WO2020103458A1 - 一种sma弹簧-stf粘滞阻尼器 - Google Patents

一种sma弹簧-stf粘滞阻尼器

Info

Publication number
WO2020103458A1
WO2020103458A1 PCT/CN2019/093762 CN2019093762W WO2020103458A1 WO 2020103458 A1 WO2020103458 A1 WO 2020103458A1 CN 2019093762 W CN2019093762 W CN 2019093762W WO 2020103458 A1 WO2020103458 A1 WO 2020103458A1
Authority
WO
WIPO (PCT)
Prior art keywords
damping
sma spring
piston rod
piston
damping cavity
Prior art date
Application number
PCT/CN2019/093762
Other languages
English (en)
French (fr)
Inventor
孙丽
张贺铭
张春巍
朱春阳
吕胤儒
李闯
Original Assignee
孙丽
张春巍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 孙丽, 张春巍 filed Critical 孙丽
Priority to EP19886078.5A priority Critical patent/EP3739236A4/en
Priority to JP2020544009A priority patent/JP6909357B2/ja
Publication of WO2020103458A1 publication Critical patent/WO2020103458A1/zh
Priority to US16/992,249 priority patent/US11143265B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/002Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising at least one fluid spring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/005Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a wound spring and a damper, e.g. a friction damper
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/021Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant characterised by their composition, e.g. comprising materials providing for particular spring properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/04Wound springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/005Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a wound spring and a damper, e.g. a friction damper
    • F16F13/007Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a wound spring and a damper, e.g. a friction damper the damper being a fluid damper
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/10Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using liquid only; using a fluid of which the nature is immaterial
    • F16F9/14Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect
    • F16F9/16Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts
    • F16F9/18Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein
    • F16F9/20Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein with the piston-rod extending through both ends of the cylinder, e.g. constant-volume dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/30Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium with solid or semi-solid material, e.g. pasty masses, as damping medium
    • F16F9/303Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium with solid or semi-solid material, e.g. pasty masses, as damping medium the damper being of the telescopic type
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • E04H9/0237Structural braces with damping devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2224/00Materials; Material properties
    • F16F2224/02Materials; Material properties solids
    • F16F2224/0258Shape-memory metals, e.g. Ni-Ti alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2224/00Materials; Material properties
    • F16F2224/04Fluids
    • F16F2224/041Dilatant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2228/00Functional characteristics, e.g. variability, frequency-dependence
    • F16F2228/04Frequency effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2230/00Purpose; Design features
    • F16F2230/0023Purpose; Design features protective

