阵序列中大于相应时刻门槛值的红外辐射点进行计数,记 为Q,承载煤岩第p帧的红外辐射计数为Q(p);
第五步、计算承载煤岩因微元破坏的红外辐射累积计数:
对第四步中获得的承载煤岩红外辐射计数Q进行求和,得到承载煤岩的红外辐射累积计数,记为N,承载煤岩第p帧的红外辐射累积计数为N(p):
Figure PCTCN2019102488-appb-000003
其中:k为红外辐射矩阵序列的帧号;
承载煤岩全破坏时刻红外辐射累积计数为N(m):
Figure PCTCN2019102488-appb-000004
其中N为承载煤岩全破坏时刻红外辐射累积计数;m为承载煤岩全破坏时刻红外辐射变温矩阵序列的帧数;k为红外辐射矩阵序列的帧号;
第五步、承载煤岩损伤参量的红外辐射量化表征:
D(p)=N(p)/N(m)
其中:D(p)为承载煤岩第p帧的损伤参量。
本发明确定了承载煤岩因微元破坏导致红外辐射变化的门槛值,筛选出承载煤岩损伤演化过程中的红外辐射累计数,构建承载煤岩损伤演化的红外辐射量化表征方法,实现了利用煤岩损伤过程中表面红外辐射响应信息来表征损伤演化,通过实时监测红外辐射数据,可以动态精准评价煤岩体损伤演化的实时过程、提升矿山安全生产水平以及提高现代岩石力学与工程领域煤岩体监测的稳定性和精准度。
从图1可知,以红外辐射累积计数为表征参数的煤岩损伤演化曲线,有明显的阶段性变化特征,能够很好地反映承载煤岩裂隙缺陷产生、发展和破坏的演化过程。

Claims (1)

  1. 一种承载煤岩损伤演化的红外辐射量化表征方法,包括以下步骤:
    第一步、采集煤岩的原始红外辐射矩阵序列;
    第二步、建立红外辐射变温矩阵序列:
    对第一步中的原始红外辐射矩阵序列进行一阶前向差分处理,得到煤岩的差分红外辐射矩阵序列,对差分红外辐射矩阵序列中每个元素取绝对值,得到红外辐射变温矩阵序列;
    F(i,j,p)=|f(i,j,p+1)-f(i,j,p)|
    其中:F(i,j,p)为煤岩第p帧的红外辐射变温矩阵,
    f(i,j,p)为煤岩第p帧的原始红外辐射矩阵,
    i为红外辐射矩阵的行号;j为红外辐射矩阵的列号;
    第三步、取参照煤岩的红外辐射变温矩阵序列中每一帧的最大值,作为承载煤岩红外辐射变温矩阵序列相应时刻因微元破坏导致红外辐射变化的门槛值:
    M(p)=Max(F(i,j,p))
    其中:M(p)为承载煤岩第p帧红外辐射变温矩阵因微元破坏导致红外辐射变化的门槛值;
    第四步、统计承载煤岩因微元破坏的红外辐射计数:
    对承载煤岩红外辐射变温矩阵序列中大于相应时刻门槛值的红外辐射点进行计数,记为Q,承载煤岩第p帧的红外辐射计数为Q(p);
    第五步、计算承载煤岩因微元破坏的红外辐射累积计数:
    对第四步中获得的承载煤岩红外辐射计数Q进行求和,得到承载煤岩的红外辐射累积计数,记为N,承载煤岩第p帧的红外辐射累积计数为N(p):
    Figure PCTCN2019102488-appb-100001
    其中:k为红外辐射矩阵序列的帧号;
    承载煤岩全破坏时刻红外辐射累积计数为N(m):
    Figure PCTCN2019102488-appb-100002
    其中N为承载煤岩全破坏时刻红外辐射累积计数;m为承载煤岩全破坏时刻红外辐射变温矩阵序列的帧数;k为红外辐射矩阵序列的帧号;
    第五步、承载煤岩损伤参量的红外辐射量化表征:
    D(p)=N(p)/N(m)
    其中:D(p)为承载煤岩第p帧的损伤参量。
PCT/CN2019/102488 2018-11-23 2019-08-26 承载煤岩损伤演化的红外辐射量化表征方法 WO2020103508A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA3142064A CA3142064A1 (en) 2018-11-23 2019-08-26 Infrared radiation quantitative characterization method for damage evolution of coal-bearing rocks

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811412926.6A CN109443543B (zh) 2018-11-23 2018-11-23 承载煤岩损伤演化的红外辐射量化表征方法
CN201811412926.6 2018-11-23

Publications (1)

Publication Number Publication Date
WO2020103508A1 true WO2020103508A1 (zh) 2020-05-28

Family

ID=65554250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/102488 WO2020103508A1 (zh) 2018-11-23 2019-08-26 承载煤岩损伤演化的红外辐射量化表征方法

Country Status (3)