Definitions

  • the invention relates to the field of shock absorption and shock resistance, in particular to a damper with a self-reset function and a limit function.
  • An earthquake is a very destructive natural disaster.
  • the loss caused by it in a short period of time is immeasurable, and it poses a huge threat to human survival and development.
  • Earthquakes are relatively common natural disasters in China. Once they occur, they will cause a large number of casualties and the collapse or destruction of structures such as houses and infrastructure.
  • several earthquake disasters in our country have made humans pay a heavy price.
  • the destruction of building structures under the action of earthquakes is the most direct cause of casualties and economic losses. Therefore, improving the seismic and disaster prevention capabilities of building structures is the most fundamental measure to reduce the loss of earthquake disasters.
  • traditional seismic methods can not play a good role in structural shock absorption, so it is very important to find new design concepts and methods in the field of seismic resistance.
  • Structural control consists of active control, semi-active control, structural isolation, energy dissipation and intelligent control, and other directions. The research and application of energy dissipation and shock absorption are relatively mature.
  • the energy dissipation and damping system is to design some non-bearing components of the structure as energy dissipating components, or install energy dissipating devices in certain parts of the structure. These energy dissipating components and devices first enter the plastic state during a large earthquake The structure dissipates energy. According to the different energy dissipation mechanism of energy dissipation dampers, they can be divided into the following categories: 1) viscous dampers; 2) metal dampers; 3) friction dampers; 4) viscoelastic dampers; 5) Electric (magnetic) induction damper.
  • Viscous damper is a kind of non-rigidity, velocity-dependent damper, mainly used in large high-rise building structures such as houses, industrial buildings, bridges, etc., to dissipate the destructive energy caused by earthquakes and the like. Because the damping force of the ordinary viscous damper is determined by the speed, it has no damping effect or little effect on the structural deformation caused by low-speed static load. If the structural deformation exceeds the design displacement, the structure may be destroyed.
  • the purpose of the patent of the present invention is to overcome the shortcomings of the prior art and propose a viscous damper that can provide damping force at low frequencies and has a self-reset function.
  • the viscous damper also has good energy dissipation, shock absorption and reset functions, and can provide a limit function when the static load deformation exceeds the design stroke. Its structure is simple and easy to install.
  • An SMA spring-STF viscous damper including a first connector, a piston rod, a left end cap, a first damping cavity, a damping cylinder, a piston, a second damping cavity, an SMA spring, a right end cap and a second connection
  • the damping cylinder is provided with a left end cover at one end and a right end cover at the other end; the interior of the damping cylinder is divided into a first damping cavity and a second damping cavity by a piston; the piston is provided on the piston rod; one end of the piston rod penetrates the left end Connected to the first connector after the cover, the other end of the piston rod penetrates the right end cap; the second connector is fixed to the right end cap; the two SMA springs sleeved on the piston rod are placed in the first damping cavity and the second damping respectively In the cavity; the first damping cavity and the second damping cavity are filled with STF shear thickening liquid.
  • the damper of the present invention is mainly provided by the SMA spring under the action of low frequency load, and the damping force is provided by the SMA spring and the shear damping fluid under the action of medium and high frequency load, which not only meets the requirements of general working conditions, but also acts at low frequency load.
  • the SMA spring has a limit function. When the static load deformation of the viscous damper exceeds the design stroke, the limit effect is achieved by the compression of the SMA spring.
  • the damper of the invention has a self-resetting function, and can restore the initial state after being unloaded.
  • the piston rods at both ends of the piston are respectively equipped with SMA springs, which ensures that the damper force of the SMA spring is involved in the push-pull of the damper piston rod.
  • the damping fluid and the SMA spring function separately, so that the damper has good energy consumption, shock absorption and reset functions at the same time.
  • FIG. 1 is a schematic structural view of the viscous damper of the present invention.
  • an SMA spring-STF viscous damper includes a first connecting member 1, a piston rod 2, a left end cap 3, a first damping cavity 4, a damping cylinder 5, a piston 6, and a second damping Cavity 7, SMA spring 8, right end cover 9 and second connector 10; the damper is in the form of a double output rod; the damping cylinder 5 is provided with a left end cover 3 at one end and a right end cover 9 at the other end; inside the damping cylinder 5
  • the piston 6 is divided into a first damping cavity 4 and a second damping cavity 7; the piston 6 is provided on the piston rod 2; one end of the piston rod 2 penetrates the left end cap 3 and is connected to the first connecting member 1, the other end of the piston rod 2
  • the right end cover 9 penetrates; the right end cover 9 is fixed with a second connector 10; two equal length SMA springs 8 sleeved on the piston rod 2 are respectively placed in the first damping cavity 4 and the second damping cavity 7;
  • the SMA spring on the piston rod can be extended or compressed along the piston rod on the piston rod, and the two SMA springs work together.
  • the compressed SMA spring extends and pushes the piston to move in the opposite direction, and the other SMA spring is compressed and resumes work.
  • a sealing ring is provided between the piston rod 2 and the left end cap 3 and the right end cap 9.
  • the first connecting piece 1 drives the piston rod 2 and the piston 6 to the left, the SMA spring in the first damping cavity 4 is compressed and becomes shorter, and the SMA spring in the second damping cavity 7 Extend towards the original length.
  • the damping force obtained by shearing damping fluid of the orifice of the piston 6 is very small, and the damping force provided by the damper is mainly provided by the SMA spring.
  • the damping force provided by the damper is simultaneously provided by the damping force obtained by the SMA spring and the shear damping fluid; when the viscous damper is pressed, the SMA spring in the second damping cavity 7 The pressure becomes shorter, and the SMA spring in the first damping cavity 4 extends toward the original length.
  • the damping force provided by the damper is mainly provided by the SMA spring.
  • the damping force provided by the damper is simultaneously provided by the damping force obtained by the SMA spring and the shear damping fluid.
  • the damper according to the present invention consumes energy through the internal friction of the STF shear thickening fluid flowing through the orifice and the compression and recovery of the SMA spring to realize energy dissipation and shock absorption of the structure.
  • the resistance of the SMA spring 8 has nothing to do with the loading speed, and is only related to the deformation position of the structure. In order to ensure that the deformation is controlled within the design range, the parameters of the SMA spring can be selected according to the relationship between the load and the deformation.
  • the invention has the effects of improving the dynamic response and self-reset of the structure, and at the same time produces a certain limit resistance effect on the excessive displacement of the structure, and has the characteristics of simple installation and convenient operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Vibration Prevention Devices (AREA)
  • Fluid-Damping Devices (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Springs (AREA)

Abstract

一种SMA弹簧-STF粘滞阻尼器,包括第一连接件(1)、活塞杆(2)、左端盖(3)、第一阻尼腔体(4)、阻尼缸体(5)、活塞(6)、第二阻尼腔体(7)、SMA弹簧(8)、右端盖(9)和第二连接件(10);阻尼缸体(5)一端设有左端盖(3),另一端设有右端盖(9);阻尼缸体(5)内部通过活塞(6)分隔为第一阻尼腔体(4)和第二阻尼腔体(7);活塞杆(2)上套设的两个SMA弹簧(8)分别置于第一阻尼腔体(4)和第二阻尼腔体(7)内;在第一阻尼腔体(4)和第二阻尼腔体(7)填入有STF剪切增稠液。

Description

一种SMA弹簧-STF粘滞阻尼器 技术领域
本发明涉及减震抗震领域,尤其涉及一种具有自复位功能和限位功能的阻尼器。
背景技术
地震是一种破坏性极大的自然灾害,其短时间内造成的损失不可估量,对人类的生存和发展造成了巨大的威胁。地震在我国是比较常见的自然灾害,一旦发生,就会造成大量的人员伤亡以及房屋、基础设施等结构的坍塌或破坏。近年来我国几次地震灾害都让人类付出了惨痛的代价,其中建筑结构在地震作用下的破坏是导致人员伤亡和经济损失的最直接原因。因此,提高建筑结构的抗震防灾能力是减小地震灾害损失的最根本的措施。但传统抗震方法并不能起到很好的结构减震效果,因此在抗震领域寻找新的设计概念和方法已经显得尤为重要。
1972年美国Purdue大学的姚志平教授将结构控制理论引入土木工程领域,相比传统的抗震设计方法,结构控制使得结构具有自我调整和自我控制的能力,在应对不同的地震荷载时,能根据地震的强度、频谱、持续时间在一定范围内对自身的刚度、阻尼甚至质量等特性进行调整,这有利于减小结构的动力响应,以及满足结构安全和舒适的基本要求。结构控制有主动控制、半主动控制、结构隔震、消能减震和智能控制等几个方向组成。其中关于消能减震的研究和应用比较成熟。
消能减震体系是把结构的某些非承重构件设计成耗能构件,或在结构物的某些部位装设耗能装置,这些耗能构件和装置在大震时首先进入塑性状态,帮助结构耗散能量。按照消能减震器的耗能机理不同可以将其分为以下几个类别:1)粘滞性阻尼器;2)金属阻尼器;3)摩擦阻尼器;4)粘弹性阻尼器;5)电(磁)感应阻尼器。
粘滞阻尼器是一种无刚度、速度相关型阻尼器,主要用于房屋、工业建筑、桥梁等大型高层建筑结构上,用来耗散地震等带来的破坏性能量。因为普通粘滞阻尼器的阻尼力是由速度决定的,所以它对由低速静载引起的结构变形没有阻尼作用或作用很小,如果结构变形超出设计位移,结构就可能遭到破坏。
发明内容
本发明专利的目的就是为了克服现有技术存在的缺陷而提出一种低频下能够提供阻尼力,且具有自复位功能的粘滞阻尼器。该粘滞阻尼器同时具有良好的耗能减震及复位功能,且静载荷变形超过设计行程时能够提供限位功能,其构造简单,易于安装。
本发明采用的技术方案是:
一种SMA弹簧-STF粘滞阻尼器,包括第一连接件、活塞杆、左端盖、第一阻尼腔体、阻尼缸体、活塞、第二阻尼腔体、SMA弹簧、右端盖和第二连接件;阻尼缸体一端设有左端盖,另一端设有右端盖;阻尼缸体内部通过活塞分隔为第一阻尼腔体和第二阻尼腔体;活塞设在活塞杆上;活塞杆一端贯穿 左端盖后与第一连接件连接,活塞杆另一端贯穿右端盖;右端盖上固接有第二连接件;活塞杆上套设的两个SMA弹簧分别置于第一阻尼腔体和第二阻尼腔体内;在第一阻尼腔体和第二阻尼腔体填入有STF剪切增稠液。