Country Link
CN (1) CN109443543B (zh)
CA (1) CA3142064A1 (zh)
WO (1) WO2020103508A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112665731A (zh) * 2020-12-31 2021-04-16 中国矿业大学 红外辐射技术监测煤岩破坏失稳的分级预警方法
CN113029995A (zh) * 2021-03-10 2021-06-25 太原理工大学 一种线性调频的煤岩辐射检测装置及方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109443543B (zh) * 2018-11-23 2021-05-04 中国矿业大学 承载煤岩损伤演化的红外辐射量化表征方法
CN110411572B (zh) * 2019-07-10 2020-12-15 中国矿业大学 承载煤岩破裂的红外辐射监测预警方法
CN112816072B (zh) * 2021-01-12 2024-05-03 江苏师范大学 水岩作用下煤岩压缩热辐射温度时空分布及预测的方法
CN114113217B (zh) * 2021-11-15 2024-07-12 中国矿业大学 一种煤岩体损伤程度的红外辐射量化评价方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0707206A1 (en) * 1994-10-11 1996-04-17 United Technologies Corporation High temperature crack monitoring apparatus
CN102095755A (zh) * 2010-12-09 2011-06-15 重庆建工市政交通工程有限责任公司 一种混凝土结构的无损检测方法
CN102853916A (zh) * 2012-09-26 2013-01-02 中国神华能源股份有限公司 一种用于对煤垛表面进行远距离红外测温的方法及系统
CN106018096A (zh) * 2016-07-20 2016-10-12 中国矿业大学 煤岩破裂过程中裂隙发育区的红外辐射监测定位方法
CN109443543A (zh) * 2018-11-23 2019-03-08 中国矿业大学 承载煤岩损伤演化的红外辐射量化表征方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103983514B (zh) * 2014-05-22 2016-06-01 中国矿业大学 一种煤岩裂隙发育红外辐射监测试验方法
CN104764528B (zh) * 2015-04-03 2018-01-12 中国矿业大学 一种煤岩裂隙发育过程中的热红外信息去噪方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0707206A1 (en) * 1994-10-11 1996-04-17 United Technologies Corporation High temperature crack monitoring apparatus
CN102095755A (zh) * 2010-12-09 2011-06-15 重庆建工市政交通工程有限责任公司 一种混凝土结构的无损检测方法
CN102853916A (zh) * 2012-09-26 2013-01-02 中国神华能源股份有限公司 一种用于对煤垛表面进行远距离红外测温的方法及系统
CN106018096A (zh) * 2016-07-20 2016-10-12 中国矿业大学 煤岩破裂过程中裂隙发育区的红外辐射监测定位方法
CN109443543A (zh) * 2018-11-23 2019-03-08 中国矿业大学 承载煤岩损伤演化的红外辐射量化表征方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112665731A (zh) * 2020-12-31 2021-04-16 中国矿业大学 红外辐射技术监测煤岩破坏失稳的分级预警方法
CN113029995A (zh) * 2021-03-10 2021-06-25 太原理工大学 一种线性调频的煤岩辐射检测装置及方法
CN113029995B (zh) * 2021-03-10 2022-09-27 太原理工大学 一种线性调频的煤岩辐射检测装置及方法

Also Published As

Publication number Publication date
CN109443543A (zh) 2019-03-08
CA3142064A1 (en) 2020-05-28
CN109443543B (zh) 2021-05-04

Similar Documents

Publication Publication Date Title
WO2020103508A1 (zh) 承载煤岩损伤演化的红外辐射量化表征方法
Zhang et al. Finite element simulation of the influence of fretting wear on fretting crack initiation in press-fitted shaft under rotating bending
CN103455682A (zh) 一种预测高温高压井腐蚀套管剩余寿命的方法
CN111079783B (zh) 一种基于多核集成学习识别地层岩性参数的方法
Lindroos et al. Micromechanical modeling of short crack nucleation and growth in high cycle fatigue of martensitic microstructures
Qvale et al. Digital image correlation for continuous mapping of fatigue crack initiation sites on corroded surface from offshore mooring chain
CN114324023A (zh) 一种建筑废弃物路基填料破坏强度快速预测方法
CN116384193A (zh) 基于数字孪生技术和数据融合的裂纹扩展预测方法
Beijing et al. Crack detection and evolution law for rock mass under SHPB impact tests
Asbjörnsson et al. Model of banana screen for robust performance
Valerevich Lvov et al. Comparison of the different ways of the ball Bond work index determining
JP2019184541A (ja) 岩盤の風化変質評価方法及び岩盤の風化変質評価装置
CN115625894A (zh) 一种基于同轴损伤探测的激光增材制造寿命预测方法
CN109558976A (zh) 一种基于多维信息的冲击地压危险性辨识方法
Udalov et al. Indentation size effect during measuring the hardness of materials by pyramidal indenter
CN116026487B (zh) 液面温度测量方法、装置、计算机设备和存储介质
CN113671919B (zh) 一种建筑陶瓷间歇式球磨机泥浆制备控制方法
CN111691906A (zh) 一种运营隧道锚杆加固方法
CN106874627A (zh) 一种用于检测矿用锚杆施工质量和工作状态的检测方法
CN103105467A (zh) 基于应力强度因子评估轴承滚道次表面疲劳损伤度的方法
Shields et al. Preliminary Blast Fragmentation Modeling in an Underground Aggregate Operation
JP6033137B2 (ja) 造粒装置の操業支援システム
Kroon et al. A probabilistic model for cleavage fracture with a length scale–Parameter estimation and predictions of growing crack experiments
Xiao-Cong A hybrid SVM-QPSO model based ceramic tube surface defect detection algorithm
Mou et al. Digital twin modeling for stress prediction of single-crystal turbine blades based on graph convolutional network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19887684

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 3142064

Country of ref document: CA

122 Ep: pct application non-entry in european phase

Ref document number: 19887684

Country of ref document: EP

Kind code of ref document: A1