本发明的优点是:
本发明阻尼器在低频荷载作用下主要由SMA弹簧提供阻尼力,在中高频荷载作用下同时由SMA弹簧和剪切阻尼液提供阻尼力,既满足一般使用工况需求,又能在低频荷载作用下弥补普通粘滞阻尼器阻尼力不足的缺点,帮助建筑物消耗更多能量。且SMA弹簧具有限位功能,当对粘滞阻尼器静载荷变形超过设计行程时,通过SMA弹簧的压缩起限位作用。且本发明阻尼器拥有自复位功能,卸载后能恢复初始状态。活塞两端的活塞杆分别装有SMA弹簧,保证了阻尼器活塞杆推拉都有SMA弹簧的阻尼力介入。同时阻尼液和SMA弹簧各自发挥作用,使阻尼器同时具有良好的耗能减震及复位功能。
附图说明
图1为本发明的粘滞阻尼器的结构示意图。
具体实施方式
下面结合附图和具体实施方法,对本发明进行详细说明。
如图1所示,一种SMA弹簧-STF粘滞阻尼器,包括第一连接件1、活塞杆2、左端盖3、第一阻尼腔体4、阻尼缸体5、活塞6、第二阻尼腔体7、SMA弹簧8、右端盖9和第二连接件10;阻尼器采用双出杆形式;阻尼缸体5一 端设有左端盖3,另一端设有右端盖9;阻尼缸体5内部通过活塞6分隔为第一阻尼腔体4和第二阻尼腔体7;活塞6设在活塞杆2上;活塞杆2一端贯穿左端盖3后与第一连接件1连接,活塞杆2另一端贯穿右端盖9;右端盖9上固接有第二连接件10;活塞杆2上套设的两个同等长度SMA弹簧8分别置于第一阻尼腔体4和第二阻尼腔体7内;在第一阻尼腔体4和第二阻尼腔体7填入有STF剪切增稠液。
活塞杆上的SMA弹簧在活塞杆上可沿活塞杆伸长或压缩,两根SMA弹簧共同工作。
当活塞沿着阻尼腔体移动时,会压缩前进方向活塞上的SMA弹簧,并使另一方向的SMA弹簧向原长恢复。
在行程范围内,两根SMA弹簧的伸缩量之和为0。
静载变形超过设计行程时,一根SMA弹簧被压缩,另一根SMA弹簧向原长恢复直至退出工作。
当卸除外荷载后,被压缩的SMA弹簧伸长并推动活塞向相反方向运动,另一根SMA弹簧被压缩且恢复工作。
活塞杆2与左端盖3和右端盖9之间设置有密封圈。
当粘滞阻尼器受到拉力时,第一连接件1带动活塞杆2和活塞6向左运动,第一阻尼腔体4内的SMA弹簧受压变短,第二阻尼腔体7内的SMA弹簧向原长伸长。当拉力很缓慢时,活塞6节流孔剪切阻尼液得到的阻尼力很小, 阻尼器所提供的阻尼力主要由SMA弹簧提供。当拉伸力达到一定速度以上,阻尼器所提供的阻尼力同时由SMA弹簧和剪切阻尼液得到的阻尼力提供;当粘滞阻尼器受到压力,第二阻尼腔体7内的SMA弹簧受压变短,第一阻尼腔体4内的SMA弹簧向原长伸长。同理,当压缩力很缓慢时,阻尼器所提供的阻尼力主要由SMA弹簧提供。当压缩力达到一定速度时,阻尼器所提供的阻尼力同时由SMA弹簧和剪切阻尼液得到的阻尼力提供。
当外力消失后,由于SMA弹簧的超弹性恢复力推动活塞6,使阻尼器复位,并且在复位过程中,活塞6会推动阻尼介质通过节流孔。因此,本发明涉及的阻尼器是通过STF剪切增稠液流过节流孔的内摩擦和SMA弹簧的压缩、恢复来共同消耗能量,实现对结构的消能减震。
所述的SMA弹簧8的阻力与加载速度无关,仅和结构变形位置有关。为了保证变形控制在设计范围内,SMA弹簧的参数可根据载荷与变形的关系选用。
本发明具有改善结构的动力响应和自复位的作用,同时对结构超量位移产生一定的限位阻力作用,且具有安装简单,操作方便等特点。

Claims (7)

  1. 一种SMA弹簧-STF粘滞阻尼器,其特征在于,
    包括第一连接件、活塞杆、左端盖、第一阻尼腔体、阻尼缸体、活塞、第二阻尼腔体、SMA弹簧、右端盖和第二连接件;
    阻尼缸体一端设有左端盖,另一端设有右端盖;阻尼缸体内部通过活塞分隔为第一阻尼腔体和第二阻尼腔体;
    活塞设在活塞杆上;
    活塞杆一端贯穿左端盖后与第一连接件连接,活塞杆另一端贯穿右端盖;
    右端盖上固接有第二连接件;
    活塞杆上套设的两个SMA弹簧分别置于第一阻尼腔体和第二阻尼腔体内;
    在第一阻尼腔体和第二阻尼腔体填入有STF剪切增稠液。
  2. 根据权利要求1所述的粘滞阻尼器,其特征在于:活塞杆上的SMA弹簧在活塞杆上可沿活塞杆伸长或压缩,两根SMA弹簧共同工作。
  3. 根据权利要求1所述的粘滞阻尼器,其特征在于:当活塞沿着阻尼腔体移动时,会压缩前进方向活塞上的SMA弹簧,并使另一方向的SMA弹簧向原长恢复。
  4. 根据权利要求1所述的粘滞阻尼器,其特征在于:在行程范围内,两根SMA弹簧的伸缩量之和为0。
  5. 根据权利要求1所述的粘滞阻尼器,其特征在于:静载变形超过设计行程时,一根SMA弹簧被压缩,另一根SMA弹簧向原长恢复直至退出工作。
  6. 根据权利要求1所述的粘滞阻尼器,其特征在于:当卸除外荷载后,被压缩的SMA弹簧伸长并推动活塞向相反方向运动,另一根SMA弹簧被压缩 且恢复工作。
  7. 根据权利要求1所述的一种SMA弹簧-STF粘滞阻尼器,其特征在于:
    活塞杆与左端盖和右端盖之间设置有密封圈。
PCT/CN2019/093762 2018-11-21 2019-06-28 一种sma弹簧-stf粘滞阻尼器 WO2020103458A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19886078.5A EP3739236A4 (en) 2018-11-21 2019-06-28 SMA-STF VISCOUS SPRING SHOCK ABSORBER
JP2020544009A JP6909357B2 (ja) 2018-11-21 2019-06-28 建築物用smaばね−stf粘性ダンパー
US16/992,249 US11143265B2 (en) 2018-11-21 2020-08-13 SMA-STF based viscous damper

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811390707.2A CN109404477A (zh) 2018-11-21 2018-11-21 一种sma弹簧-stf粘滞阻尼器
CN201811390707.2 2018-11-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/992,249 Continuation US11143265B2 (en) 2018-11-21 2020-08-13 SMA-STF based viscous damper

Publications (1)

Publication Number Publication Date
WO2020103458A1 true WO2020103458A1 (zh) 2020-05-28

Family

ID=65474514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/093762 WO2020103458A1 (zh) 2018-11-21 2019-06-28 一种sma弹簧-stf粘滞阻尼器

Country Status (5)

Country Link
US (1) US11143265B2 (zh)
EP (1) EP3739236A4 (zh)
JP (1) JP6909357B2 (zh)
CN (1) CN109404477A (zh)
WO (1) WO2020103458A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111550112A (zh) * 2020-06-10 2020-08-18 福州大学 自复位fsma复合阻尼器及其工作方法
CN113123479A (zh) * 2021-03-09 2021-07-16 河北工业大学 一种摩擦单元及自复位式三串联的摩擦耗能支撑结构
US20220221019A1 (en) * 2021-01-08 2022-07-14 Moshun, LLC Systems and devices for motion control
CN115058958A (zh) * 2022-06-10 2022-09-16 中南大学 一种可转移crtsⅱ形桥轨系统地震风险的方法
US11802605B2 (en) 2021-10-29 2023-10-31 Moshun, LLC Shear thickening fluid based object movement control method and mechanism
US11828308B1 (en) 2022-11-25 2023-11-28 Moshun, LLC Shear thickening fluid based object control mechanism
US11859642B2 (en) 2021-09-30 2024-01-02 Moshun, LLC Multi-shear thickening fluid enabled object movement control mechanism
US11866977B2 (en) 2018-07-06 2024-01-09 Moshun, LLC Systems and devices for adjustable door closure control
US12025206B2 (en) 2021-11-30 2024-07-02 Moshun, LLC Environmental based shear thickening fluid control method and mechanism

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109404477A (zh) * 2018-11-21 2019-03-01 沈阳建筑大学 一种sma弹簧-stf粘滞阻尼器
CN109764080A (zh) * 2019-03-12 2019-05-17 上海理工大学 一种应用剪切增稠液阻尼器的旋转机械转子振动控制系统
CN110106778B (zh) * 2019-06-18 2023-11-03 重庆三峡学院 一种桥梁结构防屈区耗能支撑装置
CN110173533B (zh) * 2019-06-26 2024-04-19 成都亚佳工程新技术开发有限公司 预应力阻尼弹簧
US11466750B2 (en) * 2019-07-25 2022-10-11 The Boeing Company Liquid-mechanical isolator
CN110485267A (zh) * 2019-09-03 2019-11-22 哈尔滨工业大学(深圳) 一种基于剪切增稠液的附着式自调谐质量阻尼器及其使用方法
CN111075880A (zh) * 2019-12-30 2020-04-28 浙江大学 一种基于折纸回弹机构的阻尼器
CN111120552A (zh) * 2020-01-10 2020-05-08 汕头大学 一种带间隙结构的柱状回弹机构
CN111473076A (zh) * 2020-01-10 2020-07-31 汕头大学 一种基于筒形周期性结构的阻尼装置
CN112483588B (zh) * 2020-11-26 2022-01-07 华中科技大学 一种基于剪切增稠特性的变刚度阻尼器
CN112482196B (zh) * 2020-12-03 2022-04-05 中国地震局工程力学研究所 一种自反应式防落梁结构
CN113073748B (zh) * 2021-03-16 2022-09-09 北京工业大学 一种具有位移二次放大和触发自复位功能的复合耗能体系
CN113062455B (zh) * 2021-03-31 2022-03-11 西南科技大学 一种钢结构节点吸能装置
CN113107124B (zh) * 2021-04-11 2023-04-28 北京工业大学 一种具有调谐质量阻尼器功能的隔震楼板
CN113175493A (zh) * 2021-04-19 2021-07-27 江苏大学 一种基于stf的协作互动式火炮平衡机及使用方法
CN113153960A (zh) * 2021-04-21 2021-07-23 沈阳建筑大学 一种stf与弹簧复合的双涡轮半主动阻尼器
CN113517652B (zh) * 2021-05-14 2023-09-01 国网江苏省电力有限公司建设分公司 一种连接杆、跨线封网结构及装配方法
CN113482188B (zh) * 2021-05-26 2022-11-25 河海大学 一种波形钢板耗能阻尼器及其加工方法和安装方法
CN113250342A (zh) * 2021-06-11 2021-08-13 广州市百安居减震科技有限公司 多方向位移的阻尼器、阻尼支撑结构
CN113279498A (zh) * 2021-06-30 2021-08-20 江苏永衡土木减隔震工程技术研究院有限公司 孔隙式黏滞阻尼墙
CN113463787B (zh) * 2021-07-07 2023-05-05 上海材料研究所有限公司 一种黏滞-电涡流复合型阻尼器
CN113622535A (zh) * 2021-07-30 2021-11-09 兰州理工大学 基于锌铝合金的自复位阻尼器及其制作方法
CN113979337A (zh) * 2021-10-27 2022-01-28 徐州重型机械有限公司 一种起重机臂销静音锁止装置及吊臂
CN114575373B (zh) * 2022-04-06 2022-12-23 中山大学 一种海上风机支撑结构
CN115949149B (zh) * 2022-12-12 2023-07-25 哈尔滨工业大学 销接中心支撑的碟簧-sma杆组合抗弯耗能自复位钢梁柱节点
CN117230911B (zh) * 2023-11-16 2024-02-06 北京市建筑设计研究院有限公司 一体化串联式惯容阻尼减震装置
CN117905188B (zh) * 2024-03-19 2024-07-09 四川中震智控科技有限公司 一种刚度可调粘滞阻尼器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6044636B2 (ja) * 1979-10-17 1985-10-04 株式会社日立メデイコ ラジオアイソト−プ分布像装置におけるデ−タスム−ジング方法
CN105317914A (zh) * 2015-11-06 2016-02-10 中国电力科学研究院 一种用于支柱类电气设备的减震器
CN106641084A (zh) * 2017-02-21 2017-05-10 沈阳建筑大学 一种单出杆阻尼器
CN108458032A (zh) * 2018-03-29 2018-08-28 青岛理工大学 内置增强型变阻尼粘滞阻尼装置
CN109404477A (zh) * 2018-11-21 2019-03-01 沈阳建筑大学 一种sma弹簧-stf粘滞阻尼器

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5967268A (en) * 1997-03-17 1999-10-19 Tenneco Automotive Inc. Temperature responsive damper
CN1118645C (zh) * 1997-12-16 2003-08-20 可布安德有限公司 冲击传输单元
GB0004649D0 (en) * 2000-02-29 2000-04-19 Gkn Westland Helicopters Ltd Vibration damping apparatus
US6530182B2 (en) * 2000-10-23 2003-03-11 Kazak Composites, Incorporated Low cost, light weight, energy-absorbing earthquake brace
FR2835506B1 (fr) * 2002-02-06 2004-03-12 Eurocopter France Amortisseur de trainee a double piston pour rotor de giravion
JP2003252240A (ja) * 2002-02-27 2003-09-10 Yamaha Motor Co Ltd 車両の車体用補強ブレース、およびこの補強ブレースを用いた車両
WO2005089168A2 (en) * 2004-03-12 2005-09-29 General Motors Corporation Customizable strut assemblies
SE0402820L (sv) * 2004-11-18 2006-05-19 Oehlins Racing Ab För fordon avsedd dämpare (stötdämpare)
GB2420395A (en) * 2004-11-18 2006-05-24 Westland Helicopters Vibration damping apparatus for a helicopter rotor system
CN2921137Y (zh) * 2006-06-16 2007-07-11 大连理工大学 混合型形状记忆合金阻尼器
US8393446B2 (en) * 2008-08-25 2013-03-12 David M Haugen Methods and apparatus for suspension lock out and signal generation
CN101509534A (zh) * 2009-03-25 2009-08-19 哈尔滨工业大学 基于形状记忆合金补偿器的单出杆流体阻尼器
CN101654935B (zh) * 2009-04-25 2011-02-02 大连理工大学 形状记忆合金自复位形变耗能阻尼器
JP2013518217A (ja) * 2010-01-25 2013-05-20 ロータス エフワン チーム リミテッド 流体イナーター
CN101942868B (zh) * 2010-09-28 2012-02-29 株洲时代新材料科技股份有限公司 一种带限位装置的粘滞阻尼限位方法及粘滞阻尼器
CN203641368U (zh) * 2013-11-26 2014-06-11 徐州工程学院 多向自复位抗振形状记忆合金装置
TWI588379B (zh) * 2013-12-02 2017-06-21 財團法人國家實驗研究院 微奈米流體阻尼器
CN204784408U (zh) * 2015-06-15 2015-11-18 浙江国际海运职业技术学院 一种桥梁拉索减震器
CN205155007U (zh) * 2015-12-03 2016-04-13 核工业西南勘察设计研究院有限公司 自复位测速粘滞阻尼器
CN107152486B (zh) * 2016-03-03 2019-10-18 株洲时代新材料科技股份有限公司 一种具有液压熔断功能的粘滞阻尼器
US9897159B2 (en) * 2016-06-29 2018-02-20 GM Global Technology Operations LLC Shape memory allow thermally compensating damping system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6044636B2 (ja) * 1979-10-17 1985-10-04 株式会社日立メデイコ ラジオアイソト−プ分布像装置におけるデ−タスム−ジング方法
CN105317914A (zh) * 2015-11-06 2016-02-10 中国电力科学研究院 一种用于支柱类电气设备的减震器
CN106641084A (zh) * 2017-02-21 2017-05-10 沈阳建筑大学 一种单出杆阻尼器
CN108458032A (zh) * 2018-03-29 2018-08-28 青岛理工大学 内置增强型变阻尼粘滞阻尼装置
CN109404477A (zh) * 2018-11-21 2019-03-01 沈阳建筑大学 一种sma弹簧-stf粘滞阻尼器

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11993975B2 (en) 2018-07-06 2024-05-28 Moshun, LLC System and devices for adjustable door closure control
US11866977B2 (en) 2018-07-06 2024-01-09 Moshun, LLC Systems and devices for adjustable door closure control
CN111550112B (zh) * 2020-06-10 2024-05-31 福州大学 自复位fsma复合阻尼器及其工作方法
CN111550112A (zh) * 2020-06-10 2020-08-18 福州大学 自复位fsma复合阻尼器及其工作方法
US11841065B2 (en) 2021-01-08 2023-12-12 Moshun, LLC Systems and devices for motion control
US20220221019A1 (en) * 2021-01-08 2022-07-14 Moshun, LLC Systems and devices for motion control
CN113123479A (zh) * 2021-03-09 2021-07-16 河北工业大学 一种摩擦单元及自复位式三串联的摩擦耗能支撑结构
US11971056B2 (en) 2021-09-30 2024-04-30 Moshun, LLC Dilatant fluid based object movement control mechanism
US11859642B2 (en) 2021-09-30 2024-01-02 Moshun, LLC Multi-shear thickening fluid enabled object movement control mechanism
US11802605B2 (en) 2021-10-29 2023-10-31 Moshun, LLC Shear thickening fluid based object movement control method and mechanism
US11835109B2 (en) 2021-10-29 2023-12-05 Moshun, LLC Shear thickening fluid based object control method and mechanism
US11835110B2 (en) 2021-10-29 2023-12-05 Moshun, LLC Shear thickening fluid based system control method and mechanism
US12025206B2 (en) 2021-11-30 2024-07-02 Moshun, LLC Environmental based shear thickening fluid control method and mechanism
US12038064B2 (en) 2021-11-30 2024-07-16 Moshun, LLC Pattern based shear thickening fluid object control method and mechanism
CN115058958A (zh) * 2022-06-10 2022-09-16 中南大学 一种可转移crtsⅱ形桥轨系统地震风险的方法
US11828309B1 (en) 2022-11-25 2023-11-28 Moshun, LLC Rotating shear thickening fluid based object control mechanism
US11828308B1 (en) 2022-11-25 2023-11-28 Moshun, LLC Shear thickening fluid based object control mechanism

Also Published As

Publication number Publication date
JP6909357B2 (ja) 2021-07-28
EP3739236A4 (en) 2021-11-10
US20200370617A1 (en) 2020-11-26
US11143265B2 (en) 2021-10-12
JP2021508806A (ja) 2021-03-11
EP3739236A1 (en) 2020-11-18
CN109404477A (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
WO2020103458A1 (zh) 一种sma弹簧-stf粘滞阻尼器
US11242908B2 (en) Self-centering viscous damper with pre-pressed ring springs
CN108457168B (zh) 一种自定心粘滞流体阻尼器
CN105064531A (zh) 一种自复位磁流体阻尼器
CN204326293U (zh) 位移旋转放大型形状记忆合金阻尼器
CN205639431U (zh) 一种大吨位弹性—阻尼复合减震装置
CN106438807A (zh) 杆式固体颗粒摩擦阻尼器
CN209925498U (zh) 一种sma弹簧-stf粘滞阻尼器
CN104695577A (zh) 一种液体粘弹性阻尼器
CN209741644U (zh) 用于控制大跨径缆索桥梁梁端纵向位移的多功能阻尼器
CN203926580U (zh) 一种具备抗振功能的串补机构
CN207569132U (zh) 一种压力自平衡黏滞阻尼器
CN201027893Y (zh) 压力限阀液压阻尼器
CN210369406U (zh) 一种粘弹摩擦复合阻尼器
CN202830902U (zh) 海洋平台减震系统
CN208719240U (zh) 变摩擦粘滞流体混合阻尼器
CN113606280B (zh) 一种自复位碟簧-质量转轮复合磁流变液阻尼器
CN103572853A (zh) 海洋平台减震系统
CN103952969B (zh) 智能速度锁定装置
CN113585845B (zh) 一种基于sma绞线的装配式自复位粘滞耗能支撑
CN215634627U (zh) 一种纳米吸能阻尼器
CN211735869U (zh) 一种管状叠层橡胶铅柱杆式阻尼器
CN212335746U (zh) 一种自复位sma-粘滞减振阻尼器
CN209909074U (zh) 一种金属橡胶复合减震器
CN103088934B (zh) 一种限压外置调节式粘滞阻尼器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19886078

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019886078

Country of ref document: EP

Effective date: 20200812

Ref document number: 2020544009

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE