WO2020100267A1 - Straddled vehicle traveling data processing device, and straddled vehicle traveling data processing method - Google Patents

Straddled vehicle traveling data processing device, and straddled vehicle traveling data processing method Download PDF

Info

Publication number
WO2020100267A1
WO2020100267A1 PCT/JP2018/042341 JP2018042341W WO2020100267A1 WO 2020100267 A1 WO2020100267 A1 WO 2020100267A1 JP 2018042341 W JP2018042341 W JP 2018042341W WO 2020100267 A1 WO2020100267 A1 WO 2020100267A1
Authority
WO
WIPO (PCT)
Prior art keywords
type vehicle
turning
data
traveling
approach
Prior art date
Application number
PCT/JP2018/042341
Other languages
French (fr)
Japanese (ja)
Inventor
岡田 紀雄
晃徳 品川
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to PCT/JP2018/042341 priority Critical patent/WO2020100267A1/en
Priority to PCT/JP2019/023381 priority patent/WO2020100332A1/en
Priority to CN201980075372.1A priority patent/CN113039119B/en
Priority to JP2019533123A priority patent/JP6619914B1/en
Priority to BR112021009394-0A priority patent/BR112021009394B1/en
Publication of WO2020100267A1 publication Critical patent/WO2020100267A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B9/00Simulators for teaching or training purposes
    • G09B9/02Simulators for teaching or training purposes for teaching control of vehicles or other craft
    • G09B9/04Simulators for teaching or training purposes for teaching control of vehicles or other craft for teaching control of land vehicles
    • G09B9/052Simulators for teaching or training purposes for teaching control of vehicles or other craft for teaching control of land vehicles characterised by provision for recording or measuring trainee's performance
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B9/00Simulators for teaching or training purposes
    • G09B9/02Simulators for teaching or training purposes for teaching control of vehicles or other craft
    • G09B9/04Simulators for teaching or training purposes for teaching control of vehicles or other craft for teaching control of land vehicles
    • G09B9/058Simulators for teaching or training purposes for teaching control of vehicles or other craft for teaching control of land vehicles for teaching control of cycles or motorcycles

Definitions

  • the present invention relates to a saddle riding type vehicle running data processing device and a saddle riding type vehicle running data processing method for processing data related to a running saddle riding type vehicle.
  • a saddle type vehicle is a vehicle that turns by utilizing the balance between centrifugal force and gravity.
  • the running conditions such as the balance of centrifugal force and gravity in a saddle-type vehicle during turning differ depending on the rider even when running on the same course.
  • the running state of the saddle riding type vehicle during turning may be changed by the rider's intention.
  • a vehicle control device that controls a saddle-type vehicle based on data related to the saddle-type vehicle that is running has been proposed.
  • the vehicle control device of Patent Document 1 determines the traveling state based on the vehicle speed and the steering angle, and adjusts the steering damping force based on the determined traveling state.
  • the vehicle control device of Patent Document 2 changes the control of the engine rotation speed depending on whether or not the condition regarding the traveling state of the saddle riding type vehicle is satisfied.
  • the vehicle control device of Patent Document 3 detects a physical quantity that changes according to the running state of the saddle riding type vehicle, and controls the fuel injection amount based on this physical quantity.
  • plural types of data are output to the control unit in the vehicle control device. After outputting the plurality of types of data, the control unit performs processing for controlling the vehicle based on the plurality of types of output data.
  • a data recording device that accumulates a plurality of types of data acquired from a plurality of sensors that detect a plurality of running states.
  • the data recording device outputs, for example, a plurality of types of accumulated data after the vehicle has traveled to an analysis device for analyzing the traveling state of the vehicle. After outputting the plurality of types of data, the analysis device performs a process of analyzing the plurality of types of output data.
  • a saddle-ride type vehicle travel data processing method and a saddle-ride type vehicle travel data processing method improve post-processing of data by increasing efficiency of post-processing of a plurality of types of data output from the saddle-ride type vehicle travel data processing apparatus. It is required to reduce the hardware resources of the device that performs the above.
  • the present invention relates to a data recording device that accumulates data related to a running saddle type vehicle and a vehicle control device that controls a saddle type vehicle based on data related to a running saddle type vehicle.
  • a saddle riding type vehicle running data processing device for processing data related to a running saddle riding type vehicle
  • the present invention is a straddle-type vehicle travel data processing method for processing data related to a saddle-ride type vehicle that is traveling by the above-described saddle-ride type vehicle travel data processing device, in which post-processing of output data is efficiently performed. To reduce hardware resources.
  • a straddle-type vehicle travel data processing device is based on a data recording device that accumulates data related to a running saddle-ride type vehicle and data related to the running saddle-ride type vehicle.
  • a straddle-type vehicle travel data processing device such as a vehicle control device for controlling the saddle-ride type vehicle, which processes data related to the saddle-ride type vehicle during travel, comprising: (A) (a1) 0 m It is connected to an approach area between a first straight line having a length of 65 m or less and a second straight line parallel to the first straight line and separated from the first straight line by 2 m, and a central angle of 90, which is connected to an end of the first straight line.
  • a travel locus of the straddle-type vehicle in an approach turning area including a first turning area between the second turning arc and the approach turning area so as to enter the first turning area from the approach area.
  • First approach turning locus data relating to a first approach turning locus which is a running locus of the saddle riding type vehicle when continuously running over the whole area, and (a2) when the first approach turning locus is run.
  • Saddle-type vehicle travel data acquisition processing for acquiring first approach front-turn acceleration data related to vehicle front-direction acceleration of the saddle-ride type vehicle; and (B) the first approach turn trajectory data and the first The first straddle-type vehicle traveling in which the vehicle-front-direction acceleration of the straddle-type vehicle when traveling on the first approach-turning trajectory and the first approach-turning trajectory is associated based on the approach-turning forward acceleration data.
  • a straddle-type vehicle travel composite data generation process for generating composite data and (C) the first saddle-ride type vehicle travel composite data generated by the saddle-ride type vehicle travel composite data generation process are stored in a storage unit. Straddle-type vehicle traveling composite data storage processing, and (D) straddle-type vehicle traveling composite data stored by the saddle-riding type vehicle traveling composite data storage processing is output to an output target And a processor configured or programmed to perform the travel composite data output process.
  • the saddle type vehicle travel data processing device of the present invention includes a saddle type vehicle travel data acquisition process, a saddle type vehicle travel composite data generation process, and a saddle type vehicle travel composite data storage process, And a saddle-ride type vehicle traveling composite data output process.
  • the saddle riding type vehicle travel data acquisition process the first approach turning trajectory data and the first approach turning front direction acceleration data are acquired.
  • the first approach turning locus data is data related to the first approach turning locus.
  • the first approach turning locus is a running locus of the saddle type vehicle in the approach turning area including the approach area and the first turning area.
  • the approach region is a region between a first straight line that is greater than 0 m and 65 m or less and a second straight line that is parallel to the first straight line and is 2 m away from the first straight line.
  • the first turning region is connected to an end of the first straight line and a first circular arc, is connected to the end of the second straight line, is concentric with the first circular arc, and is located radially outside the first circular arc. It is an area between two arcs.
  • the first arc has a central angle of 90 ° or more and 270 ° or less and a radius of 2 m or more and 10 m or less.
  • the first approach turning locus is a running locus of the straddle-type vehicle in the approach turning area when the vehicle continuously runs over the entire approach turning area so as to enter the first turning area from the approach area.
  • the first approach turning front direction acceleration data is data relating to the acceleration in the vehicle front direction of the saddle type vehicle when traveling on the first approach turning locus.
  • the first straddling type vehicle traveling composite data is generated based on the first approach turning trajectory data and the first approach turning front direction acceleration data.
  • the first straddle-type vehicle traveling composite data is data in which the first approach turning locus and the acceleration in the vehicle front direction of the saddle type vehicle when traveling on the first approach turning locus are associated with each other.
  • the first saddle-ride type vehicle traveling composite data generated by the saddle-ride type vehicle traveling composite data generation process is stored in the storage unit.
  • the first saddle-ride type vehicle traveling composite data stored by the saddle-ride type vehicle traveling composite data storage process is output to the output target.
  • the first approach turning locus is a running locus of the straddle-type vehicle during turning and before going straight. Therefore, the first straddle-type vehicle traveling composite data in which the traveling loci of the straddle-type vehicle during turning and before straightening are associated with the acceleration in the vehicle front direction is output to the output target.
  • the output target may or may not be included in the saddle riding type vehicle travel data processing device.
  • the first saddle riding type vehicle travel composite data may be output to a processor for engine control or brake control in the vehicle control device, for example.
  • the processor for engine control or brake control can perform engine control or brake control of the saddle riding type vehicle by using the output first saddle riding type vehicle traveling composite data.
  • the saddle riding type vehicle travel data processing device is a vehicle control device
  • the first saddle riding type vehicle travel composite data may be output to, for example, a display device included in the saddle riding type vehicle.
  • the first saddle riding type vehicle traveling composite data is output to, for example, an external storage device (secondary storage device, auxiliary storage device) connected to the data recording device. May be done.
  • the first straddle-type vehicle traveling composite data stored in the external storage device may be used for analysis of the traveling state of the straddle-type vehicle.
  • the saddle riding type vehicle traveling data processing device is a data recording device
  • the first saddle riding type vehicle traveling composite data may be output to a computer external to the data recording device.
  • the first saddle riding type vehicle traveling composite data may be output to a printing device or a display device.
  • a saddle-type vehicle is a vehicle that makes turns not only by changing the behavior of the vehicle but also by changing the posture of the rider. Even when riding on the same course, the rider's posture changes and the vehicle's behavior varies depending on the rider. Therefore, the traveling state such as the balance between the centrifugal force and the gravity in the saddle riding type vehicle during turning may be changed by the rider's intention. Therefore, the running locus and the forward acceleration of the saddle riding type vehicle during turning and before going straight ahead are closely related to the running state of the saddle riding type vehicle determined by the rider's intention. In addition, the running locus of the straddle-type vehicle and the acceleration in the vehicle front direction are closely related to each other during turning and during straight ahead before turning.
  • the running locus of the straddle-type vehicle and the acceleration in the vehicle front direction during turning and straight ahead before turning are particularly likely to reflect the running state of the straddle-type vehicle. Therefore, the first straddle-type vehicle traveling composite data in which the traveling loci of the saddle-ride type vehicle during the turn and the straight advance before the turn are associated with the acceleration in the vehicle front direction largely reflects the running state of the straddle-type vehicle. ing. Therefore, after the first saddle riding type vehicle traveling composite data is output to the output target, it is easy to utilize the first saddle riding type vehicle traveling composite data. Specifically, the output first straddle-type vehicle traveling composite data is easily used for output of the vehicle, for example, for controlling the vehicle or analyzing the traveling state of the vehicle.
  • the speed in the vehicle front direction of the straddle-type vehicle during turning becomes higher as the turning radius becomes larger, and becomes lower as the turning radius becomes smaller.
  • the speed in the forward direction of the vehicle is hereinafter referred to as the vehicle speed. If the radius of the first circular arc that is the inner peripheral edge of the first turning region is larger than 10 m, the vehicle speed of the saddle riding type vehicle that is turning in the first turning region is relatively high. Therefore, when the radius of the first circular arc is larger than 10 m, there is not much difference in centrifugal force even if the vehicle speed of the saddle riding type vehicle turning in the first turning region is different. Therefore, there is not much difference in the traveling state of the saddle riding type vehicle when traveling on the first approach turning locus.
  • the radius of the first arc is larger than 10 m, there is not much difference in the traveling state of the saddle riding type vehicle when traveling on the first approach turning locus, and therefore the first straddle type vehicle traveling composite data is obtained. It is difficult to use.
  • the radius of the first arc of the present invention is 10 m or less, the vehicle speed of the straddle-type vehicle that is turning in the first turning region is relatively low. Therefore, if the vehicle speeds of the saddle riding type vehicle turning in the first turning region are different, the centrifugal force is different.
  • the radius of the first circular arc is 10 m or less, the difference in the traveling state of the saddle type vehicle when traveling on the first approach turning locus becomes large.
  • the difference in the running state of the saddle riding type vehicle when traveling on the first approach turning locus is due to the difference between the first approach turning locus and the acceleration in the vehicle front direction of the saddle riding type vehicle when running on the first approach turning locus. It is easy to be reflected. As a result, when the radius of the first arc is 10 m or less, it is easy to utilize the first saddle riding type vehicle traveling composite data.
  • the acceleration in the vehicle left-right direction of the saddle riding type vehicle while turning is about 0.1 G to 0.8 G (about 1 to 8 m / s 2 ).
  • the first arc has a central angle of 90 ° or more and 270 ° or less and a radius of 2 m or more and 10 m or less. Therefore, the vehicle speed of the straddle-type vehicle that is turning in the first turning region having the first arc as the inner peripheral edge is, for example, about 5 to 32 km / h. If the vehicle speed of the straddle-type vehicle that is turning in the first turning region is different, the centrifugal force greatly differs.
  • the center angle of the first arc is 90 ° or more and 270 ° or less and the radius is 2 m or more and 10 m or less
  • the difference in the traveling state of the saddle riding type vehicle when traveling on the first approach turning locus becomes more remarkable. appear. Therefore, the difference in the traveling state of the straddle-type vehicle when traveling on the first approach turning trajectory is likely to be reflected in the difference between the first approach turning trajectory and the acceleration in the vehicle front direction when traveling along the first approach turning trajectory. .
  • the central angle of the first arc is 90 ° or more and 270 ° or less and the radius is 2 m or more and 10 m or less, it is easier to utilize the first saddle riding type vehicle traveling composite data.
  • the distance required for going straight is greater than 0 m and not more than 65 m.
  • the length of the first straight line in the approach area is greater than 0 m and 65 m or less.
  • the distance between the first straight line and the second straight line is 2 m. Since the second circular arc is arranged concentrically with the first circular arc, the distance between the first circular arc and the second circular arc is also 2 m. In this way, the width of the approach turning area is 2 m.
  • the length of the saddle riding type vehicle in the vehicle front direction is about 1.8 to 2.6 m, and the width of the saddle riding type vehicle The length in the direction) is about 0.5 to 1.1 m.
  • the length of the straddle-type vehicle in the vehicle front direction is about 1.4 to 2.0 m, and the width of the straddle-type vehicle is 0.7 to 1. It is about 2 m.
  • the length of the saddle type vehicle in the vehicle front direction is about 2.0 to 4.0 m, and the width of the saddle type vehicle is 1.0 to 1.2 m. It is a degree.
  • the saddle riding type vehicle is a water motorcycle, the length of the saddle riding type vehicle in the vehicle front direction is about 2.0 to 4.0 m, and the width of the saddle riding type vehicle is 0.7 to 1.3 m. It is a degree.
  • the width (2 m) of the approach turning area is about twice the average width of the saddle type vehicle and about 1.5 times the maximum width of the saddle type vehicle.
  • the width (2 m) of the approach-turning area allows the straddle-type vehicle to make a U-turn in the approach-turning area while allowing the saddle-type vehicle to travel freely.
  • the width is impossible.
  • the U-turn is a turn of 180 °.
  • the U-turn in the approach turning area is a U-turn that does not follow the edge of the approach turning area.
  • the first saddle riding type vehicle traveling composite data When there is a possibility that the first saddle riding type vehicle traveling composite data is generated in association with the traveling locus when making a U-turn in the approach turning area, it becomes difficult to utilize the first saddle riding type vehicle traveling composite data. . This is because the first straddle-type vehicle traveling composite data generated in association with the traveling trajectory when making a U-turn in the approach turning area and the traveling when traveling in the approach turning area along the edge of the approach turning area. This is because the first straddle-type vehicle traveling composite data generated in association with the trajectory cannot be treated in the same row when it is used for controlling the vehicle or analyzing the traveling state of the vehicle.
  • the width of the approach turning area is 2 m, it is possible to exclude the possibility that the first approach turning path is a running path that makes a U-turn in the approach turning area. Therefore, the first straddle-type vehicle traveling composite data can be more easily utilized.
  • the post-processing of the output first saddle riding type vehicle traveling composite data is easy. Since the post-processing of the output first straddle-type vehicle travel composite data is easy, it is possible to reduce the hardware resources to be output to which the first saddle-ride type vehicle travel composite data is output. As described above, the straddle-type vehicle travel data processing apparatus of the present invention can reduce the hardware resources by making post-processing of output data more efficient.
  • the straddle-type vehicle traveling data processing device of the present invention has the following configuration in addition to the configuration of (1) above.
  • (a3) is a travel locus of the saddle-ride type vehicle when the vehicle continuously travels at least one round in an annular region including the approach turning region, the first approach A first annular locus data related to a first annular locus including a turning locus; and (a4) including the first approach forward turning acceleration data, the saddle riding type vehicle when traveling on the first annular locus First annular forward acceleration data related to vehicle forward acceleration is acquired.
  • the saddle riding type vehicle traveling composite data generation process the saddle riding when traveling on the first annular trajectory and the first annular trajectory based on the first annular trajectory data and the first annular forward acceleration data.
  • the first straddle-type vehicle traveling composite data in which the acceleration in the vehicle front direction of the type vehicle is associated is generated.
  • the first straddle-type vehicle travel composite data is data in which the first annular locus and the acceleration of the saddle-type vehicle when traveling on the first annular locus are associated with each other.
  • the first circular locus is a circular traveling locus including the first approach turning locus.
  • the first annular locus has a traveling locus during at least two turns. Therefore, the first straddle-type vehicle traveling composite data associated with the first annular trajectory is more straddle-type vehicle than the first straddle-type vehicle traveling composite data acquired when the vehicle makes only one turn.
  • the accuracy (reliability) of the data that reflects the running state of is high. Therefore, it becomes easy to utilize the first straddle-type vehicle traveling composite data by, for example, controlling the vehicle or analyzing the traveling state of the vehicle.
  • the post-processing of the output first saddle riding type vehicle traveling composite data is easier. Since the post-processing of the output first straddle-type vehicle travel composite data is easier, it is possible to further reduce the hardware resources to be output to which the first saddle-ride type vehicle travel composite data is output. As described above, the straddle-type vehicle travel data processing device of the present invention can make post-processing of output data efficient and further reduce hardware resources.
  • the straddle-type vehicle travel data processing device of the present invention preferably has the following configuration in addition to the configuration of (2) above.
  • the traveling direction of the straddle-type vehicle in the first annular locus is the forward direction
  • the first annular locus is connected to the rear end of the first approach turning locus, and is the first approach turning locus. It includes a traveling locus in which the turning direction is different.
  • the traveling locus that is connected to the rear end of the first approach turning locus is different from the first approach turning locus in the turning direction. Therefore, the accuracy of the first straddle-type vehicle traveling composite data as data reflecting the traveling state of the saddle-riding type vehicle is greater than that of the first saddle-riding type vehicle traveling complex data obtained when the turning directions are all the same. High reliability). Therefore, it becomes easy to utilize the first straddle-type vehicle traveling composite data by, for example, controlling the vehicle or analyzing the traveling state of the vehicle. Since it becomes easier to utilize the first saddle riding type vehicle traveling composite data, the post-processing of the output first saddle riding type vehicle traveling composite data is easier.
  • the straddle-type vehicle travel data processing device of the present invention can more efficiently post-process the output data and further reduce hardware resources.
  • the saddle riding type vehicle travel data processing device of the present invention has the following configuration in addition to the configuration of (2) above.
  • the traveling direction of the straddle-type vehicle on the first annular trajectory is the forward direction
  • the first annular trajectory is connected to the rear end of the first approach turning trajectory, and It includes a traveling locus during a turn having the same turning direction.
  • the running locus connected to the rear end of the first approach turning locus is the same as the first approach turning locus in the turning direction.
  • the first straddle-type vehicle traveling composite data associated with the first annular trajectory that continuously turns in the same direction in this manner is output to the output target.
  • the saddle riding type vehicle travel data processing device of the present invention has the following configuration in addition to the configuration of (2) above.
  • the first annular region has a distance between the inner peripheral edge and the outer peripheral edge of 2 m, and when the direction in which the saddle-ride type vehicle travels in the first annular region is the front direction, the annular region is The area is (i) in addition to the approach turning area, a linear second straight area connected to the front end of the first turning area, and a front end of the second straight area and a rear end of the approach area.
  • a second annular region including a circular arc shaped second swirl region or (ii) in addition to the approach swirl region, connected to the front end of the first swirl region and shorter than the approach region.
  • a linear second linear region and a curved second turning region connected to the front end of the second linear region, wherein the turning direction of the second turning region in the first annular locus is the approach turning region.
  • a third turning region in which the turning direction of the third turning region in the first annular locus is the same as the turning direction of the second turning region, and is connected to the front end of the third turning region.
  • a straight fourth straight region and a curved fourth swivel region connected to the front end of the fourth straight region, wherein the swirl direction of the fourth swirl region in the first annular locus is the third swirl.
  • the fourth turning area different from the turning direction of the area, and the front end of the fourth turning area, which is connected to the fifth end of the fifth linear area and the fifth linear area that is linear and is longer than the fourth linear area.
  • a fifth curved turning region in which the turning direction of the fifth turning region in the first annular locus is the same as the turning direction of the fourth turning region.
  • the turning direction of the second turning area in the first annular locus is different from the turning direction of the approach turning area.
  • a second turning region a linear third linear region connected to the front end of the second turning region, and a curved third turning region connected to the front end of the third linear region, A third turning area in which a turning direction of the third turning area in the one annular trajectory is different from a turning direction of the second turning area, and a linear fourth linear area connected to a front end of the third turning area, A fourth curved turning region connected to the front end of the fourth straight region, wherein the turning direction of the fourth turning region in the first annular locus is different from the turning direction of the third turning region.
  • the turning direction of the fifth turning area in the locus is connected to the fifth turning area different from the turning direction of the fourth turning area and the front end of the fifth turning area, and is longer than the second to fifth linear areas.
  • the sixth turning region which is the same as the turning direction of the region, the linear seventh straight line region connected to the front end of the sixth turning region, the front end of the seventh straight line region and the rear end of the approach region.
  • a connected curved seventh turning area including a seventh turning area in which the turning direction of the seventh turning area in the first annular locus is the same as the turning direction of the sixth turning area,
  • the area surrounded by the annular locus is a third annular area having an E-shape, or (iv) a linear shape connected to the front end of the first turning area in addition to the approach turning area.
  • the swirling direction of the second swivel region in the first annular locus is the swivel of the approach swirl region.
  • a curved linear fourth turning region connected to a straight region and a front end of the fourth straight region and a rear end of the approach region, the fourth turning region in the first annular locus;
  • a fourth annular region including a fourth turning region whose turning direction is different from the turning direction of the third turning region.
  • the first annular area includes an approach turning area, a linear second linear area, and an arcuate second turning area. Therefore, the first annular region has a simple shape without a recess. Although the shape is simple, the first annular locus when traveling in the first annular region has a traveling locus during two turns and a traveling locus when traveling straight before and after the turning. Therefore, the traveling locus and the acceleration in the vehicle front direction when traveling in the first annular region largely reflect the traveling state of the straddle-type vehicle. Therefore, it becomes easy to utilize the first straddle-type vehicle traveling composite data by, for example, controlling the vehicle or analyzing the traveling state of the vehicle.
  • the first circular locus when traveling in the second to fourth annular regions includes a traveling locus during four or more turns.
  • the first annular locus when traveling in the second to fourth annular regions includes both a traveling locus having the same turning direction as the first approach turning locus and a traveling locus having different turning directions from the first approach turning locus. .. Therefore, the first straddle-type vehicle traveling composite data in which the first annular locus when traveling in the second to fourth annular regions and the acceleration in the vehicle front direction are associated with each other is the first saddle riding when the turning directions are all the same.
  • the accuracy (reliability) of the data reflecting the running state of the saddle riding type vehicle is higher than that of the type vehicle traveling composite data. Therefore, it becomes easy to utilize the first straddle-type vehicle traveling composite data by, for example, controlling the vehicle or analyzing the traveling state of the vehicle.
  • the straddle-type vehicle travel data processing device of the present invention can more efficiently post-process the output data and further reduce hardware resources.
  • a straddle-type vehicle traveling data processing apparatus of the present invention may have the following configuration in addition to any one of the configurations (1) to (5). preferable.
  • first approach turning left / right direction acceleration data relating to vehicle lateral direction acceleration of the saddle riding type vehicle when traveling on the first approach turning locus is acquired.
  • the first saddle-ride type vehicle traveling composite data is the first approach turning trajectory data, the first approach turning front direction acceleration data, and the first approach turning left / right direction.
  • the first approach turning locus Based on the acceleration data, the first approach turning locus, the acceleration in the vehicle front direction of the straddle-type vehicle when traveling on the first approach turning locus, and the acceleration when traveling on the first approach turning locus. It is generated by associating the lateral acceleration of the straddle-type vehicle.
  • the first straddle-type vehicle traveling composite data includes the first approach turning locus, the acceleration in the vehicle front direction of the saddle riding type vehicle when traveling on the first approach turning locus, and the first approach turning locus. Is data associated with the acceleration in the vehicle left-right direction of the straddle-type vehicle when traveling.
  • a straddle-type vehicle is a vehicle that makes a turn using not only changes in the behavior of the vehicle but also changes in the posture of the rider. Therefore, the acceleration in the lateral direction of the vehicle during turning and during straight ahead before turning is closely related to the running state of the saddle riding type vehicle determined by the rider's intention.
  • the traveling locus of the saddle riding type vehicle, the acceleration in the front direction of the vehicle, and the acceleration in the left-right direction of the vehicle are closely related to each other during turning and during straight ahead before turning. Therefore, the first straddle-type vehicle traveling composite data largely reflects the traveling state of the straddle-type vehicle. Therefore, it becomes easier to utilize the first saddle riding type vehicle traveling composite data. Since it becomes easier to utilize the first saddle riding type vehicle traveling composite data, the post-processing of the output first saddle riding type vehicle traveling composite data is easier. Since the post-processing of the output first straddle-type vehicle travel composite data is easier, it is possible to further reduce the hardware resources to be output to which the first saddle-ride type vehicle travel composite data is output. As described above, the straddle-type vehicle travel data processing device of the present invention can make post-processing of output data efficient and further reduce hardware resources.
  • a straddle-type vehicle travel data processing device of the present invention may have the following configuration in addition to any one of the configurations (1) to (6). preferable.
  • the processor is configured to further execute a rider identification data acquisition process for acquiring first rider identification data for identifying a rider who rides on the straddle-type vehicle when traveling on the first approach turning locus.
  • the first saddle-ride type vehicle traveling composite data is the first approach turning trajectory data and the first approach turning front direction acceleration data.
  • the first approach turning locus Based on the first rider identification data, the first approach turning locus, the acceleration in the vehicle front direction of the straddle-type vehicle when traveling on the first approach turning locus, and the first approach turning locus are calculated. It is generated by associating a rider who gets on the saddle type vehicle when traveling.
  • the first straddle-type vehicle traveling composite data is associated with the rider who gets on the straddle-type vehicle when traveling on the first approach turning locus.
  • the running locus of the saddle riding type vehicle and the acceleration in the front direction of the vehicle during turning and before going straight are closely related to the running state of the saddle riding type vehicle which is determined by the rider's intention. Even when traveling in the same approach turning region, the riding state of the saddle riding type vehicle differs for each rider.
  • the first straddle-type vehicle traveling composite data reflects the traveling state of the rider's unique straddle-type vehicle. Therefore, it becomes easy to utilize the output first straddle-type vehicle traveling composite data by, for example, controlling the vehicle or analyzing the traveling state of the vehicle.
  • the post-processing of the output first saddle riding type vehicle traveling composite data is easier. Since the post-processing of the output first straddle-type vehicle travel composite data is easier, it is possible to further reduce the hardware resources to be output to which the first saddle-ride type vehicle travel composite data is output. As described above, the straddle-type vehicle travel data processing device of the present invention can more efficiently post-process the output data and further reduce hardware resources.
  • a straddle-type vehicle travel data processing device of the present invention may have the following configuration in addition to any one of the configurations (1) to (7). preferable.
  • the approach is performed so that a saddle-ride type vehicle that is the same as or different from the saddle-ride type vehicle that has traveled on the approach turning trajectory enters the first turn area from the approach area.
  • Second approach turning locus data relating to the second approach turning locus which is a running locus when continuously running over the entire turning region, and the saddle-ride type vehicle when the second approach turning locus is run.
  • the second approach turning front acceleration data related to the vehicle forward acceleration is acquired, and the second approach turning trajectory data and the second approach turning front acceleration data are obtained in the saddle riding type vehicle traveling composite data generation processing.
  • the second saddle riding type vehicle traveling composite data in which the acceleration in the vehicle front direction of the saddle riding type vehicle when traveling on the second approach turning locus is associated,
  • the second saddle-ride type vehicle traveling composite data generated by the saddle-ride type vehicle traveling composite data generation processing is stored in the storage unit.
  • the first saddle riding type vehicle traveling composite data and the second saddle riding type vehicle traveling composite data are stored in the storage unit.
  • the second saddle riding type vehicle traveling composite data is data in which the second approach turning locus different from the first approach turning locus and the acceleration in the vehicle front direction of the saddle riding type vehicle when traveling on the second approach turning locus are associated with each other. is there. Therefore, in the saddle riding type vehicle running data processing device, it is possible to compare the first saddle riding type vehicle running composite data and the second saddle riding type vehicle running composite data, obtain a difference, and combine them. That is, the degree of freedom in processing (utilizing) the first saddle riding type vehicle traveling composite data in the saddle riding type vehicle traveling data processing device is increased.
  • the saddle riding type vehicle travel data processing device of the present invention has the following configuration in addition to the configuration of (8) above.
  • the processor associates the first saddle riding type vehicle traveling composite data and the second saddle riding type vehicle traveling composite data stored in the storage unit in the saddle riding type vehicle traveling composite data storage processing with each other to make a saddle riding type.
  • the saddle-type vehicle travel integrated composite data generation process for generating vehicle travel integrated composite data is further configured or programmed, and in the first saddle-type vehicle travel composite data output process, the saddle type vehicle
  • the saddle riding type vehicle traveling integrated compound data generated by the riding type vehicle traveling integrated compound data generation process is output to the output target.
  • the saddle riding type vehicle traveling integrated data in which the first saddle riding type vehicle traveling compound data and the second saddle riding type vehicle traveling compound data are associated is output to the output target.
  • the saddle-ride type vehicle traveling integrated data may be, for example, data generated by a difference, comparison or combination of the first saddle-type vehicle traveling combined data and the second saddle-type vehicle traveling combined data.
  • the saddle-ride type vehicle traveling integrated data may include first saddle-ride type vehicle travel combined data and second straddle-type vehicle travel combined data.
  • the output target can be subjected to processing such as difference, comparison, and combination of the first saddle riding type vehicle traveling composite data and the second saddle riding type vehicle traveling composite data.
  • Whichever the saddle riding type vehicle traveling integrated composite data is, it is easy to utilize the saddle riding type vehicle traveling integrated data in the output target, for example, for controlling the vehicle or analyzing the running state of the vehicle. Since it is easy to utilize the saddle-ride type vehicle traveling integrated data, it is easy to post-process the outputted saddle-type vehicle traveling integrated data. Since the post-processing of the outputted saddle-ride type vehicle traveling integrated data is easy, it is possible to reduce the output hardware resources to which the saddle-type vehicle traveling integrated data is output. As described above, the straddle-type vehicle travel data processing apparatus of the present invention can reduce the hardware resources by making post-processing of output data more efficient.
  • the saddle riding type vehicle travel data processing device of the present invention has the following configuration in addition to the configuration of (9) above.
  • the processor includes first rider identification data for identifying a rider who rides on the saddle riding type vehicle when traveling on the first approach turning locus, and the saddle riding type when traveling on the second approach turning locus.
  • the saddle-ride type vehicle travel composite data generation process is further configured or programmed to further execute a rider identification data acquisition process for acquiring second rider identification data for identifying a rider on a vehicle.
  • the first straddle-type vehicle travel composite data is based on the first approach turning trajectory data, the first approach forward acceleration data, and the first rider identification data, and the first approach turning trajectory, the The vehicle front acceleration of the saddle riding type vehicle when traveling on the first approach turning locus and the rider riding on the saddle riding type vehicle when traveling on the first approach turning locus are generated in association with each other,
  • the second saddle riding type vehicle travel composite data is based on the second approach turning locus data, the second approach turning front direction acceleration data and the second rider identification data, and the second approach turning locus, The acceleration in the vehicle front direction of the saddle riding type vehicle when traveling on the second approach turning trajectory and the rider riding on the saddle riding type vehicle when traveling on the second approach turning trajectory are generated in association with each other.
  • the first saddle-ride type vehicle travel composite data and the second saddle-ride type vehicle are the same, the first saddle-ride type vehicle travel composite data and the second saddle-ride type vehicle
  • the same rider saddle riding type vehicle traveling integrated data is generated by associating the traveling complex data with each other, and in the saddle riding type vehicle traveling complex data output process, the saddle type vehicle traveling integrated data generating process is performed.
  • the same rider saddle riding type vehicle traveling integrated data is output to the output target.
  • the first straddle-type vehicle traveling composite data is associated with the rider who gets on the straddle-type vehicle when traveling on the first approach turning locus.
  • the second saddle riding type vehicle traveling composite data is associated with the rider who gets on the saddle riding type vehicle when traveling on the second approach turning locus.
  • the first saddle riding type vehicle traveling composite data and the second saddle riding type vehicle traveling composite data are associated with each other.
  • the obtained composite data of the same rider saddle riding type vehicle traveling integrated is output to the output target.
  • the running locus of the saddle riding type vehicle and the acceleration in the front direction of the vehicle during turning and before going straight are closely related to the running state of the saddle riding type vehicle which is determined by the rider's intention. Even when traveling in the same approach turning region, the riding state of the saddle riding type vehicle differs for each rider. Therefore, in the output target, for example, the difference between the two saddle riding type vehicle traveling composite data of the same rider can be used based on the same rider saddle riding type vehicle traveling integrated data.
  • the same rider-saddle-type vehicle traveling integrated data can be used to reflect the characteristics of each rider. That is, the same rider-saddle-type vehicle traveling integrated composite data output to the output target has a high degree of freedom in utilization and is easy to utilize.
  • the straddle-type vehicle travel data processing apparatus of the present invention can reduce the hardware resources by making post-processing of output data more efficient.
  • the saddle riding type vehicle travel data processing device of the present invention has the following configuration in addition to the configuration of (9) above.
  • the processor includes first rider identification data for identifying a rider who rides on the saddle riding type vehicle when traveling on the first approach turning locus, and the saddle riding type when traveling on the second approach turning locus.
  • the saddle-ride type vehicle travel composite data generation process is further configured or programmed to further execute a rider identification data acquisition process for acquiring second rider identification data for identifying a rider on a vehicle.
  • the first straddle type vehicle traveling composite data is based on the first approach turning trajectory data, the first approach forward acceleration data, and the first rider identification data, and the first approach turning trajectory, the The vehicle front acceleration of the saddle riding type vehicle when traveling on the first approach turning locus and the rider riding on the saddle riding type vehicle when traveling on the first approach turning locus are generated in association with each other,
  • the second saddle riding type vehicle traveling composite data is based on the second approach turning locus data, the second approach turning front direction acceleration data and the second rider identification data, and the second approach turning locus, The acceleration in the vehicle front direction of the saddle riding type vehicle when traveling on the second approach turning locus and the rider riding on the saddle riding type vehicle when traveling on the second approach turning locus are generated in association with each other.
  • the first saddle-ride type vehicle travel composite data and the second saddle-ride type vehicle Differences are generated by associating the traveling composite data with each other, and the rider-saddle-type vehicle traveling integrated data is generated, and in the saddle-type vehicle traveling composite data output processing, the difference generated by the saddle-riding type vehicle traveling integrated data generation processing.
  • the rider-saddle type vehicle traveling integrated data is output to the output target.
  • the first straddle-type vehicle traveling composite data is associated with the rider who gets on the straddle-type vehicle when traveling on the first approach turning locus.
  • the second saddle riding type vehicle traveling composite data is associated with the rider who gets on the saddle riding type vehicle when traveling on the second approach turning locus.
  • the first saddle riding type vehicle traveling composite data and the second saddle riding type vehicle traveling composite data are associated with each other.
  • the composite data of the different rider-saddle-type vehicle traveling integrated is output to the output target.
  • the running locus of the saddle riding type vehicle and the acceleration in the front direction of the vehicle during turning and before going straight are closely related to the running state of the saddle riding type vehicle which is determined by the rider's intention. Even when traveling in the same approach turning region, the riding state of the saddle riding type vehicle differs for each rider. Therefore, in the output target, for example, the difference between the two saddle riding type vehicle traveling composite data of different riders can be used based on the different rider saddle riding type vehicle traveling integrated data. Difference Rider Saddle-type vehicle traveling integrated data can be used to reflect differences in riders. That is, the different rider-saddle-type vehicle traveling integrated composite data output to the output target has a high degree of freedom in utilization and is easy to utilize.
  • the post-processing of the output different rider-saddle type vehicle traveling integrated data is easy. Since the post-processing of the outputted different rider-saddle type vehicle traveling integrated data is easy, it is possible to reduce the hardware resource of the output destination of the different rider-saddle type vehicle traveling integrated data. As described above, the straddle-type vehicle travel data processing apparatus of the present invention can reduce the hardware resources by making post-processing of output data more efficient.
  • a straddle-type vehicle traveling data processing device of the present invention may have the following configuration in addition to any one of the configurations (9) to (11). preferable.
  • the saddle-type vehicle traveling integrated data is generated by the difference between the first saddle-type vehicle traveling combined data and the second saddle-type vehicle traveling combined data. To be done.
  • the saddle riding type vehicle traveling integrated data which is the difference between the first saddle riding type vehicle traveling composite data and the second saddle riding type vehicle traveling composite data, is output to the output target.
  • the difference between the first saddle-ride type vehicle traveling composite data and the second saddle-ride type vehicle traveling composite data is easy to utilize, for example, for controlling the vehicle or analyzing the traveling state of the vehicle. Since it is easy to utilize the saddle-ride type vehicle traveling integrated data, it is easy to post-process the outputted saddle-type vehicle traveling integrated data. Since the post-processing of the outputted saddle-ride type vehicle traveling integrated data is easy, it is possible to reduce the output hardware resources to which the saddle-type vehicle traveling integrated data is output. As described above, the straddle-type vehicle travel data processing apparatus of the present invention can reduce the hardware resources by making post-processing of output data more efficient.
  • a straddle-type vehicle traveling data processing apparatus of the present invention may have the following configuration in addition to any one of the configurations (1) to (12). preferable.
  • At least one of the first approach turning trajectory data and the first approach turning front direction acceleration data is data generated using a GNSS (Global Navigation Satellite System).
  • GNSS Global Navigation Satellite System
  • At least one of the first approach turning trajectory data and the first approach turning front direction acceleration data is data generated using GNSS.
  • the first approach turning trajectory data generated using GNSS indicates the first approach turning trajectory with high accuracy.
  • the first approach turning front direction acceleration data generated using the GNSS indicates with high accuracy the vehicle front direction acceleration of the saddle type vehicle when traveling on the first approach turning locus. Therefore, it becomes easier to utilize the first saddle riding type vehicle traveling composite data. Since it becomes easier to utilize the first saddle riding type vehicle traveling composite data, the post-processing of the output first saddle riding type vehicle traveling composite data is easier.
  • the straddle-type vehicle travel data processing device of the present invention can more efficiently post-process the output data and further reduce hardware resources.
  • a straddle-type vehicle travel data processing device of the present invention may have the following configuration in addition to any one of the configurations (1) to (13). preferable.
  • the first saddle-ride type vehicle traveling composite data may include image data based on the first approach turning trajectory data and the first approach turning forward acceleration data. Is generated.
  • the first straddle-type vehicle traveling composite data includes image data based on the first approach turning trajectory data and the first approach turning front direction acceleration data. Therefore, the first saddle riding type vehicle traveling composite data more clearly shows the relationship between the first approach turning locus and the acceleration in the vehicle front direction of the saddle riding type vehicle when traveling on the first approach turning locus. Therefore, it becomes easier to utilize the first saddle riding type vehicle traveling composite data. Since it becomes easier to utilize the first saddle riding type vehicle traveling composite data, the post-processing of the output first saddle riding type vehicle traveling composite data is easier. Since the post-processing of the output first straddle-type vehicle travel composite data is easier, it is possible to further reduce the hardware resources to be output to which the first saddle-ride type vehicle travel composite data is output. As described above, the straddle-type vehicle travel data processing device of the present invention can more efficiently post-process the output data and further reduce hardware resources.
  • the saddle riding type vehicle travel data processing device of the present invention has the following configuration in addition to the configuration of (6) above.
  • the first saddle riding type vehicle traveling composite data may include image data based on the first approach turning locus data and the first approach turning lateral acceleration data. Is generated.
  • the first straddle-type vehicle traveling composite data includes image data based on the first approach turning trajectory data and the first approach turning left-right acceleration data. Therefore, the first straddle-type vehicle traveling composite data more clearly shows the relationship between the first approach turning locus and the acceleration in the vehicle left-right direction of the straddle-type vehicle when traveling on the first approach turning locus. Therefore, it becomes easier to utilize the first saddle riding type vehicle traveling composite data. Since it becomes easier to utilize the first saddle riding type vehicle traveling composite data, the post-processing of the output first saddle riding type vehicle traveling composite data is easier.
  • the straddle-type vehicle travel data processing device of the present invention can more efficiently post-process the output data and further reduce hardware resources.
  • the saddle riding type vehicle travel data processing device of the present invention has the following configuration in addition to the configuration of (6) above.
  • the first saddle-ride type vehicle traveling composite data is generated based on the first approach turning front direction acceleration data and the first approach turning left / right direction acceleration data. It includes image data of a graph in which the vertical axis represents the acceleration of the saddle-ride type vehicle in the vehicle front direction and the horizontal axis represents the acceleration of the saddle-ride type vehicle in the vehicle left-right direction.
  • the first straddle-type vehicle traveling composite data is image data of a graph in which the vertical axis represents the acceleration in the vehicle front direction of the saddle-ride type vehicle and the horizontal axis represents the acceleration in the vehicle left-right direction of the saddle-ride type vehicle. including. Therefore, the first straddle-type vehicle traveling composite data shows the relationship between the acceleration in the vehicle front direction of the straddle-type vehicle and the acceleration in the vehicle left-right direction of the saddle-type vehicle when traveling on the first approach turning trajectory. Show clearly. Therefore, it becomes easier to utilize the first saddle riding type vehicle traveling composite data. Since it becomes easier to utilize the first saddle riding type vehicle traveling composite data, the post-processing of the output first saddle riding type vehicle traveling composite data is easier.
  • the straddle-type vehicle travel data processing device of the present invention can more efficiently post-process the output data and further reduce hardware resources.
  • a straddle-type vehicle travel data processing device of the present invention may have the following configuration in addition to any one of the configurations (1) to (16). preferable.
  • the first approach turning trajectory is a first approach trajectory that is a traveling trajectory of the saddle riding type vehicle when traveling in the approach area, and a traveling trajectory of the saddle riding type vehicle when traveling in the first turning area.
  • the first turning vehicle attitude data relating to the attitude of the saddle riding type vehicle when traveling on the first turning path in the saddle riding type vehicle travel data acquisition processing The first turning rider posture data relating to the posture of the rider on the saddle riding type vehicle when traveling on the first turning locus is acquired, and in the saddle riding type vehicle traveling composite data generation process, the first saddle type The riding-type vehicle traveling composite data is based on the first approach turning trajectory data, the first approach turning front direction acceleration data, the first turning vehicle attitude data, and the first turning rider attitude data, and the first approach turning.
  • the first straddle-type vehicle traveling composite data includes the first approach turning locus, the acceleration in the vehicle front direction of the saddle riding type vehicle when traveling on the first approach turning locus, and the first approach turning locus.
  • the data is associated with the attitude of the saddle riding type vehicle when traveling on the vehicle and the attitude of the rider riding the saddle riding type vehicle when traveling on the first approach turning locus.
  • a straddle-type vehicle is a vehicle that makes a turn using not only changes in the behavior of the vehicle but also changes in the posture of the rider. Therefore, the posture of the rider and the behavior of the vehicle during and before the turn are closely related to the running state of the saddle riding type vehicle determined by the rider's intention.
  • the first straddle-type vehicle traveling composite data largely reflects the traveling state of the straddle-type vehicle. Therefore, it becomes easy to utilize the first straddle-type vehicle traveling composite data. Since it becomes easy to utilize the first saddle riding type vehicle traveling composite data, the post-processing of the output first saddle riding type vehicle traveling composite data is easy. Since the post-processing of the output first straddle-type vehicle travel composite data is easy, it is possible to reduce the hardware resources to be output to which the first saddle-ride type vehicle travel composite data is output. As described above, the straddle-type vehicle travel data processing apparatus of the present invention can reduce the hardware resources by making post-processing of output data more efficient.
  • a straddle-type vehicle traveling data processing apparatus of the present invention may have the following configuration in addition to any one of the configurations (1) to (17). preferable.
  • the first approach turning trajectory is an environment in which at least one approach turning guide unit is provided for guiding the traveling direction of the saddle type vehicle so that the saddle type vehicle travels in the approach turning area. It is a traveling locus when traveling in.
  • the first approach turning locus is a running locus obtained by running in an environment where at least one approach turning guide section is provided.
  • the straddle-type vehicle is guided in its traveling direction by the approach turning guide portion so as to travel in the approach turning region.
  • the approach turning guide portion facilitates setting the approach turning area to a desired size, shape, and position.
  • the straddle-type vehicle travel data processing device of the present invention can more efficiently post-process the output data and further reduce hardware resources.
  • the straddle-type vehicle travel data processing device of the invention has the following configuration in addition to the configuration of (18).
  • the first approach turning locus includes a first approach locus which is a running locus of the saddle riding type vehicle when running in the approach area, and the approach turning guide part is configured such that the saddle riding type vehicle is within the approach area.
  • the first approach trajectory of the first approach turning trajectory is a traveling trajectory when traveling in the approach area while passing between the two approach guide portions.
  • the approach guide portion facilitates setting the approach area to a desired length and position. Therefore, it is possible to reduce the variation in the traveling state of the straddle-type vehicle due to the variation in the approach area. Therefore, it becomes easy to utilize the first straddle-type vehicle traveling composite data by, for example, controlling the vehicle or analyzing the traveling state of the vehicle. Since it becomes easier to utilize the first saddle riding type vehicle traveling composite data, the post-processing of the output first saddle riding type vehicle traveling composite data is easier.
  • the straddle-type vehicle travel data processing device of the present invention can more efficiently post-process the output data and further reduce hardware resources.
  • the saddle riding type vehicle travel data processing device of the present invention has the following configuration in addition to the configuration of (18) or (19).
  • the first approach turning locus includes a first turning locus that is a running locus of the saddle riding type vehicle when the vehicle is running in the first turning region, and the approach turning guide portion is configured such that the saddle riding type vehicle is the first turning locus.
  • the saddle-riding type vehicle includes at least one turning guide portion for guiding the traveling direction of the saddle-riding type vehicle so as to travel in one turning area, and the first turning locus includes the turning guide portion and the turning guide portion. It is a travel locus when traveling in the first turning region while passing between the second arc and the second arc.
  • the first turning locus of the first approach turning locus is a running locus when traveling in the first turning region while passing between the turning guide portion and the second arc.
  • the turning guide portion facilitates setting the first turning area to a desired size, shape, and position. Therefore, it is possible to reduce the variation in the running state of the saddle riding type vehicle due to the variation in the first turning region. Therefore, it becomes easy to utilize the first straddle-type vehicle traveling composite data by, for example, controlling the vehicle or analyzing the traveling state of the vehicle. Since it becomes easier to utilize the first saddle riding type vehicle traveling composite data, the post-processing of the output first saddle riding type vehicle traveling composite data is easier.
  • the straddle-type vehicle travel data processing device of the present invention can more efficiently post-process the output data and further reduce hardware resources.
  • a straddle-type vehicle traveling data processing device of the present invention may have the following configuration in addition to any one of the configurations (18) to (20). preferable.
  • the approach turning guide unit is configured to limit a traveling direction of the straddle-type vehicle.
  • the approach turning guide unit limits the traveling direction of the saddle riding type vehicle.
  • the approach swivel guide portion can reliably set the approach swivel region to a desired size, shape, and position. Therefore, it is possible to further reduce the variation in the traveling state of the straddle-type vehicle due to the variation in the approach turning area. Therefore, it becomes easy to utilize the first straddle-type vehicle traveling composite data by, for example, controlling the vehicle or analyzing the traveling state of the vehicle. Since it becomes easier to utilize the first saddle riding type vehicle traveling composite data, the post-processing of the output first saddle riding type vehicle traveling composite data is easier.
  • the straddle-type vehicle travel data processing device of the present invention can more efficiently post-process the output data and further reduce hardware resources.
  • the saddle riding type vehicle travel data processing device of the present invention has the following configuration in addition to the configuration of (21) above.
  • the straddle-type vehicle is capable of traveling on the ground, and the at least one approach turning guide unit is arranged on the ground so that the installation location can be freely changed.
  • the approach turning guide unit is installed on the ground so that the installation location can be freely changed. Therefore, the approach turning guide unit can be arranged at various places. Therefore, the approach turning area can be set at a place other than the road, such as a parking lot. Further, it is easy to change the position of the approach turning guide portion. Therefore, the size, shape, and position of the approach turning area can be easily changed. In addition, it is easy to increase the number of approach turning guide portions. By increasing the number of approach swivel guide portions, the approach swirl region can be reliably set to a desired size, shape, and position. Therefore, it is possible to further reduce the variation in the traveling state of the straddle-type vehicle due to the variation in the approach turning area.
  • the straddle-type vehicle travel data processing device of the present invention can more efficiently post-process the output data and further reduce hardware resources.
  • a saddle-ride type vehicle traveling data processing method is based on a data recording device that accumulates data related to a traveling saddle-ride type vehicle and data related to the traveling saddle-ride type vehicle.
  • a saddle riding type vehicle traveling data processing method for processing data related to the straddling type traveling vehicle such as a vehicle control device for controlling the straddle type vehicle, comprising: (A) (a1) 0m It is connected to an approach area between a first straight line having a length of 65 m or less and a second straight line parallel to the first straight line and separated from the first straight line by 2 m, and a central angle of 90, which is connected to an end of the first straight line.
  • a travel locus of the straddle-type vehicle in an approach turning area including a first turning area between the second turning arc and the approach turning area so as to enter the first turning area from the approach area.
  • First approach turning locus data relating to a first approach turning locus which is a running locus of the saddle riding type vehicle when continuously running over the whole area, and (a2) when the first approach turning locus is run.
  • Saddle-type vehicle travel data acquisition processing for acquiring first approach front-turn acceleration data related to vehicle front-direction acceleration of the saddle-ride type vehicle; and (B) the first approach turn trajectory data and the first The first straddle-type vehicle traveling in which the vehicle-front-direction acceleration of the straddle-type vehicle when traveling on the first approach-turning trajectory and the first approach-turning trajectory is associated based on the approach-turning forward acceleration data.
  • a straddle-type vehicle travel composite data generation process for generating composite data, and (C) the first saddle-ride type vehicle travel composite data generated by the saddle-type vehicle travel composite data generation process are stored in a storage unit. Straddle-type vehicle traveling composite data storage processing, and (D) straddle-type vehicle traveling composite data stored by the straddle-type vehicle traveling composite data storage processing is output to an output target And a traveling composite data output process.
  • the saddle riding type vehicle running data processing method of the present invention is a saddle riding type vehicle running data acquisition process, a saddle riding type vehicle running composite data generation process, a saddle riding type vehicle running composite data storage process, And a saddle-ride type vehicle traveling composite data output process.
  • the saddle riding type vehicle travel data acquisition process the first approach turning trajectory data and the first approach turning front direction acceleration data are acquired.
  • the first approach turning locus data is data related to the first approach turning locus.
  • the first approach turning locus is a running locus of the saddle type vehicle in the approach turning area including the approach area and the first turning area.
  • the approach region is a region between a first straight line that is greater than 0 m and 65 m or less and a second straight line that is parallel to the first straight line and is 2 m away from the first straight line.
  • the first turning region is connected to an end of the first straight line and a first circular arc, is connected to the end of the second straight line, is concentric with the first circular arc, and is located radially outside the first circular arc. It is an area between two arcs.
  • the first arc has a central angle of 90 ° or more and 270 ° or less and a radius of 2 m or more and 10 m or less.
  • the first approach turning locus is a running locus of the straddle-type vehicle in the approach turning area when the vehicle continuously runs over the entire approach turning area so as to enter the first turning area from the approach area.
  • the first approach turning front direction acceleration data is data relating to the acceleration in the vehicle front direction of the saddle type vehicle when traveling on the first approach turning locus.
  • the first straddling type vehicle traveling composite data is generated based on the first approach turning trajectory data and the first approach turning front direction acceleration data.
  • the first straddle-type vehicle traveling composite data is data in which the first approach turning locus and the acceleration in the vehicle front direction of the straddle-type vehicle when traveling on the first approach turning locus are associated with each other.
  • the first saddle-ride type vehicle traveling composite data generated by the saddle-ride type vehicle traveling composite data generation process is stored in the storage unit.
  • the first saddle-ride type vehicle traveling composite data stored by the saddle-ride type vehicle traveling composite data storage process is output to the output target.
  • the first approach turning locus is a running locus of the straddle-type vehicle during turning and before going straight. Therefore, the first straddle-type vehicle traveling composite data in which the traveling loci of the straddle-type vehicle during turning and before straightening are associated with the acceleration in the vehicle front direction is output to the output target.
  • the output target may or may not be included in the saddle riding type vehicle travel data processing device.
  • the first saddle riding type vehicle travel composite data may be output to a processor for engine control or brake control in the vehicle control device, for example.
  • the processor for engine control or brake control can perform engine control or brake control of the saddle riding type vehicle by using the output first saddle riding type vehicle traveling composite data.
  • the saddle riding type vehicle travel data processing device is a vehicle control device
  • the first saddle riding type vehicle travel composite data may be output to, for example, a display device included in the saddle riding type vehicle.
  • the first saddle riding type vehicle traveling composite data is output to, for example, an external storage device (secondary storage device, auxiliary storage device) connected to the data recording device. May be done.
  • the first straddle-type vehicle traveling composite data stored in the external storage device may be used for analysis of the traveling state of the straddle-type vehicle.
  • the saddle riding type vehicle traveling data processing device is a data recording device
  • the first saddle riding type vehicle traveling composite data may be output to a computer external to the data recording device.
  • the first saddle riding type vehicle traveling composite data may be output to a printing device or a display device.
  • a saddle-type vehicle is a vehicle that makes turns not only by changing the behavior of the vehicle but also by changing the posture of the rider. Even when riding on the same course, the rider's posture changes and the vehicle's behavior varies depending on the rider. Therefore, the traveling state such as the balance between the centrifugal force and the gravity in the saddle riding type vehicle during turning may be changed by the rider's intention. Therefore, the running locus and the forward acceleration of the saddle riding type vehicle during turning and before going straight ahead are closely related to the running state of the saddle riding type vehicle determined by the rider's intention. In addition, the running locus of the straddle-type vehicle and the acceleration in the vehicle front direction are closely related to each other during turning and during straight ahead before turning.
  • the running locus of the saddle riding type vehicle and the acceleration in the front direction of the vehicle during turning and straight ahead before turning are particularly likely to reflect the running state of the saddle riding type vehicle. Therefore, the first straddle-type vehicle traveling composite data in which the traveling loci of the saddle-ride type vehicle during the turn and the straight advance before the turn are associated with the acceleration in the vehicle front direction largely reflects the running state of the straddle-type vehicle. ing. Therefore, after the first saddle riding type vehicle traveling composite data is output to the output target, it is easy to utilize the first saddle riding type vehicle traveling composite data. Specifically, the output first straddle-type vehicle traveling composite data is easily used for output of the vehicle, for example, for controlling the vehicle or analyzing the traveling state of the vehicle.
  • the speed in the vehicle front direction of the straddle-type vehicle during turning becomes higher as the turning radius becomes larger, and becomes lower as the turning radius becomes smaller.
  • the speed in the forward direction of the vehicle is hereinafter referred to as the vehicle speed. If the radius of the first circular arc that is the inner peripheral edge of the first turning region is larger than 10 m, the vehicle speed of the saddle riding type vehicle that is turning in the first turning region is relatively high. Therefore, when the radius of the first circular arc is larger than 10 m, there is not much difference in centrifugal force even if the vehicle speed of the saddle riding type vehicle turning in the first turning region is different. Therefore, there is not much difference in the traveling state of the saddle riding type vehicle when traveling on the first approach turning locus.
  • the radius of the first arc is larger than 10 m, there is not much difference in the traveling state of the saddle riding type vehicle when traveling on the first approach turning locus, and therefore the first straddle type vehicle traveling composite data is obtained. It is difficult to use.
  • the radius of the first arc of the present invention is 10 m or less, the vehicle speed of the straddle-type vehicle that is turning in the first turning region is relatively low. Therefore, if the vehicle speeds of the saddle riding type vehicle turning in the first turning region are different, the centrifugal force is different.
  • the radius of the first circular arc is 10 m or less, the difference in the traveling state of the saddle type vehicle when traveling on the first approach turning locus becomes large.
  • the difference in the running state of the saddle riding type vehicle when traveling on the first approach turning locus is due to the difference between the first approach turning locus and the acceleration in the vehicle front direction of the saddle riding type vehicle when running on the first approach turning locus. It is easy to be reflected. As a result, when the radius of the first arc is 10 m or less, it is easy to utilize the first saddle riding type vehicle traveling composite data.
  • the acceleration in the vehicle left-right direction of the saddle riding type vehicle while turning is about 0.1 G to 0.8 G (about 1 to 8 m / s 2 ).
  • the first arc has a central angle of 90 ° or more and 270 ° or less and a radius of 2 m or more and 10 m or less. Therefore, the vehicle speed of the straddle-type vehicle that is turning in the first turning region having the first arc as the inner peripheral edge is, for example, about 5 to 32 km / h. If the vehicle speed of the straddle-type vehicle that is turning in the first turning region is different, the centrifugal force greatly differs.
  • the center angle of the first arc is 90 ° or more and 270 ° or less and the radius is 2 m or more and 10 m or less
  • the difference in the traveling state of the saddle riding type vehicle when traveling on the first approach turning locus becomes more remarkable. appear. Therefore, the difference in the traveling state of the straddle-type vehicle when traveling on the first approach turning trajectory is likely to be reflected in the difference between the first approach turning trajectory and the acceleration in the vehicle front direction when traveling along the first approach turning trajectory. .
  • the central angle of the first arc is 90 ° or more and 270 ° or less and the radius is 2 m or more and 10 m or less, it is easier to utilize the first saddle riding type vehicle traveling composite data.
  • the distance required for going straight is greater than 0 m and not more than 65 m.
  • the length of the first straight line of the approach area is greater than 0 m and 65 m or less.
  • the distance between the first straight line and the second straight line is 2 m. Since the second circular arc is arranged concentrically with the first circular arc, the distance between the first circular arc and the second circular arc is also 2 m. In this way, the width of the approach turning area is 2 m.
  • the length of the saddle riding type vehicle in the vehicle front direction is about 1.8 to 2.6 m, and the width of the saddle riding type vehicle The length in the direction) is about 0.5 to 1.1 m.
  • the length of the straddle-type vehicle in the vehicle front direction is about 1.4 to 2.0 m, and the width of the straddle-type vehicle is 0.7 to 1. It is about 2 m.
  • the length of the saddle type vehicle in the vehicle front direction is about 2.0 to 4.0 m, and the width of the saddle type vehicle is 1.0 to 1.2 m. It is a degree.
  • the saddle riding type vehicle is a water motorcycle, the length of the saddle riding type vehicle in the vehicle front direction is about 2.0 to 4.0 m, and the width of the saddle riding type vehicle is 0.7 to 1.3 m. It is a degree.
  • the width (2 m) of the approach turning area is about twice the average width of the saddle type vehicle and about 1.5 times the maximum width of the saddle type vehicle.
  • the width (2 m) of the approach-turning area allows the straddle-type vehicle to make a U-turn in the approach-turning area while allowing the saddle-type vehicle to travel freely.
  • the width is impossible.
  • the U-turn is a turn of 180 °.
  • the U-turn in the approach turning area is a U-turn that does not follow the edge of the approach turning area.
  • the first saddle riding type vehicle traveling composite data When there is a possibility that the first saddle riding type vehicle traveling composite data is generated in association with the traveling locus when making a U-turn in the approach turning area, it becomes difficult to utilize the first saddle riding type vehicle traveling composite data. . This is because the first straddle-type vehicle traveling composite data generated in association with the traveling trajectory when making a U-turn in the approach turning area and the traveling when traveling in the approach turning area along the edge of the approach turning area. This is because the first straddle-type vehicle traveling composite data generated in association with the trajectory cannot be treated in the same row when it is used for controlling the vehicle or analyzing the traveling state of the vehicle.
  • the width of the approach turning area is 2 m, it is possible to exclude the possibility that the first approach turning path is a running path that makes a U-turn in the approach turning area. Therefore, the first straddle-type vehicle traveling composite data can be more easily utilized.
  • the post-processing of the output first saddle riding type vehicle traveling composite data is easy. Since the post-processing of the output first straddle-type vehicle travel composite data is easy, it is possible to reduce the hardware resources to be output to which the first saddle-ride type vehicle travel composite data is output. As described above, the straddle-type vehicle travel data processing method of the present invention can reduce post-processing of output data and reduce hardware resources.
  • the saddle riding type vehicle travel data processing method of the invention has the following configuration in addition to the configuration of (23).
  • (a3) is a travel locus of the saddle-ride type vehicle when the vehicle continuously travels at least one round in an annular region including the approach turning region, the first approach A first annular locus data related to a first annular locus including a turning locus; and (a4) including the first approach forward turning acceleration data, the saddle riding type vehicle when traveling on the first annular locus First annular forward acceleration data related to vehicle forward acceleration is acquired, and in the saddle riding type vehicle traveling composite data generation process, based on the first annular trajectory data and the first annular forward acceleration data, The first straddle-type vehicle traveling composite data in which the vehicle-front acceleration of the straddle-type vehicle when traveling on the first loop-shaped trajectory and the first loop-shaped trajectory is associated is generated.
  • the first straddle-type vehicle travel composite data is data in which the first annular locus and the acceleration of the saddle-type vehicle when traveling on the first annular locus are associated with each other.
  • the first circular locus is a circular traveling locus including the first approach turning locus.
  • the first annular locus has a traveling locus during at least two turns. Therefore, the first straddle-type vehicle traveling composite data associated with the first annular trajectory is more straddle-type vehicle than the first straddle-type vehicle traveling composite data acquired when the vehicle makes only one turn.
  • the accuracy (reliability) of the data that reflects the running state of is high. Therefore, it becomes easy to utilize the first straddle-type vehicle traveling composite data by, for example, controlling the vehicle or analyzing the traveling state of the vehicle.
  • the post-processing of the output first saddle riding type vehicle traveling composite data is easier. Since the post-processing of the output first straddle-type vehicle travel composite data is easier, it is possible to further reduce the hardware resources to be output to which the first saddle-ride type vehicle travel composite data is output. As described above, the straddle-type vehicle travel data processing method of the present invention can make post-processing of output data more efficient and further reduce hardware resources.
  • the saddle riding type vehicle travel data processing method of the invention has the following configuration in addition to the configuration of (24).
  • the traveling direction of the straddle-type vehicle in the first annular locus is the forward direction
  • the first annular locus is connected to the rear end of the first approach turning locus, and is the first approach turning locus. It includes a traveling locus in which the turning direction is different.
  • the traveling locus that is connected to the rear end of the first approach turning locus is different from the first approach turning locus in the turning direction. Therefore, the accuracy of the first straddle-type vehicle traveling composite data as data reflecting the traveling state of the saddle-riding type vehicle is greater than that of the first saddle-riding type vehicle traveling complex data obtained when the turning directions are all the same. High reliability). Therefore, it becomes easy to utilize the first straddle-type vehicle traveling composite data by, for example, controlling the vehicle or analyzing the traveling state of the vehicle. Since it becomes easier to utilize the first saddle riding type vehicle traveling composite data, the post-processing of the output first saddle riding type vehicle traveling composite data is easier.
  • the straddle-type vehicle travel data processing method of the present invention can make post-processing of output data more efficient and further reduce hardware resources.
  • the saddle riding type vehicle travel data processing method of the present invention has the following configuration in addition to the configuration of (24).
  • the traveling direction of the straddle-type vehicle on the first annular trajectory is the forward direction
  • the first annular trajectory is connected to the rear end of the first approach turning trajectory, and It includes a traveling locus during a turn having the same turning direction.
  • the running locus connected to the rear end of the first approach turning locus is the same as the first approach turning locus in the turning direction.
  • the first straddle-type vehicle traveling composite data associated with the first annular trajectory that continuously turns in the same direction in this manner is output to the output target.
  • the saddle riding type vehicle travel data processing method of the present invention has the following configuration in addition to the configuration of (24).
  • the first annular region has a distance between the inner peripheral edge and the outer peripheral edge of 2 m, and when the direction in which the saddle-ride type vehicle travels in the first annular region is the front direction, the annular region is The area is (i) in addition to the approach turning area, a linear second straight area connected to the front end of the first turning area, and a front end of the second straight area and a rear end of the approach area.
  • a second annular region including a circular arc shaped second swirl region or (ii) in addition to the approach swirl region, connected to the front end of the first swirl region and shorter than the approach region.
  • a linear second linear region and a curved second turning region connected to the front end of the second linear region, wherein the turning direction of the second turning region in the first annular locus is the approach turning region.
  • a third turning region in which the turning direction of the third turning region in the first annular locus is the same as the turning direction of the second turning region, and is connected to the front end of the third turning region.
  • a straight fourth straight region and a curved fourth swivel region connected to the front end of the fourth straight region, wherein the swirl direction of the fourth swirl region in the first annular locus is the third swirl.
  • the fourth turning area different from the turning direction of the area, and the front end of the fourth turning area, which is connected to the fifth end of the fifth linear area and the fifth linear area that is linear and is longer than the fourth linear area.
  • a fifth curved turning region in which the turning direction of the fifth turning region in the first annular locus is the same as the turning direction of the fourth turning region.
  • the turning direction of the second turning area in the first annular locus is different from the turning direction of the approach turning area.
  • a second turning region a linear third linear region connected to the front end of the second turning region, and a curved third turning region connected to the front end of the third linear region, A third turning area in which a turning direction of the third turning area in the one annular trajectory is different from a turning direction of the second turning area, and a linear fourth linear area connected to a front end of the third turning area, A fourth curved turning region connected to the front end of the fourth straight region, wherein the turning direction of the fourth turning region in the first annular locus is different from the turning direction of the third turning region.
  • the turning direction of the fifth turning area in the locus is connected to the fifth turning area different from the turning direction of the fourth turning area and the front end of the fifth turning area, and is longer than the second to fifth linear areas.
  • the sixth turning region which is the same as the turning direction of the region, the linear seventh straight line region connected to the front end of the sixth turning region, the front end of the seventh straight line region and the rear end of the approach region.
  • a connected curved seventh turning area including a seventh turning area in which the turning direction of the seventh turning area in the first annular locus is the same as the turning direction of the sixth turning area,
  • the area surrounded by the annular locus is a third annular area having an E-shape, or (iv) a linear shape connected to the front end of the first turning area in addition to the approach turning area.
  • the swirling direction of the second swivel region in the first annular locus is the swivel of the approach swirl region.
  • a curved linear fourth turning region connected to a straight region and a front end of the fourth straight region and a rear end of the approach region, the fourth turning region in the first annular locus;
  • a fourth annular region including a fourth turning region whose turning direction is different from the turning direction of the third turning region.
  • the first annular area includes an approach turning area, a linear second linear area, and an arcuate second turning area. Therefore, the first annular region has a simple shape without a recess. Although the shape is simple, the first annular locus when traveling in the first annular region has a traveling locus during two turns and a traveling locus when traveling straight before and after the turning. Therefore, the traveling locus and the acceleration in the vehicle front direction when traveling in the first annular region largely reflect the traveling state of the straddle-type vehicle. Therefore, it becomes easy to utilize the first straddle-type vehicle traveling composite data by, for example, controlling the vehicle or analyzing the traveling state of the vehicle.
  • the first circular locus when traveling in the second to fourth annular regions includes a traveling locus during four or more turns.
  • the first annular locus when traveling in the second to fourth annular regions includes both a traveling locus having the same turning direction as the first approach turning locus and a traveling locus having different turning directions from the first approach turning locus. .. Therefore, the first straddle-type vehicle traveling composite data in which the first annular locus when traveling in the second to fourth annular regions and the acceleration in the vehicle front direction are associated with each other is the first saddle riding when the turning directions are all the same.
  • the accuracy (reliability) of the data reflecting the running state of the saddle riding type vehicle is higher than that of the type vehicle traveling composite data. Therefore, it becomes easy to utilize the first straddle-type vehicle traveling composite data by, for example, controlling the vehicle or analyzing the traveling state of the vehicle.
  • the straddle-type vehicle travel data processing method of the present invention can make post-processing of output data more efficient and further reduce hardware resources.
  • the saddle riding type vehicle travel data processing method of the present invention has the following configuration in addition to any one of the configurations (23) to (27). preferable.
  • first approach turning left / right direction acceleration data related to acceleration in the vehicle left / right direction of the saddle riding type vehicle when traveling on the first approach turning locus is acquired, and the saddle In the riding type vehicle traveling composite data generation process, the first saddle riding type vehicle traveling composite data is the first approach turning trajectory data, the first approach turning front direction acceleration data, and the first approach turning lateral direction acceleration data.
  • the acceleration in the vehicle front direction of the saddle riding type vehicle when traveling on the first approach turning locus, and the saddle riding when traveling on the first approach turning locus is generated by associating the acceleration in the vehicle left-right direction of the type vehicle.
  • the first straddle-type vehicle traveling composite data includes the first approach turning locus, the acceleration in the vehicle front direction of the saddle riding type vehicle when traveling on the first approach turning locus, and the first approach turning locus. Is data associated with the acceleration in the vehicle left-right direction of the straddle-type vehicle when traveling.
  • a straddle-type vehicle is a vehicle that makes a turn using not only changes in the behavior of the vehicle but also changes in the posture of the rider. Therefore, the acceleration in the lateral direction of the vehicle during turning and during straight ahead before turning is closely related to the running state of the saddle riding type vehicle determined by the rider's intention.
  • the traveling locus of the saddle riding type vehicle, the acceleration in the front direction of the vehicle, and the acceleration in the left-right direction of the vehicle are closely related to each other during turning and during straight ahead before turning. Therefore, the first straddle-type vehicle traveling composite data largely reflects the traveling state of the straddle-type vehicle. Therefore, it becomes easier to utilize the first saddle riding type vehicle traveling composite data. Since it becomes easier to utilize the first saddle riding type vehicle traveling composite data, the post-processing of the output first saddle riding type vehicle traveling composite data is easier. Since the post-processing of the output first straddle-type vehicle travel composite data is easier, it is possible to further reduce the hardware resources to be output to which the first saddle-ride type vehicle travel composite data is output. As described above, the straddle-type vehicle travel data processing method of the present invention can make post-processing of output data more efficient and further reduce hardware resources.
  • the saddle riding type vehicle travel data processing method of the present invention may have the following configuration in addition to any one of the configurations (23) to (28). preferable.
  • the rider identification data acquisition process for obtaining first rider identification data for identifying a rider riding on the saddle riding type vehicle when traveling on the first approach turning locus is further performed, and the saddle riding type vehicle traveling composite data is obtained.
  • the first saddle riding type vehicle traveling composite data is based on the first approach turning trajectory data, the first approach turning front direction acceleration data, and the first rider identification data, and the first An approach turning locus, an acceleration in the vehicle front direction of the saddle riding type vehicle when traveling on the first approach turning locus, and a rider riding on the saddle riding type vehicle when traveling on the first approach turning locus. Generated in association.
  • the first straddle-type vehicle traveling composite data is associated with the rider who gets on the straddle-type vehicle when traveling on the first approach turning locus.
  • the running locus of the saddle riding type vehicle and the acceleration in the front direction of the vehicle during turning and before going straight are closely related to the running state of the saddle riding type vehicle which is determined by the rider's intention. Even when traveling in the same approach turning region, the riding state of the saddle riding type vehicle differs for each rider.
  • the first straddle-type vehicle traveling composite data reflects the traveling state of the rider's unique straddle-type vehicle. Therefore, it becomes easy to utilize the output first straddle-type vehicle traveling composite data by, for example, controlling the vehicle or analyzing the traveling state of the vehicle.
  • the post-processing of the output first saddle riding type vehicle traveling composite data is easier. Since the post-processing of the output first straddle-type vehicle travel composite data is easier, it is possible to further reduce the hardware resources to be output to which the first saddle-ride type vehicle travel composite data is output. As described above, the straddle-type vehicle travel data processing method of the present invention can make post-processing of output data more efficient and further reduce hardware resources.
  • the saddle riding type vehicle travel data processing method of the present invention may have the following configuration in addition to any one of the configurations (23) to (29). preferable.
  • the approach is performed so that a saddle-ride type vehicle that is the same as or different from the saddle-ride type vehicle that has traveled on the approach turning trajectory enters the first turn area from the approach area.
  • Second approach turning locus data relating to the second approach turning locus which is a running locus when continuously running over the entire turning region, and the saddle-ride type vehicle when the second approach turning locus is run.
  • the second approach turning front acceleration data related to the vehicle forward acceleration is acquired, and the second approach turning trajectory data and the second approach turning front acceleration data are obtained in the saddle riding type vehicle traveling composite data generation processing.
  • the second saddle riding type vehicle traveling composite data in which the acceleration in the vehicle front direction of the saddle riding type vehicle when traveling on the second approach turning locus is associated,
  • the second saddle-ride type vehicle traveling composite data generated by the saddle-ride type vehicle traveling composite data generation processing is stored in the storage unit.
  • the first saddle riding type vehicle traveling composite data and the second saddle riding type vehicle traveling composite data are stored in the storage unit.
  • the second saddle riding type vehicle traveling composite data is data in which the second approach turning locus different from the first approach turning locus and the acceleration in the vehicle front direction of the saddle riding type vehicle when traveling on the second approach turning locus are associated with each other. is there. Therefore, in the saddle riding type vehicle running data processing device, it is possible to compare the first saddle riding type vehicle running composite data and the second saddle riding type vehicle running composite data, obtain a difference, and combine them. That is, the degree of freedom in processing (utilizing) the first saddle riding type vehicle traveling composite data in the saddle riding type vehicle traveling data processing device is increased.
  • the saddle riding type vehicle travel data processing method of the present invention has the following configuration in addition to the configuration of (30) above.
  • the first saddle riding type vehicle traveling composite data and the second saddle riding type vehicle traveling composite data stored in the storage unit in the saddle riding type vehicle traveling composite data storage processing are associated with each other to make the saddle riding type vehicle traveling integrated composite.
  • Saddle-type vehicle traveling integrated compound data generation processing for generating data is further performed, and in the first saddle-type vehicle traveling integrated data output processing, the saddle-type vehicle traveling integrated compound data generation processing is performed.
  • the saddle-ride type vehicle traveling integrated data is output to the output target.
  • the saddle riding type vehicle traveling integrated data in which the first saddle riding type vehicle traveling compound data and the second saddle riding type vehicle traveling compound data are associated is output to the output target.
  • the saddle-ride type vehicle traveling integrated data may be, for example, data generated by a difference, comparison or combination of the first saddle-type vehicle traveling combined data and the second saddle-type vehicle traveling combined data.
  • the saddle-ride type vehicle traveling integrated data may include first saddle-ride type vehicle travel combined data and second straddle-type vehicle travel combined data.
  • the output target can be subjected to processing such as difference, comparison, and combination of the first saddle riding type vehicle traveling composite data and the second saddle riding type vehicle traveling composite data.
  • Whichever the saddle riding type vehicle traveling integrated composite data is, it is easy to utilize the saddle riding type vehicle traveling integrated data in the output target, for example, for controlling the vehicle or analyzing the running state of the vehicle. Since it is easy to utilize the saddle-ride type vehicle traveling integrated data, it is easy to post-process the outputted saddle-type vehicle traveling integrated data. Since the post-processing of the outputted saddle-ride type vehicle traveling integrated data is easy, it is possible to reduce the output hardware resources to which the saddle-type vehicle traveling integrated data is output. As described above, the straddle-type vehicle travel data processing method of the present invention can reduce post-processing of output data and reduce hardware resources.
  • the saddle riding type vehicle travel data processing method of the present invention has the following configuration in addition to the configuration of (31) above.
  • Rider identification data acquisition processing for obtaining second rider identification data for identifying a rider is further performed, and in the saddle riding type vehicle traveling composite data generation processing, the first saddle riding type vehicle traveling composite data is the first The first approach turning locus and the saddle riding type when traveling on the first approach turning locus based on the approach turning locus data, the first approach turning front direction acceleration data, and the first rider identification data.
  • the acceleration in the vehicle front direction of the vehicle and the rider riding on the saddle riding type vehicle when traveling on the first approach turning locus are generated in association with each other, and the second saddle riding type vehicle traveling composite data is obtained by 2nd approach turning locus data, said 2nd approach turning front direction acceleration data, and said 2nd approach turning locus, said saddle riding when traveling on said 2nd approach turning locus
  • the vehicle front direction acceleration of the type vehicle and the rider riding the saddle type vehicle when traveling on the second approach turning locus are generated in association with each other, and in the saddle type vehicle traveling integrated compound data generation process,
  • the first rider identification data and the second rider identification data are the same, the first saddle riding type vehicle traveling composite data and the second saddle riding type vehicle traveling composite data are associated with each other and the same rider straddling type vehicle traveling is performed.
  • Integrated composite data is generated, and in the saddle riding type vehicle traveling composite data output process, the same rider saddle riding type vehicle traveling integrated composite data generated by the saddle riding type vehicle traveling integrated data generation process is output target. Is output to.
  • the first straddle-type vehicle traveling composite data is associated with the rider who gets on the straddle-type vehicle when traveling on the first approach turning locus.
  • the second saddle riding type vehicle traveling composite data is associated with the rider who gets on the saddle riding type vehicle when traveling on the second approach turning locus.
  • the first saddle riding type vehicle traveling composite data and the second saddle riding type vehicle traveling composite data are associated with each other.
  • the obtained composite data of the same rider saddle riding type vehicle traveling integrated is output to the output target.
  • the running locus of the saddle riding type vehicle and the acceleration in the front direction of the vehicle during turning and before going straight are closely related to the running state of the saddle riding type vehicle which is determined by the rider's intention. Even when traveling in the same approach turning region, the riding state of the saddle riding type vehicle differs for each rider. Therefore, in the output target, for example, the difference between the two saddle riding type vehicle traveling composite data of the same rider can be used based on the same rider saddle riding type vehicle traveling integrated data.
  • the same rider-saddle-type vehicle traveling integrated data can be used to reflect the characteristics of each rider. That is, the same rider-saddle-type vehicle traveling integrated composite data output to the output target has a high degree of freedom in utilization and is easy to utilize.
  • the straddle-type vehicle travel data processing method of the present invention can reduce post-processing of output data and reduce hardware resources.
  • the saddle riding type vehicle travel data processing method of the present invention has the following configuration in addition to the configuration of (31) above.
  • Rider identification data acquisition processing for obtaining second rider identification data for identifying a rider is further performed, and in the saddle riding type vehicle traveling composite data generation processing, the first saddle riding type vehicle traveling composite data is the first The first approach turning locus and the saddle riding type when traveling on the first approach turning locus based on the approach turning locus data, the first approach turning front direction acceleration data, and the first rider identification data.
  • the acceleration in the vehicle front direction of the vehicle and the rider riding on the saddle riding type vehicle when traveling on the first approach turning locus are generated in association with each other, and the second saddle riding type vehicle traveling composite data is obtained by 2nd approach turning locus data, said 2nd approach turning front direction acceleration data, and said 2nd approach turning locus, said saddle riding when traveling on said 2nd approach turning locus
  • the vehicle front direction acceleration of the type vehicle and the rider riding the saddle type vehicle when traveling on the second approach turning locus are generated in association with each other, and in the saddle type vehicle traveling integrated compound data generation process,
  • the first rider identification data and the second rider identification data are different, the first saddle riding type vehicle traveling composite data and the second saddle riding type vehicle traveling composite data are associated with each other to be different rider saddle riding type vehicle traveling.
  • Integrated composite data is generated, and in the saddle riding type vehicle traveling composite data output processing, the different rider saddle riding type vehicle traveling integrated composite data generated by the saddle riding type vehicle traveling integrated data generation processing is output to the output target. Is output.
  • the first straddle-type vehicle traveling composite data is associated with the rider who gets on the straddle-type vehicle when traveling on the first approach turning locus.
  • the second saddle riding type vehicle traveling composite data is associated with the rider who gets on the saddle riding type vehicle when traveling on the second approach turning locus.
  • the first saddle riding type vehicle traveling composite data and the second saddle riding type vehicle traveling composite data are associated with each other.
  • the composite data of the different rider-saddle-type vehicle traveling integrated is output to the output target.
  • the running locus of the saddle riding type vehicle and the acceleration in the front direction of the vehicle during turning and before going straight are closely related to the running state of the saddle riding type vehicle which is determined by the rider's intention. Even when traveling in the same approach turning region, the riding state of the saddle riding type vehicle differs for each rider. Therefore, in the output target, for example, the difference between the two saddle riding type vehicle traveling composite data of different riders can be used based on the different rider saddle riding type vehicle traveling integrated data. Difference Rider Saddle-type vehicle traveling integrated data can be used to reflect differences in riders. That is, the different rider-saddle-type vehicle traveling integrated composite data output to the output target has a high degree of freedom in utilization and is easy to utilize.
  • the post-processing of the output different rider-saddle type vehicle traveling integrated data is easy. Since the post-processing of the outputted different rider-saddle type vehicle traveling integrated data is easy, it is possible to reduce the hardware resource of the output destination of the different rider-saddle type vehicle traveling integrated data. As described above, the straddle-type vehicle travel data processing method of the present invention can reduce post-processing of output data and reduce hardware resources.
  • a saddle riding type vehicle travel data processing method of the present invention may have the following configuration in addition to any one of the configurations (31) to (33). preferable.
  • the saddle-type vehicle traveling integrated data is generated by the difference between the first saddle-type vehicle traveling combined data and the second saddle-type vehicle traveling combined data. To be done.
  • the saddle riding type vehicle traveling integrated data which is the difference between the first saddle riding type vehicle traveling composite data and the second saddle riding type vehicle traveling composite data, is output to the output target.
  • the difference between the first saddle-ride type vehicle traveling composite data and the second saddle-ride type vehicle traveling composite data is easy to utilize, for example, for controlling the vehicle or analyzing the traveling state of the vehicle. Since it is easy to utilize the saddle-ride type vehicle traveling integrated data, it is easy to post-process the outputted saddle-type vehicle traveling integrated data. Since the post-processing of the outputted saddle-ride type vehicle traveling integrated data is easy, it is possible to reduce the output hardware resources to which the saddle-type vehicle traveling integrated data is output. As described above, the straddle-type vehicle travel data processing method of the present invention can reduce post-processing of output data and reduce hardware resources.
  • the saddle riding type vehicle travel data processing method of the present invention may have the following configuration in addition to any one of the configurations (23) to (34).
  • At least one of the first approach turning trajectory data and the first approach turning front direction acceleration data is data generated using a GNSS (Global Navigation Satellite System).
  • GNSS Global Navigation Satellite System
  • At least one of the first approach turning trajectory data and the first approach turning front direction acceleration data is data generated using GNSS.
  • the first approach turning trajectory data generated using GNSS indicates the first approach turning trajectory with high accuracy.
  • the first approach turning front direction acceleration data generated using the GNSS indicates with high accuracy the vehicle front direction acceleration of the saddle type vehicle when traveling on the first approach turning locus. Therefore, it becomes easier to utilize the first saddle riding type vehicle traveling composite data. Since it becomes easier to utilize the first saddle riding type vehicle traveling composite data, the post-processing of the output first saddle riding type vehicle traveling composite data is easier.
  • the straddle-type vehicle travel data processing method of the present invention can make post-processing of output data more efficient and further reduce hardware resources.
  • the saddle riding type vehicle travel data processing method of the present invention may have the following configuration in addition to any one of the configurations (23) to (35). preferable.
  • the first saddle-ride type vehicle traveling composite data may include image data based on the first approach turning trajectory data and the first approach turning forward acceleration data. Is generated.
  • the first straddle-type vehicle traveling composite data includes image data based on the first approach turning trajectory data and the first approach turning front direction acceleration data. Therefore, the first saddle riding type vehicle traveling composite data more clearly shows the relationship between the first approach turning locus and the acceleration in the vehicle front direction of the saddle riding type vehicle when traveling on the first approach turning locus. Therefore, it becomes easier to utilize the first saddle riding type vehicle traveling composite data. Since it becomes easier to utilize the first saddle riding type vehicle traveling composite data, the post-processing of the output first saddle riding type vehicle traveling composite data is easier. Since the post-processing of the output first straddle-type vehicle travel composite data is easier, it is possible to further reduce the hardware resources to be output to which the first saddle-ride type vehicle travel composite data is output. As described above, the straddle-type vehicle travel data processing method of the present invention can make post-processing of output data more efficient and further reduce hardware resources.
  • the saddle riding type vehicle travel data processing method of the present invention has the following configuration in addition to the configuration of (28) above.
  • the first saddle riding type vehicle traveling composite data may include image data based on the first approach turning locus data and the first approach turning lateral acceleration data. Is generated.
  • the first straddle-type vehicle traveling composite data includes image data based on the first approach turning trajectory data and the first approach turning left-right acceleration data. Therefore, the first straddle-type vehicle traveling composite data more clearly shows the relationship between the first approach turning locus and the acceleration in the vehicle left-right direction of the straddle-type vehicle when traveling on the first approach turning locus. Therefore, it becomes easier to utilize the first saddle riding type vehicle traveling composite data. Since it becomes easier to utilize the first saddle riding type vehicle traveling composite data, the post-processing of the output first saddle riding type vehicle traveling composite data is easier.
  • the straddle-type vehicle travel data processing method of the present invention can make post-processing of output data more efficient and further reduce hardware resources.
  • the saddle riding type vehicle traveling data processing method of the present invention has the following configuration in addition to the configuration of (28) above.
  • the first saddle-ride type vehicle traveling composite data is generated based on the first approach turning front direction acceleration data and the first approach turning left / right direction acceleration data. It includes image data of a graph in which the vertical axis represents the acceleration of the saddle-ride type vehicle in the vehicle front direction and the horizontal axis represents the acceleration of the saddle-ride type vehicle in the vehicle left-right direction.
  • the first straddle-type vehicle traveling composite data is image data of a graph in which the vertical axis represents the acceleration in the vehicle front direction of the saddle-ride type vehicle and the horizontal axis represents the acceleration in the vehicle left-right direction of the saddle-ride type vehicle. including. Therefore, the first straddle-type vehicle traveling composite data shows the relationship between the acceleration in the vehicle front direction of the straddle-type vehicle and the acceleration in the vehicle left-right direction of the saddle-type vehicle when traveling on the first approach turning trajectory. Show clearly. Therefore, it becomes easier to utilize the first saddle riding type vehicle traveling composite data. Since it becomes easier to utilize the first saddle riding type vehicle traveling composite data, the post-processing of the output first saddle riding type vehicle traveling composite data is easier.
  • the straddle-type vehicle travel data processing method of the present invention can make post-processing of output data more efficient and further reduce hardware resources.
  • a saddle type vehicle travel data processing method of the present invention may have the following configuration in addition to any one of the configurations (23) to (38).
  • the first approach turning trajectory is a first approach trajectory that is a traveling trajectory of the saddle riding type vehicle when traveling in the approach area, and a traveling trajectory of the saddle riding type vehicle when traveling in the first turning area.
  • the first turning vehicle attitude data relating to the attitude of the saddle riding type vehicle when traveling on the first turning path in the saddle riding type vehicle travel data acquisition processing The first turning rider posture data relating to the posture of the rider on the saddle riding type vehicle when traveling on the first turning locus is acquired, and in the saddle riding type vehicle traveling composite data generation process, the first saddle type The riding-type vehicle traveling composite data is based on the first approach turning trajectory data, the first approach turning front direction acceleration data, the first turning vehicle attitude data, and the first turning rider attitude data, and the first approach turning.
  • the first straddle-type vehicle traveling composite data includes the first approach turning locus, the acceleration in the vehicle front direction of the saddle riding type vehicle when traveling on the first approach turning locus, and the first approach turning locus.
  • the data is associated with the attitude of the saddle riding type vehicle when traveling on the vehicle and the attitude of the rider riding the saddle riding type vehicle when traveling on the first approach turning locus.
  • a straddle-type vehicle is a vehicle that makes a turn using not only changes in the behavior of the vehicle but also changes in the posture of the rider. Therefore, the posture of the rider and the behavior of the vehicle during and before the turn are closely related to the running state of the saddle riding type vehicle determined by the rider's intention.
  • the first straddle-type vehicle traveling composite data largely reflects the traveling state of the straddle-type vehicle. Therefore, it becomes easy to utilize the first straddle-type vehicle traveling composite data. Since it becomes easy to utilize the first saddle riding type vehicle traveling composite data, the post-processing of the output first saddle riding type vehicle traveling composite data is easy. Since the post-processing of the output first straddle-type vehicle travel composite data is easy, it is possible to reduce the hardware resources to be output to which the first saddle-ride type vehicle travel composite data is output. As described above, the straddle-type vehicle travel data processing method of the present invention can reduce post-processing of output data and reduce hardware resources.
  • the saddle riding type vehicle travel data processing method of the present invention may have the following configuration in addition to any one of the configurations (23) to (39). preferable.
  • the first approach turning trajectory is an environment in which at least one approach turning guide unit is provided for guiding the traveling direction of the saddle type vehicle so that the saddle type vehicle travels in the approach turning area. It is a traveling locus when traveling in.
  • the first approach turning locus is a running locus obtained by running in an environment where at least one approach turning guide section is provided.
  • the straddle-type vehicle is guided in its traveling direction by the approach turning guide portion so as to travel in the approach turning region.
  • the approach turning guide portion facilitates setting the approach turning area to a desired size, shape, and position.
  • the straddle-type vehicle travel data processing method of the present invention can make post-processing of output data more efficient and further reduce hardware resources.
  • the saddle riding type vehicle travel data processing method of the present invention has the following configuration in addition to the configuration of (40) above.
  • the first approach turning locus includes a first approach locus which is a running locus of the saddle riding type vehicle when running in the approach area, and the approach turning guide part is configured such that the saddle riding type vehicle is within the approach area.
  • the first approach trajectory of the first approach turning trajectory is a traveling trajectory when traveling in the approach area while passing between the two approach guide portions.
  • the approach guide portion facilitates setting the approach area to a desired length and position. Therefore, it is possible to reduce the variation in the traveling state of the straddle-type vehicle due to the variation in the approach area. Therefore, it becomes easy to utilize the first straddle-type vehicle traveling composite data by, for example, controlling the vehicle or analyzing the traveling state of the vehicle. Since it becomes easier to utilize the first saddle riding type vehicle traveling composite data, the post-processing of the output first saddle riding type vehicle traveling composite data is easier.
  • the straddle-type vehicle travel data processing method of the present invention can make post-processing of output data more efficient and further reduce hardware resources.
  • the saddle riding type vehicle travel data processing method of the present invention has the following configuration in addition to the configuration of (40) or (41).
  • the first approach turning locus includes a first turning locus that is a running locus of the saddle riding type vehicle when the vehicle is running in the first turning region, and the approach turning guide portion is configured such that the saddle riding type vehicle is the first turning locus.
  • the saddle-riding type vehicle includes at least one turning guide portion for guiding the traveling direction of the saddle-riding type vehicle so as to travel in one turning area, and the first turning locus includes the turning guide portion and the turning guide portion. It is a travel locus when traveling in the first turning region while passing between the second arc and the second arc.
  • the first turning locus of the first approach turning locus is a running locus when traveling in the first turning region while passing between the turning guide portion and the second arc.
  • the turning guide portion facilitates setting the first turning area to a desired size, shape, and position. Therefore, it is possible to reduce the variation in the running state of the saddle riding type vehicle due to the variation in the first turning region. Therefore, it becomes easy to utilize the first straddle-type vehicle traveling composite data by, for example, controlling the vehicle or analyzing the traveling state of the vehicle. Since it becomes easier to utilize the first saddle riding type vehicle traveling composite data, the post-processing of the output first saddle riding type vehicle traveling composite data is easier.
  • the straddle-type vehicle travel data processing method of the present invention can make post-processing of output data more efficient and further reduce hardware resources.
  • the saddle riding type vehicle travel data processing method of the present invention may have the following configuration in addition to any one of the configurations (40) to (42). preferable.
  • the approach turning guide unit is configured to limit a traveling direction of the straddle-type vehicle.
  • the approach turning guide unit limits the traveling direction of the saddle riding type vehicle.
  • the approach swivel guide portion can reliably set the approach swivel region to a desired size, shape, and position. Therefore, it is possible to further reduce the variation in the traveling state of the straddle-type vehicle due to the variation in the approach turning area. Therefore, it becomes easy to utilize the first straddle-type vehicle traveling composite data by, for example, controlling the vehicle or analyzing the traveling state of the vehicle. Since it becomes easier to utilize the first saddle riding type vehicle traveling composite data, the post-processing of the output first saddle riding type vehicle traveling composite data is easier.
  • the straddle-type vehicle travel data processing method of the present invention can make post-processing of output data more efficient and further reduce hardware resources.
  • the saddle riding type vehicle travel data processing method of the invention has the following configuration in addition to the configuration of (43).
  • the straddle-type vehicle is capable of traveling on the ground, and the at least one approach turning guide unit is arranged on the ground so that the installation location can be freely changed.
  • the approach turning guide unit is installed on the ground so that the installation location can be freely changed. Therefore, the approach turning guide unit can be arranged at various places. Therefore, the approach turning area can be set at a place other than the road, such as a parking lot. Further, it is easy to change the position of the approach turning guide portion. Therefore, the size, shape, and position of the approach turning area can be easily changed. In addition, it is easy to increase the number of approach turning guide portions. By increasing the number of approach swivel guide portions, the approach swirl region can be reliably set to a desired size, shape, and position. Therefore, it is possible to further reduce the variation in the traveling state of the straddle-type vehicle due to the variation in the approach turning area.
  • the straddle-type vehicle travel data processing method of the present invention can make post-processing of output data more efficient and further reduce hardware resources.
  • a straddle-type vehicle traveling data processing device, a saddle-type vehicle traveling data processing method of the present invention, and a saddle-type vehicle traveling data processing program of the present invention include: In addition to the above configurations (17) and (39), it is preferable to have the following configuration.
  • the first saddle riding type vehicle traveling composite data is generated so as to include image data based on the first turning vehicle attitude data and the first turning rider attitude data.
  • a saddle-ride type vehicle travel data processing device and a saddle-ride type vehicle travel data processing method according to the present invention.
  • the image data is at least one of still image data, moving image data, and computer graphics data.
  • the saddle-ride type vehicle traveling data display device is the first saddle output by the saddle-ride type vehicle traveling composite data output process of the saddle-ride type vehicle traveling data processing device according to any one of the above (1) to (46).
  • the saddle-ride type vehicle traveling data printing device outputs the first saddle output by the saddle-ride type vehicle traveling composite data output process of the saddle-ride type vehicle traveling data processing device according to any one of (1) to (46).
  • a data acquisition unit that acquires the riding-type vehicle traveling composite data
  • a printing unit that can print information on paper
  • the first saddle-riding type vehicle traveling composite data acquired by the data acquisition unit by the printing unit.
  • a print control unit for printing on the same side of the paper.
  • the saddle riding type vehicle refers to all vehicles that a rider (driver) rides while straddling a saddle.
  • the saddle riding type vehicle may travel on the ground, on snow, or on the water surface.
  • the ground surface may be a paved surface or a surface with soil.
  • the straddle-type vehicle of the present invention may or may not have a power source (drive source) that generates power for traveling.
  • the power source may be, for example, an electric motor or an engine.
  • the engine may be a gasoline engine or a diesel engine.
  • the saddle type vehicle may have both an electric motor and an engine as a power source.
  • the straddle-type vehicle of the present invention may lean to the right of the vehicle when making a right turn, lean to the left of the vehicle when making a right turn, and lean to either the left or right of the vehicle. You don't have to. When turning left, the description is omitted because it is the opposite of right turning.
  • the acceleration in the present invention includes both positive acceleration and negative acceleration.
  • G is used as a unit of acceleration. 1G is 9.80665 m / s 2 .
  • the vehicle vertical direction is a direction perpendicular to the horizontal plane when the saddle riding type vehicle is arranged on the horizontal plane.
  • the vehicle front direction is a direction in which an upright saddle riding type vehicle travels straight on a horizontal plane.
  • the vehicle left-right direction is a direction orthogonal to the vehicle up-down direction and the vehicle front-rear direction, and is the left-right direction viewed from a rider who rides on a saddle type vehicle.
  • “acceleration in the vehicle front direction of the saddle riding type vehicle” is acceleration in the vehicle front direction at a certain position of the saddle riding type vehicle.
  • the certain position is not particularly limited.
  • the “acceleration in the vehicle front direction of the saddle riding type vehicle” is not limited to the acceleration in the vehicle front direction at a certain position of the saddle riding type vehicle in a strict sense.
  • the “acceleration in the vehicle front direction of the straddle-type vehicle” may be acceleration in the traveling direction at a certain position of the saddle-ride type vehicle.
  • it may be acceleration in the traveling direction of the steered wheels of the straddle-type vehicle.
  • the acceleration in the traveling direction of the position of the center of gravity of the saddle type vehicle may be used.
  • “acceleration in the vehicle left-right direction of the saddle-ride type vehicle” means acceleration in the vehicle left-right direction at a position where the saddle-ride type vehicle is located.
  • the certain position is not particularly limited.
  • the “acceleration in the lateral direction of the vehicle of the saddle type vehicle” is not limited to the acceleration in the lateral direction of the vehicle at a certain position of the saddle type vehicle in a strict sense.
  • the "acceleration in the vehicle left-right direction of the saddle-ride type vehicle” may be an acceleration in a direction orthogonal to the traveling direction of a certain position of the saddle-ride type vehicle.
  • the acceleration may be in the direction orthogonal to the traveling direction of the steered wheels of the saddle type vehicle.
  • the acceleration may be in a direction orthogonal to the traveling direction of the position of the center of gravity of the saddle type vehicle.
  • the traveling locus is a locus of a position in contact with the road surface or the like of the saddle type vehicle.
  • the traveling locus is a locus of positions in contact with the road surface or the like of the saddle type vehicle.
  • the travel locus and the turning locus can specify which position in the width direction of the road is traveling, for example, on a road having a general width.
  • the travel locus does not include, for example, a road that can specify only which road on the map is traveled.
  • the traveling locus indicated by the first approach turning locus data of the present invention may be slightly deviated from the actual traveling locus.
  • the first approach turning locus refers to only one running locus of the running loci of the straddle-type vehicle traveling in the approach turning region.
  • the traveling locus when the same straddle-type vehicle travels within the approach turning region after traveling on the first approach turning locus is not the first approach turning locus.
  • the first approach turning locus is when the straddle-type vehicle travels continuously in the approach turning area along the first straight line and the first arc so as to enter the first turning area from the approach area.
  • the shape may be any shape as long as it is the traveling locus.
  • the traveling locus in the approach area is substantially linear.
  • the travel locus in the approach area may be configured by one straight line, at least one straight line and a curved line, or may be configured by only a curved line.
  • the traveling locus in the first turning region is substantially arcuate.
  • the traveling locus in the first turning region may be configured by one circular arc, may be configured by a plurality of circular arcs, may be configured by only a curved line, and may be configured by at least one straight line and a curved line. May be.
  • the first approach turning trajectory is not the traveling trajectory when the straddle-type vehicle is started at the edge of the approach area.
  • the first approach turning locus may be a running locus when the straddle-type vehicle is started at the end of the approach area.
  • the first approach turning locus is preferably not a running locus when the straddle-type vehicle is stopped at the end of the first turning region.
  • the first approach turning locus may be a running locus when the straddle-type vehicle is stopped at the end of the first turning region.
  • the first straight line, the second straight line, the first circular arc, and the second circular arc of the approach turning region are not actual physical lines such as lines displayed on the road surface, but imaginary lines.
  • the length of the first straight line specified in the present invention is the length on the course on which the saddle riding type vehicle has traveled, and is not the length on the printed paper or the screen of the display device, for example. The same applies to the distance between the first straight line and the second straight line specified in the present invention, the central angle of the first circular arc, and the radius of the first circular arc.
  • the turning direction is one of the vehicle left direction and the vehicle left direction that the straddle-type vehicle advances when turning.
  • that the turning directions of the two running loci are different means that the turning directions of the two running loci are the vehicle left direction and the vehicle right direction.
  • that the two traveling loci have the same turning direction means that both of the two traveling loci are in the vehicle left direction or both of the two traveling loci are in the vehicle right direction.
  • the processor is a microcontroller, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a microprocessor, a multiprocessor, an application specific integrated circuit (ASIC), a programmable logic circuit (PLC), a field programmable.
  • a gate array (FPGA) and any other circuitry capable of performing the processes described herein are included.
  • the processor may be an ECU (Electronic Control Unit).
  • the storage unit of the present invention can store various data.
  • the storage unit of the present invention is included in the saddle riding type vehicle traveling data processing device.
  • the storage unit may be one storage device, a part of the storage area of one storage device, or may include a plurality of storage devices.
  • the storage unit may include, for example, a RAM (Random Access Memory).
  • the RAM temporarily stores various data when the processor executes the program.
  • the storage unit may or may not include a ROM (Read Only Memory), for example.
  • the ROM stores a program to be executed by the processor.
  • the storage unit does not include a buffer (buffer storage device) included in the processor.
  • a buffer is a device that temporarily stores data.
  • the hardware resource means a device such as a processor or a storage device.
  • reducing hardware resources means reducing the number of processors or storage devices, reducing the processing capacity of the processors, reducing the capacity of storage devices, and the like.
  • data means a signal in a digital format that is a set of symbols and characters that can be handled by a computer.
  • a first approach turning locus and a saddle-ride type vehicle when traveling on the first approach turning locus which are generated based on the first approach turning locus data and the first approach turning locus forward acceleration data.
  • the first straddle-type vehicle traveling composite data in which the acceleration in the vehicle front direction is associated may or may not include the first approach turning trajectory data and the first approach turning trajectory forward acceleration data. Good.
  • the “first straddle-type vehicle traveling composite data associated with acceleration” may be configured by one data, may be configured by a plurality of data associated with each other, or may be other data.
  • this one data is generated based on the first approach turning locus data and the first approach turning locus forward acceleration data.
  • the plurality of pieces of data associated with each other are, for example, a plurality of pieces of data to which common metadata (for example, a tag) is attached.
  • the first saddle riding type vehicle traveling composite data is based on any two data of the first approach turning locus data, the first approach turning locus front direction acceleration data and the first approach turning locus lateral direction acceleration data. It may be generated by associating the generated one data with the remaining one data. Further, for example, the first saddle riding type vehicle traveling composite data is generated by mutually associating the first approach turning locus data, the first approach turning locus front direction acceleration data and the first approach turning locus lateral direction acceleration data. Good.
  • the output of the first saddle riding type vehicle traveling composite data stored in the storage unit means that the first saddle riding type vehicle traveling composite data is output to a place different from the storage unit.
  • the output target to which the first straddle-type vehicle traveling composite data stored in the storage unit (referred to as the first storage unit) is output may be any of the following three output targets, and is other than this. Good.
  • the first output target is a device other than the saddle riding type vehicle travel data processing device.
  • the second output target is a second storage unit included in the straddle-type vehicle travel data processing device and different from the first storage unit.
  • the first storage unit and the second storage unit may be different storage areas included in one storage device.
  • the first storage unit and the second storage unit may be different storage devices.
  • the third output target is a second processor included in the straddle-type vehicle travel data processing device and different from the first processor that executes the output process.
  • the output target is the second output target (second storage unit)
  • the following two methods are used to output the first saddle riding type vehicle traveling composite data stored in the first storage unit to the second storage unit. It may be any of the above, and may be other than this.
  • the first processor reads the first saddle riding type vehicle traveling composite data stored in the first storage unit and stores the read first saddle riding type vehicle traveling composite data in the second storage unit.
  • the first processor outputs the address (address) of the first saddle riding type vehicle traveling composite data in the first storage unit to the second processor.
  • the second processor is included in the saddle riding type vehicle travel data processing device and is a processor different from the first processor.
  • the second processor reads the first straddle-type vehicle traveling composite data stored in the first storage unit and stores it in the second storage unit based on the acquired address.
  • the method of outputting the first saddle riding type vehicle traveling composite data stored in the first storage unit to the second processor is one of the following two methods. Or may be other than this.
  • the first processor reads the first saddle riding type vehicle traveling composite data stored in the first storage unit and outputs the read first saddle riding type vehicle traveling composite data to the second processor.
  • the first processor outputs the address (address) of the first saddle riding type vehicle traveling composite data in the first storage unit to the second processor.
  • the second processor reads the first straddle-type vehicle traveling composite data stored in the first storage unit based on the acquired address.
  • acquisition of the first approach turning locus data may be acquisition of the first approach turning locus data from a device external to the saddle riding type vehicle travel data processing device.
  • the acquisition of the first approach turning locus data means that the first approach turning locus data is generated (acquired) based on the data acquired by the saddle riding type vehicle running data processing device from a device external to the saddle riding type vehicle running data processing device. ) May be performed.
  • the device external to the saddle riding type vehicle travel data processing device may be a sensor or a device that processes a signal received from the sensor. Acquisition of data other than the first approach turning trajectory data has the same definition.
  • a straddle-type vehicle travel data processing device includes a "data recording device that accumulates data related to a running saddle-ride vehicle” and a “saddle-based vehicle based on data related to a running saddle-ride vehicle”. It is not limited to any one of the “vehicle control device for controlling the riding type vehicle”.
  • the data recording device may be a data recording device that accumulates data for analysis of the running state of the vehicle.
  • the data recording device may be a data recording device that accumulates to display or print data related to the straddle-type vehicle in motion.
  • the output target of the first saddle riding type vehicle traveling composite data is the display device or the printing device.
  • Outputting to the printing device may mean outputting from the saddle riding type vehicle travel data processing device to the printing device.
  • Outputting to the printing device means that the saddle riding type vehicle traveling data processing device outputs to the printing device via the external device in response to a command from an external device connected to the straddling type vehicle traveling data processing device. Good.
  • the straddle-type vehicle traveling data processing device may be a driving technique data recording device that accumulates data related to the driving technique of the straddle-type vehicle during traveling.
  • the straddle-type vehicle traveling data processing device may be a driving technique data recording device that accumulates to display or print data related to the driving technique of the traveling saddle type vehicle.
  • the saddle riding type vehicle travel data processing device may be used, for example, when a rider is trained in driving technology.
  • the first approach turning trajectory data, the first approach turning front direction acceleration data, and the like may be data detected while the saddle type vehicle is traveling in a place for learning, and are generated from the data. May be.
  • the first approach turning trajectory data, the first approach turning forward acceleration data, and the like may be data detected while the saddle type vehicle is traveling on an ordinary road that is not a place for learning, and are generated from the data. It may have been done.
  • the first turning vehicle attitude data relating to the attitude of the straddle-type vehicle when traveling on the first turning trajectory is data indicating the attitude of the vehicle at only one timing while traveling on the first turning trajectory. Or may be data indicating the posture of the vehicle at a plurality of timings while traveling on the first turning locus.
  • the first turning rider attitude data relating to the attitude of the rider riding the saddle riding type vehicle when traveling on the first turning trajectory means the rider at only one timing while traveling on the first turning trajectory. It may be data indicating the posture or data indicating the posture of the rider at a plurality of timings while traveling on the first turning locus.
  • the data generated using the GNSS is the data generated using the radio waves transmitted from the GNSS satellite.
  • the data generated using the GNSS may be generated based on the radio wave transmitted from the GNSS satellite and the signal of the sensor that detects the behavior of the saddle type vehicle.
  • the image data does not include data in which only characters and numerical values are converted into image data.
  • the image data is, for example, data such as a figure, a graph, a photograph taken by a camera, a moving image taken by a camera, and CG (computer graphics).
  • the CG may be either a still image or a moving image.
  • the computer graphics may be either two-dimensional computer graphics or three-dimensional computer graphics.
  • the CG data may be generated based on the image data (still image data or moving image data) generated by the camera, or may be generated without using the image data generated by the camera.
  • the image of the CG data generated based on the image data generated by the camera may or may not include the same image as the image captured by the camera.
  • the first saddle riding type vehicle traveling composite data includes image data based on the first approach turning trajectory data and the first approach turning front direction acceleration data
  • the first saddle riding type vehicle traveling composite data includes both image data based on the first approach turning trajectory data and image data based on the first approach turning front direction acceleration data.
  • the first saddle riding type vehicle traveling composite data includes one image data based on the first approach turning trajectory data and the first approach turning front direction acceleration data.
  • the definition of “the first saddle riding type vehicle traveling composite data includes image data based on the first approach turning trajectory data and the first approach turning left / right acceleration data” is also the same as above.
  • the definition of “the first saddle riding type vehicle traveling composite data includes image data based on the first turning vehicle attitude data and the first turning rider attitude data” is also the same as above.
  • acquiring, generating, or controlling based on certain data may be acquisition, generation, or control based only on this data, and acquisition or generation based on this data and other data. Alternatively, it may be control. This definition also applies to actions other than acquisition, generation or control.
  • obtaining from A includes both a case of directly obtaining from A and a case of obtaining from A through B.
  • the end of a certain part means a part where the end of the part and its vicinity are combined.
  • the terms mounted, connected, coupled, supported are used broadly. Specifically, it includes not only direct attachment, connection, connection and support, but also indirect attachment, connection, connection and support. Further, connected and coupled are not limited to physical or mechanical connection / coupling. They also include direct or indirect electrical connections / couplings.
  • At least one of the plurality of options includes all combinations that can be considered from the plurality of options.
  • At least one of the plurality of options may be any one of the plurality of options or may be all of the plurality of options.
  • at least one of A, B, and C may be A alone, B alone, C alone, A and B, or A and C. It may be present, B and C may be present, or A, B and C may be present.
  • the term “preferred” is non-exclusive. “Preferred” means “preferably, but not limited to.” In the present specification, the configuration described as “preferred” has at least the above effect obtained by the configuration of (1) above. Also, as used herein, the term “may” is non-exclusive. “May be” means “may be, but is not limited to.” In the present specification, the configuration described as “may” has at least the above effect obtained by the configuration of (1) above.
  • the number of a certain constituent element is not clearly specified, and when it is displayed in the singular when translated into English, the present invention may have a plurality of the constituent elements. . The invention may also have only one of this component.
  • the present invention does not limit the combination of the preferable configurations described above with each other.
  • the present invention is not limited to the details of the configuration and arrangement of the components described in the following description or illustrated in the drawings.
  • the present invention is also possible in embodiments other than the embodiments described below.
  • the present invention is also possible in embodiments in which various modifications are made to the embodiments described later. Further, the present invention can be implemented by appropriately combining the embodiments and modified examples described later.
  • the post-processing of the output data can be made efficient and the hardware resources can be reduced.
  • FIG. 4 is a left side view of a motorcycle equipped with the saddle riding type vehicle traveling data processing device of Specific Example 1;
  • FIG. 3 is a diagram of an engine unit included in the motorcycle of FIG. 2.
  • 1 is a block diagram of a motorcycle equipped with a saddle riding type vehicle traveling data processing device of Specific Example 1.
  • FIG. 3 is a diagram showing an example of a running locus of a motorcycle of Specific Example 1 and acceleration in a vehicle front direction.
  • (A) is a figure which shows an example of a running locus of a motorcycle and acceleration in the vehicle front direction
  • (b) is a figure which shows an example of a running locus of a motorcycle and acceleration in the vehicle left direction
  • (c) is a figure 6 is a graph showing acceleration in the vehicle front direction and acceleration in the vehicle left-right direction in (a) and (b).
  • (A) is a diagram showing another example of the traveling locus of the motorcycle and acceleration in the vehicle front direction
  • (b) is a diagram showing another example of the traveling locus of the motorcycle and acceleration in the vehicle left direction
  • (C) is a graph showing the acceleration in the vehicle front direction and the acceleration in the vehicle left-right direction in (a) and (b).
  • FIG. 6 is a graph showing a relationship between a vehicle front speed of a saddle riding type vehicle and a vehicle lateral acceleration of the saddle riding type vehicle while turning. It is explanatory drawing of the annular area
  • 7 is a flowchart showing a processing procedure of a saddle riding type vehicle traveling data processing method of Specific Example 1.
  • 9 is a flowchart showing another example of the processing procedure of the saddle riding type vehicle travel data processing method of the first specific example.
  • FIG. 6 is a block diagram of a motorcycle equipped with a saddle riding type vehicle traveling data processing device of Specific Example 2; It is a figure which shows an example of saddle riding type vehicle travel composite data of the example 2. It is a figure which shows an example of saddle-ride type vehicle traveling integrated compound data of the specific example 2.
  • FIG. 6 is a block diagram of a saddle riding type vehicle traveling data processing device of Specific Example 3; It is a figure of the four-wheel buggy during a turn. It is a figure of a water motorcycle in a turn. It is a figure which shows an example of the turning operation of a snowmobile. It is a figure which shows the other example of the turning operation of a snowmobile. It is a figure which shows the other example of the annular area
  • FIG. 1 is a diagram showing a configuration of a straddle-type vehicle travel data processing device of the present embodiment and a procedure of processing of a saddle-ride type vehicle travel data processing method of the present embodiment.
  • FIG. 1 also shows a straddle-type vehicle 10 that is turning.
  • the saddle riding type vehicle 10 in FIG. 1 is a motorcycle.
  • the saddle riding type vehicle 10 is not limited to a motorcycle.
  • the straddle-type vehicle traveling data processing device 1 of the present embodiment is a device that processes data related to the straddle-type vehicle 10 that is traveling.
  • the straddle-type vehicle travel data processing method according to the present embodiment is a method for processing data related to the saddle-ride type vehicle 10 that is traveling in the saddle-ride type vehicle travel data processing device 1.
  • the saddle riding type vehicle travel data processing device 1 is, for example, a data recording device or a vehicle control device.
  • the data recording device is a device that accumulates data related to the straddle-type vehicle 10 that is running.
  • the vehicle control device is a device that controls the saddle riding type vehicle 10 based on data related to the running saddle riding type vehicle 10.
  • the saddle riding type vehicle travel data processing device 1 includes a processor 2 and a storage unit 3.
  • the storage unit 3 stores information necessary for the processing executed by the processor 2.
  • the processor 2 is configured to execute the following series of processes S1 to S4 by reading the program stored in the storage unit 3.
  • the processor 2 may be programmed to execute the following series of processes S1 to S4.
  • a series of processing executed by the processor 2 will be described.
  • the processor 2 includes a straddle-type vehicle traveling data acquisition process S1, a saddle-type vehicle traveling composite data generation process S2, a saddle-type vehicle traveling complex data storage process S3, and a saddle-type vehicle traveling complex data output process S4.
  • the saddle riding type vehicle running data processing method includes a saddle riding type vehicle running data acquisition process S1, a saddle riding type vehicle running composite data generation process S2, a saddle riding type vehicle running composite data storage process S3, and a saddle type.
  • the riding type vehicle traveling composite data output process S4 is included.
  • the first approach turning trajectory data DTb1 and the first approach turning front direction acceleration data DAb1 are acquired.
  • the first approach turning locus data DTb1 is data related to the first approach turning locus Tb1.
  • the first approach turning locus Tb1 is a running locus of the saddle type vehicle 10 in the approach turning area Zb including the approach area Zc and the first turning area Zd.
  • the approach area Zc is an area between the first straight line SL1 and a second straight line SL2 that is parallel to the first straight line SL1 and is separated from the first straight line SL1 by 2 m.
  • the length L of the first straight line SL1 is greater than 0 m and 65 m or less.
  • the first turning region Zd is connected to the first arc CA1 connected to the end of the first straight line SL1 and the end of the second straight line SL2, is concentric with the first arc CA1, and has a diameter of the first arc CA1.
  • the first arc CA1 has a central angle ⁇ of 90 ° or more and 270 ° or less and a radius r of 2 m or more and 10 m or less.
  • the first approach turning trajectory Tb1 travels the straddle-type vehicle 10 within the approach turning area Zb when running continuously over the entire approach turning area Zb so as to enter the first turning area Zd from the approach area Zc. It is a trail.
  • the first approach turning front direction acceleration data DAb1 is data relating to the vehicle front direction acceleration of the saddle type vehicle 10 when traveling on the first approach turning trajectory Tb1.
  • the first straddling type vehicle traveling composite data Dc1 is generated based on the first approach turning trajectory data DTb1 and the first approach turning front direction acceleration data DAb1.
  • the first straddle-type vehicle traveling composite data Dc1 is data in which the first approach turning trajectory Tb1 and the acceleration in the vehicle front direction of the saddle riding type vehicle 10 when traveling on the first approach turning trajectory Tb1 are associated with each other. .
  • the first saddle riding type vehicle traveling composite data Dc1 generated by the saddle riding type vehicle traveling composite data generating process S2 is stored in the storage unit 3.
  • the first saddle riding type vehicle traveling composite data Dc1 stored in the saddle riding type vehicle traveling composite data storage processing S3 is output to at least one of the output target 4 and the output target 5. It The output target 4 is included in the saddle riding type vehicle travel data processing device 1. The output target 5 is not included in the saddle riding type vehicle travel data processing device 1.
  • the first saddle riding type vehicle travel composite data Dc1 may be output to, for example, a processor for engine control or brake control in the vehicle control device. .
  • the processor for engine control or brake control can perform engine control or brake control of the saddle riding type vehicle by using the output first saddle riding type vehicle traveling composite data Dc1.
  • the first saddle-ride type vehicle travel composite data Dc1 may be output to, for example, a display device included in the saddle-ride type vehicle.
  • the first saddle riding type vehicle travel composite data Dc1 may be output to a display device included in the saddle riding type vehicle 10, for example.
  • the first straddle type vehicle traveling composite data Dc1 is, for example, an external storage device (secondary storage device, auxiliary storage device) connected to the data recording device. May be output to.
  • the first straddle-type vehicle traveling composite data Dc1 stored in the external storage device may be used to analyze the traveling state of the straddle-type vehicle.
  • the first saddle riding type vehicle traveling composite data Dc1 may be output to a computer external to the data recording device.
  • the first saddle riding type vehicle traveling composite data Dc1 may be output to the printing device or the display device.
  • the straddle-type vehicle travel data processing device 1 of the present embodiment and the saddle-ride type vehicle travel data processing method of the present embodiment have such a configuration, they have the following effects.
  • At least one of the output target 4 and the output target 5 is the first saddle riding type vehicle traveling composite data Dc1 in which the traveling locus of the saddle riding type vehicle 10 during turning and before going straight and the acceleration in the vehicle front direction are associated with each other. Is output.
  • the saddle riding type vehicle 10 is a vehicle that makes a turn by utilizing not only changes in the behavior of the vehicle but also changes in the posture of the rider R. Even when the rider runs on the same course, the change in the posture of the rider R and the behavior of the vehicle differ depending on the rider R. Therefore, the traveling state such as the balance between the centrifugal force and the gravity in the saddle riding type vehicle 10 during turning may be changed by the intention of the rider R.
  • the traveling locus of the saddle riding type vehicle 10 and the acceleration in the front direction of the vehicle during turning and before going straight ahead are closely related to the running state of the saddle riding type vehicle 10 determined by the intention of the rider R. Further, the traveling locus of the saddle riding type vehicle 10 during the turning and the straight running before the turning are closely related to the acceleration in the vehicle front direction.
  • the running state of the saddle riding type vehicle 10 and the running direction of the saddle riding type vehicle 10 during turning and straight ahead before turning are particularly likely to reflect the running state of the saddle riding type vehicle 10. Therefore, the first straddle-type vehicle traveling composite data Dc1 in which the traveling loci of the straddle-type vehicle 10 during turning and during straight ahead before turning and the acceleration in the vehicle front direction are associated with It greatly reflects.
  • the output first straddle-type vehicle traveling composite data Dc1 can be easily used in the output target, for example, for controlling the vehicle or analyzing the traveling state of the vehicle.
  • the speed of the straddle-type vehicle 10 during turning in the vehicle front direction increases as the turning radius increases, and decreases as the turning radius decreases.
  • the speed in the forward direction of the vehicle is hereinafter referred to as the vehicle speed.
  • the first straddle type vehicle It is difficult to utilize the traveling composite data Dc1.
  • the radius r of the first arc CA1 is 10 m or less, the vehicle speed of the saddle riding type vehicle 10 turning in the first turning region Zd is relatively low. Therefore, if the vehicle speed of the saddle riding type vehicle 10 while turning in the first turning region Zd is different, the centrifugal force is different.
  • the radius r of the first arc CA1 When the radius r of the first arc CA1 is 10 m or less, the difference in the traveling state of the saddle riding type vehicle 10 when traveling on the first approach turning trajectory Tb1 becomes large.
  • the difference between the traveling states of the saddle riding type vehicle 10 when traveling on the first approach turning trajectory Tb1 is that the vehicle front direction of the saddle riding type vehicle 10 when traveling on the first approach turning trajectory Tb1 and the first approach turning trajectory Tb1. It is easily reflected in the difference in acceleration.
  • the radius r of the first arc CA1 since the radius r of the first arc CA1 is 10 m or less, it is easy to utilize the first saddle riding type vehicle traveling composite data Dc1.
  • the acceleration in the vehicle left-right direction of the saddle riding type vehicle 10 while turning is about 0.1 G to 0.8 G (about 1 to 8 m / s 2 ).
  • the first arc CA1 has a central angle ⁇ of 90 ° or more and 270 ° or less and a radius r of 2 m or more and 10 m or less. Therefore, the vehicle speed of the saddle riding type vehicle 10 turning in the first turning region Zd having the first arc CA1 as the inner peripheral edge is, for example, about 5 to 32 km / h. If the vehicle speed of the saddle riding type vehicle 10 turning in the first turning region Zd is different, the centrifugal force is greatly different.
  • the center angle ⁇ of the first arc CA1 is 90 ° or more and 270 ° or less and the radius r is 2 m or more and 10 m or less
  • the running state of the saddle riding type vehicle 10 when traveling on the first approach turning locus Tb1 is The difference becomes more pronounced. Therefore, the difference in the traveling state of the saddle riding type vehicle 10 when traveling on the first approach turning trajectory Tb1 is the difference between the first approach turning trajectory Tb1 and the acceleration in the vehicle front direction when traveling on the first approach turning trajectory Tb1. It is easy to be reflected in.
  • the central angle ⁇ of the first arc CA1 is 90 ° or more and 270 ° or less and the radius r is 2 m or more and 10 m or less, the first saddle riding type vehicle traveling composite data Dc1 can be more easily utilized.
  • the distance required for going straight is more than 0 m and not more than 65 m.
  • the length L of the first straight line SL1 of the approach area Zc is greater than 0 m and 65 m or less.
  • the acceleration in the vehicle front direction of the first approach turning locus Tb1 and the saddle riding type vehicle 10 when traveling on the first approach turning locus Tb1 is the saddle type vehicle 10 when traveling on the first approach turning locus Tb1. It is easier to reflect the running condition of.
  • the length L of the first straight line SL1 in the approach area Zc is greater than 0 m and equal to or less than 65 m, so that the first saddle riding type vehicle traveling composite data Dc1 can be more easily utilized.
  • the distance between the first straight line SL1 and the second straight line SL2 is 2 m. Since the second arc CA2 is arranged concentrically with the first arc CA1, the distance between the first arc CA1 and the second arc CA2 is also 2 m. Thus, the width of the approach turning area Zb is 2 m.
  • the length of the saddle riding type vehicle 10 in the vehicle front direction is about 1.8 to 2.6 m and the width of the saddle riding type vehicle 10 is (Length in the left-right direction of the vehicle) is about 0.5 to 1.1 m.
  • the length in the vehicle front direction of the saddle riding type vehicle 10 is about 1.4 to 2.0 m, and the width of the saddle riding type vehicle 10 is 0.7. It is about 1.2 m.
  • the length of the saddle riding type vehicle 10 in the vehicle front direction is about 2.0 to 4.0 m, and the width of the saddle riding type vehicle 10 is 1.0 to It is about 1.2 m.
  • the length of the saddle riding type vehicle 10 in the vehicle front direction is about 2.0 to 4.0 m, and the width of the saddle riding type vehicle 10 is 0.7 to It is about 1.3 m.
  • the width (2 m) of the approach turning area Zb is about twice the average width of the saddle riding type vehicle 10 and about 1.5 times the maximum width of the saddle riding type vehicle 10.
  • the width (2 m) of the approach turning area Zb is set so that the straddle type vehicle 10 has the approach turning area while the vehicle has a degree of freedom in traveling. It is a width that cannot make a U-turn in Zb.
  • the U-turn is a turn of 180 °.
  • the U-turn in the approach turning area Zb is a U-turn that does not follow the edge of the approach turning area Zb.
  • the first saddle riding type vehicle traveling composite data Dc1 is used. Hard to do. This is because the first straddle-type vehicle traveling composite data Dc1 generated in association with the traveling locus when the vehicle makes a U-turn in the approach turning area Zb and the approach turning area Zb travels along the edge of the approach turning area Zb. This is because the first straddle-type vehicle traveling composite data Dc1 generated in association with the traveling locus in such a case cannot be treated in the same row when it is utilized for, for example, control of the vehicle or analysis of the traveling state of the vehicle.
  • the width of the approach turning area Zb is 2 m, it is possible to exclude the possibility that the first approach turning trajectory Tb1 is a running trajectory that makes a U-turn in the approach turning area Zb. Therefore, the first straddle-type vehicle traveling composite data Dc1 can be more easily utilized.
  • the saddle riding type vehicle travel data processing device 1 of the present embodiment can make post-processing of output data efficient and reduce hardware resources. Further, the straddle-type vehicle traveling data processing method of the present embodiment can make post-processing of output data more efficient and reduce hardware resources.
  • the straddle-type vehicle travel data processing device 101 of the first specific example has all the features of the saddle-ride type vehicle travel data processing device 1 of the above-described embodiment of the present invention. In the following description, description of the same parts or processes as those of the above-described embodiment of the present invention will be appropriately omitted.
  • the saddle riding type vehicle travel data processing device 101 is mounted on a motorcycle 110.
  • the motorcycle 110 is an example of the saddle-ride type vehicle 10 of the above-described embodiment.
  • the saddle riding type vehicle travel data processing device 101 is included in an ECU (Electronic Control Unit) 60 mounted on the motorcycle 110.
  • the saddle riding type vehicle traveling data processing device 101 is a vehicle control device that controls the motorcycle 110 based on data relating to the traveling motorcycle 110.
  • the front-rear direction, the left-right direction, and the up-down direction are the vehicle front-rear direction, the vehicle left-right direction, and the vehicle up-down direction, respectively, unless otherwise specified.
  • the vehicle vertical direction is a direction perpendicular to the road surface when the road surface on which the motorcycle 110 is arranged is horizontal.
  • the vehicle front direction is a direction in which the motorcycle 110 in an upright state travels straight on a horizontal road surface.
  • the vehicle rearward direction is opposite to the vehicle frontward direction.
  • the vehicle left-right direction is a direction orthogonal to the vehicle up-down direction and the vehicle front-rear direction, and is the left-right direction viewed from a rider R who rides on the motorcycle 110.
  • FIG. 2 shows a state in which the motorcycle 110 stands upright on a horizontal road surface so as to be able to go straight. Arrows F, Re, U, and D in FIG. 2 represent forward, backward, upward, and downward directions, respectively.
  • the motorcycle 110 includes front wheels 11, rear wheels 12, and a vehicle body frame 13.
  • the body frame 13 has a head pipe 13a at its front part.
  • a steering shaft (not shown) is rotatably inserted in the head pipe 13a.
  • the upper end of the steering shaft is connected to the steering wheel (handle unit) 14.
  • the steering wheel 14 is connected to the upper end of the front fork 15.
  • the lower end of the front fork 15 rotatably supports the front wheel 11.
  • the front fork 15 has a front suspension (not shown).
  • the front suspension absorbs vertical vibrations received by the front wheels 11.
  • the steering wheel 14, the steering shaft, the front fork 15, and the front wheel 11 can swing integrally with the body frame 13.
  • the front wheel 11 is steered by the rider R operating the steering wheel 14.
  • the front wheels 11 are steering wheels.
  • Front brakes 16 are provided on the front wheels 11.
  • the front brake 16 is configured to be able to apply a braking force to the front wheels 11.
  • the front brake 16 is, for example, a hydraulic brake.
  • the front brake 16 may be a known brake other than a hydraulic brake.
  • the front end of the swing arm 17 is swingably supported by the body frame 13.
  • the rear end of the swing arm 17 rotatably supports the rear wheel 12.
  • the swing arm 17 is connected to the vehicle body frame 13 via a rear suspension 18.
  • the rear suspension 18 absorbs vertical vibrations received by the rear wheel 12.
  • Rear brakes 19 are provided on the rear wheels 12.
  • the rear brake 19 is configured to be able to apply a braking force to the rear wheels 12.
  • the rear brake 19 is, for example, a hydraulic brake.
  • the rear brake 19 may be a known brake other than the hydraulic type.
  • the body frame 13 supports the seat 20 and the fuel tank 21.
  • the body frame 13 supports the engine unit 30.
  • the body frame 13 supports a battery (not shown).
  • the battery supplies electric power to electronic devices such as the ECU 60 and various sensors.
  • the engine unit 30 is a power source of the motorcycle 110.
  • the engine unit 30 is configured to be able to apply a driving force to the rear wheels 12.
  • the engine unit 30 has an engine body 31 that generates power.
  • the power generated in the engine body 31 is transmitted to the rear wheels 12.
  • the rear wheel 12 is a drive wheel.
  • the engine unit 30 is a liquid-cooled engine.
  • the cooling method of the engine unit 30 may be a natural air cooling method, a forced air cooling method, or an oil cooling method.
  • the engine body 31 shown in FIG. 3 schematically shows a part of the engine body 31.
  • the engine body 31 is a multi-cylinder engine.
  • FIG. 3 shows only one cylinder of the plurality of cylinders.
  • the engine body 31 may be a single cylinder engine.
  • the engine body 31 is a 4-stroke 1-cycle engine.
  • the 4-stroke 1-cycle engine repeats an intake stroke, a compression stroke, a combustion stroke (expansion stroke), and an exhaust stroke for each cylinder.
  • the timings of the combustion strokes of the three cylinders are different from each other.
  • the engine body 31 may be a 2-stroke 1-cycle engine.
  • the engine body 31 has a plurality of (for example, three) combustion chambers 32.
  • the plurality of combustion chambers 32 are arranged in a line in the left-right direction.
  • a part of each combustion chamber 32 is constituted by a piston 33.
  • the plurality of pistons 33 are connected to one crankshaft 35 via a plurality of connecting rods 34.
  • a tip portion of a spark plug 36 is arranged in the combustion chamber 32.
  • the spark plug 36 ignites a mixed gas of fuel and air in the combustion chamber 32.
  • the spark plug 36 is connected to the ignition coil 37.
  • the ignition coil 37 stores electric power for causing spark discharge of the spark plug 36.
  • the piston 33 reciprocates due to the energy of combustion of the mixed gas, whereby the crankshaft 35 rotates.
  • the crankshaft 35 is connected to the starter motor and the generator.
  • the starter motor and the generator may be integrated.
  • the engine body 31 is provided with an engine rotation speed sensor (not shown) and an engine temperature sensor (not shown).
  • the engine rotation speed sensor detects the rotation speed of the crankshaft 35.
  • the engine temperature sensor directly or indirectly detects the temperature of the engine body 31.
  • the engine body 31 has a multi-stage transmission and a clutch.
  • the power (torque) generated by the crankshaft 35 is transmitted to the rear wheels 12 via the multistage transmission and the clutch.
  • the multi-speed transmission has seven gear positions, for example, 1st to 6th gears and neutral.
  • the clutch is configured to be switchable between a state of transmitting power from the crankshaft 35 and a state of not transmitting power.
  • the engine body 31 has an intake passage portion 40 and an exhaust passage portion 50 for each combustion chamber 32.
  • a passage part means the structure which forms a path
  • the route means a space through which air or gas passes.
  • the intake passage portion 40 introduces air into the combustion chamber 32.
  • the exhaust passage portion 50 discharges the combustion gas (exhaust gas) generated in the combustion chamber 32 during the combustion process.
  • the opening of the combustion chamber 32 connected to the intake passage portion 40 is opened and closed by the intake valve 41.
  • the opening of the combustion chamber 32 connected to the exhaust passage portion 50 is opened and closed by the exhaust valve 51.
  • the intake valve 41 and the exhaust valve 51 are driven by a valve operating device (not shown) included in the engine body 31.
  • the valve train operates in conjunction with the crankshaft 35.
  • the engine unit 30 has an intake passage portion 42 connected to the engine body 31.
  • the intake passage portion 42 is connected to the plurality of intake passage portions 40 of the engine body 31.
  • the other end of the intake passage 42 is open to the atmosphere.
  • the air taken into the intake passage portion 42 is supplied to the engine body 31.
  • An air filter 43 is provided in the intake passage portion 42.
  • the engine unit 30 has an injector 44 that supplies fuel to the combustion chamber 32.
  • One injector 44 is provided for each combustion chamber 32.
  • the injector 44 is arranged to inject fuel in the intake passage portion 42 or the intake passage portion 42.
  • the injector 44 may be arranged so as to inject fuel in the combustion chamber 32.
  • the injector 44 is connected to the fuel tank 21 via a fuel hose 45.
  • a fuel pump 46 is arranged inside the fuel tank 21. The fuel pump 46 pumps the fuel in the fuel tank 21 to the fuel hose 45.
  • a throttle valve 47 is arranged inside the intake passage 42.
  • the throttle valve 47 is provided for each combustion chamber 32. Only one throttle valve 47 may be provided for the plurality of combustion chambers 32.
  • the throttle valve 47 is configured to be able to change the opening degree in the open state. The amount of air supplied to the engine body 31 is adjusted by the opening degree of the throttle valve 47.
  • the throttle valve 47 is an electronically controlled throttle valve.
  • the throttle valve may be a mechanical throttle valve.
  • the intake passage section 42 is provided with an intake pressure sensor 71, an intake temperature sensor 72, and a throttle opening sensor (throttle position sensor) 73.
  • the intake pressure sensor 71 detects the pressure in the intake passage portion 42.
  • the intake air temperature sensor 72 detects the temperature of air in the intake passage portion 42.
  • the throttle opening sensor 73 outputs a signal indicating the opening of the throttle valve 47 by detecting the position of the throttle valve 47.
  • the engine unit 30 has an exhaust passage portion 52 connected to the engine body 31.
  • One end of the exhaust passage portion 52 is connected to the plurality of exhaust passage portions 50 of the engine body 31.
  • the other end of the exhaust passage portion 52 is connected to the muffler portion 53.
  • the exhaust gas discharged from the engine body 31 passes through the exhaust passage portion 52 and then flows into the muffler portion 53.
  • the muffler portion 53 accommodates a catalyst 54 that purifies exhaust gas.
  • the exhaust gas is discharged to the atmosphere after being purified by the catalyst 54.
  • the catalyst 54 may be arranged in the exhaust passage portion 52.
  • An oxygen sensor 75 is provided in the exhaust passage portion 52. The oxygen sensor 75 detects the oxygen concentration in the exhaust gas.
  • a brake pedal 23 is provided on the lower right portion of the motorcycle 110.
  • a shift pedal is provided at the lower left part of the motorcycle 110.
  • the brake pedal 23 and the shift pedal are operated by the feet of the rider R, respectively.
  • a rear brake sensor 81 (see FIG. 4) that detects the operation amount of the brake pedal 23 is connected to the brake pedal 23.
  • a shift pedal sensor (not shown) that detects the operation amount of the shift pedal is connected to the shift pedal.
  • the rear brake 19 applies a braking force to the rear wheels 12 by the rider R operating the brake pedal 23.
  • the brake pedal 23 is connected to the rear brake 19 via the rear brake drive device 25 (see FIG. 4).
  • the rear brake drive device 25 can be controlled by a vehicle control device (saddle-type vehicle travel data processing device) 101.
  • the rear brake drive device 25 includes, for example, a pipe through which hydraulic fluid flows, a valve, a pump, and the like.
  • the vehicle control device 101 controls a solenoid valve or the like provided in the hydraulic pressure adjusting circuit.
  • the braking force of the rear brake 19 can be made different even if the operation amount of the brake pedal 23 is the same.
  • the rear brake drive device that connects the brake pedal 23 and the rear brake 19 may be different from the rear brake drive device that connects the vehicle control device 101 and the rear brake 19. In other words, two independent rear brake drive devices may be provided.
  • the gear position of the multi-stage transmission (not shown) of the engine unit 30 is switched by the rider R operating the shift pedal.
  • a shift switch may be provided on the steering wheel 14 instead of the shift pedal.
  • the steering wheel 14 has an accelerator grip 24 (see FIG. 2), a brake lever (not shown), and a clutch lever (not shown).
  • the accelerator grip 24 and the brake lever are arranged on the right side of the steering wheel 14.
  • the clutch lever is arranged on the left side of the steering wheel 14.
  • An accelerator sensor 83 that detects an operation amount of the accelerator grip 24 is connected to the accelerator grip 24.
  • a front brake sensor 82 (see FIG. 4) that detects the operation amount of the brake lever is connected to the brake lever.
  • a clutch lever sensor (not shown) that detects the operation amount of the clutch lever is connected to the clutch lever.
  • the power generated by the engine body 31 of the engine unit 30 is adjusted by the rider R operating the accelerator grip.
  • the opening degree of the throttle valve 47 is changed according to the operation amount of the accelerator grip. More specifically, the vehicle control device (saddle-type vehicle travel data processing device) 101 controls the throttle valve 47 based on a signal from the accelerator sensor 83 that detects the operation amount of the accelerator grip.
  • the throttle valve 47 is a mechanical type
  • the accelerator grip is connected to the throttle valve 47 via a throttle wire.
  • the front brake 16 applies braking force to the front wheels 11 by the rider R operating the brake lever.
  • the brake lever is connected to the front brake 16 via a front brake drive device 26 (see FIG. 4).
  • the front brake drive device that connects the brake lever and the front brake 16 may be different from the front brake drive device that connects the vehicle control device 101 and the front brake 16.
  • the front brake drive device 26 may be integrated with the rear brake drive device 25.
  • the clutch (not shown) of the engine unit 30 cuts off the transmission of power from the crankshaft 35 to the rear wheels 12.
  • the clutch lever is operated before changing the gear position of the multi-stage transmission by the shift pedal.
  • the engine unit 30 may have a continuously variable transmission instead of the multi-stage transmission.
  • the motorcycle 110 may not have the shift pedal and the clutch lever.
  • the brake pedal may not be provided, and both the front brake 16 and the rear brake 19 may be operable by operating the brake lever.
  • the rider R increases or decreases the speed of the motorcycle 110 in the vehicle front direction, or turns the motorcycle 110. can do.
  • the steering wheel 14 has various switches (not shown) operated by the rider R.
  • the various switches are, for example, a main switch, an engine start switch, an engine stop switch, and the like.
  • the main switch is a switch that switches on / off of power supply from a battery to various electric devices.
  • the engine start switch is a switch for starting the operation of the engine unit 30, and the engine stop switch is a switch for stopping the operation of the engine unit 30.
  • the motorcycle 110 has a touch panel 28 (see FIG. 4).
  • the touch panel 28 is arranged at a position where the rider R seated on the seat 20 can visually recognize it.
  • the touch panel 28 can display various setting screens.
  • the touch panel 28 can receive various operation inputs from the rider R.
  • rider identification information for identifying the rider R can be input to the touch panel 28.
  • the rider identification information is, for example, the name and ID number of the rider R.
  • the touch panel 28 can display the operating state of the motorcycle 110 and the like.
  • the touch panel 28 displays, for example, vehicle speed (vehicle forward speed), engine rotation speed, gear position, various warnings, and the like.
  • the motorcycle 110 has a steering angle sensor 84 that detects the steering angle of the steering wheel 14.
  • the steering angle of the steering wheel 14 is the same as the steering angle of the front wheels 11 (steering wheels).
  • the motorcycle 110 may not have the steering angle sensor 84.
  • the motorcycle 110 has a wheel speed sensor 85.
  • the wheel speed sensor 85 detects the rotation speed of the rear wheel 12.
  • the wheel speed sensor 85 may be a sensor that detects the rotation speed of the front wheels 11.
  • the motorcycle 110 may have both a wheel speed sensor that detects the rotation speed of the front wheels 11 and a wheel speed sensor that detects the rotation speed of the rear wheels 12.
  • the signal from the wheel speed sensor 85 is transmitted to the ECU 60.
  • the ECU 60 acquires the speed of the motorcycle 110 in the vehicle front direction based on the signal from the wheel speed sensor 85.
  • the ECU 60 calculates the speed of the rear wheel 12 in the traveling direction based on the rotation speed of the rear wheel 12 and the diameter of the rear wheel 12 detected by the wheel speed sensor 85.
  • the speed of the rear wheel 12 in the traveling direction is the speed of the motorcycle 110 in the vehicle front direction.
  • the wheel speed sensor 85 is provided on the front wheel 11
  • the speed of the front wheel 11 in the traveling direction is calculated based on the rotation speed of the front wheel 11 detected by the wheel speed sensor 85 and the diameter of the front wheel 11.
  • the traveling direction of the front wheels 11 is slightly different from the vehicle front direction of the motorcycle 110.
  • the speed of the front wheels 11 in the traveling direction is also included in the speed of the motorcycle 110 in the vehicle front direction.
  • the ECU 60 may acquire the acceleration (including negative acceleration) in the vehicle front direction of the motorcycle 110 based on the signal from the wheel speed sensor 85.
  • the ECU 60 may calculate the acceleration in the vehicle front direction of the motorcycle 110 by differentiating the speed in the vehicle front direction of the motorcycle 110 calculated based on the signal of the wheel speed sensor 85 with respect to time.
  • the motorcycle 110 has an IMU (Inertial Measurement Unit / Inertial Measurement Unit) 86.
  • the IMU 86 has a roll sensor, a pitch sensor, and a yaw sensor.
  • the roll sensor of the motorcycle 110 can detect at least one of an angle around the roll axis Ro (see FIG. 2) of the vehicle body frame 13, an angular velocity, and an angular acceleration.
  • the pitch sensor can detect at least one of an angle around the pitch axis P (see FIG. 2) of the vehicle body frame 13, an angular velocity, and an angular acceleration.
  • the yaw sensor can detect at least one of an angle around the yaw axis Y (see FIG. 2) of the vehicle body frame 13, an angular velocity, and an angular acceleration.
  • the roll sensor, the pitch sensor, and the yaw sensor are arranged on the motorcycle 110 so as to move integrally with the body frame 13.
  • the orientations of the roll axis Ro, the pitch axis P, and the yaw axis Y with respect to the road surface also change.
  • the yaw axis Y is parallel to the vehicle vertical direction when the motorcycle 110 is upright on a horizontal road surface.
  • the yaw axis Y of the yaw sensor may be slightly inclined with respect to the vehicle vertical direction as long as it passes through the center of the vehicle when the motorcycle 110 is upright on a horizontal road surface.
  • the yaw axis Y may be parallel to the steering shaft.
  • the angle around the yaw axis Y of the vehicle body frame 13 is called the yaw angle of the motorcycle 110.
  • the yaw angle of the motorcycle 110 is related to the traveling direction of the motorcycle 110.
  • Roll axis Ro is orthogonal to yaw axis Y.
  • the roll axis Ro is parallel to the vehicle front-rear direction.
  • the angle around the roll axis Ro of the vehicle body frame 13 is referred to as the roll angle of the motorcycle 110.
  • the roll angle of the motorcycle 110 is one of the indexes indicating the posture of the motorcycle 110.
  • the pitch axis P is orthogonal to both the roll axis Ro and the yaw axis Y.
  • the pitch axis P is parallel to the vehicle left-right direction.
  • the angle around the pitch axis P of the vehicle body frame 13 is referred to as the pitch angle of the motorcycle 110.
  • the motorcycle 110 pitch angle is one of the indexes indicating the posture of the motorcycle 110.
  • the motorcycle 110 may not have the IMU 86. Instead of having the IMU 86, the motorcycle 110 may have at least one of a roll sensor, a pitch sensor, and a yaw sensor. The motorcycle 110 may not have the IMU 86, the roll sensor, the pitch sensor, or the yaw sensor.
  • the motorcycle 110 is equipped with a GNSS reception unit 90.
  • the GNSS reception unit 90 is mounted, for example, in the front part of the motorcycle 110.
  • the GNSS receiving unit 90 may be mounted on the rear part of the motorcycle 110, for example.
  • the GNSS receiving unit 90 may be mounted, for example, at a substantially central portion in the front-rear direction of the motorcycle 110.
  • the GNSS receiving unit 90 is preferably arranged in the upper part of the motorcycle 110.
  • the GNSS receiving unit 90 is preferably arranged, for example, at a position higher than the upper ends of the front wheels 11 and the rear wheels 12.
  • the GNSS receiving unit 90 may be arranged on the motorcycle 110 so as to move integrally with the vehicle body frame 13.
  • the GNSS reception unit 90 may be installed in, for example, a fender, a front fork 15, or a steering wheel 14 arranged so as to cover the front wheels 11.
  • the GNSS receiving unit 90 may be attachable to and detachable from the motorcycle 110. That is, the motorcycle 110 may be able to run even with the GNSS receiving unit 90 removed.
  • GNSS receiving unit 90 receives radio waves transmitted from GNSS (Global Navigation Satellite System) GNSS satellites at predetermined time intervals.
  • the GNSS receiving unit 90 acquires the position coordinate data indicating the absolute position (latitude / longitude) of the GNSS receiving unit 90 based on the radio wave received from the GNSS satellite at predetermined time intervals.
  • a known method using the GNSS system is adopted as a method of acquiring the position coordinate data.
  • the radio wave transmitted from the GNSS satellite includes date and time (year, month, day and time) data.
  • the GNSS receiving unit 90 generates position history data based on the position coordinate data.
  • the position history data is data indicating a locus in which the positions of the GNSS receiving units 90 are arranged in time series. That is, the position history data is traveling locus data indicating the traveling locus of the motorcycle 110.
  • the position history data (travel locus data) includes date and time data when the motorcycle 110 exists at each position.
  • the GNSS receiving unit 90 detects the speed in the traveling direction of GNSS receiving unit 90 based on the radio wave received from the GNSS satellite.
  • the traveling direction of the GNSS receiving unit 90 is the vehicle front direction.
  • the traveling direction of the GNSS receiving unit 90 may be slightly deviated from the vehicle front direction.
  • the speed of the GNSS receiving unit 90 in the traveling direction is included in the speed of the motorcycle 110 in the vehicle front direction. That is, the GNSS receiving unit 90 detects the speed of the motorcycle 110 in the vehicle front direction.
  • the GNSS receiving unit 90 may detect the speed of the motorcycle 110 in the vehicle front-rear direction by using the Doppler effect of the radio waves received from the GNSS satellite.
  • the GNSS receiving unit 90 may detect the speed of the motorcycle 110 in the vehicle front-rear direction based on the position history data, for example.
  • GNSS receiving unit 90 detects the acceleration (including negative acceleration) in the traveling direction of GNSS receiving unit 90 based on the radio wave received from the GNSS satellite. That is, the GNSS receiving unit 90 detects the acceleration (including negative acceleration) in the vehicle front direction of the motorcycle 110.
  • the GNSS receiving unit 90 may calculate the acceleration in the vehicle front direction of the motorcycle 110 by differentiating the detected speed in the vehicle front direction of the motorcycle 110 with respect to time.
  • GNSS receiving unit 90 detects an acceleration (including negative acceleration) in a direction orthogonal to the traveling direction of GNSS receiving unit 90 based on the radio wave received from the GNSS satellite.
  • the direction orthogonal to the traveling direction of the GNSS receiving unit 90 may be slightly deviated from the vehicle left-right direction.
  • the acceleration in the direction orthogonal to the traveling direction of the GNSS receiving unit 90 is included in the acceleration in the vehicle left-right direction of the motorcycle 110. That is, the GNSS receiving unit 90 detects the acceleration of the motorcycle 110 in the vehicle left-right direction.
  • the GNSS receiving unit 90 may calculate the vehicle lateral acceleration of the motorcycle 110 based on the position history data and the detected vehicle forward speed, for example.
  • the GNSS receiving unit 90 may detect the speed of the motorcycle 110 in the vehicle left-right direction based on the radio wave received from the GNSS satellite.
  • the GNSS receiving unit 90 may detect at least one of an angle about the yaw axis Y of the motorcycle 110, an angular velocity, and an angular acceleration based on the radio wave received from the GNSS satellite.
  • the GNSS receiving unit 90 may detect the vertical acceleration (including negative acceleration) of the vehicle of the GNSS receiving unit 90 based on the radio wave received from the GNSS satellite.
  • the vehicle vertical acceleration of the GNSS reception unit 90 is the vehicle vertical acceleration at a certain position of the motorcycle 110.
  • the GNSS receiving unit 90 may detect the speed of the GNSS receiving unit 90 in the vehicle vertical direction based on the radio wave received from the GNSS satellite.
  • the GNSS receiving unit 90 may detect at least one of the angle around the pitch axis P of the motorcycle 110, the angular velocity, and the angular acceleration based on the radio wave received from the GNSS satellite.
  • the GNSS receiving unit 90 may detect at least one of the angle around the roll axis Ro of the motorcycle 110, the angular velocity, and the angular acceleration based on the radio wave received from the GNSS satellite.
  • the GNSS receiving unit 90 may generate the speed or acceleration data in the various directions described above in association with the traveling locus data.
  • the GNSS receiving unit 90 transmits the generated traveling locus data and the detected velocity or acceleration data in various directions to the ECU 60.
  • the ECU 60 may calculate the acceleration by differentiating the speed transmitted from the GNSS receiving unit 90.
  • the ECU 60 may integrate the acceleration transmitted from the GNSS receiving unit 90 to calculate the speed.
  • the ECU 60 may calculate the displacement (movement amount) based on the speed or acceleration transmitted from the GNSS receiving unit 90.
  • the GNSS receiving unit 90 may transmit the generated position coordinate data to the ECU 60. In this case, the ECU 60 may generate the traveling locus data BT based on the position coordinate data transmitted from the GNSS receiving unit 90.
  • GNSS receiving unit 90 does not have to be always in operation while motorcycle 110 is traveling.
  • the GNSS receiving unit 90 may be adapted to operate only when in the ON state.
  • the on / off switching may be operated using the touch panel 28, for example.
  • the motorcycle 110 has an imaging device 91.
  • the imaging device 91 includes a camera.
  • a camera is a device that photoelectrically converts an optical image of a subject by a photographing element to generate image data (image data).
  • the camera is realized by, for example, a CMOS (Complementary Metal Oxide Semiconductor) sensor or a CCD (Charge coupled Device) sensor.
  • the imaging device 91 may be capable of generating only still image data or may be capable of generating moving image data.
  • the image data generated by the imaging device 91 includes data of the date and time (year, month, day and time) taken by the camera.
  • the imaging device 91 transmits the image data captured by the camera to the ECU 60.
  • the image data transmitted to the ECU 60 is still image data.
  • the image data transmitted to the ECU 60 may be moving image data.
  • the image pickup device 91 is arranged and set so that the posture of the rider R during the turn of the motorcycle 110 can be photographed. That is, the arrangement position of the imaging device 91 and the imaging conditions such as the orientation of the camera of the imaging device 91 and the viewing angle are set so that the posture of the rider R can be imaged.
  • the imaging device 91 is arranged and set so that the captured image includes at least one of the head, shoulders, legs, hips, and crotch of the rider R who is turning the motorcycle 110.
  • Saddle-type vehicles including motorcycles, are vehicles that make turns using the balance between centrifugal force and gravity.
  • a saddle-ride type vehicle is a vehicle that is driven not only by changing the behavior of the vehicle but also by changing the posture of the rider in order to make a turn. Even when riding on the same course, the rider's posture changes and the vehicle's behavior varies depending on the rider. Therefore, the traveling state such as the balance between the centrifugal force and the gravity in the straddle-type vehicle during turning varies depending on the rider even when traveling on the same course.
  • the running state of the saddle riding type vehicle during turning may be changed by the rider's intention.
  • a motorcycle rider leans the motorcycle to the right when turning right, and leans the motorcycle to the left when turning left.
  • motorcycles have a larger weight ratio of rider to vehicle weight than automobiles. Therefore, the rider can move the center of gravity to tilt the motorcycle.
  • a motorcycle balances gravity and centrifugal force by moving the center of gravity of the rider and the vehicle during turning.
  • the posture of the motorcycle while going straight is maintained in an upright posture.
  • the roll angle of the motorcycle is 0 degree or an angle near 0 degree while going straight. There is little change in the posture of the motorcycle while going straight.
  • the posture of the motorcycle during turning is an inclined posture (see the saddle type vehicle 10 in FIG. 1).
  • the rolling angle of the motorcycle during turning is greater than 0 degree.
  • the roll angle of the motorcycle changes greatly. Specifically, at the start of turning, the roll angle of the motorcycle increases. At the end of turning, the roll angle of the motorcycle decreases. In this way, the change in the posture of the motorcycle during turning becomes larger than that during the straight traveling period. Therefore, the change in the behavior of the motorcycle during the turning is larger than that during the straight traveling.
  • multiple riding forms are known as the posture of a rider who rides on a motorcycle that is turning.
  • typical riding forms there are three types of riding forms: lean with, lean in, and lean out. These three types of riding forms are different from each other in at least one of the head direction, shoulder position, leg position, hip position, and crotch position.
  • the head orientation, shoulder position, leg position, hip position, and crotch position are closely related to the behavior of the motorcycle during turning.
  • the vehicle speed (speed in the forward direction of the vehicle) of the saddle riding type vehicle when turning is lower than that when going straight.
  • the lower the vehicle speed during turning the smaller the turning radius. In other words, the smaller the turning radius, the lower the vehicle speed at which the vehicle can turn. Therefore, when the vehicle speed of the straddle-type vehicle that is traveling straight ahead before turning is relatively high, the rider reduces the vehicle speed before and / or during turning to a speed commensurate with the turning. If the deceleration is not sufficient, the turning radius becomes large.
  • the trajectories of the straddle-type vehicle before and during turning are closely related to the acceleration in the vehicle front direction.
  • FIG. 5 is a diagram showing an example of a traveling locus of the motorcycle 110 and an acceleration in the vehicle front direction when traveling in an annular region Za described later.
  • negative acceleration deceleration
  • positive acceleration is represented by a combination of color gradation and diagonal hatching.
  • the motorcycle 110 is decelerating before turning.
  • the timing of starting deceleration of the saddle riding type vehicle, the magnitude of the negative acceleration (deceleration), and the deceleration period differ.
  • the rider of the straddle-type vehicle changes its posture during or after deceleration. Therefore, the running locus of the straddle-type vehicle before and during the turn and the acceleration in the vehicle front direction are closely related to the running state of the straddle-type vehicle determined by the rider's intention.
  • the running locus of the straddle-type vehicle before and during the turn and the acceleration in the vehicle front direction are particularly likely to reflect the running state of the straddle-type vehicle.
  • the rider of a saddle type vehicle increases the vehicle speed after or during the turn. Therefore, the traveling locus of the straddle-type vehicle after and during the turn and the acceleration in the vehicle front direction are related to the traveling state of the straddle-type vehicle that is determined by the rider's intention. Further, the traveling loci of the saddle riding type vehicle after turning and during turning are closely related to the acceleration in the vehicle front direction. For example, in FIG. 5, the motorcycle 110 is accelerating during turning. Due to the acceleration, the motorcycle 110 changes from the inclined posture to the upright posture.
  • the motorcycle 110 has the front suspension of the front fork 15.
  • the motorcycle generally has a Freon suspension that absorbs vertical vibrations received by the front wheels.
  • the front suspension contracts. Basically, the greater the deceleration (negative acceleration) in the vehicle front direction, the greater the amount of contraction of the front suspension.
  • the front suspension contracts due to centrifugal force. Basically, the greater the centrifugal force, the greater the amount of contraction of the front suspension.
  • FIGS. 6 and 7 show the travel locus of the motorcycle of the first example.
  • the lines shown in FIGS. 7 (a) and 7 (b) show the traveling locus of the motorcycle of the second example.
  • 6 (a) and 7 (a) show the line indicating the traveling locus in a display form (color gradation and diagonal hatching) according to the acceleration in the vehicle front direction of the motorcycle.
  • 6 (b) and 7 (b) show the line indicating the traveling locus in a display form (color gradation and diagonal hatching) according to the acceleration in the vehicle left-right direction of the motorcycle.
  • FIG. 6C is a graph in which the vertical axis represents the acceleration in the vehicle front direction in FIG. 6A and the horizontal axis represents the acceleration in the vehicle left-right direction in FIG. 6B.
  • FIG. 7C is a graph in which the vertical axis represents acceleration in the vehicle front direction in FIG. 7A and the horizontal axis represents acceleration in the vehicle left-right direction in FIG. 7B.
  • the running loci shown in FIG. 6 and FIG. 7 are running loci when the vehicle turns leftward after going straight. 6 (b), 6 (c), 7 (b), and 7 (c), the acceleration in the right direction of the vehicle is displayed as positive and the acceleration in the left direction of the vehicle is displayed as negative.
  • the rider reduces the speed of the motorcycle in the vehicle front direction when going straight.
  • the front suspension contracts.
  • the rider reduces the degree of deceleration of the motorcycle or makes the speed substantially constant, as shown in FIG. 6 (a).
  • the front suspension contracts.
  • the rider tilts the vehicle to the left of the vehicle, and the motorcycle turns left.
  • the front suspension contracts again.
  • the front suspension temporarily expands and contracts again when shifting from straight traveling to turning.
  • the rider reduces the speed of the motorcycle in the vehicle front direction at the time of going straight or at the beginning of turning.
  • the front suspension contracts.
  • the rider leans the motorcycle to the left of the vehicle for turning while decelerating to the front of the vehicle.
  • FIGS. 7 (a), 7 (b) and 7 (c) a state in which the deceleration (negative acceleration) in the front direction of the vehicle is relatively large and a positive acceleration in the left direction of the vehicle is The state of being somewhat large is almost continuous. Therefore, the front suspension remains contracted.
  • the vehicle goes straight to turn while the front suspension is contracted.
  • the second example as compared with the first example, only one operation of extending the front suspension and one operation of contracting the front suspension are unnecessary.
  • the front suspension does not expand or contract, so the motorcycle is less likely to wobble.
  • the running locus is likely to be a smoother straight line or curved line.
  • the saddle riding type vehicle in which the above-mentioned behavior of the front suspension occurs is not limited to the motorcycle.
  • the same behavior occurs in a saddle-ride type vehicle in which a front suspension that absorbs vertical vibrations is provided in the front part of the vehicle and the vehicle leans in the left-right direction of the vehicle when turning.
  • FIG. 8 shows a guideline of a range of acceleration in the front direction of the vehicle and a range of speed in the left-right direction of the vehicle when a motorcycle on which riders having different driving skill levels are riding travels on a specific course.
  • the specific course here is not limited to one course.
  • the specific course may include a plurality of courses having similar acceleration tendencies.
  • the specific course may or may not include the annular region Zb described below.
  • the vertical axis represents the acceleration in the vehicle front direction
  • the horizontal axis represents the acceleration in the vehicle left-right direction
  • a circular area A3 and two elliptical areas A1 and A2 are displayed.
  • the area A1 represents a standard of the acceleration range in the vehicle front direction and the acceleration range in the vehicle left-right direction of the motorcycle on which the rider of the beginner level rides. That is, the acceleration in the vehicle front direction and the acceleration in the vehicle left-right direction of the motorcycle on which the rider at the beginner's level rides are approximately numerical values within the area A1.
  • the area A2 represents a standard of the acceleration range in the vehicle front direction and the acceleration range in the vehicle left-right direction of the motorcycle on which the rider of an intermediate level rides.
  • the area A3 represents a standard of the acceleration range in the vehicle front direction and the acceleration range in the vehicle left-right direction of the motorcycle on which a rider of a high level rides. Since the area A3 is merely a guide, the acceleration in the vehicle front direction and the acceleration in the vehicle left-right direction may exceed the area A3 depending on the driving skill level of the advanced driver. As shown in FIG. 8, the range of acceleration in the vehicle left-right direction in each of the areas A1, A2, and A3 is ⁇ 0.4 to +0.4 G. The acceleration range in the vehicle front direction in the area A1 is -0.2 to + 0.2G. The acceleration range in the vehicle front direction in the area A2 is -0.3 to + 0.3G.
  • the acceleration range in the vehicle front direction in the area A3 is ⁇ 0.4 to + 0.4G.
  • the range of the acceleration in the front direction of the vehicle varies depending on the level of the driving skill of the rider.
  • the range of acceleration in the left-right direction of the vehicle is substantially the same regardless of the level of driving skill of the rider R.
  • the numerical values of the areas A1, A2, A3 may differ depending on the course on which the vehicle travels.
  • the numerical values of the areas A2 and A3 may differ depending on the priorities during running. For example, the numerical values may differ between the case of traveling faster on the course and the case of traveling with a higher or more accurate driving technique.
  • a circular area An is also displayed.
  • the area An represents a range of acceleration in the front direction of the vehicle and a range of acceleration in the left-right direction of the vehicle when the motorcycle travels on the general road.
  • the range of acceleration in the vehicle front direction of the area A2 is -0.2 to +0.2 G
  • the range of acceleration in the vehicle left and right direction is -0.2 to +0.2 G. That is, the acceleration in the front direction of the vehicle and the acceleration in the left-right direction of the vehicle of the motorcycle traveling on the general road are approximately numerical values within the region An. If the vehicle can travel within the acceleration range of the area A2, it can travel on a general road with a margin.
  • FIG. 9 is a graph showing the relationship between the speed v in the vehicle front direction of the straddle-type vehicle during turning and the acceleration a in the vehicle left-right direction of the saddle-ride type vehicle.
  • the horizontal axis of FIG. 9 represents the speed v in the vehicle front direction
  • the vertical axis represents the acceleration a in the vehicle left direction or the vehicle right direction.
  • FIG. 9 shows a graph when the turning radius r is 2 m, 3 m, 4 m, 5 m, 6 m, 7 m, 8 m, 9 m, and 10 m.
  • the graph of FIG. 9 is based on this equation. The smaller the turning radius r, the larger the change in the acceleration a in the vehicle left-right direction with respect to the change in the speed v in the vehicle front direction. In addition, the smaller the turning radius r, the easier the attitude of the saddle riding type vehicle changes.
  • the motorcycle 110 has an ECU (Electronic Control Unit) 60.
  • the ECU 60 includes at least one processor such as a CPU (Central Processing Unit) and at least one storage device such as a ROM (Read Only Memory) and a RAM (Random Access Memory).
  • the CPU executes information processing based on programs and various data stored in the ROM and RAM.
  • the ECU 60 may be one device arranged at one place, or may be composed of a plurality of devices arranged at different positions. As shown in FIG.
  • the ECU 60 includes an intake pressure sensor 71, an intake temperature sensor 72, a throttle opening sensor 73, an oxygen sensor 75, an engine speed sensor, an engine temperature sensor, a rear brake sensor 81, a front brake sensor 82, an accelerator. It is connected to various sensors such as the sensor 83, the steering angle sensor 84, the wheel speed sensor 85, and the IMU 86.
  • the ECU 60 is connected to the GNSS receiving unit 90, the imaging device 91, and the touch panel 28.
  • the ECU 60 is connected to the ignition coil 37 of the engine unit 30, the injector 44, the fuel pump 46, the throttle valve 47, the starter motor (not shown), and the like.
  • the ECU 60 is connected to the front brake drive device 26 and the rear brake drive device 25.
  • the ECU 60 controls each part of the motorcycle 110.
  • the ECU 60 includes a vehicle control device (saddle-type vehicle travel data processing device) 101.
  • the saddle riding type vehicle travel data processing device 101 includes a processor 102, a storage unit 103, an engine control processor 61, and a brake control processor 62.
  • the processor 102 is an example of the processor 2 of the above embodiment.
  • the storage unit 103 is an example of the storage unit 3 of the above embodiment.
  • the processor 102 executes information processing based on the programs and data stored in the storage unit 103.
  • the engine control processor 61 executes engine control processing.
  • the engine control processor 61 executes fuel control processing and ignition timing control processing as engine control processing.
  • the fuel control process the fuel injection amount injected from each injector 44 is controlled.
  • the ignition timing is controlled.
  • the ignition timing is the timing of discharge of the spark plug 36.
  • the engine control processor 61 controls the fuel pump 46 and the injector 44 based on signals from the sensors 71 to 75, 81 to 88 and the like.
  • the fuel injection amount injected from the injector 44 is controlled by controlling the fuel pump 46 and the injector 44.
  • the engine control processor 61 controls energization of the ignition coil 37 based on signals from the sensors 71 to 75, 81 to 88 and the like. As a result, the timing of discharging the spark plug 36 is controlled.
  • the brake control processor 62 executes a brake control process. In the brake control process, the braking force applied by the front brake 16 to the front wheels 11 and the braking force applied by the rear brake 19 to the rear wheels 12 are controlled.
  • the brake control processor 62 controls the front brake drive device 26 and the rear brake drive device 25 based on signals from the front brake sensor 82, the rear brake sensor 81, and the like.
  • the control of the front brake drive device 26 controls the braking force applied by the front brake 16 to the front wheels 11.
  • the control of the rear brake drive device 25 controls the braking force applied by the rear brake 19 to the rear wheels 12.
  • the saddle riding type vehicle traveling data processing device 101 acquires traveling locus data (position history data) BT related to the traveling locus of the motorcycle 110.
  • the traveling locus data BT is acquired from the GNSS receiving unit 90.
  • the traveling locus data BT is generated by the ECU 60 based on the position coordinate data transmitted from the GNSS receiving unit 90.
  • the traveling locus data BT may be generated by the saddle riding type vehicle traveling data processing device 101 or may be generated by another processor of the ECU 60.
  • the saddle riding type vehicle traveling data processing device 101 acquires the forward acceleration data BA related to the forward acceleration of the motorcycle 110.
  • the forward acceleration data BA may be obtained from the GNSS receiving unit 90.
  • the saddle riding type vehicle traveling data processing device 101 may generate the forward acceleration data BA based on the vehicle forward speed of the motorcycle 110 detected by the GNSS receiving unit 90.
  • the saddle riding type vehicle travel data processing device 101 may generate the forward acceleration data BA based on the signal from the wheel speed sensor 85.
  • the saddle riding type vehicle traveling data processing device 101 acquires the lateral acceleration data BL related to the lateral acceleration of the motorcycle 110.
  • the lateral acceleration data BL may be acquired from the GNSS receiving unit 90.
  • the saddle riding type vehicle traveling data processing device 101 uses the lateral acceleration data based on the vehicle front speed or acceleration of the motorcycle 110 detected by the GNSS receiving unit 90 and the position history data generated by the GNSS receiving unit 90. BL may be generated.
  • the saddle riding type vehicle traveling data processing device 101 may generate the lateral acceleration data BL based on the signal of the wheel speed sensor 85 and the position history data generated by the GNSS receiving unit 90.
  • the saddle riding type vehicle travel data processing device 101 acquires vehicle attitude data B1V related to the attitude of the motorcycle 110.
  • the vehicle attitude data B1V is generated by the ECU 60.
  • the vehicle attitude data B1V may be generated by the saddle riding type vehicle travel data processing device 101 or may be generated by another processor of the ECU 60.
  • the vehicle attitude data B1V is generated using at least one of the GNSS receiving unit 90, the IMU 86, and the steering angle sensor 84.
  • the vehicle attitude data B1V is the vehicle lateral acceleration of the motorcycle 110 detected by the GNSS receiving unit 90, the vehicle vertical acceleration at a certain position of the motorcycle 110 detected by the GNSS receiving unit 90, IMU86. And a signal from the steering angle sensor 84.
  • the vehicle attitude data B1V may be generated using only the GNSS receiving unit 90.
  • the vehicle attitude data B1V may be generated using only the IMU 86.
  • the vehicle attitude data B1V may be data related to at least one of the roll angle, the pitch angle, and the yaw angle of the motorcycle 110.
  • the vehicle attitude data B1V may be data related to the steering angle of the front wheels 11 (steering wheels).
  • the vehicle attitude data B1V may be data relating to displacement of the motorcycle 110 at a certain position in the vehicle left-right direction.
  • the vehicle attitude data B1V may be data relating to displacement of the motorcycle 110 at a certain position in the vehicle vertical direction.
  • the vehicle attitude data B1V includes a roll angle, a pitch angle, a yaw angle, a steering angle of the front wheels 11 (steering wheels), a lateral displacement of the vehicle at a certain position of the motorcycle 110, and a vertical displacement of the vehicle at a certain position of the motorcycle 110. May be data that quantitatively indicates at least one of the above.
  • the saddle riding type vehicle traveling data processing device 101 acquires the rider attitude data B1R related to the rider R riding the motorcycle 110.
  • the rider posture data B1R is generated by the ECU 60.
  • the rider posture data B1R may be generated by the saddle riding type vehicle travel data processing device 101 or may be generated by another processor of the ECU 60.
  • the rider posture data B1R is generated based on the image data generated by the imaging device 91.
  • the rider attitude data B1R is not image data.
  • the rider posture data B1R is generated by image analysis processing, for example.
  • the rider posture data B1R is data relating to at least one of the head direction, shoulder position, leg position, hip position, and crotch position of the rider R.
  • the rider attitude data B1R may be data that quantitatively indicates at least one of the head direction, shoulder position, leg position, hip position, and crotch position of the rider R.
  • the saddle riding type vehicle traveling data processing device 101 acquires the rider identification data BI for identifying the rider R riding on the motorcycle 110.
  • the rider identification data BI is generated based on the rider identification information input on the touch panel 28.
  • the rider identification data BI may be automatically transmitted to the ECU 60 from a device mounted or owned by the rider R when the rider R gets on the motorcycle 110, for example.
  • the rider identification data BI acquired by the saddle riding type vehicle traveling data processing device 101 is stored in the storage unit 103 as “current rider identification data BI”.
  • the “current rider identification data BI” stored in the storage unit 103 is updated.
  • the updated rider identification data BI may also be stored in the storage unit 103.
  • the saddle-ride type vehicle travel data processing method according to the specific example 1 is a procedure of processing executed by the processor 102 of the saddle-ride type vehicle travel data processing device 101.
  • the motorcycle 110 travels in the annular area Za having a predetermined shape.
  • the annular area Za is not a general road.
  • the annular area Za may be a racetrack.
  • the annular area Za may be, for example, a paved surface such as a parking lot.
  • the circular area Za may be a general road.
  • the annular area Za is annular.
  • the annular area Za is composed of an approach turning area Zb, a second linear area Ze, and a second turning area Zf.
  • the annular area Za corresponds to the first annular area of the present invention.
  • the annular region Za has a substantially elliptical shape (elliptical shape).
  • the distance between the inner peripheral edge and the outer peripheral edge of the annular region Za is constant at 2 m.
  • the front end refers to the end in the direction in which the motorcycle 110 travels (progresses) in the annular region Za.
  • the rear end is the opposite end.
  • the second linear region Ze has a linear shape.
  • the second linear region Ze is connected to the front end of the first turning region Zd.
  • the second turning region Zf has an arc shape.
  • the second turning region Zf is connected to the front end of the second linear region Ze and the rear end of the approach region Zc.
  • the approach turning area Zb includes the linear approach area Zc and the arc-shaped first turning area Zd as described in the above embodiment.
  • the approach area Zc is an area between the first straight line SL1 and the second straight line SL2.
  • the first turning area Zd is an area between the first arc CA1 and the second arc CA2.
  • the first straight line SL1 is greater than 0 m and 65 m or less.
  • the first straight line SL1 may be 1 m or more.
  • the first straight line SL1 may be 2 m or more.
  • the first straight line SL1 may be 5 m or more.
  • the first straight line SL1 may be 10 m or more.
  • the first straight line SL1 may be 15 m or more.
  • the first straight line SL1 may be 20 m or more.
  • the first straight line SL1 may be 25 m or more.
  • the first straight line SL1 may be 30 m or more.
  • the first straight line SL1 may be 35 m or more.
  • the first straight line SL1 may be 40 m or more.
  • the first straight line SL1 may be 45 m or more.
  • the first straight line SL1 may be 55 m or less.
  • the first straight line SL1 may be 50 m or less.
  • the first straight line SL1 may be 45 m or less.
  • the first straight line SL1 may be 40 m or less.
  • the first straight line SL1 may be 35 m or less.
  • the first straight line SL1 may be 30 m or less.
  • the first straight line SL1 may be 25 m or less.
  • the first straight line SL1 may be 20 m or less.
  • the first straight line SL1 may be 15 m or less.
  • the first straight line SL1 may be 10 m or less.
  • the first straight line SL1 may be 5 m or less.
  • the first straight line SL1 may be 2 m or less.
  • the first straight line SL1 may be 1 m or less.
  • the central angle of the first arc CA1 is 180 °.
  • the central angle of the first arc CA1 is not limited to this angle and may be 90 ° or more and 270 ° or less.
  • the central angle of the first arc CA1 may be a value near 180 °.
  • the central angle of the first arc CA1 may be 90 ° or its vicinity.
  • the central angle of the first arc CA1 may be 270 ° or its vicinity.
  • the central angle of the first arc CA1 may be smaller than 180 °.
  • the central angle of the first arc CA1 may be larger than 180 °.
  • the radius of the first arc CA1 is 2 m or more and 10 m or less.
  • the radius of the first arc CA1 may be 3 m or more.
  • the radius of the first arc CA1 may be 4 m or more.
  • the radius of the first arc CA1 may be 5 m or more.
  • the radius of the first arc CA1 may be 6 m or more.
  • the radius of the first arc CA1 may be 7 m or more.
  • the radius of the first arc CA1 may be 8 m or more.
  • the radius of the first arc CA1 may be 9 m or more.
  • the radius of the first arc CA1 may be 9 m or less.
  • the radius of the first arc CA1 may be 8 m or less.
  • the radius of the first arc CA1 may be 7 m or less.
  • the radius of the first arc CA1 may be 6 m or less.
  • the radius of the first arc CA1 may be 5 m or less.
  • the radius of the first arc CA1 may be 4 m or less.
  • the radius of the first arc CA1 may be 3 m or less.
  • the acceleration in the vehicle left-right direction of the straddle-type vehicle during turning is about 0.1 G to 0.8 G.
  • the lateral acceleration of the saddle riding type vehicle during turning is preferably about 0.3G to 0.6G.
  • the radius of the first arc CA1 is 2 m or more and less than 3 m
  • the radius of the second arc CA2 is 4 m or more and less than 5 m
  • the turning radius of the motorcycle 110 traveling in the first turning region Zd is 3 m or more and less than 5 m. Is. From the graph of FIG.
  • the vehicle front direction of the saddle riding type vehicle during turning is about 8 to 20 km / h.
  • This speed is a value on the assumption that the speed in the vehicle front direction of the saddle riding type vehicle during one turning operation is constant.
  • the difference between the speed in the vehicle front direction during turning and the maximum value in the vehicle front direction during straight traveling is 20 km / h. It is preferable that the acceleration in the vehicle front direction while traveling straight ahead is about ⁇ 0.2 to ⁇ 0.5 G.
  • the minimum value of the speed in the vehicle front direction when traveling straight in the approach area Zc is v MIN and the maximum value is v MAX
  • the acceleration in the vehicle front direction when traveling straight is ⁇ a ′
  • the length L needs to be about 11 m.
  • the speed difference between the straight traveling and the turning is 20 km / h and the acceleration during the straight traveling is ⁇ 0.2 G.
  • the length L needs to be about 48 m. Therefore, when the radius of the first arc CA1 is 2 m or more and less than 3 m, the length of the first straight line SL1 is preferably 11 to 48 m.
  • the turning radius of the motorcycle 110 traveling in the first turning region Zd is 3 m or more and less than 6 m. From the graph of FIG. 9, when the turning radius is 3 m or more and less than 6 m and the acceleration in the vehicle left-right direction of the saddle riding type vehicle during turning is 0.3 G to 0.6 G, the vehicle front direction of the saddle riding type vehicle during turning The speed is about 10 to 22 km / h.
  • the length L of the first straight line SL1 is L. Requires about 12 m.
  • the speed in the front direction of the vehicle during turning is about 22 km / h
  • the difference in speed between straight traveling and turning is 20 km / h
  • the acceleration during straight traveling is ⁇ 0.2 G. Requires about 51 m. Therefore, when the radius of the first arc CA1 is 3 m or more and less than 4 m, the length of the first straight line SL1 is preferably 12 to 51 m.
  • the length of the first straight line SL1 is preferably 13 to 54 m.
  • the length of the first straight line SL1 is preferably 14 to 56 m.
  • the length of the first straight line SL1 is preferably 15 to 59 m.
  • the length of the first straight line SL1 is preferably 16 to 60 m.
  • the length of the first straight line SL1 is preferably 16 to 62 m.
  • the length of the first straight line SL1 is preferably 17 to 65 m. From the above, when the radius of the first arc CA1 is 2 m or more and less than 10 m, the length of the first straight line SL1 is preferably 11 m to 65 m.
  • the second straight line area Ze is parallel to the approach area Zc.
  • the second straight line area Ze does not have to be parallel to the approach area Zc.
  • the length of the second linear region Ze is the same as the length of the approach region Zc.
  • the length of the second straight line area Ze may be different from the length of the approach area Zc.
  • the radius of the inner peripheral edge of the second turning region Zf is the same as the radius of the inner peripheral edge (first arc) of the first turning region Zd.
  • the radius of the inner peripheral edge of the second turning region Zf may not be the same as the radius of the inner peripheral edge (first arc CA1) of the first turning region Zd.
  • a plurality of guide portions 7 are arranged in at least one of the inside and outside of the annular area Za.
  • the plurality of guide portions 7 are provided to guide the traveling direction of the motorcycle 110 so that the motorcycle 110 travels in the annular region Za.
  • the guide part 7 is provided on the ground.
  • the guide unit 7 may be configured such that the motorcycle 110 can travel on the guide unit 7.
  • the guide unit 7 may be a mark or the like displayed on the ground.
  • the guide portion 7 guides the traveling direction of the motorcycle 110, but does not limit the traveling direction.
  • the guide unit 7 may be configured to limit the traveling direction of the motorcycle 110.
  • the guide portion 7 may project from the ground.
  • the guide unit 7 may be installed on the ground so that the installation location can be freely changed.
  • the guide part 7 may be fixed to the ground.
  • a load cone pylon
  • the load cone may be a conical load cone, and may be a load cone having a shape other than a conical shape such as a hemispherical shape.
  • the load cone may be a load cone having a height of about 45 to 70 cm, or a small load cone having a height of about 5 cm.
  • the plurality of guide portions 7 include a plurality of approach turning guide portions 7b for guiding the traveling direction of the motorcycle 110 so that the motorcycle 110 travels in the approach turning area Zb.
  • the plurality of approach turning guide portions 7b are provided in at least one of the inside and outside of the approach turning area Zb.
  • the outside of the approach turning area Zb herein means outside the approach turning area Zb and outside the annular area Za.
  • the plurality of approach turning guide parts 7b include two approach guide parts 7c for guiding the traveling direction of the motorcycle 110 so that the motorcycle 110 travels in the approach region Zc.
  • the plurality of approach turning guide parts 7b include a plurality of turning guide parts 7d for guiding the traveling direction of the motorcycle 110 so that the motorcycle 110 travels in the first turning region Zd. In FIG. 10, the number of turning guide portions 7d is five.
  • the two approach guide parts 7c are arranged in the approximate center of the approach area Zc.
  • the straight line passing through the two approach guide portions 7c is substantially orthogonal to the first straight line SL1.
  • the motorcycle 110 passes between the two approach guide portions 7c.
  • one of the two approach guide portions 7c, which is closer to the first straight line SL1 is located outside the approach area Zc.
  • the approach guide portion 7c closer to the first straight line SL1 may be arranged on the first straight line SL1 or may be arranged in the approach area Zc.
  • the approach guide portion 7c, which is closer to the second straight line SL2, of the two approach guide portions 7c is arranged in the approach area Zc.
  • the approach guide portion 7c that is closer to the second straight line SL2 may be arranged on the second straight line SL2 or may be arranged outside the approach region Zc.
  • the shortest distance between the two approach guide portions 7c and the first straight line SL1 may be shorter than the shortest distance between the two approach guide portions 7c and the second straight line SL2.
  • the plurality of turning guide portions 7d are arranged along the first arc CA1.
  • the motorcycle 110 passes between the turning guide portion 7d and the second arc CA2.
  • the plurality of turning guide portions 7d are arranged on the first arc CA1.
  • the turning guide portion 7d may be arranged radially inside the first arc CA1, or may be arranged radially outside the first arc CA1.
  • the guide portion 7 of the second linear area Ze is provided similarly to the approach guide portion 7c of the approach area Zc.
  • the guide portion 7 of the second turning area Zf is provided similarly to the turning guide portion 7d of the first turning area Zd.
  • the first annular locus Ta1 is a traveling locus of the motorcycle 110 when the motorcycle 110 continuously travels in the annular region Za including the approach turning region Zb for at least one revolution.
  • the first annular locus Ta1 includes a first approach turning locus Tb1 which is a running locus when the motorcycle 110 travels in the approach turning region Zb.
  • the first approach turning locus Tb1 is a running locus of the motorcycle 110 when running continuously over the entire approach turning area Zb so as to enter the first turning area Zd from the approach area Zc.
  • the first approach turning trajectory Tb1 is a traveling trajectory of the motorcycle 110 when traveling along the first straight line SL1 and the first arc CA1.
  • the first annular locus Ta1 is connected to the rear end of the first approach turning locus Tb1 and includes a traveling locus during turning having the same turning direction as the first approach turning locus Tb1.
  • the traveling locus is a traveling locus when traveling in the second turning region Zf.
  • the first approach turning locus Tb1 is the running locus of the motorcycle 110 when traveling in the approach area Zc
  • the first approach locus Tc1 is the running trajectory of the motorcycle 110 when traveling in the first turning area Zd.
  • One turning locus Td1 is included.
  • the first approach trajectory Tc1 is a traveling trajectory when traveling in the approach area Zc while passing between the two approach guide portions 7c.
  • the first turning locus Td1 is a running locus when the motorcycle 110 travels in the first turning region Zd while passing between the turning guide portion 7d and the second arc CA2.
  • the first annular locus Ta1 includes a traveling locus when the motorcycle 110 turns in the second turning region Zf.
  • the traveling locus when the motorcycle 110 turns in the second turning region Zf is connected to the rear end of the first approach turning locus Tb1.
  • the traveling locus when the motorcycle 110 turns in the second turning region Zf has the same turning direction as the first approach turning locus Tb1.
  • the processor 102 includes a saddle-ride type vehicle travel data acquisition process S11, a rider identification data acquisition process S12, a saddle-ride type vehicle travel composite data generation process S13, and a saddle-ride type vehicle travel composite data storage.
  • the processing S14 and the saddle riding type vehicle traveling composite data output processing S15 are executed.
  • the processor 102 acquires the first approach turning trajectory data DTb1.
  • the first approach turning locus data DTb1 is data related to the first approach turning locus Tb1.
  • the traveling locus data BT described above includes the first approach turning locus data DTb1.
  • the processor 102 extracts the first approach turning trajectory data DTb1 from the traveling trajectory data BT. Therefore, the first approach turning trajectory data DTb1 is data generated using GNSS.
  • the processor 102 may extract the first approach turning trajectory data DTb1 from the traveling trajectory data BT based on the shape of the traveling trajectory shown in the traveling trajectory data BT.
  • the processor 102 may acquire the first ring-shaped trajectory data DTa1.
  • the first ring-shaped trajectory data DTa1 is data related to the first ring-shaped trajectory Ta1.
  • the processor 102 extracts the first circular trajectory data DTa1 from the traveling trajectory data BT.
  • the first circular trajectory data DTa1 includes first approach turning trajectory data DTb1.
  • the processor 102 acquires the first approach turning front direction acceleration data DAb1.
  • the first approach turning front direction acceleration data DAb1 is data relating to the vehicle front direction acceleration of the motorcycle 110 when traveling on the first approach turning locus Tb1.
  • the above-mentioned forward acceleration data BA includes the first approach turning forward acceleration data DAb1.
  • the processor 102 extracts the first approach turning front direction acceleration data DAb1 from the front direction acceleration data BA.
  • the forward acceleration data BA is acquired from the GNSS receiving unit 90
  • the first approach turning forward acceleration data DAb1 is data generated using GNSS.
  • the first approach turning front direction acceleration data DAb1 is data indicating accelerations at a plurality of timings during traveling on the first approach turning trajectory Tb1.
  • the plurality of timings may be consecutive.
  • the first approach turning forward acceleration data DAb1 is the first approach turning trajectory data DTb1. May be extracted based on.
  • the traveling locus data BT includes date and time data of each position on the locus.
  • the forward acceleration data BA also includes the date and time when the acceleration was detected.
  • the first approach turning forward acceleration data DAb1 may be extracted by using the date and time data included in the first approach turning trajectory data DTb1 and the date and time data included in the forward acceleration data BA.
  • the processor 102 may acquire the first annular forward acceleration data DAa1.
  • the first annular forward acceleration data DAa1 is data relating to the vehicle forward acceleration of the motorcycle 110 when traveling on the first annular locus Ta1.
  • the processor 102 extracts the first annular forward acceleration data DAa1 from the lateral acceleration data BL.
  • the first annular forward acceleration data DAa1 includes first approach forward turning acceleration data DAb1.
  • the processor 102 may acquire the first approach turning left / right direction acceleration data DLb1.
  • the first approach turning left-right acceleration data DLb1 is data relating to the vehicle left-right acceleration of the motorcycle 110 when traveling on the first approach turning trajectory Tb1.
  • the left-right acceleration data BL includes the first approach turning left-right acceleration data DLb1.
  • the processor 102 extracts the first approach turning left / right acceleration data DLb1 from the left / right acceleration data BL. Therefore, the first approach turn left / right acceleration data DLb1 is data generated using GNSS.
  • the first approach turning left / right acceleration data DLb1 is data indicating accelerations at a plurality of timings during traveling on the first approach turning trajectory Tb1.
  • the plurality of timings may be consecutive.
  • the first approach turning lateral acceleration data DLb1 may be extracted based on the first approach turning trajectory data DTb1.
  • the lateral acceleration data BL includes data of the date and time when the acceleration was detected.
  • the first approach turning left / right acceleration data DLb1 may be extracted by using the date / time data included in the first approach turning trajectory data DTb1 and the date / time data included in the left / right acceleration data BL.
  • the processor 102 may acquire the first annular left-right acceleration data DLa1.
  • the first annular left-right acceleration data DLa1 is data relating to the vehicle left-right acceleration of the motorcycle 110 when traveling on the first annular locus Ta1.
  • the processor 102 extracts the first annular lateral acceleration data DLa1 from the lateral acceleration data BL.
  • the first annular lateral acceleration data DLa1 includes first approach turning lateral acceleration data DLb1.
  • the processor 102 may acquire the first turning vehicle attitude data D1V1.
  • the first turning vehicle attitude data D1V1 is data relating to the attitude of the motorcycle 110 when traveling on the first turning trajectory Td1.
  • the vehicle attitude data B1V described above includes the first turning vehicle attitude data D1V1.
  • the processor 102 extracts the first turning vehicle attitude data D1V1 from the vehicle attitude data B1V. Therefore, the first turning vehicle attitude data D1V1 indicates the roll angle, the pitch angle, the yaw angle of the motorcycle 110 running on the first turning trajectory Td1, the steering angle of the front wheels 11 (steering wheels), and the position of the motorcycle 110.
  • the first turning vehicle attitude data D1V1 may be data indicating the attitude of the vehicle 110 at a plurality of timings when traveling on the first turning trajectory Td1, and the vehicle at only one timing when traveling on the first turning trajectory Td1. It may be data indicating the posture of 110. The plurality of timings may be consecutive.
  • the vehicle attitude data B1V includes data on the date and time when a sensor or the like detects the data that is the basis of the vehicle attitude data B1V.
  • the first turning vehicle attitude data D1V1 may be extracted by using the date and time data included in the first approach turning trajectory data DTb1 and the date and time data included in the vehicle attitude data B1V.
  • the processor 102 may acquire the first turning rider posture data D1R1.
  • the first turning rider posture data D1R1 is data relating to the posture of the rider R riding on the motorcycle 110 when traveling on the first turning locus Td1.
  • the rider attitude data B1R described above includes the first turning rider attitude data D1R1.
  • the processor 102 extracts the first turning rider posture data D1R1 from the rider posture data B1R. Therefore, the first turning rider posture data D1R1 includes at least one of the head direction, shoulder position, leg position, hip position, and crotch position of the rider R traveling on the first turning trajectory Td1. Is data related to.
  • the first turning rider posture data D1R1 may be data indicating the postures of the rider R at a plurality of timings during traveling on the first turning trajectory Td1, and the rider at only one timing during traveling on the first turning trajectory Td1. It may be data indicating the posture of R.
  • the rider posture data B1R includes data of the date and time when the camera of the image pickup device 91 took a picture. As described above, the traveling locus data BT and the vehicle attitude data B1V include date and time data.
  • the first turning rider posture data D1R1 may be extracted by using the date and time data included in the first approach turning trajectory data DTb1 and the date and time data included in the rider posture data B1R.
  • the first turning rider attitude data D1R1 at the same timing as the first turning vehicle attitude data D1V1 is obtained. It may be extracted.
  • the processor 102 acquires the first rider identification data DI1.
  • the first rider identification data DI1 is data for identifying the rider R who gets on the motorcycle 110 when traveling on the first approach turning trajectory Tb1.
  • the first rider identification data DI1 is the same as the current rider identification data BI stored in the storage unit 103.
  • the processor 102 In the saddle riding type vehicle traveling composite data generation process S13, the processor 102 generates the first straddling type vehicle traveling composite data D1c1 based on the first approach turning trajectory data DTb1 and the first approach turning front direction acceleration data DAb1. To generate.
  • the first straddle-type vehicle traveling composite data D1c1 is generated in association with the first approach turning trajectory Tb1 and the acceleration in the vehicle front direction of the motorcycle 110 when traveling on the first approach turning trajectory Tb1.
  • the processor 102 based on the first approach turning trajectory data DTb1, the first approach turning front direction acceleration data DAb1, and the first approach turning left / right direction acceleration data DLb1.
  • the first saddle riding type vehicle traveling composite data D1c1 may be generated.
  • the first straddle-type vehicle traveling composite data D1c1 includes the first approach turning locus Tb1, the acceleration in the vehicle front direction of the motorcycle 110 when traveling on the first approach turning locus Tb1, and the first approach turning locus. It is generated in association with the acceleration in the vehicle left-right direction of the motorcycle 110 when traveling on Tb1.
  • the processor 102 performs the first approach turning trajectory data DTb1, the first approach turning front direction acceleration data DAb1 and the first turning vehicle attitude data D1V1 based on the first approach turning trajectory data DTb1.
  • the saddle riding type vehicle traveling composite data D1c1 may be generated.
  • the first straddle-type vehicle traveling composite data D1c1 includes the first approach turning locus Tb1, the acceleration in the vehicle front direction of the motorcycle 110 when traveling on the first approach turning locus Tb1, and the first turning locus Td1. It is generated by associating the posture of the motorcycle 110 when the vehicle travels.
  • the processor 102 performs the first approach turning trajectory data DTb1, the first approach turning front direction acceleration data DAb1, and the first turning rider posture data D1R1 based on the first approach turning trajectory data DTb1.
  • the saddle riding type vehicle traveling composite data D1c1 may be generated.
  • the first straddle-type vehicle traveling composite data D1c1 includes the first approach turning locus Tb1, the acceleration in the vehicle front direction of the motorcycle 110 when traveling on the first approach turning locus Tb1, and the first turning locus Td1. It is generated by associating the posture of the rider R who gets on the motorcycle 110 when traveling on the vehicle.
  • the first saddle riding type vehicle traveling composite data D1c1 includes the first approach turning trajectory data DTb1, the first approach turning front direction acceleration data DAb1, the first approach turning left and right direction acceleration data DLb1, and the first turning vehicle attitude data D1V1. May be generated based on The first straddle-type vehicle traveling composite data D1c1 includes first approach turning trajectory data DTb1, first approach turning front direction acceleration data DAb1, first approach turning left / right acceleration data DLb1, and first turning rider attitude data D1R1. May be generated based on The first saddle riding type vehicle traveling composite data D1c1 includes the first approach turning trajectory data DTb1, the first approach turning front direction acceleration data DAb1, the first approach turning left and right direction acceleration data DLb1, and the first turning vehicle attitude data D1V1. And the first turning rider posture data D1R1.
  • the first annular trajectory data DTa1 As the data that is the basis of the first straddle type vehicle traveling composite data D1c1, instead of the first approach turning trajectory data DTb1, the first annular trajectory data DTa1. May be used.
  • the first annular forward acceleration data BA may be used instead of the first approach turning frontward acceleration data DAb1.
  • the lateral acceleration data BL when traveling on the circular trajectory Ta1 may be used instead of the first approach turning lateral acceleration data DLb1.
  • the first saddle riding type vehicle traveling composite data D1c1 may be generated based on the first annular track data DTa1 and the first annular forward acceleration data DAa1.
  • the first straddle-type vehicle traveling composite data D1c1 is generated in association with the first annular locus Ta1 and the acceleration in the vehicle front direction of the motorcycle 110 when traveling on the first annular locus Ta1.
  • the first saddle riding type vehicle traveling composite data D1c1 may be generated based on the first rider identification data DI1 in addition to the data of any combination described above. In this case, the first saddle riding type vehicle traveling composite data D1c1 is generated in association with the rider R who gets on the motorcycle 110 during the first turning motion.
  • the first straddle-type vehicle travel composite data D1c1 generated in the saddle-ride type vehicle travel composite data generation processing S13 is not data that directly includes the data that is the basis of the first saddle-ride type vehicle travel composite data D1c1.
  • the first saddle riding type vehicle traveling composite data D1c1 may be, for example, one of a plurality of evaluation values.
  • the evaluation value is, for example, a dimensionless number.
  • the processor 102 stores the first saddle riding type vehicle traveling composite data D1c1 generated by the saddle riding type vehicle traveling composite data generation processing S13 in the storage unit 103.
  • the processor 102 outputs the first saddle riding type vehicle traveling composite data D1c1 stored in the storage unit 103 as an output target.
  • the output target is at least one of the engine control processor 61 and the brake control processor 62.
  • the output target may include the touch panel 28 (display device).
  • the engine control processor 61 executes the following control.
  • the engine control processor 61 determines whether the first rider identification data DI1 included in the acquired first saddle riding type vehicle traveling composite data D1c1 and the current rider identification data BI stored in the storage unit 103 match.
  • the engine control process (fuel control process and ignition timing control process) may be performed based on the single-saddle type vehicle traveling composite data D1c1.
  • the engine control processor 61 controls the fuel pump 46 and the injector 44 based on the signals from the sensors 71 to 75, 81 to 88 and the first straddle type vehicle traveling composite data D1c1.
  • the fuel injection amount may be changed according to the evaluation value indicated by the first saddle riding type vehicle traveling composite data D1c1.
  • the engine control processor 61 controls energization to the ignition coil 37 based on signals from the sensors 71 to 75, 81 to 88 and the like and the first saddle riding type vehicle traveling composite data D1c1.
  • the ignition timing may be changed according to the evaluation value indicated by the first saddle riding type vehicle traveling composite data D1c1.
  • the brake control processor 62 executes the following control.
  • the brake control processor 62 determines whether the first rider identification data DI1 included in the acquired first saddle riding type vehicle traveling composite data D1c1 and the current rider identification data BI stored in the storage unit 103 match.
  • the front brake drive device 26 and the rear brake drive device 25 may be controlled based on the single-saddle type vehicle traveling composite data D1c1. For example, even if the operation state of the brake lever is the same, the control of the braking force applied to the front wheels 11 may be changed according to the evaluation value indicated by the first saddle riding type vehicle traveling composite data D1c1. Further, for example, even when the operation state of the brake pedal 23 is the same, the control of the braking force applied to the rear wheels 12 is changed according to the evaluation value indicated by the first saddle riding type vehicle traveling composite data D1c1. Good.
  • a series of processing shown in FIG. 11 is executed every time the motorcycle 110 travels in the approach turning area Zb.
  • One of the traveling loci when the motorcycle 110 travels in the approach turning area Zb and different from the first approach turning locus Tb1 is referred to as a second approach turning locus Tb2.
  • the second approach turning locus Tb2 is also a running locus when traveling continuously over the entire approach turning area Zb so as to enter the first turning area Zd from the approach area Zc.
  • a traveling locus of the motorcycle 110 when traveling continuously in the annular region Za for at least one round and including the second approach turning locus Tb2 is referred to as a second annular locus Ta2.
  • the saddle riding type vehicle travel data acquisition processing S11 at least the second approach turning trajectory data DTb2 and the second approach turning front direction acceleration data DAb2 are acquired.
  • the saddle riding type vehicle traveling data acquisition processing S11 at least one of the second approach turning left / right direction acceleration data DLb2, the second turning vehicle attitude data D1V2, and the second turning rider attitude data D1R2 may be acquired.
  • the second annular trajectory data DTa2 related to the second annular trajectory Ta2 may be acquired.
  • the forward acceleration data BA when traveling on the second annular trajectory Ta2 may be acquired.
  • the lateral acceleration data BL when traveling on the second annular trajectory Ta2 may be acquired.
  • the processor 102 acquires the second rider identification data DI2 that identifies the rider R riding on the motorcycle 110 when traveling on the second approach turning trajectory Tb2.
  • the processor 102 In the saddle riding type vehicle traveling composite data generation process S13, the processor 102 generates the second straddling type vehicle traveling composite data D1c2 based on the second approach turning trajectory data DTb2 and the second approach turning front direction acceleration data DAb2. To generate.
  • the second saddle riding type vehicle traveling composite data D1c2 may be generated based on the second approach turning trajectory data DTb2, the second approach turning front direction acceleration data DAb2, and the second approach turning left and right direction acceleration data DLb2. ..
  • the second straddle type vehicle traveling composite data D1c2 may be generated based on the second approach turning trajectory data DTb2, the second approach turning front direction acceleration data DAb2, and the second turning vehicle attitude data D1V2.
  • the second saddle riding type vehicle traveling composite data D1c2 may be generated based on the second approach turning trajectory data DTb2, the second approach turning front direction acceleration data DAb2 and the second turning rider attitude data D1R2.
  • the second saddle riding type vehicle traveling composite data D1c2 includes the second approach turning trajectory data DTb2, the second approach turning front direction acceleration data DAb2, the second approach turning left and right direction acceleration data DLb2, and the second turning vehicle attitude data D1V2. May be generated based on
  • the second saddle riding type vehicle traveling composite data D1c2 includes the second approach turning trajectory data DTb2, the second approach turning front direction acceleration data DAb2, the second approach turning left and right direction acceleration data DLb2, and the second turning rider attitude data D1R2.
  • the second saddle riding type vehicle traveling composite data D1c2 includes the second approach turning trajectory data DTb2, the second approach turning front direction acceleration data DAb2, the second approach turning left and right direction acceleration data DLb2, and the second turning vehicle attitude data D1V2. And the second turning rider posture data D1R2.
  • the second annular trajectory data DTa2 may be used.
  • the forward acceleration data BA when traveling on the second annular trajectory Ta2 may be used instead of the second approach turning frontward acceleration data DAb2.
  • the lateral acceleration data BL when traveling on the second annular trajectory Ta2 may be used instead of the second approach turning left / right acceleration data DLb2.
  • the second saddle riding type vehicle traveling composite data D1c2 is generated based on the second rider identification data DI2 in addition to the data of any combination described above.
  • the second saddle riding type vehicle traveling composite data D1c2 generated by the saddle riding type vehicle traveling composite data generation processing S13 is stored in the storage unit 103.
  • the saddle riding type vehicle traveling composite data output process S15 the second saddle riding type vehicle traveling composite data D1c2 stored in the storage unit 103 is output to the output target.
  • a series of processing shown in FIG. 11 is executed for a plurality of traveling operations.
  • a plurality of saddle riding type vehicle traveling composite data D1c1, D1c2, D1c3, ... Is output to the output target.
  • the plurality of saddle riding type vehicle traveling composite data D1c1, D1c2, D1c3, ... are collectively referred to as saddle riding type vehicle traveling composite data D1c.
  • the plurality of saddle riding type vehicle traveling composite data D1c are stored in the storage unit 103.
  • the processor 102 performs the saddle-ride type vehicle traveling integrated data generation process S20 and the saddle-ride type vehicle traveling complex data output process S21 after the same processes S11 to S14 as in FIG.
  • the processor 102 In the saddle riding type vehicle traveling integrated data generation process S20, the processor 102 generates at least one saddle type vehicle traveling integrated data D1u.
  • the saddle-ride type vehicle traveling integrated data D1u is generated in association with the plurality of saddle-ride type vehicle traveling combined data D1c stored in the storage unit 103.
  • the number of the saddle riding type vehicle traveling composite data D1c used to generate one saddle riding type vehicle traveling integrated data D1u may be two or may be more than two.
  • one certain saddle riding type vehicle traveling integrated data D1u may be generated based on the first straddle type vehicle traveling composite data D1c1 and the second saddle riding type vehicle traveling composite data D1c2.
  • the saddle riding type vehicle travel integrated data D1u may be generated based on a plurality of saddle riding type vehicle travel composite data D1c generated based on the same rider identification data.
  • the saddle-ride type vehicle traveling integrated data D1u generated in this case is set as the same rider-saddle type vehicle traveling integrated data D1us.
  • the traveling integrated data D1us may be generated.
  • the saddle riding type vehicle traveling integrated data D1u may be generated based on a plurality of saddle riding type vehicle traveling compound data D1c generated based on different rider identification data DI.
  • the saddle-ride type vehicle traveling integrated data D1u generated in this case is defined as different rider-saddle-type vehicle traveling integrated data D1ud.
  • the different rider saddle type vehicle is determined based on the first saddle riding type vehicle traveling composite data D1c1 and the second saddle riding type vehicle traveling composite data D1c2.
  • the traveling integrated data D1ud may be generated.
  • the plurality of saddle riding type vehicle traveling integrated compound data D1u are the same rider saddle riding type vehicle traveling integrated. Only one of the composite data D1us and the different rider-saddle-type vehicle traveling integrated composite data D1ud may be included, or both may be included.
  • the saddle-ride type vehicle traveling integrated data D1u may or may not include a plurality of saddle-type vehicle traveling integrated data D1u.
  • the saddle-ride type vehicle traveling integrated data D1u may be data generated by a difference, comparison, combination or the like of the plurality of saddle-type vehicle traveling combined data D1c.
  • the saddle riding type vehicle traveling integrated data D1u may be, for example, a difference between the first saddle riding type vehicle traveling composite data D1c1 and the second saddle riding type vehicle traveling composite data D1c2.
  • the saddle riding type vehicle traveling integrated data D1u may be data indicating a representative (for example, an average) of the plurality of saddle riding type vehicle traveling composite data D1c.
  • the saddle riding type vehicle traveling integrated data D1u may be, for example, a representative value (for example, an average) of the first saddle riding type vehicle traveling composite data D1c1 and the second saddle riding type vehicle traveling composite data D1c2.
  • the first saddle riding type vehicle traveling integrated data D1u may be, for example, one of a plurality of evaluation values.
  • the processor 102 outputs the generated saddle riding type vehicle traveling integrated data D1u to an output target.
  • the output target is at least one of the engine control processor 61 and the brake control processor 62.
  • the output target may include the touch panel 28 (display device).
  • the engine control processor 61 and / or the brake control processor 62 performs engine control and / or brake control based on the acquired saddle riding type vehicle traveling integrated composite data D1u.
  • the output target of the saddle-ride type vehicle traveling integrated data D1u may be different from the output target of the saddle-ride type vehicle traveling composite data D1c.
  • the specific example 1 has the following effects in addition to the effects of the above-described embodiment of the present invention.
  • the first saddle riding type vehicle traveling composite data D1c1 is data in which the first annular locus Ta1 and the acceleration of the motorcycle 110 when traveling on the first annular locus Ta1 are associated with each other, the following effects are obtained.
  • the first annular locus Ta1 is an annular traveling locus including the first approach turning locus Tb1.
  • the first annular trajectory Ta1 has a traveling trajectory during at least two turns. Therefore, the first saddle riding type vehicle traveling composite data D1c1 associated with the first annular locus Ta1 is automatically compared with the first saddle riding type vehicle traveling composite data D1c1 acquired when the vehicle makes only one turn.
  • the accuracy (reliability) as data that reflects the traveling state of the motorcycle 110 is high.
  • the straddle-type vehicle traveling composite data D1c1 for vehicle control or the like. Since the first saddle riding type vehicle traveling composite data D1c1 is more easily utilized, the post-processing of the output first saddle riding type vehicle traveling composite data D1c1 is easier. Since the post-processing of the output first saddle riding type vehicle traveling composite data D1c1 is easier, the hardware resources of the output targets 61 and 62 to which the first saddle riding type vehicle traveling composite data D1c1 is output are further reduced. be able to. As described above, the straddle-type vehicle travel data processing apparatus 101 according to the first specific example can efficiently post-process the output data and further reduce hardware resources. Further, the straddle-type vehicle traveling data processing method according to the first specific example can make post-processing of output data more efficient and further reduce hardware resources.
  • the annular area Za (first annular area) includes an approach turning area Zb, a linear second linear area Ze, and an arcuate second turning area Zf. Therefore, the annular region Za has a simple shape without a recess. Although the shape is simple, the first annular locus Ta1 when traveling in the annular region Za has a traveling locus during two turns and a traveling locus before and after straight turning.
  • the traveling state of the motorcycle 110 is largely reflected in the traveling locus and the acceleration in the vehicle front direction when traveling in the annular region Za. Therefore, it becomes easy to utilize the first straddle-type vehicle traveling composite data D1c1 for vehicle control or the like. Since the first saddle riding type vehicle traveling composite data D1c1 is more easily utilized, the post-processing of the output first saddle riding type vehicle traveling composite data D1c1 is easier. Since the post-processing of the output first saddle riding type vehicle traveling composite data D1c1 is easier, the hardware resources of the output targets 61 and 62 to which the first saddle riding type vehicle traveling composite data D1c1 is output are further reduced. be able to.
  • the straddle-type vehicle travel data processing apparatus 101 can more efficiently post-process the output data and further reduce the hardware resources. Further, the straddle-type vehicle traveling data processing method according to the first specific example can make post-processing of output data more efficient and further reduce hardware resources.
  • the first straddle-type vehicle traveling composite data D1c1 includes the first approach turning locus Tb1, the acceleration in the vehicle front direction of the motorcycle 110 when the vehicle travels along the first approach turning locus Tb1, and the first approach turning locus Tb1.
  • the motorcycle 110 is a vehicle that makes a turn not only by changing the behavior of the vehicle but also by changing the posture of the rider R. Therefore, the acceleration in the vehicle left-right direction during turning and during straight ahead before turning is closely related to the traveling state of the motorcycle 110 determined by the rider R's intention.
  • the traveling locus of the motorcycle 110 during the turn and during the straight advance before the turn, the acceleration in the vehicle front direction, and the acceleration in the vehicle left-right direction are closely related. Therefore, the first straddle-type vehicle traveling composite data D1c1 largely reflects the traveling state of the motorcycle 110. Therefore, it becomes easier to utilize the first straddle-type vehicle traveling composite data D1c1. Since the first saddle riding type vehicle traveling composite data D1c1 is more easily utilized, the post-processing of the output first saddle riding type vehicle traveling composite data D1c1 is easier.
  • the straddle-type vehicle travel data processing apparatus 101 can efficiently post-process the output data and further reduce hardware resources. Further, the straddle-type vehicle traveling data processing method according to the first specific example can make post-processing of output data more efficient and further reduce hardware resources.
  • the first saddle riding type vehicle traveling composite data D1c1 is data associated with the rider R riding on the motorcycle 110 when traveling on the first approach turning locus Tb1, the following effects are obtained.
  • the running locus of the motorcycle 110 and the acceleration in the vehicle front direction during turning and during straight ahead before turning are closely related to the running state of the motorcycle 110 determined by the intention of the rider R. Even when traveling in the same approach turning area Zb, the traveling state of the motorcycle 110 differs for each rider R.
  • the first saddle riding type vehicle traveling composite data D1c1 reflects the traveling state of the unique motorcycle 110 of the rider R. Therefore, it becomes easy to utilize the output first straddle-type vehicle traveling composite data D1c1 for vehicle control and the like.
  • the straddle-type vehicle travel data processing apparatus 101 can more efficiently post-process the output data and further reduce the hardware resources. Further, the straddle-type vehicle traveling data processing method according to the first specific example can make post-processing of output data more efficient and further reduce hardware resources.
  • the storage unit 103 stores the first saddle riding type vehicle traveling composite data D1c1 and the second saddle riding type vehicle traveling composite data D1c2.
  • the second straddle type vehicle traveling composite data D1c2 is associated with the acceleration in the vehicle front direction of the motorcycle 110 when traveling on the second approach turning trajectory Tb2 and the second approach turning trajectory Tb2 different from the first approach turning trajectory Tb1. Data. Therefore, in the saddle riding type vehicle travel data processing device 101, it is possible to compare the first straddle type vehicle travel composite data D1c1 and the second saddle riding type vehicle travel composite data D1c2, obtain a difference, and combine them. That is, the degree of freedom in processing (utilization) of the first saddle riding type vehicle traveling composite data D1c1 in the saddle riding type vehicle traveling data processing device 101 is increased.
  • the saddle riding type vehicle traveling integrated data D1u is data in which the first saddle riding type vehicle traveling composite data D1c1 and the second saddle riding type vehicle traveling composite data D1c2 are associated with each other. Therefore, the saddle-ride type vehicle traveling integrated data D1u is easily used for controlling the vehicle in the output targets 61 and 62. Since it is easy to utilize the saddle-ride type vehicle traveling integrated data D1u, post-processing of the output saddle-type vehicle traveling integrated data D1u is easy.
  • the straddle-type vehicle travel data processing apparatus 101 can make post-processing of output data efficient and reduce hardware resources. Further, the straddle-type vehicle travel data processing method according to the first specific example can efficiently post-process the output data and reduce hardware resources.
  • the same rider-saddle-type vehicle traveling integrated data D1us is output to the output targets 61 and 62, the following effects are obtained.
  • the running locus of the motorcycle 110 and the acceleration in the vehicle front direction during turning and during straight ahead before turning are closely related to the running state of the motorcycle 110 determined by the intention of the rider R. Even when traveling in the same approach turning area Zb, the traveling state of the motorcycle 110 differs for each rider R. Therefore, in the output targets 61 and 62, for example, the difference between two saddle riding type vehicle running composite data of the same rider R can be used based on the same rider saddle riding type vehicle running integrated data D1us.
  • the same rider saddle riding type vehicle traveling integrated data D1us can be utilized by reflecting the characteristics of each rider R.
  • the same rider saddle riding type vehicle traveling integrated composite data D1us output to the output targets 61 and 62 has a high degree of freedom of utilization and is easy to utilize. Since it is easy to use the same rider-saddle-type vehicle traveling integrated data D1us, post-processing of the output same-rider-saddle type vehicle traveling integrated data D1us is easy. Since the post-processing of the outputted same rider-saddle type vehicle traveling integrated compound data D1us is easy, the hardware resources of the output targets 61 and 62 to which the same rider-saddle type vehicle traveling integrated compound data D1us is outputted are reduced. be able to.
  • the straddle-type vehicle travel data processing apparatus 101 can make post-processing of output data efficient and reduce hardware resources. Further, the straddle-type vehicle travel data processing method according to the first specific example can efficiently post-process the output data and reduce hardware resources.
  • the different rider-saddle-type vehicle traveling integrated data D1ud is output to the output targets 61 and 62, the following effects are obtained.
  • the running locus of the motorcycle 110 and the acceleration in the vehicle front direction during turning and during straight ahead before turning are closely related to the running state of the motorcycle 110 determined by the intention of the rider R. Even when traveling in the same approach turning area Zb, the traveling state of the motorcycle 110 differs for each rider R. Therefore, in the output targets 61 and 62, for example, the difference between the two saddle riding type vehicle traveling composite data of different riders R can be used based on the different rider saddle riding type vehicle traveling integrated data D1ud.
  • the difference rider saddle type vehicle traveling integrated data D1udd can be utilized by reflecting the difference of the rider R.
  • the different rider-saddle-type vehicle traveling integrated data D1ud output to the output targets 61 and 62 has a high degree of freedom of utilization and is easy to utilize. Since it is easy to utilize the different rider-saddle type vehicle traveling integrated data D1ud, the post-processing of the output different rider-saddle type vehicle traveling integrated data D1ud is easy. Since the post-processing of the outputted different rider-saddle type vehicle traveling integrated compound data D1ud is easy, the hardware resources of the output targets 61, 62 to which the different rider-saddle type vehicle traveling integrated compound data D1ud are outputted are reduced. be able to.
  • the straddle-type vehicle travel data processing apparatus 101 can make post-processing of output data efficient and reduce hardware resources. Further, the straddle-type vehicle travel data processing method according to the first specific example can efficiently post-process the output data and reduce hardware resources.
  • the saddle riding type vehicle traveling integrated data D1u which is the difference between the first saddle riding type vehicle traveling composite data D1c1 and the second saddle riding type vehicle traveling composite data D1u
  • the following effects Is obtained.
  • the difference between the first saddle riding type vehicle traveling composite data D1c1 and the second saddle riding type vehicle traveling composite data D1c2 is easily utilized for vehicle control and the like. Since it is easy to utilize the saddle-ride type vehicle traveling integrated data D1u, post-processing of the output saddle-type vehicle traveling integrated data D1u is easy.
  • the straddle-type vehicle travel data processing apparatus 101 can make post-processing of output data efficient and reduce hardware resources. Further, the straddle-type vehicle travel data processing method according to the first specific example can efficiently post-process the output data and reduce hardware resources.
  • At least one of the first approach turning trajectory data DTb1 and the first approach turning front direction acceleration data DAb1 is data generated using GNSS.
  • the first approach turning trajectory data DTb1 generated by using GNSS indicates the first approach turning trajectory Tb1 with high accuracy.
  • the first approach turning front acceleration data DAb1 generated using the GNSS indicates with high accuracy the vehicle front acceleration of the motorcycle 110 when traveling on the first approach turning trajectory Tb1. Therefore, it becomes easier to utilize the first straddle-type vehicle traveling composite data D1c1. Since the first saddle riding type vehicle traveling composite data D1c1 is more easily utilized, the post-processing of the output first saddle riding type vehicle traveling composite data D1c1 is easier.
  • the straddle-type vehicle travel data processing apparatus 101 can more efficiently post-process the output data and further reduce the hardware resources. Further, the straddle-type vehicle traveling data processing method according to the first specific example can make post-processing of output data more efficient and further reduce hardware resources.
  • the first straddle-type vehicle traveling composite data D1c1 includes the first approach turning locus Tb1, the acceleration in the vehicle front direction of the motorcycle 110 when the vehicle travels along the first approach turning locus Tb1, and the first approach turning locus Tb1.
  • the following effects can be obtained when the data of the attitude of the motorcycle 110 when the data is associated with the attitude of the rider R who rides on the motorcycle 110 when traveling on the first approach turning trajectory Tb1.
  • the motorcycle 110 is a vehicle that makes a turn not only by changing the behavior of the vehicle but also by changing the posture of the rider R. Therefore, the posture of the rider R and the behavior of the vehicle during and before the turn are closely related to the traveling state of the motorcycle 110 determined by the intention of the rider R.
  • the first straddle-type vehicle traveling composite data D1c1 largely reflects the traveling state of the motorcycle 110. Therefore, it becomes easy to utilize the first straddle-type vehicle traveling composite data D1c1. Since it becomes easy to utilize the first saddle riding type vehicle traveling composite data D1c1, the post-processing of the output first saddle riding type vehicle traveling composite data D1c1 is easy. Since the post-processing of the output first straddle-type vehicle travel composite data D1c1 is easy, it is possible to reduce the hardware resources of the output targets 61 and 62 to which the first saddle-ride type vehicle travel composite data D1c1 is output. it can.
  • the straddle-type vehicle travel data processing apparatus 101 can efficiently post-process the output data and further reduce hardware resources. Further, the straddle-type vehicle travel data processing method according to the first specific example can efficiently post-process the output data and reduce hardware resources.
  • the first approach turning locus Tb1 is a running locus obtained by running in an environment in which at least one approach turning guide portion 7b is provided.
  • the approach direction of the motorcycle 110 is guided by the approach turning guide portion 7b so as to travel within the approach turning region Zb. It is easy to set the approach turning area Zb to a desired size, shape, and position by the approach turning guide portion 7b. Accordingly, it is possible to reduce the variation in the traveling state of the motorcycle 110 due to the variation in the approach turning area Zb. Therefore, it becomes easy to utilize the first straddle-type vehicle traveling composite data D1c1 for vehicle control or the like.
  • the straddle-type vehicle travel data processing apparatus 101 can more efficiently post-process the output data and further reduce the hardware resources. Further, the straddle-type vehicle traveling data processing method according to the first specific example can make post-processing of output data more efficient and further reduce hardware resources.
  • the first approach trajectory Tc1 of the first approach turning trajectory Tb1 is a traveling trajectory when traveling in the approach area Zc while passing between the two approach guide portions 7c.
  • the two approach guide portions 7c it is easy to set the approach area Zc to a desired length and position. Therefore, it is possible to reduce the variation in the traveling state of the motorcycle 110 due to the variation in the approach area Zc. Therefore, it becomes easy to utilize the first straddle-type vehicle traveling composite data D1c1 by controlling the vehicle or the like. Since the first saddle riding type vehicle traveling composite data D1c1 is more easily utilized, the post-processing of the output first saddle riding type vehicle traveling composite data D1c1 is easier.
  • the straddle-type vehicle travel data processing apparatus 101 can further improve the efficiency of post-processing of output data and further reduce hardware resources. Further, the straddle-type vehicle traveling data processing method according to the first specific example can make post-processing of output data more efficient and further reduce hardware resources.
  • the first turning locus Td1 of the first approach turning locus Tb1 is a running locus when traveling in the first turning region Zd while passing between the turning guide portion 7d and the second arc CA2.
  • the turning guide portion 7d makes it easy to set the first turning area Zd to a desired size, shape, and position. Therefore, it is possible to reduce the variation in the traveling state of the motorcycle 110 due to the variation in the first turning region Zd. Therefore, it becomes easy to utilize the first straddle-type vehicle traveling composite data D1c1 by controlling the vehicle or the like. Since the first saddle riding type vehicle traveling composite data D1c1 is more easily utilized, the post-processing of the output first saddle riding type vehicle traveling composite data D1c1 is easier.
  • the straddle-type vehicle travel data processing apparatus 101 can further improve the efficiency of post-processing of output data and further reduce hardware resources. Further, the straddle-type vehicle traveling data processing method according to the first specific example can make post-processing of output data more efficient and further reduce hardware resources.
  • the approach turning guide portion 7b When the approach turning guide portion 7b is configured to limit the traveling direction of the motorcycle 110, the following effects are obtained.
  • the approach turning guide portion 7b By the approach turning guide portion 7b, the approach turning area Zb can be reliably set to a desired size, shape, and position. Therefore, it is possible to further reduce the variation in the traveling state of the motorcycle 110 due to the variation in the approach turning area Zb. Therefore, it becomes easy to utilize the first straddle-type vehicle traveling composite data D1c1 by controlling the vehicle or the like. Since the first saddle riding type vehicle traveling composite data D1c1 is more easily utilized, the post-processing of the output first saddle riding type vehicle traveling composite data D1c1 is easier.
  • the straddle-type vehicle travel data processing apparatus 101 can more efficiently post-process the output data and further reduce the hardware resources. Further, the straddle-type vehicle traveling data processing method according to the first specific example can make post-processing of output data more efficient and further reduce hardware resources.
  • the approach turning guide portion 7b can be arranged in various places. Therefore, the approach turning area Zb can be set at a place other than the road, such as a parking lot. Further, it is easy to change the position of the approach turning guide portion 7b. Therefore, the size, shape, and position of the approach turning area Zb can be easily changed. Further, it is easy to increase the number of approach turning guide portions 7b. By increasing the number of approach turning guide portions 7b, the approach turning area Zb can be set reliably according to a desired size, shape, and position.
  • the first saddle riding type vehicle traveling composite data D1c1 is more easily utilized, the post-processing of the output first saddle riding type vehicle traveling composite data D1c1 is easier. Since the post-processing of the output first saddle riding type vehicle traveling composite data D1c1 is easier, the hardware resources of the output targets 61 and 62 to which the first saddle riding type vehicle traveling composite data D1c1 is output are further reduced. be able to.
  • the straddle-type vehicle travel data processing apparatus 101 can more efficiently post-process the output data and further reduce the hardware resources. Further, the straddle-type vehicle traveling data processing method according to the first specific example can make post-processing of output data more efficient and further reduce hardware resources.
  • the saddle riding type vehicle travel data processing device 201 of the second specific example has all the features of the saddle riding type vehicle travel data processing device 1 of the embodiment of the present invention described above. In the following description, description of the same parts or processes as those of the above-described embodiment or specific example 1 of the present invention will be appropriately omitted.
  • the saddle riding type vehicle traveling data processing device 201 is mounted on the motorcycle 210.
  • the motorcycle 210 is an example of the saddle riding type vehicle 10 of the above embodiment.
  • the saddle riding type vehicle traveling data processing device 201 is included in the ECU 260 mounted on the motorcycle 210.
  • the saddle riding type vehicle traveling data processing device 201 is a data recording device for accumulating data relating to the motorcycle 210 during traveling.
  • the configuration of the motorcycle 210 is almost the same as the configuration of the motorcycle 110 of the first specific example.
  • the motorcycle 210 differs from the motorcycle 110 in the following points.
  • the ECU 260 of the motorcycle 210 is different from the ECU 60 of the motorcycle 110 of the first specific example.
  • the motorcycle 210 has a removable external storage device (secondary storage device, auxiliary storage device) 205.
  • the external storage device 205 is connected to the ECU 260.
  • the external storage device 205 is connected to a data recording device (saddle-type vehicle travel data processing device) 201.
  • the external storage device 205 stores the data transmitted from the data recording device 201.
  • the ECU 260 is composed of at least one processor such as a CPU and at least one storage device such as a ROM or a RAM.
  • the CPU executes information processing based on programs and various data stored in the ROM and RAM.
  • the ECU 260 may be one device arranged at one place, or may be composed of a plurality of devices arranged at different positions.
  • the ECU 260 is connected to the GNSS receiving unit 90, the imaging device 91, various sensors such as the sensors 71 to 76 and 81 to 86, and the touch panel 28.
  • the ECU 260 controls each part of the motorcycle 210.
  • the ECU 260 performs engine control, brake control, and the like.
  • the ECU 260 includes a data recording device (saddle-type vehicle travel data processing device) 201.
  • the data recording device 201 performs neither engine control nor brake control.
  • the saddle riding type vehicle travel data processing device 201 includes a processor 102 and a storage unit 103.
  • the saddle riding type vehicle traveling data processing device 201 acquires traveling locus data BT, forward acceleration data BA, lateral acceleration data BL, vehicle attitude data B1V, rider attitude data B1R, and rider identification data BI.
  • the rider attitude data B1R in the specific example 2 need not be image data.
  • the rider posture data B1R of the specific example 2 may be image data.
  • the rider posture data B1R may be data generated by the ECU 260 based on the image data transmitted from the imaging device 91, as in the first specific example.
  • the rider posture data B1R may be image data transmitted from the imaging device 91.
  • the rider posture data B1R is data relating to at least one of the head orientation, shoulder position, leg position, hip position, and crotch position of the rider R.
  • the saddle-ride type vehicle travel data processing method according to the second specific example is a procedure of processing executed by the processor 102 of the saddle-ride type vehicle travel data processing device 201.
  • the processor 102 of the saddle riding type vehicle traveling data processing device 201 executes a series of processes S11 to S15 shown in FIG.
  • the saddle riding type vehicle travel composite data D1c generated in the saddle riding type vehicle travel composite data generation processing S13 of the present specific example 2 may include data which is a basis of the saddle riding type vehicle travel composite data D1c. You don't have to.
  • the saddle riding type vehicle traveling composite data D1c may or may not include image data.
  • FIG. 14 shows an example of a plurality of saddle-ride type vehicle traveling composite data D1c stored in the storage unit 103 in the saddle-ride type vehicle traveling composite data storage processing S14 of the specific example 2.
  • the saddle riding type vehicle traveling composite data D1c of FIG. 14 includes data used to generate the saddle riding type vehicle traveling composite data D1c.
  • the first straddle-type vehicle traveling composite data D1c1 in FIG. 14 is the first approach turning trajectory data DTb1, the first approach turning front direction acceleration data DAb1, the first approach turning left / right direction acceleration data DLb1, and the first turning vehicle attitude data. It is generated based on D1V1, the first turning rider attitude data D1R1, and the first rider identification data DI1.
  • the saddle riding type vehicle traveling composite data D1c other than the first saddle riding type vehicle traveling composite data D1c1 is configured similarly to the first saddle riding type vehicle traveling composite data D1c1.
  • the first rider identification data DI1 and the fourth rider identification data DI4 indicate that the rider R is the rider Ra.
  • the second rider identification data DI2, the third rider identification data DI3, and the fifth rider identification data DI5 indicate that the rider R is the rider Rb.
  • the sixth rider identification data DI6 indicates that the rider R is the rider Rc.
  • the riders Ra, Rb and Rc are different from each other.
  • the saddle-ride type vehicle traveling composite data D1c is output to the external storage device 205.
  • the external storage device 205 stores the saddle riding type vehicle traveling composite data D1c acquired from the saddle riding type vehicle traveling data processing device 201.
  • the external storage device 205 removed from the motorcycle 210 is connected to, for example, an analysis device.
  • the analysis device reads and analyzes the first saddle riding type vehicle traveling composite data D1c1 and the like stored in the external storage device 205.
  • the usage of the external storage device 205 removed from the motorcycle 210 is not limited to the above.
  • the processor 102 may execute the series of processes S11 to S14, S20, and S21 shown in FIG.
  • the saddle-ride type vehicle traveling integrated data D1u generated in the saddle-ride type vehicle traveling integrated data generation process S20 according to the second specific example may or may not include a plurality of saddle-type vehicle traveling combined data D1c. You may.
  • the saddle riding type vehicle traveling integrated data D1u may or may not include the data that is the basis of the saddle riding type vehicle traveling composite data D1c.
  • the saddle-ride type vehicle traveling integrated data D1u may be data generated by a difference, comparison, combination or the like of the plurality of saddle-type vehicle traveling combined data D1c.
  • the saddle riding type vehicle traveling integrated data D1u may be, for example, a difference between the first saddle riding type vehicle traveling composite data D1c1 and the second saddle riding type vehicle traveling composite data D1c2.
  • the saddle riding type vehicle traveling integrated data D1u may be data indicating a representative (for example, an average) of the plurality of saddle riding type vehicle traveling composite data D1c.
  • the saddle riding type vehicle traveling integrated data D1u may be, for example, a representative value (for example, an average) of the first saddle riding type vehicle traveling composite data D1c1 and the second saddle riding type vehicle traveling composite data D1c2.
  • the saddle-ride type vehicle traveling integrated data D1u is output to the external storage device 205.
  • the external storage device 205 stores the constant saddle type vehicle travel composite data D1u acquired from the saddle type vehicle travel data processing device 201.
  • the external storage device 205 removed from the motorcycle 210 is connected to, for example, an analysis device.
  • the analysis device reads and analyzes the first saddle riding type vehicle traveling composite data D1c1 and the like stored in the external storage device 205.
  • the analyzing device can perform processing such as difference, comparison and combination of the plurality of saddle type vehicle traveling compound data D1c. .
  • the usage of the external storage device 205 removed from the motorcycle 210 is not limited to the above.
  • FIG. 15 an example of a plurality of identical rider-saddle type vehicle traveling integrated composite data D1us stored in the storage unit 103 and / or the external storage device 205 is shown in FIG.
  • the same rider-saddle-type vehicle traveling integrated data D1us in FIG. 15 includes a plurality of saddle-type vehicle traveling composite data D1c.
  • the same rider-saddle-type vehicle traveling integrated data D1us1, D1us2, D1us3 of FIG. 15 is generated based on the plurality of saddle-type vehicle traveling composite data D1c of FIG.
  • This specific example 2 has the same effect as the specific example 1 with respect to the same configuration or processing as the specific example 1.
  • the saddle riding type vehicle travel data processing device 301 of the third specific example has all the features of the saddle riding type vehicle travel data processing device 1 of the embodiment of the present invention described above. In the following description, description of the same parts or processes as those in the embodiment of the present invention and the specific example 1 will be appropriately omitted.
  • the saddle riding type vehicle traveling data processing device 301 is not mounted on the motorcycle 310.
  • the motorcycle 310 is an example of the saddle-ride type vehicle 10 of the above embodiment.
  • the saddle riding type vehicle traveling data processing device 301 is a data recording device for accumulating data relating to the motorcycle 310 during traveling. More specifically, the saddle riding type vehicle travel data processing device 301 is a driving technology data recording device that accumulates data related to the motorcycle 310 that is running.
  • the saddle type vehicle traveling data processing device 301 includes a processor 302 and a storage unit 303.
  • the processor 302 is an example of the processor 2 of the above embodiment.
  • the storage unit 303 is an example of the storage unit 3 of the above embodiment.
  • the processor 302 executes information processing based on the programs and data stored in the storage unit 303.
  • the image pickup device 308 includes a camera.
  • the camera is realized by, for example, a CMOS (Complementary Metal Oxide Semiconductor) sensor or a CCD (Charge coupled Device) sensor.
  • the image data generated by the imaging device 308 includes data of the date and time (year, month, day and time) taken by the camera.
  • the image pickup device 308 is installed on the ground, for example.
  • the image pickup device 308 is arranged and set so as to be able to capture the posture of the motorcycle 310 and the posture of the rider R when turning in the first turning region Zd.
  • the image capturing device 308 is arranged and set so as to capture an image of the motorcycle 310 and the rider R who are turning, as shown in FIG. 1, for example.
  • the imaging device 308 is at least operated by the operator so as to take an image when the motorcycle 310 is turning in the first turning region Zd.
  • the saddle riding type vehicle travel data processing device 301 acquires the image data generated by the imaging device 308 from the imaging device 308.
  • the saddle riding type vehicle traveling data processing device 301 acquires image data from the imaging device 308, for example, using a wireless communication device or an external storage device included in the imaging device 308.
  • the saddle riding type vehicle traveling data processing device 301 acquires a plurality of still image data or moving image data from the image capturing device 308.
  • At least one of the rider identification data BI, the identification data BX other than the rider identification data BI, and the data of the shooting date is attached to the image data acquired by the saddle riding type vehicle travel data processing device 301 from the imaging device 308. May be.
  • the basic configuration of the motorcycle 310 is almost the same as the configurations of the motorcycles 110 and 210 of the specific examples 1 and 2.
  • the motorcycle 310 has a GNSS receiving unit 90.
  • the motorcycle 310 may have neither the saddle riding type vehicle running data processing device 101 nor the saddle riding type vehicle running data processing device 201.
  • the motorcycle 310 may not have the imaging device 91.
  • the motorcycle 310 may not have the IMU 86.
  • the motorcycle 310 may be different from the motorcycle 110 or the motorcycle 210 in other points.
  • the configuration of the motorcycle 310 may be the same as that of the motorcycle 110 or the motorcycle 210.
  • the saddle riding type vehicle traveling data processing device 301 acquires various data acquired by the motorcycle 310 by using at least one wireless communication device (not shown) included in the motorcycle 310.
  • the wireless communication device of the motorcycle 310 transmits various data acquired by the motorcycle 310.
  • the saddle riding type vehicle traveling data processing device 301 may receive the data transmitted from the wireless communication device of the motorcycle 310.
  • the saddle riding type vehicle traveling data processing device 301 may acquire these data from a device that has received the data transmitted from the wireless communication device of the motorcycle 310 via an external storage device or the like.
  • a plurality of communication methods may be used for communication between the wireless communication device and the saddle riding type vehicle travel data processing device 301, or only wireless communication may be used.
  • the saddle riding type vehicle traveling data processing device 301 acquires various data acquired by the motorcycle 310 by using an external storage device (not shown) detachable from the motorcycle 310 instead of the wireless communication device. May be.
  • the external storage device stores various data acquired by the motorcycle 310.
  • the external storage device removed from the motorcycle 310 may be connected to the saddle riding type vehicle travel data processing device 301.
  • the external storage device removed from the motorcycle 310 may be connected to a device that can communicate with the saddle riding type vehicle travel data processing device 301.
  • the saddle riding type vehicle travel data processing device 301 can acquire various data stored in the external storage device.
  • At least one of the rider identification data BI, the identification data BX other than the rider identification data BI, and the data of the detected date is attached to various data acquired from the motorcycle 310 by the saddle riding type vehicle travel data processing device 301. May be.
  • the saddle riding type vehicle traveling data processing device 301 acquires from the motorcycle 310 are as follows. However, the saddle riding type vehicle travel data processing device 301 may acquire data other than the following from the motorcycle 310.
  • the saddle riding type vehicle traveling data processing device 301 acquires the traveling locus data BT generated by the GNSS receiving unit 90 from the motorcycle 310.
  • the saddle riding type vehicle traveling data processing device 301 may acquire the position coordinate data generated by the GNSS receiving unit 90 from the motorcycle 310.
  • the saddle riding type vehicle traveling data processing device 301 generates traveling locus data BT based on the position coordinate data of the GNSS receiving unit 90.
  • the saddle riding type vehicle traveling data processing device 301 acquires from the motorcycle 310 forward acceleration data BA related to the acceleration of the motorcycle 310 in the vehicle forward direction. Alternatively, the saddle riding type vehicle traveling data processing device 301 generates the forward acceleration data BA related to the vehicle forward acceleration of the motorcycle 310 based on the data acquired from the motorcycle 310. Specifically, the forward acceleration data BA may be acquired from the GNSS receiving unit 90 of the motorcycle 310. The forward acceleration data BA is data generated by the EUC of the motorcycle 310 or the saddle riding type vehicle travel data processing device 301 based on the vehicle forward speed of the motorcycle 310 detected by the GNSS receiving unit 90. Good. The forward acceleration data BA may be data generated by the EUC of the motorcycle 310 or the saddle riding type vehicle travel data processing device 301 based on the signal of the wheel speed sensor 85.
  • the saddle riding type vehicle traveling data processing device 301 acquires lateral acceleration data BL related to the lateral acceleration of the motorcycle 310.
  • the lateral acceleration data BL is acquired from the GNSS receiving unit 90 of the motorcycle 310.
  • the saddle riding type vehicle traveling data processing device 301 may acquire displacement data indicating the displacement of the motorcycle 310 from the motorcycle 310 or another device.
  • the saddle riding type vehicle travel data processing device 301 may acquire category data indicating the category of the motorcycle 310 from the motorcycle 310 or another device.
  • the category of the motorcycle 310 is a classification divided according to the use and characteristics of the motorcycle 310.
  • the categories of the motorcycle 310 include, for example, sports type, on-road and off-road.
  • the saddle riding type vehicle travel data processing method of the third specific example is a procedure of processing executed by the processor 302 of the saddle riding type vehicle travel data processing device 301.
  • the processor 302 of the saddle riding type vehicle travel data processing device 301 executes a series of processes S11 to S15 shown in FIG.
  • the processor 302 acquires the first approach turning trajectory data DTb1.
  • the processor 302 may acquire the first approach turning trajectory data DTb1 by acquiring the traveling trajectory data BT. In this case, the processor 302 also acquires the first circular trajectory data DTa1.
  • One traveling locus data BT indicates a traveling locus from turning on the main switch to turning off the main switch, or a traveling locus from starting to stopping the operation of the engine unit 30. Similar to the specific examples 1 and 2, the course on which the motorcycle 310 travels to carry out the saddle riding type vehicle travel data processing method of the specific example 3 is limited. Therefore, the traveling locus indicated by one traveling locus data BT is relatively short.
  • the processor 302 may extract the first approach turning trajectory data DTb1 from the traveling trajectory data BT, as in the first and second examples.
  • the processor 302 may extract the first annular trajectory data DTa1 from the traveling trajectory data BT.
  • the processor 302 acquires the first approach turning front direction acceleration data DAb1.
  • the processor 302 may acquire the first approach turning front direction acceleration data DAb1 by acquiring the front direction acceleration data BA.
  • the processor 302 also acquires the first annular forward acceleration data DAa1.
  • One forward acceleration data BA indicates the acceleration and deceleration from turning on the main switch to turning it off, or the acceleration and deceleration from starting to stopping the operation of the engine unit 30.
  • the processor 302 may extract the first approach turning front direction acceleration data DAb1 from the front direction acceleration data BA as in the first and second embodiments.
  • the processor 302 may extract the first annular forward acceleration data DAa1 from the forward acceleration data BA.
  • the processor 302 acquires the first approach turning left / right direction acceleration data DLb1.
  • the processor 302 may acquire the first approach turning left / right acceleration data DLb1 by acquiring the left / right acceleration data BL.
  • the processor 302 also acquires the first annular lateral acceleration data DLa1.
  • the processor 302 may extract the first approach turn left / right acceleration data DLb1 from the left / right acceleration data BL, as in the first and second embodiments.
  • the processor 302 may extract the first annular lateral acceleration data DLa1 from the lateral acceleration data BL.
  • the processor 302 acquires the first turning vehicle attitude data D3V1 and the first turning rider attitude data D3R1.
  • the first turning vehicle attitude data D3V1 is data relating to the attitude of the motorcycle 310 when traveling on the first turning trajectory Td1.
  • the first turning rider posture data D3R1 is data relating to the posture of the rider R riding on the motorcycle 310 when traveling on the first turning locus Td1.
  • the processor 302 acquires the first turning attitude data D3RV1 in which the first turning vehicle attitude data D3V1 and the first turning rider attitude data D3R1 are integrated.
  • the first turning posture data D3RV1 is acquired from the imaging device 308.
  • the first turning posture data D3RV1 is image data.
  • the first turning posture data D3RV1 may be one still image data, a plurality of still image data, or moving image data.
  • the processor 302 obtains the first turning attitude data D3RV1 from the plurality of still image data or moving image data acquired by the saddle-ride type vehicle travel data processing device 301 from the imaging device 308. You may extract.
  • the processor 302 may extract one still image data as the first turning attitude data D3RV1 from a plurality of still image data or moving image data acquired by the saddle riding type vehicle travel data processing device 301 from the image capturing device 308. . For example, which data may be extracted may be determined based on the analysis result of the image.
  • the processor 302 acquires the first rider identification data DI1.
  • the first rider identification data DI1 is data for identifying the rider R who gets on the motorcycle 310 when traveling on the first approach turning trajectory Tb1.
  • the rider identification data BI may be attached to various data acquired by the saddle riding type vehicle travel data processing device 301 from the motorcycle 310.
  • the processor 302 may acquire the first rider identification data DI1 attached to the first approach turning trajectory data DTb1.
  • the processor 302 may acquire the first rider identification data DI1 attached to the first approach frontward turning acceleration data DAb1.
  • the processor 302 may obtain the first rider identification data DI1 attached to the first approach turning left / right acceleration data DLb1.
  • the image data acquired by the saddle riding type vehicle travel data processing device 301 from the image pickup device 308 may be attached with the rider identification data BI.
  • the processor 302 may acquire the first rider identification data DI1 attached to the first turning attitude data D3RV1 (the first turning vehicle attitude data D3V1 and the first turning rider attitude data D3R1).
  • the processor 302 may acquire the identification data BX with the rider identification data BI from the motorcycle 310. As described above, the identification data BX may be attached to various data acquired by the saddle riding type vehicle travel data processing device 301 from the motorcycle 310. The processor 302 may acquire the first rider identification data DI1 by collating the identification data BX attached to the first approach turning trajectory data DTb1 with the identification data BX attached to the rider identification data BI. The processor 302 may obtain the first rider identification data DI1 by collating the identification data BX attached to the first approach frontward turn acceleration data DAb1 with the identification data BX attached to the rider identification data BI. ..
  • the processor 302 may obtain the first rider identification data DI1 by collating the identification data BX attached to the first approach turning left / right acceleration data DLb1 with the identification data BX attached to the rider identification data BI. ..
  • the identification data BX may be attached to the image data acquired by the saddle riding type vehicle travel data processing device 301 from the imaging device 308.
  • the processor 302 may acquire the first rider identification data DI1 by collating the identification data BX attached to the first turning attitude data D3RV1 with the identification data BX attached to the rider identification data BI.
  • the processor 302 In the saddle riding type vehicle traveling composite data generation processing S13, the processor 302 generates the first straddling type vehicle traveling composite data D3c1 based on the first approach turning trajectory data DTb1 and the first approach turning front direction acceleration data DAb1. To generate.
  • the first saddle riding type vehicle traveling composite data D3c1 is generated in association with the first approach turning trajectory Tb1 and the acceleration in the vehicle front direction of the motorcycle 310 when traveling on the first approach turning trajectory Tb1.
  • the processor 302 determines, based on the first approach turning trajectory data DTb1, the first approach turning front direction acceleration data DAb1 and the first approach turning left / right direction acceleration data DLb1.
  • the first saddle riding type vehicle traveling composite data D3c1 may be generated.
  • the first straddle-type vehicle traveling composite data D3c1 includes the first approach turning locus Tb1, the acceleration in the vehicle front direction of the motorcycle 310 when traveling on the first approach turning locus Tb1, and the first approach turning locus. It is generated in association with the vehicle lateral acceleration of the motorcycle 310 when traveling on Tb1.
  • the processor 302 causes the first approach turning trajectory data DTb1, the first approach turning front direction acceleration data DAb1, the first turning vehicle attitude data D3V1 (first turning vehicle attitude data).
  • the first saddle riding type vehicle traveling composite data D3c1 may be generated based on D3V1 and the first turning rider attitude data D3R1).
  • the first straddle-type vehicle traveling composite data D3c1 includes the first approach turning locus Tb1, the acceleration in the vehicle front direction of the motorcycle 310 when traveling on the first approach turning locus Tb1, and the first approach turning locus. It is generated by associating the attitude of the motorcycle 310 and the attitude of the rider R when traveling on Tb1.
  • the first straddle-type vehicle traveling composite data D3c1 includes the first approach turning trajectory data DTb1, the first approach turning front direction acceleration data DAb1, the first approach turning left and right direction acceleration data DLb1, and the first turning vehicle attitude data D3V1. It may be generated based on (first turning vehicle attitude data D3V1 and first turning rider attitude data D3R1).
  • the first annular trajectory data DTa1 instead of the first approach turning trajectory data DTb1 is used as the base data of the first saddle-ride vehicle traveling composite data D3c1. May be used.
  • the first annular forward acceleration data DAa1 may be used instead of the first approach turning forward acceleration data DAb1.
  • the first annular left / right acceleration data DLa1 may be used instead of the first approach turn left / right acceleration data DLb1.
  • the first straddle-type vehicle travel composite data D3c1 generated in the saddle-ride type vehicle travel composite data generation processing S13 of the third specific example includes data that is a basis of the first saddle-ride type vehicle travel composite data D3c1. May or may not be included.
  • the first saddle riding type vehicle traveling composite data D3c1 includes image data based on the first approach turning trajectory data DTb1. This image data is a line representing the travel locus.
  • the first saddle riding type vehicle traveling composite data D3c1 may include one image data based on the first approach turning trajectory data DTb1 and the first approach turning front direction acceleration data DAb1.
  • the image data represents, for example, as shown in FIGS. 5, 6 (a) and 7 (a), a line indicating a traveling locus in a display form corresponding to the acceleration in the front direction of the vehicle. It may be one. More specifically, the color may be changed according to the acceleration in the vehicle front direction.
  • the first straddle-type vehicle traveling composite data D3c1 may include one image data based on the first approach turning trajectory data DTb1 and the first approach turning left / right direction acceleration data DLb1.
  • the image data is, for example, as shown in FIGS. 6B and 7B, a line indicating a traveling locus in a display form corresponding to the acceleration in the vehicle left-right direction. You may. More specifically, the color may be changed according to the acceleration in the vehicle left-right direction.
  • the first saddle riding type vehicle traveling composite data D3c1 has one image data based on the first approach turning trajectory data DTb1, the first approach turning front direction acceleration data DAb1 and the first approach turning left and right direction acceleration data DLb1. May be.
  • image data in which a line represented in a display form corresponding to the acceleration in the vehicle left-right direction is arranged may be included inside the line of the travel locus represented in the display form corresponding to the acceleration in the vehicle left-right direction.
  • image data including a line of a travel locus represented in a display form corresponding to the acceleration in the vehicle left-right direction and a line represented in a display form corresponding to the acceleration in the vehicle left-right direction partially overlap each other, Good.
  • the first saddle riding type vehicle traveling composite data D3c1 may include one image data based on the first approach turning front direction acceleration data DAb1 and the first approach turning left and right direction acceleration data DLb1.
  • this image data is, for example, as shown in FIGS. 6C and 7C, an image of a graph in which the vertical axis represents the acceleration in the vehicle front direction and the horizontal axis represents the acceleration in the vehicle left-right direction. It may be data.
  • the acceleration in the front direction of the vehicle is zero, the acceleration in the lateral direction of the vehicle is also zero.
  • the graph may include at least one circle centered on zero for the purpose of driving skill level. A circle passes through the same numerical value (acceleration) on the vertical axis and the horizontal axis.
  • the graphs of FIG. 6C and FIG. 7C include two circles of black and gray, but one graph may include only one circle.
  • the radius of the circle is, for example, 0.3G to 0.8G.
  • the radius of the larger circle is, for example, 0.4G to 0.8G
  • the radius of the smaller circle is, for example, 0.3G to 0.6G.
  • Such a circle may be included in the first saddle riding type vehicle traveling composite data D3c1 or may be added after the first saddle riding type vehicle traveling composite data D3c1 is output to the output target 305 described later. Good. ..
  • the first saddle riding type vehicle traveling composite data D3c1 may include one image data based on the first approach turning front direction acceleration data DAb1.
  • the image data based on the first approach turning front direction acceleration data DAb1 may be, for example, image data of a graph with the vehicle front direction acceleration on the vertical axis and the time on the horizontal axis.
  • the image data based on the first approach turning front acceleration data DAb1 may be, for example, image data of a graph having the vehicle front acceleration as the vertical axis and the vehicle front speed as the horizontal axis.
  • the vertical axis and the horizontal axis may be opposite.
  • the speed in the vehicle front direction may be calculated from the first approach turning front direction acceleration data DAb1 or may be detected by the GNSS receiving unit 90, and is based on the signal of the wheel speed sensor 85. It may be generated by In this case, the data on which the first straddle-type vehicle traveling composite data D3c1 is based includes data relating to the speed in the vehicle front direction.
  • the first saddle riding type vehicle traveling composite data D3c1 may include one image data based on the first approach turning left / right direction acceleration data DLb1.
  • the image data based on the first approach turning left / right acceleration data DLb1 may be, for example, image data of a graph with the vehicle left / right acceleration as the vertical axis and the time as the horizontal axis.
  • the image data based on the first approach turning left / right acceleration data DLb1 may be, for example, image data of a graph in which the vehicle left / right acceleration is on the vertical axis and the vehicle front speed is on the horizontal axis.
  • the vertical axis and the horizontal axis may be opposite.
  • the vehicle left-right speed may be calculated from the first approach turning left-right acceleration data DLb1 or may be detected by the GNSS receiving unit 90, and based on the signal from the wheel speed sensor 85. It may be generated by In this case, the data on which the first straddle-type vehicle traveling composite data D3c1 is based includes data relating to the speed in the vehicle left-right direction.
  • the first straddle-type vehicle traveling composite data D3c1 may include image data based on the first turning vehicle attitude data D3V1 and the first turning rider attitude data D3R1.
  • the first saddle riding type vehicle traveling composite data D3c1 may be generated based on the first rider identification data DI1 in addition to the data of any combination described above. In this case, the first saddle riding type vehicle traveling composite data D3c1 is generated in association with the rider R who gets on the motorcycle 310 during the first turning motion.
  • the first straddle-type vehicle traveling composite data D3c1 may be generated based on category data in addition to data of any combination described above. In this case, the first saddle riding type vehicle traveling composite data D3c1 is generated in association with the category of the motorcycle 310 in the first turning motion. The first saddle riding type vehicle traveling composite data D3c1 may be generated based on the displacement data in addition to the data of any combination described above. In this case, the first straddle-type vehicle traveling composite data D3c1 is generated in association with the displacement of the motorcycle 310 during the first turning motion.
  • the processor 302 stores the first saddle riding type vehicle traveling composite data D3c1 generated by the saddle riding type vehicle traveling composite data generation processing S13 in the storage unit 303.
  • the processor 302 outputs the first saddle riding type vehicle traveling composite data D3c1 stored in the storage unit 303 to the output target 305.
  • the output target 305 may be, for example, a display device, a printing device, or another device.
  • the display device may have only a display function, for example, or may have a function other than the display function.
  • the display device having a function other than the display function is, for example, a tablet terminal.
  • the display device includes a display unit capable of displaying information, a data acquisition unit, and a display control unit.
  • the data acquisition unit acquires the output first saddle riding type vehicle traveling composite data D3c1.
  • the display control unit causes the first straddle-type vehicle traveling composite data D3c1 acquired by the data acquisition unit to be simultaneously displayed on one screen of the display unit.
  • the printing device has a printing unit capable of printing information on paper, a data acquisition unit, and a printing control unit.
  • the data acquisition unit acquires the output first saddle riding type vehicle traveling composite data D3c1.
  • the print control unit causes the printing unit to print the first straddle-type vehicle traveling composite data D3c1 acquired by the data acquisition unit, on the same surface of one sheet of paper.
  • the first straddle-type vehicle traveling composite data D3c1 is image data based on the first approach turning trajectory data DTb1 and the first approach turning front direction acceleration data DAb1 as described above, the first approach turning trajectory data DTb1 and the first approach turning trajectory data DTb1.
  • the expansion / contraction state of the front suspension can be estimated from the display of these two image data. That is, if the deceleration in the front direction of the vehicle is relatively large and the acceleration in the left direction of the vehicle is relatively large, it can be estimated that the front suspension remains contracted.
  • the first saddle riding type vehicle traveling composite data D3c1 includes the above-mentioned graph based on the first approach turning front direction acceleration data DAb1 and the first approach turning left / right direction acceleration data DLb1, expansion / contraction of the front suspension is also performed from this graph.
  • the state can be estimated to some extent.
  • the first saddle riding type vehicle traveling composite data D3c1 includes the above-mentioned graph based on the first approach turning front direction acceleration data DAb1 and the first approach turning lateral acceleration data DLb1, the first straddle type vehicle running composite data.
  • An image as shown in FIG. 8 may be displayed or printed together with D3c1.
  • the image as shown in FIG. 8 may be displayed on one screen at the same time as the first saddle riding type vehicle traveling composite data D3c1 or may not be displayed at the same time.
  • the image as shown in FIG. 8 may be printed on the same side of one sheet together with the first saddle riding type vehicle traveling composite data D3c1, or may be printed on another side of the same sheet or on another sheet. ..
  • the first saddle-ride type vehicle travel composite data D3c1 includes image data as shown in FIG. 8.
  • the first saddle-riding type vehicle traveling composite data D3c1 is the image data shown in FIG. It need not be included.
  • the series of processing shown in FIG. 11 is also executed for the operation of the motorcycle 310 traveling in the approach turning area Zb, which is different from the movement when traveling in the first approach turning trajectory Tb1.
  • a plurality of traveling operations of traveling in the approach turning area Zb a plurality of saddle riding type vehicle traveling composite data D3c are output to the output target 305.
  • the processor 302 may execute the series of processes S11 to S14, S20, and S21 shown in FIG.
  • the processor 302 In the saddle-ride type vehicle traveling integrated composite data generation process S20, the processor 302 generates at least one saddle-type vehicle traveling integrated compound data D3u.
  • the saddle-ride type vehicle traveling integrated data D3u is generated in association with the plurality of saddle-ride type vehicle traveling combined data D3c stored in the storage unit 303.
  • the number of the saddle riding type vehicle traveling composite data D3c used for generating one saddle riding type vehicle traveling integrated data D3u may be two or may be more than two.
  • the processor 302 may generate the same rider-saddle-type vehicle traveling integrated data D3us based on a plurality of saddle-type vehicle traveling complex data D3c generated based on the same rider identification data.
  • the processor 302 may generate the different rider-saddle-type vehicle traveling integrated data D3ud based on the plurality of saddle-type vehicle traveling complex data D3c generated based on the different rider identification data.
  • the plurality of saddle riding type vehicle traveling integrated compound data D3u are the same rider saddle riding type vehicle traveling integrated. Only one of the composite data D3us and the different rider-saddle-type vehicle traveling integrated composite data D3ud may be included, or both may be included.
  • the saddle-ride type vehicle traveling integrated data D3u of the third specific example may or may not include the saddle-ride type vehicle traveling combined data D3c.
  • the saddle-ride type vehicle traveling integrated data D3u may or may not include the data that is the basis of the saddle-ride type vehicle traveling combined data D3c.
  • the saddle-ride type vehicle traveling integrated data D3u may be data generated by a difference, comparison or combination of a plurality of saddle-type vehicle traveling combined data D3c.
  • the saddle riding type vehicle traveling integrated data D3u may be, for example, a difference between the first saddle riding type vehicle traveling composite data D3c1 and the second saddle riding type vehicle traveling composite data D3c2.
  • the saddle-ride type vehicle traveling integrated data D3u may be data indicating a representative (for example, an average) of the plurality of saddle-type vehicle traveling combined data D3c.
  • the saddle-ride type vehicle traveling integrated data D3u may include, for example, image data in which the image of the first turning attitude data D3RV1 and the image of the second turning attitude data D3RV2 are superimposed.
  • the saddle riding type vehicle traveling integrated data D3u is obtained by, for example, overlapping the traveling locus of the first approach turning locus data DTb1 and the traveling locus of the second approach turning locus data DTb2 obtained by traveling at the same first corner. It may include image data.
  • the saddle-ride type vehicle traveling integrated data D3u includes, for example, image data in which one of two lines indicating a traveling locus represented in a display form corresponding to the acceleration in the vehicle front direction is arranged inside the other line. You may stay.
  • the processor 302 outputs the generated saddle riding type vehicle traveling integrated data D3u to the output target 305.
  • the output target 305 may be, for example, a display device, a printing device, or another device.
  • the output target 305 to which the saddle riding type vehicle traveling integrated data D3u is output may be the same as or different from the output target to which the saddle riding type vehicle traveling composite data D3c is output.
  • the display control unit of the display device simultaneously displays the saddle riding type vehicle traveling integrated composite data D3u acquired by the data acquisition unit on one screen of the display unit.
  • the print control unit of the printing apparatus causes the printing unit to print the saddle-ride type vehicle traveling integrated composite data D3u acquired by the data acquisition unit on the same surface of one sheet of paper.
  • first turning vehicle attitude data D3V1 and the first turning rider attitude data D3R1 may be acquired from the motorcycle 310.
  • the first turning vehicle attitude data D3V1 may be the same data as the first turning vehicle attitude data D1V1 of the first and second specific examples. That is, the first turning vehicle attitude data D3V1 may be data generated using at least one of the GNSS receiving unit 90 of the motorcycle 310, the IMU 86, and the steering angle sensor 84.
  • the first turning rider attitude data D3R1 may be the same data as the first turning rider attitude data D1R1 in the first and second examples. That is, the first turning rider posture data D3R1 may be data generated based on the image data generated by the imaging device 91 of the motorcycle 310.
  • the saddle type vehicle travel data processing device 301 of the third specific example may process data related to a plurality of motorcycles including the motorcycle 310. Thereby, the saddle riding type vehicle traveling data processing device 301 can easily acquire the different rider saddle riding type vehicle traveling integrated data D3ud.
  • the saddle riding type vehicle traveling data processing device 301 may be capable of acquiring image data from a plurality of imaging devices including the imaging device 308.
  • the plurality of imaging devices are arranged and set so as to capture images of the motorcycle while traveling in the plurality of approach areas set in different places.
  • the imaging device 308 may be installed in a flying body such as a small drone (unmanned aerial vehicle). In this case as well, the imaging device 308 captures the posture of the motorcycle 310 and the posture of the rider R while turning the corner.
  • a flying body such as a small drone (unmanned aerial vehicle).
  • the imaging device 308 captures the posture of the motorcycle 310 and the posture of the rider R while turning the corner.
  • the specific example 3 has the same effect as the specific example 1 with respect to the same configuration or processing as the specific example 1.
  • the present specific example 3 has the following effects in addition to the effects of the above-described embodiment of the present invention.
  • the first saddle riding type vehicle traveling composite data D3c1 includes image data based on the first approach turning trajectory data DTb1 and the first approach turning front direction acceleration data DAb1
  • the first straddle-type vehicle traveling composite data D3c1 more clearly shows the relationship between the first approach turning locus Tb1 and the acceleration in the vehicle front direction of the motorcycle 310 when traveling on the first approach turning locus Tb1. .. Therefore, it becomes easier to utilize the first straddle-type vehicle traveling composite data D3c1. Since the first saddle riding type vehicle traveling composite data D3c1 is more easily utilized, the post-processing of the output first saddle riding type vehicle traveling composite data D3c1 is easier.
  • the hardware resources of the output targets 61 and 62 to which the first saddle riding type vehicle traveling composite data D3c1 is output are further reduced. be able to.
  • the straddle-type vehicle travel data processing device 301 of the third specific example can more efficiently post-process the output data and further reduce hardware resources.
  • the saddle riding type vehicle travel data processing method according to the third specific example can make post-processing of the output data efficient and further reduce hardware resources.
  • the first saddle riding type vehicle traveling composite data D3c1 includes image data based on the first approach turning trajectory data DTb1 and the first approach turning left / right direction acceleration data
  • the first straddle-type vehicle traveling composite data D3c1 more clearly shows the relationship between the first approach turning locus Tb1 and the vehicle lateral acceleration of the motorcycle 310 when traveling on the first approach turning locus Tb1. Therefore, it becomes easier to utilize the first straddle-type vehicle traveling composite data D3c1. Since the first saddle riding type vehicle traveling composite data D3c1 is more easily utilized, the post-processing of the output first saddle riding type vehicle traveling composite data D3c1 is easier.
  • the hardware resources of the output targets 61 and 62 to which the first saddle riding type vehicle traveling composite data D3c1 is output are further reduced. be able to.
  • the straddle-type vehicle travel data processing device 301 of the third specific example can more efficiently post-process the output data and further reduce hardware resources.
  • the saddle riding type vehicle travel data processing method according to the third specific example can make post-processing of the output data efficient and further reduce hardware resources.
  • the first saddle riding type vehicle traveling composite data D3c1 is image data based on the first approach turning locus data DTb1 and the first approach turning front direction acceleration data, the first approach turning locus data DTb1 and the first approach turning left / right acceleration. If both image data based on the data are included, the following effects are obtained. From such image data, it is easy to determine whether or not there is a gap between the time point when the deceleration in the vehicle front direction before the turning ends and the time point when the vehicle lateral acceleration increases from zero due to the turning. When there is a gap between the time point when the vehicle front deceleration before turning ends and the time point when the vehicle lateral acceleration increases due to turning, the front suspension in the contracted state once expands and then contracts again.
  • the first straddle-type vehicle traveling composite data D3c1 including such image data can be easily used as an output target by, for example, analyzing the traveling state of the vehicle. Since the first saddle riding type vehicle traveling composite data D3c1 is more easily utilized, the post-processing of the output first saddle riding type vehicle traveling composite data D3c1 is easier. Since the post-processing of the output first saddle riding type vehicle traveling composite data D3c1 is easier, the hardware resources of the output targets 61 and 62 to which the first saddle riding type vehicle traveling composite data D3c1 is output are further reduced. be able to.
  • the straddle-type vehicle travel data processing device 301 of the third specific example can more efficiently post-process the output data and further reduce hardware resources. Further, the saddle riding type vehicle travel data processing method according to the third specific example can make post-processing of the output data efficient and further reduce hardware resources.
  • the first saddle riding type vehicle traveling composite data D3c1 includes image data of a graph in which the vertical axis represents the acceleration of the motorcycle 310 in the vehicle front direction and the horizontal axis represents the vehicle lateral direction acceleration of the motorcycle 310.
  • the effect is obtained.
  • the first straddle-type vehicle traveling composite data D3c1 more clearly shows the relationship between the acceleration in the vehicle front direction of the motorcycle 310 and the acceleration in the vehicle left-right direction of the motorcycle 310 when traveling on the first approach turning locus Tb1. Shown in. Therefore, it becomes easier to utilize the first straddle-type vehicle traveling composite data D3c1.
  • the front suspension in the contracted state once expands and then contracts again.
  • the posture of the motorcycle 310 changes. Therefore, the first straddle-type vehicle traveling composite data D3c1 including the image data of such a graph can be easily used as an output target by, for example, analyzing the traveling state of the vehicle.
  • the post-processing of the output first saddle riding type vehicle traveling composite data D3c1 is easier. Since the post-processing of the output first saddle riding type vehicle traveling composite data D3c1 is easier, the hardware resources of the output targets 61 and 62 to which the first saddle riding type vehicle traveling composite data D3c1 is output are further reduced. be able to.
  • the straddle-type vehicle travel data processing device 301 of the third specific example can more efficiently post-process the output data and further reduce hardware resources. Further, the saddle riding type vehicle travel data processing method according to the third specific example can make post-processing of the output data efficient and further reduce hardware resources.
  • the straddle-type vehicle of the present invention is not limited to a motorcycle.
  • the straddle-type vehicle of the present invention includes a motorcycle, a motor tricycle, a four-wheel buggy (ATV: All Terrain Vehicle / ATV), a snowmobile, a water motorcycle (personal watercraft), etc., in addition to a motorcycle. ..
  • Motorcycles, tricycles, and four-wheeled buggies have at least one front wheel and at least one rear wheel.
  • motorcycles include sports, on-road, and off-road motorcycles, scooters, motorbikes, mopeds, and the like.
  • the motorcycle may have two front wheels and one rear wheel, or one front wheel and two rear wheels.
  • the steered wheels of a motorcycle, a motorcycle, and a four-wheel buggy may be front wheels, rear wheels, or both front and rear wheels.
  • the motorcycle, the motorcycle, and the four-wheel buggy may have at least one front suspension that absorbs vertical vibration of at least one front wheel.
  • motorcycles, motorcycles, and four-wheel buggies may have at least one rear suspension that absorbs vertical vibrations of at least one rear wheel.
  • a snowmobile is a saddle type vehicle that runs on snow.
  • Snowmobiles have one or two skis at the front of the vehicle.
  • One or two skis provided at the front of the vehicle are steering skis.
  • the rider operates the steering wheel (handle unit) to change the direction of the steering ski.
  • the first turning vehicle attitude data may be data related to the steering angle of the ski for steering.
  • Snowmobiles may have endless tracks (track belts) at the rear of the vehicle and may have one or two skis.
  • the power source of the endless track (track belt) may be an engine or an electric motor.
  • the snowmobile may have at least one suspension that absorbs vertical vibrations.
  • Watercraft is a saddle type vehicle that runs on the water surface.
  • Water motorcycles generate propulsion by a water jet propulsion system.
  • the water jet propulsion system generates a propulsive force by accelerating and injecting water taken from the lower part of the hull by a jet pump.
  • the power source of the jet pump may be an engine or an electric motor.
  • the water motorcycle may have at least one suspension that absorbs vertical vibrations.
  • a motorcycle like a motorcycle, leans to the right when turning right.
  • the four-wheel buggy hardly tilts in either the left-right direction of the vehicle.
  • the rider moves the center of gravity to the right of the vehicle. This balances gravity and centrifugal force.
  • a water motorcycle leans to the right of the vehicle when turning right. Similar to the motorcycle, the rider tilts the water motorcycle to the right of the vehicle by changing its posture.
  • the snowmobile when a snowmobile makes a right turn at a relatively low speed, it hardly leans in either the left or right direction of the vehicle.
  • the snowmobile may lean to the right of the vehicle when turning right at a relatively high speed.
  • the snowmobile makes little right or left inclination when turning to the right at a relatively high speed.
  • the rider Similar to the motorcycle, the rider changes the posture of the rider to tilt the snowmobile to the right of the vehicle. When turning left, the description is omitted because it is the opposite of right turning.
  • the saddle-ride type vehicle is a vehicle that turns by utilizing the balance between centrifugal force and gravity.
  • the approach turning guide unit of the present invention is not limited to one provided on the ground.
  • the approach turning guide unit may be provided on snow.
  • the approach turning guide unit may be provided on the water surface.
  • the number of approach guide portions for guiding the traveling direction of the saddle riding type vehicle so that the saddle riding type vehicle travels in the approach area is not limited to two. There may be one approach guide part or more than two approach guide parts.
  • the number of turning guide portions for guiding the traveling direction of the saddle riding type vehicle so that the saddle riding type vehicle travels in the first turning region is not limited to five.
  • the number of swivel guide portions may be less than five or more than five.
  • the number of turning guides may be one.
  • the first approach trajectory may not be a traveling trajectory when the saddle riding type vehicle travels in the approach area while passing between the two approach guide portions.
  • the approach guide part may be arranged in a different form from the above.
  • the approach guide part may not be provided.
  • the first turning locus may not be the running locus when the straddle-type vehicle travels in the first turning region while passing between the turning guide portion and the second arc.
  • the turning guide part may be arranged in a form different from the above.
  • the turning guide unit may not be provided.
  • the first approach turning trajectory is an environment in which at least one approach turning guide unit is provided for guiding the traveling direction of the saddle type vehicle so that the saddle type vehicle travels in the approach turning area. It does not have to be the traveling locus when traveling in. That is, the approach turning guide unit may not be provided.
  • the shape of the annular region of the present invention is not limited to the shape described in Specific Example 1.
  • the annular region described in the specific example 1 corresponds to the first annular region of the present invention.
  • the shape of the annular region of the present invention has only to have the approach turning region Zb and is annular. Another example of the annular region of the present invention will be specifically described below.
  • the direction in which the saddle riding type vehicle travels in the first annular region is the front direction.
  • the front end in the description of the annular region refers to the end in the direction in which the saddle riding type vehicle travels (progresses) in the annular region.
  • the annular region of the present invention may be the second annular region Z 2 a.
  • FIG. 21 shows an example of the second annular region Z 2 a.
  • the second annular region Z 2 a includes, in addition to the approach turning region Zb, a linear second linear region Z 2 e, a curved second turning region Z 2 f, and a linear third linear region Z 2 g, a curved third turning region Z 2 h, a straight fourth straight region Z 2 i, a curved fourth turning region Z 2 j, and a straight fifth straight region Z 2 k.
  • a curved fifth turning region Z 2 l, a linear sixth linear region Z 2 m, and a curved sixth turning region Z 2 n A curved fifth turning region Z 2 l, a linear sixth linear region Z 2 m, and a curved sixth turning region Z 2 n.
  • the second linear region Z 2 e is connected to the front end of the first turning region Zd and is shorter than the approach region Zc.
  • the second turning area Z 2 f is connected to the front end of the second linear area Z 2 e.
  • the circular locus T 2 a1 corresponds to the first circular locus of the present invention.
  • the turning direction of the second turning area Z 2 f is different from the turning direction of the approach turning area Zb.
  • the third linear region Z 2 g is connected to the front end of the second turning region Z 2 f.
  • the third turning area Z 2 h is connected to the front end of the third linear area Z 2 g.
  • the turning direction of the third turning area Z 2 h is the same as the turning direction of the second turning area Z 2 f.
  • the fourth linear region Z 2 i is connected to the front end of the third turning region Z 2 h.
  • the fourth turning area Z 2 j is connected to the front end of the fourth linear area Z 2 i.
  • the turning direction of the fourth turning area Z 2 j is different from the turning direction of the third turning area Z 2 h.
  • the fifth linear region Z 2 k is connected to the front end of the fourth turning region Z 2 j and is longer than the fourth linear region Z 2 i.
  • the fifth turning area Z 2 l is connected to the front end of the fifth linear area Z 2 k.
  • the turning direction of the fifth turning region Z 2 l is the same as the turning direction of the fourth turning region Z 2 j.
  • Sixth linear region Z 2 m is connected to the front end of the fifth pivot region Z 2 l, longer than the third straight line region Z 2 g.
  • the sixth turning region Z 2 n is connected to the front end of the sixth straight line region Z 2 m and the rear end of the approach region Zc.
  • the turning direction of the sixth turning area Z 2 n is the same as the turning direction of the fifth turning area Z 2 l.
  • the turning direction of the sixth turning area Z 2 n is the same as the turning direction of the first turning area Zd. That is, in the circular locus T 2 a1, the traveling locus that is connected to the rear end of the first approach turning locus Tb1 during turning has the same turning direction as the first approach turning locus Tb1.
  • FIG. 21 a plurality of guide parts 7 including a plurality of approach guide parts 7c and a plurality of turning guide parts 7d are displayed.
  • the position and the number of the guide portions 7 provided for the second annular region Z 2 a are not limited to those shown in FIG.
  • the guide part 7 may not be provided.
  • the number of places corresponding to the approach turning region of the present invention is not limited to one.
  • the second straight line area Z 2 e and the second turning area Z 2 f may correspond to the approach turning area of the present invention.
  • the third straight line area Z 2 g and the third turning area Z 2 h may correspond to the approach turning area of the present invention.
  • the fifth straight line region Z 2 k and the fifth turning region Z 2 l may correspond to the approach turning region of the present invention.
  • the sixth straight line area Z 2 m and the sixth turning area Z 2 n may correspond to the approach turning area of the present invention.
  • the annular region of the present invention may be the third annular region Z 3 a.
  • FIG. 22 shows an example of the third annular region Z 3 a.
  • the shape of the third annular region Z 3 a is not limited to the shape shown in FIG.
  • the shape of the area surrounded by the third annular area Z 3 a is E-shaped.
  • the third annular region Z 3 a includes, in addition to the approach turning region Zb, a linear second linear region Z 3 e, a curved second turning region Z 3 f, and a linear third linear region Z 3. g, a curved third turning area Z 3 h, a straight fourth straight area Z 3 i, a curved fourth turning area Z 3 j, and a straight fifth straight area Z 3 k.
  • a curved fifth turning region Z 3 l, a straight sixth straight region Z 3 m, a curved sixth swing region Z 3 n, a straight seventh straight region Z 3 o, and a curved line A seventh swirl zone Z 3 p.
  • the second linear region Z 3 e is connected to the front end of the first turning region Zd and is shorter than the approach region Zc.
  • the second turning area Z 3 f is connected to the front end of the second linear area Z 3 e.
  • the circular locus T 3 a1 is defined as It corresponds to the first annular locus of the present invention.
  • the turning direction of the second turning region Z 3 f is different from the turning direction of the approach turning region Zb.
  • the third linear region Z 3 g is connected to the front end of the second turning region Z 3 f.
  • the third turning area Z 3 h is connected to the front end of the third linear area Z 3 g.
  • the turning direction of the third turning area Z 3 h is different from the turning direction of the second turning area Z 3 f.
  • the fourth straight line region Z 3 i is connected to the front end of the third turning region Z 3 h.
  • the fourth turning area Z 3 j is connected to the front end of the fourth linear area Z 3 i.
  • the turning direction of the fourth turning area Z 3 j is different from the turning direction of the third turning area Z 3 h.
  • the fourth turning area Z 3 j is connected to the front end of the fourth turning area Z 3 j.
  • the fifth turning area Z 3 l is connected to the front end of the fifth linear area Z 3 k.
  • the turning direction of the fifth turning area Z 3 l is different from the turning direction of the fourth turning area Z 3 j.
  • the sixth linear region Z 3 m is connected to the front end of the fifth turning region Z 3 l and is longer than the second to fifth linear regions Z 3 k.
  • the sixth turning area Z 3 n is connected to the front end of the sixth linear area Z 3 m.
  • the turning direction of the sixth turning area Z 3 n is the same as the turning direction of the fifth turning area Z 3 l.
  • the seventh linear region Z 3 o is connected to the front end of the sixth turning region Z 3 n.
  • the seventh turning area Z 3 p is connected to the front end of the seventh linear area Z 3 o and the rear end of the approach area Zc.
  • the turning direction of the seventh turning area Z 3 p is the same as the turning direction of the sixth turning area Z 3 n.
  • the turning direction of the seventh turning area Z 3 p is the same as the turning direction of the first turning area Zd. That is, in the circular locus T 3 a1, the traveling locus that is connected to the rear end of the first approach turning locus Tb1 during turning is the same as the first approach turning locus Tb1 in the turning direction.
  • FIG. 22 a plurality of guide parts 7 including a plurality of approach guide parts 7c and a plurality of turning guide parts 7d are displayed.
  • the position and the number of the guide portions 7 provided for the third annular region Z 3 a are not limited to those shown in FIG.
  • the number of places corresponding to the approach turning region of the present invention is not limited to one.
  • the second straight line region Z 3 e and the second turning region Z 3 f may correspond to the approach turning region of the present invention.
  • the sixth straight line area Z 3 m and the sixth turning area Z 3 n may correspond to the approach turning area of the present invention.
  • the seventh straight line area Z 3 o and the seventh turning area Z 3 p may correspond to the approach turning area of the present invention.
  • the annular region of the present invention may be the fourth annular region Z 4 a.
  • FIG. 23 shows an example of the fourth annular region Z 4 a.
  • the shape of the fourth annular region Z 4 a is not limited to the shape shown in FIG.
  • the fourth annular region Z 4 a is approach turning in addition to the area Zb, and the second linear region Z 4 e linear, and curvilinear second pivot region Z 4 f, the third linear region Z 4 linear g, a curved third turning region Z 4 h, a straight fourth straight region Z 4 i, and a curved fourth turning region Z 4 j.
  • the second linear region Z 4 e is connected to the front end of the first turning region Zd.
  • the second turning area Z 4 f is connected to the front end of the second linear area Z 4 e. Including a first approach turn trajectory Tb1, one of the travel locus of when traveling along the fourth annular region Z 4 a, an annular trajectory T 4 a1.
  • the circular locus T 4 a1 corresponds to the first circular locus of the present invention.
  • the turning direction of the second turning area Z 4 f is different from the turning direction of the approach turning area Zb.
  • the third linear region Z 4 g is connected to the front end of the second turning region Z 4 f.
  • the third turning area Z 4 h is connected to the front end of the third linear area Z 4 g.
  • the turning direction of the third turning area Z 4 h is different from the turning direction of the second turning area Z 4 f.
  • Fourth linear region Z 4 i is connected to the front end of the third pivot region Z 4 h.
  • the fourth turning region Z 4 j is connected to the front end of the fourth linear region Z 4 i and the rear end of the approach region Zc.
  • the turning direction of the fourth turning area Z 4 j is different from the turning direction of the third turning area Z 4 h.
  • the turning direction of the fourth turning area Z 4 j is different from the turning direction of the first turning area Zd. That is, in the circular locus T 4 a1, the traveling locus which is connected to the rear end of the first approach turning locus Tb1 during turning differs from the first approach turning locus Tb1 in the turning direction.
  • FIG. 23 a plurality of guide portions 7 including a plurality of turning guide portions 7d are displayed.
  • the positions and the numbers of the guide portions 7 provided for the third annular region Z 3 a are not limited to those shown in FIG.
  • the number of places corresponding to the approach turning region of the present invention is not limited to one.
  • the second straight line region Z 3 e and the second turning region Z 3 f may correspond to the approach turning region of the present invention.
  • the annular loci T 2 a1, T 3 a1, T 4 a1 when traveling in the second to fourth annular regions Z 2 a, Z 3 a, Z 4 a When generated based on, the following effects can be obtained.
  • the annular loci T 2 a1, T 3 a1, T 4 a1 when traveling in the second to fourth annular regions Z 2 a, Z 3 a, Z 4 a include traveling loci during four or more turns.
  • the circular loci T 2 a1, T 3 a1, and T 4 a1 when traveling in the second to fourth annular regions Z 2 a, Z 3 a, and Z 4 a are the same as the first approach turning locus Tb1 and the turning direction. Both the same traveling locus and the traveling loci having different turning directions from the first approach turning locus Tb1 are included. Therefore, the acceleration in the vehicle front direction is associated with the first annular loci T 2 a1, T 3 a1, T 4 a1 when traveling in the second to fourth annular regions Z 2 a, Z 3 a, Z 4 a.
  • the first saddle riding type vehicle traveling composite data has accuracy (reliability) as data reflecting the running state of the saddle riding type vehicle. high. Therefore, it becomes easy to utilize the first straddle-type vehicle traveling composite data by, for example, vehicle control or vehicle analysis. Since it becomes easier to utilize the first saddle riding type vehicle traveling composite data, the post-processing of the output first saddle riding type vehicle traveling composite data is easier. Since the post-processing of the output first straddle-type vehicle travel composite data is easier, it is possible to further reduce the hardware resources to be output to which the first saddle-ride type vehicle travel composite data is output.
  • the first annular locus of the present invention When the first annular locus of the present invention is connected to the rear end of the first approach turning locus and includes a running locus in a turning direction different from that of the first approach turning locus, such as the annular locus T 4 a1, The effect of is obtained.
  • the first straddle-type vehicle traveling composite data generated based on such a traveling locus is compared to the first straddle-type vehicle traveling composite data obtained when the turning directions are all the same as each other.
  • the accuracy (reliability) as data that reflects the state is high. Therefore, it becomes easy to utilize the first straddle-type vehicle traveling composite data by, for example, vehicle control or vehicle analysis.
  • the post-processing of the output first saddle riding type vehicle traveling composite data is easier. Since the post-processing of the output first straddle-type vehicle travel composite data is easier, it is possible to further reduce the hardware resources to be output to which the first saddle-ride type vehicle travel composite data is output.
  • the traveling locus of traveling in each of the linear regions of the first to fourth annular regions Z 2 a, Z 3 a, and Z 4 a described above is substantially linear.
  • the traveling locus in each straight line region may be configured by one straight line, at least one straight line and a curved line, or may be configured by only a curved line.
  • the traveling locus in each of the turning regions of the above-mentioned first to fourth annular regions may be constituted by one arc, may be constituted by a plurality of arcs, or may be constituted by only curved lines, It may be composed of at least one straight line and a curved line.
  • the annular region of the present invention may be circular, for example.
  • the annular region of the present invention may have a shape similar to that of a course used in a tri-khana, for example.
  • the course used in Trikhana is a laterally long 8-shaped course.
  • Trikhana refers to a gymkhana, which is one type of motor sports, limited to a course of the above shape.
  • the annular locus of the present invention is a running locus of the saddle type vehicle when the vehicle continuously runs at least once in the annular region.
  • the first approach turning locus included in the circular path is a saddle riding when continuously traveling along the first straight line and the first arc over the entire approach turning area so as to enter the first turning area from the approach area.
  • 3 is a traveling locus of the type vehicle. If the above conditions are satisfied, the start point and the end point of the first annular region may be at any position. It is preferable that the start point of the first annular region is not the time point when the saddle riding type vehicle is started. The starting point of the first annular region may be the time when the straddle-type vehicle is started at the end of the approach region. It is preferable that the end point of the first annular region is not the time point when the saddle riding type vehicle is stopped. The end point of the first annular region may be a time point when the saddle riding type vehicle is stopped.
  • the turning direction of the first approach turning locus Tb1 shown in FIGS. 10 and 21 to 23 is the vehicle left direction.
  • the turning direction of the first approach turning locus of the present invention may be the vehicle right direction or the vehicle left direction.
  • the first approach turning locus Tb1 is a running locus when the motorcycles 110, 210 and 310 both accelerate and decelerate while traveling in the approach area Zc.
  • the first approach turning trajectory of the present invention may be a traveling trajectory when the saddle riding type vehicle only decelerates while traveling in the approach area.
  • the first approach turning locus of the present invention may be a running locus when the saddle riding type vehicle decelerates while traveling in the approach area and the turning area without accelerating in the approach area.
  • the imaging device that captures the posture of the straddle-type vehicle and the rider's posture may be installed on the snow.
  • the image pickup device for photographing the posture of the saddle-ride type vehicle and the posture of the rider traveling in the approach turning area may be installed on the water surface, or on a land such as a shore. It may be installed.
  • the imaging device may be a device that analyzes an image captured by a camera and generates computer graphics data.
  • Snowmobiles and water motorcycles may have speed sensors that detect the speed in the vehicle front direction or the traveling direction without using GNSS.
  • the first approach forward turn acceleration data of the present invention may be generated based on the signal of the speed sensor or may be generated using GNSS.
  • the first approach forward turn acceleration data of the present invention may be generated based on a signal of a sensor that detects the rotational speed of the endless track of the snowmobile.
  • the saddle riding type vehicle traveling data processing device may or may not be mounted on the saddle riding type vehicle.
  • the saddle riding type vehicle running data processing device is a vehicle control device which controls the saddle riding type vehicle based on data related to the running saddle riding type vehicle
  • the saddle riding type vehicle running data processing device is the saddle riding type vehicle. May or may not be mounted on.
  • the saddle riding type vehicle running data processing device is a data recording device that accumulates data related to the running saddle riding type vehicle
  • the saddle riding type vehicle running data processing device may be mounted on the saddle riding type vehicle, It may not be installed.
  • the saddle riding type vehicle traveling data processing device may acquire data related to the plurality of saddle riding type vehicles.
  • the saddle riding type vehicle travel data processing device of the present invention may be one device arranged at one location, or may be composed of a plurality of devices arranged at different positions.
  • the first turning rider attitude data may be data generated using motion capture.
  • Motion capture is a technology that digitizes the movements of people and objects and captures them in a computer.
  • the first turning rider attitude data may be data generated using inertial sensor type motion capture. Specifically, the first turning rider posture data may be generated based on a signal from an inertial sensor such as an IMU (Inertial Measurement Unit) attached to each part of the rider.
  • an inertial sensor such as an IMU (Inertial Measurement Unit) attached to each part of the rider.
  • the first turning rider attitude data may be data generated using mechanical motion capture.
  • Mechanical motion capture is also called an exoskeleton motion capture system.
  • the first turning rider posture data may be generated based on a signal of a sensor that detects an angle or a displacement attached to a joint of the rider.
  • the first turning rider attitude data may be data generated using magnetic motion capture. Specifically, a magnetic coil is attached to the rider's joint. The position and orientation of the magnetic coil can be obtained by measuring the strain caused by the movement of the magnetic coil in the magnetic field. The first turning rider posture data may be generated based on the information.
  • the first turning rider attitude data may be data generated using markerless motion capture.
  • the first turning rider posture data may be data generated by analyzing an image of a person captured by a camera.
  • the image data generated by using the markerless motion capture may be a photograph or a moving image taken by a camera and a line or a point created by the CG superimposed and displayed.
  • the image data generated by using the markerless motion capture may be composed only of the image data created by CG.
  • the camera used for the markerless motion capture may or may not be mounted on the straddle-type vehicle.
  • the process of generating the image data of the markerless motion capture may be performed by the straddle type vehicle traveling data processing device of the present invention or may be performed by the imaging device.
  • the first turning rider attitude data may be data generated by combining a plurality of motion capture technologies.
  • the first turning vehicle attitude data may be data generated using motion capture. Since a specific example of the motion capture is the same as the first turning rider posture data, the description is omitted. However, when the markerless motion capture is used, the camera is not mounted on the saddle type vehicle.
  • the first turning vehicle attitude data may be data generated by combining a plurality of motion capture technologies.
  • the first turning vehicle attitude data may be generated by using one of the motion capture technologies and the IMU mounted on the saddle type vehicle.
  • the first turning vehicle attitude data may be generated by using any motion capture technology and a GNSS receiving unit mounted on the saddle type vehicle.
  • the first turning trajectory data may be data generated by using the GNSS and the sensor included in the saddle type vehicle.
  • the sensor included in the saddle type vehicle is, for example, any of a sensor that detects a steering angle of an IMU, a steered wheel or a ski for steering, and a sensor that contributes to detection of a speed in a vehicle front direction or a traveling direction of the saddle type vehicle. It may be.
  • the first turning trajectory data may be data generated without using GNSS.
  • the first turning trajectory data may be data generated using a wireless beacon (beacon).
  • the saddle type vehicle is equipped with a receiver capable of receiving electromagnetic waves such as radio waves transmitted from a wireless station.
  • the first turning trajectory data may be generated based on the data generated based on the radio wave received by the receiver.
  • the first turning trajectory data may be generated based on the map data and the data generated based on the radio waves received by the receiver.
  • the straddle-type vehicle of the present invention may have an acceleration sensor that detects acceleration in the front direction of the vehicle.
  • the first approach turning front direction acceleration data may be generated based on the signal of the acceleration sensor.
  • the process of storing the saddle-ride type vehicle traveling integrated data in the storage unit may be executed.
  • the storage unit of the straddle-type vehicle travel data processing device of the present invention may store only one saddle-type vehicle travel composite data. That is, in the saddle riding type vehicle traveling composite data storage processing, the saddle riding type vehicle traveling composite data stored in the storage unit may be updated.
  • the saddle riding type vehicle traveling composite data may not be output to the output target.
  • this content is not included in the present invention.
  • the processor of the straddle-type vehicle traveling data processing device uses the first straddle that is the difference between the data that is the basis of the first straddle-type vehicle traveling composite data and the data that is the basis of the second straddle-type vehicle traveling composite data.
  • the straddle-type vehicle traveling composite data difference generating process for generating the type vehicle traveling composite data difference may be configured or programmed.
  • the processor is configured to execute a saddle riding type vehicle running composite data difference storage process of storing the generated first saddle riding type vehicle running composite data difference in a storage unit of the saddle riding type vehicle running data processing device. May be programmed or programmed.
  • the processor may be configured or programmed to execute a saddle-ride type vehicle traveling composite data difference output process of outputting the first straddle-type vehicle traveling composite data difference stored in the storage unit to an output target.
  • the saddle-ride type vehicle travel data processing device may not output the first saddle-ride type vehicle travel composite data to the output target.
  • the saddle riding type vehicle travel data processing device is not included in the present invention.
  • the saddle-ride type vehicle travel data processing device may not generate the first saddle-ride type vehicle travel composite data. However, this case is not included in the present invention.
  • the first straddle-type vehicle traveling composite data difference is, for example, first data including first approach turning trajectory data and first approach turning front direction acceleration data, second approach turning trajectory data, and second approach turning front direction.
  • the difference between the acceleration data and the second data is the first approach turning locus, the acceleration in the vehicle front direction of the saddle riding type vehicle when traveling on the first approach turning locus, the second approach turning locus, and It may be data in which the acceleration in the vehicle front direction of the saddle riding type vehicle when traveling on the second approach turning locus is associated.
  • the first saddle riding type vehicle traveling composite data difference may be generated by, for example, one of the following methods.
  • the difference between the first approach turning trajectory data and the second approach turning trajectory data and the difference between the first approach turning front direction acceleration data and the second approach turning front direction acceleration data are calculated. Based on these two differences, a first straddle-type vehicle traveling composite data difference in which these two differences are associated is generated.
  • a first index associating these two data is generated.
  • a second index associating these two data is generated. The difference between the first index and the second index is calculated to generate the first saddle riding type vehicle traveling composite data difference.
  • the first saddle riding type vehicle traveling composite data difference is, for example, first data including first approach turning trajectory data, first approach turning front direction acceleration data, and first approach turning left / right direction acceleration data, and second approach turning. It is the difference between the trajectory data, the second approach turning front acceleration data, and the second data consisting of the second approach turning left / right acceleration data, and the first approach turning trajectory and the saddle riding when traveling on the first approach turning trajectory Acceleration in the vehicle front direction, saddle riding type vehicle when traveling on the first approach turning locus, lateral acceleration of the vehicle, second approach turning locus, straddle type vehicle when running on the second approach turning locus Of the vehicle front direction and the acceleration in the vehicle left-right direction of the straddle-type vehicle when traveling on the second approach turning locus may be data associated with each other.
  • the first saddle riding type vehicle traveling composite data difference may be generated by, for example, one of the following methods.
  • the first method first, the difference between the first approach turning trajectory data and the second approach turning trajectory data, the difference between the first approach turning front direction acceleration data and the second approach turning front direction acceleration data, the first approach turning A difference between the lateral acceleration data and the second approach turning lateral acceleration data is calculated. Based on these three differences, a first saddle riding type vehicle traveling composite data difference in which these three differences are associated is generated.
  • a first index that associates these three data is generated.
  • a second index that associates these three data is generated.
  • the difference between the first index and the second index is calculated to generate the first saddle riding type vehicle traveling composite data difference.
  • a first index that associates these two data is generated.
  • a second index that associates these two data is generated.
  • the difference between the first index and the second index is calculated.
  • a difference between the first approach turning left / right acceleration data and the second approach turning left / right acceleration data is calculated.
  • a first saddle riding type vehicle traveling composite data difference in which these two differences are associated is generated.
  • the first index may be generated based on the first approach turning trajectory data and the first approach turning left / right acceleration data.
  • the first index may be generated based on the first approach turning front direction acceleration data and the first approach turning left and right direction acceleration data.
  • the second index is generated based on two data of the same type as the two data that generate the first index.
  • the first saddle-type vehicle traveling composite data difference is, for example, first data composed of first annular trajectory data and first annular forward acceleration data, second annular trajectory data and second annular forward acceleration data. It is the difference between the two data and the first annular locus, the acceleration in the vehicle front direction of the saddle riding type vehicle when traveling on the first annular locus, the second annular locus, and the second annular locus when traveling. It may be data associated with the acceleration in the vehicle front direction of the saddle type vehicle.
  • the first straddle-type vehicle traveling composite data difference is, for example, first data composed of first annular trajectory data, first annular frontward acceleration data, and first annular left-right acceleration data, second annular trajectory data, and second annular trajectory data and second annular trajectory data.
  • the difference between the annular frontward acceleration data and the second data composed of the second annular left / right acceleration data which is the first annular locus, the vehicle forward acceleration of the saddle-ride type vehicle when traveling on the first annular locus, Acceleration in the vehicle left-right direction of the saddle riding type vehicle when traveling on the first annular locus, second annular trajectory, acceleration in the vehicle front direction of the saddle riding type vehicle when traveling on the second annular trajectory, and second annular
  • the data may be associated with acceleration in the vehicle left-right direction of the straddle-type vehicle when traveling on a locus.
  • the data on which the saddle-ride type vehicle integrated composite data is based may not include the first approach turning left / right acceleration data.
  • the data that is the basis of the saddle-ride type vehicle integrated composite data may not include the first turning vehicle attitude data.
  • the data that is the basis of the saddle-ride type vehicle integrated composite data may not include the first turning rider data.
  • the data that is the basis of the saddle-ride type vehicle integrated composite data may include the first turning vehicle attitude data instead of the first turning rider attitude data.
  • the data that is the basis of the saddle-ride type vehicle integrated composite data may not include the first rider identification data.
  • the rider identification data acquisition process may be omitted.
  • the saddle-ride type vehicle traveling integrated data generation process may be omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)
  • Automatic Assembly (AREA)

Abstract

A straddled vehicle traveling data processing device (1), which processes data pertaining to a traveling straddled vehicle (10), generates first straddled vehicle traveling composite data (Dc1) on the basis of first approach turning trajectory data (DTb1) pertaining to a first approach turning trajectory (Tb1), which is the traveling trajectory of the straddled vehicle within an approach turning zone (Zb), and first approach turning forward-acceleration data (Dab1) pertaining to the acceleration of the straddled vehicle in the forward direction of the vehicle when traveling on the first approach turn trajectory. The first straddled vehicle traveling composite data is output to output targets (4, 5). An approach turning zone has a width of 2m or less and comprises a linear approach zone (Zc) having a length of more than 0m and not more than 65m, and a curved first turning zone (Zd) which has a central angle of 90°-270° and of which the radius of the inner periphery is 2-10m.

Description

鞍乗型車両走行データ処理装置および鞍乗型車両走行データ処理方法Saddle-type vehicle traveling data processing device and saddle-type vehicle traveling data processing method
 本発明は、走行中の鞍乗型車両に関連するデータを処理する鞍乗型車両走行データ処理装置および鞍乗型車両走行データ処理方法に関する。 The present invention relates to a saddle riding type vehicle running data processing device and a saddle riding type vehicle running data processing method for processing data related to a running saddle riding type vehicle.
 鞍乗型車両は、遠心力と重力のバランスを利用して旋回する乗り物である。旋回中の鞍乗型車両における遠心力と重力のバランスなどの走行状態は、同じコースを走る場合でもライダーによって異なる。旋回中の鞍乗型車両の走行状態は、ライダーの意思によって変更される場合がある。 A saddle type vehicle is a vehicle that turns by utilizing the balance between centrifugal force and gravity. The running conditions such as the balance of centrifugal force and gravity in a saddle-type vehicle during turning differ depending on the rider even when running on the same course. The running state of the saddle riding type vehicle during turning may be changed by the rider's intention.
 走行中の鞍乗型車両に関連するデータに基づいて鞍乗型車両を制御する車両制御装置が提案されている。例えば、特許文献1の車両制御装置は、車速と舵角に基づいて走行状態を判定し、判定された走行状態に基づいてステアリングの減衰力を調整している。また、特許文献2の車両制御装置は、鞍乗型車両の走行状態に関する条件が充足されるか否かに応じて、エンジン回転速度の制御を変更する。また、特許文献3の車両制御装置は、鞍乗型車両の走行状態に伴って変化する物理量を検出し、この物理量に基づいて燃料噴射量を制御している。特許文献1~3の車両制御装置では、複数種類のデータは、車両制御装置内の制御部に出力される。複数種類のデータの出力後、制御部は、出力された複数種類のデータに基づいて、車両を制御する処理を行っている。 A vehicle control device that controls a saddle-type vehicle based on data related to the saddle-type vehicle that is running has been proposed. For example, the vehicle control device of Patent Document 1 determines the traveling state based on the vehicle speed and the steering angle, and adjusts the steering damping force based on the determined traveling state. Further, the vehicle control device of Patent Document 2 changes the control of the engine rotation speed depending on whether or not the condition regarding the traveling state of the saddle riding type vehicle is satisfied. Further, the vehicle control device of Patent Document 3 detects a physical quantity that changes according to the running state of the saddle riding type vehicle, and controls the fuel injection amount based on this physical quantity. In the vehicle control devices of Patent Documents 1 to 3, plural types of data are output to the control unit in the vehicle control device. After outputting the plurality of types of data, the control unit performs processing for controlling the vehicle based on the plurality of types of output data.
 また、例えば、特許文献4のように、複数の走行状態を検出する複数のセンサから取得された複数種類のデータを蓄積するデータ収録装置がある。このデータ収録装置は、例えば、車両の走行後、蓄積した複数種類のデータを、車両の走行状態を解析するための解析装置に出力されている。複数種類のデータの出力後、解析装置は、出力された複数種類のデータを解析する処理を行っている。 Also, for example, as in Patent Document 4, there is a data recording device that accumulates a plurality of types of data acquired from a plurality of sensors that detect a plurality of running states. The data recording device outputs, for example, a plurality of types of accumulated data after the vehicle has traveled to an analysis device for analyzing the traveling state of the vehicle. After outputting the plurality of types of data, the analysis device performs a process of analyzing the plurality of types of output data.
特開2009-292258号公報JP, 2009-292258, A 国際公開第2014/142211号International Publication No. 2014/142211 特開2005-220766号公報JP 2005-220766 A 特開平8-331158号公報Japanese Unexamined Patent Publication No. 8-331158
 鞍乗型車両走行データ処理装置および鞍乗型車両走行データ処理方法は、鞍乗型車両走行データ処理装置から出力された複数種類のデータの後処理(postprocess)を効率化して、データの後処理を行う装置のハードウェアリソースを低減することが求められている。 A saddle-ride type vehicle travel data processing method and a saddle-ride type vehicle travel data processing method improve post-processing of data by increasing efficiency of post-processing of a plurality of types of data output from the saddle-ride type vehicle travel data processing apparatus. It is required to reduce the hardware resources of the device that performs the above.
 本発明は、走行中の鞍乗型車両に関連するデータを蓄積するデータ収録装置や、走行中の鞍乗型車両に関連するデータに基づいて鞍乗型車両を制御する車両制御装置のような、走行中の鞍乗型車両に関連するデータを処理する鞍乗型車両走行データ処理装置において、出力されたデータの後処理を効率化して、ハードウェアリソースを低減することを目的とする。
 また、本発明は、上述した鞍乗型車両走行データ処理装置により走行中の鞍乗型車両に関連するデータを処理する鞍乗型車両走行データ処理方法において、出力されたデータの後処理を効率化して、ハードウェアリソースを低減することを目的とする。
INDUSTRIAL APPLICABILITY The present invention relates to a data recording device that accumulates data related to a running saddle type vehicle and a vehicle control device that controls a saddle type vehicle based on data related to a running saddle type vehicle. In a saddle riding type vehicle running data processing device for processing data related to a running saddle riding type vehicle, it is an object of the present invention to make post-processing of output data efficient and reduce hardware resources.
Further, the present invention is a straddle-type vehicle travel data processing method for processing data related to a saddle-ride type vehicle that is traveling by the above-described saddle-ride type vehicle travel data processing device, in which post-processing of output data is efficiently performed. To reduce hardware resources.
 (1)本発明の鞍乗型車両走行データ処理装置は、走行中の鞍乗型車両に関連するデータを蓄積するデータ収録装置や、走行中の前記鞍乗型車両に関連するデータに基づいて前記鞍乗型車両を制御する車両制御装置のような、走行中の前記鞍乗型車両に関連するデータを処理する鞍乗型車両走行データ処理装置であって、(A)(a1)0mより大きく65m以下の第1直線と、前記第1直線に平行で前記第1直線から2m離れた第2直線との間のアプローチ領域、および、前記第1直線の端に接続され、中心角が90°以上270°以下で半径が2m以上10m以下の第1円弧と、前記第2直線の端に接続され、前記第1円弧と同心状であって、前記第1円弧の径方向外側に位置する第2円弧との間の第1旋回領域からなるアプローチ旋回領域内の前記鞍乗型車両の走行軌跡であって、前記アプローチ領域から前記第1旋回領域に進入するように、前記アプローチ旋回領域の全域にわたって連続して走行したときの前記鞍乗型車両の走行軌跡である第1アプローチ旋回軌跡に関連する第1アプローチ旋回軌跡データ、および、(a2)前記第1アプローチ旋回軌跡を走行したときの前記鞍乗型車両の車両前方向の加速度に関連する第1アプローチ旋回前方向加速度データが取得される鞍乗型車両走行データ取得処理と、(B)前記第1アプローチ旋回軌跡データおよび前記第1アプローチ旋回前方向加速度データに基づいて、前記第1アプローチ旋回軌跡および前記第1アプローチ旋回軌跡を走行したときの前記鞍乗型車両の車両前方向の加速度が関連付けられた第1鞍乗型車両走行複合データが生成される鞍乗型車両走行複合データ生成処理と、(C)前記鞍乗型車両走行複合データ生成処理により生成された前記第1鞍乗型車両走行複合データが記憶部に記憶される鞍乗型車両走行複合データ記憶処理と、(D)前記鞍乗型車両走行複合データ記憶処理により記憶された前記第1鞍乗型車両走行複合データが出力対象に出力される鞍乗型車両走行複合データ出力処理と、を実行するように構成されまたはプログラムされたプロセッサを有する。 (1) A straddle-type vehicle travel data processing device according to the present invention is based on a data recording device that accumulates data related to a running saddle-ride type vehicle and data related to the running saddle-ride type vehicle. A straddle-type vehicle travel data processing device, such as a vehicle control device for controlling the saddle-ride type vehicle, which processes data related to the saddle-ride type vehicle during travel, comprising: (A) (a1) 0 m It is connected to an approach area between a first straight line having a length of 65 m or less and a second straight line parallel to the first straight line and separated from the first straight line by 2 m, and a central angle of 90, which is connected to an end of the first straight line. Is connected to the end of the second straight line and a first arc having a radius of 2 ° or more and 10 m or less and a radius of 2 ° or more and 270 ° or less, is concentric with the first circular arc, and is located radially outside of the first circular arc. A travel locus of the straddle-type vehicle in an approach turning area including a first turning area between the second turning arc and the approach turning area so as to enter the first turning area from the approach area. First approach turning locus data relating to a first approach turning locus, which is a running locus of the saddle riding type vehicle when continuously running over the whole area, and (a2) when the first approach turning locus is run. Saddle-type vehicle travel data acquisition processing for acquiring first approach front-turn acceleration data related to vehicle front-direction acceleration of the saddle-ride type vehicle; and (B) the first approach turn trajectory data and the first The first straddle-type vehicle traveling in which the vehicle-front-direction acceleration of the straddle-type vehicle when traveling on the first approach-turning trajectory and the first approach-turning trajectory is associated based on the approach-turning forward acceleration data. A straddle-type vehicle travel composite data generation process for generating composite data and (C) the first saddle-ride type vehicle travel composite data generated by the saddle-ride type vehicle travel composite data generation process are stored in a storage unit. Straddle-type vehicle traveling composite data storage processing, and (D) straddle-type vehicle traveling composite data stored by the saddle-riding type vehicle traveling composite data storage processing is output to an output target And a processor configured or programmed to perform the travel composite data output process.
 この構成によると、本発明の鞍乗型車両走行データ処理装置は、鞍乗型車両走行データ取得処理と、鞍乗型車両走行複合データ生成処理と、鞍乗型車両走行複合データ記憶処理と、鞍乗型車両走行複合データ出力処理と、を実行する。鞍乗型車両走行データ取得処理では、第1アプローチ旋回軌跡データと、第1アプローチ旋回前方向加速度データが取得される。第1アプローチ旋回軌跡データは、第1アプローチ旋回軌跡に関連するデータである。第1アプローチ旋回軌跡は、アプローチ領域および第1旋回領域からなるアプローチ旋回領域内の鞍乗型車両の走行軌跡である。アプローチ領域は、0mより大きく65m以下の第1直線と、第1直線に平行で第1直線から2m離れた第2直線との間の領域である。第1旋回領域は、第1直線の端に接続された第1円弧と、第2直線の端に接続され、第1円弧と同心状であって、第1円弧の径方向外側に位置する第2円弧との間の領域である。第1円弧は、中心角が90°以上270°以下であって、半径が2m以上10m以下である。第1アプローチ旋回軌跡は、アプローチ領域から第1旋回領域に進入するように、アプローチ旋回領域内の全域にわたって連続して走行したときのアプローチ旋回領域内の鞍乗型車両の走行軌跡である。第1アプローチ旋回前方向加速度データは、第1アプローチ旋回軌跡を走行したときの鞍乗型車両の車両前方向の加速度に関連するデータである。鞍乗型車両走行複合データ生成処理では、第1アプローチ旋回軌跡データおよび第1アプローチ旋回前方向加速度データに基づいて、第1鞍乗型車両走行複合データが生成される。第1鞍乗型車両走行複合データは、第1アプローチ旋回軌跡、および、第1アプローチ旋回軌跡を走行したときの鞍乗型車両の車両前方向の加速度が関連付けられたデータである。鞍乗型車両走行複合データ記憶処理では、鞍乗型車両走行複合データ生成処理により生成された第1鞍乗型車両走行複合データが記憶部に記憶される。鞍乗型車両走行複合データ出力処理では、鞍乗型車両走行複合データ記憶処理により記憶された第1鞍乗型車両走行複合データが出力対象に出力される。第1アプローチ旋回軌跡は、旋回中と旋回前の直進中の鞍乗型車両の走行軌跡である。よって、旋回中と旋回前の直進中の鞍乗型車両の走行軌跡と車両前方向の加速度が関連付けられた第1鞍乗型車両走行複合データが、出力対象に出力される。 According to this configuration, the saddle type vehicle travel data processing device of the present invention includes a saddle type vehicle travel data acquisition process, a saddle type vehicle travel composite data generation process, and a saddle type vehicle travel composite data storage process, And a saddle-ride type vehicle traveling composite data output process. In the saddle riding type vehicle travel data acquisition process, the first approach turning trajectory data and the first approach turning front direction acceleration data are acquired. The first approach turning locus data is data related to the first approach turning locus. The first approach turning locus is a running locus of the saddle type vehicle in the approach turning area including the approach area and the first turning area. The approach region is a region between a first straight line that is greater than 0 m and 65 m or less and a second straight line that is parallel to the first straight line and is 2 m away from the first straight line. The first turning region is connected to an end of the first straight line and a first circular arc, is connected to the end of the second straight line, is concentric with the first circular arc, and is located radially outside the first circular arc. It is an area between two arcs. The first arc has a central angle of 90 ° or more and 270 ° or less and a radius of 2 m or more and 10 m or less. The first approach turning locus is a running locus of the straddle-type vehicle in the approach turning area when the vehicle continuously runs over the entire approach turning area so as to enter the first turning area from the approach area. The first approach turning front direction acceleration data is data relating to the acceleration in the vehicle front direction of the saddle type vehicle when traveling on the first approach turning locus. In the saddle riding type vehicle traveling composite data generation processing, the first straddling type vehicle traveling composite data is generated based on the first approach turning trajectory data and the first approach turning front direction acceleration data. The first straddle-type vehicle traveling composite data is data in which the first approach turning locus and the acceleration in the vehicle front direction of the saddle type vehicle when traveling on the first approach turning locus are associated with each other. In the saddle-ride type vehicle traveling composite data storage process, the first saddle-ride type vehicle traveling composite data generated by the saddle-ride type vehicle traveling composite data generation process is stored in the storage unit. In the saddle-ride type vehicle traveling composite data output process, the first saddle-ride type vehicle traveling composite data stored by the saddle-ride type vehicle traveling composite data storage process is output to the output target. The first approach turning locus is a running locus of the straddle-type vehicle during turning and before going straight. Therefore, the first straddle-type vehicle traveling composite data in which the traveling loci of the straddle-type vehicle during turning and before straightening are associated with the acceleration in the vehicle front direction is output to the output target.
 出力対象は、鞍乗型車両走行データ処理装置に含まれてもよく、含まれなくてもよい。鞍乗型車両走行データ処理装置が車両制御装置の場合、第1鞍乗型車両走行複合データは、例えば、車両制御装置内のエンジン制御またはブレーキ制御のためのプロセッサに出力されてもよい。エンジン制御またはブレーキ制御のためのプロセッサは、出力された第1鞍乗型車両走行複合データを用いて、鞍乗型車両のエンジン制御またはブレーキ制御を行うことができる。鞍乗型車両走行データ処理装置が車両制御装置の場合、第1鞍乗型車両走行複合データは、例えば、鞍乗型車両が備える表示装置に出力されてもよい。鞍乗型車両走行データ処理装置がデータ収録装置の場合、第1鞍乗型車両走行複合データは、例えば、データ収録装置に接続された外部記憶装置(二次記憶装置、補助記憶装置)に出力されてもよい。外部記憶装置に記憶された第1鞍乗型車両走行複合データは、鞍乗型車両の走行状態の解析に使用されてもよい。鞍乗型車両走行データ処理装置がデータ収録装置の場合、第1鞍乗型車両走行複合データは、データ収録装置の外部のコンピュータに出力されてもよい。第1鞍乗型車両走行複合データは、印刷装置に出力されてもよく、表示装置に出力されてもよい。 The output target may or may not be included in the saddle riding type vehicle travel data processing device. When the saddle riding type vehicle travel data processing device is a vehicle control device, the first saddle riding type vehicle travel composite data may be output to a processor for engine control or brake control in the vehicle control device, for example. The processor for engine control or brake control can perform engine control or brake control of the saddle riding type vehicle by using the output first saddle riding type vehicle traveling composite data. When the saddle riding type vehicle travel data processing device is a vehicle control device, the first saddle riding type vehicle travel composite data may be output to, for example, a display device included in the saddle riding type vehicle. When the saddle riding type vehicle traveling data processing device is a data recording device, the first saddle riding type vehicle traveling composite data is output to, for example, an external storage device (secondary storage device, auxiliary storage device) connected to the data recording device. May be done. The first straddle-type vehicle traveling composite data stored in the external storage device may be used for analysis of the traveling state of the straddle-type vehicle. When the saddle riding type vehicle traveling data processing device is a data recording device, the first saddle riding type vehicle traveling composite data may be output to a computer external to the data recording device. The first saddle riding type vehicle traveling composite data may be output to a printing device or a display device.
 鞍乗型車両は、車両の挙動の変化だけでなく、ライダーの姿勢の変化も利用して旋回する乗り物である。同じコースを走る場合でもライダーによって、ライダーの姿勢の変化および車両の挙動は異なる。したがって、旋回中の鞍乗型車両における遠心力と重力のバランスなどの走行状態は、ライダーの意思によって変更される場合がある。そのため、旋回中と旋回前の直進中の鞍乗型車両の走行軌跡と車両前方向の加速度は、ライダーの意思によって決まる鞍乗型車両の走行状態と密接に関連している。また、旋回中と旋回前の直進中における鞍乗型車両の走行軌跡と車両前方向の加速度は密接に関連する。旋回中と旋回前の直進中の鞍乗型車両の走行軌跡と車両前方向の加速度は、鞍乗型車両の走行状態が特に反映されやすい。したがって、旋回中と旋回前の直進中の鞍乗型車両の走行軌跡と車両前方向の加速度が関連付けられた第1鞍乗型車両走行複合データは、鞍乗型車両の走行状態を大きく反映している。そのため、第1鞍乗型車両走行複合データが出力対象に出力された後、第1鞍乗型車両走行複合データを活用しやすい。具体的には、出力された第1鞍乗型車両走行複合データを、出力対象において、例えば車両の制御や車両の走行状態の解析などに活用しやすい。 A saddle-type vehicle is a vehicle that makes turns not only by changing the behavior of the vehicle but also by changing the posture of the rider. Even when riding on the same course, the rider's posture changes and the vehicle's behavior varies depending on the rider. Therefore, the traveling state such as the balance between the centrifugal force and the gravity in the saddle riding type vehicle during turning may be changed by the rider's intention. Therefore, the running locus and the forward acceleration of the saddle riding type vehicle during turning and before going straight ahead are closely related to the running state of the saddle riding type vehicle determined by the rider's intention. In addition, the running locus of the straddle-type vehicle and the acceleration in the vehicle front direction are closely related to each other during turning and during straight ahead before turning. The running locus of the straddle-type vehicle and the acceleration in the vehicle front direction during turning and straight ahead before turning are particularly likely to reflect the running state of the straddle-type vehicle. Therefore, the first straddle-type vehicle traveling composite data in which the traveling loci of the saddle-ride type vehicle during the turn and the straight advance before the turn are associated with the acceleration in the vehicle front direction largely reflects the running state of the straddle-type vehicle. ing. Therefore, after the first saddle riding type vehicle traveling composite data is output to the output target, it is easy to utilize the first saddle riding type vehicle traveling composite data. Specifically, the output first straddle-type vehicle traveling composite data is easily used for output of the vehicle, for example, for controlling the vehicle or analyzing the traveling state of the vehicle.
 ここで、旋回中の鞍乗型車両の車両前方向の速度は、旋回半径が大きいほど高くなり、旋回半径が小さいほど低くなる。車両前方向の速度を、以下、車速という。仮に、第1旋回領域の内周縁である第1円弧の半径が10mよりも大きい場合、第1旋回領域を旋回中の鞍乗型車両の車速が比較的高い。そのため、第1円弧の半径が10mよりも大きい場合、第1旋回領域を旋回中の鞍乗型車両の車速が異なっても、遠心力の違いがあまりない。そのため、第1アプローチ旋回軌跡を走行したときの鞍乗型車両の走行状態の違いがあまりない。よって、仮に、第1円弧の半径が10mよりも大きい場合、第1アプローチ旋回軌跡を走行したときの鞍乗型車両の走行状態の違いがあまりないので、第1鞍乗型車両走行複合データを活用しにくい。
 一方、本発明の第1円弧の半径は10m以下であるため、第1旋回領域を旋回中の鞍乗型車両の車速が比較的低い。そのため、第1旋回領域を旋回中の鞍乗型車両の車速が異なると、遠心力に違いが生じる。第1円弧の半径が10m以下であることで、第1アプローチ旋回軌跡を走行したときの鞍乗型車両の走行状態の違いが大きくなる。第1アプローチ旋回軌跡を走行したときの鞍乗型車両の走行状態の違いが、第1アプローチ旋回軌跡と第1アプローチ旋回軌跡を走行したときの鞍乗型車両の車両前方向の加速度の違いに反映されやすい。その結果、第1円弧の半径が10m以下であることで、第1鞍乗型車両走行複合データを活用しやすい。
Here, the speed in the vehicle front direction of the straddle-type vehicle during turning becomes higher as the turning radius becomes larger, and becomes lower as the turning radius becomes smaller. The speed in the forward direction of the vehicle is hereinafter referred to as the vehicle speed. If the radius of the first circular arc that is the inner peripheral edge of the first turning region is larger than 10 m, the vehicle speed of the saddle riding type vehicle that is turning in the first turning region is relatively high. Therefore, when the radius of the first circular arc is larger than 10 m, there is not much difference in centrifugal force even if the vehicle speed of the saddle riding type vehicle turning in the first turning region is different. Therefore, there is not much difference in the traveling state of the saddle riding type vehicle when traveling on the first approach turning locus. Therefore, if the radius of the first arc is larger than 10 m, there is not much difference in the traveling state of the saddle riding type vehicle when traveling on the first approach turning locus, and therefore the first straddle type vehicle traveling composite data is obtained. It is difficult to use.
On the other hand, since the radius of the first arc of the present invention is 10 m or less, the vehicle speed of the straddle-type vehicle that is turning in the first turning region is relatively low. Therefore, if the vehicle speeds of the saddle riding type vehicle turning in the first turning region are different, the centrifugal force is different. When the radius of the first circular arc is 10 m or less, the difference in the traveling state of the saddle type vehicle when traveling on the first approach turning locus becomes large. The difference in the running state of the saddle riding type vehicle when traveling on the first approach turning locus is due to the difference between the first approach turning locus and the acceleration in the vehicle front direction of the saddle riding type vehicle when running on the first approach turning locus. It is easy to be reflected. As a result, when the radius of the first arc is 10 m or less, it is easy to utilize the first saddle riding type vehicle traveling composite data.
 通常、旋回中の鞍乗型車両の車両左右方向の加速度は、0.1G~0.8G程度(1~8m/s2程度)である。第1円弧は、中心角が90°以上270°以下で半径が2m以上10m以下である。そのため、第1円弧を内周縁とする第1旋回領域を旋回中の鞍乗型車両の車速は、例えば5~32km/h程度である。第1旋回領域を旋回中の鞍乗型車両の車速が異なると、遠心力に違いが大きく生じる。したがって、第1円弧の中心角が90°以上270°以下で半径が2m以上10m以下であることで、第1アプローチ旋回軌跡を走行したときの鞍乗型車両の走行状態の違いがより顕著に現れる。そのため、第1アプローチ旋回軌跡を走行したときの鞍乗型車両の走行状態の違いが、第1アプローチ旋回軌跡および第1アプローチ旋回軌跡を走行したときの車両前方向の加速度の違いに反映されやすい。その結果、第1円弧の中心角が90°以上270°以下で半径が2m以上10m以下であることで、第1鞍乗型車両走行複合データをより活用しやすい。 Normally, the acceleration in the vehicle left-right direction of the saddle riding type vehicle while turning is about 0.1 G to 0.8 G (about 1 to 8 m / s 2 ). The first arc has a central angle of 90 ° or more and 270 ° or less and a radius of 2 m or more and 10 m or less. Therefore, the vehicle speed of the straddle-type vehicle that is turning in the first turning region having the first arc as the inner peripheral edge is, for example, about 5 to 32 km / h. If the vehicle speed of the straddle-type vehicle that is turning in the first turning region is different, the centrifugal force greatly differs. Therefore, when the center angle of the first arc is 90 ° or more and 270 ° or less and the radius is 2 m or more and 10 m or less, the difference in the traveling state of the saddle riding type vehicle when traveling on the first approach turning locus becomes more remarkable. appear. Therefore, the difference in the traveling state of the straddle-type vehicle when traveling on the first approach turning trajectory is likely to be reflected in the difference between the first approach turning trajectory and the acceleration in the vehicle front direction when traveling along the first approach turning trajectory. . As a result, since the central angle of the first arc is 90 ° or more and 270 ° or less and the radius is 2 m or more and 10 m or less, it is easier to utilize the first saddle riding type vehicle traveling composite data.
 旋回前の直進中に鞍乗型車両が減速のみまたは加速と減速の両方をする場合、直進に必要な距離は、0mより大きく65m以下である。アプローチ領域の第1直線の長さは、0mより大きく65m以下である。それにより、第1アプローチ旋回軌跡および第1アプローチ旋回軌跡を走行したときの鞍乗型車両の車両前方向の加速度は、第1アプローチ旋回軌跡を走行したときの鞍乗型車両の走行状態がより反映されやすい。その結果、アプローチ領域の第1直線の長さが0mより大きく65m以下であることにより、第1鞍乗型車両走行複合データをより活用しやすい。 If the straddle-type vehicle only decelerates or both accelerates and decelerates while going straight before turning, the distance required for going straight is greater than 0 m and not more than 65 m. The length of the first straight line in the approach area is greater than 0 m and 65 m or less. As a result, the acceleration in the vehicle front direction of the saddle riding type vehicle when traveling on the first approach turning locus and the first approach turning locus is more dependent on the running state of the saddle riding type vehicle when running on the first approach turning locus. It is easy to be reflected. As a result, since the length of the first straight line in the approach area is greater than 0 m and less than or equal to 65 m, the first saddle riding type vehicle traveling composite data can be more easily utilized.
 第1直線と第2直線の間隔は、2mである。第2円弧は第1円弧と同心状に配置されるため、第1円弧と第2円弧の間隔も2mである。このように、アプローチ旋回領域の幅は、2mである。
 ここで、鞍乗型車両が自動二輪車または自動三輪車の場合、鞍乗型車両の車両前方向の長さは、1.8~2.6m程度であって、鞍乗型車両の幅(車両左右方向の長さ)は、0.5~1.1m程度である。鞍乗型車両が四輪バギーの場合、鞍乗型車両の車両前方向の長さは、1.4~2.0m程度であって、鞍乗型車両の幅は、0.7~1.2m程度である。鞍乗型車両がスノーモービルの場合、鞍乗型車両の車両前方向の長さは、2.0~4.0m程度であって、鞍乗型車両の幅は、1.0~1.2m程度である。鞍乗型車両が水上オートバイの場合、鞍乗型車両の車両前方向の長さは、2.0~4.0m程度であって、鞍乗型車両の幅は、0.7~1.3m程度である。
 したがって、アプローチ旋回領域の幅(2m)は、鞍乗型車両の幅の平均の約2倍であって、鞍乗型車両の最大幅の約1.5倍である。このような鞍乗型車両の幅と全長を考慮すると、アプローチ旋回領域の幅(2m)は、鞍乗型車両の走行の自由度がありながら、鞍乗型車両がアプローチ旋回領域内でUターンできない幅である。ここで、Uターンとは、180°の旋回のことである。アプローチ旋回領域内でのUターンとは、アプローチ旋回領域の縁に沿わないUターンのことである。
 第1鞍乗型車両走行複合データが、アプローチ旋回領域内でUターンした場合の走行軌跡に関連付けて生成されている可能性がある場合、第1鞍乗型車両走行複合データを活用しにくくなる。なぜならば、アプローチ旋回領域内でUターンした場合の走行軌跡に関連付けて生成された第1鞍乗型車両走行複合データと、アプローチ旋回領域内をアプローチ旋回領域の縁に沿って走行した場合の走行軌跡に関連付けて生成された第1鞍乗型車両走行複合データは、例えば車両の制御や車両の走行状態の解析などに活用する際に同列に扱うことができないからである。
 本発明では、アプローチ旋回領域の幅が2mであることにより、第1アプローチ旋回軌跡が、アプローチ旋回領域内でUターンした走行軌跡である可能性を除外できる。そのため、第1鞍乗型車両走行複合データをより活用しやすい。
The distance between the first straight line and the second straight line is 2 m. Since the second circular arc is arranged concentrically with the first circular arc, the distance between the first circular arc and the second circular arc is also 2 m. In this way, the width of the approach turning area is 2 m.
Here, when the saddle riding type vehicle is a motorcycle or a tricycle, the length of the saddle riding type vehicle in the vehicle front direction is about 1.8 to 2.6 m, and the width of the saddle riding type vehicle The length in the direction) is about 0.5 to 1.1 m. When the straddle-type vehicle is a four-wheel buggy, the length of the straddle-type vehicle in the vehicle front direction is about 1.4 to 2.0 m, and the width of the straddle-type vehicle is 0.7 to 1. It is about 2 m. When the saddle type vehicle is a snowmobile, the length of the saddle type vehicle in the vehicle front direction is about 2.0 to 4.0 m, and the width of the saddle type vehicle is 1.0 to 1.2 m. It is a degree. When the saddle riding type vehicle is a water motorcycle, the length of the saddle riding type vehicle in the vehicle front direction is about 2.0 to 4.0 m, and the width of the saddle riding type vehicle is 0.7 to 1.3 m. It is a degree.
Therefore, the width (2 m) of the approach turning area is about twice the average width of the saddle type vehicle and about 1.5 times the maximum width of the saddle type vehicle. Considering the width and the total length of the straddle-type vehicle, the width (2 m) of the approach-turning area allows the straddle-type vehicle to make a U-turn in the approach-turning area while allowing the saddle-type vehicle to travel freely. The width is impossible. Here, the U-turn is a turn of 180 °. The U-turn in the approach turning area is a U-turn that does not follow the edge of the approach turning area.
When there is a possibility that the first saddle riding type vehicle traveling composite data is generated in association with the traveling locus when making a U-turn in the approach turning area, it becomes difficult to utilize the first saddle riding type vehicle traveling composite data. . This is because the first straddle-type vehicle traveling composite data generated in association with the traveling trajectory when making a U-turn in the approach turning area and the traveling when traveling in the approach turning area along the edge of the approach turning area. This is because the first straddle-type vehicle traveling composite data generated in association with the trajectory cannot be treated in the same row when it is used for controlling the vehicle or analyzing the traveling state of the vehicle.
In the present invention, since the width of the approach turning area is 2 m, it is possible to exclude the possibility that the first approach turning path is a running path that makes a U-turn in the approach turning area. Therefore, the first straddle-type vehicle traveling composite data can be more easily utilized.
 このように、第1鞍乗型車両走行複合データを活用しやすいため、出力された第1鞍乗型車両走行複合データの後処理が容易である。出力された第1鞍乗型車両走行複合データの後処理が容易であるため、第1鞍乗型車両走行複合データが出力される出力対象のハードウェアリソースを低減することができる。
 以上のように、本発明の鞍乗型車両走行データ処理装置は、出力されたデータの後処理を効率化して、ハードウェアリソースを低減することができる。
In this way, since it is easy to utilize the first saddle riding type vehicle traveling composite data, the post-processing of the output first saddle riding type vehicle traveling composite data is easy. Since the post-processing of the output first straddle-type vehicle travel composite data is easy, it is possible to reduce the hardware resources to be output to which the first saddle-ride type vehicle travel composite data is output.
As described above, the straddle-type vehicle travel data processing apparatus of the present invention can reduce the hardware resources by making post-processing of output data more efficient.
 (2)本発明の他の観点によれば、本発明の鞍乗型車両走行データ処理装置は、上記(1)の構成に加えて、以下の構成を有することが好ましい。
 鞍乗型車両走行データ取得処理において、(a3)前記アプローチ旋回領域を含む環状領域内を少なくとも1周にわたって連続して走行したときの前記鞍乗型車両の走行軌跡であって、前記第1アプローチ旋回軌跡を含む第1環状軌跡に関連する第1環状軌跡データ、および、(a4)前記第1アプローチ旋回前方向加速度データを含み、前記第1環状軌跡を走行したときの前記鞍乗型車両の車両前方向の加速度に関連する第1環状前方向加速度データが取得される。
 前記鞍乗型車両走行複合データ生成処理において、前記第1環状軌跡データおよび前記第1環状前方向加速度データに基づいて、前記第1環状軌跡および前記第1環状軌跡を走行したときの前記鞍乗型車両の車両前方向の加速度が関連付けられた前記第1鞍乗型車両走行複合データが生成される。
(2) According to another aspect of the present invention, it is preferable that the straddle-type vehicle traveling data processing device of the present invention has the following configuration in addition to the configuration of (1) above.
In the straddle-type vehicle travel data acquisition process, (a3) is a travel locus of the saddle-ride type vehicle when the vehicle continuously travels at least one round in an annular region including the approach turning region, the first approach A first annular locus data related to a first annular locus including a turning locus; and (a4) including the first approach forward turning acceleration data, the saddle riding type vehicle when traveling on the first annular locus First annular forward acceleration data related to vehicle forward acceleration is acquired.
In the saddle riding type vehicle traveling composite data generation process, the saddle riding when traveling on the first annular trajectory and the first annular trajectory based on the first annular trajectory data and the first annular forward acceleration data. The first straddle-type vehicle traveling composite data in which the acceleration in the vehicle front direction of the type vehicle is associated is generated.
 この構成によると、第1鞍乗型車両走行複合データは、第1環状軌跡と第1環状軌跡を走行したときの鞍乗型車両の加速度が関連付けられたデータである。第1環状軌跡は、第1アプローチ旋回軌跡を含む環状の走行軌跡である。第1環状軌跡は、少なくとも2回の旋回中の走行軌跡を有する。そのため、第1環状軌跡が関連付けられた第1鞍乗型車両走行複合データは、1回しか旋回しなかった場合に取得される第1鞍乗型車両走行複合データに比べて、鞍乗型車両の走行状態を反映したデータとしての精度(信頼性)が高い。そのため、第1鞍乗型車両走行複合データを例えば車両の制御や車両の走行状態の解析などにより活用しやすくなる。第1鞍乗型車両走行複合データをより活用しやすくなるため、出力された第1鞍乗型車両走行複合データの後処理がより容易である。出力された第1鞍乗型車両走行複合データの後処理がより容易であるため、第1鞍乗型車両走行複合データが出力される出力対象のハードウェアリソースをより低減することができる。
 以上のように、本発明の鞍乗型車両走行データ処理装置は、出力されたデータの後処理を効率化して、ハードウェアリソースをより低減することができる。
According to this configuration, the first straddle-type vehicle travel composite data is data in which the first annular locus and the acceleration of the saddle-type vehicle when traveling on the first annular locus are associated with each other. The first circular locus is a circular traveling locus including the first approach turning locus. The first annular locus has a traveling locus during at least two turns. Therefore, the first straddle-type vehicle traveling composite data associated with the first annular trajectory is more straddle-type vehicle than the first straddle-type vehicle traveling composite data acquired when the vehicle makes only one turn. The accuracy (reliability) of the data that reflects the running state of is high. Therefore, it becomes easy to utilize the first straddle-type vehicle traveling composite data by, for example, controlling the vehicle or analyzing the traveling state of the vehicle. Since it becomes easier to utilize the first saddle riding type vehicle traveling composite data, the post-processing of the output first saddle riding type vehicle traveling composite data is easier. Since the post-processing of the output first straddle-type vehicle travel composite data is easier, it is possible to further reduce the hardware resources to be output to which the first saddle-ride type vehicle travel composite data is output.
As described above, the straddle-type vehicle travel data processing device of the present invention can make post-processing of output data efficient and further reduce hardware resources.
 (3)本発明の他の観点によれば、本発明の鞍乗型車両走行データ処理装置は、上記(2)の構成に加えて、以下の構成を有することが好ましい。
 前記第1環状軌跡における前記鞍乗型車両の進行方向を、前方向とした場合に、前記第1環状軌跡は、前記第1アプローチ旋回軌跡の後端に接続され、前記第1アプローチ旋回軌跡と旋回方向が異なる旋回中の走行軌跡を含む。
(3) According to another aspect of the present invention, the straddle-type vehicle travel data processing device of the present invention preferably has the following configuration in addition to the configuration of (2) above.
When the traveling direction of the straddle-type vehicle in the first annular locus is the forward direction, the first annular locus is connected to the rear end of the first approach turning locus, and is the first approach turning locus. It includes a traveling locus in which the turning direction is different.
 この構成によると、第1アプローチ旋回軌跡の後端に接続された旋回中の走行軌跡は、第1アプローチ旋回軌跡と旋回方向が異なる。したがって、第1鞍乗型車両走行複合データは、旋回方向が全て同じ場合に得られる第1鞍乗型車両走行複合データに比べて、鞍乗型車両の走行状態を反映したデータとしての精度(信頼性)が高い。そのため、第1鞍乗型車両走行複合データを例えば車両の制御や車両の走行状態の解析などにより活用しやすくなる。第1鞍乗型車両走行複合データをより活用しやすくなるため、出力された第1鞍乗型車両走行複合データの後処理がより容易である。出力された第1鞍乗型車両走行複合データの後処理がより容易であるため、第1鞍乗型車両走行複合データが出力される出力対象のハードウェアリソースをより低減することができる。
 以上のように、本発明の鞍乗型車両走行データ処理装置は、出力されたデータの後処理をより効率化して、ハードウェアリソースをより低減することができる。
According to this configuration, the traveling locus that is connected to the rear end of the first approach turning locus is different from the first approach turning locus in the turning direction. Therefore, the accuracy of the first straddle-type vehicle traveling composite data as data reflecting the traveling state of the saddle-riding type vehicle is greater than that of the first saddle-riding type vehicle traveling complex data obtained when the turning directions are all the same. High reliability). Therefore, it becomes easy to utilize the first straddle-type vehicle traveling composite data by, for example, controlling the vehicle or analyzing the traveling state of the vehicle. Since it becomes easier to utilize the first saddle riding type vehicle traveling composite data, the post-processing of the output first saddle riding type vehicle traveling composite data is easier. Since the post-processing of the output first straddle-type vehicle travel composite data is easier, it is possible to further reduce the hardware resources to be output to which the first saddle-ride type vehicle travel composite data is output.
As described above, the straddle-type vehicle travel data processing device of the present invention can more efficiently post-process the output data and further reduce hardware resources.
 (4)本発明の他の観点によれば、本発明の鞍乗型車両走行データ処理装置は、上記(2)の構成に加えて、以下の構成を有することが好ましい。
 前記第1環状軌跡における前記鞍乗型車両の進行方向を、前方向とした場合に、前記第1環状軌跡は、前記第1アプローチ旋回軌跡の後端に接続され、前記第1アプローチ旋回軌跡と旋回方向が同じである旋回中の走行軌跡を含む。
(4) According to another aspect of the present invention, it is preferable that the saddle riding type vehicle travel data processing device of the present invention has the following configuration in addition to the configuration of (2) above.
When the traveling direction of the straddle-type vehicle on the first annular trajectory is the forward direction, the first annular trajectory is connected to the rear end of the first approach turning trajectory, and It includes a traveling locus during a turn having the same turning direction.
 この構成によると、第1アプローチ旋回軌跡の後端に接続された旋回中の走行軌跡は、第1アプローチ旋回軌跡と旋回方向が同じである。本発明では、このように同一方向に連続して旋回する第1環状軌跡に関連付けられた第1鞍乗型車両走行複合データが出力対象に出力される。 According to this configuration, the running locus connected to the rear end of the first approach turning locus is the same as the first approach turning locus in the turning direction. In the present invention, the first straddle-type vehicle traveling composite data associated with the first annular trajectory that continuously turns in the same direction in this manner is output to the output target.
 (5)本発明の他の観点によれば、本発明の鞍乗型車両走行データ処理装置は、上記(2)の構成に加えて、以下の構成を有することが好ましい。
 前記第1環状領域は、内周縁と外周縁との間の距離が2mであって、前記第1環状領域内を前記鞍乗型車両が走行する方向を、前方向とした場合に、前記環状領域は、(i)前記アプローチ旋回領域に加えて、前記第1旋回領域の前端に接続された直線状の第2直線領域と、前記第2直線領域の前端および前記アプローチ領域の後端に接続された円弧状の第2旋回領域とを含む第1環状領域であるか、または、(ii)前記アプローチ旋回領域に加えて、前記第1旋回領域の前端に接続され、前記アプローチ領域よりも短い直線状の第2直線領域と、前記第2直線領域の前端に接続された曲線状の第2旋回領域であって、前記第1環状軌跡における前記第2旋回領域の旋回方向が前記アプローチ旋回領域の旋回方向と異なる前記第2旋回領域と、前記第2旋回領域の前端に接続された直線状の第3直線領域内と、前記第3直線領域の前端に接続された曲線状の第3旋回領域であって、前記第1環状軌跡における前記第3旋回領域の旋回方向が前記第2旋回領域の旋回方向と同じである前記第3旋回領域と、前記第3旋回領域の前端に接続された直線状の第4直線領域と、前記第4直線領域の前端に接続された曲線状の第4旋回領域であって、前記第1環状軌跡における前記第4旋回領域の旋回方向が前記第3旋回領域の旋回方向と異なる前記第4旋回領域と、前記第4旋回領域の前端に接続され、前記第4直線領域よりも長い直線状の第5直線領域と、前記第5直線領域の前端に接続された曲線状の第5旋回領域であって、前記第1環状軌跡における前記第5旋回領域の旋回方向が前記第4旋回領域の旋回方向と同じである前記第5旋回領域と、前記第5旋回領域の前端に接続され、前記第3直線領域よりも長い直線状の第6直線領域と、前記第6直線領域の前端および前記アプローチ領域の後端に接続された曲線状の第6旋回領域であって、前記第1環状軌跡における前記第6旋回領域の旋回方向が前記第5旋回領域の旋回方向と同じである前記第6旋回領域とを含む第2環状領域であるか、または、(iii)前記アプローチ旋回領域に加えて、前記第1旋回領域の前端に接続され、前記アプローチ領域よりも短い直線状の第2直線領域と、前記第2直線領域の前端に接続された曲線状の第2旋回領域であって、前記第1環状軌跡における前記第2旋回領域の旋回方向が前記アプローチ旋回領域の旋回方向と異なる前記第2旋回領域と、前記第2旋回領域の前端に接続された直線状の第3直線領域と、前記第3直線領域の前端に接続された曲線状の第3旋回領域であって、前記第1環状軌跡における前記第3旋回領域の旋回方向が前記第2旋回領域の旋回方向と異なる前記第3旋回領域と、前記第3旋回領域の前端に接続された直線状の第4直線領域と、前記第4直線領域の前端に接続された曲線状の第4旋回領域であって、前記第1環状軌跡における前記第4旋回領域の旋回方向が前記第3旋回領域の旋回方向と異なる前記第4旋回領域と、前記第4旋回領域の前端に接続された直線状の第5直線領域と、前記第5直線領域の前端に接続された曲線状の第5旋回領域であって、前記第1環状軌跡における前記第5旋回領域の旋回方向が前記第4旋回領域の旋回方向と異なる前記第5旋回領域と、前記第5旋回領域の前端に接続され、前記第2~第5直線領域よりも長い直線状の第6直線領域と、前記第6直線領域の前端に接続された曲線状の第6旋回領域であって、前記第1環状軌跡における前記第6旋回領域の旋回方向が前記第5旋回領域の旋回方向と同じである前記第6旋回領域と、前記第6旋回領域の前端に接続された直線状の第7直線領域と、前記第7直線領域の前端および前記アプローチ領域の後端に接続された曲線状の第7旋回領域であって、前記第1環状軌跡における前記第7旋回領域の旋回方向が前記第6旋回領域の旋回方向と同じである前記第7旋回領域とを含み、前記環状軌跡で囲まれた領域の形状がE字状となる第3環状領域であるか、または、(iv)前記アプローチ旋回領域に加えて、前記第1旋回領域の前端に接続された直線状の第2直線領域と、前記第2直線領域の前端に接続された曲線状の第2旋回領域であって、前記第1環状軌跡における前記第2旋回領域の旋回方向が前記アプローチ旋回領域の旋回方向と異なる前記第2旋回領域と、前記第2旋回領域の前端に接続された直線状の第3直線領域と、前記第3直線領域の前端に接続された曲線状の第3旋回領域であって、前記第1環状軌跡における前記第3旋回領域の旋回方向が前記第2旋回領域の旋回方向と異なる前記第3旋回領域と、前記第3旋回領域の前端に接続された直線状の第4直線領域と、前記第4直線領域の前端および前記アプローチ領域の後端に接続された曲線状の第4旋回領域であって、前記第1環状軌跡における前記第4旋回領域の旋回方向が前記第3旋回領域の旋回方向と異なる前記第4旋回領域とを含む第4環状領域である。
(5) According to another aspect of the present invention, it is preferable that the saddle riding type vehicle travel data processing device of the present invention has the following configuration in addition to the configuration of (2) above.
The first annular region has a distance between the inner peripheral edge and the outer peripheral edge of 2 m, and when the direction in which the saddle-ride type vehicle travels in the first annular region is the front direction, the annular region is The area is (i) in addition to the approach turning area, a linear second straight area connected to the front end of the first turning area, and a front end of the second straight area and a rear end of the approach area. Or a second annular region including a circular arc shaped second swirl region, or (ii) in addition to the approach swirl region, connected to the front end of the first swirl region and shorter than the approach region. A linear second linear region and a curved second turning region connected to the front end of the second linear region, wherein the turning direction of the second turning region in the first annular locus is the approach turning region. Second swivel area different from the swirl direction, a linear third linear area connected to the front end of the second swivel area, and a curved third swirl connected to the front end of the third linear area. And a third turning region in which the turning direction of the third turning region in the first annular locus is the same as the turning direction of the second turning region, and is connected to the front end of the third turning region. A straight fourth straight region and a curved fourth swivel region connected to the front end of the fourth straight region, wherein the swirl direction of the fourth swirl region in the first annular locus is the third swirl The fourth turning area different from the turning direction of the area, and the front end of the fourth turning area, which is connected to the fifth end of the fifth linear area and the fifth linear area that is linear and is longer than the fourth linear area. And a fifth curved turning region in which the turning direction of the fifth turning region in the first annular locus is the same as the turning direction of the fourth turning region. A linear sixth linear region that is connected to the front end of the turning region and is longer than the third linear region, and a curved sixth turning region that is connected to the front end of the sixth linear region and the rear end of the approach region. And a second annular region including the sixth turning region in which the turning direction of the sixth turning region in the first annular trajectory is the same as the turning direction of the fifth turning region, or ( iii) In addition to the approach turning area, a linear second linear area connected to the front end of the first turning area and shorter than the approach area, and a curvilinear shape connected to the front end of the second linear area. In the second turning area, the turning direction of the second turning area in the first annular locus is different from the turning direction of the approach turning area. A second turning region, a linear third linear region connected to the front end of the second turning region, and a curved third turning region connected to the front end of the third linear region, A third turning area in which a turning direction of the third turning area in the one annular trajectory is different from a turning direction of the second turning area, and a linear fourth linear area connected to a front end of the third turning area, A fourth curved turning region connected to the front end of the fourth straight region, wherein the turning direction of the fourth turning region in the first annular locus is different from the turning direction of the third turning region. A turning region; a linear fifth straight region connected to the front end of the fourth turning region; and a curved fifth turning region connected to the front end of the fifth straight region, wherein the first annular shape The turning direction of the fifth turning area in the locus is connected to the fifth turning area different from the turning direction of the fourth turning area and the front end of the fifth turning area, and is longer than the second to fifth linear areas. A straight sixth linear region and a curved sixth turning region connected to the front end of the sixth linear region, wherein the turning direction of the sixth turning region in the first annular locus is the fifth turning The sixth turning region which is the same as the turning direction of the region, the linear seventh straight line region connected to the front end of the sixth turning region, the front end of the seventh straight line region and the rear end of the approach region. A connected curved seventh turning area, including a seventh turning area in which the turning direction of the seventh turning area in the first annular locus is the same as the turning direction of the sixth turning area, The area surrounded by the annular locus is a third annular area having an E-shape, or (iv) a linear shape connected to the front end of the first turning area in addition to the approach turning area. Of the second straight line region and a curved second swivel region connected to the front end of the second straight line region, and the swirling direction of the second swivel region in the first annular locus is the swivel of the approach swirl region. A second turning region different from the direction, a linear third linear region connected to the front end of the second turning region, and a curved third turning region connected to the front end of the third linear region. The third turning region in which the turning direction of the third turning region in the first annular locus is different from the turning direction of the second turning region, and a linear fourth connecting to the front end of the third turning region. A curved linear fourth turning region connected to a straight region and a front end of the fourth straight region and a rear end of the approach region, the fourth turning region in the first annular locus; A fourth annular region including a fourth turning region whose turning direction is different from the turning direction of the third turning region.
 第1環状領域は、アプローチ旋回領域と、直線状の第2直線領域と、円弧状の第2旋回領域とからなる。したがって、第1環状領域は、凹部を有さないシンプルな形状である。形状がシンプルでありながら、第1環状領域を走行したときの第1環状軌跡は、2回の旋回中の走行軌跡と旋回前後の直進時の走行軌跡を有する。そのため、第1環状領域を走行したときの走行軌跡と車両前方向の加速度は、鞍乗型車両の走行状態が大きく反映される。そのため、第1鞍乗型車両走行複合データを例えば車両の制御や車両の走行状態の解析などにより活用しやすくなる。
 第2~第4環状領域を走行したときの第1環状軌跡は、4回以上の旋回中の走行軌跡を含む。さらに、第2~第4環状領域を走行したときの第1環状軌跡は、第1アプローチ旋回軌跡と旋回方向が同じ走行軌跡と、第1アプローチ旋回軌跡と旋回方向が異なる走行軌跡の両方を含む。したがって、第2~第4環状領域を走行したときの第1環状軌跡と車両前方向の加速度が関連付けられた第1鞍乗型車両走行複合データは、旋回方向が全て同じ場合の第1鞍乗型車両走行複合データに比べて、鞍乗型車両の走行状態を反映したデータとしての精度(信頼性)が高い。そのため、第1鞍乗型車両走行複合データを例えば車両の制御や車両の走行状態の解析などにより活用しやすくなる。
 よって、環状領域が第1~第4環状領域のいずれであっても、第1鞍乗型車両走行複合データをより活用しやすくなる。第1鞍乗型車両走行複合データをより活用しやすくなるため、出力された第1鞍乗型車両走行複合データの後処理がより容易である。出力された第1鞍乗型車両走行複合データの後処理がより容易であるため、第1鞍乗型車両走行複合データが出力される出力対象のハードウェアリソースをより低減することができる。
 以上のように、本発明の鞍乗型車両走行データ処理装置は、出力されたデータの後処理をより効率化して、ハードウェアリソースをより低減することができる。
The first annular area includes an approach turning area, a linear second linear area, and an arcuate second turning area. Therefore, the first annular region has a simple shape without a recess. Although the shape is simple, the first annular locus when traveling in the first annular region has a traveling locus during two turns and a traveling locus when traveling straight before and after the turning. Therefore, the traveling locus and the acceleration in the vehicle front direction when traveling in the first annular region largely reflect the traveling state of the straddle-type vehicle. Therefore, it becomes easy to utilize the first straddle-type vehicle traveling composite data by, for example, controlling the vehicle or analyzing the traveling state of the vehicle.
The first circular locus when traveling in the second to fourth annular regions includes a traveling locus during four or more turns. Further, the first annular locus when traveling in the second to fourth annular regions includes both a traveling locus having the same turning direction as the first approach turning locus and a traveling locus having different turning directions from the first approach turning locus. .. Therefore, the first straddle-type vehicle traveling composite data in which the first annular locus when traveling in the second to fourth annular regions and the acceleration in the vehicle front direction are associated with each other is the first saddle riding when the turning directions are all the same. The accuracy (reliability) of the data reflecting the running state of the saddle riding type vehicle is higher than that of the type vehicle traveling composite data. Therefore, it becomes easy to utilize the first straddle-type vehicle traveling composite data by, for example, controlling the vehicle or analyzing the traveling state of the vehicle.
Therefore, regardless of which of the first to fourth annular regions the annular region is, it becomes easier to utilize the first saddle riding type vehicle traveling composite data. Since it becomes easier to utilize the first saddle riding type vehicle traveling composite data, the post-processing of the output first saddle riding type vehicle traveling composite data is easier. Since the post-processing of the output first straddle-type vehicle travel composite data is easier, it is possible to further reduce the hardware resources to be output to which the first saddle-ride type vehicle travel composite data is output.
As described above, the straddle-type vehicle travel data processing device of the present invention can more efficiently post-process the output data and further reduce hardware resources.
 (6)本発明の他の観点によれば、本発明の鞍乗型車両走行データ処理装置は、上記(1)~(5)のいずれかの構成に加えて、以下の構成を有することが好ましい。
 前記鞍乗型車両走行データ取得処理において、前記第1アプローチ旋回軌跡を走行したときの前記鞍乗型車両の車両左右方向の加速度に関連する第1アプローチ旋回左右方向加速度データが取得される。
 前記鞍乗型車両走行複合データ生成処理において、前記第1鞍乗型車両走行複合データが、前記第1アプローチ旋回軌跡データ、前記第1アプローチ旋回前方向加速度データ、および前記第1アプローチ旋回左右方向加速度データに基づいて、前記第1アプローチ旋回軌跡、前記第1アプローチ旋回軌跡を走行したときの前記鞍乗型車両の車両前方向の加速度、および、前記第1アプローチ旋回軌跡を走行したときの前記鞍乗型車両の車両左右方向の加速度を関連付けて生成される。
(6) According to another aspect of the present invention, a straddle-type vehicle traveling data processing apparatus of the present invention may have the following configuration in addition to any one of the configurations (1) to (5). preferable.
In the saddle riding type vehicle travel data acquisition processing, first approach turning left / right direction acceleration data relating to vehicle lateral direction acceleration of the saddle riding type vehicle when traveling on the first approach turning locus is acquired.
In the saddle-ride type vehicle traveling composite data generation process, the first saddle-ride type vehicle traveling composite data is the first approach turning trajectory data, the first approach turning front direction acceleration data, and the first approach turning left / right direction. Based on the acceleration data, the first approach turning locus, the acceleration in the vehicle front direction of the straddle-type vehicle when traveling on the first approach turning locus, and the acceleration when traveling on the first approach turning locus. It is generated by associating the lateral acceleration of the straddle-type vehicle.
 この構成によると、第1鞍乗型車両走行複合データは、第1アプローチ旋回軌跡と、第1アプローチ旋回軌跡を走行したときの鞍乗型車両の車両前方向の加速度と、第1アプローチ旋回軌跡を走行したときの鞍乗型車両の車両左右方向の加速度とが関連付けられたデータである。
 鞍乗型車両は、車両の挙動の変化だけでなく、ライダーの姿勢の変化も利用して旋回する乗り物である。そのため、旋回中と旋回前の直進中の車両左右方向の加速度は、ライダーの意思によって決まる鞍乗型車両の走行状態と密接に関連している。また、旋回中と旋回前の直進中における鞍乗型車両の走行軌跡と車両前方向の加速度と車両左右方向の加速度は密接に関連する。したがって、第1鞍乗型車両走行複合データは、鞍乗型車両の走行状態をより大きく反映している。そのため、第1鞍乗型車両走行複合データをより活用しやすくなる。第1鞍乗型車両走行複合データをより活用しやすくなるため、出力された第1鞍乗型車両走行複合データの後処理がより容易である。出力された第1鞍乗型車両走行複合データの後処理がより容易であるため、第1鞍乗型車両走行複合データが出力される出力対象のハードウェアリソースをより低減することができる。
 以上のように、本発明の鞍乗型車両走行データ処理装置は、出力されたデータの後処理を効率化して、ハードウェアリソースをより低減することができる。
According to this configuration, the first straddle-type vehicle traveling composite data includes the first approach turning locus, the acceleration in the vehicle front direction of the saddle riding type vehicle when traveling on the first approach turning locus, and the first approach turning locus. Is data associated with the acceleration in the vehicle left-right direction of the straddle-type vehicle when traveling.
A straddle-type vehicle is a vehicle that makes a turn using not only changes in the behavior of the vehicle but also changes in the posture of the rider. Therefore, the acceleration in the lateral direction of the vehicle during turning and during straight ahead before turning is closely related to the running state of the saddle riding type vehicle determined by the rider's intention. Further, the traveling locus of the saddle riding type vehicle, the acceleration in the front direction of the vehicle, and the acceleration in the left-right direction of the vehicle are closely related to each other during turning and during straight ahead before turning. Therefore, the first straddle-type vehicle traveling composite data largely reflects the traveling state of the straddle-type vehicle. Therefore, it becomes easier to utilize the first saddle riding type vehicle traveling composite data. Since it becomes easier to utilize the first saddle riding type vehicle traveling composite data, the post-processing of the output first saddle riding type vehicle traveling composite data is easier. Since the post-processing of the output first straddle-type vehicle travel composite data is easier, it is possible to further reduce the hardware resources to be output to which the first saddle-ride type vehicle travel composite data is output.
As described above, the straddle-type vehicle travel data processing device of the present invention can make post-processing of output data efficient and further reduce hardware resources.
 (7)本発明の他の観点によれば、本発明の鞍乗型車両走行データ処理装置は、上記(1)~(6)のいずれかの構成に加えて、以下の構成を有することが好ましい。
 前記プロセッサは、前記第1アプローチ旋回軌跡を走行したときの前記鞍乗型車両に乗車するライダーを識別する第1ライダー識別データが取得されるライダー識別データ取得処理、を更に実行するように構成されまたはプログラムされており、前記鞍乗型車両走行複合データ生成処理において、前記第1鞍乗型車両走行複合データが、前記第1アプローチ旋回軌跡データと、前記第1アプローチ旋回前方向加速度データと、前記第1ライダー識別データとに基づいて、前記第1アプローチ旋回軌跡、前記第1アプローチ旋回軌跡を走行したときの前記鞍乗型車両の車両前方向の加速度、および、前記第1アプローチ旋回軌跡を走行したときの前記鞍乗型車両に乗車するライダーを関連付けて生成される。
(7) According to another aspect of the present invention, a straddle-type vehicle travel data processing device of the present invention may have the following configuration in addition to any one of the configurations (1) to (6). preferable.
The processor is configured to further execute a rider identification data acquisition process for acquiring first rider identification data for identifying a rider who rides on the straddle-type vehicle when traveling on the first approach turning locus. Alternatively, in the saddle-ride type vehicle traveling composite data generation process, the first saddle-ride type vehicle traveling composite data is the first approach turning trajectory data and the first approach turning front direction acceleration data. Based on the first rider identification data, the first approach turning locus, the acceleration in the vehicle front direction of the straddle-type vehicle when traveling on the first approach turning locus, and the first approach turning locus are calculated. It is generated by associating a rider who gets on the saddle type vehicle when traveling.
 この構成によると、第1鞍乗型車両走行複合データは、第1アプローチ旋回軌跡を走行したときの鞍乗型車両に乗車するライダーに関連付けられる。旋回中と旋回前の直進中の鞍乗型車両の走行軌跡と車両前方向の加速度は、ライダーの意思によって決まる鞍乗型車両の走行状態と密接に関連している。同じアプローチ旋回領域を走行した場合であっても、ライダーごとに鞍乗型車両の走行状態は異なる。第1鞍乗型車両走行複合データは、ライダーの固有の鞍乗型車両の走行状態を反映している。そのため、出力された第1鞍乗型車両走行複合データを、例えば車両の制御や車両の走行状態の解析などにより活用しやすくなる。第1鞍乗型車両走行複合データをより活用しやすくなるため、出力された第1鞍乗型車両走行複合データの後処理がより容易である。出力された第1鞍乗型車両走行複合データの後処理がより容易であるため、第1鞍乗型車両走行複合データが出力される出力対象のハードウェアリソースをより低減することができる。
 以上のように、本発明の鞍乗型車両走行データ処理装置は、出力されたデータの後処理をより効率化して、ハードウェアリソースをより低減することができる。
According to this configuration, the first straddle-type vehicle traveling composite data is associated with the rider who gets on the straddle-type vehicle when traveling on the first approach turning locus. The running locus of the saddle riding type vehicle and the acceleration in the front direction of the vehicle during turning and before going straight are closely related to the running state of the saddle riding type vehicle which is determined by the rider's intention. Even when traveling in the same approach turning region, the riding state of the saddle riding type vehicle differs for each rider. The first straddle-type vehicle traveling composite data reflects the traveling state of the rider's unique straddle-type vehicle. Therefore, it becomes easy to utilize the output first straddle-type vehicle traveling composite data by, for example, controlling the vehicle or analyzing the traveling state of the vehicle. Since it becomes easier to utilize the first saddle riding type vehicle traveling composite data, the post-processing of the output first saddle riding type vehicle traveling composite data is easier. Since the post-processing of the output first straddle-type vehicle travel composite data is easier, it is possible to further reduce the hardware resources to be output to which the first saddle-ride type vehicle travel composite data is output.
As described above, the straddle-type vehicle travel data processing device of the present invention can more efficiently post-process the output data and further reduce hardware resources.
 (8)本発明の他の観点によれば、本発明の鞍乗型車両走行データ処理装置は、上記(1)~(7)のいずれかの構成に加えて、以下の構成を有することが好ましい。
 前記鞍乗型車両走行データ取得処理において、前記アプローチ旋回軌跡を走行した前記鞍乗型車両と同一または異なる鞍乗型車両が、前記アプローチ領域から前記第1旋回領域に進入するように、前記アプローチ旋回領域の全域にわたって連続して走行したときの走行軌跡である第2アプローチ旋回軌跡に関連する第2アプローチ旋回軌跡データ、および、前記第2アプローチ旋回軌跡を走行したときの前記鞍乗型車両の車両前方向の加速度に関連する第2アプローチ旋回前方向加速度データが取得され、前記鞍乗型車両走行複合データ生成処理において、前記第2アプローチ旋回軌跡データおよび前記第2アプローチ旋回前方向加速度データに基づいて、前記第2アプローチ旋回軌跡および前記第2アプローチ旋回軌跡を走行したときの前記鞍乗型車両の車両前方向の加速度が関連付けられた第2鞍乗型車両走行複合データが生成され、前記鞍乗型車両走行複合データ記憶処理において、前記鞍乗型車両走行複合データ生成処理により生成された前記第2鞍乗型車両走行複合データが記憶部に記憶される。
(8) According to another aspect of the present invention, a straddle-type vehicle travel data processing device of the present invention may have the following configuration in addition to any one of the configurations (1) to (7). preferable.
In the straddle-type vehicle travel data acquisition processing, the approach is performed so that a saddle-ride type vehicle that is the same as or different from the saddle-ride type vehicle that has traveled on the approach turning trajectory enters the first turn area from the approach area. Second approach turning locus data relating to the second approach turning locus, which is a running locus when continuously running over the entire turning region, and the saddle-ride type vehicle when the second approach turning locus is run. The second approach turning front acceleration data related to the vehicle forward acceleration is acquired, and the second approach turning trajectory data and the second approach turning front acceleration data are obtained in the saddle riding type vehicle traveling composite data generation processing. Based on the second approach turning locus and second saddle riding type vehicle traveling composite data in which the acceleration in the vehicle front direction of the saddle riding type vehicle when traveling on the second approach turning locus is associated, In the saddle-ride type vehicle traveling composite data storage processing, the second saddle-ride type vehicle traveling composite data generated by the saddle-ride type vehicle traveling composite data generation processing is stored in the storage unit.
 この構成によると、第1鞍乗型車両走行複合データと第2鞍乗型車両走行複合データが記憶部に記憶される。第2鞍乗型車両走行複合データは、第1アプローチ旋回軌跡と異なる第2アプローチ旋回軌跡および第2アプローチ旋回軌跡を走行したときの鞍乗型車両の車両前方向の加速度が関連付けられたデータである。そのため、鞍乗型車両走行データ処理装置において、第1鞍乗型車両走行複合データと第2鞍乗型車両走行複合データを比較したり、差分を求めたり、組み合わせることができる。つまり、鞍乗型車両走行データ処理装置における第1鞍乗型車両走行複合データの処理(活用)の自由度が高まる。 According to this configuration, the first saddle riding type vehicle traveling composite data and the second saddle riding type vehicle traveling composite data are stored in the storage unit. The second saddle riding type vehicle traveling composite data is data in which the second approach turning locus different from the first approach turning locus and the acceleration in the vehicle front direction of the saddle riding type vehicle when traveling on the second approach turning locus are associated with each other. is there. Therefore, in the saddle riding type vehicle running data processing device, it is possible to compare the first saddle riding type vehicle running composite data and the second saddle riding type vehicle running composite data, obtain a difference, and combine them. That is, the degree of freedom in processing (utilizing) the first saddle riding type vehicle traveling composite data in the saddle riding type vehicle traveling data processing device is increased.
 (9)本発明の他の観点によれば、本発明の鞍乗型車両走行データ処理装置は、上記(8)の構成に加えて、以下の構成を有することが好ましい。
 前記プロセッサは、前記鞍乗型車両走行複合データ記憶処理で前記記憶部に記憶された前記第1鞍乗型車両走行複合データと前記第2鞍乗型車両走行複合データを互いに関連づけて鞍乗型車両走行一体複合データが生成される鞍乗型車両走行一体複合データ生成処理、を更に実行するように構成されまたはプログラムされており、前記第1鞍乗型車両走行複合データ出力処理において、前記鞍乗型車両走行一体複合データ生成処理により生成された前記鞍乗型車両走行一体複合データが前記出力対象に出力される。
(9) According to another aspect of the present invention, it is preferable that the saddle riding type vehicle travel data processing device of the present invention has the following configuration in addition to the configuration of (8) above.
The processor associates the first saddle riding type vehicle traveling composite data and the second saddle riding type vehicle traveling composite data stored in the storage unit in the saddle riding type vehicle traveling composite data storage processing with each other to make a saddle riding type. The saddle-type vehicle travel integrated composite data generation process for generating vehicle travel integrated composite data is further configured or programmed, and in the first saddle-type vehicle travel composite data output process, the saddle type vehicle The saddle riding type vehicle traveling integrated compound data generated by the riding type vehicle traveling integrated compound data generation process is output to the output target.
 この構成によると、第1鞍乗型車両走行複合データと第2鞍乗型車両走行複合データが関連付けられた鞍乗型車両走行一体複合データが出力対象に出力される。鞍乗型車両走行一体複合データは、例えば、第1鞍乗型車両走行複合データと第2鞍乗型車両走行複合データとの差分や比較や組み合わせなどによって生成されたデータであってもよい。鞍乗型車両走行一体複合データは、第1鞍乗型車両走行複合データと第2鞍乗型車両走行複合データを含んでいてもよい。この場合、出力対象において、第1鞍乗型車両走行複合データと第2鞍乗型車両走行複合データとの差分や比較や組み合わせなどの処理ができる。鞍乗型車両走行一体複合データがどちらであっても、出力対象において鞍乗型車両走行一体複合データを例えば車両の制御や車両の走行状態の解析などに活用しやすい。鞍乗型車両走行一体複合データを活用しやすいため、出力された鞍乗型車両走行一体複合データの後処理が容易である。出力された鞍乗型車両走行一体複合データの後処理が容易であるため、鞍乗型車両走行一体複合データが出力される出力対象のハードウェアリソースを低減することができる。
 以上のように、本発明の鞍乗型車両走行データ処理装置は、出力されたデータの後処理を効率化して、ハードウェアリソースを低減することができる。
According to this configuration, the saddle riding type vehicle traveling integrated data in which the first saddle riding type vehicle traveling compound data and the second saddle riding type vehicle traveling compound data are associated is output to the output target. The saddle-ride type vehicle traveling integrated data may be, for example, data generated by a difference, comparison or combination of the first saddle-type vehicle traveling combined data and the second saddle-type vehicle traveling combined data. The saddle-ride type vehicle traveling integrated data may include first saddle-ride type vehicle travel combined data and second straddle-type vehicle travel combined data. In this case, the output target can be subjected to processing such as difference, comparison, and combination of the first saddle riding type vehicle traveling composite data and the second saddle riding type vehicle traveling composite data. Whichever the saddle riding type vehicle traveling integrated composite data is, it is easy to utilize the saddle riding type vehicle traveling integrated data in the output target, for example, for controlling the vehicle or analyzing the running state of the vehicle. Since it is easy to utilize the saddle-ride type vehicle traveling integrated data, it is easy to post-process the outputted saddle-type vehicle traveling integrated data. Since the post-processing of the outputted saddle-ride type vehicle traveling integrated data is easy, it is possible to reduce the output hardware resources to which the saddle-type vehicle traveling integrated data is output.
As described above, the straddle-type vehicle travel data processing apparatus of the present invention can reduce the hardware resources by making post-processing of output data more efficient.
 (10)本発明の他の観点によれば、本発明の鞍乗型車両走行データ処理装置は、上記(9)の構成に加えて、以下の構成を有することが好ましい。
 前記プロセッサは、前記第1アプローチ旋回軌跡を走行したときの前記鞍乗型車両に乗車するライダーを識別する第1ライダー識別データ、および、前記第2アプローチ旋回軌跡を走行したときの前記鞍乗型車両に乗車するライダーを識別する第2ライダー識別データが取得されるライダー識別データ取得処理、を更に実行するように構成されまたはプログラムされており、前記鞍乗型車両走行複合データ生成処理において、前記第1鞍乗型車両走行複合データが、前記第1アプローチ旋回軌跡データと、前記第1アプローチ旋回前方向加速度データと、前記第1ライダー識別データとに基づいて、前記第1アプローチ旋回軌跡、前記第1アプローチ旋回軌跡を走行したときの前記鞍乗型車両の車両前方向の加速度、および、前記第1アプローチ旋回軌跡を走行したときの前記鞍乗型車両に乗車するライダーを関連付けて生成され、前記第2鞍乗型車両走行複合データが、前記第2アプローチ旋回軌跡データと、前記第2アプローチ旋回前方向加速度データと、前記第2ライダー識別データとに基づいて、前記第2アプローチ旋回軌跡、前記第2アプローチ旋回軌跡を走行したときの前記鞍乗型車両の車両前方向の加速度、および、前記第2アプローチ旋回軌跡を走行したときの前記鞍乗型車両に乗車するライダーを関連付けて生成され、前記鞍乗型車両走行一体複合データ生成処理において、前記第1ライダー識別データと前記第2ライダー識別データが同じ場合に、前記第1鞍乗型車両走行複合データと前記第2鞍乗型車両走行複合データを互いに関連づけて同一ライダー鞍乗型車両走行一体複合データが生成され、前記鞍乗型車両走行複合データ合出力処理において、前記鞍乗型車両走行一体複合データ生成処理により生成された前記同一ライダー鞍乗型車両走行一体複合データが前記出力対象に出力される。
(10) According to another aspect of the present invention, it is preferable that the saddle riding type vehicle travel data processing device of the present invention has the following configuration in addition to the configuration of (9) above.
The processor includes first rider identification data for identifying a rider who rides on the saddle riding type vehicle when traveling on the first approach turning locus, and the saddle riding type when traveling on the second approach turning locus. The saddle-ride type vehicle travel composite data generation process is further configured or programmed to further execute a rider identification data acquisition process for acquiring second rider identification data for identifying a rider on a vehicle. The first straddle-type vehicle travel composite data is based on the first approach turning trajectory data, the first approach forward acceleration data, and the first rider identification data, and the first approach turning trajectory, the The vehicle front acceleration of the saddle riding type vehicle when traveling on the first approach turning locus and the rider riding on the saddle riding type vehicle when traveling on the first approach turning locus are generated in association with each other, The second saddle riding type vehicle travel composite data is based on the second approach turning locus data, the second approach turning front direction acceleration data and the second rider identification data, and the second approach turning locus, The acceleration in the vehicle front direction of the saddle riding type vehicle when traveling on the second approach turning trajectory and the rider riding on the saddle riding type vehicle when traveling on the second approach turning trajectory are generated in association with each other. In the saddle-ride type vehicle traveling integrated composite data generation process, when the first rider identification data and the second rider identification data are the same, the first saddle-ride type vehicle travel composite data and the second saddle-ride type vehicle The same rider saddle riding type vehicle traveling integrated data is generated by associating the traveling complex data with each other, and in the saddle riding type vehicle traveling complex data output process, the saddle type vehicle traveling integrated data generating process is performed. The same rider saddle riding type vehicle traveling integrated data is output to the output target.
 この構成によると、第1鞍乗型車両走行複合データは、第1アプローチ旋回軌跡を走行したときの鞍乗型車両に乗車するライダーに関連付けられる。第2鞍乗型車両走行複合データは、第2アプローチ旋回軌跡を走行したときの鞍乗型車両に乗車するライダーに関連付けられる。第1アプローチ旋回軌跡を走行したときのライダーと、第2アプローチ旋回軌跡を走行したときのライダーが同じ場合、第1鞍乗型車両走行複合データと第2鞍乗型車両走行複合データが互いに関連づけられた同一ライダー鞍乗型車両走行一体複合データが出力対象に出力される。
 旋回中と旋回前の直進中の鞍乗型車両の走行軌跡と車両前方向の加速度は、ライダーの意思によって決まる鞍乗型車両の走行状態と密接に関連している。同じアプローチ旋回領域を走行した場合であっても、ライダーごとに鞍乗型車両の走行状態は異なる。そのため、出力対象において、同一ライダー鞍乗型車両走行一体複合データに基づいて、例えば、同じライダーの2つの鞍乗型車両走行複合データの差分を利用することができる。同一ライダー鞍乗型車両走行一体複合データを、ライダーごとの特徴を反映した活用ができる。つまり、出力対象に出力される同一ライダー鞍乗型車両走行一体複合データは、活用の自由度が高く、活用しやすい。同一ライダー鞍乗型車両走行一体複合データを活用しやすいため、出力された同一ライダー鞍乗型車両走行一体複合データの後処理が容易である。出力された同一ライダー鞍乗型車両走行一体複合データの後処理が容易であるため、同一ライダー鞍乗型車両走行一体複合データが出力される出力対象のハードウェアリソースを低減することができる。
 以上のように、本発明の鞍乗型車両走行データ処理装置は、出力されたデータの後処理を効率化して、ハードウェアリソースを低減することができる。
According to this configuration, the first straddle-type vehicle traveling composite data is associated with the rider who gets on the straddle-type vehicle when traveling on the first approach turning locus. The second saddle riding type vehicle traveling composite data is associated with the rider who gets on the saddle riding type vehicle when traveling on the second approach turning locus. When the rider traveling on the first approach turning trajectory and the rider traveling on the second approach turning trajectory are the same, the first saddle riding type vehicle traveling composite data and the second saddle riding type vehicle traveling composite data are associated with each other. The obtained composite data of the same rider saddle riding type vehicle traveling integrated is output to the output target.
The running locus of the saddle riding type vehicle and the acceleration in the front direction of the vehicle during turning and before going straight are closely related to the running state of the saddle riding type vehicle which is determined by the rider's intention. Even when traveling in the same approach turning region, the riding state of the saddle riding type vehicle differs for each rider. Therefore, in the output target, for example, the difference between the two saddle riding type vehicle traveling composite data of the same rider can be used based on the same rider saddle riding type vehicle traveling integrated data. The same rider-saddle-type vehicle traveling integrated data can be used to reflect the characteristics of each rider. That is, the same rider-saddle-type vehicle traveling integrated composite data output to the output target has a high degree of freedom in utilization and is easy to utilize. Since it is easy to utilize the composite data of the same rider-saddle type vehicle traveling integrated data, it is easy to post-process the outputted composite data of the same rider-saddle type vehicle traveling integrated data. Since the post-processing of the outputted same rider-saddle type vehicle traveling integrated data is easy, it is possible to reduce the hardware resource of the output target of the same rider-saddle type vehicle traveling integrated data.
As described above, the straddle-type vehicle travel data processing apparatus of the present invention can reduce the hardware resources by making post-processing of output data more efficient.
 (11)本発明の他の観点によれば、本発明の鞍乗型車両走行データ処理装置は、上記(9)の構成に加えて、以下の構成を有することが好ましい。
 前記プロセッサは、前記第1アプローチ旋回軌跡を走行したときの前記鞍乗型車両に乗車するライダーを識別する第1ライダー識別データ、および、前記第2アプローチ旋回軌跡を走行したときの前記鞍乗型車両に乗車するライダーを識別する第2ライダー識別データが取得されるライダー識別データ取得処理、を更に実行するように構成されまたはプログラムされており、前記鞍乗型車両走行複合データ生成処理において、前記第1鞍乗型車両走行複合データが、前記第1アプローチ旋回軌跡データと、前記第1アプローチ旋回前方向加速度データと、前記第1ライダー識別データとに基づいて、前記第1アプローチ旋回軌跡、前記第1アプローチ旋回軌跡を走行したときの前記鞍乗型車両の車両前方向の加速度、および、前記第1アプローチ旋回軌跡を走行したときの前記鞍乗型車両に乗車するライダーを関連付けて生成され、前記第2鞍乗型車両走行複合データが、前記第2アプローチ旋回軌跡データと、前記第2アプローチ旋回前方向加速度データと、前記第2ライダー識別データとに基づいて、前記第2アプローチ旋回軌跡、前記第2アプローチ旋回軌跡を走行したときの前記鞍乗型車両の車両前方向の加速度、および、前記第2アプローチ旋回軌跡を走行したときの前記鞍乗型車両に乗車するライダーを関連付けて生成され、前記鞍乗型車両走行一体複合データ生成処理において、前記第1ライダー識別データと前記第2ライダー識別データが異なる場合に、前記第1鞍乗型車両走行複合データと前記第2鞍乗型車両走行複合データを互いに関連づけて相違ライダー鞍乗型車両走行一体複合データが生成され、前記鞍乗型車両走行複合データ出力処理において、前記鞍乗型車両走行一体複合データ生成処理により生成された前記相違ライダー鞍乗型車両走行一体複合データが前記出力対象に出力される。
(11) According to another aspect of the present invention, it is preferable that the saddle riding type vehicle travel data processing device of the present invention has the following configuration in addition to the configuration of (9) above.
The processor includes first rider identification data for identifying a rider who rides on the saddle riding type vehicle when traveling on the first approach turning locus, and the saddle riding type when traveling on the second approach turning locus. The saddle-ride type vehicle travel composite data generation process is further configured or programmed to further execute a rider identification data acquisition process for acquiring second rider identification data for identifying a rider on a vehicle. The first straddle type vehicle traveling composite data is based on the first approach turning trajectory data, the first approach forward acceleration data, and the first rider identification data, and the first approach turning trajectory, the The vehicle front acceleration of the saddle riding type vehicle when traveling on the first approach turning locus and the rider riding on the saddle riding type vehicle when traveling on the first approach turning locus are generated in association with each other, The second saddle riding type vehicle traveling composite data is based on the second approach turning locus data, the second approach turning front direction acceleration data and the second rider identification data, and the second approach turning locus, The acceleration in the vehicle front direction of the saddle riding type vehicle when traveling on the second approach turning locus and the rider riding on the saddle riding type vehicle when traveling on the second approach turning locus are generated in association with each other. In the saddle-ride type vehicle travel integrated composite data generation process, when the first rider identification data and the second rider identification data are different, the first saddle-ride type vehicle travel composite data and the second saddle-ride type vehicle Differences are generated by associating the traveling composite data with each other, and the rider-saddle-type vehicle traveling integrated data is generated, and in the saddle-type vehicle traveling composite data output processing, the difference generated by the saddle-riding type vehicle traveling integrated data generation processing. The rider-saddle type vehicle traveling integrated data is output to the output target.
 この構成によると、第1鞍乗型車両走行複合データは、第1アプローチ旋回軌跡を走行したときの鞍乗型車両に乗車するライダーに関連付けられる。第2鞍乗型車両走行複合データは、第2アプローチ旋回軌跡を走行したときの鞍乗型車両に乗車するライダーに関連付けられる。第1アプローチ旋回軌跡を走行したときのライダーと、第2アプローチ旋回軌跡を走行したときのライダーが異なる場合、第1鞍乗型車両走行複合データと第2鞍乗型車両走行複合データが互いに関連づけられた相違ライダー鞍乗型車両走行一体複合データが出力対象に出力される。
 旋回中と旋回前の直進中の鞍乗型車両の走行軌跡と車両前方向の加速度は、ライダーの意思によって決まる鞍乗型車両の走行状態と密接に関連している。同じアプローチ旋回領域を走行した場合であっても、ライダーごとに鞍乗型車両の走行状態は異なる。そのため、出力対象において、相違ライダー鞍乗型車両走行一体複合データに基づいて、例えば、異なるライダーの2つの鞍乗型車両走行複合データの差分を利用することができる。相違ライダー鞍乗型車両走行一体複合データを、ライダーの違いを反映した活用ができる。つまり、出力対象に出力される相違ライダー鞍乗型車両走行一体複合データは、活用の自由度が高く、活用しやすい。相違ライダー鞍乗型車両走行一体複合データを活用しやすいため、出力された相違ライダー鞍乗型車両走行一体複合データの後処理が容易である。出力された相違ライダー鞍乗型車両走行一体複合データの後処理が容易であるため、相違ライダー鞍乗型車両走行一体複合データが出力される出力対象のハードウェアリソースを低減することができる。
 以上のように、本発明の鞍乗型車両走行データ処理装置は、出力されたデータの後処理を効率化して、ハードウェアリソースを低減することができる。
According to this configuration, the first straddle-type vehicle traveling composite data is associated with the rider who gets on the straddle-type vehicle when traveling on the first approach turning locus. The second saddle riding type vehicle traveling composite data is associated with the rider who gets on the saddle riding type vehicle when traveling on the second approach turning locus. When the rider traveling on the first approach turning trajectory and the rider traveling on the second approach turning trajectory are different, the first saddle riding type vehicle traveling composite data and the second saddle riding type vehicle traveling composite data are associated with each other. The composite data of the different rider-saddle-type vehicle traveling integrated is output to the output target.
The running locus of the saddle riding type vehicle and the acceleration in the front direction of the vehicle during turning and before going straight are closely related to the running state of the saddle riding type vehicle which is determined by the rider's intention. Even when traveling in the same approach turning region, the riding state of the saddle riding type vehicle differs for each rider. Therefore, in the output target, for example, the difference between the two saddle riding type vehicle traveling composite data of different riders can be used based on the different rider saddle riding type vehicle traveling integrated data. Difference Rider Saddle-type vehicle traveling integrated data can be used to reflect differences in riders. That is, the different rider-saddle-type vehicle traveling integrated composite data output to the output target has a high degree of freedom in utilization and is easy to utilize. Since it is easy to utilize the different rider-saddle-type vehicle traveling integrated data, the post-processing of the output different rider-saddle type vehicle traveling integrated data is easy. Since the post-processing of the outputted different rider-saddle type vehicle traveling integrated data is easy, it is possible to reduce the hardware resource of the output destination of the different rider-saddle type vehicle traveling integrated data.
As described above, the straddle-type vehicle travel data processing apparatus of the present invention can reduce the hardware resources by making post-processing of output data more efficient.
 (12)本発明の他の観点によれば、本発明の鞍乗型車両走行データ処理装置は、上記(9)~(11)のいずれかの構成に加えて、以下の構成を有することが好ましい。
 前記鞍乗型車両走行一体複合データ生成処理において、前記第1鞍乗型車両走行複合データと、前記第2鞍乗型車両走行複合データとの差分により前記鞍乗型車両走行一体複合データが生成される。
(12) According to another aspect of the present invention, a straddle-type vehicle traveling data processing device of the present invention may have the following configuration in addition to any one of the configurations (9) to (11). preferable.
In the saddle-ride type vehicle traveling integrated data generation process, the saddle-type vehicle traveling integrated data is generated by the difference between the first saddle-type vehicle traveling combined data and the second saddle-type vehicle traveling combined data. To be done.
 この構成によると、第1鞍乗型車両走行複合データと第2鞍乗型車両走行複合データとの差分である鞍乗型車両走行一体複合データが出力対象に出力される。第1鞍乗型車両走行複合データと第2鞍乗型車両走行複合データとの差分は、例えば車両の制御や車両の走行状態の解析などに活用しやすい。鞍乗型車両走行一体複合データを活用しやすいため、出力された鞍乗型車両走行一体複合データの後処理が容易である。出力された鞍乗型車両走行一体複合データの後処理が容易であるため、鞍乗型車両走行一体複合データが出力される出力対象のハードウェアリソースを低減することができる。
 以上のように、本発明の鞍乗型車両走行データ処理装置は、出力されたデータの後処理を効率化して、ハードウェアリソースを低減することができる。
According to this configuration, the saddle riding type vehicle traveling integrated data, which is the difference between the first saddle riding type vehicle traveling composite data and the second saddle riding type vehicle traveling composite data, is output to the output target. The difference between the first saddle-ride type vehicle traveling composite data and the second saddle-ride type vehicle traveling composite data is easy to utilize, for example, for controlling the vehicle or analyzing the traveling state of the vehicle. Since it is easy to utilize the saddle-ride type vehicle traveling integrated data, it is easy to post-process the outputted saddle-type vehicle traveling integrated data. Since the post-processing of the outputted saddle-ride type vehicle traveling integrated data is easy, it is possible to reduce the output hardware resources to which the saddle-type vehicle traveling integrated data is output.
As described above, the straddle-type vehicle travel data processing apparatus of the present invention can reduce the hardware resources by making post-processing of output data more efficient.
 (13)本発明の他の観点によれば、本発明の鞍乗型車両走行データ処理装置は、上記(1)~(12)のいずれかの構成に加えて、以下の構成を有することが好ましい。
 前記第1アプローチ旋回軌跡データまたは前記第1アプローチ旋回前方向加速度データの少なくとも一方が、GNSS(Global Navigation Satellite System / 全球測位衛星システム)を利用して生成されたデータである。
(13) According to another aspect of the present invention, a straddle-type vehicle traveling data processing apparatus of the present invention may have the following configuration in addition to any one of the configurations (1) to (12). preferable.
At least one of the first approach turning trajectory data and the first approach turning front direction acceleration data is data generated using a GNSS (Global Navigation Satellite System).
 この構成によると、第1アプローチ旋回軌跡データまたは第1アプローチ旋回前方向加速度データの少なくとも一方は、GNSSを利用して生成されたデータである。GNSSを利用して生成された第1アプローチ旋回軌跡データは、第1アプローチ旋回軌跡を高い精度で示す。GNSSを利用して生成された第1アプローチ旋回前方向加速度データは、第1アプローチ旋回軌跡を走行したときの鞍乗型車両の車両前方向の加速度を高い精度で示す。そのため、第1鞍乗型車両走行複合データをより活用しやすくなる。第1鞍乗型車両走行複合データをより活用しやすくなるため、出力された第1鞍乗型車両走行複合データの後処理がより容易である。出力された第1鞍乗型車両走行複合データの後処理がより容易であるため、第1鞍乗型車両走行複合データが出力される出力対象のハードウェアリソースをより低減することができる。
 以上のように、本発明の鞍乗型車両走行データ処理装置は、出力されたデータの後処理をより効率化して、ハードウェアリソースをより低減することができる。
According to this configuration, at least one of the first approach turning trajectory data and the first approach turning front direction acceleration data is data generated using GNSS. The first approach turning trajectory data generated using GNSS indicates the first approach turning trajectory with high accuracy. The first approach turning front direction acceleration data generated using the GNSS indicates with high accuracy the vehicle front direction acceleration of the saddle type vehicle when traveling on the first approach turning locus. Therefore, it becomes easier to utilize the first saddle riding type vehicle traveling composite data. Since it becomes easier to utilize the first saddle riding type vehicle traveling composite data, the post-processing of the output first saddle riding type vehicle traveling composite data is easier. Since the post-processing of the output first straddle-type vehicle travel composite data is easier, it is possible to further reduce the hardware resources to be output to which the first saddle-ride type vehicle travel composite data is output.
As described above, the straddle-type vehicle travel data processing device of the present invention can more efficiently post-process the output data and further reduce hardware resources.
 (14)本発明の他の観点によれば、本発明の鞍乗型車両走行データ処理装置は、上記(1)~(13)のいずれかの構成に加えて、以下の構成を有することが好ましい。
 前記鞍乗型車両走行複合データ生成処理において、前記第1鞍乗型車両走行複合データが、前記第1アプローチ旋回軌跡データおよび前記第1アプローチ旋回前方向加速度データに基づいたイメージデータを含むように生成される。
(14) According to another aspect of the present invention, a straddle-type vehicle travel data processing device of the present invention may have the following configuration in addition to any one of the configurations (1) to (13). preferable.
In the saddle-ride type vehicle traveling composite data generation process, the first saddle-ride type vehicle traveling composite data may include image data based on the first approach turning trajectory data and the first approach turning forward acceleration data. Is generated.
 この構成によると、第1鞍乗型車両走行複合データは、第1アプローチ旋回軌跡データおよび第1アプローチ旋回前方向加速度データに基づいたイメージデータを含む。そのため、第1鞍乗型車両走行複合データは、第1アプローチ旋回軌跡と、第1アプローチ旋回軌跡を走行したときの鞍乗型車両の車両前方向の加速度との関連性をより明確に示す。そのため、第1鞍乗型車両走行複合データをより活用しやすくなる。第1鞍乗型車両走行複合データをより活用しやすくなるため、出力された第1鞍乗型車両走行複合データの後処理がより容易である。出力された第1鞍乗型車両走行複合データの後処理がより容易であるため、第1鞍乗型車両走行複合データが出力される出力対象のハードウェアリソースをより低減することができる。
 以上のように、本発明の鞍乗型車両走行データ処理装置は、出力されたデータの後処理をより効率化して、ハードウェアリソースをより低減することができる。
According to this configuration, the first straddle-type vehicle traveling composite data includes image data based on the first approach turning trajectory data and the first approach turning front direction acceleration data. Therefore, the first saddle riding type vehicle traveling composite data more clearly shows the relationship between the first approach turning locus and the acceleration in the vehicle front direction of the saddle riding type vehicle when traveling on the first approach turning locus. Therefore, it becomes easier to utilize the first saddle riding type vehicle traveling composite data. Since it becomes easier to utilize the first saddle riding type vehicle traveling composite data, the post-processing of the output first saddle riding type vehicle traveling composite data is easier. Since the post-processing of the output first straddle-type vehicle travel composite data is easier, it is possible to further reduce the hardware resources to be output to which the first saddle-ride type vehicle travel composite data is output.
As described above, the straddle-type vehicle travel data processing device of the present invention can more efficiently post-process the output data and further reduce hardware resources.
 (15)本発明の他の観点によれば、本発明の鞍乗型車両走行データ処理装置は、上記(6)の構成に加えて、以下の構成を有することが好ましい。
 前記鞍乗型車両走行複合データ生成処理において、前記第1鞍乗型車両走行複合データが、前記第1アプローチ旋回軌跡データおよび前記第1アプローチ旋回左右方向加速度データに基づいたイメージデータを含むように生成される。
(15) According to another aspect of the present invention, it is preferable that the saddle riding type vehicle travel data processing device of the present invention has the following configuration in addition to the configuration of (6) above.
In the saddle riding type vehicle traveling composite data generation process, the first saddle riding type vehicle traveling composite data may include image data based on the first approach turning locus data and the first approach turning lateral acceleration data. Is generated.
 この構成によると、第1鞍乗型車両走行複合データは、第1アプローチ旋回軌跡データおよび第1アプローチ旋回左右方向加速度データに基づいたイメージデータを含む。そのため、第1鞍乗型車両走行複合データは、第1アプローチ旋回軌跡と第1アプローチ旋回軌跡を走行したときの鞍乗型車両の車両左右方向の加速度との関連性をより明確に示す。そのため、第1鞍乗型車両走行複合データをより活用しやすくなる。第1鞍乗型車両走行複合データをより活用しやすくなるため、出力された第1鞍乗型車両走行複合データの後処理がより容易である。出力された第1鞍乗型車両走行複合データの後処理がより容易であるため、第1鞍乗型車両走行複合データが出力される出力対象のハードウェアリソースをより低減することができる。
 以上のように、本発明の鞍乗型車両走行データ処理装置は、出力されたデータの後処理をより効率化して、ハードウェアリソースをより低減することができる。
According to this configuration, the first straddle-type vehicle traveling composite data includes image data based on the first approach turning trajectory data and the first approach turning left-right acceleration data. Therefore, the first straddle-type vehicle traveling composite data more clearly shows the relationship between the first approach turning locus and the acceleration in the vehicle left-right direction of the straddle-type vehicle when traveling on the first approach turning locus. Therefore, it becomes easier to utilize the first saddle riding type vehicle traveling composite data. Since it becomes easier to utilize the first saddle riding type vehicle traveling composite data, the post-processing of the output first saddle riding type vehicle traveling composite data is easier. Since the post-processing of the output first straddle-type vehicle travel composite data is easier, it is possible to further reduce the hardware resources to be output to which the first saddle-ride type vehicle travel composite data is output.
As described above, the straddle-type vehicle travel data processing device of the present invention can more efficiently post-process the output data and further reduce hardware resources.
 (16)本発明の他の観点によれば、本発明の鞍乗型車両走行データ処理装置は、上記(6)の構成に加えて、以下の構成を有することが好ましい。
 前記鞍乗型車両走行複合データ生成処理において、前記第1鞍乗型車両走行複合データが、前記第1アプローチ旋回前方向加速度データおよび前記第1アプローチ旋回左右方向加速度データに基づいて生成された、前記鞍乗型車両の車両前方向の加速度を縦軸とし、前記鞍乗型車両の車両左右方向の加速度を横軸としたグラフのイメージデータを含む。
(16) According to another aspect of the present invention, it is preferable that the saddle riding type vehicle travel data processing device of the present invention has the following configuration in addition to the configuration of (6) above.
In the saddle-ride type vehicle traveling composite data generation process, the first saddle-ride type vehicle traveling composite data is generated based on the first approach turning front direction acceleration data and the first approach turning left / right direction acceleration data. It includes image data of a graph in which the vertical axis represents the acceleration of the saddle-ride type vehicle in the vehicle front direction and the horizontal axis represents the acceleration of the saddle-ride type vehicle in the vehicle left-right direction.
 この構成によると、第1鞍乗型車両走行複合データは、鞍乗型車両の車両前方向の加速度を縦軸とし、鞍乗型車両の車両左右方向の加速度を横軸としたグラフのイメージデータを含む。そのため、第1鞍乗型車両走行複合データは、第1アプローチ旋回軌跡を走行したときの鞍乗型車両の車両前方向の加速度と鞍乗型車両の車両左右方向の加速度との関連性をより明確に示す。そのため、第1鞍乗型車両走行複合データをより活用しやすくなる。第1鞍乗型車両走行複合データをより活用しやすくなるため、出力された第1鞍乗型車両走行複合データの後処理がより容易である。出力された第1鞍乗型車両走行複合データの後処理がより容易であるため、第1鞍乗型車両走行複合データが出力される出力対象のハードウェアリソースをより低減することができる。
 以上のように、本発明の鞍乗型車両走行データ処理装置は、出力されたデータの後処理をより効率化して、ハードウェアリソースをより低減することができる。
According to this configuration, the first straddle-type vehicle traveling composite data is image data of a graph in which the vertical axis represents the acceleration in the vehicle front direction of the saddle-ride type vehicle and the horizontal axis represents the acceleration in the vehicle left-right direction of the saddle-ride type vehicle. including. Therefore, the first straddle-type vehicle traveling composite data shows the relationship between the acceleration in the vehicle front direction of the straddle-type vehicle and the acceleration in the vehicle left-right direction of the saddle-type vehicle when traveling on the first approach turning trajectory. Show clearly. Therefore, it becomes easier to utilize the first saddle riding type vehicle traveling composite data. Since it becomes easier to utilize the first saddle riding type vehicle traveling composite data, the post-processing of the output first saddle riding type vehicle traveling composite data is easier. Since the post-processing of the output first straddle-type vehicle travel composite data is easier, it is possible to further reduce the hardware resources to be output to which the first saddle-ride type vehicle travel composite data is output.
As described above, the straddle-type vehicle travel data processing device of the present invention can more efficiently post-process the output data and further reduce hardware resources.
 (17)本発明の他の観点によれば、本発明の鞍乗型車両走行データ処理装置は、上記(1)~(16)のいずれかの構成に加えて、以下の構成を有することが好ましい。
 前記第1アプローチ旋回軌跡は、前記アプローチ領域を走行したときの前記鞍乗型車両の走行軌跡である第1アプローチ軌跡と、前記第1旋回領域を走行したときの前記鞍乗型車両の走行軌跡である第1旋回軌跡とを含み、前記鞍乗型車両走行データ取得処理において、前記第1旋回軌跡を走行したときの前記鞍乗型車両の姿勢に関連する第1旋回車両姿勢データと、前記第1旋回軌跡を走行したときの前記鞍乗型車両に乗車するライダーの姿勢に関連する第1旋回ライダー姿勢データとが取得され、前記鞍乗型車両走行複合データ生成処理において、前記第1鞍乗型車両走行複合データが、前記第1アプローチ旋回軌跡データ、前記第1アプローチ旋回前方向加速度データ、前記第1旋回車両姿勢データおよび前記第1旋回ライダー姿勢データに基づいて、前記第1アプローチ旋回軌跡、前記第1アプローチ旋回軌跡を走行したときの前記鞍乗型車両の車両前方向の加速度、前記第1旋回軌跡を走行したときの前記鞍乗型車両の姿勢、および、前記第1旋回軌跡を走行したときの前記鞍乗型車両に乗車する前記ライダーの姿勢を関連付けて生成される。
(17) According to another aspect of the present invention, a straddle-type vehicle travel data processing device of the present invention may have the following configuration in addition to any one of the configurations (1) to (16). preferable.
The first approach turning trajectory is a first approach trajectory that is a traveling trajectory of the saddle riding type vehicle when traveling in the approach area, and a traveling trajectory of the saddle riding type vehicle when traveling in the first turning area. The first turning vehicle attitude data relating to the attitude of the saddle riding type vehicle when traveling on the first turning path in the saddle riding type vehicle travel data acquisition processing, The first turning rider posture data relating to the posture of the rider on the saddle riding type vehicle when traveling on the first turning locus is acquired, and in the saddle riding type vehicle traveling composite data generation process, the first saddle type The riding-type vehicle traveling composite data is based on the first approach turning trajectory data, the first approach turning front direction acceleration data, the first turning vehicle attitude data, and the first turning rider attitude data, and the first approach turning. Trajectory, acceleration in the vehicle front direction of the saddle riding type vehicle when traveling on the first approach turning trajectory, posture of the saddle riding type vehicle when traveling on the first turning trajectory, and the first turning trajectory It is generated by associating the posture of the rider who gets on the saddle-ride type vehicle when traveling.
 この構成によると、第1鞍乗型車両走行複合データは、第1アプローチ旋回軌跡と、第1アプローチ旋回軌跡を走行したときの鞍乗型車両の車両前方向の加速度と、第1アプローチ旋回軌跡を走行したときの鞍乗型車両の姿勢と、第1アプローチ旋回軌跡を走行したときの鞍乗型車両に乗車するライダーの姿勢が関連付けられたデータである。
 鞍乗型車両は、車両の挙動の変化だけでなく、ライダーの姿勢の変化も利用して旋回する乗り物である。そのため、旋回中と旋回前のライダーの姿勢と車両の挙動は、ライダーの意思によって決まる鞍乗型車両の走行状態と密接に関連している。したがって、第1鞍乗型車両走行複合データは、鞍乗型車両の走行状態をより大きく反映している。そのため、第1鞍乗型車両走行複合データを活用しやすくなる。第1鞍乗型車両走行複合データを活用しやすくなるため、出力された第1鞍乗型車両走行複合データの後処理が容易である。出力された第1鞍乗型車両走行複合データの後処理が容易であるため、第1鞍乗型車両走行複合データが出力される出力対象のハードウェアリソースを低減することができる。
 以上のように、本発明の鞍乗型車両走行データ処理装置は、出力されたデータの後処理を効率化して、ハードウェアリソースを低減することができる。
According to this configuration, the first straddle-type vehicle traveling composite data includes the first approach turning locus, the acceleration in the vehicle front direction of the saddle riding type vehicle when traveling on the first approach turning locus, and the first approach turning locus. The data is associated with the attitude of the saddle riding type vehicle when traveling on the vehicle and the attitude of the rider riding the saddle riding type vehicle when traveling on the first approach turning locus.
A straddle-type vehicle is a vehicle that makes a turn using not only changes in the behavior of the vehicle but also changes in the posture of the rider. Therefore, the posture of the rider and the behavior of the vehicle during and before the turn are closely related to the running state of the saddle riding type vehicle determined by the rider's intention. Therefore, the first straddle-type vehicle traveling composite data largely reflects the traveling state of the straddle-type vehicle. Therefore, it becomes easy to utilize the first straddle-type vehicle traveling composite data. Since it becomes easy to utilize the first saddle riding type vehicle traveling composite data, the post-processing of the output first saddle riding type vehicle traveling composite data is easy. Since the post-processing of the output first straddle-type vehicle travel composite data is easy, it is possible to reduce the hardware resources to be output to which the first saddle-ride type vehicle travel composite data is output.
As described above, the straddle-type vehicle travel data processing apparatus of the present invention can reduce the hardware resources by making post-processing of output data more efficient.
 (18)本発明の他の観点によれば、本発明の鞍乗型車両走行データ処理装置は、上記(1)~(17)のいずれかの構成に加えて、以下の構成を有することが好ましい。
 前記第1アプローチ旋回軌跡は、前記鞍乗型車両が前記アプローチ旋回領域内を走行するように前記鞍乗型車両の進行方向をガイドするための少なくとも1つのアプローチ旋回ガイド部が設けられた環境下で走行したときの走行軌跡である。
(18) According to another aspect of the present invention, a straddle-type vehicle traveling data processing apparatus of the present invention may have the following configuration in addition to any one of the configurations (1) to (17). preferable.
The first approach turning trajectory is an environment in which at least one approach turning guide unit is provided for guiding the traveling direction of the saddle type vehicle so that the saddle type vehicle travels in the approach turning area. It is a traveling locus when traveling in.
 この構成によると、第1アプローチ旋回軌跡は、少なくとも1つのアプローチ旋回ガイド部が設けられた環境下で走行して得られた走行軌跡である。鞍乗型車両はアプローチ旋回ガイド部によって、アプローチ旋回領域内を走行するように進行方向がガイドされる。アプローチ旋回ガイド部によって、アプローチ旋回領域を、所望のサイズ、形状、および位置に設定しやすい。それにより、アプローチ旋回領域のばらつきによる鞍乗型車両の走行状態のばらつきを低減できる。そのため、第1鞍乗型車両走行複合データを例えば車両の制御や車両の走行状態の解析などにより活用しやすくなる。第1鞍乗型車両走行複合データをより活用しやすくなるため、出力された第1鞍乗型車両走行複合データの後処理がより容易である。出力された第1鞍乗型車両走行複合データの後処理がより容易であるため、第1鞍乗型車両走行複合データが出力される出力対象のハードウェアリソースをより低減することができる。
 以上のように、本発明の鞍乗型車両走行データ処理装置は、出力されたデータの後処理をより効率化して、ハードウェアリソースをより低減することができる。
According to this configuration, the first approach turning locus is a running locus obtained by running in an environment where at least one approach turning guide section is provided. The straddle-type vehicle is guided in its traveling direction by the approach turning guide portion so as to travel in the approach turning region. The approach turning guide portion facilitates setting the approach turning area to a desired size, shape, and position. As a result, it is possible to reduce variations in the running state of the saddle riding type vehicle due to variations in the approach turning area. Therefore, it becomes easy to utilize the first straddle-type vehicle traveling composite data by, for example, controlling the vehicle or analyzing the traveling state of the vehicle. Since it becomes easier to utilize the first saddle riding type vehicle traveling composite data, the post-processing of the output first saddle riding type vehicle traveling composite data is easier. Since the post-processing of the output first straddle-type vehicle travel composite data is easier, it is possible to further reduce the hardware resources to be output to which the first saddle-ride type vehicle travel composite data is output.
As described above, the straddle-type vehicle travel data processing device of the present invention can more efficiently post-process the output data and further reduce hardware resources.
 (19)本発明の他の観点によれば、本発明の鞍乗型車両走行データ処理装置は、上記(18)の構成に加えて、以下の構成を有することが好ましい。
 前記第1アプローチ旋回軌跡は、前記アプローチ領域を走行したときの前記鞍乗型車両の走行軌跡である第1アプローチ軌跡を含み、前記アプローチ旋回ガイド部は、前記鞍乗型車両が前記アプローチ領域内を走行するように前記鞍乗型車両の進行方向をガイドするための少なくとも2つのアプローチガイド部を含み、前記第1アプローチ軌跡は、前記鞍乗型車両が2つの前記アプローチガイド部の間を通過しつつ、前記アプローチ領域を走行したときの走行軌跡である。
(19) According to another aspect of the invention, it is preferable that the straddle-type vehicle travel data processing device of the invention has the following configuration in addition to the configuration of (18).
The first approach turning locus includes a first approach locus which is a running locus of the saddle riding type vehicle when running in the approach area, and the approach turning guide part is configured such that the saddle riding type vehicle is within the approach area. Including at least two approach guide parts for guiding the traveling direction of the saddle-ride type vehicle so that the saddle-ride type vehicle passes between the two approach guide parts. It is a traveling locus when traveling in the approach area while being driven.
 この構成によると、第1アプローチ旋回軌跡の第1アプローチ軌跡は、2つのアプローチガイド部の間を通過しつつアプローチ領域を走行したときの走行軌跡である。アプローチガイド部によって、アプローチ領域を所望の長さおよび位置に設定しやすい。よって、アプローチ領域のばらつきによる鞍乗型車両の走行状態のばらつきを低減できる。そのため、第1鞍乗型車両走行複合データを例えば車両の制御や車両の走行状態の解析などにより活用しやすくなる。第1鞍乗型車両走行複合データをより活用しやすくなるため、出力された第1鞍乗型車両走行複合データの後処理がより容易である。出力された第1鞍乗型車両走行複合データの後処理がより容易であるため、第1鞍乗型車両走行複合データが出力される出力対象のハードウェアリソースをより低減することができる。
 以上のように、本発明の鞍乗型車両走行データ処理装置は、出力されたデータの後処理をより効率化して、ハードウェアリソースをより低減することができる。
According to this configuration, the first approach trajectory of the first approach turning trajectory is a traveling trajectory when traveling in the approach area while passing between the two approach guide portions. The approach guide portion facilitates setting the approach area to a desired length and position. Therefore, it is possible to reduce the variation in the traveling state of the straddle-type vehicle due to the variation in the approach area. Therefore, it becomes easy to utilize the first straddle-type vehicle traveling composite data by, for example, controlling the vehicle or analyzing the traveling state of the vehicle. Since it becomes easier to utilize the first saddle riding type vehicle traveling composite data, the post-processing of the output first saddle riding type vehicle traveling composite data is easier. Since the post-processing of the output first straddle-type vehicle travel composite data is easier, it is possible to further reduce the hardware resources to be output to which the first saddle-ride type vehicle travel composite data is output.
As described above, the straddle-type vehicle travel data processing device of the present invention can more efficiently post-process the output data and further reduce hardware resources.
 (20)本発明の他の観点によれば、本発明の鞍乗型車両走行データ処理装置は、上記(18)または(19)の構成に加えて、以下の構成を有することが好ましい。
 前記第1アプローチ旋回軌跡は、前記第1旋回領域を走行したときの前記鞍乗型車両の走行軌跡である第1旋回軌跡を含み、前記アプローチ旋回ガイド部は、前記鞍乗型車両が前記第1旋回領域内を走行するように前記鞍乗型車両の進行方向をガイドするための少なくとも1つの旋回ガイド部を含み、前記第1旋回軌跡は、前記鞍乗型車両が前記旋回ガイド部と前記第2円弧との間を通過しつつ、前記第1旋回領域を走行したときの走行軌跡である。
(20) According to another aspect of the present invention, it is preferable that the saddle riding type vehicle travel data processing device of the present invention has the following configuration in addition to the configuration of (18) or (19).
The first approach turning locus includes a first turning locus that is a running locus of the saddle riding type vehicle when the vehicle is running in the first turning region, and the approach turning guide portion is configured such that the saddle riding type vehicle is the first turning locus. The saddle-riding type vehicle includes at least one turning guide portion for guiding the traveling direction of the saddle-riding type vehicle so as to travel in one turning area, and the first turning locus includes the turning guide portion and the turning guide portion. It is a travel locus when traveling in the first turning region while passing between the second arc and the second arc.
 この構成によると、第1アプローチ旋回軌跡の第1旋回軌跡は、旋回ガイド部と第2円弧との間を通過しつつ第1旋回領域を走行したときの走行軌跡である。旋回ガイド部によって、第1旋回領域を所望のサイズ、形状、および位置に設定しやすい。よって、第1旋回領域のばらつきによる鞍乗型車両の走行状態のばらつきを低減できる。そのため、第1鞍乗型車両走行複合データを例えば車両の制御や車両の走行状態の解析などにより活用しやすくなる。第1鞍乗型車両走行複合データをより活用しやすくなるため、出力された第1鞍乗型車両走行複合データの後処理がより容易である。出力された第1鞍乗型車両走行複合データの後処理がより容易であるため、第1鞍乗型車両走行複合データが出力される出力対象のハードウェアリソースをより低減することができる。
 以上のように、本発明の鞍乗型車両走行データ処理装置は、出力されたデータの後処理をより効率化して、ハードウェアリソースをより低減することができる。
According to this configuration, the first turning locus of the first approach turning locus is a running locus when traveling in the first turning region while passing between the turning guide portion and the second arc. The turning guide portion facilitates setting the first turning area to a desired size, shape, and position. Therefore, it is possible to reduce the variation in the running state of the saddle riding type vehicle due to the variation in the first turning region. Therefore, it becomes easy to utilize the first straddle-type vehicle traveling composite data by, for example, controlling the vehicle or analyzing the traveling state of the vehicle. Since it becomes easier to utilize the first saddle riding type vehicle traveling composite data, the post-processing of the output first saddle riding type vehicle traveling composite data is easier. Since the post-processing of the output first straddle-type vehicle travel composite data is easier, it is possible to further reduce the hardware resources to be output to which the first saddle-ride type vehicle travel composite data is output.
As described above, the straddle-type vehicle travel data processing device of the present invention can more efficiently post-process the output data and further reduce hardware resources.
 (21)本発明の他の観点によれば、本発明の鞍乗型車両走行データ処理装置は、上記(18)~(20)のいずれかの構成に加えて、以下の構成を有することが好ましい。
 前記アプローチ旋回ガイド部は、前記鞍乗型車両の進行方向を制限するように構成されている。
(21) According to another aspect of the present invention, a straddle-type vehicle traveling data processing device of the present invention may have the following configuration in addition to any one of the configurations (18) to (20). preferable.
The approach turning guide unit is configured to limit a traveling direction of the straddle-type vehicle.
 この構成によると、アプローチ旋回ガイド部は、鞍乗型車両の進行方向を制限する。アプローチ旋回ガイド部によって、アプローチ旋回領域を所望のサイズ、形状、および位置により確実に設定できる。よって、アプローチ旋回領域のばらつきによる鞍乗型車両の走行状態のばらつきをより低減できる。そのため、第1鞍乗型車両走行複合データを例えば車両の制御や車両の走行状態の解析などにより活用しやすくなる。第1鞍乗型車両走行複合データをより活用しやすくなるため、出力された第1鞍乗型車両走行複合データの後処理がより容易である。出力された第1鞍乗型車両走行複合データの後処理がより容易であるため、第1鞍乗型車両走行複合データが出力される出力対象のハードウェアリソースをより低減することができる。
 以上のように、本発明の鞍乗型車両走行データ処理装置は、出力されたデータの後処理をより効率化して、ハードウェアリソースをより低減することができる。
According to this configuration, the approach turning guide unit limits the traveling direction of the saddle riding type vehicle. The approach swivel guide portion can reliably set the approach swivel region to a desired size, shape, and position. Therefore, it is possible to further reduce the variation in the traveling state of the straddle-type vehicle due to the variation in the approach turning area. Therefore, it becomes easy to utilize the first straddle-type vehicle traveling composite data by, for example, controlling the vehicle or analyzing the traveling state of the vehicle. Since it becomes easier to utilize the first saddle riding type vehicle traveling composite data, the post-processing of the output first saddle riding type vehicle traveling composite data is easier. Since the post-processing of the output first straddle-type vehicle travel composite data is easier, it is possible to further reduce the hardware resources to be output to which the first saddle-ride type vehicle travel composite data is output.
As described above, the straddle-type vehicle travel data processing device of the present invention can more efficiently post-process the output data and further reduce hardware resources.
 (22)本発明の他の観点によれば、本発明の鞍乗型車両走行データ処理装置は、上記(21)の構成に加えて、以下の構成を有することが好ましい。
 前記鞍乗型車両が、地面を走行可能であって、前記少なくとも1つのアプローチ旋回ガイド部が、設置場所を自在に変更可能に前記地面に配置される。
(22) According to another aspect of the present invention, it is preferable that the saddle riding type vehicle travel data processing device of the present invention has the following configuration in addition to the configuration of (21) above.
The straddle-type vehicle is capable of traveling on the ground, and the at least one approach turning guide unit is arranged on the ground so that the installation location can be freely changed.
 この構成によると、アプローチ旋回ガイド部は、設置場所を自在に変更可能に地面に設置される。そのため、アプローチ旋回ガイド部を様々な場所に配置することができる。そのため、例えば駐車場などの道路以外の場所に、アプローチ旋回領域を設定することができる。
 また、アプローチ旋回ガイド部の位置の変更が容易である。そのため、アプローチ旋回領域のサイズ、形状、および位置を容易に変更できる。
 また、アプローチ旋回ガイド部の数を増やすことが容易である。アプローチ旋回ガイド部の数を増やすことで、アプローチ旋回領域を、所望のサイズ、形状、および位置により確実に設定できる。よって、アプローチ旋回領域のばらつきによる鞍乗型車両の走行状態のばらつきをより低減できる。そのため、第1鞍乗型車両走行複合データを例えば車両の制御や車両の走行状態の解析などにより活用しやすくなる。第1鞍乗型車両走行複合データをより活用しやすくなるため、出力された第1鞍乗型車両走行複合データの後処理がより容易である。出力された第1鞍乗型車両走行複合データの後処理がより容易であるため、第1鞍乗型車両走行複合データが出力される出力対象のハードウェアリソースをより低減することができる。
 以上のように、本発明の鞍乗型車両走行データ処理装置は、出力されたデータの後処理をより効率化して、ハードウェアリソースをより低減することができる。
With this configuration, the approach turning guide unit is installed on the ground so that the installation location can be freely changed. Therefore, the approach turning guide unit can be arranged at various places. Therefore, the approach turning area can be set at a place other than the road, such as a parking lot.
Further, it is easy to change the position of the approach turning guide portion. Therefore, the size, shape, and position of the approach turning area can be easily changed.
In addition, it is easy to increase the number of approach turning guide portions. By increasing the number of approach swivel guide portions, the approach swirl region can be reliably set to a desired size, shape, and position. Therefore, it is possible to further reduce the variation in the traveling state of the straddle-type vehicle due to the variation in the approach turning area. Therefore, it becomes easy to utilize the first straddle-type vehicle traveling composite data by, for example, controlling the vehicle or analyzing the traveling state of the vehicle. Since it becomes easier to utilize the first saddle riding type vehicle traveling composite data, the post-processing of the output first saddle riding type vehicle traveling composite data is easier. Since the post-processing of the output first straddle-type vehicle travel composite data is easier, it is possible to further reduce the hardware resources to be output to which the first saddle-ride type vehicle travel composite data is output.
As described above, the straddle-type vehicle travel data processing device of the present invention can more efficiently post-process the output data and further reduce hardware resources.
 (23)本発明の鞍乗型車両走行データ処理方法は、走行中の鞍乗型車両に関連するデータを蓄積するデータ収録装置や、走行中の前記鞍乗型車両に関連するデータに基づいて前記鞍乗型車両を制御する車両制御装置のような、走行中の前記鞍乗型車両に関連するデータを処理する鞍乗型車両走行データ処理方法であって、(A)(a1)0mより大きく65m以下の第1直線と、前記第1直線に平行で前記第1直線から2m離れた第2直線との間のアプローチ領域、および、前記第1直線の端に接続され、中心角が90°以上270°以下で半径が2m以上10m以下の第1円弧と、前記第2直線の端に接続され、前記第1円弧と同心状であって、前記第1円弧の径方向外側に位置する第2円弧との間の第1旋回領域からなるアプローチ旋回領域内の前記鞍乗型車両の走行軌跡であって、前記アプローチ領域から前記第1旋回領域に進入するように、前記アプローチ旋回領域の全域にわたって連続して走行したときの前記鞍乗型車両の走行軌跡である第1アプローチ旋回軌跡に関連する第1アプローチ旋回軌跡データ、および、(a2)前記第1アプローチ旋回軌跡を走行したときの前記鞍乗型車両の車両前方向の加速度に関連する第1アプローチ旋回前方向加速度データが取得される鞍乗型車両走行データ取得処理と、(B)前記第1アプローチ旋回軌跡データおよび前記第1アプローチ旋回前方向加速度データに基づいて、前記第1アプローチ旋回軌跡および前記第1アプローチ旋回軌跡を走行したときの前記鞍乗型車両の車両前方向の加速度が関連付けられた第1鞍乗型車両走行複合データが生成される鞍乗型車両走行複合データ生成処理と、(C)前記鞍乗型車両走行複合データ生成処理により生成された前記第1鞍乗型車両走行複合データが記憶部に記憶される鞍乗型車両走行複合データ記憶処理と、(D)前記鞍乗型車両走行複合データ記憶処理により記憶された前記第1鞍乗型車両走行複合データが出力対象に出力される鞍乗型車両走行複合データ出力処理と、を行う。 (23) A saddle-ride type vehicle traveling data processing method according to the present invention is based on a data recording device that accumulates data related to a traveling saddle-ride type vehicle and data related to the traveling saddle-ride type vehicle. A saddle riding type vehicle traveling data processing method for processing data related to the straddling type traveling vehicle, such as a vehicle control device for controlling the straddle type vehicle, comprising: (A) (a1) 0m It is connected to an approach area between a first straight line having a length of 65 m or less and a second straight line parallel to the first straight line and separated from the first straight line by 2 m, and a central angle of 90, which is connected to an end of the first straight line. Is connected to the end of the second straight line and a first arc having a radius of 2 ° or more and 10 m or less and a radius of 2 ° or more and 270 ° or less, is concentric with the first circular arc, and is located radially outside of the first circular arc. A travel locus of the straddle-type vehicle in an approach turning area including a first turning area between the second turning arc and the approach turning area so as to enter the first turning area from the approach area. First approach turning locus data relating to a first approach turning locus, which is a running locus of the saddle riding type vehicle when continuously running over the whole area, and (a2) when the first approach turning locus is run. Saddle-type vehicle travel data acquisition processing for acquiring first approach front-turn acceleration data related to vehicle front-direction acceleration of the saddle-ride type vehicle; and (B) the first approach turn trajectory data and the first The first straddle-type vehicle traveling in which the vehicle-front-direction acceleration of the straddle-type vehicle when traveling on the first approach-turning trajectory and the first approach-turning trajectory is associated based on the approach-turning forward acceleration data. A straddle-type vehicle travel composite data generation process for generating composite data, and (C) the first saddle-ride type vehicle travel composite data generated by the saddle-type vehicle travel composite data generation process are stored in a storage unit. Straddle-type vehicle traveling composite data storage processing, and (D) straddle-type vehicle traveling composite data stored by the straddle-type vehicle traveling composite data storage processing is output to an output target And a traveling composite data output process.
 この構成によると、本発明の鞍乗型車両走行データ処理方法は、鞍乗型車両走行データ取得処理と、鞍乗型車両走行複合データ生成処理と、鞍乗型車両走行複合データ記憶処理と、鞍乗型車両走行複合データ出力処理と、を実行する。鞍乗型車両走行データ取得処理では、第1アプローチ旋回軌跡データと、第1アプローチ旋回前方向加速度データが取得される。第1アプローチ旋回軌跡データは、第1アプローチ旋回軌跡に関連するデータである。第1アプローチ旋回軌跡は、アプローチ領域および第1旋回領域からなるアプローチ旋回領域内の鞍乗型車両の走行軌跡である。アプローチ領域は、0mより大きく65m以下の第1直線と、第1直線に平行で第1直線から2m離れた第2直線との間の領域である。第1旋回領域は、第1直線の端に接続された第1円弧と、第2直線の端に接続され、第1円弧と同心状であって、第1円弧の径方向外側に位置する第2円弧との間の領域である。第1円弧は、中心角が90°以上270°以下であって、半径が2m以上10m以下である。第1アプローチ旋回軌跡は、アプローチ領域から第1旋回領域に進入するように、アプローチ旋回領域内の全域にわたって連続して走行したときのアプローチ旋回領域内の鞍乗型車両の走行軌跡である。第1アプローチ旋回前方向加速度データは、第1アプローチ旋回軌跡を走行したときの鞍乗型車両の車両前方向の加速度に関連するデータである。鞍乗型車両走行複合データ生成処理では、第1アプローチ旋回軌跡データおよび第1アプローチ旋回前方向加速度データに基づいて、第1鞍乗型車両走行複合データが生成される。第1鞍乗型車両走行複合データは、第1アプローチ旋回軌跡、および、第1アプローチ旋回軌跡を走行したときの鞍乗型車両の車両前方向の加速度が関連付けられたデータである。鞍乗型車両走行複合データ記憶処理では、鞍乗型車両走行複合データ生成処理により生成された第1鞍乗型車両走行複合データが記憶部に記憶される。鞍乗型車両走行複合データ出力処理では、鞍乗型車両走行複合データ記憶処理により記憶された第1鞍乗型車両走行複合データが出力対象に出力される。第1アプローチ旋回軌跡は、旋回中と旋回前の直進中の鞍乗型車両の走行軌跡である。よって、旋回中と旋回前の直進中の鞍乗型車両の走行軌跡と車両前方向の加速度が関連付けられた第1鞍乗型車両走行複合データが、出力対象に出力される。 According to this configuration, the saddle riding type vehicle running data processing method of the present invention is a saddle riding type vehicle running data acquisition process, a saddle riding type vehicle running composite data generation process, a saddle riding type vehicle running composite data storage process, And a saddle-ride type vehicle traveling composite data output process. In the saddle riding type vehicle travel data acquisition process, the first approach turning trajectory data and the first approach turning front direction acceleration data are acquired. The first approach turning locus data is data related to the first approach turning locus. The first approach turning locus is a running locus of the saddle type vehicle in the approach turning area including the approach area and the first turning area. The approach region is a region between a first straight line that is greater than 0 m and 65 m or less and a second straight line that is parallel to the first straight line and is 2 m away from the first straight line. The first turning region is connected to an end of the first straight line and a first circular arc, is connected to the end of the second straight line, is concentric with the first circular arc, and is located radially outside the first circular arc. It is an area between two arcs. The first arc has a central angle of 90 ° or more and 270 ° or less and a radius of 2 m or more and 10 m or less. The first approach turning locus is a running locus of the straddle-type vehicle in the approach turning area when the vehicle continuously runs over the entire approach turning area so as to enter the first turning area from the approach area. The first approach turning front direction acceleration data is data relating to the acceleration in the vehicle front direction of the saddle type vehicle when traveling on the first approach turning locus. In the saddle riding type vehicle traveling composite data generation processing, the first straddling type vehicle traveling composite data is generated based on the first approach turning trajectory data and the first approach turning front direction acceleration data. The first straddle-type vehicle traveling composite data is data in which the first approach turning locus and the acceleration in the vehicle front direction of the straddle-type vehicle when traveling on the first approach turning locus are associated with each other. In the saddle-ride type vehicle traveling composite data storage process, the first saddle-ride type vehicle traveling composite data generated by the saddle-ride type vehicle traveling composite data generation process is stored in the storage unit. In the saddle-ride type vehicle traveling composite data output process, the first saddle-ride type vehicle traveling composite data stored by the saddle-ride type vehicle traveling composite data storage process is output to the output target. The first approach turning locus is a running locus of the straddle-type vehicle during turning and before going straight. Therefore, the first straddle-type vehicle traveling composite data in which the traveling loci of the straddle-type vehicle during turning and before straightening are associated with the acceleration in the vehicle front direction is output to the output target.
 出力対象は、鞍乗型車両走行データ処理装置に含まれてもよく、含まれなくてもよい。鞍乗型車両走行データ処理装置が車両制御装置の場合、第1鞍乗型車両走行複合データは、例えば、車両制御装置内のエンジン制御またはブレーキ制御のためのプロセッサに出力されてもよい。エンジン制御またはブレーキ制御のためのプロセッサは、出力された第1鞍乗型車両走行複合データを用いて、鞍乗型車両のエンジン制御またはブレーキ制御を行うことができる。鞍乗型車両走行データ処理装置が車両制御装置の場合、第1鞍乗型車両走行複合データは、例えば、鞍乗型車両が備える表示装置に出力されてもよい。鞍乗型車両走行データ処理装置がデータ収録装置の場合、第1鞍乗型車両走行複合データは、例えば、データ収録装置に接続された外部記憶装置(二次記憶装置、補助記憶装置)に出力されてもよい。外部記憶装置に記憶された第1鞍乗型車両走行複合データは、鞍乗型車両の走行状態の解析に使用されてもよい。鞍乗型車両走行データ処理装置がデータ収録装置の場合、第1鞍乗型車両走行複合データは、データ収録装置の外部のコンピュータに出力されてもよい。第1鞍乗型車両走行複合データは、印刷装置に出力されてもよく、表示装置に出力されてもよい。 The output target may or may not be included in the saddle riding type vehicle travel data processing device. When the saddle riding type vehicle travel data processing device is a vehicle control device, the first saddle riding type vehicle travel composite data may be output to a processor for engine control or brake control in the vehicle control device, for example. The processor for engine control or brake control can perform engine control or brake control of the saddle riding type vehicle by using the output first saddle riding type vehicle traveling composite data. When the saddle riding type vehicle travel data processing device is a vehicle control device, the first saddle riding type vehicle travel composite data may be output to, for example, a display device included in the saddle riding type vehicle. When the saddle riding type vehicle traveling data processing device is a data recording device, the first saddle riding type vehicle traveling composite data is output to, for example, an external storage device (secondary storage device, auxiliary storage device) connected to the data recording device. May be done. The first straddle-type vehicle traveling composite data stored in the external storage device may be used for analysis of the traveling state of the straddle-type vehicle. When the saddle riding type vehicle traveling data processing device is a data recording device, the first saddle riding type vehicle traveling composite data may be output to a computer external to the data recording device. The first saddle riding type vehicle traveling composite data may be output to a printing device or a display device.
 鞍乗型車両は、車両の挙動の変化だけでなく、ライダーの姿勢の変化も利用して旋回する乗り物である。同じコースを走る場合でもライダーによって、ライダーの姿勢の変化および車両の挙動は異なる。したがって、旋回中の鞍乗型車両における遠心力と重力のバランスなどの走行状態は、ライダーの意思によって変更される場合がある。そのため、旋回中と旋回前の直進中の鞍乗型車両の走行軌跡と車両前方向の加速度は、ライダーの意思によって決まる鞍乗型車両の走行状態と密接に関連している。また、旋回中と旋回前の直進中における鞍乗型車両の走行軌跡と車両前方向の加速度は密接に関連する。旋回中と旋回前の直進中の鞍乗型車両の走行軌跡と車両前方向の加速度は、鞍乗型車両の走行状態が特に反映されやすい。したがって、旋回中と旋回前の直進中の鞍乗型車両の走行軌跡と車両前方向の加速度が関連付けられた第1鞍乗型車両走行複合データは、鞍乗型車両の走行状態を大きく反映している。そのため、第1鞍乗型車両走行複合データが出力対象に出力された後、第1鞍乗型車両走行複合データを活用しやすい。具体的には、出力された第1鞍乗型車両走行複合データを、出力対象において、例えば車両の制御や車両の走行状態の解析などに活用しやすい。 A saddle-type vehicle is a vehicle that makes turns not only by changing the behavior of the vehicle but also by changing the posture of the rider. Even when riding on the same course, the rider's posture changes and the vehicle's behavior varies depending on the rider. Therefore, the traveling state such as the balance between the centrifugal force and the gravity in the saddle riding type vehicle during turning may be changed by the rider's intention. Therefore, the running locus and the forward acceleration of the saddle riding type vehicle during turning and before going straight ahead are closely related to the running state of the saddle riding type vehicle determined by the rider's intention. In addition, the running locus of the straddle-type vehicle and the acceleration in the vehicle front direction are closely related to each other during turning and during straight ahead before turning. The running locus of the saddle riding type vehicle and the acceleration in the front direction of the vehicle during turning and straight ahead before turning are particularly likely to reflect the running state of the saddle riding type vehicle. Therefore, the first straddle-type vehicle traveling composite data in which the traveling loci of the saddle-ride type vehicle during the turn and the straight advance before the turn are associated with the acceleration in the vehicle front direction largely reflects the running state of the straddle-type vehicle. ing. Therefore, after the first saddle riding type vehicle traveling composite data is output to the output target, it is easy to utilize the first saddle riding type vehicle traveling composite data. Specifically, the output first straddle-type vehicle traveling composite data is easily used for output of the vehicle, for example, for controlling the vehicle or analyzing the traveling state of the vehicle.
 ここで、旋回中の鞍乗型車両の車両前方向の速度は、旋回半径が大きいほど高くなり、旋回半径が小さいほど低くなる。車両前方向の速度を、以下、車速という。仮に、第1旋回領域の内周縁である第1円弧の半径が10mよりも大きい場合、第1旋回領域を旋回中の鞍乗型車両の車速が比較的高い。そのため、第1円弧の半径が10mよりも大きい場合、第1旋回領域を旋回中の鞍乗型車両の車速が異なっても、遠心力の違いがあまりない。そのため、第1アプローチ旋回軌跡を走行したときの鞍乗型車両の走行状態の違いがあまりない。よって、仮に、第1円弧の半径が10mよりも大きい場合、第1アプローチ旋回軌跡を走行したときの鞍乗型車両の走行状態の違いがあまりないので、第1鞍乗型車両走行複合データを活用しにくい。
 一方、本発明の第1円弧の半径は10m以下であるため、第1旋回領域を旋回中の鞍乗型車両の車速が比較的低い。そのため、第1旋回領域を旋回中の鞍乗型車両の車速が異なると、遠心力に違いが生じる。第1円弧の半径が10m以下であることで、第1アプローチ旋回軌跡を走行したときの鞍乗型車両の走行状態の違いが大きくなる。第1アプローチ旋回軌跡を走行したときの鞍乗型車両の走行状態の違いが、第1アプローチ旋回軌跡と第1アプローチ旋回軌跡を走行したときの鞍乗型車両の車両前方向の加速度の違いに反映されやすい。その結果、第1円弧の半径が10m以下であることで、第1鞍乗型車両走行複合データを活用しやすい。
Here, the speed in the vehicle front direction of the straddle-type vehicle during turning becomes higher as the turning radius becomes larger, and becomes lower as the turning radius becomes smaller. The speed in the forward direction of the vehicle is hereinafter referred to as the vehicle speed. If the radius of the first circular arc that is the inner peripheral edge of the first turning region is larger than 10 m, the vehicle speed of the saddle riding type vehicle that is turning in the first turning region is relatively high. Therefore, when the radius of the first circular arc is larger than 10 m, there is not much difference in centrifugal force even if the vehicle speed of the saddle riding type vehicle turning in the first turning region is different. Therefore, there is not much difference in the traveling state of the saddle riding type vehicle when traveling on the first approach turning locus. Therefore, if the radius of the first arc is larger than 10 m, there is not much difference in the traveling state of the saddle riding type vehicle when traveling on the first approach turning locus, and therefore the first straddle type vehicle traveling composite data is obtained. It is difficult to use.
On the other hand, since the radius of the first arc of the present invention is 10 m or less, the vehicle speed of the straddle-type vehicle that is turning in the first turning region is relatively low. Therefore, if the vehicle speeds of the saddle riding type vehicle turning in the first turning region are different, the centrifugal force is different. When the radius of the first circular arc is 10 m or less, the difference in the traveling state of the saddle type vehicle when traveling on the first approach turning locus becomes large. The difference in the running state of the saddle riding type vehicle when traveling on the first approach turning locus is due to the difference between the first approach turning locus and the acceleration in the vehicle front direction of the saddle riding type vehicle when running on the first approach turning locus. It is easy to be reflected. As a result, when the radius of the first arc is 10 m or less, it is easy to utilize the first saddle riding type vehicle traveling composite data.
 通常、旋回中の鞍乗型車両の車両左右方向の加速度は、0.1G~0.8G程度(1~8m/s2程度)である。第1円弧は、中心角が90°以上270°以下で半径が2m以上10m以下である。そのため、第1円弧を内周縁とする第1旋回領域を旋回中の鞍乗型車両の車速は、例えば5~32km/h程度である。第1旋回領域を旋回中の鞍乗型車両の車速が異なると、遠心力に違いが大きく生じる。したがって、第1円弧の中心角が90°以上270°以下で半径が2m以上10m以下であることで、第1アプローチ旋回軌跡を走行したときの鞍乗型車両の走行状態の違いがより顕著に現れる。そのため、第1アプローチ旋回軌跡を走行したときの鞍乗型車両の走行状態の違いが、第1アプローチ旋回軌跡および第1アプローチ旋回軌跡を走行したときの車両前方向の加速度の違いに反映されやすい。その結果、第1円弧の中心角が90°以上270°以下で半径が2m以上10m以下であることで、第1鞍乗型車両走行複合データをより活用しやすい。 Normally, the acceleration in the vehicle left-right direction of the saddle riding type vehicle while turning is about 0.1 G to 0.8 G (about 1 to 8 m / s 2 ). The first arc has a central angle of 90 ° or more and 270 ° or less and a radius of 2 m or more and 10 m or less. Therefore, the vehicle speed of the straddle-type vehicle that is turning in the first turning region having the first arc as the inner peripheral edge is, for example, about 5 to 32 km / h. If the vehicle speed of the straddle-type vehicle that is turning in the first turning region is different, the centrifugal force greatly differs. Therefore, when the center angle of the first arc is 90 ° or more and 270 ° or less and the radius is 2 m or more and 10 m or less, the difference in the traveling state of the saddle riding type vehicle when traveling on the first approach turning locus becomes more remarkable. appear. Therefore, the difference in the traveling state of the straddle-type vehicle when traveling on the first approach turning trajectory is likely to be reflected in the difference between the first approach turning trajectory and the acceleration in the vehicle front direction when traveling along the first approach turning trajectory. . As a result, since the central angle of the first arc is 90 ° or more and 270 ° or less and the radius is 2 m or more and 10 m or less, it is easier to utilize the first saddle riding type vehicle traveling composite data.
 旋回前の直進中に鞍乗型車両が減速のみまたは加速と減速の両方をする場合、直進に必要な距離は、0mより大きく65m以下である。アプローチ領域の第1直線の長さは、0mより大きく65m以下である。それにより、第1アプローチ旋回軌跡および第1アプローチ旋回軌跡を走行したときの鞍乗型車両の車両前方向の加速度は、第1アプローチ旋回軌跡を走行したときの鞍乗型車両の走行状態がより反映されやすい。その結果、アプローチ領域の第1直線の長さが0mより大きく65m以下であることにより、第1鞍乗型車両走行複合データをより活用しやすい。 If the straddle-type vehicle only decelerates or both accelerates and decelerates while going straight before turning, the distance required for going straight is greater than 0 m and not more than 65 m. The length of the first straight line of the approach area is greater than 0 m and 65 m or less. As a result, the acceleration in the vehicle front direction of the saddle riding type vehicle when traveling on the first approach turning locus and the first approach turning locus is more dependent on the running state of the saddle riding type vehicle when running on the first approach turning locus. It is easy to be reflected. As a result, since the length of the first straight line in the approach area is greater than 0 m and less than or equal to 65 m, the first saddle riding type vehicle traveling composite data can be more easily utilized.
 第1直線と第2直線の間隔は、2mである。第2円弧は第1円弧と同心状に配置されるため、第1円弧と第2円弧の間隔も2mである。このように、アプローチ旋回領域の幅は、2mである。
 ここで、鞍乗型車両が自動二輪車または自動三輪車の場合、鞍乗型車両の車両前方向の長さは、1.8~2.6m程度であって、鞍乗型車両の幅(車両左右方向の長さ)は、0.5~1.1m程度である。鞍乗型車両が四輪バギーの場合、鞍乗型車両の車両前方向の長さは、1.4~2.0m程度であって、鞍乗型車両の幅は、0.7~1.2m程度である。鞍乗型車両がスノーモービルの場合、鞍乗型車両の車両前方向の長さは、2.0~4.0m程度であって、鞍乗型車両の幅は、1.0~1.2m程度である。鞍乗型車両が水上オートバイの場合、鞍乗型車両の車両前方向の長さは、2.0~4.0m程度であって、鞍乗型車両の幅は、0.7~1.3m程度である。
 したがって、アプローチ旋回領域の幅(2m)は、鞍乗型車両の幅の平均の約2倍であって、鞍乗型車両の最大幅の約1.5倍である。このような鞍乗型車両の幅と全長を考慮すると、アプローチ旋回領域の幅(2m)は、鞍乗型車両の走行の自由度がありながら、鞍乗型車両がアプローチ旋回領域内でUターンできない幅である。ここで、Uターンとは、180°の旋回のことである。アプローチ旋回領域内でのUターンとは、アプローチ旋回領域の縁に沿わないUターンのことである。
 第1鞍乗型車両走行複合データが、アプローチ旋回領域内でUターンした場合の走行軌跡に関連付けて生成されている可能性がある場合、第1鞍乗型車両走行複合データを活用しにくくなる。なぜならば、アプローチ旋回領域内でUターンした場合の走行軌跡に関連付けて生成された第1鞍乗型車両走行複合データと、アプローチ旋回領域内をアプローチ旋回領域の縁に沿って走行した場合の走行軌跡に関連付けて生成された第1鞍乗型車両走行複合データは、例えば車両の制御や車両の走行状態の解析などに活用する際に同列に扱うことができないからである。
 本発明では、アプローチ旋回領域の幅が2mであることにより、第1アプローチ旋回軌跡が、アプローチ旋回領域内でUターンした走行軌跡である可能性を除外できる。そのため、第1鞍乗型車両走行複合データをより活用しやすい。
The distance between the first straight line and the second straight line is 2 m. Since the second circular arc is arranged concentrically with the first circular arc, the distance between the first circular arc and the second circular arc is also 2 m. In this way, the width of the approach turning area is 2 m.
Here, when the saddle riding type vehicle is a motorcycle or a tricycle, the length of the saddle riding type vehicle in the vehicle front direction is about 1.8 to 2.6 m, and the width of the saddle riding type vehicle The length in the direction) is about 0.5 to 1.1 m. When the straddle-type vehicle is a four-wheel buggy, the length of the straddle-type vehicle in the vehicle front direction is about 1.4 to 2.0 m, and the width of the straddle-type vehicle is 0.7 to 1. It is about 2 m. When the saddle type vehicle is a snowmobile, the length of the saddle type vehicle in the vehicle front direction is about 2.0 to 4.0 m, and the width of the saddle type vehicle is 1.0 to 1.2 m. It is a degree. When the saddle riding type vehicle is a water motorcycle, the length of the saddle riding type vehicle in the vehicle front direction is about 2.0 to 4.0 m, and the width of the saddle riding type vehicle is 0.7 to 1.3 m. It is a degree.
Therefore, the width (2 m) of the approach turning area is about twice the average width of the saddle type vehicle and about 1.5 times the maximum width of the saddle type vehicle. Considering the width and the total length of the straddle-type vehicle, the width (2 m) of the approach-turning area allows the straddle-type vehicle to make a U-turn in the approach-turning area while allowing the saddle-type vehicle to travel freely. The width is impossible. Here, the U-turn is a turn of 180 °. The U-turn in the approach turning area is a U-turn that does not follow the edge of the approach turning area.
When there is a possibility that the first saddle riding type vehicle traveling composite data is generated in association with the traveling locus when making a U-turn in the approach turning area, it becomes difficult to utilize the first saddle riding type vehicle traveling composite data. . This is because the first straddle-type vehicle traveling composite data generated in association with the traveling trajectory when making a U-turn in the approach turning area and the traveling when traveling in the approach turning area along the edge of the approach turning area. This is because the first straddle-type vehicle traveling composite data generated in association with the trajectory cannot be treated in the same row when it is used for controlling the vehicle or analyzing the traveling state of the vehicle.
In the present invention, since the width of the approach turning area is 2 m, it is possible to exclude the possibility that the first approach turning path is a running path that makes a U-turn in the approach turning area. Therefore, the first straddle-type vehicle traveling composite data can be more easily utilized.
 このように、第1鞍乗型車両走行複合データを活用しやすいため、出力された第1鞍乗型車両走行複合データの後処理が容易である。出力された第1鞍乗型車両走行複合データの後処理が容易であるため、第1鞍乗型車両走行複合データが出力される出力対象のハードウェアリソースを低減することができる。
 以上のように、本発明の鞍乗型車両走行データ処理方法は、出力されたデータの後処理を効率化して、ハードウェアリソースを低減することができる。
In this way, since it is easy to utilize the first saddle riding type vehicle traveling composite data, the post-processing of the output first saddle riding type vehicle traveling composite data is easy. Since the post-processing of the output first straddle-type vehicle travel composite data is easy, it is possible to reduce the hardware resources to be output to which the first saddle-ride type vehicle travel composite data is output.
As described above, the straddle-type vehicle travel data processing method of the present invention can reduce post-processing of output data and reduce hardware resources.
 (24)本発明の他の観点によれば、本発明の鞍乗型車両走行データ処理方法は、上記(23)の構成に加えて、以下の構成を有することが好ましい。
 鞍乗型車両走行データ取得処理において、(a3)前記アプローチ旋回領域を含む環状領域内を少なくとも1周にわたって連続して走行したときの前記鞍乗型車両の走行軌跡であって、前記第1アプローチ旋回軌跡を含む第1環状軌跡に関連する第1環状軌跡データ、および、(a4)前記第1アプローチ旋回前方向加速度データを含み、前記第1環状軌跡を走行したときの前記鞍乗型車両の車両前方向の加速度に関連する第1環状前方向加速度データが取得され、前記鞍乗型車両走行複合データ生成処理において、前記第1環状軌跡データおよび前記第1環状前方向加速度データに基づいて、前記第1環状軌跡および前記第1環状軌跡を走行したときの前記鞍乗型車両の車両前方向の加速度が関連付けられた前記第1鞍乗型車両走行複合データが生成される。
(24) According to another aspect of the invention, it is preferable that the saddle riding type vehicle travel data processing method of the invention has the following configuration in addition to the configuration of (23).
In the straddle-type vehicle travel data acquisition process, (a3) is a travel locus of the saddle-ride type vehicle when the vehicle continuously travels at least one round in an annular region including the approach turning region, the first approach A first annular locus data related to a first annular locus including a turning locus; and (a4) including the first approach forward turning acceleration data, the saddle riding type vehicle when traveling on the first annular locus First annular forward acceleration data related to vehicle forward acceleration is acquired, and in the saddle riding type vehicle traveling composite data generation process, based on the first annular trajectory data and the first annular forward acceleration data, The first straddle-type vehicle traveling composite data in which the vehicle-front acceleration of the straddle-type vehicle when traveling on the first loop-shaped trajectory and the first loop-shaped trajectory is associated is generated.
 この構成によると、第1鞍乗型車両走行複合データは、第1環状軌跡と第1環状軌跡を走行したときの鞍乗型車両の加速度が関連付けられたデータである。第1環状軌跡は、第1アプローチ旋回軌跡を含む環状の走行軌跡である。第1環状軌跡は、少なくとも2回の旋回中の走行軌跡を有する。そのため、第1環状軌跡が関連付けられた第1鞍乗型車両走行複合データは、1回しか旋回しなかった場合に取得される第1鞍乗型車両走行複合データに比べて、鞍乗型車両の走行状態を反映したデータとしての精度(信頼性)が高い。そのため、第1鞍乗型車両走行複合データを例えば車両の制御や車両の走行状態の解析などにより活用しやすくなる。第1鞍乗型車両走行複合データをより活用しやすくなるため、出力された第1鞍乗型車両走行複合データの後処理がより容易である。出力された第1鞍乗型車両走行複合データの後処理がより容易であるため、第1鞍乗型車両走行複合データが出力される出力対象のハードウェアリソースをより低減することができる。
 以上のように、本発明の鞍乗型車両走行データ処理方法は、出力されたデータの後処理を効率化して、ハードウェアリソースをより低減することができる。
According to this configuration, the first straddle-type vehicle travel composite data is data in which the first annular locus and the acceleration of the saddle-type vehicle when traveling on the first annular locus are associated with each other. The first circular locus is a circular traveling locus including the first approach turning locus. The first annular locus has a traveling locus during at least two turns. Therefore, the first straddle-type vehicle traveling composite data associated with the first annular trajectory is more straddle-type vehicle than the first straddle-type vehicle traveling composite data acquired when the vehicle makes only one turn. The accuracy (reliability) of the data that reflects the running state of is high. Therefore, it becomes easy to utilize the first straddle-type vehicle traveling composite data by, for example, controlling the vehicle or analyzing the traveling state of the vehicle. Since it becomes easier to utilize the first saddle riding type vehicle traveling composite data, the post-processing of the output first saddle riding type vehicle traveling composite data is easier. Since the post-processing of the output first straddle-type vehicle travel composite data is easier, it is possible to further reduce the hardware resources to be output to which the first saddle-ride type vehicle travel composite data is output.
As described above, the straddle-type vehicle travel data processing method of the present invention can make post-processing of output data more efficient and further reduce hardware resources.
 (25)本発明の他の観点によれば、本発明の鞍乗型車両走行データ処理方法は、上記(24)の構成に加えて、以下の構成を有することが好ましい。
 前記第1環状軌跡における前記鞍乗型車両の進行方向を、前方向とした場合に、前記第1環状軌跡は、前記第1アプローチ旋回軌跡の後端に接続され、前記第1アプローチ旋回軌跡と旋回方向が異なる旋回中の走行軌跡を含む。
(25) According to another aspect of the invention, it is preferable that the saddle riding type vehicle travel data processing method of the invention has the following configuration in addition to the configuration of (24).
When the traveling direction of the straddle-type vehicle in the first annular locus is the forward direction, the first annular locus is connected to the rear end of the first approach turning locus, and is the first approach turning locus. It includes a traveling locus in which the turning direction is different.
 この構成によると、第1アプローチ旋回軌跡の後端に接続された旋回中の走行軌跡は、第1アプローチ旋回軌跡と旋回方向が異なる。したがって、第1鞍乗型車両走行複合データは、旋回方向が全て同じ場合に得られる第1鞍乗型車両走行複合データに比べて、鞍乗型車両の走行状態を反映したデータとしての精度(信頼性)が高い。そのため、第1鞍乗型車両走行複合データを例えば車両の制御や車両の走行状態の解析などにより活用しやすくなる。第1鞍乗型車両走行複合データをより活用しやすくなるため、出力された第1鞍乗型車両走行複合データの後処理がより容易である。出力された第1鞍乗型車両走行複合データの後処理がより容易であるため、第1鞍乗型車両走行複合データが出力される出力対象のハードウェアリソースをより低減することができる。
 以上のように、本発明の鞍乗型車両走行データ処理方法は、出力されたデータの後処理をより効率化して、ハードウェアリソースをより低減することができる。
According to this configuration, the traveling locus that is connected to the rear end of the first approach turning locus is different from the first approach turning locus in the turning direction. Therefore, the accuracy of the first straddle-type vehicle traveling composite data as data reflecting the traveling state of the saddle-riding type vehicle is greater than that of the first saddle-riding type vehicle traveling complex data obtained when the turning directions are all the same. High reliability). Therefore, it becomes easy to utilize the first straddle-type vehicle traveling composite data by, for example, controlling the vehicle or analyzing the traveling state of the vehicle. Since it becomes easier to utilize the first saddle riding type vehicle traveling composite data, the post-processing of the output first saddle riding type vehicle traveling composite data is easier. Since the post-processing of the output first straddle-type vehicle travel composite data is easier, it is possible to further reduce the hardware resources to be output to which the first saddle-ride type vehicle travel composite data is output.
As described above, the straddle-type vehicle travel data processing method of the present invention can make post-processing of output data more efficient and further reduce hardware resources.
 (26)本発明の他の観点によれば、本発明の鞍乗型車両走行データ処理方法は、上記(24)の構成に加えて、以下の構成を有することが好ましい。
 前記第1環状軌跡における前記鞍乗型車両の進行方向を、前方向とした場合に、前記第1環状軌跡は、前記第1アプローチ旋回軌跡の後端に接続され、前記第1アプローチ旋回軌跡と旋回方向が同じである旋回中の走行軌跡を含む。
(26) According to another aspect of the present invention, it is preferable that the saddle riding type vehicle travel data processing method of the present invention has the following configuration in addition to the configuration of (24).
When the traveling direction of the straddle-type vehicle on the first annular trajectory is the forward direction, the first annular trajectory is connected to the rear end of the first approach turning trajectory, and It includes a traveling locus during a turn having the same turning direction.
 この構成によると、第1アプローチ旋回軌跡の後端に接続された旋回中の走行軌跡は、第1アプローチ旋回軌跡と旋回方向が同じである。本発明では、このように同一方向に連続して旋回する第1環状軌跡に関連付けられた第1鞍乗型車両走行複合データが出力対象に出力される。 According to this configuration, the running locus connected to the rear end of the first approach turning locus is the same as the first approach turning locus in the turning direction. In the present invention, the first straddle-type vehicle traveling composite data associated with the first annular trajectory that continuously turns in the same direction in this manner is output to the output target.
 (27)本発明の他の観点によれば、本発明の鞍乗型車両走行データ処理方法は、上記(24)の構成に加えて、以下の構成を有することが好ましい。
 前記第1環状領域は、内周縁と外周縁との間の距離が2mであって、前記第1環状領域内を前記鞍乗型車両が走行する方向を、前方向とした場合に、前記環状領域は、(i)前記アプローチ旋回領域に加えて、前記第1旋回領域の前端に接続された直線状の第2直線領域と、前記第2直線領域の前端および前記アプローチ領域の後端に接続された円弧状の第2旋回領域とを含む第1環状領域であるか、または、(ii)前記アプローチ旋回領域に加えて、前記第1旋回領域の前端に接続され、前記アプローチ領域よりも短い直線状の第2直線領域と、前記第2直線領域の前端に接続された曲線状の第2旋回領域であって、前記第1環状軌跡における前記第2旋回領域の旋回方向が前記アプローチ旋回領域の旋回方向と異なる前記第2旋回領域と、前記第2旋回領域の前端に接続された直線状の第3直線領域内と、前記第3直線領域の前端に接続された曲線状の第3旋回領域であって、前記第1環状軌跡における前記第3旋回領域の旋回方向が前記第2旋回領域の旋回方向と同じである前記第3旋回領域と、前記第3旋回領域の前端に接続された直線状の第4直線領域と、前記第4直線領域の前端に接続された曲線状の第4旋回領域であって、前記第1環状軌跡における前記第4旋回領域の旋回方向が前記第3旋回領域の旋回方向と異なる前記第4旋回領域と、前記第4旋回領域の前端に接続され、前記第4直線領域よりも長い直線状の第5直線領域と、前記第5直線領域の前端に接続された曲線状の第5旋回領域であって、前記第1環状軌跡における前記第5旋回領域の旋回方向が前記第4旋回領域の旋回方向と同じである前記第5旋回領域と、前記第5旋回領域の前端に接続され、前記第3直線領域よりも長い直線状の第6直線領域と、前記第6直線領域の前端および前記アプローチ領域の後端に接続された曲線状の第6旋回領域であって、前記第1環状軌跡における前記第6旋回領域の旋回方向が前記第5旋回領域の旋回方向と同じである前記第6旋回領域とを含む第2環状領域であるか、または、(iii)前記アプローチ旋回領域に加えて、前記第1旋回領域の前端に接続され、前記アプローチ領域よりも短い直線状の第2直線領域と、前記第2直線領域の前端に接続された曲線状の第2旋回領域であって、前記第1環状軌跡における前記第2旋回領域の旋回方向が前記アプローチ旋回領域の旋回方向と異なる前記第2旋回領域と、前記第2旋回領域の前端に接続された直線状の第3直線領域と、前記第3直線領域の前端に接続された曲線状の第3旋回領域であって、前記第1環状軌跡における前記第3旋回領域の旋回方向が前記第2旋回領域の旋回方向と異なる前記第3旋回領域と、前記第3旋回領域の前端に接続された直線状の第4直線領域と、前記第4直線領域の前端に接続された曲線状の第4旋回領域であって、前記第1環状軌跡における前記第4旋回領域の旋回方向が前記第3旋回領域の旋回方向と異なる前記第4旋回領域と、前記第4旋回領域の前端に接続された直線状の第5直線領域と、前記第5直線領域の前端に接続された曲線状の第5旋回領域であって、前記第1環状軌跡における前記第5旋回領域の旋回方向が前記第4旋回領域の旋回方向と異なる前記第5旋回領域と、前記第5旋回領域の前端に接続され、前記第2~第5直線領域よりも長い直線状の第6直線領域と、前記第6直線領域の前端に接続された曲線状の第6旋回領域であって、前記第1環状軌跡における前記第6旋回領域の旋回方向が前記第5旋回領域の旋回方向と同じである前記第6旋回領域と、前記第6旋回領域の前端に接続された直線状の第7直線領域と、前記第7直線領域の前端および前記アプローチ領域の後端に接続された曲線状の第7旋回領域であって、前記第1環状軌跡における前記第7旋回領域の旋回方向が前記第6旋回領域の旋回方向と同じである前記第7旋回領域とを含み、前記環状軌跡で囲まれた領域の形状がE字状となる第3環状領域であるか、または、(iv)前記アプローチ旋回領域に加えて、前記第1旋回領域の前端に接続された直線状の第2直線領域と、前記第2直線領域の前端に接続された曲線状の第2旋回領域であって、前記第1環状軌跡における前記第2旋回領域の旋回方向が前記アプローチ旋回領域の旋回方向と異なる前記第2旋回領域と、前記第2旋回領域の前端に接続された直線状の第3直線領域と、前記第3直線領域の前端に接続された曲線状の第3旋回領域であって、前記第1環状軌跡における前記第3旋回領域の旋回方向が前記第2旋回領域の旋回方向と異なる前記第3旋回領域と、前記第3旋回領域の前端に接続された直線状の第4直線領域と、前記第4直線領域の前端および前記アプローチ領域の後端に接続された曲線状の第4旋回領域であって、前記第1環状軌跡における前記第4旋回領域の旋回方向が前記第3旋回領域の旋回方向と異なる前記第4旋回領域とを含む第4環状領域である。
(27) According to another aspect of the present invention, it is preferable that the saddle riding type vehicle travel data processing method of the present invention has the following configuration in addition to the configuration of (24).
The first annular region has a distance between the inner peripheral edge and the outer peripheral edge of 2 m, and when the direction in which the saddle-ride type vehicle travels in the first annular region is the front direction, the annular region is The area is (i) in addition to the approach turning area, a linear second straight area connected to the front end of the first turning area, and a front end of the second straight area and a rear end of the approach area. Or a second annular region including a circular arc shaped second swirl region, or (ii) in addition to the approach swirl region, connected to the front end of the first swirl region and shorter than the approach region. A linear second linear region and a curved second turning region connected to the front end of the second linear region, wherein the turning direction of the second turning region in the first annular locus is the approach turning region. Second swivel area different from the swirl direction, a linear third linear area connected to the front end of the second swivel area, and a curved third swirl connected to the front end of the third linear area. And a third turning region in which the turning direction of the third turning region in the first annular locus is the same as the turning direction of the second turning region, and is connected to the front end of the third turning region. A straight fourth straight region and a curved fourth swivel region connected to the front end of the fourth straight region, wherein the swirl direction of the fourth swirl region in the first annular locus is the third swirl The fourth turning area different from the turning direction of the area, and the front end of the fourth turning area, which is connected to the fifth end of the fifth linear area and the fifth linear area that is linear and is longer than the fourth linear area. And a fifth curved turning region in which the turning direction of the fifth turning region in the first annular locus is the same as the turning direction of the fourth turning region. A linear sixth linear region that is connected to the front end of the turning region and is longer than the third linear region, and a curved sixth turning region that is connected to the front end of the sixth linear region and the rear end of the approach region. And a second annular region including the sixth turning region in which the turning direction of the sixth turning region in the first annular trajectory is the same as the turning direction of the fifth turning region, or ( iii) In addition to the approach turning area, a linear second linear area connected to the front end of the first turning area and shorter than the approach area, and a curvilinear shape connected to the front end of the second linear area. In the second turning area, the turning direction of the second turning area in the first annular locus is different from the turning direction of the approach turning area. A second turning region, a linear third linear region connected to the front end of the second turning region, and a curved third turning region connected to the front end of the third linear region, A third turning area in which a turning direction of the third turning area in the one annular trajectory is different from a turning direction of the second turning area, and a linear fourth linear area connected to a front end of the third turning area, A fourth curved turning region connected to the front end of the fourth straight region, wherein the turning direction of the fourth turning region in the first annular locus is different from the turning direction of the third turning region. A turning region; a linear fifth straight region connected to the front end of the fourth turning region; and a curved fifth turning region connected to the front end of the fifth straight region, wherein the first annular shape The turning direction of the fifth turning area in the locus is connected to the fifth turning area different from the turning direction of the fourth turning area and the front end of the fifth turning area, and is longer than the second to fifth linear areas. A straight sixth linear region and a curved sixth turning region connected to the front end of the sixth linear region, wherein the turning direction of the sixth turning region in the first annular locus is the fifth turning The sixth turning region which is the same as the turning direction of the region, the linear seventh straight line region connected to the front end of the sixth turning region, the front end of the seventh straight line region and the rear end of the approach region. A connected curved seventh turning area, including a seventh turning area in which the turning direction of the seventh turning area in the first annular locus is the same as the turning direction of the sixth turning area, The area surrounded by the annular locus is a third annular area having an E-shape, or (iv) a linear shape connected to the front end of the first turning area in addition to the approach turning area. Of the second straight line region and a curved second swivel region connected to the front end of the second straight line region, and the swirling direction of the second swivel region in the first annular locus is the swivel of the approach swirl region. A second turning region different from the direction, a linear third linear region connected to the front end of the second turning region, and a curved third turning region connected to the front end of the third linear region. The third turning region in which the turning direction of the third turning region in the first annular locus is different from the turning direction of the second turning region, and a linear fourth connecting to the front end of the third turning region. A curved linear fourth turning region connected to a straight region and a front end of the fourth straight region and a rear end of the approach region, the fourth turning region in the first annular locus; A fourth annular region including a fourth turning region whose turning direction is different from the turning direction of the third turning region.
 第1環状領域は、アプローチ旋回領域と、直線状の第2直線領域と、円弧状の第2旋回領域とからなる。したがって、第1環状領域は、凹部を有さないシンプルな形状である。形状がシンプルでありながら、第1環状領域を走行したときの第1環状軌跡は、2回の旋回中の走行軌跡と旋回前後の直進時の走行軌跡を有する。そのため、第1環状領域を走行したときの走行軌跡と車両前方向の加速度は、鞍乗型車両の走行状態が大きく反映される。そのため、第1鞍乗型車両走行複合データを例えば車両の制御や車両の走行状態の解析などにより活用しやすくなる。
 第2~第4環状領域を走行したときの第1環状軌跡は、4回以上の旋回中の走行軌跡を含む。さらに、第2~第4環状領域を走行したときの第1環状軌跡は、第1アプローチ旋回軌跡と旋回方向が同じ走行軌跡と、第1アプローチ旋回軌跡と旋回方向が異なる走行軌跡の両方を含む。したがって、第2~第4環状領域を走行したときの第1環状軌跡と車両前方向の加速度が関連付けられた第1鞍乗型車両走行複合データは、旋回方向が全て同じ場合の第1鞍乗型車両走行複合データに比べて、鞍乗型車両の走行状態を反映したデータとしての精度(信頼性)が高い。そのため、第1鞍乗型車両走行複合データを例えば車両の制御や車両の走行状態の解析などにより活用しやすくなる。
 よって、環状領域が第1~第4環状領域のいずれであっても、第1鞍乗型車両走行複合データをより活用しやすくなる。第1鞍乗型車両走行複合データをより活用しやすくなるため、出力された第1鞍乗型車両走行複合データの後処理がより容易である。出力された第1鞍乗型車両走行複合データの後処理がより容易であるため、第1鞍乗型車両走行複合データが出力される出力対象のハードウェアリソースをより低減することができる。
 以上のように、本発明の鞍乗型車両走行データ処理方法は、出力されたデータの後処理をより効率化して、ハードウェアリソースをより低減することができる。
The first annular area includes an approach turning area, a linear second linear area, and an arcuate second turning area. Therefore, the first annular region has a simple shape without a recess. Although the shape is simple, the first annular locus when traveling in the first annular region has a traveling locus during two turns and a traveling locus when traveling straight before and after the turning. Therefore, the traveling locus and the acceleration in the vehicle front direction when traveling in the first annular region largely reflect the traveling state of the straddle-type vehicle. Therefore, it becomes easy to utilize the first straddle-type vehicle traveling composite data by, for example, controlling the vehicle or analyzing the traveling state of the vehicle.
The first circular locus when traveling in the second to fourth annular regions includes a traveling locus during four or more turns. Further, the first annular locus when traveling in the second to fourth annular regions includes both a traveling locus having the same turning direction as the first approach turning locus and a traveling locus having different turning directions from the first approach turning locus. .. Therefore, the first straddle-type vehicle traveling composite data in which the first annular locus when traveling in the second to fourth annular regions and the acceleration in the vehicle front direction are associated with each other is the first saddle riding when the turning directions are all the same. The accuracy (reliability) of the data reflecting the running state of the saddle riding type vehicle is higher than that of the type vehicle traveling composite data. Therefore, it becomes easy to utilize the first straddle-type vehicle traveling composite data by, for example, controlling the vehicle or analyzing the traveling state of the vehicle.
Therefore, regardless of which of the first to fourth annular regions the annular region is, it becomes easier to utilize the first saddle riding type vehicle traveling composite data. Since it becomes easier to utilize the first saddle riding type vehicle traveling composite data, the post-processing of the output first saddle riding type vehicle traveling composite data is easier. Since the post-processing of the output first straddle-type vehicle travel composite data is easier, it is possible to further reduce the hardware resources to be output to which the first saddle-ride type vehicle travel composite data is output.
As described above, the straddle-type vehicle travel data processing method of the present invention can make post-processing of output data more efficient and further reduce hardware resources.
 (28)本発明の他の観点によれば、本発明の鞍乗型車両走行データ処理方法は、上記(23)~(27)のいずれかの構成に加えて、以下の構成を有することが好ましい。
 前記鞍乗型車両走行データ取得処理において、前記第1アプローチ旋回軌跡を走行したときの前記鞍乗型車両の車両左右方向の加速度に関連する第1アプローチ旋回左右方向加速度データが取得され、前記鞍乗型車両走行複合データ生成処理において、前記第1鞍乗型車両走行複合データが、前記第1アプローチ旋回軌跡データ、前記第1アプローチ旋回前方向加速度データ、および前記第1アプローチ旋回左右方向加速度データに基づいて、前記第1アプローチ旋回軌跡、前記第1アプローチ旋回軌跡を走行したときの前記鞍乗型車両の車両前方向の加速度、および、前記第1アプローチ旋回軌跡を走行したときの前記鞍乗型車両の車両左右方向の加速度を関連付けて生成される。
(28) According to another aspect of the present invention, the saddle riding type vehicle travel data processing method of the present invention has the following configuration in addition to any one of the configurations (23) to (27). preferable.
In the saddle riding type vehicle travel data acquisition processing, first approach turning left / right direction acceleration data related to acceleration in the vehicle left / right direction of the saddle riding type vehicle when traveling on the first approach turning locus is acquired, and the saddle In the riding type vehicle traveling composite data generation process, the first saddle riding type vehicle traveling composite data is the first approach turning trajectory data, the first approach turning front direction acceleration data, and the first approach turning lateral direction acceleration data. Based on the first approach turning locus, the acceleration in the vehicle front direction of the saddle riding type vehicle when traveling on the first approach turning locus, and the saddle riding when traveling on the first approach turning locus. It is generated by associating the acceleration in the vehicle left-right direction of the type vehicle.
 この構成によると、第1鞍乗型車両走行複合データは、第1アプローチ旋回軌跡と、第1アプローチ旋回軌跡を走行したときの鞍乗型車両の車両前方向の加速度と、第1アプローチ旋回軌跡を走行したときの鞍乗型車両の車両左右方向の加速度とが関連付けられたデータである。
 鞍乗型車両は、車両の挙動の変化だけでなく、ライダーの姿勢の変化も利用して旋回する乗り物である。そのため、旋回中と旋回前の直進中の車両左右方向の加速度は、ライダーの意思によって決まる鞍乗型車両の走行状態と密接に関連している。また、旋回中と旋回前の直進中における鞍乗型車両の走行軌跡と車両前方向の加速度と車両左右方向の加速度は密接に関連する。したがって、第1鞍乗型車両走行複合データは、鞍乗型車両の走行状態をより大きく反映している。そのため、第1鞍乗型車両走行複合データをより活用しやすくなる。第1鞍乗型車両走行複合データをより活用しやすくなるため、出力された第1鞍乗型車両走行複合データの後処理がより容易である。出力された第1鞍乗型車両走行複合データの後処理がより容易であるため、第1鞍乗型車両走行複合データが出力される出力対象のハードウェアリソースをより低減することができる。
 以上のように、本発明の鞍乗型車両走行データ処理方法は、出力されたデータの後処理を効率化して、ハードウェアリソースをより低減することができる。
According to this configuration, the first straddle-type vehicle traveling composite data includes the first approach turning locus, the acceleration in the vehicle front direction of the saddle riding type vehicle when traveling on the first approach turning locus, and the first approach turning locus. Is data associated with the acceleration in the vehicle left-right direction of the straddle-type vehicle when traveling.
A straddle-type vehicle is a vehicle that makes a turn using not only changes in the behavior of the vehicle but also changes in the posture of the rider. Therefore, the acceleration in the lateral direction of the vehicle during turning and during straight ahead before turning is closely related to the running state of the saddle riding type vehicle determined by the rider's intention. Further, the traveling locus of the saddle riding type vehicle, the acceleration in the front direction of the vehicle, and the acceleration in the left-right direction of the vehicle are closely related to each other during turning and during straight ahead before turning. Therefore, the first straddle-type vehicle traveling composite data largely reflects the traveling state of the straddle-type vehicle. Therefore, it becomes easier to utilize the first saddle riding type vehicle traveling composite data. Since it becomes easier to utilize the first saddle riding type vehicle traveling composite data, the post-processing of the output first saddle riding type vehicle traveling composite data is easier. Since the post-processing of the output first straddle-type vehicle travel composite data is easier, it is possible to further reduce the hardware resources to be output to which the first saddle-ride type vehicle travel composite data is output.
As described above, the straddle-type vehicle travel data processing method of the present invention can make post-processing of output data more efficient and further reduce hardware resources.
 (29)本発明の他の観点によれば、本発明の鞍乗型車両走行データ処理方法は、上記(23)~(28)のいずれかの構成に加えて、以下の構成を有することが好ましい。
 前記第1アプローチ旋回軌跡を走行したときの前記鞍乗型車両に乗車するライダーを識別する第1ライダー識別データが取得されるライダー識別データ取得処理、を更に行い、前記鞍乗型車両走行複合データ生成処理において、前記第1鞍乗型車両走行複合データが、前記第1アプローチ旋回軌跡データと、前記第1アプローチ旋回前方向加速度データと、前記第1ライダー識別データとに基づいて、前記第1アプローチ旋回軌跡、前記第1アプローチ旋回軌跡を走行したときの前記鞍乗型車両の車両前方向の加速度、および、前記第1アプローチ旋回軌跡を走行したときの前記鞍乗型車両に乗車するライダーを関連付けて生成される。
(29) According to another aspect of the present invention, the saddle riding type vehicle travel data processing method of the present invention may have the following configuration in addition to any one of the configurations (23) to (28). preferable.
The rider identification data acquisition process for obtaining first rider identification data for identifying a rider riding on the saddle riding type vehicle when traveling on the first approach turning locus is further performed, and the saddle riding type vehicle traveling composite data is obtained. In the generation process, the first saddle riding type vehicle traveling composite data is based on the first approach turning trajectory data, the first approach turning front direction acceleration data, and the first rider identification data, and the first An approach turning locus, an acceleration in the vehicle front direction of the saddle riding type vehicle when traveling on the first approach turning locus, and a rider riding on the saddle riding type vehicle when traveling on the first approach turning locus. Generated in association.
 この構成によると、第1鞍乗型車両走行複合データは、第1アプローチ旋回軌跡を走行したときの鞍乗型車両に乗車するライダーに関連付けられる。旋回中と旋回前の直進中の鞍乗型車両の走行軌跡と車両前方向の加速度は、ライダーの意思によって決まる鞍乗型車両の走行状態と密接に関連している。同じアプローチ旋回領域を走行した場合であっても、ライダーごとに鞍乗型車両の走行状態は異なる。第1鞍乗型車両走行複合データは、ライダーの固有の鞍乗型車両の走行状態を反映している。そのため、出力された第1鞍乗型車両走行複合データを、例えば車両の制御や車両の走行状態の解析などにより活用しやすくなる。第1鞍乗型車両走行複合データをより活用しやすくなるため、出力された第1鞍乗型車両走行複合データの後処理がより容易である。出力された第1鞍乗型車両走行複合データの後処理がより容易であるため、第1鞍乗型車両走行複合データが出力される出力対象のハードウェアリソースをより低減することができる。
 以上のように、本発明の鞍乗型車両走行データ処理方法は、出力されたデータの後処理をより効率化して、ハードウェアリソースをより低減することができる。
According to this configuration, the first straddle-type vehicle traveling composite data is associated with the rider who gets on the straddle-type vehicle when traveling on the first approach turning locus. The running locus of the saddle riding type vehicle and the acceleration in the front direction of the vehicle during turning and before going straight are closely related to the running state of the saddle riding type vehicle which is determined by the rider's intention. Even when traveling in the same approach turning region, the riding state of the saddle riding type vehicle differs for each rider. The first straddle-type vehicle traveling composite data reflects the traveling state of the rider's unique straddle-type vehicle. Therefore, it becomes easy to utilize the output first straddle-type vehicle traveling composite data by, for example, controlling the vehicle or analyzing the traveling state of the vehicle. Since it becomes easier to utilize the first saddle riding type vehicle traveling composite data, the post-processing of the output first saddle riding type vehicle traveling composite data is easier. Since the post-processing of the output first straddle-type vehicle travel composite data is easier, it is possible to further reduce the hardware resources to be output to which the first saddle-ride type vehicle travel composite data is output.
As described above, the straddle-type vehicle travel data processing method of the present invention can make post-processing of output data more efficient and further reduce hardware resources.
 (30)本発明の他の観点によれば、本発明の鞍乗型車両走行データ処理方法は、上記(23)~(29)のいずれかの構成に加えて、以下の構成を有することが好ましい。
 前記鞍乗型車両走行データ取得処理において、前記アプローチ旋回軌跡を走行した前記鞍乗型車両と同一または異なる鞍乗型車両が、前記アプローチ領域から前記第1旋回領域に進入するように、前記アプローチ旋回領域の全域にわたって連続して走行したときの走行軌跡である第2アプローチ旋回軌跡に関連する第2アプローチ旋回軌跡データ、および、前記第2アプローチ旋回軌跡を走行したときの前記鞍乗型車両の車両前方向の加速度に関連する第2アプローチ旋回前方向加速度データが取得され、前記鞍乗型車両走行複合データ生成処理において、前記第2アプローチ旋回軌跡データおよび前記第2アプローチ旋回前方向加速度データに基づいて、前記第2アプローチ旋回軌跡および前記第2アプローチ旋回軌跡を走行したときの前記鞍乗型車両の車両前方向の加速度が関連付けられた第2鞍乗型車両走行複合データが生成され、前記鞍乗型車両走行複合データ記憶処理において、前記鞍乗型車両走行複合データ生成処理により生成された前記第2鞍乗型車両走行複合データが記憶部に記憶される。
(30) According to another aspect of the present invention, the saddle riding type vehicle travel data processing method of the present invention may have the following configuration in addition to any one of the configurations (23) to (29). preferable.
In the straddle-type vehicle travel data acquisition processing, the approach is performed so that a saddle-ride type vehicle that is the same as or different from the saddle-ride type vehicle that has traveled on the approach turning trajectory enters the first turn area from the approach area. Second approach turning locus data relating to the second approach turning locus, which is a running locus when continuously running over the entire turning region, and the saddle-ride type vehicle when the second approach turning locus is run. The second approach turning front acceleration data related to the vehicle forward acceleration is acquired, and the second approach turning trajectory data and the second approach turning front acceleration data are obtained in the saddle riding type vehicle traveling composite data generation processing. Based on the second approach turning locus and second saddle riding type vehicle traveling composite data in which the acceleration in the vehicle front direction of the saddle riding type vehicle when traveling on the second approach turning locus is associated, In the saddle-ride type vehicle traveling composite data storage processing, the second saddle-ride type vehicle traveling composite data generated by the saddle-ride type vehicle traveling composite data generation processing is stored in the storage unit.
 この構成によると、第1鞍乗型車両走行複合データと第2鞍乗型車両走行複合データが記憶部に記憶される。第2鞍乗型車両走行複合データは、第1アプローチ旋回軌跡と異なる第2アプローチ旋回軌跡および第2アプローチ旋回軌跡を走行したときの鞍乗型車両の車両前方向の加速度が関連付けられたデータである。そのため、鞍乗型車両走行データ処理装置において、第1鞍乗型車両走行複合データと第2鞍乗型車両走行複合データを比較したり、差分を求めたり、組み合わせることができる。つまり、鞍乗型車両走行データ処理装置における第1鞍乗型車両走行複合データの処理(活用)の自由度が高まる。 According to this configuration, the first saddle riding type vehicle traveling composite data and the second saddle riding type vehicle traveling composite data are stored in the storage unit. The second saddle riding type vehicle traveling composite data is data in which the second approach turning locus different from the first approach turning locus and the acceleration in the vehicle front direction of the saddle riding type vehicle when traveling on the second approach turning locus are associated with each other. is there. Therefore, in the saddle riding type vehicle running data processing device, it is possible to compare the first saddle riding type vehicle running composite data and the second saddle riding type vehicle running composite data, obtain a difference, and combine them. That is, the degree of freedom in processing (utilizing) the first saddle riding type vehicle traveling composite data in the saddle riding type vehicle traveling data processing device is increased.
 (31)本発明の他の観点によれば、本発明の鞍乗型車両走行データ処理方法は、上記(30)の構成に加えて、以下の構成を有することが好ましい。
 前記鞍乗型車両走行複合データ記憶処理で前記記憶部に記憶された前記第1鞍乗型車両走行複合データと前記第2鞍乗型車両走行複合データを互いに関連づけて鞍乗型車両走行一体複合データが生成される鞍乗型車両走行一体複合データ生成処理、を更に行い、前記第1鞍乗型車両走行複合データ出力処理において、前記鞍乗型車両走行一体複合データ生成処理により生成された前記鞍乗型車両走行一体複合データが前記出力対象に出力される。
(31) According to another aspect of the present invention, it is preferable that the saddle riding type vehicle travel data processing method of the present invention has the following configuration in addition to the configuration of (30) above.
The first saddle riding type vehicle traveling composite data and the second saddle riding type vehicle traveling composite data stored in the storage unit in the saddle riding type vehicle traveling composite data storage processing are associated with each other to make the saddle riding type vehicle traveling integrated composite. Saddle-type vehicle traveling integrated compound data generation processing for generating data is further performed, and in the first saddle-type vehicle traveling integrated data output processing, the saddle-type vehicle traveling integrated compound data generation processing is performed. The saddle-ride type vehicle traveling integrated data is output to the output target.
 この構成によると、第1鞍乗型車両走行複合データと第2鞍乗型車両走行複合データが関連付けられた鞍乗型車両走行一体複合データが出力対象に出力される。鞍乗型車両走行一体複合データは、例えば、第1鞍乗型車両走行複合データと第2鞍乗型車両走行複合データとの差分や比較や組み合わせなどによって生成されたデータであってもよい。鞍乗型車両走行一体複合データは、第1鞍乗型車両走行複合データと第2鞍乗型車両走行複合データを含んでいてもよい。この場合、出力対象において、第1鞍乗型車両走行複合データと第2鞍乗型車両走行複合データとの差分や比較や組み合わせなどの処理ができる。鞍乗型車両走行一体複合データがどちらであっても、出力対象において鞍乗型車両走行一体複合データを例えば車両の制御や車両の走行状態の解析などに活用しやすい。鞍乗型車両走行一体複合データを活用しやすいため、出力された鞍乗型車両走行一体複合データの後処理が容易である。出力された鞍乗型車両走行一体複合データの後処理が容易であるため、鞍乗型車両走行一体複合データが出力される出力対象のハードウェアリソースを低減することができる。
 以上のように、本発明の鞍乗型車両走行データ処理方法は、出力されたデータの後処理を効率化して、ハードウェアリソースを低減することができる。
According to this configuration, the saddle riding type vehicle traveling integrated data in which the first saddle riding type vehicle traveling compound data and the second saddle riding type vehicle traveling compound data are associated is output to the output target. The saddle-ride type vehicle traveling integrated data may be, for example, data generated by a difference, comparison or combination of the first saddle-type vehicle traveling combined data and the second saddle-type vehicle traveling combined data. The saddle-ride type vehicle traveling integrated data may include first saddle-ride type vehicle travel combined data and second straddle-type vehicle travel combined data. In this case, the output target can be subjected to processing such as difference, comparison, and combination of the first saddle riding type vehicle traveling composite data and the second saddle riding type vehicle traveling composite data. Whichever the saddle riding type vehicle traveling integrated composite data is, it is easy to utilize the saddle riding type vehicle traveling integrated data in the output target, for example, for controlling the vehicle or analyzing the running state of the vehicle. Since it is easy to utilize the saddle-ride type vehicle traveling integrated data, it is easy to post-process the outputted saddle-type vehicle traveling integrated data. Since the post-processing of the outputted saddle-ride type vehicle traveling integrated data is easy, it is possible to reduce the output hardware resources to which the saddle-type vehicle traveling integrated data is output.
As described above, the straddle-type vehicle travel data processing method of the present invention can reduce post-processing of output data and reduce hardware resources.
 (32)本発明の他の観点によれば、本発明の鞍乗型車両走行データ処理方法は、上記(31)の構成に加えて、以下の構成を有することが好ましい。
 前記第1アプローチ旋回軌跡を走行したときの前記鞍乗型車両に乗車するライダーを識別する第1ライダー識別データ、および、前記第2アプローチ旋回軌跡を走行したときの前記鞍乗型車両に乗車するライダーを識別する第2ライダー識別データが取得されるライダー識別データ取得処理、を更に行い、前記鞍乗型車両走行複合データ生成処理において、前記第1鞍乗型車両走行複合データが、前記第1アプローチ旋回軌跡データと、前記第1アプローチ旋回前方向加速度データと、前記第1ライダー識別データとに基づいて、前記第1アプローチ旋回軌跡、前記第1アプローチ旋回軌跡を走行したときの前記鞍乗型車両の車両前方向の加速度、および、前記第1アプローチ旋回軌跡を走行したときの前記鞍乗型車両に乗車するライダーを関連付けて生成され、前記第2鞍乗型車両走行複合データが、前記第2アプローチ旋回軌跡データと、前記第2アプローチ旋回前方向加速度データと、前記第2ライダー識別データとに基づいて、前記第2アプローチ旋回軌跡、前記第2アプローチ旋回軌跡を走行したときの前記鞍乗型車両の車両前方向の加速度、および、前記第2アプローチ旋回軌跡を走行したときの前記鞍乗型車両に乗車するライダーを関連付けて生成され、前記鞍乗型車両走行一体複合データ生成処理において、前記第1ライダー識別データと前記第2ライダー識別データが同じ場合に、前記第1鞍乗型車両走行複合データと前記第2鞍乗型車両走行複合データを互いに関連づけて同一ライダー鞍乗型車両走行一体複合データが生成され、前記鞍乗型車両走行複合データ合出力処理において、前記鞍乗型車両走行一体複合データ生成処理により生成された前記同一ライダー鞍乗型車両走行一体複合データが前記出力対象に出力される。
(32) According to another aspect of the present invention, it is preferable that the saddle riding type vehicle travel data processing method of the present invention has the following configuration in addition to the configuration of (31) above.
First rider identification data for identifying a rider riding on the saddle riding type vehicle when traveling on the first approach turning locus, and riding on the saddle riding type vehicle when traveling on the second approach turning locus. Rider identification data acquisition processing for obtaining second rider identification data for identifying a rider is further performed, and in the saddle riding type vehicle traveling composite data generation processing, the first saddle riding type vehicle traveling composite data is the first The first approach turning locus and the saddle riding type when traveling on the first approach turning locus based on the approach turning locus data, the first approach turning front direction acceleration data, and the first rider identification data. The acceleration in the vehicle front direction of the vehicle and the rider riding on the saddle riding type vehicle when traveling on the first approach turning locus are generated in association with each other, and the second saddle riding type vehicle traveling composite data is obtained by 2nd approach turning locus data, said 2nd approach turning front direction acceleration data, and said 2nd approach turning locus, said saddle riding when traveling on said 2nd approach turning locus The vehicle front direction acceleration of the type vehicle and the rider riding the saddle type vehicle when traveling on the second approach turning locus are generated in association with each other, and in the saddle type vehicle traveling integrated compound data generation process, When the first rider identification data and the second rider identification data are the same, the first saddle riding type vehicle traveling composite data and the second saddle riding type vehicle traveling composite data are associated with each other and the same rider straddling type vehicle traveling is performed. Integrated composite data is generated, and in the saddle riding type vehicle traveling composite data output process, the same rider saddle riding type vehicle traveling integrated composite data generated by the saddle riding type vehicle traveling integrated data generation process is output target. Is output to.
 この構成によると、第1鞍乗型車両走行複合データは、第1アプローチ旋回軌跡を走行したときの鞍乗型車両に乗車するライダーに関連付けられる。第2鞍乗型車両走行複合データは、第2アプローチ旋回軌跡を走行したときの鞍乗型車両に乗車するライダーに関連付けられる。第1アプローチ旋回軌跡を走行したときのライダーと、第2アプローチ旋回軌跡を走行したときのライダーが同じ場合、第1鞍乗型車両走行複合データと第2鞍乗型車両走行複合データが互いに関連づけられた同一ライダー鞍乗型車両走行一体複合データが出力対象に出力される。
 旋回中と旋回前の直進中の鞍乗型車両の走行軌跡と車両前方向の加速度は、ライダーの意思によって決まる鞍乗型車両の走行状態と密接に関連している。同じアプローチ旋回領域を走行した場合であっても、ライダーごとに鞍乗型車両の走行状態は異なる。そのため、出力対象において、同一ライダー鞍乗型車両走行一体複合データに基づいて、例えば、同じライダーの2つの鞍乗型車両走行複合データの差分を利用することができる。同一ライダー鞍乗型車両走行一体複合データを、ライダーごとの特徴を反映した活用ができる。つまり、出力対象に出力される同一ライダー鞍乗型車両走行一体複合データは、活用の自由度が高く、活用しやすい。同一ライダー鞍乗型車両走行一体複合データを活用しやすいため、出力された同一ライダー鞍乗型車両走行一体複合データの後処理が容易である。出力された同一ライダー鞍乗型車両走行一体複合データの後処理が容易であるため、同一ライダー鞍乗型車両走行一体複合データが出力される出力対象のハードウェアリソースを低減することができる。
 以上のように、本発明の鞍乗型車両走行データ処理方法は、出力されたデータの後処理を効率化して、ハードウェアリソースを低減することができる。
According to this configuration, the first straddle-type vehicle traveling composite data is associated with the rider who gets on the straddle-type vehicle when traveling on the first approach turning locus. The second saddle riding type vehicle traveling composite data is associated with the rider who gets on the saddle riding type vehicle when traveling on the second approach turning locus. When the rider traveling on the first approach turning trajectory and the rider traveling on the second approach turning trajectory are the same, the first saddle riding type vehicle traveling composite data and the second saddle riding type vehicle traveling composite data are associated with each other. The obtained composite data of the same rider saddle riding type vehicle traveling integrated is output to the output target.
The running locus of the saddle riding type vehicle and the acceleration in the front direction of the vehicle during turning and before going straight are closely related to the running state of the saddle riding type vehicle which is determined by the rider's intention. Even when traveling in the same approach turning region, the riding state of the saddle riding type vehicle differs for each rider. Therefore, in the output target, for example, the difference between the two saddle riding type vehicle traveling composite data of the same rider can be used based on the same rider saddle riding type vehicle traveling integrated data. The same rider-saddle-type vehicle traveling integrated data can be used to reflect the characteristics of each rider. That is, the same rider-saddle-type vehicle traveling integrated composite data output to the output target has a high degree of freedom in utilization and is easy to utilize. Since it is easy to utilize the composite data of the same rider-saddle type vehicle traveling integrated data, it is easy to post-process the outputted composite data of the same rider-saddle type vehicle traveling integrated data. Since the post-processing of the outputted same rider-saddle type vehicle traveling integrated data is easy, it is possible to reduce the hardware resource of the output target of the same rider-saddle type vehicle traveling integrated data.
As described above, the straddle-type vehicle travel data processing method of the present invention can reduce post-processing of output data and reduce hardware resources.
 (33)本発明の他の観点によれば、本発明の鞍乗型車両走行データ処理方法は、上記(31)の構成に加えて、以下の構成を有することが好ましい。
 前記第1アプローチ旋回軌跡を走行したときの前記鞍乗型車両に乗車するライダーを識別する第1ライダー識別データ、および、前記第2アプローチ旋回軌跡を走行したときの前記鞍乗型車両に乗車するライダーを識別する第2ライダー識別データが取得されるライダー識別データ取得処理、を更に行い、前記鞍乗型車両走行複合データ生成処理において、前記第1鞍乗型車両走行複合データが、前記第1アプローチ旋回軌跡データと、前記第1アプローチ旋回前方向加速度データと、前記第1ライダー識別データとに基づいて、前記第1アプローチ旋回軌跡、前記第1アプローチ旋回軌跡を走行したときの前記鞍乗型車両の車両前方向の加速度、および、前記第1アプローチ旋回軌跡を走行したときの前記鞍乗型車両に乗車するライダーを関連付けて生成され、前記第2鞍乗型車両走行複合データが、前記第2アプローチ旋回軌跡データと、前記第2アプローチ旋回前方向加速度データと、前記第2ライダー識別データとに基づいて、前記第2アプローチ旋回軌跡、前記第2アプローチ旋回軌跡を走行したときの前記鞍乗型車両の車両前方向の加速度、および、前記第2アプローチ旋回軌跡を走行したときの前記鞍乗型車両に乗車するライダーを関連付けて生成され、前記鞍乗型車両走行一体複合データ生成処理において、前記第1ライダー識別データと前記第2ライダー識別データが異なる場合に、前記第1鞍乗型車両走行複合データと前記第2鞍乗型車両走行複合データを互いに関連づけて相違ライダー鞍乗型車両走行一体複合データが生成され、前記鞍乗型車両走行複合データ出力処理において、前記鞍乗型車両走行一体複合データ生成処理により生成された前記相違ライダー鞍乗型車両走行一体複合データが前記出力対象に出力される。
(33) According to another aspect of the present invention, it is preferable that the saddle riding type vehicle travel data processing method of the present invention has the following configuration in addition to the configuration of (31) above.
First rider identification data for identifying a rider riding on the saddle riding type vehicle when traveling on the first approach turning locus, and riding on the saddle riding type vehicle when traveling on the second approach turning locus. Rider identification data acquisition processing for obtaining second rider identification data for identifying a rider is further performed, and in the saddle riding type vehicle traveling composite data generation processing, the first saddle riding type vehicle traveling composite data is the first The first approach turning locus and the saddle riding type when traveling on the first approach turning locus based on the approach turning locus data, the first approach turning front direction acceleration data, and the first rider identification data. The acceleration in the vehicle front direction of the vehicle and the rider riding on the saddle riding type vehicle when traveling on the first approach turning locus are generated in association with each other, and the second saddle riding type vehicle traveling composite data is obtained by 2nd approach turning locus data, said 2nd approach turning front direction acceleration data, and said 2nd approach turning locus, said saddle riding when traveling on said 2nd approach turning locus The vehicle front direction acceleration of the type vehicle and the rider riding the saddle type vehicle when traveling on the second approach turning locus are generated in association with each other, and in the saddle type vehicle traveling integrated compound data generation process, When the first rider identification data and the second rider identification data are different, the first saddle riding type vehicle traveling composite data and the second saddle riding type vehicle traveling composite data are associated with each other to be different rider saddle riding type vehicle traveling. Integrated composite data is generated, and in the saddle riding type vehicle traveling composite data output processing, the different rider saddle riding type vehicle traveling integrated composite data generated by the saddle riding type vehicle traveling integrated data generation processing is output to the output target. Is output.
 この構成によると、第1鞍乗型車両走行複合データは、第1アプローチ旋回軌跡を走行したときの鞍乗型車両に乗車するライダーに関連付けられる。第2鞍乗型車両走行複合データは、第2アプローチ旋回軌跡を走行したときの鞍乗型車両に乗車するライダーに関連付けられる。第1アプローチ旋回軌跡を走行したときのライダーと、第2アプローチ旋回軌跡を走行したときのライダーが異なる場合、第1鞍乗型車両走行複合データと第2鞍乗型車両走行複合データが互いに関連づけられた相違ライダー鞍乗型車両走行一体複合データが出力対象に出力される。
 旋回中と旋回前の直進中の鞍乗型車両の走行軌跡と車両前方向の加速度は、ライダーの意思によって決まる鞍乗型車両の走行状態と密接に関連している。同じアプローチ旋回領域を走行した場合であっても、ライダーごとに鞍乗型車両の走行状態は異なる。そのため、出力対象において、相違ライダー鞍乗型車両走行一体複合データに基づいて、例えば、異なるライダーの2つの鞍乗型車両走行複合データの差分を利用することができる。相違ライダー鞍乗型車両走行一体複合データを、ライダーの違いを反映した活用ができる。つまり、出力対象に出力される相違ライダー鞍乗型車両走行一体複合データは、活用の自由度が高く、活用しやすい。相違ライダー鞍乗型車両走行一体複合データを活用しやすいため、出力された相違ライダー鞍乗型車両走行一体複合データの後処理が容易である。出力された相違ライダー鞍乗型車両走行一体複合データの後処理が容易であるため、相違ライダー鞍乗型車両走行一体複合データが出力される出力対象のハードウェアリソースを低減することができる。
 以上のように、本発明の鞍乗型車両走行データ処理方法は、出力されたデータの後処理を効率化して、ハードウェアリソースを低減することができる。
According to this configuration, the first straddle-type vehicle traveling composite data is associated with the rider who gets on the straddle-type vehicle when traveling on the first approach turning locus. The second saddle riding type vehicle traveling composite data is associated with the rider who gets on the saddle riding type vehicle when traveling on the second approach turning locus. When the rider traveling on the first approach turning trajectory and the rider traveling on the second approach turning trajectory are different, the first saddle riding type vehicle traveling composite data and the second saddle riding type vehicle traveling composite data are associated with each other. The composite data of the different rider-saddle-type vehicle traveling integrated is output to the output target.
The running locus of the saddle riding type vehicle and the acceleration in the front direction of the vehicle during turning and before going straight are closely related to the running state of the saddle riding type vehicle which is determined by the rider's intention. Even when traveling in the same approach turning region, the riding state of the saddle riding type vehicle differs for each rider. Therefore, in the output target, for example, the difference between the two saddle riding type vehicle traveling composite data of different riders can be used based on the different rider saddle riding type vehicle traveling integrated data. Difference Rider Saddle-type vehicle traveling integrated data can be used to reflect differences in riders. That is, the different rider-saddle-type vehicle traveling integrated composite data output to the output target has a high degree of freedom in utilization and is easy to utilize. Since it is easy to utilize the different rider-saddle-type vehicle traveling integrated data, the post-processing of the output different rider-saddle type vehicle traveling integrated data is easy. Since the post-processing of the outputted different rider-saddle type vehicle traveling integrated data is easy, it is possible to reduce the hardware resource of the output destination of the different rider-saddle type vehicle traveling integrated data.
As described above, the straddle-type vehicle travel data processing method of the present invention can reduce post-processing of output data and reduce hardware resources.
 (34)本発明の他の観点によれば、本発明の鞍乗型車両走行データ処理方法は、上記(31)~(33)のいずれかの構成に加えて、以下の構成を有することが好ましい。
 前記鞍乗型車両走行一体複合データ生成処理において、前記第1鞍乗型車両走行複合データと、前記第2鞍乗型車両走行複合データとの差分により前記鞍乗型車両走行一体複合データが生成される。
(34) According to another aspect of the present invention, a saddle riding type vehicle travel data processing method of the present invention may have the following configuration in addition to any one of the configurations (31) to (33). preferable.
In the saddle-ride type vehicle traveling integrated data generation process, the saddle-type vehicle traveling integrated data is generated by the difference between the first saddle-type vehicle traveling combined data and the second saddle-type vehicle traveling combined data. To be done.
 この構成によると、第1鞍乗型車両走行複合データと第2鞍乗型車両走行複合データとの差分である鞍乗型車両走行一体複合データが出力対象に出力される。第1鞍乗型車両走行複合データと第2鞍乗型車両走行複合データとの差分は、例えば車両の制御や車両の走行状態の解析などに活用しやすい。鞍乗型車両走行一体複合データを活用しやすいため、出力された鞍乗型車両走行一体複合データの後処理が容易である。出力された鞍乗型車両走行一体複合データの後処理が容易であるため、鞍乗型車両走行一体複合データが出力される出力対象のハードウェアリソースを低減することができる。
 以上のように、本発明の鞍乗型車両走行データ処理方法は、出力されたデータの後処理を効率化して、ハードウェアリソースを低減することができる。
According to this configuration, the saddle riding type vehicle traveling integrated data, which is the difference between the first saddle riding type vehicle traveling composite data and the second saddle riding type vehicle traveling composite data, is output to the output target. The difference between the first saddle-ride type vehicle traveling composite data and the second saddle-ride type vehicle traveling composite data is easy to utilize, for example, for controlling the vehicle or analyzing the traveling state of the vehicle. Since it is easy to utilize the saddle-ride type vehicle traveling integrated data, it is easy to post-process the outputted saddle-type vehicle traveling integrated data. Since the post-processing of the outputted saddle-ride type vehicle traveling integrated data is easy, it is possible to reduce the output hardware resources to which the saddle-type vehicle traveling integrated data is output.
As described above, the straddle-type vehicle travel data processing method of the present invention can reduce post-processing of output data and reduce hardware resources.
 (35)本発明の他の観点によれば、本発明の鞍乗型車両走行データ処理方法は、上記(23)~(34)のいずれかの構成に加えて、以下の構成を有することが好ましい。
 前記第1アプローチ旋回軌跡データまたは前記第1アプローチ旋回前方向加速度データの少なくとも一方が、GNSS(Global Navigation Satellite System / 全球測位衛星システム)を利用して生成されたデータである。
(35) According to another aspect of the present invention, the saddle riding type vehicle travel data processing method of the present invention may have the following configuration in addition to any one of the configurations (23) to (34). preferable.
At least one of the first approach turning trajectory data and the first approach turning front direction acceleration data is data generated using a GNSS (Global Navigation Satellite System).
 この構成によると、第1アプローチ旋回軌跡データまたは第1アプローチ旋回前方向加速度データの少なくとも一方は、GNSSを利用して生成されたデータである。GNSSを利用して生成された第1アプローチ旋回軌跡データは、第1アプローチ旋回軌跡を高い精度で示す。GNSSを利用して生成された第1アプローチ旋回前方向加速度データは、第1アプローチ旋回軌跡を走行したときの鞍乗型車両の車両前方向の加速度を高い精度で示す。そのため、第1鞍乗型車両走行複合データをより活用しやすくなる。第1鞍乗型車両走行複合データをより活用しやすくなるため、出力された第1鞍乗型車両走行複合データの後処理がより容易である。出力された第1鞍乗型車両走行複合データの後処理がより容易であるため、第1鞍乗型車両走行複合データが出力される出力対象のハードウェアリソースをより低減することができる。
 以上のように、本発明の鞍乗型車両走行データ処理方法は、出力されたデータの後処理をより効率化して、ハードウェアリソースをより低減することができる。
According to this configuration, at least one of the first approach turning trajectory data and the first approach turning front direction acceleration data is data generated using GNSS. The first approach turning trajectory data generated using GNSS indicates the first approach turning trajectory with high accuracy. The first approach turning front direction acceleration data generated using the GNSS indicates with high accuracy the vehicle front direction acceleration of the saddle type vehicle when traveling on the first approach turning locus. Therefore, it becomes easier to utilize the first saddle riding type vehicle traveling composite data. Since it becomes easier to utilize the first saddle riding type vehicle traveling composite data, the post-processing of the output first saddle riding type vehicle traveling composite data is easier. Since the post-processing of the output first straddle-type vehicle travel composite data is easier, it is possible to further reduce the hardware resources to be output to which the first saddle-ride type vehicle travel composite data is output.
As described above, the straddle-type vehicle travel data processing method of the present invention can make post-processing of output data more efficient and further reduce hardware resources.
 (36)本発明の他の観点によれば、本発明の鞍乗型車両走行データ処理方法は、上記(23)~(35)のいずれかの構成に加えて、以下の構成を有することが好ましい。
 前記鞍乗型車両走行複合データ生成処理において、前記第1鞍乗型車両走行複合データが、前記第1アプローチ旋回軌跡データおよび前記第1アプローチ旋回前方向加速度データに基づいたイメージデータを含むように生成される。
(36) According to another aspect of the present invention, the saddle riding type vehicle travel data processing method of the present invention may have the following configuration in addition to any one of the configurations (23) to (35). preferable.
In the saddle-ride type vehicle traveling composite data generation process, the first saddle-ride type vehicle traveling composite data may include image data based on the first approach turning trajectory data and the first approach turning forward acceleration data. Is generated.
 この構成によると、第1鞍乗型車両走行複合データは、第1アプローチ旋回軌跡データおよび第1アプローチ旋回前方向加速度データに基づいたイメージデータを含む。そのため、第1鞍乗型車両走行複合データは、第1アプローチ旋回軌跡と、第1アプローチ旋回軌跡を走行したときの鞍乗型車両の車両前方向の加速度との関連性をより明確に示す。そのため、第1鞍乗型車両走行複合データをより活用しやすくなる。第1鞍乗型車両走行複合データをより活用しやすくなるため、出力された第1鞍乗型車両走行複合データの後処理がより容易である。出力された第1鞍乗型車両走行複合データの後処理がより容易であるため、第1鞍乗型車両走行複合データが出力される出力対象のハードウェアリソースをより低減することができる。
 以上のように、本発明の鞍乗型車両走行データ処理方法は、出力されたデータの後処理をより効率化して、ハードウェアリソースをより低減することができる。
According to this configuration, the first straddle-type vehicle traveling composite data includes image data based on the first approach turning trajectory data and the first approach turning front direction acceleration data. Therefore, the first saddle riding type vehicle traveling composite data more clearly shows the relationship between the first approach turning locus and the acceleration in the vehicle front direction of the saddle riding type vehicle when traveling on the first approach turning locus. Therefore, it becomes easier to utilize the first saddle riding type vehicle traveling composite data. Since it becomes easier to utilize the first saddle riding type vehicle traveling composite data, the post-processing of the output first saddle riding type vehicle traveling composite data is easier. Since the post-processing of the output first straddle-type vehicle travel composite data is easier, it is possible to further reduce the hardware resources to be output to which the first saddle-ride type vehicle travel composite data is output.
As described above, the straddle-type vehicle travel data processing method of the present invention can make post-processing of output data more efficient and further reduce hardware resources.
 (37)本発明の他の観点によれば、本発明の鞍乗型車両走行データ処理方法は、上記(28)の構成に加えて、以下の構成を有することが好ましい。
 前記鞍乗型車両走行複合データ生成処理において、前記第1鞍乗型車両走行複合データが、前記第1アプローチ旋回軌跡データおよび前記第1アプローチ旋回左右方向加速度データに基づいたイメージデータを含むように生成される。
(37) According to another aspect of the present invention, it is preferable that the saddle riding type vehicle travel data processing method of the present invention has the following configuration in addition to the configuration of (28) above.
In the saddle riding type vehicle traveling composite data generation process, the first saddle riding type vehicle traveling composite data may include image data based on the first approach turning locus data and the first approach turning lateral acceleration data. Is generated.
 この構成によると、第1鞍乗型車両走行複合データは、第1アプローチ旋回軌跡データおよび第1アプローチ旋回左右方向加速度データに基づいたイメージデータを含む。そのため、第1鞍乗型車両走行複合データは、第1アプローチ旋回軌跡と第1アプローチ旋回軌跡を走行したときの鞍乗型車両の車両左右方向の加速度との関連性をより明確に示す。そのため、第1鞍乗型車両走行複合データをより活用しやすくなる。第1鞍乗型車両走行複合データをより活用しやすくなるため、出力された第1鞍乗型車両走行複合データの後処理がより容易である。出力された第1鞍乗型車両走行複合データの後処理がより容易であるため、第1鞍乗型車両走行複合データが出力される出力対象のハードウェアリソースをより低減することができる。
 以上のように、本発明の鞍乗型車両走行データ処理方法は、出力されたデータの後処理をより効率化して、ハードウェアリソースをより低減することができる。
According to this configuration, the first straddle-type vehicle traveling composite data includes image data based on the first approach turning trajectory data and the first approach turning left-right acceleration data. Therefore, the first straddle-type vehicle traveling composite data more clearly shows the relationship between the first approach turning locus and the acceleration in the vehicle left-right direction of the straddle-type vehicle when traveling on the first approach turning locus. Therefore, it becomes easier to utilize the first saddle riding type vehicle traveling composite data. Since it becomes easier to utilize the first saddle riding type vehicle traveling composite data, the post-processing of the output first saddle riding type vehicle traveling composite data is easier. Since the post-processing of the output first straddle-type vehicle travel composite data is easier, it is possible to further reduce the hardware resources to be output to which the first saddle-ride type vehicle travel composite data is output.
As described above, the straddle-type vehicle travel data processing method of the present invention can make post-processing of output data more efficient and further reduce hardware resources.
 (38)本発明の他の観点によれば、本発明の鞍乗型車両走行データ処理方法は、上記(28)の構成に加えて、以下の構成を有することが好ましい。
 前記鞍乗型車両走行複合データ生成処理において、前記第1鞍乗型車両走行複合データが、前記第1アプローチ旋回前方向加速度データおよび前記第1アプローチ旋回左右方向加速度データに基づいて生成された、前記鞍乗型車両の車両前方向の加速度を縦軸とし、前記鞍乗型車両の車両左右方向の加速度を横軸としたグラフのイメージデータを含む。
(38) According to another aspect of the present invention, it is preferable that the saddle riding type vehicle traveling data processing method of the present invention has the following configuration in addition to the configuration of (28) above.
In the saddle-ride type vehicle traveling composite data generation process, the first saddle-ride type vehicle traveling composite data is generated based on the first approach turning front direction acceleration data and the first approach turning left / right direction acceleration data. It includes image data of a graph in which the vertical axis represents the acceleration of the saddle-ride type vehicle in the vehicle front direction and the horizontal axis represents the acceleration of the saddle-ride type vehicle in the vehicle left-right direction.
 この構成によると、第1鞍乗型車両走行複合データは、鞍乗型車両の車両前方向の加速度を縦軸とし、鞍乗型車両の車両左右方向の加速度を横軸としたグラフのイメージデータを含む。そのため、第1鞍乗型車両走行複合データは、第1アプローチ旋回軌跡を走行したときの鞍乗型車両の車両前方向の加速度と鞍乗型車両の車両左右方向の加速度との関連性をより明確に示す。そのため、第1鞍乗型車両走行複合データをより活用しやすくなる。第1鞍乗型車両走行複合データをより活用しやすくなるため、出力された第1鞍乗型車両走行複合データの後処理がより容易である。出力された第1鞍乗型車両走行複合データの後処理がより容易であるため、第1鞍乗型車両走行複合データが出力される出力対象のハードウェアリソースをより低減することができる。
 以上のように、本発明の鞍乗型車両走行データ処理方法は、出力されたデータの後処理をより効率化して、ハードウェアリソースをより低減することができる。
According to this configuration, the first straddle-type vehicle traveling composite data is image data of a graph in which the vertical axis represents the acceleration in the vehicle front direction of the saddle-ride type vehicle and the horizontal axis represents the acceleration in the vehicle left-right direction of the saddle-ride type vehicle. including. Therefore, the first straddle-type vehicle traveling composite data shows the relationship between the acceleration in the vehicle front direction of the straddle-type vehicle and the acceleration in the vehicle left-right direction of the saddle-type vehicle when traveling on the first approach turning trajectory. Show clearly. Therefore, it becomes easier to utilize the first saddle riding type vehicle traveling composite data. Since it becomes easier to utilize the first saddle riding type vehicle traveling composite data, the post-processing of the output first saddle riding type vehicle traveling composite data is easier. Since the post-processing of the output first straddle-type vehicle travel composite data is easier, it is possible to further reduce the hardware resources to be output to which the first saddle-ride type vehicle travel composite data is output.
As described above, the straddle-type vehicle travel data processing method of the present invention can make post-processing of output data more efficient and further reduce hardware resources.
 (39)本発明の他の観点によれば、本発明の鞍乗型車両走行データ処理方法は、上記(23)~(38)のいずれかの構成に加えて、以下の構成を有することが好ましい。
 前記第1アプローチ旋回軌跡は、前記アプローチ領域を走行したときの前記鞍乗型車両の走行軌跡である第1アプローチ軌跡と、前記第1旋回領域を走行したときの前記鞍乗型車両の走行軌跡である第1旋回軌跡とを含み、前記鞍乗型車両走行データ取得処理において、前記第1旋回軌跡を走行したときの前記鞍乗型車両の姿勢に関連する第1旋回車両姿勢データと、前記第1旋回軌跡を走行したときの前記鞍乗型車両に乗車するライダーの姿勢に関連する第1旋回ライダー姿勢データとが取得され、前記鞍乗型車両走行複合データ生成処理において、前記第1鞍乗型車両走行複合データが、前記第1アプローチ旋回軌跡データ、前記第1アプローチ旋回前方向加速度データ、前記第1旋回車両姿勢データおよび前記第1旋回ライダー姿勢データに基づいて、前記第1アプローチ旋回軌跡、前記第1アプローチ旋回軌跡を走行したときの前記鞍乗型車両の車両前方向の加速度、前記第1旋回軌跡を走行したときの前記鞍乗型車両の姿勢、および、前記第1旋回軌跡を走行したときの前記鞍乗型車両に乗車する前記ライダーの姿勢を関連付けて生成される。
(39) According to another aspect of the present invention, a saddle type vehicle travel data processing method of the present invention may have the following configuration in addition to any one of the configurations (23) to (38). preferable.
The first approach turning trajectory is a first approach trajectory that is a traveling trajectory of the saddle riding type vehicle when traveling in the approach area, and a traveling trajectory of the saddle riding type vehicle when traveling in the first turning area. The first turning vehicle attitude data relating to the attitude of the saddle riding type vehicle when traveling on the first turning path in the saddle riding type vehicle travel data acquisition processing, The first turning rider posture data relating to the posture of the rider on the saddle riding type vehicle when traveling on the first turning locus is acquired, and in the saddle riding type vehicle traveling composite data generation process, the first saddle type The riding-type vehicle traveling composite data is based on the first approach turning trajectory data, the first approach turning front direction acceleration data, the first turning vehicle attitude data, and the first turning rider attitude data, and the first approach turning. Trajectory, acceleration in the vehicle front direction of the saddle riding type vehicle when traveling on the first approach turning trajectory, posture of the saddle riding type vehicle when traveling on the first turning trajectory, and the first turning trajectory It is generated by associating the posture of the rider who gets on the saddle-ride type vehicle when traveling.
 この構成によると、第1鞍乗型車両走行複合データは、第1アプローチ旋回軌跡と、第1アプローチ旋回軌跡を走行したときの鞍乗型車両の車両前方向の加速度と、第1アプローチ旋回軌跡を走行したときの鞍乗型車両の姿勢と、第1アプローチ旋回軌跡を走行したときの鞍乗型車両に乗車するライダーの姿勢が関連付けられたデータである。
 鞍乗型車両は、車両の挙動の変化だけでなく、ライダーの姿勢の変化も利用して旋回する乗り物である。そのため、旋回中と旋回前のライダーの姿勢と車両の挙動は、ライダーの意思によって決まる鞍乗型車両の走行状態と密接に関連している。したがって、第1鞍乗型車両走行複合データは、鞍乗型車両の走行状態をより大きく反映している。そのため、第1鞍乗型車両走行複合データを活用しやすくなる。第1鞍乗型車両走行複合データを活用しやすくなるため、出力された第1鞍乗型車両走行複合データの後処理が容易である。出力された第1鞍乗型車両走行複合データの後処理が容易であるため、第1鞍乗型車両走行複合データが出力される出力対象のハードウェアリソースを低減することができる。
 以上のように、本発明の鞍乗型車両走行データ処理方法は、出力されたデータの後処理を効率化して、ハードウェアリソースを低減することができる。
According to this configuration, the first straddle-type vehicle traveling composite data includes the first approach turning locus, the acceleration in the vehicle front direction of the saddle riding type vehicle when traveling on the first approach turning locus, and the first approach turning locus. The data is associated with the attitude of the saddle riding type vehicle when traveling on the vehicle and the attitude of the rider riding the saddle riding type vehicle when traveling on the first approach turning locus.
A straddle-type vehicle is a vehicle that makes a turn using not only changes in the behavior of the vehicle but also changes in the posture of the rider. Therefore, the posture of the rider and the behavior of the vehicle during and before the turn are closely related to the running state of the saddle riding type vehicle determined by the rider's intention. Therefore, the first straddle-type vehicle traveling composite data largely reflects the traveling state of the straddle-type vehicle. Therefore, it becomes easy to utilize the first straddle-type vehicle traveling composite data. Since it becomes easy to utilize the first saddle riding type vehicle traveling composite data, the post-processing of the output first saddle riding type vehicle traveling composite data is easy. Since the post-processing of the output first straddle-type vehicle travel composite data is easy, it is possible to reduce the hardware resources to be output to which the first saddle-ride type vehicle travel composite data is output.
As described above, the straddle-type vehicle travel data processing method of the present invention can reduce post-processing of output data and reduce hardware resources.
 (40)本発明の他の観点によれば、本発明の鞍乗型車両走行データ処理方法は、上記(23)~(39)のいずれかの構成に加えて、以下の構成を有することが好ましい。
 前記第1アプローチ旋回軌跡は、前記鞍乗型車両が前記アプローチ旋回領域内を走行するように前記鞍乗型車両の進行方向をガイドするための少なくとも1つのアプローチ旋回ガイド部が設けられた環境下で走行したときの走行軌跡である。
(40) According to another aspect of the present invention, the saddle riding type vehicle travel data processing method of the present invention may have the following configuration in addition to any one of the configurations (23) to (39). preferable.
The first approach turning trajectory is an environment in which at least one approach turning guide unit is provided for guiding the traveling direction of the saddle type vehicle so that the saddle type vehicle travels in the approach turning area. It is a traveling locus when traveling in.
 この構成によると、第1アプローチ旋回軌跡は、少なくとも1つのアプローチ旋回ガイド部が設けられた環境下で走行して得られた走行軌跡である。鞍乗型車両はアプローチ旋回ガイド部によって、アプローチ旋回領域内を走行するように進行方向がガイドされる。アプローチ旋回ガイド部によって、アプローチ旋回領域を、所望のサイズ、形状、および位置に設定しやすい。それにより、アプローチ旋回領域のばらつきによる鞍乗型車両の走行状態のばらつきを低減できる。そのため、第1鞍乗型車両走行複合データを例えば車両の制御や車両の走行状態の解析などにより活用しやすくなる。第1鞍乗型車両走行複合データをより活用しやすくなるため、出力された第1鞍乗型車両走行複合データの後処理がより容易である。出力された第1鞍乗型車両走行複合データの後処理がより容易であるため、第1鞍乗型車両走行複合データが出力される出力対象のハードウェアリソースをより低減することができる。
 以上のように、本発明の鞍乗型車両走行データ処理方法は、出力されたデータの後処理をより効率化して、ハードウェアリソースをより低減することができる。
According to this configuration, the first approach turning locus is a running locus obtained by running in an environment where at least one approach turning guide section is provided. The straddle-type vehicle is guided in its traveling direction by the approach turning guide portion so as to travel in the approach turning region. The approach turning guide portion facilitates setting the approach turning area to a desired size, shape, and position. As a result, it is possible to reduce variations in the running state of the saddle riding type vehicle due to variations in the approach turning area. Therefore, it becomes easy to utilize the first straddle-type vehicle traveling composite data by, for example, controlling the vehicle or analyzing the traveling state of the vehicle. Since it becomes easier to utilize the first saddle riding type vehicle traveling composite data, the post-processing of the output first saddle riding type vehicle traveling composite data is easier. Since the post-processing of the output first straddle-type vehicle travel composite data is easier, it is possible to further reduce the hardware resources to be output to which the first saddle-ride type vehicle travel composite data is output.
As described above, the straddle-type vehicle travel data processing method of the present invention can make post-processing of output data more efficient and further reduce hardware resources.
 (41)本発明の他の観点によれば、本発明の鞍乗型車両走行データ処理方法は、上記(40)の構成に加えて、以下の構成を有することが好ましい。
 前記第1アプローチ旋回軌跡は、前記アプローチ領域を走行したときの前記鞍乗型車両の走行軌跡である第1アプローチ軌跡を含み、前記アプローチ旋回ガイド部は、前記鞍乗型車両が前記アプローチ領域内を走行するように前記鞍乗型車両の進行方向をガイドするための少なくとも2つのアプローチガイド部を含み、前記第1アプローチ軌跡は、前記鞍乗型車両が2つの前記アプローチガイド部の間を通過しつつ、前記アプローチ領域を走行したときの走行軌跡である。
(41) According to another aspect of the present invention, it is preferable that the saddle riding type vehicle travel data processing method of the present invention has the following configuration in addition to the configuration of (40) above.
The first approach turning locus includes a first approach locus which is a running locus of the saddle riding type vehicle when running in the approach area, and the approach turning guide part is configured such that the saddle riding type vehicle is within the approach area. Including at least two approach guide parts for guiding the traveling direction of the saddle-ride type vehicle so that the saddle-ride type vehicle passes between the two approach guide parts. It is a traveling locus when traveling in the approach area while being driven.
 この構成によると、第1アプローチ旋回軌跡の第1アプローチ軌跡は、2つのアプローチガイド部の間を通過しつつアプローチ領域を走行したときの走行軌跡である。アプローチガイド部によって、アプローチ領域を所望の長さおよび位置に設定しやすい。よって、アプローチ領域のばらつきによる鞍乗型車両の走行状態のばらつきを低減できる。そのため、第1鞍乗型車両走行複合データを例えば車両の制御や車両の走行状態の解析などにより活用しやすくなる。第1鞍乗型車両走行複合データをより活用しやすくなるため、出力された第1鞍乗型車両走行複合データの後処理がより容易である。出力された第1鞍乗型車両走行複合データの後処理がより容易であるため、第1鞍乗型車両走行複合データが出力される出力対象のハードウェアリソースをより低減することができる。
 以上のように、本発明の鞍乗型車両走行データ処理方法は、出力されたデータの後処理をより効率化して、ハードウェアリソースをより低減することができる。
According to this configuration, the first approach trajectory of the first approach turning trajectory is a traveling trajectory when traveling in the approach area while passing between the two approach guide portions. The approach guide portion facilitates setting the approach area to a desired length and position. Therefore, it is possible to reduce the variation in the traveling state of the straddle-type vehicle due to the variation in the approach area. Therefore, it becomes easy to utilize the first straddle-type vehicle traveling composite data by, for example, controlling the vehicle or analyzing the traveling state of the vehicle. Since it becomes easier to utilize the first saddle riding type vehicle traveling composite data, the post-processing of the output first saddle riding type vehicle traveling composite data is easier. Since the post-processing of the output first straddle-type vehicle travel composite data is easier, it is possible to further reduce the hardware resources to be output to which the first saddle-ride type vehicle travel composite data is output.
As described above, the straddle-type vehicle travel data processing method of the present invention can make post-processing of output data more efficient and further reduce hardware resources.
 (42)本発明の他の観点によれば、本発明の鞍乗型車両走行データ処理方法は、上記(40)または(41)の構成に加えて、以下の構成を有することが好ましい。
 前記第1アプローチ旋回軌跡は、前記第1旋回領域を走行したときの前記鞍乗型車両の走行軌跡である第1旋回軌跡を含み、前記アプローチ旋回ガイド部は、前記鞍乗型車両が前記第1旋回領域内を走行するように前記鞍乗型車両の進行方向をガイドするための少なくとも1つの旋回ガイド部を含み、前記第1旋回軌跡は、前記鞍乗型車両が前記旋回ガイド部と前記第2円弧との間を通過しつつ、前記第1旋回領域を走行したときの走行軌跡である。
(42) According to another aspect of the present invention, it is preferable that the saddle riding type vehicle travel data processing method of the present invention has the following configuration in addition to the configuration of (40) or (41).
The first approach turning locus includes a first turning locus that is a running locus of the saddle riding type vehicle when the vehicle is running in the first turning region, and the approach turning guide portion is configured such that the saddle riding type vehicle is the first turning locus. The saddle-riding type vehicle includes at least one turning guide portion for guiding the traveling direction of the saddle-riding type vehicle so as to travel in one turning area, and the first turning locus includes the turning guide portion and the turning guide portion. It is a travel locus when traveling in the first turning region while passing between the second arc and the second arc.
 この構成によると、第1アプローチ旋回軌跡の第1旋回軌跡は、旋回ガイド部と第2円弧との間を通過しつつ第1旋回領域を走行したときの走行軌跡である。旋回ガイド部によって、第1旋回領域を所望のサイズ、形状、および位置に設定しやすい。よって、第1旋回領域のばらつきによる鞍乗型車両の走行状態のばらつきを低減できる。そのため、第1鞍乗型車両走行複合データを例えば車両の制御や車両の走行状態の解析などにより活用しやすくなる。第1鞍乗型車両走行複合データをより活用しやすくなるため、出力された第1鞍乗型車両走行複合データの後処理がより容易である。出力された第1鞍乗型車両走行複合データの後処理がより容易であるため、第1鞍乗型車両走行複合データが出力される出力対象のハードウェアリソースをより低減することができる。
 以上のように、本発明の鞍乗型車両走行データ処理方法は、出力されたデータの後処理をより効率化して、ハードウェアリソースをより低減することができる。
According to this configuration, the first turning locus of the first approach turning locus is a running locus when traveling in the first turning region while passing between the turning guide portion and the second arc. The turning guide portion facilitates setting the first turning area to a desired size, shape, and position. Therefore, it is possible to reduce the variation in the running state of the saddle riding type vehicle due to the variation in the first turning region. Therefore, it becomes easy to utilize the first straddle-type vehicle traveling composite data by, for example, controlling the vehicle or analyzing the traveling state of the vehicle. Since it becomes easier to utilize the first saddle riding type vehicle traveling composite data, the post-processing of the output first saddle riding type vehicle traveling composite data is easier. Since the post-processing of the output first straddle-type vehicle travel composite data is easier, it is possible to further reduce the hardware resources to be output to which the first saddle-ride type vehicle travel composite data is output.
As described above, the straddle-type vehicle travel data processing method of the present invention can make post-processing of output data more efficient and further reduce hardware resources.
 (43)本発明の他の観点によれば、本発明の鞍乗型車両走行データ処理方法は、上記(40)~(42)のいずれかの構成に加えて、以下の構成を有することが好ましい。
 前記アプローチ旋回ガイド部は、前記鞍乗型車両の進行方向を制限するように構成されている。
(43) According to another aspect of the present invention, the saddle riding type vehicle travel data processing method of the present invention may have the following configuration in addition to any one of the configurations (40) to (42). preferable.
The approach turning guide unit is configured to limit a traveling direction of the straddle-type vehicle.
 この構成によると、アプローチ旋回ガイド部は、鞍乗型車両の進行方向を制限する。アプローチ旋回ガイド部によって、アプローチ旋回領域を所望のサイズ、形状、および位置により確実に設定できる。よって、アプローチ旋回領域のばらつきによる鞍乗型車両の走行状態のばらつきをより低減できる。そのため、第1鞍乗型車両走行複合データを例えば車両の制御や車両の走行状態の解析などにより活用しやすくなる。第1鞍乗型車両走行複合データをより活用しやすくなるため、出力された第1鞍乗型車両走行複合データの後処理がより容易である。出力された第1鞍乗型車両走行複合データの後処理がより容易であるため、第1鞍乗型車両走行複合データが出力される出力対象のハードウェアリソースをより低減することができる。
 以上のように、本発明の鞍乗型車両走行データ処理方法は、出力されたデータの後処理をより効率化して、ハードウェアリソースをより低減することができる。
According to this configuration, the approach turning guide unit limits the traveling direction of the saddle riding type vehicle. The approach swivel guide portion can reliably set the approach swivel region to a desired size, shape, and position. Therefore, it is possible to further reduce the variation in the traveling state of the straddle-type vehicle due to the variation in the approach turning area. Therefore, it becomes easy to utilize the first straddle-type vehicle traveling composite data by, for example, controlling the vehicle or analyzing the traveling state of the vehicle. Since it becomes easier to utilize the first saddle riding type vehicle traveling composite data, the post-processing of the output first saddle riding type vehicle traveling composite data is easier. Since the post-processing of the output first straddle-type vehicle travel composite data is easier, it is possible to further reduce the hardware resources to be output to which the first saddle-ride type vehicle travel composite data is output.
As described above, the straddle-type vehicle travel data processing method of the present invention can make post-processing of output data more efficient and further reduce hardware resources.
 (44)本発明の他の観点によれば、本発明の鞍乗型車両走行データ処理方法は、上記(43)の構成に加えて、以下の構成を有することが好ましい。
 前記鞍乗型車両が、地面を走行可能であって、前記少なくとも1つのアプローチ旋回ガイド部が、設置場所を自在に変更可能に前記地面に配置される。
(44) According to another aspect of the invention, it is preferable that the saddle riding type vehicle travel data processing method of the invention has the following configuration in addition to the configuration of (43).
The straddle-type vehicle is capable of traveling on the ground, and the at least one approach turning guide unit is arranged on the ground so that the installation location can be freely changed.
 この構成によると、アプローチ旋回ガイド部は、設置場所を自在に変更可能に地面に設置される。そのため、アプローチ旋回ガイド部を様々な場所に配置することができる。そのため、例えば駐車場などの道路以外の場所に、アプローチ旋回領域を設定することができる。
 また、アプローチ旋回ガイド部の位置の変更が容易である。そのため、アプローチ旋回領域のサイズ、形状、および位置を容易に変更できる。
 また、アプローチ旋回ガイド部の数を増やすことが容易である。アプローチ旋回ガイド部の数を増やすことで、アプローチ旋回領域を、所望のサイズ、形状、および位置により確実に設定できる。よって、アプローチ旋回領域のばらつきによる鞍乗型車両の走行状態のばらつきをより低減できる。そのため、第1鞍乗型車両走行複合データを例えば車両の制御や車両の走行状態の解析などにより活用しやすくなる。第1鞍乗型車両走行複合データをより活用しやすくなるため、出力された第1鞍乗型車両走行複合データの後処理がより容易である。出力された第1鞍乗型車両走行複合データの後処理がより容易であるため、第1鞍乗型車両走行複合データが出力される出力対象のハードウェアリソースをより低減することができる。
 以上のように、本発明の鞍乗型車両走行データ処理方法は、出力されたデータの後処理をより効率化して、ハードウェアリソースをより低減することができる。
With this configuration, the approach turning guide unit is installed on the ground so that the installation location can be freely changed. Therefore, the approach turning guide unit can be arranged at various places. Therefore, the approach turning area can be set at a place other than the road, such as a parking lot.
Further, it is easy to change the position of the approach turning guide portion. Therefore, the size, shape, and position of the approach turning area can be easily changed.
In addition, it is easy to increase the number of approach turning guide portions. By increasing the number of approach swivel guide portions, the approach swirl region can be reliably set to a desired size, shape, and position. Therefore, it is possible to further reduce the variation in the traveling state of the straddle-type vehicle due to the variation in the approach turning area. Therefore, it becomes easy to utilize the first straddle-type vehicle traveling composite data by, for example, controlling the vehicle or analyzing the traveling state of the vehicle. Since it becomes easier to utilize the first saddle riding type vehicle traveling composite data, the post-processing of the output first saddle riding type vehicle traveling composite data is easier. Since the post-processing of the output first straddle-type vehicle travel composite data is easier, it is possible to further reduce the hardware resources to be output to which the first saddle-ride type vehicle travel composite data is output.
As described above, the straddle-type vehicle travel data processing method of the present invention can make post-processing of output data more efficient and further reduce hardware resources.
 (45)本発明の他の観点によれば、本発明の鞍乗型車両走行データ処理装置、本発明の鞍乗型車両走行データ処理方法および本発明の鞍乗型車両走行データ処理プログラムは、上記(17)、(39)の構成に加えて、以下の構成を有することが好ましい。
 前記鞍乗型車両走行複合データ生成処理において、前記第1鞍乗型車両走行複合データが、前記第1旋回車両姿勢データおよび前記第1旋回ライダー姿勢データに基づいたイメージデータを含むように生成される。
(45) According to another aspect of the present invention, a straddle-type vehicle traveling data processing device, a saddle-type vehicle traveling data processing method of the present invention, and a saddle-type vehicle traveling data processing program of the present invention include: In addition to the above configurations (17) and (39), it is preferable to have the following configuration.
In the saddle riding type vehicle traveling composite data generation process, the first saddle riding type vehicle traveling composite data is generated so as to include image data based on the first turning vehicle attitude data and the first turning rider attitude data. It
 (46)本発明の他の観点によれば、本発明の鞍乗型車両走行データ処理装置および本発明の鞍乗型車両走行データ処理方法は、上記(14)、(15)、(36)、(37)、(45)のいずれかの構成に加えて、以下の構成を有することが好ましい。
 前記イメージデータは、静止画像データ、動画データ、コンピュータグラフィックスデータの少なくともいずれかである。
(46) According to another aspect of the present invention, there are provided a saddle-ride type vehicle travel data processing device and a saddle-ride type vehicle travel data processing method according to the present invention. , (37), or (45), it is preferable to have the following configuration.
The image data is at least one of still image data, moving image data, and computer graphics data.
 (47)本願には、本発明の鞍乗型車両走行データ処理装置および本発明の鞍乗型車両走行データ処理方法に加えて、下記の鞍乗型車両走行データ表示装置も開示される。
 鞍乗型車両走行データ表示装置は、上記(1)~(46)のいずれかの前記鞍乗型車両走行データ処理装置の前記鞍乗型車両走行複合データ出力処理により出力された前記第1鞍乗型車両走行複合データを取得するデータ取得部と、情報を表示可能な表示部と、前記データ取得部が取得した前記第1鞍乗型車両走行複合データを前記表示部の1つの画面上に同時に表示させる表示制御部とを有する。
(47) In addition to the saddle riding type vehicle running data processing device and the saddle riding type vehicle running data processing method of the present invention, the present application discloses the following saddle riding type vehicle running data display device.
The saddle-ride type vehicle traveling data display device is the first saddle output by the saddle-ride type vehicle traveling composite data output process of the saddle-ride type vehicle traveling data processing device according to any one of the above (1) to (46). A data acquisition unit for acquiring riding type vehicle traveling composite data, a display unit capable of displaying information, and the first saddle riding type vehicle traveling composite data acquired by the data acquisition unit on one screen of the display unit. And a display control unit for displaying at the same time.
 (48)本願には、本発明の鞍乗型車両走行データ処理装置および本発明の鞍乗型車両走行データ処理方法に加えて、下記の鞍乗型車両走行データ印刷装置も開示される。
 鞍乗型車両走行データ印刷装置は、上記(1)~(46)のいずれかの前記鞍乗型車両走行データ処理装置の前記鞍乗型車両走行複合データ出力処理により出力された前記第1鞍乗型車両走行複合データを取得するデータ取得部と、情報を用紙に印刷可能な印刷部と、前記データ取得部が取得した前記第1鞍乗型車両走行複合データを前記印刷部によって1枚の用紙の同一面に印刷させる印刷制御部とを有する。
(48) In addition to the saddle riding type vehicle running data processing device and the saddle riding type vehicle running data processing method of the present invention, the present application discloses the following saddle riding type vehicle running data printing device.
The saddle-ride type vehicle traveling data printing device outputs the first saddle output by the saddle-ride type vehicle traveling composite data output process of the saddle-ride type vehicle traveling data processing device according to any one of (1) to (46). A data acquisition unit that acquires the riding-type vehicle traveling composite data, a printing unit that can print information on paper, and the first saddle-riding type vehicle traveling composite data acquired by the data acquisition unit by the printing unit. A print control unit for printing on the same side of the paper.
 <鞍乗型車両の定義>
 本発明において、鞍乗型車両とは、ライダー(運転者)が鞍にまたがるような状態で乗車する車両全般を指す。鞍乗型車両は、地面を走行してもよく、雪上を走行してもよく、水面を走行してもよい。本発明において、地面は、舗装面であってもよく、土のある面であってもよい。本発明の鞍乗型車両は、走行するための動力を発生させる動力源(駆動源)を有していてもよく、有さなくてもよい。動力源は、例えば、電気モータであってもよく、エンジンであってもよい。エンジンは、ガソリンエンジンであってもよく、ディーゼルエンジンであってもよい。鞍乗型車両は、動力源として、電気モータとエンジンの両方を有していてもよい。本発明の鞍乗型車両は、右旋回する際に車両右方向に傾斜してもよく、右旋回する際に車両左方向に傾斜してもよく、車両左右方向のどちらにも傾斜しなくてもよい。左旋回する場合は、右旋回の逆になるため、記載を省略する。
<Definition of saddle type vehicle>
In the present invention, the saddle riding type vehicle refers to all vehicles that a rider (driver) rides while straddling a saddle. The saddle riding type vehicle may travel on the ground, on snow, or on the water surface. In the present invention, the ground surface may be a paved surface or a surface with soil. The straddle-type vehicle of the present invention may or may not have a power source (drive source) that generates power for traveling. The power source may be, for example, an electric motor or an engine. The engine may be a gasoline engine or a diesel engine. The saddle type vehicle may have both an electric motor and an engine as a power source. The straddle-type vehicle of the present invention may lean to the right of the vehicle when making a right turn, lean to the left of the vehicle when making a right turn, and lean to either the left or right of the vehicle. You don't have to. When turning left, the description is omitted because it is the opposite of right turning.
 <加速度の定義>
 本発明における加速度は、正の加速度と負の加速度の両方を含む。本明細書では、加速度の単位として、Gを使用している。1Gは9.80665m/s2である。
<Definition of acceleration>
The acceleration in the present invention includes both positive acceleration and negative acceleration. In this specification, G is used as a unit of acceleration. 1G is 9.80665 m / s 2 .
 <車両前方向等の定義>
 本発明および本明細書において、車両上下方向とは、鞍乗型車両を水平面に配置する場合、水平面に垂直な方向である。車両前方向とは、直立した状態の鞍乗型車両が水平面上を直進する方向である。車両左右方向とは、車両上下方向と車両前後方向に直交する方向であって、鞍乗型車両に乗車するライダーから見た左右方向である。
<Definition of vehicle front direction, etc.>
In the present invention and this specification, the vehicle vertical direction is a direction perpendicular to the horizontal plane when the saddle riding type vehicle is arranged on the horizontal plane. The vehicle front direction is a direction in which an upright saddle riding type vehicle travels straight on a horizontal plane. The vehicle left-right direction is a direction orthogonal to the vehicle up-down direction and the vehicle front-rear direction, and is the left-right direction viewed from a rider who rides on a saddle type vehicle.
 <鞍乗型車両の車両前方向の加速度の定義>
 本発明において、「鞍乗型車両の車両前方向の加速度」とは、鞍乗型車両のある位置の車両前方向の加速度である。ある位置は特に限定されない。「鞍乗型車両の車両前方向の加速度」は、厳密な意味での鞍乗型車両のある位置の車両前方向の加速度に限らない。「鞍乗型車両の車両前方向の加速度」は、鞍乗型車両のある位置の進行方向の加速度であってもよい。例えば、鞍乗型車両の操舵車輪の進行方向の加速度であってもよい。また、例えば、鞍乗型車両の重心の位置の進行方向の加速度であってもよい。
<Definition of the forward acceleration of the saddle type vehicle>
In the present invention, “acceleration in the vehicle front direction of the saddle riding type vehicle” is acceleration in the vehicle front direction at a certain position of the saddle riding type vehicle. The certain position is not particularly limited. The "acceleration in the vehicle front direction of the saddle riding type vehicle" is not limited to the acceleration in the vehicle front direction at a certain position of the saddle riding type vehicle in a strict sense. The “acceleration in the vehicle front direction of the straddle-type vehicle” may be acceleration in the traveling direction at a certain position of the saddle-ride type vehicle. For example, it may be acceleration in the traveling direction of the steered wheels of the straddle-type vehicle. Further, for example, the acceleration in the traveling direction of the position of the center of gravity of the saddle type vehicle may be used.
 <鞍乗型車両の車両左右方向の加速度>
 本発明において、「鞍乗型車両の車両左右方向の加速度」とは、鞍乗型車両のある位置の車両左右方向の加速度である。ある位置は特に限定されない。「鞍乗型車両の車両左右方向の加速度」は、厳密な意味での鞍乗型車両のある位置の車両左右方向の加速度に限らない。「鞍乗型車両の車両左右方向の加速度」は、鞍乗型車両のある位置の進行方向に直交する方向の加速度であってもよい。例えば、鞍乗型車両の操舵車輪の進行方向に直交する方向の加速度であってもよい。また、例えば、鞍乗型車両の重心の位置の進行方向に直交する方向の加速度であってもよい。
<Vehicle lateral acceleration of saddle type vehicle>
In the present invention, “acceleration in the vehicle left-right direction of the saddle-ride type vehicle” means acceleration in the vehicle left-right direction at a position where the saddle-ride type vehicle is located. The certain position is not particularly limited. The "acceleration in the lateral direction of the vehicle of the saddle type vehicle" is not limited to the acceleration in the lateral direction of the vehicle at a certain position of the saddle type vehicle in a strict sense. The "acceleration in the vehicle left-right direction of the saddle-ride type vehicle" may be an acceleration in a direction orthogonal to the traveling direction of a certain position of the saddle-ride type vehicle. For example, the acceleration may be in the direction orthogonal to the traveling direction of the steered wheels of the saddle type vehicle. Further, for example, the acceleration may be in a direction orthogonal to the traveling direction of the position of the center of gravity of the saddle type vehicle.
 <走行軌跡の定義>
 本発明において、走行軌跡は、鞍乗型車両の路面等と接触する位置の軌跡である。走行軌跡は、鞍乗型車両の路面等と接触する位置の軌跡である。鞍乗型車両が道路を走行する場合、走行軌跡および旋回軌跡は、例えば一般的な幅の道路において、道路の幅方向のどの位置を走行しているかを特定できるものである。本発明において、走行軌跡は、例えば、地図上のどの道路を走行したかということしか特定できないものは含まない。但し、本発明の第1アプローチ旋回軌跡データが示す走行軌跡は、実際の走行軌跡から若干ずれる場合がある。
<Definition of travel path>
In the present invention, the traveling locus is a locus of a position in contact with the road surface or the like of the saddle type vehicle. The traveling locus is a locus of positions in contact with the road surface or the like of the saddle type vehicle. When a straddle-type vehicle travels on a road, the travel locus and the turning locus can specify which position in the width direction of the road is traveling, for example, on a road having a general width. In the present invention, the travel locus does not include, for example, a road that can specify only which road on the map is traveled. However, the traveling locus indicated by the first approach turning locus data of the present invention may be slightly deviated from the actual traveling locus.
 <第1アプローチ旋回軌跡の定義>
 本発明において、第1アプローチ旋回軌跡は、鞍乗型車両がアプローチ旋回領域を走行した走行軌跡のうち、ある1つの走行軌跡だけを指す。例えば、第1アプローチ旋回軌跡を走行した後に、同じ鞍乗型車両がアプローチ旋回領域内を走行したときの走行軌跡は第1アプローチ旋回軌跡ではない。
<Definition of the first approach turning trajectory>
In the present invention, the first approach turning locus refers to only one running locus of the running loci of the straddle-type vehicle traveling in the approach turning region. For example, the traveling locus when the same straddle-type vehicle travels within the approach turning region after traveling on the first approach turning locus is not the first approach turning locus.
 本発明において、第1アプローチ旋回軌跡は、アプローチ領域から第1旋回領域に進入するように、第1直線および第1円弧に沿ってアプローチ旋回領域内を連続して鞍乗型車両が走行したときの走行軌跡であれば、どのような形状であってもよい。アプローチ領域内の走行軌跡は、略直線状である。アプローチ領域内の走行軌跡は、1つの直線で構成されてもよく、少なくとも1つの直線と曲線で構成されていてもよく、曲線だけで構成されていてもよい。第1旋回領域内の走行軌跡は、略円弧状である。第1旋回領域内の走行軌跡は、1つの円弧で構成されてもよく、複数の円弧で構成されていてもよく、曲線だけで構成されていてもよく、少なくとも1つの直線と曲線で構成されていてもよい。 In the present invention, the first approach turning locus is when the straddle-type vehicle travels continuously in the approach turning area along the first straight line and the first arc so as to enter the first turning area from the approach area. The shape may be any shape as long as it is the traveling locus. The traveling locus in the approach area is substantially linear. The travel locus in the approach area may be configured by one straight line, at least one straight line and a curved line, or may be configured by only a curved line. The traveling locus in the first turning region is substantially arcuate. The traveling locus in the first turning region may be configured by one circular arc, may be configured by a plurality of circular arcs, may be configured by only a curved line, and may be configured by at least one straight line and a curved line. May be.
 第1アプローチ旋回軌跡は、アプローチ領域の端で鞍乗型車両を発進させたときの走行軌跡でないことが好ましい。第1アプローチ旋回軌跡は、アプローチ領域の端で鞍乗型車両を発進させたときの走行軌跡であってもよい。第1アプローチ旋回軌跡は、第1旋回領域の端で鞍乗型車両を停止させたときの走行軌跡でないことが好ましい。第1アプローチ旋回軌跡は、第1旋回領域の端で鞍乗型車両を停止させたときの走行軌跡であってもよい。 It is preferable that the first approach turning trajectory is not the traveling trajectory when the straddle-type vehicle is started at the edge of the approach area. The first approach turning locus may be a running locus when the straddle-type vehicle is started at the end of the approach area. The first approach turning locus is preferably not a running locus when the straddle-type vehicle is stopped at the end of the first turning region. The first approach turning locus may be a running locus when the straddle-type vehicle is stopped at the end of the first turning region.
 <アプローチ旋回領域の第1直線等の定義>
 本発明において、アプローチ旋回領域の第1直線、第2直線、第1円弧、第2円弧は、路面に表示したラインなどの現実の物理的なラインでなく、想像上のラインである。
 本発明で特定された第1直線の長さは、鞍乗型車両が走行したコースにおける長さであって、例えば印刷された紙面上または表示装置の画面上の長さではない。本発明で特定された第1直線と第2直線との間の距離、第1円弧の中心角、第1円弧の半径についても、同様である。
<Definition of the first straight line of the approach turning area>
In the present invention, the first straight line, the second straight line, the first circular arc, and the second circular arc of the approach turning region are not actual physical lines such as lines displayed on the road surface, but imaginary lines.
The length of the first straight line specified in the present invention is the length on the course on which the saddle riding type vehicle has traveled, and is not the length on the printed paper or the screen of the display device, for example. The same applies to the distance between the first straight line and the second straight line specified in the present invention, the central angle of the first circular arc, and the radius of the first circular arc.
 <旋回方向の定義>
 本発明において、旋回方向とは、車両左方向および車両左方向のうち、鞍乗型車両が旋回するときに進む方向である。本発明において、2つの走行軌跡の旋回方向が異なるとは、2つの走行軌跡の旋回方向が車両左方向と車両右方向であることをいう。本発明において、2つの走行軌跡の旋回方向が同じであるとは、2つの走行軌跡の旋回方向が両方とも車両左方向であるか、2つの走行軌跡の旋回方向が両方とも車両右方向であることをいう。
<Definition of turning direction>
In the present invention, the turning direction is one of the vehicle left direction and the vehicle left direction that the straddle-type vehicle advances when turning. In the present invention, that the turning directions of the two running loci are different means that the turning directions of the two running loci are the vehicle left direction and the vehicle right direction. In the present invention, that the two traveling loci have the same turning direction means that both of the two traveling loci are in the vehicle left direction or both of the two traveling loci are in the vehicle right direction. Say that.
 <プロセッサの定義>
 本発明において、プロセッサは、マイクロコントローラ、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、マイクロプロセッサ、マルチプロセッサ、特定用途向け集積回路(ASIC)、プログラム可能な論理回路(PLC)、フィールドプログラマブルゲートアレイ(FPGA)および本明細書に記載する処理を実行することができる任意の他の回路が含まれる。プロセッサは、ECU(Electronic Control Unit)であってもよい。
<Definition of processor>
In the present invention, the processor is a microcontroller, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a microprocessor, a multiprocessor, an application specific integrated circuit (ASIC), a programmable logic circuit (PLC), a field programmable. A gate array (FPGA) and any other circuitry capable of performing the processes described herein are included. The processor may be an ECU (Electronic Control Unit).
 <記憶部の定義>
 本発明の記憶部は、各種データを記憶することが可能である。本発明の記憶部は、鞍乗型車両走行データ処理装置に含まれる。記憶部は、1つの記憶装置であってもよく、1つの記憶装置が有する記憶領域の一部であってもよく、複数の記憶装置を含んでいてもよい。記憶部は、例えば、RAM(Random Access Memory)を含んでもよい。RAMは、プロセッサがプログラムを実行するときに各種データを一時的に記憶する。記憶部は、例えば、ROM(Read Only Memory)を含んでもよく、含まなくてもよい。ROMは、プロセッサに実行させるプログラムを記憶する。記憶部は、プロセッサが有するバッファ(緩衝記憶装置)は含まない。バッファは、一時的にデータを記憶する装置である。
<Definition of storage>
The storage unit of the present invention can store various data. The storage unit of the present invention is included in the saddle riding type vehicle traveling data processing device. The storage unit may be one storage device, a part of the storage area of one storage device, or may include a plurality of storage devices. The storage unit may include, for example, a RAM (Random Access Memory). The RAM temporarily stores various data when the processor executes the program. The storage unit may or may not include a ROM (Read Only Memory), for example. The ROM stores a program to be executed by the processor. The storage unit does not include a buffer (buffer storage device) included in the processor. A buffer is a device that temporarily stores data.
 <ハードウェアリソースの定義>
 本発明において、ハードウェアリソースとは、プロセッサや記憶装置などのデバイスを意味する。本発明において、ハードウェアリソースを低減するとは、プロセッサまたは記憶装置の数を低減すること、プロセッサの処理能力を下げること、記憶装置の容量を低減することなどを意味する。
<Definition of hardware resources>
In the present invention, the hardware resource means a device such as a processor or a storage device. In the present invention, reducing hardware resources means reducing the number of processors or storage devices, reducing the processing capacity of the processors, reducing the capacity of storage devices, and the like.
 <データの定義>
 本発明において、データとは、コンピュータによって取り扱い可能な、記号や文字の組からなるデジタル形式の信号を意味する。
<Data definition>
In the present invention, data means a signal in a digital format that is a set of symbols and characters that can be handled by a computer.
 <第1鞍乗型車両走行複合データの定義>
 本発明において、「第1アプローチ旋回軌跡データと第1アプローチ旋回軌跡前方向加速度データとに基づいて生成された、第1アプローチ旋回軌跡および第1アプローチ旋回軌跡を走行したときの鞍乗型車両の車両前方向の加速度が関連付けられた第1鞍乗型車両走行複合データ」は、第1アプローチ旋回軌跡データと第1アプローチ旋回軌跡前方向加速度データを含んでいてもよく、含んでいなくてもよい。「第1アプローチ旋回軌跡データと第1アプローチ旋回軌跡前方向加速度データとに基づいて生成された、第1アプローチ旋回軌跡および第1アプローチ旋回軌跡を走行したときの鞍乗型車両の車両前方向の加速度が関連付けられた第1鞍乗型車両走行複合データ」は、1つのデータで構成されてもよく、相互に関連付けられた複数のデータで構成されてもよく、これ以外であってもよい。第1鞍乗型車両走行複合データが1つのデータで構成される場合、この1つのデータは、第1アプローチ旋回軌跡データと第1アプローチ旋回軌跡前方向加速度データとに基づいて生成される。また、相互に関連付けられた複数のデータとは、例えば、共通のメタデータ(例えばタグ)が付された複数のデータである。例えば、第1鞍乗型車両走行複合データは、第1アプローチ旋回軌跡データと第1アプローチ旋回軌跡前方向加速度データと第1アプローチ旋回軌跡左右方向加速度データのうちのいずれか2つのデータに基づいて生成された1つのデータと、残りの1つのデータとを関連付けることで生成されてもよい。また、例えば、第1鞍乗型車両走行複合データは、第1アプローチ旋回軌跡データと第1アプローチ旋回軌跡前方向加速度データと第1アプローチ旋回軌跡左右方向加速度データを相互に関連付けることで生成されてもよい。
<Definition of compound data of first straddle type vehicle traveling>
In the present invention, “a first approach turning locus and a saddle-ride type vehicle when traveling on the first approach turning locus, which are generated based on the first approach turning locus data and the first approach turning locus forward acceleration data. The first straddle-type vehicle traveling composite data in which the acceleration in the vehicle front direction is associated may or may not include the first approach turning trajectory data and the first approach turning trajectory forward acceleration data. Good. “The first approach turning locus, which is generated based on the first approach turning locus data and the first approach turning locus frontward acceleration data, and the vehicle front direction of the saddle riding type vehicle when traveling on the first approach turning locus The “first straddle-type vehicle traveling composite data associated with acceleration” may be configured by one data, may be configured by a plurality of data associated with each other, or may be other data. When the first saddle riding type vehicle traveling composite data is composed of one data, this one data is generated based on the first approach turning locus data and the first approach turning locus forward acceleration data. Further, the plurality of pieces of data associated with each other are, for example, a plurality of pieces of data to which common metadata (for example, a tag) is attached. For example, the first saddle riding type vehicle traveling composite data is based on any two data of the first approach turning locus data, the first approach turning locus front direction acceleration data and the first approach turning locus lateral direction acceleration data. It may be generated by associating the generated one data with the remaining one data. Further, for example, the first saddle riding type vehicle traveling composite data is generated by mutually associating the first approach turning locus data, the first approach turning locus front direction acceleration data and the first approach turning locus lateral direction acceleration data. Good.
 <第1鞍乗型車両走行複合データの出力の定義>
 本発明において、記憶部に記憶された第1鞍乗型車両走行複合データの出力とは、この記憶部とは別の場所に第1鞍乗型車両走行複合データが出力されることをいう。記憶部(第1記憶部とする)に記憶された第1鞍乗型車両走行複合データが出力される出力対象は、以下の3つの出力対象のいずれであってもよく、これ以外であってもよい。第1の出力対象は、鞍乗型車両走行データ処理装置とは別の装置である。第2の出力対象は、鞍乗型車両走行データ処理装置に含まれ、第1記憶部とは異なる第2記憶部である。第1記憶部と第2記憶部は、1つの記憶装置に含まれる互いに異なる記憶領域であってもよい。第1記憶部と第2記憶部は、互いに異なる記憶装置であってもよい。第3の出力対象は、鞍乗型車両走行データ処理装置に含まれ、出力処理を実行する第1プロセッサとは異なる第2プロセッサである。
<Definition of output of first straddle-type vehicle traveling composite data>
In the present invention, the output of the first saddle riding type vehicle traveling composite data stored in the storage unit means that the first saddle riding type vehicle traveling composite data is output to a place different from the storage unit. The output target to which the first straddle-type vehicle traveling composite data stored in the storage unit (referred to as the first storage unit) is output may be any of the following three output targets, and is other than this. Good. The first output target is a device other than the saddle riding type vehicle travel data processing device. The second output target is a second storage unit included in the straddle-type vehicle travel data processing device and different from the first storage unit. The first storage unit and the second storage unit may be different storage areas included in one storage device. The first storage unit and the second storage unit may be different storage devices. The third output target is a second processor included in the straddle-type vehicle travel data processing device and different from the first processor that executes the output process.
 出力対象が第2の出力対象(第2記憶部)の場合、第1記憶部に記憶された第1鞍乗型車両走行複合データを第2記憶部に出力する方法は、以下の2つの方法のいずれであってもよく、これ以外であってもよい。第1の方法では、第1プロセッサが、第1記憶部に記憶された第1鞍乗型車両走行複合データを読み出して、読み出した第1鞍乗型車両走行複合データを第2記憶部に記憶させる。第2の方法では、まず、第1プロセッサが、第1記憶部における第1鞍乗型車両走行複合データの番地(アドレス)を第2プロセッサに出力する。第2プロセッサは、鞍乗型車両走行データ処理装置に含まれ、第1プロセッサとは異なるプロセッサである。第2プロセッサは、取得した番地に基づいて、第1記憶部に記憶された第1鞍乗型車両走行複合データを読み出して第2記憶部に記憶させる。 When the output target is the second output target (second storage unit), the following two methods are used to output the first saddle riding type vehicle traveling composite data stored in the first storage unit to the second storage unit. It may be any of the above, and may be other than this. In the first method, the first processor reads the first saddle riding type vehicle traveling composite data stored in the first storage unit and stores the read first saddle riding type vehicle traveling composite data in the second storage unit. Let In the second method, first, the first processor outputs the address (address) of the first saddle riding type vehicle traveling composite data in the first storage unit to the second processor. The second processor is included in the saddle riding type vehicle travel data processing device and is a processor different from the first processor. The second processor reads the first straddle-type vehicle traveling composite data stored in the first storage unit and stores it in the second storage unit based on the acquired address.
 出力対象が第3の出力対象(第2プロセッサ)の場合、第1記憶部に記憶された第1鞍乗型車両走行複合データを第2プロセッサに出力する方法は、以下の2つの方法のいずれであってもよく、これ以外であってもよい。第1の方法では、第1プロセッサが、第1記憶部に記憶された第1鞍乗型車両走行複合データを読み出して、読み出した第1鞍乗型車両走行複合データを第2プロセッサに出力する。第2の方法では、まず、第1プロセッサが、第1記憶部における第1鞍乗型車両走行複合データの番地(アドレス)を第2プロセッサに出力する。第2プロセッサは、取得した番地に基づいて、第1記憶部に記憶された第1鞍乗型車両走行複合データを読み出す。 When the output target is the third output target (second processor), the method of outputting the first saddle riding type vehicle traveling composite data stored in the first storage unit to the second processor is one of the following two methods. Or may be other than this. In the first method, the first processor reads the first saddle riding type vehicle traveling composite data stored in the first storage unit and outputs the read first saddle riding type vehicle traveling composite data to the second processor. . In the second method, first, the first processor outputs the address (address) of the first saddle riding type vehicle traveling composite data in the first storage unit to the second processor. The second processor reads the first straddle-type vehicle traveling composite data stored in the first storage unit based on the acquired address.
 <第1アプローチ旋回軌跡データ等の取得の定義>
 本発明において、第1アプローチ旋回軌跡データの取得とは、鞍乗型車両走行データ処理装置の外部の装置から第1アプローチ旋回軌跡データが取得されることであってもよい。第1アプローチ旋回軌跡データの取得とは、鞍乗型車両走行データ処理装置の外部の装置から鞍乗型車両走行データ処理装置が取得したデータに基づいて、第1アプローチ旋回軌跡データが生成(取得)されることであってもよい。鞍乗型車両走行データ処理装置の外部の装置とは、センサであってもよく、センサから受信した信号を処理する装置であってもよい。第1アプローチ旋回軌跡データ以外のデータの取得も同様の定義である。
<Definition of acquisition of first approach turning trajectory data, etc.>
In the present invention, acquisition of the first approach turning locus data may be acquisition of the first approach turning locus data from a device external to the saddle riding type vehicle travel data processing device. The acquisition of the first approach turning locus data means that the first approach turning locus data is generated (acquired) based on the data acquired by the saddle riding type vehicle running data processing device from a device external to the saddle riding type vehicle running data processing device. ) May be performed. The device external to the saddle riding type vehicle travel data processing device may be a sensor or a device that processes a signal received from the sensor. Acquisition of data other than the first approach turning trajectory data has the same definition.
 <鞍乗型車両走行データ処理装置の定義>
 本発明の鞍乗型車両走行データ処理装置は、「走行中の鞍乗型車両に関連するデータを蓄積するデータ収録装置」および、「走行中の鞍乗型車両に関連するデータに基づいて鞍乗型車両を制御する車両制御装置」のいずれかに限らない。
 データ収録装置は、車両の走行状態の解析のためにデータを蓄積するデータ収録装置であってもよい。データ収録装置は、走行中の鞍乗型車両に関連するデータを表示または印刷するために蓄積するデータ収録装置であってもよい。この場合、第1鞍乗型車両走行複合データの出力対象は、表示装置または印刷装置である。印刷装置に出力するとは、鞍乗型車両走行データ処理装置から印刷装置に出力することであってもよい。印刷装置に出力するとは、鞍乗型車両走行データ処理装置と接続された外部装置の指令を受けて鞍乗型車両走行データ処理装置が外部装置を介して印刷装置に出力することであってもよい。表示装置への出力についても同様である。
 鞍乗型車両走行データ処理装置は、走行中の鞍乗型車両の運転技術に関連するデータを蓄積する運転技術データ収録装置であってもよい。鞍乗型車両走行データ処理装置は、走行中の鞍乗型車両の運転技術に関連するデータを表示または印刷するために蓄積する運転技術データ収録装置であってもよい。
 鞍乗型車両走行データ処理装置は、例えば、ライダーに運転技術を教習する際に使用されてもよい。この場合、第1アプローチ旋回軌跡データおよび第1アプローチ旋回前方向加速度データ等は、教習するための場所を鞍乗型車両が走行中に検出されたデータであってもよく、そのデータから生成されていてもよい。第1アプローチ旋回軌跡データおよび第1アプローチ旋回前方向加速度データ等は、教習するための場所ではない一般道路を鞍乗型車両が走行中に検出されたデータであってもよく、そのデータから生成されていてもよい。
<Definition of saddle riding type vehicle running data processing device>
A straddle-type vehicle travel data processing device according to the present invention includes a "data recording device that accumulates data related to a running saddle-ride vehicle" and a "saddle-based vehicle based on data related to a running saddle-ride vehicle". It is not limited to any one of the “vehicle control device for controlling the riding type vehicle”.
The data recording device may be a data recording device that accumulates data for analysis of the running state of the vehicle. The data recording device may be a data recording device that accumulates to display or print data related to the straddle-type vehicle in motion. In this case, the output target of the first saddle riding type vehicle traveling composite data is the display device or the printing device. Outputting to the printing device may mean outputting from the saddle riding type vehicle travel data processing device to the printing device. Outputting to the printing device means that the saddle riding type vehicle traveling data processing device outputs to the printing device via the external device in response to a command from an external device connected to the straddling type vehicle traveling data processing device. Good. The same applies to the output to the display device.
The straddle-type vehicle traveling data processing device may be a driving technique data recording device that accumulates data related to the driving technique of the straddle-type vehicle during traveling. The straddle-type vehicle traveling data processing device may be a driving technique data recording device that accumulates to display or print data related to the driving technique of the traveling saddle type vehicle.
The saddle riding type vehicle travel data processing device may be used, for example, when a rider is trained in driving technology. In this case, the first approach turning trajectory data, the first approach turning front direction acceleration data, and the like may be data detected while the saddle type vehicle is traveling in a place for learning, and are generated from the data. May be. The first approach turning trajectory data, the first approach turning forward acceleration data, and the like may be data detected while the saddle type vehicle is traveling on an ordinary road that is not a place for learning, and are generated from the data. It may have been done.
 <姿勢に関連するデータの定義>
 本発明において、第1旋回軌跡を走行したときの鞍乗型車両の姿勢に関連する第1旋回車両姿勢データとは、第1旋回軌跡を走行中の1つのタイミングだけの車両の姿勢を示すデータであってもよく、第1旋回軌跡を走行中の複数のタイミングの車両の姿勢を示すデータであってもよい。本発明において、第1旋回軌跡を走行したときの鞍乗型車両に乗車するライダーの姿勢に関連する第1旋回ライダー姿勢データとは、第1旋回軌跡を走行中の1つのタイミングだけのライダーの姿勢を示すデータであってもよく、第1旋回軌跡を走行中の複数のタイミングのライダーの姿勢を示すデータであってもよい。
<Definition of posture-related data>
In the present invention, the first turning vehicle attitude data relating to the attitude of the straddle-type vehicle when traveling on the first turning trajectory is data indicating the attitude of the vehicle at only one timing while traveling on the first turning trajectory. Or may be data indicating the posture of the vehicle at a plurality of timings while traveling on the first turning locus. In the present invention, the first turning rider attitude data relating to the attitude of the rider riding the saddle riding type vehicle when traveling on the first turning trajectory means the rider at only one timing while traveling on the first turning trajectory. It may be data indicating the posture or data indicating the posture of the rider at a plurality of timings while traveling on the first turning locus.
 <GNSSを利用して生成されたデータの定義>
 本発明において、GNSSを利用して生成されたデータとは、GNSS衛星から送信された電波を利用して生成されたデータである。GNSSを利用して生成されたデータは、GNSS衛星から送信された電波と、鞍乗型車両の挙動を検出するセンサの信号に基づいて生成されてもよい。
<Definition of data generated using GNSS>
In the present invention, the data generated using the GNSS is the data generated using the radio waves transmitted from the GNSS satellite. The data generated using the GNSS may be generated based on the radio wave transmitted from the GNSS satellite and the signal of the sensor that detects the behavior of the saddle type vehicle.
 <イメージデータの定義>
 本発明において、イメージデータとは、文字や数値だけをイメージデータにしたものは含まない。イメージデータは、例えば、図形、グラフ、カメラで撮影された写真、カメラで撮影された動画、CG(コンピュータグラフィックス)などのデータである。CGは、静止画像と、動画のどちらであってもよい。コンピュータグラフィックスは、2次元コンピュータグラフィックスと、3次元コンピュータグラフィックスのどちらであってもよい。CGデータは、カメラで生成されたイメージデータ(静止画像データまたは動画データ)に基づいて生成されてもよく、カメラで生成されたイメージデータを使用せずに生成されてもよい。カメラで生成されたイメージデータに基づいて生成されたCGデータの画像は、カメラで撮影された画像と同じ画像を含んでいてもよく、含んでいなくてもよい。
<Definition of image data>
In the present invention, the image data does not include data in which only characters and numerical values are converted into image data. The image data is, for example, data such as a figure, a graph, a photograph taken by a camera, a moving image taken by a camera, and CG (computer graphics). The CG may be either a still image or a moving image. The computer graphics may be either two-dimensional computer graphics or three-dimensional computer graphics. The CG data may be generated based on the image data (still image data or moving image data) generated by the camera, or may be generated without using the image data generated by the camera. The image of the CG data generated based on the image data generated by the camera may or may not include the same image as the image captured by the camera.
本発明において、「第1鞍乗型車両走行複合データが、第1アプローチ旋回軌跡データおよび第1アプローチ旋回前方向加速度データに基づいたイメージデータを含む」とは、以下の2つのケースのいずれであってもよい。1つ目のケースでは、第1鞍乗型車両走行複合データは、第1アプローチ旋回軌跡データに基づいたイメージデータと、第1アプローチ旋回前方向加速度データに基づいたイメージデータの両方を含む。2つ目のケースでは、第1鞍乗型車両走行複合データは、第1アプローチ旋回軌跡データおよび第1アプローチ旋回前方向加速度データに基づいた1つのイメージデータを含む。
 本発明において、「第1鞍乗型車両走行複合データが第1アプローチ旋回軌跡データおよび第1アプローチ旋回左右方向加速度データに基づいたイメージデータを含む」の定義も上記と同様である。本発明において、「第1鞍乗型車両走行複合データが、第1旋回車両姿勢データおよび第1旋回ライダー姿勢データに基づいたイメージデータを含む」の定義も上記と同様である。
In the present invention, "the first saddle riding type vehicle traveling composite data includes image data based on the first approach turning trajectory data and the first approach turning front direction acceleration data" means in either of the following two cases. It may be. In the first case, the first saddle riding type vehicle traveling composite data includes both image data based on the first approach turning trajectory data and image data based on the first approach turning front direction acceleration data. In the second case, the first saddle riding type vehicle traveling composite data includes one image data based on the first approach turning trajectory data and the first approach turning front direction acceleration data.
In the present invention, the definition of “the first saddle riding type vehicle traveling composite data includes image data based on the first approach turning trajectory data and the first approach turning left / right acceleration data” is also the same as above. In the present invention, the definition of “the first saddle riding type vehicle traveling composite data includes image data based on the first turning vehicle attitude data and the first turning rider attitude data” is also the same as above.
 <その他の用語の定義>
 本発明において、あるデータに基づいて、取得する、生成する、または制御するとは、このデータだけに基づいた取得、生成または制御であってもよく、このデータと他のデータに基づいた取得、生成または制御であってもよい。この定義は、取得、生成または制御以外の動作にも適用される。
<Definition of other terms>
In the present invention, acquiring, generating, or controlling based on certain data may be acquisition, generation, or control based only on this data, and acquisition or generation based on this data and other data. Alternatively, it may be control. This definition also applies to actions other than acquisition, generation or control.
 本発明において、Aから取得するとは、Aから直接取得する場合と、AからBを介して取得する場合の両方を含む。 In the present invention, obtaining from A includes both a case of directly obtaining from A and a case of obtaining from A through B.
 本明細書において、「1~10」および「1から10」は、いずれも、1以上10以下を意味する。1と10以外の数値にも、同様の定義が適用される。 In the present specification, “1 to 10” and “1 to 10” both mean 1 or more and 10 or less. Similar definitions apply to numbers other than 1 and 10.
 本明細書において、ある部品の端部とは、部品の端とその近傍部とを合わせた部分を意味する。 In the present specification, the end of a certain part means a part where the end of the part and its vicinity are combined.
 本発明において、含む(including)、有する(comprising)、備える(having)およびこれらの派生語は、列挙されたアイテム及びその等価物に加えて追加的アイテムをも包含することが意図されて用いられている。
 本発明において、取り付けられた(mounted)、接続された(connected)、結合された(coupled)、支持された(supported)という用語は、広義に用いられている。具体的には、直接的な取付、接続、結合、支持だけでなく、間接的な取付、接続、結合および支持も含む。さらに、接続された(connected)および結合された(coupled)は、物理的又は機械的な接続/結合に限られない。それらは、直接的なまたは間接的な電気的接続/結合も含む。
In the present invention, including, comprising, having and their derivatives are intended to include the listed items and their equivalents as well as additional items. ing.
In the present invention, the terms mounted, connected, coupled, supported are used broadly. Specifically, it includes not only direct attachment, connection, connection and support, but also indirect attachment, connection, connection and support. Further, connected and coupled are not limited to physical or mechanical connection / coupling. They also include direct or indirect electrical connections / couplings.
 他に定義されない限り、本明細書で使用される全ての用語(技術用語および科学用語を含む)は、本発明が属する当業者によって一般的に理解されるのと同じ意味を有する。一般的に使用される辞書に定義された用語のような用語は、関連する技術および本開示の文脈における意味と一致する意味を有すると解釈されるべきであり、理想化されたまたは過度に形式的な意味で解釈されることはない。 Unless defined otherwise, all terms used herein (including technical and scientific terms) have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Terms such as commonly used dictionary-defined terms should be construed to have a meaning consistent with the meaning in the context of the relevant technology and this disclosure, and are idealized or overly formal. It is not interpreted in the traditional sense.
 本発明および本明細書において、複数の選択肢のうちの少なくとも1つとは、複数の選択肢から考えられる全ての組み合わせを含む。複数の選択肢のうちの少なくとも1つとは、複数の選択肢のいずれか1つであってもよく、複数の選択肢の全てであってもよい。例えば、AとBとCの少なくとも1つとは、Aのみであってもよく、Bのみであってもよく、Cのみであってもよく、AとBであってもよく、AとCであってもよく、BとCであってもよく、AとBとCであってもよい。 In the present invention and this specification, at least one of the plurality of options includes all combinations that can be considered from the plurality of options. At least one of the plurality of options may be any one of the plurality of options or may be all of the plurality of options. For example, at least one of A, B, and C may be A alone, B alone, C alone, A and B, or A and C. It may be present, B and C may be present, or A, B and C may be present.
 本明細書において、「好ましい」という用語は非排他的なものである。「好ましい」は、「好ましいがこれに限定されるものではない」ということを意味する。本明細書において、「好ましい」と記載された構成は、少なくとも、上記(1)の構成により得られる上記効果を奏する。また、本明細書において、「してもよい」という用語は非排他的なものである。「してもよい」は、「してもよいがこれに限定されるものではない」という意味である。本明細書において、「してもよい」と記載された構成は、少なくとも、上記(1)の構成により得られる上記効果を奏する。 As used herein, the term "preferred" is non-exclusive. "Preferred" means "preferably, but not limited to." In the present specification, the configuration described as “preferred” has at least the above effect obtained by the configuration of (1) above. Also, as used herein, the term "may" is non-exclusive. "May be" means "may be, but is not limited to." In the present specification, the configuration described as “may” has at least the above effect obtained by the configuration of (1) above.
 特許請求の範囲において、ある構成要素の数を明確に特定しておらず、英語に翻訳された場合に単数で表示される場合、本発明は、この構成要素を、複数有していてもよい。また本発明は、この構成要素を1つだけ有していてもよい。 In the claims, the number of a certain constituent element is not clearly specified, and when it is displayed in the singular when translated into English, the present invention may have a plurality of the constituent elements. . The invention may also have only one of this component.
 本発明では、上述した好ましい構成を互いに組み合わせることを制限しない。本発明の実施形態を詳細に説明する前に、本発明は、以下の説明に記載されたまたは図面に図示された構成要素の構成および配置の詳細に制限されないことが理解されるべきである。本発明は、後述する実施形態以外の実施形態でも可能である。本発明は、後述する実施形態に様々な変更を加えた実施形態でも可能である。また、本発明は、後述する実施形態および変形例を適宜組み合わせて実施することができる。 The present invention does not limit the combination of the preferable configurations described above with each other. Before describing the embodiments of the present invention in detail, it should be understood that the present invention is not limited to the details of the configuration and arrangement of the components described in the following description or illustrated in the drawings. The present invention is also possible in embodiments other than the embodiments described below. The present invention is also possible in embodiments in which various modifications are made to the embodiments described later. Further, the present invention can be implemented by appropriately combining the embodiments and modified examples described later.
 本発明の鞍乗型車両走行データ処理装置および鞍乗型車両走行データ処理方法によると、出力されたデータの後処理を効率化して、ハードウェアリソースを低減することができる。 According to the straddle-type vehicle traveling data processing device and the straddle-type vehicle traveling data processing method of the present invention, the post-processing of the output data can be made efficient and the hardware resources can be reduced.
本実施形態の鞍乗型車両走行データ処理装置の構成および本実施形態の鞍乗型車両走行データ処理方法の処理の手順を示す図である。It is a figure which shows the structure of the saddle riding type vehicle driving | running | working data processing apparatus of this embodiment, and the procedure of the process of the saddle riding type vehicle running data processing method of this embodiment. 具体例1の鞍乗型車両走行データ処理装置が搭載される自動二輪車の左側面図である。FIG. 4 is a left side view of a motorcycle equipped with the saddle riding type vehicle traveling data processing device of Specific Example 1; 図2の自動二輪車が有するエンジンユニットの図である。FIG. 3 is a diagram of an engine unit included in the motorcycle of FIG. 2. 具体例1の鞍乗型車両走行データ処理装置が搭載された自動二輪車のブロック図である。1 is a block diagram of a motorcycle equipped with a saddle riding type vehicle traveling data processing device of Specific Example 1. FIG. 具体例1の自動二輪車の走行軌跡と車両前方向の加速度の一例を示す図である。FIG. 3 is a diagram showing an example of a running locus of a motorcycle of Specific Example 1 and acceleration in a vehicle front direction. (a)は自動二輪車の走行軌跡と車両前方向の加速度の一例を示す図であり、(b)は自動二輪車の走行軌跡と車両左方向の加速度の一例を示す図であり、(c)は(a)および(b)の車両前方向の加速度と車両左右方向の加速度を示すグラフである。(A) is a figure which shows an example of a running locus of a motorcycle and acceleration in the vehicle front direction, (b) is a figure which shows an example of a running locus of a motorcycle and acceleration in the vehicle left direction, (c) is a figure 6 is a graph showing acceleration in the vehicle front direction and acceleration in the vehicle left-right direction in (a) and (b). (a)は自動二輪車の走行軌跡と車両前方向の加速度の他の一例を示す図であり、(b)は自動二輪車の走行軌跡と車両左方向の加速度の他の一例を示す図であり、(c)は(a)および(b)の車両前方向の加速度と車両左右方向の加速度を示すグラフである。(A) is a diagram showing another example of the traveling locus of the motorcycle and acceleration in the vehicle front direction, and (b) is a diagram showing another example of the traveling locus of the motorcycle and acceleration in the vehicle left direction, (C) is a graph showing the acceleration in the vehicle front direction and the acceleration in the vehicle left-right direction in (a) and (b). 鞍乗型車両の車両前方向の加速度と車両左右方向の加速度との関係の一例を示す図である。It is a figure which shows an example of the relationship of the acceleration of the vehicle front direction of a saddle riding type vehicle, and the acceleration of the vehicle left-right direction. 旋回中の鞍乗型車両の車両前方向の速度と鞍乗型車両の車両左右方向の加速度との関係を示すグラフである。6 is a graph showing a relationship between a vehicle front speed of a saddle riding type vehicle and a vehicle lateral acceleration of the saddle riding type vehicle while turning. 具体例1の環状領域と第1環状軌跡の説明図である。It is explanatory drawing of the annular area | region of the specific example 1, and a 1st annular locus | trajectory. 具体例1の鞍乗型車両走行データ処理方法の処理の手順を示すフローチャートである。7 is a flowchart showing a processing procedure of a saddle riding type vehicle traveling data processing method of Specific Example 1. 具体例1の鞍乗型車両走行データ処理方法の処理の手順の他の例を示すフローチャートである。9 is a flowchart showing another example of the processing procedure of the saddle riding type vehicle travel data processing method of the first specific example. 具体例2の鞍乗型車両走行データ処理装置が搭載された自動二輪車のブロック図である。FIG. 6 is a block diagram of a motorcycle equipped with a saddle riding type vehicle traveling data processing device of Specific Example 2; 具体例2の鞍乗型車両走行複合データの一例を示す図である。It is a figure which shows an example of saddle riding type vehicle travel composite data of the example 2. 具体例2の鞍乗型車両走行一体複合データの一例を示す図である。It is a figure which shows an example of saddle-ride type vehicle traveling integrated compound data of the specific example 2. 具体例3の鞍乗型車両走行データ処理装置のブロック図である。FIG. 6 is a block diagram of a saddle riding type vehicle traveling data processing device of Specific Example 3; 旋回中の四輪バギーの図である。It is a figure of the four-wheel buggy during a turn. 旋回中の水上オートバイの図である。It is a figure of a water motorcycle in a turn. スノーモービルの旋回動作の一例を示す図である。It is a figure which shows an example of the turning operation of a snowmobile. スノーモービルの旋回動作の他の例を示す図である。It is a figure which shows the other example of the turning operation of a snowmobile. 本発明の環状領域の他の例を示す図である。It is a figure which shows the other example of the annular area | region of this invention. 本発明の環状領域のさらに他の例を示す図である。It is a figure which shows the further another example of the annular area | region of this invention. 本発明の環状領域のさらに他の例を示す図である。It is a figure which shows the further another example of the annular area | region of this invention.
 (本発明の実施形態)
 以下、本発明の実施形態について図1を参照しつつ説明する。図1は、本実施形態の鞍乗型車両走行データ処理装置の構成および本実施形態の鞍乗型車両走行データ処理方法の処理の手順を示す図である。図1には、旋回中の鞍乗型車両10も表示している。図1中の鞍乗型車両10は、自動二輪車である。鞍乗型車両10は、自動二輪車に限らない。
(Embodiment of the present invention)
Hereinafter, an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a diagram showing a configuration of a straddle-type vehicle travel data processing device of the present embodiment and a procedure of processing of a saddle-ride type vehicle travel data processing method of the present embodiment. FIG. 1 also shows a straddle-type vehicle 10 that is turning. The saddle riding type vehicle 10 in FIG. 1 is a motorcycle. The saddle riding type vehicle 10 is not limited to a motorcycle.
 本実施形態の鞍乗型車両走行データ処理装置1は、走行中の鞍乗型車両10に関連するデータを処理する装置である。本実施形態の鞍乗型車両走行データ処理方法は、鞍乗型車両走行データ処理装置1において、走行中の鞍乗型車両10に関連するデータを処理する方法である。鞍乗型車両走行データ処理装置1は、例えば、データ収録装置や車両制御装置である。データ収録装置は、走行中の鞍乗型車両10に関連するデータを蓄積する装置である。車両制御装置は、走行中の鞍乗型車両10に関連するデータに基づいて鞍乗型車両10を制御する装置である。 The straddle-type vehicle traveling data processing device 1 of the present embodiment is a device that processes data related to the straddle-type vehicle 10 that is traveling. The straddle-type vehicle travel data processing method according to the present embodiment is a method for processing data related to the saddle-ride type vehicle 10 that is traveling in the saddle-ride type vehicle travel data processing device 1. The saddle riding type vehicle travel data processing device 1 is, for example, a data recording device or a vehicle control device. The data recording device is a device that accumulates data related to the straddle-type vehicle 10 that is running. The vehicle control device is a device that controls the saddle riding type vehicle 10 based on data related to the running saddle riding type vehicle 10.
 図1に示すように、鞍乗型車両走行データ処理装置1は、プロセッサ2と記憶部3を有する。記憶部3には、プロセッサ2が実行する処理に必要な情報が記憶されている。プロセッサ2は、この記憶部3に記憶されたプログラムを読み込むことで、以下の一連の処理S1~S4を実行するように構成されている。なお、プロセッサ2がプログラム可能なプロセッサである場合には、プロセッサ2は、以下の一連の処理S1~S4を実行するようにプログラムされていてもよい。以下、プロセッサ2が実行する一連の処理について説明する。 As shown in FIG. 1, the saddle riding type vehicle travel data processing device 1 includes a processor 2 and a storage unit 3. The storage unit 3 stores information necessary for the processing executed by the processor 2. The processor 2 is configured to execute the following series of processes S1 to S4 by reading the program stored in the storage unit 3. When the processor 2 is a programmable processor, the processor 2 may be programmed to execute the following series of processes S1 to S4. Hereinafter, a series of processing executed by the processor 2 will be described.
 プロセッサ2は、鞍乗型車両走行データ取得処理S1と、鞍乗型車両走行複合データ生成処理S2と、鞍乗型車両走行複合データ記憶処理S3と、鞍乗型車両走行複合データ出力処理S4とを実行する。本実施形態の鞍乗型車両走行データ処理方法は、鞍乗型車両走行データ取得処理S1と、鞍乗型車両走行複合データ生成処理S2と、鞍乗型車両走行複合データ記憶処理S3と、鞍乗型車両走行複合データ出力処理S4とを含む。 The processor 2 includes a straddle-type vehicle traveling data acquisition process S1, a saddle-type vehicle traveling composite data generation process S2, a saddle-type vehicle traveling complex data storage process S3, and a saddle-type vehicle traveling complex data output process S4. To execute. The saddle riding type vehicle running data processing method according to the present embodiment includes a saddle riding type vehicle running data acquisition process S1, a saddle riding type vehicle running composite data generation process S2, a saddle riding type vehicle running composite data storage process S3, and a saddle type. The riding type vehicle traveling composite data output process S4 is included.
 鞍乗型車両走行データ取得処理S1において、第1アプローチ旋回軌跡データDTb1と、第1アプローチ旋回前方向加速度データDAb1とが取得される。第1アプローチ旋回軌跡データDTb1は、第1アプローチ旋回軌跡Tb1に関連するデータである。 In the saddle riding type vehicle traveling data acquisition process S1, the first approach turning trajectory data DTb1 and the first approach turning front direction acceleration data DAb1 are acquired. The first approach turning locus data DTb1 is data related to the first approach turning locus Tb1.
 図1に示すように、第1アプローチ旋回軌跡Tb1は、アプローチ領域Zcおよび第1旋回領域Zdからなるアプローチ旋回領域Zb内の鞍乗型車両10の走行軌跡である。アプローチ領域Zcは、第1直線SL1と、第1直線SL1に平行で第1直線SL1から2m離れた第2直線SL2との間の領域である。第1直線SL1の長さLは、0mより大きく65m以下である。第1旋回領域Zdは、第1直線SL1の端に接続された第1円弧CA1と、第2直線SL2の端に接続され、第1円弧CA1と同心状であって、第1円弧CA1の径方向外側に位置する第2円弧CA2との間の領域である。第1円弧CA1は、中心角θが90°以上270°以下であって、半径rが2m以上10m以下である。第1アプローチ旋回軌跡Tb1は、アプローチ領域Zcから第1旋回領域Zdに進入するように、アプローチ旋回領域Zbの全域にわたって連続して走行したときのアプローチ旋回領域Zb内の鞍乗型車両10の走行軌跡である。第1アプローチ旋回前方向加速度データDAb1は、第1アプローチ旋回軌跡Tb1を走行したときの鞍乗型車両10の車両前方向の加速度に関連するデータである。 As shown in FIG. 1, the first approach turning locus Tb1 is a running locus of the saddle type vehicle 10 in the approach turning area Zb including the approach area Zc and the first turning area Zd. The approach area Zc is an area between the first straight line SL1 and a second straight line SL2 that is parallel to the first straight line SL1 and is separated from the first straight line SL1 by 2 m. The length L of the first straight line SL1 is greater than 0 m and 65 m or less. The first turning region Zd is connected to the first arc CA1 connected to the end of the first straight line SL1 and the end of the second straight line SL2, is concentric with the first arc CA1, and has a diameter of the first arc CA1. It is a region between the second circular arc CA2 located outside in the direction. The first arc CA1 has a central angle θ of 90 ° or more and 270 ° or less and a radius r of 2 m or more and 10 m or less. The first approach turning trajectory Tb1 travels the straddle-type vehicle 10 within the approach turning area Zb when running continuously over the entire approach turning area Zb so as to enter the first turning area Zd from the approach area Zc. It is a trail. The first approach turning front direction acceleration data DAb1 is data relating to the vehicle front direction acceleration of the saddle type vehicle 10 when traveling on the first approach turning trajectory Tb1.
 鞍乗型車両走行複合データ生成処理S2において、第1アプローチ旋回軌跡データDTb1と、第1アプローチ旋回前方向加速度データDAb1とに基づいて、第1鞍乗型車両走行複合データDc1が生成される。第1鞍乗型車両走行複合データDc1は、第1アプローチ旋回軌跡Tb1、および、第1アプローチ旋回軌跡Tb1を走行したときの鞍乗型車両10の車両前方向の加速度が関連付けられたデータである。 In the saddle riding type vehicle traveling composite data generation process S2, the first straddling type vehicle traveling composite data Dc1 is generated based on the first approach turning trajectory data DTb1 and the first approach turning front direction acceleration data DAb1. The first straddle-type vehicle traveling composite data Dc1 is data in which the first approach turning trajectory Tb1 and the acceleration in the vehicle front direction of the saddle riding type vehicle 10 when traveling on the first approach turning trajectory Tb1 are associated with each other. .
 鞍乗型車両走行複合データ記憶処理S3において、鞍乗型車両走行複合データ生成処理S2により生成された第1鞍乗型車両走行複合データDc1が記憶部3に記憶される。 In the saddle riding type vehicle traveling composite data storage process S3, the first saddle riding type vehicle traveling composite data Dc1 generated by the saddle riding type vehicle traveling composite data generating process S2 is stored in the storage unit 3.
 鞍乗型車両走行複合データ出力処理S4において、鞍乗型車両走行複合データ記憶処理S3により記憶された第1鞍乗型車両走行複合データDc1が出力対象4および出力対象5の少なくとも一方に出力される。出力対象4は、鞍乗型車両走行データ処理装置1に含まれる。出力対象5は、鞍乗型車両走行データ処理装置1に含まれない。 In the saddle riding type vehicle traveling composite data output processing S4, the first saddle riding type vehicle traveling composite data Dc1 stored in the saddle riding type vehicle traveling composite data storage processing S3 is output to at least one of the output target 4 and the output target 5. It The output target 4 is included in the saddle riding type vehicle travel data processing device 1. The output target 5 is not included in the saddle riding type vehicle travel data processing device 1.
 鞍乗型車両走行データ処理装置1が車両制御装置の場合、第1鞍乗型車両走行複合データDc1は、例えば、車両制御装置内のエンジン制御またはブレーキ制御のためのプロセッサに出力されてもよい。エンジン制御またはブレーキ制御のためのプロセッサは、出力された第1鞍乗型車両走行複合データDc1を用いて、鞍乗型車両のエンジン制御またはブレーキ制御を行うことができる。鞍乗型車両走行データ処理装置が車両制御装置の場合、第1鞍乗型車両走行複合データDc1は、例えば、鞍乗型車両が備える表示装置に出力されてもよい。鞍乗型車両走行データ処理装置1が車両制御装置の場合、第1鞍乗型車両走行複合データDc1は、例えば、鞍乗型車両10が備える表示装置に出力されてもよい。鞍乗型車両走行データ処理装置1がデータ収録装置の場合、第1鞍乗型車両走行複合データDc1は、例えば、データ収録装置に接続された外部記憶装置(二次記憶装置、補助記憶装置)に出力されてもよい。外部記憶装置に記憶された第1鞍乗型車両走行複合データDc1は、鞍乗型車両の走行状態の解析に使用されてもよい。鞍乗型車両走行データ処理装置がデータ収録装置の場合、第1鞍乗型車両走行複合データDc1は、データ収録装置の外部のコンピュータに出力されてもよい。第1鞍乗型車両走行複合データDc1は、印刷装置に出力されてもよく、表示装置に出力されてもよい。 When the saddle riding type vehicle travel data processing device 1 is a vehicle control device, the first saddle riding type vehicle travel composite data Dc1 may be output to, for example, a processor for engine control or brake control in the vehicle control device. . The processor for engine control or brake control can perform engine control or brake control of the saddle riding type vehicle by using the output first saddle riding type vehicle traveling composite data Dc1. When the straddle-type vehicle travel data processing device is a vehicle control device, the first saddle-ride type vehicle travel composite data Dc1 may be output to, for example, a display device included in the saddle-ride type vehicle. When the saddle riding type vehicle travel data processing device 1 is a vehicle control device, the first saddle riding type vehicle travel composite data Dc1 may be output to a display device included in the saddle riding type vehicle 10, for example. When the saddle riding type vehicle traveling data processing device 1 is a data recording device, the first straddle type vehicle traveling composite data Dc1 is, for example, an external storage device (secondary storage device, auxiliary storage device) connected to the data recording device. May be output to. The first straddle-type vehicle traveling composite data Dc1 stored in the external storage device may be used to analyze the traveling state of the straddle-type vehicle. When the saddle riding type vehicle traveling data processing device is a data recording device, the first saddle riding type vehicle traveling composite data Dc1 may be output to a computer external to the data recording device. The first saddle riding type vehicle traveling composite data Dc1 may be output to the printing device or the display device.
 本実施形態の鞍乗型車両走行データ処理装置1および本実施形態の鞍乗型車両走行データ処理方法はこのような構成を有するため、以下の効果を有する。 Since the straddle-type vehicle travel data processing device 1 of the present embodiment and the saddle-ride type vehicle travel data processing method of the present embodiment have such a configuration, they have the following effects.
 旋回中と旋回前の直進中の鞍乗型車両10の走行軌跡と車両前方向の加速度が関連付けられた第1鞍乗型車両走行複合データDc1が、出力対象4および出力対象5の少なくとも一方に出力される。鞍乗型車両10は、車両の挙動の変化だけでなく、ライダーRの姿勢の変化も利用して旋回する乗り物である。同じコースを走る場合でもライダーRによって、ライダーRの姿勢の変化および車両の挙動は異なる。したがって、旋回中の鞍乗型車両10における遠心力と重力のバランスなどの走行状態は、ライダーRの意思によって変更される場合がある。そのため、旋回中と旋回前の直進中の鞍乗型車両10の走行軌跡と車両前方向の加速度は、ライダーRの意思によって決まる鞍乗型車両10の走行状態と密接に関連している。また、旋回中と旋回前の直進中における鞍乗型車両10の走行軌跡と車両前方向の加速度は密接に関連する。旋回中と旋回前の直進中の鞍乗型車両10の走行軌跡と車両前方向の加速度は、鞍乗型車両10の走行状態が特に反映されやすい。したがって、旋回中と旋回前の直進中の鞍乗型車両10の走行軌跡と車両前方向の加速度が関連付けられた第1鞍乗型車両走行複合データDc1は、鞍乗型車両10の走行状態を大きく反映している。そのため、第1鞍乗型車両走行複合データDc1が出力対象に出力された後、第1鞍乗型車両走行複合データDc1を活用しやすい。具体的には、出力された第1鞍乗型車両走行複合データDc1を、出力対象において、例えば車両の制御や車両の走行状態の解析などに活用しやすい。 At least one of the output target 4 and the output target 5 is the first saddle riding type vehicle traveling composite data Dc1 in which the traveling locus of the saddle riding type vehicle 10 during turning and before going straight and the acceleration in the vehicle front direction are associated with each other. Is output. The saddle riding type vehicle 10 is a vehicle that makes a turn by utilizing not only changes in the behavior of the vehicle but also changes in the posture of the rider R. Even when the rider runs on the same course, the change in the posture of the rider R and the behavior of the vehicle differ depending on the rider R. Therefore, the traveling state such as the balance between the centrifugal force and the gravity in the saddle riding type vehicle 10 during turning may be changed by the intention of the rider R. Therefore, the traveling locus of the saddle riding type vehicle 10 and the acceleration in the front direction of the vehicle during turning and before going straight ahead are closely related to the running state of the saddle riding type vehicle 10 determined by the intention of the rider R. Further, the traveling locus of the saddle riding type vehicle 10 during the turning and the straight running before the turning are closely related to the acceleration in the vehicle front direction. The running state of the saddle riding type vehicle 10 and the running direction of the saddle riding type vehicle 10 during turning and straight ahead before turning are particularly likely to reflect the running state of the saddle riding type vehicle 10. Therefore, the first straddle-type vehicle traveling composite data Dc1 in which the traveling loci of the straddle-type vehicle 10 during turning and during straight ahead before turning and the acceleration in the vehicle front direction are associated with It greatly reflects. Therefore, after the first saddle riding type vehicle traveling composite data Dc1 is output to the output target, it is easy to utilize the first saddle riding type vehicle traveling composite data Dc1. Specifically, the output first straddle-type vehicle traveling composite data Dc1 can be easily used in the output target, for example, for controlling the vehicle or analyzing the traveling state of the vehicle.
 ここで、旋回中の鞍乗型車両10の車両前方向の速度は、旋回半径が大きいほど高くなり、旋回半径が小さいほど低くなる。車両前方向の速度を、以下、車速という。仮に、第1旋回領域Zdの内周縁である第1円弧CA1の半径rが10mよりも大きい場合、第1旋回領域Zdを旋回中の鞍乗型車両10の車速が比較的高い。そのため、第1円弧CA1の半径rが10mよりも大きい場合、第1旋回領域Zdを旋回中の鞍乗型車両10の車速が異なっても、遠心力の違いがあまりない。そのため、第1アプローチ旋回軌跡Tb1を走行したときの鞍乗型車両10の走行状態の違いがあまりない。よって、仮に、第1円弧CA1の半径rが10mよりも大きい場合、第1アプローチ旋回軌跡Tb1を走行したときの鞍乗型車両10の走行状態の違いがあまりないので、第1鞍乗型車両走行複合データDc1を活用しにくい。
 第1円弧CA1の半径rは10m以下である場合、第1旋回領域Zdを旋回中の鞍乗型車両10の車速が比較的低い。そのため、第1旋回領域Zdを旋回中の鞍乗型車両10の車速が異なると、遠心力に違いが生じる。第1円弧CA1の半径rが10m以下であることで、第1アプローチ旋回軌跡Tb1を走行したときの鞍乗型車両10の走行状態の違いが大きくなる。第1アプローチ旋回軌跡Tb1を走行したときの鞍乗型車両10の走行状態の違いが、第1アプローチ旋回軌跡Tb1と第1アプローチ旋回軌跡Tb1を走行したときの鞍乗型車両10の車両前方向の加速度の違いに反映されやすい。その結果、第1円弧CA1の半径rが10m以下であることで、第1鞍乗型車両走行複合データDc1を活用しやすい。
Here, the speed of the straddle-type vehicle 10 during turning in the vehicle front direction increases as the turning radius increases, and decreases as the turning radius decreases. The speed in the forward direction of the vehicle is hereinafter referred to as the vehicle speed. If the radius r of the first arc CA1 that is the inner peripheral edge of the first turning region Zd is larger than 10 m, the vehicle speed of the saddle riding type vehicle 10 turning in the first turning region Zd is relatively high. Therefore, when the radius r of the first arc CA1 is larger than 10 m, there is not much difference in centrifugal force even if the vehicle speed of the saddle riding type vehicle 10 turning in the first turning region Zd is different. Therefore, there is not much difference in the traveling state of the saddle riding type vehicle 10 when traveling on the first approach turning trajectory Tb1. Therefore, if the radius r of the first arc CA1 is larger than 10 m, there is not much difference in the traveling state of the saddle riding type vehicle 10 when traveling on the first approach turning locus Tb1. Therefore, the first straddle type vehicle It is difficult to utilize the traveling composite data Dc1.
When the radius r of the first arc CA1 is 10 m or less, the vehicle speed of the saddle riding type vehicle 10 turning in the first turning region Zd is relatively low. Therefore, if the vehicle speed of the saddle riding type vehicle 10 while turning in the first turning region Zd is different, the centrifugal force is different. When the radius r of the first arc CA1 is 10 m or less, the difference in the traveling state of the saddle riding type vehicle 10 when traveling on the first approach turning trajectory Tb1 becomes large. The difference between the traveling states of the saddle riding type vehicle 10 when traveling on the first approach turning trajectory Tb1 is that the vehicle front direction of the saddle riding type vehicle 10 when traveling on the first approach turning trajectory Tb1 and the first approach turning trajectory Tb1. It is easily reflected in the difference in acceleration. As a result, since the radius r of the first arc CA1 is 10 m or less, it is easy to utilize the first saddle riding type vehicle traveling composite data Dc1.
 通常、旋回中の鞍乗型車両10の車両左右方向の加速度は、0.1G~0.8G程度(1~8m/s2程度)である。第1円弧CA1は、中心角θが90°以上270°以下で半径rが2m以上10m以下である。そのため、第1円弧CA1を内周縁とする第1旋回領域Zdを旋回中の鞍乗型車両10の車速は、例えば5~32km/h程度である。第1旋回領域Zdを旋回中の鞍乗型車両10の車速が異なると、遠心力に違いが大きく生じる。したがって、第1円弧CA1の中心角θが90°以上270°以下で半径rが2m以上10m以下であることで、第1アプローチ旋回軌跡Tb1を走行したときの鞍乗型車両10の走行状態の違いがより顕著に現れる。そのため、第1アプローチ旋回軌跡Tb1を走行したときの鞍乗型車両10の走行状態の違いが、第1アプローチ旋回軌跡Tb1および第1アプローチ旋回軌跡Tb1を走行したときの車両前方向の加速度の違いに反映されやすい。その結果、第1円弧CA1の中心角θが90°以上270°以下で半径rが2m以上10m以下であることで、第1鞍乗型車両走行複合データDc1をより活用しやすい。 Normally, the acceleration in the vehicle left-right direction of the saddle riding type vehicle 10 while turning is about 0.1 G to 0.8 G (about 1 to 8 m / s 2 ). The first arc CA1 has a central angle θ of 90 ° or more and 270 ° or less and a radius r of 2 m or more and 10 m or less. Therefore, the vehicle speed of the saddle riding type vehicle 10 turning in the first turning region Zd having the first arc CA1 as the inner peripheral edge is, for example, about 5 to 32 km / h. If the vehicle speed of the saddle riding type vehicle 10 turning in the first turning region Zd is different, the centrifugal force is greatly different. Therefore, since the center angle θ of the first arc CA1 is 90 ° or more and 270 ° or less and the radius r is 2 m or more and 10 m or less, the running state of the saddle riding type vehicle 10 when traveling on the first approach turning locus Tb1 is The difference becomes more pronounced. Therefore, the difference in the traveling state of the saddle riding type vehicle 10 when traveling on the first approach turning trajectory Tb1 is the difference between the first approach turning trajectory Tb1 and the acceleration in the vehicle front direction when traveling on the first approach turning trajectory Tb1. It is easy to be reflected in. As a result, since the central angle θ of the first arc CA1 is 90 ° or more and 270 ° or less and the radius r is 2 m or more and 10 m or less, the first saddle riding type vehicle traveling composite data Dc1 can be more easily utilized.
 旋回前の直進中に鞍乗型車両10が減速のみまたは加速と減速の両方をする場合、直進に必要な距離は、0mより大きく65m以下である。アプローチ領域Zcの第1直線SL1の長さLは、0mより大きく65m以下である。それにより、第1アプローチ旋回軌跡Tb1および第1アプローチ旋回軌跡Tb1を走行したときの鞍乗型車両10の車両前方向の加速度は、第1アプローチ旋回軌跡Tb1を走行したときの鞍乗型車両10の走行状態がより反映されやすい。その結果、アプローチ領域Zcの第1直線SL1の長さLが0mより大きく65m以下であることにより、第1鞍乗型車両走行複合データDc1をより活用しやすい。 When the saddle riding type vehicle 10 only decelerates or both accelerates and decelerates while going straight before turning, the distance required for going straight is more than 0 m and not more than 65 m. The length L of the first straight line SL1 of the approach area Zc is greater than 0 m and 65 m or less. Thus, the acceleration in the vehicle front direction of the first approach turning locus Tb1 and the saddle riding type vehicle 10 when traveling on the first approach turning locus Tb1 is the saddle type vehicle 10 when traveling on the first approach turning locus Tb1. It is easier to reflect the running condition of. As a result, the length L of the first straight line SL1 in the approach area Zc is greater than 0 m and equal to or less than 65 m, so that the first saddle riding type vehicle traveling composite data Dc1 can be more easily utilized.
 第1直線SL1と第2直線SL2の間隔は、2mである。第2円弧CA2は第1円弧CA1と同心状に配置されるため、第1円弧CA1と第2円弧CA2の間隔も2mである。このように、アプローチ旋回領域Zbの幅は、2mである。
 ここで、鞍乗型車両10が自動二輪車または自動三輪車の場合、鞍乗型車両10の車両前方向の長さは、1.8~2.6m程度であって、鞍乗型車両10の幅(車両左右方向の長さ)は、0.5~1.1m程度である。鞍乗型車両10が四輪バギーの場合、鞍乗型車両10の車両前方向の長さは、1.4~2.0m程度であって、鞍乗型車両10の幅は、0.7~1.2m程度である。鞍乗型車両10がスノーモービルの場合、鞍乗型車両10の車両前方向の長さは、2.0~4.0m程度であって、鞍乗型車両10の幅は、1.0~1.2m程度である。鞍乗型車両10が水上オートバイの場合、鞍乗型車両10の車両前方向の長さは、2.0~4.0m程度であって、鞍乗型車両10の幅は、0.7~1.3m程度である。
 したがって、アプローチ旋回領域Zbの幅(2m)は、鞍乗型車両10の幅の平均の約2倍であって、鞍乗型車両10の最大幅の約1.5倍である。このような鞍乗型車両10の幅と全長を考慮すると、アプローチ旋回領域Zbの幅(2m)は、鞍乗型車両10の走行の自由度がありながら、鞍乗型車両10がアプローチ旋回領域Zb内でUターンできない幅である。ここで、Uターンとは、180°の旋回のことである。アプローチ旋回領域Zb内でのUターンとは、アプローチ旋回領域Zbの縁に沿わないUターンのことである。
 第1鞍乗型車両走行複合データDc1が、アプローチ旋回領域Zb内でUターンした場合の走行軌跡に関連付けて生成されている可能性がある場合、第1鞍乗型車両走行複合データDc1を活用しにくくなる。なぜならば、アプローチ旋回領域Zb内でUターンした場合の走行軌跡に関連付けて生成された第1鞍乗型車両走行複合データDc1と、アプローチ旋回領域Zb内をアプローチ旋回領域Zbの縁に沿って走行した場合の走行軌跡に関連付けて生成された第1鞍乗型車両走行複合データDc1は、例えば車両の制御や車両の走行状態の解析などに活用する際に同列に扱うことができないからである。
 本実施形態では、アプローチ旋回領域Zbの幅が2mであることにより、第1アプローチ旋回軌跡Tb1が、アプローチ旋回領域Zb内でUターンした走行軌跡である可能性を除外できる。そのため、第1鞍乗型車両走行複合データDc1をより活用しやすい。
The distance between the first straight line SL1 and the second straight line SL2 is 2 m. Since the second arc CA2 is arranged concentrically with the first arc CA1, the distance between the first arc CA1 and the second arc CA2 is also 2 m. Thus, the width of the approach turning area Zb is 2 m.
Here, when the saddle riding type vehicle 10 is a motorcycle or a tricycle, the length of the saddle riding type vehicle 10 in the vehicle front direction is about 1.8 to 2.6 m and the width of the saddle riding type vehicle 10 is (Length in the left-right direction of the vehicle) is about 0.5 to 1.1 m. When the saddle riding type vehicle 10 is a four-wheel buggy, the length in the vehicle front direction of the saddle riding type vehicle 10 is about 1.4 to 2.0 m, and the width of the saddle riding type vehicle 10 is 0.7. It is about 1.2 m. When the saddle riding type vehicle 10 is a snowmobile, the length of the saddle riding type vehicle 10 in the vehicle front direction is about 2.0 to 4.0 m, and the width of the saddle riding type vehicle 10 is 1.0 to It is about 1.2 m. When the saddle riding type vehicle 10 is a water motorcycle, the length of the saddle riding type vehicle 10 in the vehicle front direction is about 2.0 to 4.0 m, and the width of the saddle riding type vehicle 10 is 0.7 to It is about 1.3 m.
Therefore, the width (2 m) of the approach turning area Zb is about twice the average width of the saddle riding type vehicle 10 and about 1.5 times the maximum width of the saddle riding type vehicle 10. Considering the width and the total length of the saddle riding type vehicle 10 as described above, the width (2 m) of the approach turning area Zb is set so that the straddle type vehicle 10 has the approach turning area while the vehicle has a degree of freedom in traveling. It is a width that cannot make a U-turn in Zb. Here, the U-turn is a turn of 180 °. The U-turn in the approach turning area Zb is a U-turn that does not follow the edge of the approach turning area Zb.
When there is a possibility that the first saddle riding type vehicle traveling composite data Dc1 is generated in association with the traveling locus when making a U-turn in the approach turning area Zb, the first saddle riding type vehicle traveling composite data Dc1 is used. Hard to do. This is because the first straddle-type vehicle traveling composite data Dc1 generated in association with the traveling locus when the vehicle makes a U-turn in the approach turning area Zb and the approach turning area Zb travels along the edge of the approach turning area Zb. This is because the first straddle-type vehicle traveling composite data Dc1 generated in association with the traveling locus in such a case cannot be treated in the same row when it is utilized for, for example, control of the vehicle or analysis of the traveling state of the vehicle.
In the present embodiment, since the width of the approach turning area Zb is 2 m, it is possible to exclude the possibility that the first approach turning trajectory Tb1 is a running trajectory that makes a U-turn in the approach turning area Zb. Therefore, the first straddle-type vehicle traveling composite data Dc1 can be more easily utilized.
 このように、第1鞍乗型車両走行複合データDc1を活用しやすいため、出力された第1鞍乗型車両走行複合データDc1の後処理が容易である。出力された第1鞍乗型車両走行複合データDc1の後処理が容易であるため、第1鞍乗型車両走行複合データDc1が出力される出力対象のハードウェアリソースを低減することができる。
 以上のように、本実施形態の鞍乗型車両走行データ処理装置1は、出力されたデータの後処理を効率化して、ハードウェアリソースを低減することができる。また、本実施形態の鞍乗型車両走行データ処理方法は、出力されたデータの後処理を効率化して、ハードウェアリソースを低減することができる。
As described above, since the first saddle riding type vehicle traveling composite data Dc1 is easily utilized, the post-processing of the output first saddle riding type vehicle traveling composite data Dc1 is easy. Since the post-processing of the output first saddle riding type vehicle traveling composite data Dc1 is easy, it is possible to reduce the hardware resources to be output to which the first saddle riding type vehicle traveling composite data Dc1 is output.
As described above, the saddle riding type vehicle travel data processing device 1 of the present embodiment can make post-processing of output data efficient and reduce hardware resources. Further, the straddle-type vehicle traveling data processing method of the present embodiment can make post-processing of output data more efficient and reduce hardware resources.
 (実施形態の具体例1)
 以下、本発明の実施形態の具体例1について図2~図12を参照しつつ説明する。本具体例1の鞍乗型車両走行データ処理装置101は、上述した本発明の実施形態の鞍乗型車両走行データ処理装置1の特徴を全て有する。なお、以下の説明において、上述した本発明の実施形態と同じ部位または処理についての説明は適宜省略する。図2に示すように、鞍乗型車両走行データ処理装置101は、自動二輪車110に搭載される。自動二輪車110は、上記実施形態の鞍乗型車両10の一例である。鞍乗型車両走行データ処理装置101は、自動二輪車110に搭載されたECU(Electronic Control Unit / 電子制御ユニット)60に含まれる。鞍乗型車両走行データ処理装置101は、走行中の自動二輪車110に関連するデータに基づいて自動二輪車110を制御する車両制御装置である。
(Specific Example 1 of Embodiment)
Specific Example 1 of the embodiment of the present invention will be described below with reference to FIGS. The straddle-type vehicle travel data processing device 101 of the first specific example has all the features of the saddle-ride type vehicle travel data processing device 1 of the above-described embodiment of the present invention. In the following description, description of the same parts or processes as those of the above-described embodiment of the present invention will be appropriately omitted. As shown in FIG. 2, the saddle riding type vehicle travel data processing device 101 is mounted on a motorcycle 110. The motorcycle 110 is an example of the saddle-ride type vehicle 10 of the above-described embodiment. The saddle riding type vehicle travel data processing device 101 is included in an ECU (Electronic Control Unit) 60 mounted on the motorcycle 110. The saddle riding type vehicle traveling data processing device 101 is a vehicle control device that controls the motorcycle 110 based on data relating to the traveling motorcycle 110.
 以下の説明において、前後方向、左右方向、上下方向とは、特に限定しない限り、それぞれ、車両前後方向、車両左右方向、車両上下方向のことである。車両上下方向は、自動二輪車110が配置された路面が水平な場合に、路面に垂直な方向である。車両前方向は、直立した状態の自動二輪車110が水平な路面を直進する方向である。車両後方向は、車両前方向の逆方向である。車両左右方向は、車両上下方向と車両前後方向に直交する方向であって、自動二輪車110に乗車するライダーRから見た左右方向である。図2は、自動二輪車110が、水平な路面上に直進可能に直立した状態を示す。図2中の矢印F、Re、U、Dは、それぞれ前方向、後方向、上方向、下方向を表す。 In the following description, the front-rear direction, the left-right direction, and the up-down direction are the vehicle front-rear direction, the vehicle left-right direction, and the vehicle up-down direction, respectively, unless otherwise specified. The vehicle vertical direction is a direction perpendicular to the road surface when the road surface on which the motorcycle 110 is arranged is horizontal. The vehicle front direction is a direction in which the motorcycle 110 in an upright state travels straight on a horizontal road surface. The vehicle rearward direction is opposite to the vehicle frontward direction. The vehicle left-right direction is a direction orthogonal to the vehicle up-down direction and the vehicle front-rear direction, and is the left-right direction viewed from a rider R who rides on the motorcycle 110. FIG. 2 shows a state in which the motorcycle 110 stands upright on a horizontal road surface so as to be able to go straight. Arrows F, Re, U, and D in FIG. 2 represent forward, backward, upward, and downward directions, respectively.
 <自動二輪車の全体構成>
 図2に示すように、自動二輪車110は、前輪11と、後輪12、車体フレーム13とを備えている。車体フレーム13は、その前部にヘッドパイプ13aを有する。ヘッドパイプ13aには、ステアリングシャフト(図示せず)が回転可能に挿入されている。ステアリングシャフトの上端部は、ステアリングホイール(ハンドルユニット)14に連結されている。ステアリングホイール14は、フロントフォーク15の上端部に連結されている。フロントフォーク15の下端部は、前輪11を回転可能に支持している。フロントフォーク15は、フロントサスペンション(図示せず)を有する。フロントサスペンションは、前輪11が受ける上下方向の振動を吸収する。ステアリングホイール14、ステアリングシャフト、フロントフォーク15、および前輪11は、車体フレーム13に対して一体的に揺動可能である。ライダーRがステアリングホイール14を操作することにより、前輪11は操舵される。前輪11は、操舵車輪である。
<Overall structure of motorcycle>
As shown in FIG. 2, the motorcycle 110 includes front wheels 11, rear wheels 12, and a vehicle body frame 13. The body frame 13 has a head pipe 13a at its front part. A steering shaft (not shown) is rotatably inserted in the head pipe 13a. The upper end of the steering shaft is connected to the steering wheel (handle unit) 14. The steering wheel 14 is connected to the upper end of the front fork 15. The lower end of the front fork 15 rotatably supports the front wheel 11. The front fork 15 has a front suspension (not shown). The front suspension absorbs vertical vibrations received by the front wheels 11. The steering wheel 14, the steering shaft, the front fork 15, and the front wheel 11 can swing integrally with the body frame 13. The front wheel 11 is steered by the rider R operating the steering wheel 14. The front wheels 11 are steering wheels.
 前輪11には、前ブレーキ16が設けられている。前ブレーキ16は、前輪11に制動力を付与可能に構成されている。前ブレーキ16は、例えば、液圧式のブレーキである。前ブレーキ16は、液圧式以外の公知のブレーキであってもよい。 Front brakes 16 are provided on the front wheels 11. The front brake 16 is configured to be able to apply a braking force to the front wheels 11. The front brake 16 is, for example, a hydraulic brake. The front brake 16 may be a known brake other than a hydraulic brake.
 スイングアーム17の前端部は、車体フレーム13に揺動可能に支持されている。スイングアーム17の後端部は、後輪12を回転可能に支持している。スイングアーム17は、リアサスペンション18を介して車体フレーム13に接続されている。リアサスペンション18は、後輪12が受ける上下方向の振動を吸収する。 The front end of the swing arm 17 is swingably supported by the body frame 13. The rear end of the swing arm 17 rotatably supports the rear wheel 12. The swing arm 17 is connected to the vehicle body frame 13 via a rear suspension 18. The rear suspension 18 absorbs vertical vibrations received by the rear wheel 12.
 後輪12には、後ブレーキ19が設けられている。後ブレーキ19は、後輪12に制動力を付与可能に構成されている。後ブレーキ19は、例えば、液圧式のブレーキである。後ブレーキ19は、液圧式以外の公知のブレーキであってもよい。 Rear brakes 19 are provided on the rear wheels 12. The rear brake 19 is configured to be able to apply a braking force to the rear wheels 12. The rear brake 19 is, for example, a hydraulic brake. The rear brake 19 may be a known brake other than the hydraulic type.
 車体フレーム13は、シート20と燃料タンク21を支持している。車体フレーム13は、エンジンユニット30を支持している。車体フレーム13は、バッテリー(図示せず)を支持している。バッテリーは、ECU60や各種センサなどの電子機器に電力を供給する。 The body frame 13 supports the seat 20 and the fuel tank 21. The body frame 13 supports the engine unit 30. The body frame 13 supports a battery (not shown). The battery supplies electric power to electronic devices such as the ECU 60 and various sensors.
 エンジンユニット30は、自動二輪車110の動力源である。エンジンユニット30は、後輪12に駆動力を付与可能に構成されている。エンジンユニット30は、動力を発生させるエンジン本体31を有する。エンジン本体31で発生した動力が、後輪12に伝達される。後輪12は、駆動輪である。エンジンユニット30は、液冷式のエンジンである。なお、エンジンユニット30の冷却方式は、自然空冷式であってもよく、強制空冷式であってもよく、油冷式であってもよい。 The engine unit 30 is a power source of the motorcycle 110. The engine unit 30 is configured to be able to apply a driving force to the rear wheels 12. The engine unit 30 has an engine body 31 that generates power. The power generated in the engine body 31 is transmitted to the rear wheels 12. The rear wheel 12 is a drive wheel. The engine unit 30 is a liquid-cooled engine. The cooling method of the engine unit 30 may be a natural air cooling method, a forced air cooling method, or an oil cooling method.
 ここから、図3を用いて、エンジンユニット30についてより詳細に説明する。図3に示すエンジン本体31は、エンジン本体31の一部を模式的に表示している。エンジン本体31は、多気筒エンジンである。図3は、複数の気筒のうちの1つの気筒のみを表示している。なお、エンジン本体31は、単気筒エンジンであってもよい。エンジン本体31は、4ストローク1サイクルエンジンである。4ストローク1サイクルエンジンは、気筒ごとに、吸気行程、圧縮行程、燃焼行程(膨張行程)、および排気行程を繰り返す。3気筒の燃焼行程のタイミングは互いに異なっている。エンジン本体31は、2ストローク1サイクルエンジンであってもよい。 From here, the engine unit 30 will be described in more detail with reference to FIG. The engine body 31 shown in FIG. 3 schematically shows a part of the engine body 31. The engine body 31 is a multi-cylinder engine. FIG. 3 shows only one cylinder of the plurality of cylinders. The engine body 31 may be a single cylinder engine. The engine body 31 is a 4-stroke 1-cycle engine. The 4-stroke 1-cycle engine repeats an intake stroke, a compression stroke, a combustion stroke (expansion stroke), and an exhaust stroke for each cylinder. The timings of the combustion strokes of the three cylinders are different from each other. The engine body 31 may be a 2-stroke 1-cycle engine.
 エンジン本体31は、複数(例えば3つ)の燃焼室32を有する。複数の燃焼室32は、左右方向に一列に並んでいる。各燃焼室32の一部は、ピストン33によって構成される。複数のピストン33は、複数のコネクティングロッド34を介して1つのクランクシャフト35に連結されている。燃焼室32には、点火プラグ36の先端部が配置されている。点火プラグ36は、燃焼室32内の燃料と空気との混合ガスに点火する。点火プラグ36は、点火コイル37に接続されている。点火コイル37は、点火プラグ36の火花放電を生じさせるための電力を蓄える。混合ガスの燃焼のエネルギーによってピストン33が往復移動することで、クランクシャフト35が回転する。それにより、エンジン本体31で動力が生じる。クランクシャフト35は、スターターモータおよび発電機に連結されている。なお、スターターモータと発電機は一体化されていてもよい。エンジン本体31には、エンジン回転速度センサ(図示せず)とエンジン温度センサ(図示せず)が設けられる。エンジン回転速度センサは、クランクシャフト35の回転速度を検出する。エンジン温度センサは、エンジン本体31の温度を直接または間接的に検出する。 The engine body 31 has a plurality of (for example, three) combustion chambers 32. The plurality of combustion chambers 32 are arranged in a line in the left-right direction. A part of each combustion chamber 32 is constituted by a piston 33. The plurality of pistons 33 are connected to one crankshaft 35 via a plurality of connecting rods 34. A tip portion of a spark plug 36 is arranged in the combustion chamber 32. The spark plug 36 ignites a mixed gas of fuel and air in the combustion chamber 32. The spark plug 36 is connected to the ignition coil 37. The ignition coil 37 stores electric power for causing spark discharge of the spark plug 36. The piston 33 reciprocates due to the energy of combustion of the mixed gas, whereby the crankshaft 35 rotates. As a result, power is generated in the engine body 31. The crankshaft 35 is connected to the starter motor and the generator. The starter motor and the generator may be integrated. The engine body 31 is provided with an engine rotation speed sensor (not shown) and an engine temperature sensor (not shown). The engine rotation speed sensor detects the rotation speed of the crankshaft 35. The engine temperature sensor directly or indirectly detects the temperature of the engine body 31.
 図示は省略するが、エンジン本体31は、多段変速装置とクラッチを有する。クランクシャフト35で発生した動力(トルク)は、多段変速装置とクラッチを介して、後輪12に伝達される。多段変速装置は、例えば1速~6速およびニュートラルの7つのギヤ位置を有する。クラッチは、クランクシャフト35からの動力を伝達する状態と伝達しない状態に切換え可能に構成されている。 Although not shown, the engine body 31 has a multi-stage transmission and a clutch. The power (torque) generated by the crankshaft 35 is transmitted to the rear wheels 12 via the multistage transmission and the clutch. The multi-speed transmission has seven gear positions, for example, 1st to 6th gears and neutral. The clutch is configured to be switchable between a state of transmitting power from the crankshaft 35 and a state of not transmitting power.
 図3に示すように、エンジン本体31は、燃焼室32ごとに吸気通路部40および排気通路部50を有する。なお、本明細書において、通路部とは、経路を形成する構造物を意味する。経路は、空気やガスなどが通過する空間を意味する。吸気通路部40は、燃焼室32に空気を導入する。排気通路部50は、燃焼行程において燃焼室32で発生した燃焼ガス(排ガス)を排出する。吸気通路部40と接続される燃焼室32の開口は、吸気バルブ41によって開閉される。また、排気通路部50と接続される燃焼室32の開口は、排気バルブ51によって開閉される。吸気バルブ41および排気バルブ51は、エンジン本体31が有する動弁装置(図示せず)によって駆動される。動弁装置は、クランクシャフト35と連動して作動する。 As shown in FIG. 3, the engine body 31 has an intake passage portion 40 and an exhaust passage portion 50 for each combustion chamber 32. In addition, in this specification, a passage part means the structure which forms a path | route. The route means a space through which air or gas passes. The intake passage portion 40 introduces air into the combustion chamber 32. The exhaust passage portion 50 discharges the combustion gas (exhaust gas) generated in the combustion chamber 32 during the combustion process. The opening of the combustion chamber 32 connected to the intake passage portion 40 is opened and closed by the intake valve 41. The opening of the combustion chamber 32 connected to the exhaust passage portion 50 is opened and closed by the exhaust valve 51. The intake valve 41 and the exhaust valve 51 are driven by a valve operating device (not shown) included in the engine body 31. The valve train operates in conjunction with the crankshaft 35.
 エンジンユニット30は、エンジン本体31に接続された吸気通路部42を有する。吸気通路部42は、エンジン本体31の複数の吸気通路部40に接続されている。吸気通路部42の他端は、大気に開放されている。吸気通路部42に吸入された空気が、エンジン本体31に供給される。吸気通路部42にはエアフィルター43が設けられている。 The engine unit 30 has an intake passage portion 42 connected to the engine body 31. The intake passage portion 42 is connected to the plurality of intake passage portions 40 of the engine body 31. The other end of the intake passage 42 is open to the atmosphere. The air taken into the intake passage portion 42 is supplied to the engine body 31. An air filter 43 is provided in the intake passage portion 42.
 エンジンユニット30は、燃焼室32に燃料を供給するインジェクタ44を有する。インジェクタ44は、燃焼室32ごとに1つずつ設けられている。インジェクタ44は、吸気通路部42または吸気通路部42内で燃料を噴射するように配置されている。なお、インジェクタ44は、燃焼室32内で燃料を噴射するように配置されていてもよい。インジェクタ44は、燃料ホース45を介して燃料タンク21に接続されている。燃料タンク21の内部には、燃料ポンプ46が配置されている。燃料ポンプ46は、燃料タンク21内の燃料を燃料ホース45へと圧送する。 The engine unit 30 has an injector 44 that supplies fuel to the combustion chamber 32. One injector 44 is provided for each combustion chamber 32. The injector 44 is arranged to inject fuel in the intake passage portion 42 or the intake passage portion 42. The injector 44 may be arranged so as to inject fuel in the combustion chamber 32. The injector 44 is connected to the fuel tank 21 via a fuel hose 45. A fuel pump 46 is arranged inside the fuel tank 21. The fuel pump 46 pumps the fuel in the fuel tank 21 to the fuel hose 45.
 吸気通路部42の内部には、スロットルバルブ47が配置される。スロットルバルブ47は、燃焼室32ごとに設けられる。スロットルバルブ47は、複数の燃焼室32に対して1つだけ設けられてもよい。スロットルバルブ47は、開状態の開度を変更可能に構成されている。スロットルバルブ47の開度によって、エンジン本体31に供給される空気量が調整される。スロットルバルブ47は、電子制御式のスロットルバルブである。なお、スロットルバルブは、機械式のスロットルバルブであってもよい。 A throttle valve 47 is arranged inside the intake passage 42. The throttle valve 47 is provided for each combustion chamber 32. Only one throttle valve 47 may be provided for the plurality of combustion chambers 32. The throttle valve 47 is configured to be able to change the opening degree in the open state. The amount of air supplied to the engine body 31 is adjusted by the opening degree of the throttle valve 47. The throttle valve 47 is an electronically controlled throttle valve. The throttle valve may be a mechanical throttle valve.
 吸気通路部42には、吸気圧センサ71と、吸気温センサ72と、スロットル開度センサ(スロットルポジションセンサ)73と、が設けられる。吸気圧センサ71は、吸気通路部42内の圧力を検出する。吸気温センサ72は、吸気通路部42内の空気の温度を検出する。スロットル開度センサ73は、スロットルバルブ47の位置を検出することにより、スロットルバルブ47の開度を表す信号を出力する。 The intake passage section 42 is provided with an intake pressure sensor 71, an intake temperature sensor 72, and a throttle opening sensor (throttle position sensor) 73. The intake pressure sensor 71 detects the pressure in the intake passage portion 42. The intake air temperature sensor 72 detects the temperature of air in the intake passage portion 42. The throttle opening sensor 73 outputs a signal indicating the opening of the throttle valve 47 by detecting the position of the throttle valve 47.
 エンジンユニット30は、エンジン本体31に接続された排気通路部52を有する。排気通路部52の一端部は、エンジン本体31の複数の排気通路部50に接続されている。排気通路部52の他端部は、マフラー部53に接続されている。エンジン本体31から排出された排ガスは、排気通路部52を通過した後、マフラー部53に流入する。マフラー部53は、排ガスを浄化する触媒54を収容する。排ガスは、触媒54によって浄化された後、大気に放出される。触媒54は、排気通路部52内に配置されてもよい。排気通路部52には、酸素センサ75が設けられる。酸素センサ75は、排ガス中の酸素濃度を検出する。 The engine unit 30 has an exhaust passage portion 52 connected to the engine body 31. One end of the exhaust passage portion 52 is connected to the plurality of exhaust passage portions 50 of the engine body 31. The other end of the exhaust passage portion 52 is connected to the muffler portion 53. The exhaust gas discharged from the engine body 31 passes through the exhaust passage portion 52 and then flows into the muffler portion 53. The muffler portion 53 accommodates a catalyst 54 that purifies exhaust gas. The exhaust gas is discharged to the atmosphere after being purified by the catalyst 54. The catalyst 54 may be arranged in the exhaust passage portion 52. An oxygen sensor 75 is provided in the exhaust passage portion 52. The oxygen sensor 75 detects the oxygen concentration in the exhaust gas.
 以上がエンジンユニット30の説明である。ここから、自動二輪車110全体の説明に戻る。 The above is the description of the engine unit 30. From here, it returns to description of the entire motorcycle 110.
 図2に示すように、自動二輪車110の右下部には、ブレーキペダル23が設けられている。また、図示は省略するが、自動二輪車110の左下部には、シフトペダルが設けられている。ブレーキペダル23とシフトペダルは、それぞれ、ライダーRの足で操作される。ブレーキペダル23には、ブレーキペダル23の操作量を検出する後ブレーキセンサ81(図4参照)が接続されている。シフトペダルには、シフトペダルの操作量を検出するシフトペダルセンサ(図示せず)が接続されている。 As shown in FIG. 2, a brake pedal 23 is provided on the lower right portion of the motorcycle 110. Although not shown, a shift pedal is provided at the lower left part of the motorcycle 110. The brake pedal 23 and the shift pedal are operated by the feet of the rider R, respectively. A rear brake sensor 81 (see FIG. 4) that detects the operation amount of the brake pedal 23 is connected to the brake pedal 23. A shift pedal sensor (not shown) that detects the operation amount of the shift pedal is connected to the shift pedal.
 ライダーRがブレーキペダル23を操作することで、後ブレーキ19は後輪12に制動力を付与する。ブレーキペダル23は、後ブレーキ駆動装置25(図4参照)を介して、後ブレーキ19に接続されている。後ブレーキ駆動装置25は、車両制御装置(鞍乗型車両走行データ処理装置)101によって制御可能である。後ブレーキ19が液圧式のブレーキの場合、後ブレーキ駆動装置25は、例えば、作動液が流れるパイプと、弁と、ポンプ等を有する。この場合、車両制御装置101は、液圧調整回路に設けられた電磁弁などを制御する。車両制御装置101が後ブレーキ駆動装置25を制御することによって、ブレーキペダル23の操作量が同じであっても、後ブレーキ19の制動力を異ならせることができる。なお、ブレーキペダル23と後ブレーキ19とを接続する後ブレーキ駆動装置と、車両制御装置101と後ブレーキ19とを接続する後ブレーキ駆動装置とは、異なっていてもよい。言い換えると、独立した2つの後ブレーキ駆動装置が設けられていてもよい。 The rear brake 19 applies a braking force to the rear wheels 12 by the rider R operating the brake pedal 23. The brake pedal 23 is connected to the rear brake 19 via the rear brake drive device 25 (see FIG. 4). The rear brake drive device 25 can be controlled by a vehicle control device (saddle-type vehicle travel data processing device) 101. When the rear brake 19 is a hydraulic brake, the rear brake drive device 25 includes, for example, a pipe through which hydraulic fluid flows, a valve, a pump, and the like. In this case, the vehicle control device 101 controls a solenoid valve or the like provided in the hydraulic pressure adjusting circuit. By controlling the rear brake drive device 25 by the vehicle control device 101, the braking force of the rear brake 19 can be made different even if the operation amount of the brake pedal 23 is the same. The rear brake drive device that connects the brake pedal 23 and the rear brake 19 may be different from the rear brake drive device that connects the vehicle control device 101 and the rear brake 19. In other words, two independent rear brake drive devices may be provided.
 ライダーRがシフトペダルを操作することで、エンジンユニット30の多段変速装置(図示せず)のギヤ位置は切り換えられる。なお、シフトペダルの代わりに、ステアリングホイール14にシフトスイッチが設けられてもよい。 The gear position of the multi-stage transmission (not shown) of the engine unit 30 is switched by the rider R operating the shift pedal. A shift switch may be provided on the steering wheel 14 instead of the shift pedal.
 ステアリングホイール14は、アクセルグリップ24(図2参照)と、ブレーキレバー(図示せず)と、クラッチレバー(図示せず)を有する。アクセルグリップ24およびブレーキレバーは、ステアリングホイール14の右部に配置される。クラッチレバーは、ステアリングホイール14の左部に配置される。アクセルグリップ24とブレーキレバーとクラッチレバーは、ライダーRの手で操作される。アクセルグリップ24には、アクセルグリップ24の操作量を検出するアクセルセンサ83(図4参照)が接続されている。ブレーキレバーには、ブレーキレバーの操作量を検出する前ブレーキセンサ82(図4参照)が接続されている。クラッチレバーには、クラッチレバーの操作量を検出するクラッチレバーセンサ(図示せず)が接続されている。 The steering wheel 14 has an accelerator grip 24 (see FIG. 2), a brake lever (not shown), and a clutch lever (not shown). The accelerator grip 24 and the brake lever are arranged on the right side of the steering wheel 14. The clutch lever is arranged on the left side of the steering wheel 14. The accelerator grip 24, the brake lever, and the clutch lever are operated by the rider R's hand. An accelerator sensor 83 (see FIG. 4) that detects an operation amount of the accelerator grip 24 is connected to the accelerator grip 24. A front brake sensor 82 (see FIG. 4) that detects the operation amount of the brake lever is connected to the brake lever. A clutch lever sensor (not shown) that detects the operation amount of the clutch lever is connected to the clutch lever.
 ライダーRがアクセルグリップを操作することで、エンジンユニット30のエンジン本体31で発生する動力は調整される。アクセルグリップの操作量に応じて、スロットルバルブ47の開度が変更される。より詳細には、アクセルグリップの操作量を検出するアクセルセンサ83の信号に基づいて、車両制御装置(鞍乗型車両走行データ処理装置)101がスロットルバルブ47を制御する。なお、スロットルバルブ47が機械式の場合、アクセルグリップは、スロットルワイヤを介して、スロットルバルブ47に接続されている。 The power generated by the engine body 31 of the engine unit 30 is adjusted by the rider R operating the accelerator grip. The opening degree of the throttle valve 47 is changed according to the operation amount of the accelerator grip. More specifically, the vehicle control device (saddle-type vehicle travel data processing device) 101 controls the throttle valve 47 based on a signal from the accelerator sensor 83 that detects the operation amount of the accelerator grip. When the throttle valve 47 is a mechanical type, the accelerator grip is connected to the throttle valve 47 via a throttle wire.
 ライダーRがブレーキレバーを操作することで、前ブレーキ16は前輪11に制動力を付与する。ブレーキレバーは、前ブレーキ駆動装置26(図4参照)を介して、前ブレーキ16に接続されている。車両制御装置101が前ブレーキ駆動装置26を制御することによって、ブレーキレバーの操作量が同じであっても、前ブレーキ16の制動力を異ならせることができる。なお、ブレーキレバーと前ブレーキ16とを接続する前ブレーキ駆動装置と、車両制御装置101と前ブレーキ16とを接続する前ブレーキ駆動装置とは、異なっていてもよい。前ブレーキ駆動装置26は、後ブレーキ駆動装置25と一体化されていてもよい。 The front brake 16 applies braking force to the front wheels 11 by the rider R operating the brake lever. The brake lever is connected to the front brake 16 via a front brake drive device 26 (see FIG. 4). By controlling the front brake drive device 26 by the vehicle control device 101, the braking force of the front brake 16 can be made different even if the operation amount of the brake lever is the same. The front brake drive device that connects the brake lever and the front brake 16 may be different from the front brake drive device that connects the vehicle control device 101 and the front brake 16. The front brake drive device 26 may be integrated with the rear brake drive device 25.
 ライダーRがクラッチレバーを操作することで、エンジンユニット30のクラッチ(図示せず)は、クランクシャフト35から後輪12への動力の伝達を遮断する。クラッチレバーは、シフトペダルによって多段変速装置のギヤ位置を変更する前に操作される。 By the rider R operating the clutch lever, the clutch (not shown) of the engine unit 30 cuts off the transmission of power from the crankshaft 35 to the rear wheels 12. The clutch lever is operated before changing the gear position of the multi-stage transmission by the shift pedal.
 なお、エンジンユニット30は、多段変速装置の代わりに、無段変速装置を有していてもよい。この場合、自動二輪車110は、シフトペダルとクラッチレバーを有さなくてもよい。また、ブレーキペダルが設けられず、ブレーキレバーの操作によって、前ブレーキ16と後ブレーキ19の両方が作動可能であってもよい。 Note that the engine unit 30 may have a continuously variable transmission instead of the multi-stage transmission. In this case, the motorcycle 110 may not have the shift pedal and the clutch lever. Further, the brake pedal may not be provided, and both the front brake 16 and the rear brake 19 may be operable by operating the brake lever.
 このようにステアリングホイール14、ペダルブレーキ、ブレーキレバー、アクセルグリップ24などを操作することで、ライダーRは、自動二輪車110の車両前方向の速度を増加または減少させたり、自動二輪車110を旋回させたりすることができる。 By operating the steering wheel 14, the pedal brake, the brake lever, the accelerator grip 24, etc. in this manner, the rider R increases or decreases the speed of the motorcycle 110 in the vehicle front direction, or turns the motorcycle 110. can do.
 ステアリングホイール14は、ライダーRによって操作される各種スイッチ(図示せず)を有する。各種スイッチは、例えば、メインスイッチ、エンジンスタートスイッチ、エンジンストップスイッチ等である。メインスイッチは、バッテリーから各種電気機器への電力供給のオンオフを切り替えるスイッチである。エンジンスタートスイッチは、エンジンユニット30の運転を開始させるスイッチであり、エンジンストップスイッチは、エンジンユニット30の運転を停止させるスイッチである。 The steering wheel 14 has various switches (not shown) operated by the rider R. The various switches are, for example, a main switch, an engine start switch, an engine stop switch, and the like. The main switch is a switch that switches on / off of power supply from a battery to various electric devices. The engine start switch is a switch for starting the operation of the engine unit 30, and the engine stop switch is a switch for stopping the operation of the engine unit 30.
 自動二輪車110は、タッチパネル28(図4参照)を有する。タッチパネル28は、シート20に着座したライダーRが視認できる位置に配置されている。タッチパネル28は、各種の設定画面を表示することが可能である。タッチパネル28は、ライダーRからの各種操作入力を受け付けることが可能である。例えば、ライダーRを識別するライダー識別情報をタッチパネル28に入力が可能である。ライダー識別情報は、例えば、ライダーRの氏名やID番号などである。また、タッチパネル28は、自動二輪車110の動作状態などを表示することが可能である。タッチパネル28は、例えば、車速(車両前方向の速度)、エンジン回転速度、ギヤ位置、各種の警告などを表示する。 The motorcycle 110 has a touch panel 28 (see FIG. 4). The touch panel 28 is arranged at a position where the rider R seated on the seat 20 can visually recognize it. The touch panel 28 can display various setting screens. The touch panel 28 can receive various operation inputs from the rider R. For example, rider identification information for identifying the rider R can be input to the touch panel 28. The rider identification information is, for example, the name and ID number of the rider R. Further, the touch panel 28 can display the operating state of the motorcycle 110 and the like. The touch panel 28 displays, for example, vehicle speed (vehicle forward speed), engine rotation speed, gear position, various warnings, and the like.
 自動二輪車110は、ステアリングホイール14の操舵角を検出する操舵角センサ84を有する。ステアリングホイール14の操舵角は、前輪11(操舵車輪)の操舵角と同じである。なお、自動二輪車110は、操舵角センサ84を有さなくてもよい。 The motorcycle 110 has a steering angle sensor 84 that detects the steering angle of the steering wheel 14. The steering angle of the steering wheel 14 is the same as the steering angle of the front wheels 11 (steering wheels). The motorcycle 110 may not have the steering angle sensor 84.
 自動二輪車110は、車輪速度センサ85を有する。車輪速度センサ85は、後輪12の回転速度を検出する。車輪速度センサ85は、前輪11の回転速度を検出するセンサであってもよい。自動二輪車110は、前輪11の回転速度を検出する車輪速度センサと、後輪12の回転速度を検出する車輪速度センサの両方を有していてもよい。 The motorcycle 110 has a wheel speed sensor 85. The wheel speed sensor 85 detects the rotation speed of the rear wheel 12. The wheel speed sensor 85 may be a sensor that detects the rotation speed of the front wheels 11. The motorcycle 110 may have both a wheel speed sensor that detects the rotation speed of the front wheels 11 and a wheel speed sensor that detects the rotation speed of the rear wheels 12.
 車輪速度センサ85の信号は、ECU60に送信される。ECU60は、車輪速度センサ85の信号に基づいて、自動二輪車110の車両前方向の速度を取得する。例えば、ECU60は、車輪速度センサ85により検出された後輪12の回転速度と後輪12の径に基づいて、後輪12の進行方向の速度を算出する。後輪12の進行方向の速度は、狭義の意味において、自動二輪車110の車両前方向の速度である。車輪速度センサ85が前輪11に設けられている場合、車輪速度センサ85により検出された前輪11の回転速度と前輪11の径に基づいて、前輪11の進行方向の速度が算出される。前輪11が操舵されている場合、前輪11の進行方向は、自動二輪車110の車両前方向と若干異なる。本明細書では、前輪11の進行方向の速度も、自動二輪車110の車両前方向の速度に含まれる。ECU60は、車輪速度センサ85の信号に基づいて、自動二輪車110の車両前方向の加速度(負の加速度を含む)を取得してもよい。例えば、ECU60は、車輪速度センサ85の信号に基づいて算出された自動二輪車110の車両前方向の速度を時間で微分することで、自動二輪車110の車両前方向の加速度を算出してもよい。 The signal from the wheel speed sensor 85 is transmitted to the ECU 60. The ECU 60 acquires the speed of the motorcycle 110 in the vehicle front direction based on the signal from the wheel speed sensor 85. For example, the ECU 60 calculates the speed of the rear wheel 12 in the traveling direction based on the rotation speed of the rear wheel 12 and the diameter of the rear wheel 12 detected by the wheel speed sensor 85. In the narrow sense, the speed of the rear wheel 12 in the traveling direction is the speed of the motorcycle 110 in the vehicle front direction. When the wheel speed sensor 85 is provided on the front wheel 11, the speed of the front wheel 11 in the traveling direction is calculated based on the rotation speed of the front wheel 11 detected by the wheel speed sensor 85 and the diameter of the front wheel 11. When the front wheels 11 are being steered, the traveling direction of the front wheels 11 is slightly different from the vehicle front direction of the motorcycle 110. In this specification, the speed of the front wheels 11 in the traveling direction is also included in the speed of the motorcycle 110 in the vehicle front direction. The ECU 60 may acquire the acceleration (including negative acceleration) in the vehicle front direction of the motorcycle 110 based on the signal from the wheel speed sensor 85. For example, the ECU 60 may calculate the acceleration in the vehicle front direction of the motorcycle 110 by differentiating the speed in the vehicle front direction of the motorcycle 110 calculated based on the signal of the wheel speed sensor 85 with respect to time.
 自動二輪車110は、IMU(Inertial Measurement Unit/慣性計測装置)86を有する。IMU86は、ロールセンサ、ピッチセンサ、およびヨーセンサを有する。ロールセンサは、自動二輪車110は、車体フレーム13のロール軸Ro(図2参照)回りの角度、角速度、および角加速度の少なくとも1つを検出可能である。ピッチセンサは、車体フレーム13のピッチ軸P(図2参照)回りの角度、角速度、および角加速度の少なくとも1つを検出可能である。ヨーセンサは、車体フレーム13のヨー軸Y(図2参照)回りの角度、角速度、および角加速度の少なくとも1つを検出可能である。ロールセンサ、ピッチセンサ、およびヨーセンサは、車体フレーム13と一体的に動くように自動二輪車110に配置される。自動二輪車110の姿勢が変化すると、路面に対するロール軸Ro、ピッチ軸P、ヨー軸Yの向きも変化する。 The motorcycle 110 has an IMU (Inertial Measurement Unit / Inertial Measurement Unit) 86. The IMU 86 has a roll sensor, a pitch sensor, and a yaw sensor. The roll sensor of the motorcycle 110 can detect at least one of an angle around the roll axis Ro (see FIG. 2) of the vehicle body frame 13, an angular velocity, and an angular acceleration. The pitch sensor can detect at least one of an angle around the pitch axis P (see FIG. 2) of the vehicle body frame 13, an angular velocity, and an angular acceleration. The yaw sensor can detect at least one of an angle around the yaw axis Y (see FIG. 2) of the vehicle body frame 13, an angular velocity, and an angular acceleration. The roll sensor, the pitch sensor, and the yaw sensor are arranged on the motorcycle 110 so as to move integrally with the body frame 13. When the posture of the motorcycle 110 changes, the orientations of the roll axis Ro, the pitch axis P, and the yaw axis Y with respect to the road surface also change.
 ヨー軸Yは、自動二輪車110が水平な路面に直立している状態において、車両上下方向と平行である。ヨーセンサのヨー軸Yは、自動二輪車110が水平な路面に直立している状態において、車両の中央を通っていれば、車両上下方向に対して若干傾斜していてもよい。例えば、ヨー軸Yは、ステアリングシャフトに平行であってもよい。以下の説明において、車体フレーム13のヨー軸Y回りの角度を、自動二輪車110のヨー角という。自動二輪車110のヨー角が変化するとき、自動二輪車110の進行方向が変化する。自動二輪車110のヨー角は、自動二輪車110の進行方向に関連する。 The yaw axis Y is parallel to the vehicle vertical direction when the motorcycle 110 is upright on a horizontal road surface. The yaw axis Y of the yaw sensor may be slightly inclined with respect to the vehicle vertical direction as long as it passes through the center of the vehicle when the motorcycle 110 is upright on a horizontal road surface. For example, the yaw axis Y may be parallel to the steering shaft. In the following description, the angle around the yaw axis Y of the vehicle body frame 13 is called the yaw angle of the motorcycle 110. When the yaw angle of the motorcycle 110 changes, the traveling direction of the motorcycle 110 changes. The yaw angle of the motorcycle 110 is related to the traveling direction of the motorcycle 110.
 ロール軸Roは、ヨー軸Yに直交する。水平な路面に直立している状態の自動二輪車110を下方向に見たとき、ロール軸Roは、車両前後方向と平行である。以下の説明において、車体フレーム13のロール軸Ro回りの角度を、自動二輪車110のロール角という。自動二輪車110のロール角が変化するとき、自動二輪車110の姿勢が変化する。自動二輪車110のロール角は、自動二輪車110の姿勢を示す指標の1つである。 Roll axis Ro is orthogonal to yaw axis Y. When the motorcycle 110 standing upright on a horizontal road surface is viewed downward, the roll axis Ro is parallel to the vehicle front-rear direction. In the following description, the angle around the roll axis Ro of the vehicle body frame 13 is referred to as the roll angle of the motorcycle 110. When the roll angle of the motorcycle 110 changes, the attitude of the motorcycle 110 changes. The roll angle of the motorcycle 110 is one of the indexes indicating the posture of the motorcycle 110.
 ピッチ軸Pは、ロール軸Roとヨー軸Yの両方に直交する。水平な路面に直立している状態の自動二輪車110を下方向に見たとき、ピッチ軸Pは、車両左右方向と平行である。以下の説明において、車体フレーム13のピッチ軸P回りの角度を、自動二輪車110のピッチ角という。自動二輪車110のピッチ角が変化するとき、自動二輪車110の姿勢が変化する。自動二輪車110ピッチ角は、自動二輪車110の姿勢を示す指標の1つである。 The pitch axis P is orthogonal to both the roll axis Ro and the yaw axis Y. When the motorcycle 110 standing upright on a horizontal road surface is viewed downward, the pitch axis P is parallel to the vehicle left-right direction. In the following description, the angle around the pitch axis P of the vehicle body frame 13 is referred to as the pitch angle of the motorcycle 110. When the pitch angle of the motorcycle 110 changes, the attitude of the motorcycle 110 changes. The motorcycle 110 pitch angle is one of the indexes indicating the posture of the motorcycle 110.
 なお、自動二輪車110は、IMU86を有さなくてもよい。自動二輪車110は、IMU86を有する代わりに、ロールセンサ、ピッチセンサ、およびヨーセンサのうちの少なくとも1つを有していてもよい。自動二輪車110は、IMU86とロールセンサ、ピッチセンサ、およびヨーセンサのいずれも有さなくてもよい。 Note that the motorcycle 110 may not have the IMU 86. Instead of having the IMU 86, the motorcycle 110 may have at least one of a roll sensor, a pitch sensor, and a yaw sensor. The motorcycle 110 may not have the IMU 86, the roll sensor, the pitch sensor, or the yaw sensor.
 自動二輪車110には、GNSS受信ユニット90が搭載されている。GNSS受信ユニット90は、例えば、自動二輪車110の前部に搭載される。GNSS受信ユニット90は、例えば、自動二輪車110の後部に搭載されてもよい。GNSS受信ユニット90は、例えば、自動二輪車110の前後方向の略中央部に搭載されてもよい。GNSS受信ユニット90は、自動二輪車110の上部に配置されることが好ましい。GNSS受信ユニット90は、例えば、前輪11および後輪12の上端よりも上方向の位置に配置することが好ましい。GNSS受信ユニット90は、車体フレーム13と一体的に動くように自動二輪車110に配置されてもよい。GNSS受信ユニット90は、例えば、前輪11を覆うように配置されるフェンダー、フロントフォーク15、または、ステアリングホイール14に設置されてもよい。GNSS受信ユニット90は、自動二輪車110に対して着脱可能であってもよい。つまり、自動二輪車110は、GNSS受信ユニット90が取り外された状態でも走行可能であってもよい。 The motorcycle 110 is equipped with a GNSS reception unit 90. The GNSS reception unit 90 is mounted, for example, in the front part of the motorcycle 110. The GNSS receiving unit 90 may be mounted on the rear part of the motorcycle 110, for example. The GNSS receiving unit 90 may be mounted, for example, at a substantially central portion in the front-rear direction of the motorcycle 110. The GNSS receiving unit 90 is preferably arranged in the upper part of the motorcycle 110. The GNSS receiving unit 90 is preferably arranged, for example, at a position higher than the upper ends of the front wheels 11 and the rear wheels 12. The GNSS receiving unit 90 may be arranged on the motorcycle 110 so as to move integrally with the vehicle body frame 13. The GNSS reception unit 90 may be installed in, for example, a fender, a front fork 15, or a steering wheel 14 arranged so as to cover the front wheels 11. The GNSS receiving unit 90 may be attachable to and detachable from the motorcycle 110. That is, the motorcycle 110 may be able to run even with the GNSS receiving unit 90 removed.
 GNSS受信ユニット90は、GNSS(Global Navigation Satellite System/全球測位衛星システム)のGNSS衛星から送信された電波を所定時間ごとに受信する。GNSS受信ユニット90は、GNSS衛星から受信した電波に基づいて、GNSS受信ユニット90の絶対位置(緯度・経度)を示す位置座標データを所定時間ごとに取得する。位置座標データを取得する方法は、GNSSシステムを利用した公知の方法が採用される。GNSS衛星から送信される電波には、日時(年月日と時刻)のデータが含まれる。GNSS受信ユニット90は、位置座標データに基づいて、位置履歴データを生成する。位置履歴データは、GNSS受信ユニット90の位置を時系列に並べた軌跡を示すデータである。つまり、位置履歴データは、自動二輪車110の走行軌跡を示す走行軌跡データである。位置履歴データ(走行軌跡データ)は、各位置に自動二輪車110が存在したときの日時のデータを含む。 GNSS receiving unit 90 receives radio waves transmitted from GNSS (Global Navigation Satellite System) GNSS satellites at predetermined time intervals. The GNSS receiving unit 90 acquires the position coordinate data indicating the absolute position (latitude / longitude) of the GNSS receiving unit 90 based on the radio wave received from the GNSS satellite at predetermined time intervals. A known method using the GNSS system is adopted as a method of acquiring the position coordinate data. The radio wave transmitted from the GNSS satellite includes date and time (year, month, day and time) data. The GNSS receiving unit 90 generates position history data based on the position coordinate data. The position history data is data indicating a locus in which the positions of the GNSS receiving units 90 are arranged in time series. That is, the position history data is traveling locus data indicating the traveling locus of the motorcycle 110. The position history data (travel locus data) includes date and time data when the motorcycle 110 exists at each position.
 GNSS受信ユニット90は、GNSS衛星から受信した電波に基づいて、GNSS受信ユニット90の進行方向の速度を検出する。GNSS受信ユニット90が自動二輪車110の後部に設置されている場合、GNSS受信ユニット90の進行方向は、車両前方向である。GNSS受信ユニット90が前輪11のフェンダーに設置されている場合、GNSS受信ユニット90の進行方向は、車両前方向と若干ずれる場合がある。本明細書において、GNSS受信ユニット90の進行方向の速度は、自動二輪車110の車両前方向の速度に含まれる。つまり、GNSS受信ユニット90は、自動二輪車110の車両前方向の速度を検出する。GNSS受信ユニット90は、例えば、GNSS衛星から受信した電波のドップラー効果を利用して、自動二輪車110の車両前後方向の速度を検出してもよい。GNSS受信ユニット90は、例えば、位置履歴データに基づいて、自動二輪車110の車両前後方向の速度を検出してもよい。 GNSS receiving unit 90 detects the speed in the traveling direction of GNSS receiving unit 90 based on the radio wave received from the GNSS satellite. When the GNSS receiving unit 90 is installed in the rear part of the motorcycle 110, the traveling direction of the GNSS receiving unit 90 is the vehicle front direction. When the GNSS receiving unit 90 is installed on the fender of the front wheel 11, the traveling direction of the GNSS receiving unit 90 may be slightly deviated from the vehicle front direction. In this specification, the speed of the GNSS receiving unit 90 in the traveling direction is included in the speed of the motorcycle 110 in the vehicle front direction. That is, the GNSS receiving unit 90 detects the speed of the motorcycle 110 in the vehicle front direction. The GNSS receiving unit 90 may detect the speed of the motorcycle 110 in the vehicle front-rear direction by using the Doppler effect of the radio waves received from the GNSS satellite. The GNSS receiving unit 90 may detect the speed of the motorcycle 110 in the vehicle front-rear direction based on the position history data, for example.
 GNSS受信ユニット90は、GNSS衛星から受信した電波に基づいて、GNSS受信ユニット90の進行方向の加速度(負の加速度を含む)を検出する。つまり、GNSS受信ユニット90は、自動二輪車110の車両前方向の加速度(負の加速度を含む)を検出する。GNSS受信ユニット90は、例えば、検出した自動二輪車110の車両前方向の速度を時間で微分することで、自動二輪車110の車両前方向の加速度を算出してもよい。 GNSS receiving unit 90 detects the acceleration (including negative acceleration) in the traveling direction of GNSS receiving unit 90 based on the radio wave received from the GNSS satellite. That is, the GNSS receiving unit 90 detects the acceleration (including negative acceleration) in the vehicle front direction of the motorcycle 110. The GNSS receiving unit 90 may calculate the acceleration in the vehicle front direction of the motorcycle 110 by differentiating the detected speed in the vehicle front direction of the motorcycle 110 with respect to time.
 GNSS受信ユニット90は、GNSS衛星から受信した電波に基づいて、GNSS受信ユニット90の進行方向に直交する方向の加速度(負の加速度を含む)を検出する。GNSS受信ユニット90の設置位置によっては、GNSS受信ユニット90の進行方向に直交する方向は、車両左右方向と若干ずれる場合がある。本明細書において、GNSS受信ユニット90の進行方向に直交する方向の加速度は、自動二輪車110の車両左右方向の加速度に含まれる。つまり、GNSS受信ユニット90は、自動二輪車110の車両左右方向の加速度を検出する。GNSS受信ユニット90は、例えば、位置履歴データと、検出した車両前方向の速度に基づいて、自動二輪車110の車両左右方向の加速度を算出してもよい。GNSS受信ユニット90は、GNSS衛星から受信した電波に基づいて、自動二輪車110の車両左右方向の速度を検出してもよい。GNSS受信ユニット90は、GNSS衛星から受信した電波に基づいて、自動二輪車110のヨー軸Y回りの角度、角速度、および角加速度の少なくとも1つを検出してもよい。 GNSS receiving unit 90 detects an acceleration (including negative acceleration) in a direction orthogonal to the traveling direction of GNSS receiving unit 90 based on the radio wave received from the GNSS satellite. Depending on the installation position of the GNSS receiving unit 90, the direction orthogonal to the traveling direction of the GNSS receiving unit 90 may be slightly deviated from the vehicle left-right direction. In this specification, the acceleration in the direction orthogonal to the traveling direction of the GNSS receiving unit 90 is included in the acceleration in the vehicle left-right direction of the motorcycle 110. That is, the GNSS receiving unit 90 detects the acceleration of the motorcycle 110 in the vehicle left-right direction. The GNSS receiving unit 90 may calculate the vehicle lateral acceleration of the motorcycle 110 based on the position history data and the detected vehicle forward speed, for example. The GNSS receiving unit 90 may detect the speed of the motorcycle 110 in the vehicle left-right direction based on the radio wave received from the GNSS satellite. The GNSS receiving unit 90 may detect at least one of an angle about the yaw axis Y of the motorcycle 110, an angular velocity, and an angular acceleration based on the radio wave received from the GNSS satellite.
 GNSS受信ユニット90は、GNSS衛星から受信した電波に基づいて、GNSS受信ユニット90の車両上下方向の加速度(負の加速度を含む)を検出してもよい。GNSS受信ユニット90の車両上下方向の加速度は、自動二輪車110のある位置の車両上下方向の加速度である。GNSS受信ユニット90は、GNSS衛星から受信した電波に基づいて、GNSS受信ユニット90の車両上下方向の速度を検出してもよい。GNSS受信ユニット90は、GNSS衛星から受信した電波に基づいて、自動二輪車110のピッチ軸P回りの角度、角速度、および角加速度の少なくとも1つを検出してもよい。GNSS受信ユニット90は、GNSS衛星から受信した電波に基づいて、自動二輪車110のロール軸Ro回りの角度、角速度、および角加速度の少なくとも1つを検出してもよい。 The GNSS receiving unit 90 may detect the vertical acceleration (including negative acceleration) of the vehicle of the GNSS receiving unit 90 based on the radio wave received from the GNSS satellite. The vehicle vertical acceleration of the GNSS reception unit 90 is the vehicle vertical acceleration at a certain position of the motorcycle 110. The GNSS receiving unit 90 may detect the speed of the GNSS receiving unit 90 in the vehicle vertical direction based on the radio wave received from the GNSS satellite. The GNSS receiving unit 90 may detect at least one of the angle around the pitch axis P of the motorcycle 110, the angular velocity, and the angular acceleration based on the radio wave received from the GNSS satellite. The GNSS receiving unit 90 may detect at least one of the angle around the roll axis Ro of the motorcycle 110, the angular velocity, and the angular acceleration based on the radio wave received from the GNSS satellite.
 GNSS受信ユニット90は、上述した各種方向の速度または加速度のデータを、走行軌跡データと関連付けて生成してもよい。 The GNSS receiving unit 90 may generate the speed or acceleration data in the various directions described above in association with the traveling locus data.
 GNSS受信ユニット90は、生成した走行軌跡データ、および、検出した各種方向の速度または加速度のデータを、ECU60に送信する。ECU60は、GNSS受信ユニット90から送信された速度を微分して加速度を算出してもよい。ECU60は、GNSS受信ユニット90から送信された加速度を積分して速度を算出してもよい。ECU60は、GNSS受信ユニット90から送信された速度または加速度に基づいて変位(移動量)を算出してもよい。GNSS受信ユニット90は、生成した位置座標データをECU60に送信してもよい。この場合、ECU60が、GNSS受信ユニット90から送信された位置座標データに基づいて走行軌跡データBTを生成してもよい。 The GNSS receiving unit 90 transmits the generated traveling locus data and the detected velocity or acceleration data in various directions to the ECU 60. The ECU 60 may calculate the acceleration by differentiating the speed transmitted from the GNSS receiving unit 90. The ECU 60 may integrate the acceleration transmitted from the GNSS receiving unit 90 to calculate the speed. The ECU 60 may calculate the displacement (movement amount) based on the speed or acceleration transmitted from the GNSS receiving unit 90. The GNSS receiving unit 90 may transmit the generated position coordinate data to the ECU 60. In this case, the ECU 60 may generate the traveling locus data BT based on the position coordinate data transmitted from the GNSS receiving unit 90.
 GNSS受信ユニット90は、自動二輪車110の走行中に常に作動していなくてもよい。GNSS受信ユニット90は、オン状態のときにだけ作動するようになっていてもよい。オンオフの切換えは、例えば、タッチパネル28を使って操作されてもよい。 GNSS receiving unit 90 does not have to be always in operation while motorcycle 110 is traveling. The GNSS receiving unit 90 may be adapted to operate only when in the ON state. The on / off switching may be operated using the touch panel 28, for example.
 自動二輪車110は、撮像装置91を有する。撮像装置91は、カメラを含む。カメラは、被写体の光学像を撮影素子で光電変換してイメージデータ(画像データ)を生成する装置である。カメラは、例えば、CMOS(Complementary Metal Oxide Semiconductor)センサまたはCCD(Charge coupled Device)センサなどによって実現される。撮像装置91は、静止画像データのみを生成可能であってもよく、動画データを生成可能であってもよい。撮像装置91で生成されたイメージデータは、カメラが撮影した日時(年月日と時刻)のデータを含む。撮像装置91は、カメラにより撮影されたイメージデータをECU60に送信する。ECU60に送信されるイメージデータは、静止画像データである。ECU60に送信されるイメージデータは、動画データであってもよい。 The motorcycle 110 has an imaging device 91. The imaging device 91 includes a camera. A camera is a device that photoelectrically converts an optical image of a subject by a photographing element to generate image data (image data). The camera is realized by, for example, a CMOS (Complementary Metal Oxide Semiconductor) sensor or a CCD (Charge coupled Device) sensor. The imaging device 91 may be capable of generating only still image data or may be capable of generating moving image data. The image data generated by the imaging device 91 includes data of the date and time (year, month, day and time) taken by the camera. The imaging device 91 transmits the image data captured by the camera to the ECU 60. The image data transmitted to the ECU 60 is still image data. The image data transmitted to the ECU 60 may be moving image data.
 撮像装置91は、自動二輪車110の旋回中のライダーRの姿勢を撮影できるように配置および設定されている。つまり、撮像装置91の配置位置と、撮像装置91のカメラの向きや視野角などの撮影条件は、ライダーRの姿勢を撮影できるように設定されている。撮像装置91は、自動二輪車110の旋回中のライダーRの頭、肩、脚、尻、股の少なくともいずれか1つを撮影画像に含むように配置および設定されている。 The image pickup device 91 is arranged and set so that the posture of the rider R during the turn of the motorcycle 110 can be photographed. That is, the arrangement position of the imaging device 91 and the imaging conditions such as the orientation of the camera of the imaging device 91 and the viewing angle are set so that the posture of the rider R can be imaged. The imaging device 91 is arranged and set so that the captured image includes at least one of the head, shoulders, legs, hips, and crotch of the rider R who is turning the motorcycle 110.
 自動二輪車を含む鞍乗型車両は、遠心力と重力のバランスを利用して旋回する乗り物である。旋回するとき、鞍乗型車両のライダーは姿勢を変化させる。鞍乗型車両は、旋回するために、車両の挙動の変化だけでなく、ライダーの姿勢の変化も利用して運転される乗り物である。同じコースを走る場合でもライダーによって、ライダーの姿勢の変化および車両の挙動は異なる。したがって、旋回中の鞍乗型車両における遠心力と重力のバランスなどの走行状態は、同じコースを走る場合でもライダーによって異なる。旋回中の鞍乗型車両の走行状態は、ライダーの意思によって変更される場合がある。 Saddle-type vehicles, including motorcycles, are vehicles that make turns using the balance between centrifugal force and gravity. When turning, the rider of a straddle-type vehicle changes its attitude. A saddle-ride type vehicle is a vehicle that is driven not only by changing the behavior of the vehicle but also by changing the posture of the rider in order to make a turn. Even when riding on the same course, the rider's posture changes and the vehicle's behavior varies depending on the rider. Therefore, the traveling state such as the balance between the centrifugal force and the gravity in the straddle-type vehicle during turning varies depending on the rider even when traveling on the same course. The running state of the saddle riding type vehicle during turning may be changed by the rider's intention.
 一般的に、自動二輪車のライダーは、右旋回する場合に自動二輪車を車両右方向に傾斜させ、左旋回する場合に自動二輪車を車両左方向に傾斜させる。自動二輪車は、自動車などに比して車両重量に対するライダーの重量比率が大きい。そのため、ライダーが重心を移動させることよって、自動二輪車が傾斜することができる。自動二輪車は、旋回時にライダーと車両の重心が移動することで、重力と遠心力とのバランスがとれている。 Generally, a motorcycle rider leans the motorcycle to the right when turning right, and leans the motorcycle to the left when turning left. Motorcycles have a larger weight ratio of rider to vehicle weight than automobiles. Therefore, the rider can move the center of gravity to tilt the motorcycle. A motorcycle balances gravity and centrifugal force by moving the center of gravity of the rider and the vehicle during turning.
 直進中の自動二輪車の姿勢は、大よそ直立姿勢に保たれる。直進中、自動二輪車のロール角は、0度または0度付近の角度である。直進中、自動二輪車の姿勢の変化は小さい。一方、旋回中の自動二輪車の姿勢は、傾斜姿勢となる(図1の鞍乗型車両10参照)。旋回中の自動二輪車のロール角は0度よりも大きい。また、旋回中、自動二輪車のロール角は大きく変化する。具体的には、旋回開始時には、自動二輪車のロール角は増加する。旋回終了時には、自動二輪車のロール角は減少する。このように、旋回中の自動二輪車の姿勢の変化は、直進期間中よりも大きくなる。そのため、旋回中は、直進中と比べて自動二輪車の挙動の変化が大きい。 ▽ The posture of the motorcycle while going straight is maintained in an upright posture. The roll angle of the motorcycle is 0 degree or an angle near 0 degree while going straight. There is little change in the posture of the motorcycle while going straight. On the other hand, the posture of the motorcycle during turning is an inclined posture (see the saddle type vehicle 10 in FIG. 1). The rolling angle of the motorcycle during turning is greater than 0 degree. Also, during turning, the roll angle of the motorcycle changes greatly. Specifically, at the start of turning, the roll angle of the motorcycle increases. At the end of turning, the roll angle of the motorcycle decreases. In this way, the change in the posture of the motorcycle during turning becomes larger than that during the straight traveling period. Therefore, the change in the behavior of the motorcycle during the turning is larger than that during the straight traveling.
 従来、旋回中の自動二輪車に乗車するライダーの姿勢として、複数のライディングフォームが知られている。例えば、代表的なライディングフォームとして、リーンウィズ、リーンイン、リーンアウトの3種類のライディングフォームがある。これら3種類のライディングフォームは、頭の向き、肩の位置、脚の位置、尻の位置、および、股の位置の少なくともいずれかが互いに異なるライディングフォームである。しかしながら、これら3種類のライディングフォームの何れにおいても、頭の向き、肩の位置、脚の位置、尻の位置、および、股の位置は、旋回中の自動二輪車の挙動と密接に関連する。 Conventionally, multiple riding forms are known as the posture of a rider who rides on a motorcycle that is turning. For example, as typical riding forms, there are three types of riding forms: lean with, lean in, and lean out. These three types of riding forms are different from each other in at least one of the head direction, shoulder position, leg position, hip position, and crotch position. However, in any of these three types of riding forms, the head orientation, shoulder position, leg position, hip position, and crotch position are closely related to the behavior of the motorcycle during turning.
 通常、旋回中の鞍乗型車両の車速(車両前方向の速度)は、直進時よりも低くなる。旋回中の車速が低いほど、旋回半径を小さくできる。言い換えると、旋回半径が小さいほど、旋回可能な車速は低くなる。そのため、旋回前の直進中の鞍乗型車両の車速が比較的高い場合、ライダーは、旋回前および/または旋回中に、旋回するのに見合った速度まで車速を低減させる。減速が十分でないと、旋回半径が大きくなってしまう。旋回前および旋回中の鞍乗型車両の走行軌跡と車両前方向の加速度は密接に関連する。図5は、後述する環状領域Zaを走行したときの自動二輪車110の走行軌跡と車両前方向の加速度の一例を示す図である。図5では、負の加速度(減速度)を色のグラデーションで表し、正の加速度を色のグラデーションと斜線のハッチングとの組み合わせで表している。図5では、旋回前に自動二輪車110は減速している。 Normally, the vehicle speed (speed in the forward direction of the vehicle) of the saddle riding type vehicle when turning is lower than that when going straight. The lower the vehicle speed during turning, the smaller the turning radius. In other words, the smaller the turning radius, the lower the vehicle speed at which the vehicle can turn. Therefore, when the vehicle speed of the straddle-type vehicle that is traveling straight ahead before turning is relatively high, the rider reduces the vehicle speed before and / or during turning to a speed commensurate with the turning. If the deceleration is not sufficient, the turning radius becomes large. The trajectories of the straddle-type vehicle before and during turning are closely related to the acceleration in the vehicle front direction. FIG. 5 is a diagram showing an example of a traveling locus of the motorcycle 110 and an acceleration in the vehicle front direction when traveling in an annular region Za described later. In FIG. 5, negative acceleration (deceleration) is represented by color gradation, and positive acceleration is represented by a combination of color gradation and diagonal hatching. In FIG. 5, the motorcycle 110 is decelerating before turning.
 また、ライダーによって、鞍乗型車両の減速を開始するタイミング、負の加速度(減速度)の大きさ、減速する期間は異なる。減速中もしくは減速後に、鞍乗型車両のライダーは姿勢を変化させる。そのため、旋回前および旋回中の鞍乗型車両の走行軌跡と車両前方向の加速度は、ライダーの意思によって決まる鞍乗型車両の走行状態と密接に関連している。旋回前および旋回中の鞍乗型車両の走行軌跡と車両前方向の加速度は、鞍乗型車両の走行状態が特に反映されやすい。 Also, depending on the rider, the timing of starting deceleration of the saddle riding type vehicle, the magnitude of the negative acceleration (deceleration), and the deceleration period differ. The rider of the straddle-type vehicle changes its posture during or after deceleration. Therefore, the running locus of the straddle-type vehicle before and during the turn and the acceleration in the vehicle front direction are closely related to the running state of the straddle-type vehicle determined by the rider's intention. The running locus of the straddle-type vehicle before and during the turn and the acceleration in the vehicle front direction are particularly likely to reflect the running state of the straddle-type vehicle.
 また、鞍乗型車両のライダーは、旋回後または旋回中に、車速を増加させる。そのため、旋回後および旋回中の鞍乗型車両の走行軌跡と車両前方向の加速度は、ライダーの意思によって決まる鞍乗型車両の走行状態と関連する。また、旋回後および旋回中の鞍乗型車両の走行軌跡と車両前方向の加速度は密接に関連する。例えば図5では、旋回中に自動二輪車110は加速している。加速によって、自動二輪車110は傾斜姿勢から直立姿勢に変化する。 Also, the rider of a saddle type vehicle increases the vehicle speed after or during the turn. Therefore, the traveling locus of the straddle-type vehicle after and during the turn and the acceleration in the vehicle front direction are related to the traveling state of the straddle-type vehicle that is determined by the rider's intention. Further, the traveling loci of the saddle riding type vehicle after turning and during turning are closely related to the acceleration in the vehicle front direction. For example, in FIG. 5, the motorcycle 110 is accelerating during turning. Due to the acceleration, the motorcycle 110 changes from the inclined posture to the upright posture.
 上述したように、自動二輪車110は、フロントフォーク15のフロントサスペンションを有する。自動二輪車110に限らず、一般的に、自動二輪車は、前輪が受ける上下方向の振動を吸収するフロンサスペンションを有する。自動二輪車の車両前方向の速度が低下したとき、フロントサスペンションは縮む。基本的に、車両前方向の減速度(負の加速度)が大きいほど、フロントサスペンションの縮み量は大きくなる。フロントサスペンションが縮んだ状態で、車両前方向の減速度(負の加速度)がゼロに近づくと、フロントサスペンションの縮みが戻る。また、自動二輪車が車両左右方向に傾斜しながら旋回するとき、遠心力によりフロントサスペンションは縮む。基本的に、遠心力が大きいほど、フロントサスペンションの縮み量は大きくなる。車両左右方向の加速度が大きいほど、遠心力は大きくなる。そのため、車両左右方向の加速度が大きいほど、フロントサスペンションの縮み量は大きくなる。フロントサスペンションが縮んだ状態で、車両左右方向の加速度がゼロに近づくと、フロントサスペンションの縮みが戻る。 As described above, the motorcycle 110 has the front suspension of the front fork 15. Not limited to the motorcycle 110, the motorcycle generally has a Freon suspension that absorbs vertical vibrations received by the front wheels. When the front speed of the motorcycle decreases, the front suspension contracts. Basically, the greater the deceleration (negative acceleration) in the vehicle front direction, the greater the amount of contraction of the front suspension. When the front suspension is contracted and the deceleration (negative acceleration) in the forward direction of the vehicle approaches zero, the contraction of the front suspension returns. Further, when the motorcycle turns while leaning in the left-right direction of the vehicle, the front suspension contracts due to centrifugal force. Basically, the greater the centrifugal force, the greater the amount of contraction of the front suspension. The greater the acceleration in the vehicle left-right direction, the greater the centrifugal force. Therefore, the greater the lateral acceleration of the vehicle, the greater the amount of contraction of the front suspension. When the vehicle's lateral acceleration approaches zero with the front suspension contracted, the front suspension contracts.
 自動二輪車が直進後に旋回する場合のフロントサスペンションの挙動の2つの例について、図6および図7を参照しつつ説明する。図6(a)および図6(b)に示すラインは、第1の例の自動二輪車の走行軌跡を示している。図7(a)および図7(b)に示すラインは、第2の例の自動二輪車の走行軌跡を示している。図6(a)および図7(a)は、走行軌跡を示すラインを、自動二輪車の車両前方向の加速度に応じた表示形態(色のグラデーションと斜線のハッチング)で表している。図6(b)および図7(b)は、走行軌跡を示すラインを、自動二輪車の車両左右方向の加速度に応じた表示形態(色のグラデーションと斜線のハッチング)で表している。図6(c)は、縦軸を図6(a)の車両前方向の加速度とし、横軸を図6(b)の車両左右方向の加速度としたグラフである。図7(c)は、縦軸を図7(a)の車両前方向の加速度とし、横軸を図7(b)の車両左右方向の加速度としたグラフである。図6および図7に示す走行軌跡はいずれも、直進後に車両左方向に旋回したときの走行軌跡である。図6(b)、図6(c)、図7(b)、図7(c)は、車両右方向の加速度を正、車両左方向の加速度を負で表示している。 Two examples of the behavior of the front suspension when the motorcycle turns after going straight will be described with reference to FIGS. 6 and 7. The lines shown in FIGS. 6 (a) and 6 (b) show the travel locus of the motorcycle of the first example. The lines shown in FIGS. 7 (a) and 7 (b) show the traveling locus of the motorcycle of the second example. 6 (a) and 7 (a) show the line indicating the traveling locus in a display form (color gradation and diagonal hatching) according to the acceleration in the vehicle front direction of the motorcycle. 6 (b) and 7 (b) show the line indicating the traveling locus in a display form (color gradation and diagonal hatching) according to the acceleration in the vehicle left-right direction of the motorcycle. 6C is a graph in which the vertical axis represents the acceleration in the vehicle front direction in FIG. 6A and the horizontal axis represents the acceleration in the vehicle left-right direction in FIG. 6B. FIG. 7C is a graph in which the vertical axis represents acceleration in the vehicle front direction in FIG. 7A and the horizontal axis represents acceleration in the vehicle left-right direction in FIG. 7B. The running loci shown in FIG. 6 and FIG. 7 are running loci when the vehicle turns leftward after going straight. 6 (b), 6 (c), 7 (b), and 7 (c), the acceleration in the right direction of the vehicle is displayed as positive and the acceleration in the left direction of the vehicle is displayed as negative.
 第1の例では、図6(a)に示すように、直進時に、ライダーが自動二輪車の車両前方向の速度を低下させる。それによって、フロントサスペンションが縮む。旋回に見合った速度まで減速すると、図6(a)に示すように、ライダーは自動二輪車の減速の程度を小さくするか、速度をほぼ一定にする。それにより、フロントサスペンションの縮みが戻る。その後、ライダーが車両を車両左方向に傾斜させて、自動二輪車が左旋回する。それにより、図6(b)に示すように、自動二輪車の車両左方向の加速度が増加する。そのため、フロントサスペンションが再び縮む。
 このように、第1の例では、直進から旋回に移行する際に、フロントサスペンションが一旦伸びて再び縮む。図6(a)、図6(b)および図6(c)に示すように、車両前方向の減速度(負の加速度)がある程度大きい状態と、車両左方向の正の加速度がある程度大きい状態と間に、車両前方向と車両左右方向の加速度がいずれもゼロまたはゼロに近い状態があるため、フロントサスペンションが一旦伸びて再び縮む。フロントサスペンションの縮みが戻りきってから、自動二輪車を傾斜させることで、自動二輪車のふらつきが低減される。自動二輪車のふらつきが低減されることで、走行軌跡がより滑らかな直線または曲線となりやすい。
In the first example, as shown in FIG. 6A, the rider reduces the speed of the motorcycle in the vehicle front direction when going straight. As a result, the front suspension contracts. When the vehicle decelerates to a speed commensurate with the turn, the rider reduces the degree of deceleration of the motorcycle or makes the speed substantially constant, as shown in FIG. 6 (a). As a result, the front suspension contracts. After that, the rider tilts the vehicle to the left of the vehicle, and the motorcycle turns left. As a result, as shown in FIG. 6 (b), the acceleration of the motorcycle in the vehicle left direction increases. Therefore, the front suspension contracts again.
As described above, in the first example, the front suspension temporarily expands and contracts again when shifting from straight traveling to turning. As shown in FIGS. 6A, 6B, and 6C, a state in which the deceleration (negative acceleration) in the front direction of the vehicle is relatively large and a state in which the positive acceleration in the left direction of the vehicle is relatively large. Since there is a state where the acceleration in the vehicle front direction and the acceleration in the vehicle left-right direction are both zero or close to zero, the front suspension stretches once and then contracts again. By inclining the motorcycle after the front suspension has completely contracted, the fluctuation of the motorcycle is reduced. By reducing the fluctuation of the motorcycle, the running locus is likely to be a smoother straight line or curved line.
 第2の例では、図7(a)に示すように、直進時または旋回の初期に、ライダーが自動二輪車の車両前方向の速度を低下させる。それによって、フロントサスペンションが縮む。ライダーは、車両前方向に減速させつつ、旋回のために自動二輪車を車両左方向に傾斜させる。それにより、図7(a)、図7(b)および図7(c)に示すように、車両前方向の減速度(負の加速度)がある程度大きい状態と、車両左方向の正の加速度がある程度大きい状態が、ほぼ連続している。よって、フロントサスペンションは縮んだままである。
 このように、第2の例では、フロントサスペンションが縮んだまま、直進から旋回に移行する。つまり、第2の例では、第1の例に比べて、フロントサスペンションが伸びる動作1回と縮む動作1回分だけ不要になる。自動二輪車を傾斜させるときに、フロントサスペンションが伸縮していないため、自動二輪車がふらつきにくい。自動二輪車のふらつきが低減されることで、走行軌跡がより滑らかな直線または曲線となりやすい。
In the second example, as shown in FIG. 7A, the rider reduces the speed of the motorcycle in the vehicle front direction at the time of going straight or at the beginning of turning. As a result, the front suspension contracts. The rider leans the motorcycle to the left of the vehicle for turning while decelerating to the front of the vehicle. As a result, as shown in FIGS. 7 (a), 7 (b) and 7 (c), a state in which the deceleration (negative acceleration) in the front direction of the vehicle is relatively large and a positive acceleration in the left direction of the vehicle is The state of being somewhat large is almost continuous. Therefore, the front suspension remains contracted.
As described above, in the second example, the vehicle goes straight to turn while the front suspension is contracted. That is, in the second example, as compared with the first example, only one operation of extending the front suspension and one operation of contracting the front suspension are unnecessary. When the motorcycle is tilted, the front suspension does not expand or contract, so the motorcycle is less likely to wobble. By reducing the fluctuation of the motorcycle, the running locus is likely to be a smoother straight line or curved line.
 なお、上述したフロントサスペンションの挙動が生じる鞍乗型車両は、自動二輪車に限らない。車両の前部に上下方向の振動を吸収するフロントサスペンションを備え、旋回時に車両左右方向に車両が傾斜する鞍乗型車両でも同様の挙動が生じる。 Note that the saddle riding type vehicle in which the above-mentioned behavior of the front suspension occurs is not limited to the motorcycle. The same behavior occurs in a saddle-ride type vehicle in which a front suspension that absorbs vertical vibrations is provided in the front part of the vehicle and the vehicle leans in the left-right direction of the vehicle when turning.
 一般道路ではないコースを自動二輪車が走行する場合、ライダーの運転技術のレベルによって、自動二輪車の車両前方向の加速度および速度の範囲は異なる。図8を用いて詳しく説明する。図8は、運転技術レベルの異なるライダーが乗車する自動二輪車が特定のコースを走行した場合における車両前方向の加速度の範囲と車両左右方向の速度の範囲の目安を示している。ここでの特定のコースとは、1つのコースに限らない。特定のコースは、加速度の傾向が類似する複数のコースを含んでいてもよい。特定のコースは、後述する環状領域Zbを含んでいてもよく、含んでいなくてもよい。図8において、縦軸は車両前方向の加速度を表し、横軸は車両左右方向の加速度を表す。図8には、円形状の領域A3と、楕円状の2つの領域A1、A2が表示されている。領域A1は、初級レベルのライダーが乗車する自動二輪車の車両前方向の加速度の範囲と車両左右方向の加速度の範囲の目安を表す。つまり、初級レベルのライダーが乗車する自動二輪車の車両前方向の加速度と車両左右方向の加速度は、おおよそ、領域A1内の数値である。領域A2は、中級レベルのライダーが乗車する自動二輪車の車両前方向の加速度の範囲と車両左右方向の加速度の範囲の目安を表す。領域A3は、上級レベルのライダーが乗車する自動二輪車の車両前方向の加速度の範囲と車両左右方向の加速度の範囲の目安を表す。なお、領域A3はあくまで目安であるため、上級者の運転技術レベルによっては、車両前方向の加速度と車両左右方向の加速度が、領域A3を超える場合もある。図8に示すように、領域A1、A2、A3の車両左右方向の加速度の範囲は、いずれも、-0.4~+0.4Gである。領域A1の車両前方向の加速度の範囲は、-0.2~+0.2Gである。領域A2の車両前方向の加速度の範囲は、-0.3~+0.3Gである。領域A3の車両前方向の加速度の範囲は、-0.4~+0.4Gである。このように、ライダーの運転技術のレベルによって、車両前方向の加速度の範囲は異なる。その一方、ライダーRの運転技術のレベルに関わらず、車両左右方向の加速度の範囲は概ね同じである。なお、領域A1、A2、A3の数値は、走行するコースによって異なる場合がある。また、領域A2および領域A3の数値は、走行中の優先事項によっても異なる場合がある。例えば、より速くコースを走行することを目的とする場合と、より高度または正確な運転技術で走行することを目的とする場合で、数値が異なる場合がある。 When a motorcycle runs on a course that is not a general road, the range of acceleration and speed in the forward direction of the motorcycle differs depending on the level of the rider's driving skills. This will be described in detail with reference to FIG. FIG. 8 shows a guideline of a range of acceleration in the front direction of the vehicle and a range of speed in the left-right direction of the vehicle when a motorcycle on which riders having different driving skill levels are riding travels on a specific course. The specific course here is not limited to one course. The specific course may include a plurality of courses having similar acceleration tendencies. The specific course may or may not include the annular region Zb described below. In FIG. 8, the vertical axis represents the acceleration in the vehicle front direction, and the horizontal axis represents the acceleration in the vehicle left-right direction. In FIG. 8, a circular area A3 and two elliptical areas A1 and A2 are displayed. The area A1 represents a standard of the acceleration range in the vehicle front direction and the acceleration range in the vehicle left-right direction of the motorcycle on which the rider of the beginner level rides. That is, the acceleration in the vehicle front direction and the acceleration in the vehicle left-right direction of the motorcycle on which the rider at the beginner's level rides are approximately numerical values within the area A1. The area A2 represents a standard of the acceleration range in the vehicle front direction and the acceleration range in the vehicle left-right direction of the motorcycle on which the rider of an intermediate level rides. The area A3 represents a standard of the acceleration range in the vehicle front direction and the acceleration range in the vehicle left-right direction of the motorcycle on which a rider of a high level rides. Since the area A3 is merely a guide, the acceleration in the vehicle front direction and the acceleration in the vehicle left-right direction may exceed the area A3 depending on the driving skill level of the advanced driver. As shown in FIG. 8, the range of acceleration in the vehicle left-right direction in each of the areas A1, A2, and A3 is −0.4 to +0.4 G. The acceleration range in the vehicle front direction in the area A1 is -0.2 to + 0.2G. The acceleration range in the vehicle front direction in the area A2 is -0.3 to + 0.3G. The acceleration range in the vehicle front direction in the area A3 is −0.4 to + 0.4G. As described above, the range of the acceleration in the front direction of the vehicle varies depending on the level of the driving skill of the rider. On the other hand, the range of acceleration in the left-right direction of the vehicle is substantially the same regardless of the level of driving skill of the rider R. The numerical values of the areas A1, A2, A3 may differ depending on the course on which the vehicle travels. In addition, the numerical values of the areas A2 and A3 may differ depending on the priorities during running. For example, the numerical values may differ between the case of traveling faster on the course and the case of traveling with a higher or more accurate driving technique.
 図8には、円形状の領域Anも表示されている。領域Anは、一般道路を自動二輪車が走行した場合の車両前方向の加速度の範囲と車両左右方向の加速度の範囲の目安を表す。領域A2の車両前方向の加速度の範囲は、-0.2~+0.2Gであって、車両左右方向の加速度の範囲は、-0.2~+0.2Gである。つまり、一般道路を走行する自動二輪車の車両前方向の加速度と車両左右方向の加速度は、おおよそ、領域An内の数値である。領域A2の加速度の範囲で走行することができれば、一般道路を余裕をもって走行することができる。 In FIG. 8, a circular area An is also displayed. The area An represents a range of acceleration in the front direction of the vehicle and a range of acceleration in the left-right direction of the vehicle when the motorcycle travels on the general road. The range of acceleration in the vehicle front direction of the area A2 is -0.2 to +0.2 G, and the range of acceleration in the vehicle left and right direction is -0.2 to +0.2 G. That is, the acceleration in the front direction of the vehicle and the acceleration in the left-right direction of the vehicle of the motorcycle traveling on the general road are approximately numerical values within the region An. If the vehicle can travel within the acceleration range of the area A2, it can travel on a general road with a margin.
 図9は、旋回中の鞍乗型車両の車両前方向の速度vと鞍乗型車両の車両左右方向の加速度aとの関係を示すグラフである。図9の横軸は車両前方向の速度vを示し、縦軸は車両左方向または車両右方向の加速度aを示す。図9には、旋回半径rが2m、3m、4m、5m、6m、7m、8m、9m、10mの場合のグラフが表示されている。車両左右方向の加速度aは、a=v2/rで表される。図9のグラフは、この式に基づいている。旋回半径rが小さいほど、車両前方向の速度vの変化に対する車両左右方向の加速度aの変化が大きくなる。また、旋回半径rが小さいほど、鞍乗型車両の姿勢が変化しやすい。 FIG. 9 is a graph showing the relationship between the speed v in the vehicle front direction of the straddle-type vehicle during turning and the acceleration a in the vehicle left-right direction of the saddle-ride type vehicle. The horizontal axis of FIG. 9 represents the speed v in the vehicle front direction, and the vertical axis represents the acceleration a in the vehicle left direction or the vehicle right direction. FIG. 9 shows a graph when the turning radius r is 2 m, 3 m, 4 m, 5 m, 6 m, 7 m, 8 m, 9 m, and 10 m. The acceleration a in the vehicle left-right direction is represented by a = v 2 / r. The graph of FIG. 9 is based on this equation. The smaller the turning radius r, the larger the change in the acceleration a in the vehicle left-right direction with respect to the change in the speed v in the vehicle front direction. In addition, the smaller the turning radius r, the easier the attitude of the saddle riding type vehicle changes.
 <ECUの構成>
 図2に示すように、自動二輪車110は、ECU(Electronic Control Unit / 電子制御ユニット)60を有する。ECU60は、CPU(Central Processing Unit)などの少なくとも1つのプロセッサ、および、ROM(Read Only Memory)、RAM(Random Access Memory)などの少なくとも1つの記憶装置で構成されている。CPUは、ROMやRAMに記憶されたプログラムや各種データに基づいて情報処理を実行する。ECU60は、1箇所に配置された1つの装置であってもよく、異なる位置に配置された複数の装置で構成されていてもよい。図4に示すように、ECU60は、吸気圧センサ71、吸気温センサ72、スロットル開度センサ73、酸素センサ75、エンジン回転速度センサ、エンジン温度センサ、後ブレーキセンサ81、前ブレーキセンサ82、アクセルセンサ83、操舵角センサ84、車輪速度センサ85、IMU86等の各種センサと接続されている。ECU60は、GNSS受信ユニット90、撮像装置91、タッチパネル28と接続されている。ECU60は、エンジンユニット30の点火コイル37、インジェクタ44、燃料ポンプ46、スロットルバルブ47、スターターモータ(図示せず)等と接続されている。ECU60は、前ブレーキ駆動装置26、後ブレーキ駆動装置25と接続されている。ECU60は、自動二輪車110の各部を制御する。ECU60は、車両制御装置(鞍乗型車両走行データ処理装置)101を含む。
<ECU configuration>
As shown in FIG. 2, the motorcycle 110 has an ECU (Electronic Control Unit) 60. The ECU 60 includes at least one processor such as a CPU (Central Processing Unit) and at least one storage device such as a ROM (Read Only Memory) and a RAM (Random Access Memory). The CPU executes information processing based on programs and various data stored in the ROM and RAM. The ECU 60 may be one device arranged at one place, or may be composed of a plurality of devices arranged at different positions. As shown in FIG. 4, the ECU 60 includes an intake pressure sensor 71, an intake temperature sensor 72, a throttle opening sensor 73, an oxygen sensor 75, an engine speed sensor, an engine temperature sensor, a rear brake sensor 81, a front brake sensor 82, an accelerator. It is connected to various sensors such as the sensor 83, the steering angle sensor 84, the wheel speed sensor 85, and the IMU 86. The ECU 60 is connected to the GNSS receiving unit 90, the imaging device 91, and the touch panel 28. The ECU 60 is connected to the ignition coil 37 of the engine unit 30, the injector 44, the fuel pump 46, the throttle valve 47, the starter motor (not shown), and the like. The ECU 60 is connected to the front brake drive device 26 and the rear brake drive device 25. The ECU 60 controls each part of the motorcycle 110. The ECU 60 includes a vehicle control device (saddle-type vehicle travel data processing device) 101.
 <鞍乗型車両走行データ処理装置の構成>
 鞍乗型車両走行データ処理装置101は、プロセッサ102と、記憶部103と、エンジン制御プロセッサ61と、ブレーキ制御プロセッサ62とを含む。プロセッサ102は、上記実施形態のプロセッサ2の一例である。記憶部103は、上記実施形態の記憶部3の一例である。プロセッサ102は、記憶部103に記憶されたプログラムやデータに基づいて情報処理を実行する。
<Structure of saddle riding type vehicle data processing device>
The saddle riding type vehicle travel data processing device 101 includes a processor 102, a storage unit 103, an engine control processor 61, and a brake control processor 62. The processor 102 is an example of the processor 2 of the above embodiment. The storage unit 103 is an example of the storage unit 3 of the above embodiment. The processor 102 executes information processing based on the programs and data stored in the storage unit 103.
 エンジン制御プロセッサ61は、エンジン制御処理を実行する。エンジン制御プロセッサ61は、エンジン制御処理として、燃料制御処理および点火時期制御処理を実行する。燃料制御処理では、各インジェクタ44から噴射される燃料噴射量が制御される。点火時期制御処理では、点火時期が制御される。点火時期とは、点火プラグ36の放電のタイミングのことである。エンジン制御プロセッサ61は、燃料制御処理において、センサ71~75、81~88等の信号に基づいて、燃料ポンプ46およびインジェクタ44を制御する。燃料ポンプ46およびインジェクタ44の制御により、インジェクタ44から噴射される燃料噴射量が制御される。エンジン制御プロセッサ61は、点火時期制御処理において、センサ71~75、81~88等の信号に基づいて、点火コイル37への通電を制御する。これにより、点火プラグ36の放電のタイミングが制御される。 The engine control processor 61 executes engine control processing. The engine control processor 61 executes fuel control processing and ignition timing control processing as engine control processing. In the fuel control process, the fuel injection amount injected from each injector 44 is controlled. In the ignition timing control process, the ignition timing is controlled. The ignition timing is the timing of discharge of the spark plug 36. In the fuel control process, the engine control processor 61 controls the fuel pump 46 and the injector 44 based on signals from the sensors 71 to 75, 81 to 88 and the like. The fuel injection amount injected from the injector 44 is controlled by controlling the fuel pump 46 and the injector 44. In the ignition timing control process, the engine control processor 61 controls energization of the ignition coil 37 based on signals from the sensors 71 to 75, 81 to 88 and the like. As a result, the timing of discharging the spark plug 36 is controlled.
 ブレーキ制御プロセッサ62は、ブレーキ制御処理を実行する。ブレーキ制御処理では、前ブレーキ16が前輪11に付与する制動力と、後ブレーキ19が後輪12に付与する制動力が制御される。ブレーキ制御プロセッサ62は、前ブレーキセンサ82および後ブレーキセンサ81等の信号に基づいて、前ブレーキ駆動装置26および後ブレーキ駆動装置25を制御する。前ブレーキ駆動装置26の制御によって、前ブレーキ16が前輪11に付与する制動力が制御される。後ブレーキ駆動装置25の制御によって、後ブレーキ19が後輪12に付与する制動力が制御される。 The brake control processor 62 executes a brake control process. In the brake control process, the braking force applied by the front brake 16 to the front wheels 11 and the braking force applied by the rear brake 19 to the rear wheels 12 are controlled. The brake control processor 62 controls the front brake drive device 26 and the rear brake drive device 25 based on signals from the front brake sensor 82, the rear brake sensor 81, and the like. The control of the front brake drive device 26 controls the braking force applied by the front brake 16 to the front wheels 11. The control of the rear brake drive device 25 controls the braking force applied by the rear brake 19 to the rear wheels 12.
 鞍乗型車両走行データ処理装置101は、自動二輪車110の走行軌跡に関連する走行軌跡データ(位置履歴データ)BTを取得する。走行軌跡データBTは、GNSS受信ユニット90から取得される。もしくは、走行軌跡データBTは、GNSS受信ユニット90から送信された位置座標データに基づいて、ECU60によって生成される。この場合、走行軌跡データBTは、鞍乗型車両走行データ処理装置101によって生成されてもよく、ECU60の他のプロセッサにより生成されてもよい。 The saddle riding type vehicle traveling data processing device 101 acquires traveling locus data (position history data) BT related to the traveling locus of the motorcycle 110. The traveling locus data BT is acquired from the GNSS receiving unit 90. Alternatively, the traveling locus data BT is generated by the ECU 60 based on the position coordinate data transmitted from the GNSS receiving unit 90. In this case, the traveling locus data BT may be generated by the saddle riding type vehicle traveling data processing device 101 or may be generated by another processor of the ECU 60.
 鞍乗型車両走行データ処理装置101は、自動二輪車110の車両前方向の加速度に関連する前方向加速度データBAを取得する。前方向加速度データBAは、GNSS受信ユニット90から取得されてもよい。鞍乗型車両走行データ処理装置101が、GNSS受信ユニット90が検出した自動二輪車110の車両前方向の速度に基づいて前方向加速度データBAを生成してもよい。鞍乗型車両走行データ処理装置101が、車輪速度センサ85の信号に基づいて前方向加速度データBAを生成してもよい。 The saddle riding type vehicle traveling data processing device 101 acquires the forward acceleration data BA related to the forward acceleration of the motorcycle 110. The forward acceleration data BA may be obtained from the GNSS receiving unit 90. The saddle riding type vehicle traveling data processing device 101 may generate the forward acceleration data BA based on the vehicle forward speed of the motorcycle 110 detected by the GNSS receiving unit 90. The saddle riding type vehicle travel data processing device 101 may generate the forward acceleration data BA based on the signal from the wheel speed sensor 85.
 鞍乗型車両走行データ処理装置101は、自動二輪車110の車両左右方向の加速度に関連する左右方向加速度データBLを取得する。左右方向加速度データBLは、GNSS受信ユニット90から取得されてもよい。鞍乗型車両走行データ処理装置101が、GNSS受信ユニット90が検出した自動二輪車110の車両前方向の速度または加速度と、GNSS受信ユニット90が生成した位置履歴データとに基づいて、左右方向加速度データBLを生成してもよい。鞍乗型車両走行データ処理装置101が、車輪速度センサ85の信号と、GNSS受信ユニット90が生成した位置履歴データとに基づいて、左右方向加速度データBLを生成してもよい。 The saddle riding type vehicle traveling data processing device 101 acquires the lateral acceleration data BL related to the lateral acceleration of the motorcycle 110. The lateral acceleration data BL may be acquired from the GNSS receiving unit 90. The saddle riding type vehicle traveling data processing device 101 uses the lateral acceleration data based on the vehicle front speed or acceleration of the motorcycle 110 detected by the GNSS receiving unit 90 and the position history data generated by the GNSS receiving unit 90. BL may be generated. The saddle riding type vehicle traveling data processing device 101 may generate the lateral acceleration data BL based on the signal of the wheel speed sensor 85 and the position history data generated by the GNSS receiving unit 90.
 鞍乗型車両走行データ処理装置101は、自動二輪車110の姿勢に関連する車両姿勢データB1Vを取得する。車両姿勢データB1Vは、ECU60によって生成される。車両姿勢データB1Vは、鞍乗型車両走行データ処理装置101によって生成されてもよく、ECU60の他のプロセッサにより生成されてもよい。 The saddle riding type vehicle travel data processing device 101 acquires vehicle attitude data B1V related to the attitude of the motorcycle 110. The vehicle attitude data B1V is generated by the ECU 60. The vehicle attitude data B1V may be generated by the saddle riding type vehicle travel data processing device 101 or may be generated by another processor of the ECU 60.
 車両姿勢データB1Vは、GNSS受信ユニット90と、IMU86と、操舵角センサ84の少なくとも1つを利用して生成される。具体的には、車両姿勢データB1Vは、GNSS受信ユニット90によって検出された自動二輪車110の車両左右方向の加速度、GNSS受信ユニット90によって検出された自動二輪車110のある位置の車両上下方向加速度、IMU86の信号、および、操舵角センサ84の信号の少なくとも1つに基づいて生成される。車両姿勢データB1Vは、GNSS受信ユニット90だけを利用して生成されてもよい。車両姿勢データB1Vは、IMU86だけを利用して生成されてもよい。 The vehicle attitude data B1V is generated using at least one of the GNSS receiving unit 90, the IMU 86, and the steering angle sensor 84. Specifically, the vehicle attitude data B1V is the vehicle lateral acceleration of the motorcycle 110 detected by the GNSS receiving unit 90, the vehicle vertical acceleration at a certain position of the motorcycle 110 detected by the GNSS receiving unit 90, IMU86. And a signal from the steering angle sensor 84. The vehicle attitude data B1V may be generated using only the GNSS receiving unit 90. The vehicle attitude data B1V may be generated using only the IMU 86.
 車両姿勢データB1Vは、自動二輪車110のロール角、ピッチ角、ヨー角の少なくとも1つに関連するデータであってもよい。車両姿勢データB1Vは、前輪11(操舵車輪)の操舵角に関連するデータであってもよい。車両姿勢データB1Vは、自動二輪車110のある位置の車両左右方向の変位に関連するデータであってもよい。車両姿勢データB1Vは、自動二輪車110のある位置の車両上下方向の変位に関連するデータであってもよい。車両姿勢データB1Vは、ロール角、ピッチ角、ヨー角、前輪11(操舵車輪)の操舵角、自動二輪車110のある位置の車両左右方向の変位、自動二輪車110のある位置の車両上下方向の変位の少なくとも1つを定量的に示すデータであってもよい。 The vehicle attitude data B1V may be data related to at least one of the roll angle, the pitch angle, and the yaw angle of the motorcycle 110. The vehicle attitude data B1V may be data related to the steering angle of the front wheels 11 (steering wheels). The vehicle attitude data B1V may be data relating to displacement of the motorcycle 110 at a certain position in the vehicle left-right direction. The vehicle attitude data B1V may be data relating to displacement of the motorcycle 110 at a certain position in the vehicle vertical direction. The vehicle attitude data B1V includes a roll angle, a pitch angle, a yaw angle, a steering angle of the front wheels 11 (steering wheels), a lateral displacement of the vehicle at a certain position of the motorcycle 110, and a vertical displacement of the vehicle at a certain position of the motorcycle 110. May be data that quantitatively indicates at least one of the above.
 鞍乗型車両走行データ処理装置101は、自動二輪車110に乗車するライダーRに関連するライダー姿勢データB1Rを取得する。ライダー姿勢データB1Rは、ECU60によって生成される。ライダー姿勢データB1Rは、鞍乗型車両走行データ処理装置101によって生成されてもよく、ECU60の他のプロセッサにより生成されてもよい。ライダー姿勢データB1Rは、撮像装置91で生成されたイメージデータに基づいて生成される。ライダー姿勢データB1Rは、イメージデータではない。ライダー姿勢データB1Rは、例えば、画像の解析処理により生成される。ライダー姿勢データB1Rは、ライダーRの頭の向き、肩の位置、脚の位置、尻の位置、および、股の位置の少なくともいずれか1つに関連するデータである。ライダー姿勢データB1Rは、ライダーRの頭の向き、肩の位置、脚の位置、尻の位置、および、股の位置の少なくともいずれか1つを定量的に示すデータであってもよい。 The saddle riding type vehicle traveling data processing device 101 acquires the rider attitude data B1R related to the rider R riding the motorcycle 110. The rider posture data B1R is generated by the ECU 60. The rider posture data B1R may be generated by the saddle riding type vehicle travel data processing device 101 or may be generated by another processor of the ECU 60. The rider posture data B1R is generated based on the image data generated by the imaging device 91. The rider attitude data B1R is not image data. The rider posture data B1R is generated by image analysis processing, for example. The rider posture data B1R is data relating to at least one of the head direction, shoulder position, leg position, hip position, and crotch position of the rider R. The rider attitude data B1R may be data that quantitatively indicates at least one of the head direction, shoulder position, leg position, hip position, and crotch position of the rider R.
 鞍乗型車両走行データ処理装置101は、自動二輪車110に乗車するライダーRを識別するライダー識別データBIを取得する。ライダー識別データBIは、タッチパネル28に入力されたライダー識別情報に基づいて生成される。ライダー識別データBIは、例えば、ライダーRが自動二輪車110に乗車したときに、ライダーRが装着または所持する装置から自動的にECU60に送信されるようになっていてもよい。鞍乗型車両走行データ処理装置101が取得したライダー識別データBIは、「現在のライダー識別データBI」として、記憶部103に記憶される。タッチパネル28に前回入力されたライダー識別情報と異なるライダー識別情報がタッチパネル28に入力された場合に、記憶部103に記憶された「現在のライダー識別データBI」が更新される。更新前のライダー識別データBIも、記憶部103に記憶されていてもよい。 The saddle riding type vehicle traveling data processing device 101 acquires the rider identification data BI for identifying the rider R riding on the motorcycle 110. The rider identification data BI is generated based on the rider identification information input on the touch panel 28. The rider identification data BI may be automatically transmitted to the ECU 60 from a device mounted or owned by the rider R when the rider R gets on the motorcycle 110, for example. The rider identification data BI acquired by the saddle riding type vehicle traveling data processing device 101 is stored in the storage unit 103 as “current rider identification data BI”. When the rider identification information different from the rider identification information previously input to the touch panel 28 is input to the touch panel 28, the “current rider identification data BI” stored in the storage unit 103 is updated. The updated rider identification data BI may also be stored in the storage unit 103.
 <鞍乗型車両走行データ処理方法>
 次に、本具体例1の鞍乗型車両走行データ処理方法および本具体例1の鞍乗型車両走行データ処理プログラムの処理の手順について説明する。本具体例1の鞍乗型車両走行データ処理方法とは、鞍乗型車両走行データ処理装置101のプロセッサ102が実行する処理の手順である。
<Saddle-type vehicle driving data processing method>
Next, a processing procedure of the straddle-type vehicle travel data processing method of the first specific example and the processing procedure of the saddle-ride type vehicle travel data processing program of the first specific example will be described. The saddle-ride type vehicle travel data processing method according to the specific example 1 is a procedure of processing executed by the processor 102 of the saddle-ride type vehicle travel data processing device 101.
 本具体例1の鞍乗型車両走行データ処理方法を行う前提条件として、自動二輪車110は、所定の形状の環状領域Zaを走行する。本具体例1の鞍乗型車両走行データ処理方法を行うために自動二輪車110が走行するコースは制限される。環状領域Zaは、一般道路ではない。環状領域Zaは、競技用走路でもよい。環状領域Zaは、例えば、駐車場などの舗装面であってもよい。なお、環状領域Zaは、一般道路でもよい。 As a precondition for performing the saddle riding type vehicle traveling data processing method of the first specific example, the motorcycle 110 travels in the annular area Za having a predetermined shape. In order to perform the straddle-type vehicle travel data processing method of the first specific example, the course on which the motorcycle 110 travels is limited. The annular area Za is not a general road. The annular area Za may be a racetrack. The annular area Za may be, for example, a paved surface such as a parking lot. The circular area Za may be a general road.
 図10に示すように、環状領域Zaは、環状である。環状領域Zaは、アプローチ旋回領域Zbと、第2直線領域Zeと、第2旋回領域Zfとからなる。環状領域Zaは、本発明の第1環状領域に相当する。環状領域Zaは、略楕円状(長円形状)である。環状領域Zaの内周縁と外周縁との間の距離は、2mで一定である。以下の環状領域Zaの説明において、前端とは、環状領域Za内を自動二輪車110が走行(進行)する方向の端をいう。後端は、その逆方向の端である。第2直線領域Zeは、直線状である。第2直線領域Zeは、第1旋回領域Zdの前端に接続される。第2旋回領域Zfは、円弧状である。第2旋回領域Zfは、第2直線領域Zeの前端およびアプローチ領域Zcの後端に接続される。 As shown in FIG. 10, the annular area Za is annular. The annular area Za is composed of an approach turning area Zb, a second linear area Ze, and a second turning area Zf. The annular area Za corresponds to the first annular area of the present invention. The annular region Za has a substantially elliptical shape (elliptical shape). The distance between the inner peripheral edge and the outer peripheral edge of the annular region Za is constant at 2 m. In the following description of the annular region Za, the front end refers to the end in the direction in which the motorcycle 110 travels (progresses) in the annular region Za. The rear end is the opposite end. The second linear region Ze has a linear shape. The second linear region Ze is connected to the front end of the first turning region Zd. The second turning region Zf has an arc shape. The second turning region Zf is connected to the front end of the second linear region Ze and the rear end of the approach region Zc.
 アプローチ旋回領域Zbは、上記実施形態で説明した通り、直線状のアプローチ領域Zcと、円弧状の第1旋回領域Zdからなる。アプローチ領域Zcは、第1直線SL1と第2直線SL2との間の領域である。第1旋回領域Zdは、第1円弧CA1と第2円弧CA2との間の領域である。 The approach turning area Zb includes the linear approach area Zc and the arc-shaped first turning area Zd as described in the above embodiment. The approach area Zc is an area between the first straight line SL1 and the second straight line SL2. The first turning area Zd is an area between the first arc CA1 and the second arc CA2.
 第1直線SL1は、0mより大きく65m以下である。第1直線SL1は、1m以上であってもよい。第1直線SL1は、2m以上であってもよい。第1直線SL1は、5m以上であってもよい。第1直線SL1は、10m以上であってもよい。第1直線SL1は、15m以上であってもよい。第1直線SL1は、20m以上であってもよい。第1直線SL1は、25m以上であってもよい。第1直線SL1は、30m以上であってもよい。第1直線SL1は、35m以上であってもよい。第1直線SL1は、40m以上であってもよい。第1直線SL1は、45m以上であってもよい。第1直線SL1は、55m以下であってもよい。第1直線SL1は、50m以下であってもよい。第1直線SL1は、45m以下であってもよい。第1直線SL1は、40m以下であってもよい。第1直線SL1は、35m以下であってもよい。第1直線SL1は、30m以下であってもよい。第1直線SL1は、25m以下であってもよい。第1直線SL1は、20m以下であってもよい。第1直線SL1は、15m以下であってもよい。第1直線SL1は、10m以下であってもよい。第1直線SL1は、5m以下であってもよい。第1直線SL1は、2m以下であってもよい。第1直線SL1は、1m以下であってもよい。 The first straight line SL1 is greater than 0 m and 65 m or less. The first straight line SL1 may be 1 m or more. The first straight line SL1 may be 2 m or more. The first straight line SL1 may be 5 m or more. The first straight line SL1 may be 10 m or more. The first straight line SL1 may be 15 m or more. The first straight line SL1 may be 20 m or more. The first straight line SL1 may be 25 m or more. The first straight line SL1 may be 30 m or more. The first straight line SL1 may be 35 m or more. The first straight line SL1 may be 40 m or more. The first straight line SL1 may be 45 m or more. The first straight line SL1 may be 55 m or less. The first straight line SL1 may be 50 m or less. The first straight line SL1 may be 45 m or less. The first straight line SL1 may be 40 m or less. The first straight line SL1 may be 35 m or less. The first straight line SL1 may be 30 m or less. The first straight line SL1 may be 25 m or less. The first straight line SL1 may be 20 m or less. The first straight line SL1 may be 15 m or less. The first straight line SL1 may be 10 m or less. The first straight line SL1 may be 5 m or less. The first straight line SL1 may be 2 m or less. The first straight line SL1 may be 1 m or less.
 図10では、第1円弧CA1の中心角は、180°である。第1円弧CA1の中心角は、この角度に限定されず、90°以上270°以下であればよい。第1円弧CA1の中心角は、180°の近傍の値であってもよい。第1円弧CA1の中心角は、90°またはその近傍であってもよい。第1円弧CA1の中心角は、270°またはその近傍であってもよい。第1円弧CA1の中心角は、180°より小さくてもよい。第1円弧CA1の中心角は、180°より大きくてもよい。 In FIG. 10, the central angle of the first arc CA1 is 180 °. The central angle of the first arc CA1 is not limited to this angle and may be 90 ° or more and 270 ° or less. The central angle of the first arc CA1 may be a value near 180 °. The central angle of the first arc CA1 may be 90 ° or its vicinity. The central angle of the first arc CA1 may be 270 ° or its vicinity. The central angle of the first arc CA1 may be smaller than 180 °. The central angle of the first arc CA1 may be larger than 180 °.
 第1円弧CA1の半径は、2m以上10m以下である。第1円弧CA1の半径は、3m以上であってもよい。第1円弧CA1の半径は、4m以上であってもよい。第1円弧CA1の半径は、5m以上であってもよい。第1円弧CA1の半径は、6m以上であってもよい。第1円弧CA1の半径は、7m以上であってもよい。第1円弧CA1の半径は、8m以上であってもよい。第1円弧CA1の半径は、9m以上であってもよい。第1円弧CA1の半径は、9m以下であってもよい。第1円弧CA1の半径は、8m以下であってもよい。第1円弧CA1の半径は、7m以下であってもよい。第1円弧CA1の半径は、6m以下であってもよい。第1円弧CA1の半径は、5m以下であってもよい。第1円弧CA1の半径は、4m以下であってもよい。第1円弧CA1の半径は、3m以下であってもよい。 The radius of the first arc CA1 is 2 m or more and 10 m or less. The radius of the first arc CA1 may be 3 m or more. The radius of the first arc CA1 may be 4 m or more. The radius of the first arc CA1 may be 5 m or more. The radius of the first arc CA1 may be 6 m or more. The radius of the first arc CA1 may be 7 m or more. The radius of the first arc CA1 may be 8 m or more. The radius of the first arc CA1 may be 9 m or more. The radius of the first arc CA1 may be 9 m or less. The radius of the first arc CA1 may be 8 m or less. The radius of the first arc CA1 may be 7 m or less. The radius of the first arc CA1 may be 6 m or less. The radius of the first arc CA1 may be 5 m or less. The radius of the first arc CA1 may be 4 m or less. The radius of the first arc CA1 may be 3 m or less.
通常、旋回中の鞍乗型車両の車両左右方向の加速度は、0.1G~0.8G程度である。旋回中の鞍乗型車両の車両左右方向の加速度は、0.3G~0.6G程度が好ましい。第1円弧CA1の半径が2m以上3m未満の場合、第2円弧CA2の半径が4m以上5m未満であるため、第1旋回領域Zd内を走行する自動二輪車110の旋回半径は、3m以上5m未満である。図9のグラフから、旋回半径が2m以上5m未満で、旋回中の鞍乗型車両の車両左右方向の加速度が0.3G~0.6Gの場合、旋回中の鞍乗型車両の車両前方向の速度は8~20km/h程度となる。この速度は、1つの旋回動作中の鞍乗型車両の車両前方向の速度を一定と仮定した場合の値である。
 ここで、自動二輪車110がアプローチ領域Zc内を直進中に加速と減速をし、第1旋回領域Zdを旋回するときの速度が、一定で、且つ、第2旋回領域Zfを旋回するときの車両前方向の速度と同じであると仮定する。この仮定において、ライダーごとの自動二輪車110の走行状態の違いを明確にするには、旋回中の車両前方向の速度と直進中の車両前方向の速度の最大値との差が、20km/h程度で、直進中の車両前方向の加速度が、±0.2~±0.5G程度が好ましい。上記の仮定において、アプローチ領域Zc内を直進中の車両前方向の速度の最小値をvMIN、最大値をvMAXとし、直進中の車両前方向の加速度を±a´とすると、第1直線SL1の長さは、(vMAX 2-vMIN 2)/a´となる。したがって、旋回中の車両前方向の速度が8km/h程度の場合に、直進中と旋回中の速度差が20km/hで、直進中の加速度が±0.5Gとなるには、第1直線SL1の長さLは11m程度必要である。また、旋回中の車両前方向の速度が20km/h程度の場合、直進中と旋回中の速度差が20km/hで、直進中の加速度が±0.2Gとなるには、第1直線SL1の長さLは48m程度必要である。したがって、第1円弧CA1の半径が2m以上3m未満の場合、第1直線SL1の長さは11~48mが好ましい。
Normally, the acceleration in the vehicle left-right direction of the straddle-type vehicle during turning is about 0.1 G to 0.8 G. The lateral acceleration of the saddle riding type vehicle during turning is preferably about 0.3G to 0.6G. When the radius of the first arc CA1 is 2 m or more and less than 3 m, the radius of the second arc CA2 is 4 m or more and less than 5 m, so the turning radius of the motorcycle 110 traveling in the first turning region Zd is 3 m or more and less than 5 m. Is. From the graph of FIG. 9, when the turning radius is 2 m or more and less than 5 m and the acceleration in the vehicle left-right direction of the saddle riding type vehicle during turning is 0.3 G to 0.6 G, the vehicle front direction of the saddle riding type vehicle during turning The speed is about 8 to 20 km / h. This speed is a value on the assumption that the speed in the vehicle front direction of the saddle riding type vehicle during one turning operation is constant.
A vehicle in which the motorcycle 110 accelerates and decelerates straight in the approach area Zc and makes a turn in the first turning area Zd at a constant speed and makes a turn in the second turning area Zf. It is assumed to be the same as the forward velocity. Under this assumption, in order to clarify the difference in the running state of the motorcycle 110 for each rider, the difference between the speed in the vehicle front direction during turning and the maximum value in the vehicle front direction during straight traveling is 20 km / h. It is preferable that the acceleration in the vehicle front direction while traveling straight ahead is about ± 0.2 to ± 0.5 G. Under the above assumptions, if the minimum value of the speed in the vehicle front direction when traveling straight in the approach area Zc is v MIN and the maximum value is v MAX, and the acceleration in the vehicle front direction when traveling straight is ± a ′, then the first straight line The length of SL1 is (v MAX 2 −v MIN 2 ) / a ′. Therefore, when the speed in the vehicle front direction during turning is about 8 km / h, the difference between the speed during straight traveling and the speed during turning is 20 km / h, and the acceleration during straight traveling becomes ± 0.5 G. The length L needs to be about 11 m. Further, when the speed of the vehicle in the forward direction during turning is about 20 km / h, the speed difference between the straight traveling and the turning is 20 km / h and the acceleration during the straight traveling is ± 0.2 G. The length L needs to be about 48 m. Therefore, when the radius of the first arc CA1 is 2 m or more and less than 3 m, the length of the first straight line SL1 is preferably 11 to 48 m.
 また、第1円弧CA1の半径が3m以上4m未満の場合、第1旋回領域Zd内を走行する自動二輪車110の旋回半径は、3m以上6m未満である。図9のグラフから、旋回半径が3m以上6m未満で、旋回中の鞍乗型車両の車両左右方向の加速度が0.3G~0.6Gの場合、旋回中の鞍乗型車両の車両前方向の速度は10~22km/h程度である。旋回中の車両前方向の速度が10km/h程度の場合、直進中と旋回中の速度差が20km/hで、直進中の加速度が±0.5Gとなるには、第1直線SL1の長さLは12m程度必要である。
旋回中の車両前方向の速度が22km/h程度の場合、直進中と旋回中の速度差が20km/hで、直進中の加速度が±0.2Gとなるには、第1直線SL1の長さLは51m程度必要である。したがって、第1円弧CA1の半径が3m以上4m未満の場合、第1直線SL1の長さは12~51mが好ましい。
Further, when the radius of the first arc CA1 is 3 m or more and less than 4 m, the turning radius of the motorcycle 110 traveling in the first turning region Zd is 3 m or more and less than 6 m. From the graph of FIG. 9, when the turning radius is 3 m or more and less than 6 m and the acceleration in the vehicle left-right direction of the saddle riding type vehicle during turning is 0.3 G to 0.6 G, the vehicle front direction of the saddle riding type vehicle during turning The speed is about 10 to 22 km / h. When the speed in the vehicle front direction during turning is about 10 km / h, in order for the speed difference between straight traveling and turning to be 20 km / h and the acceleration during straight traveling to be ± 0.5 G, the length L of the first straight line SL1 is L. Requires about 12 m.
When the speed in the front direction of the vehicle during turning is about 22 km / h, the difference in speed between straight traveling and turning is 20 km / h, and the acceleration during straight traveling is ± 0.2 G. Requires about 51 m. Therefore, when the radius of the first arc CA1 is 3 m or more and less than 4 m, the length of the first straight line SL1 is preferably 12 to 51 m.
 同様に考えて、第1円弧CA1の半径が4m以上5m未満の場合、第1直線SL1の長さは13~54mが好ましい。第1円弧CA1の半径が5m以上6m未満の場合、第1直線SL1の長さは14~56mが好ましい。第1円弧CA1の半径が6m以上7m未満の場合、第1直線SL1の長さは15~59mが好ましい。第1円弧CA1の半径が7m以上8m未満の場合、第1直線SL1の長さは16~60mが好ましい。第1円弧CA1の半径が8m以上9m未満の場合、第1直線SL1の長さは16~62mが好ましい。第1円弧CA1の半径が9m以上10m以下の場合、第1直線SL1の長さは17~65mが好ましい。以上により、第1円弧CA1の半径が2m以上10m未満の場合、第1直線SL1の長さは11m~65mが好ましい。 Similarly, when the radius of the first arc CA1 is 4 m or more and less than 5 m, the length of the first straight line SL1 is preferably 13 to 54 m. When the radius of the first arc CA1 is 5 m or more and less than 6 m, the length of the first straight line SL1 is preferably 14 to 56 m. When the radius of the first arc CA1 is 6 m or more and less than 7 m, the length of the first straight line SL1 is preferably 15 to 59 m. When the radius of the first arc CA1 is 7 m or more and less than 8 m, the length of the first straight line SL1 is preferably 16 to 60 m. When the radius of the first arc CA1 is 8 m or more and less than 9 m, the length of the first straight line SL1 is preferably 16 to 62 m. When the radius of the first arc CA1 is 9 m or more and 10 m or less, the length of the first straight line SL1 is preferably 17 to 65 m. From the above, when the radius of the first arc CA1 is 2 m or more and less than 10 m, the length of the first straight line SL1 is preferably 11 m to 65 m.
 図10では、第2直線領域Zeは、アプローチ領域Zcと平行である。第2直線領域Zeは、アプローチ領域Zcと平行でなくてもよい。図10では、第2直線領域Zeの長さは、アプローチ領域Zcの長さと同じである。第2直線領域Zeの長さは、アプローチ領域Zcと長さと異なっていてもよい。図10では、第2旋回領域Zfの内周縁の半径は、第1旋回領域Zdの内周縁(第1円弧)の半径と同じである。第2旋回領域Zfの内周縁の半径は、第1旋回領域Zdの内周縁(第1円弧CA1)の半径と同じでなくてもよい。 In FIG. 10, the second straight line area Ze is parallel to the approach area Zc. The second straight line area Ze does not have to be parallel to the approach area Zc. In FIG. 10, the length of the second linear region Ze is the same as the length of the approach region Zc. The length of the second straight line area Ze may be different from the length of the approach area Zc. In FIG. 10, the radius of the inner peripheral edge of the second turning region Zf is the same as the radius of the inner peripheral edge (first arc) of the first turning region Zd. The radius of the inner peripheral edge of the second turning region Zf may not be the same as the radius of the inner peripheral edge (first arc CA1) of the first turning region Zd.
 環状領域Zaの中および外の少なくとも一方には、複数のガイド部7が配置されている。複数のガイド部7は、自動二輪車110が環状領域Za内を走行するように自動二輪車110の進行方向をガイドするために設けられている。ガイド部7は、地面に設けられる。ガイド部7は、自動二輪車110がガイド部7の上を走行可能に構成されていてもよい。例えば、ガイド部7は、地面に表示されたマークなどであってもよい。この場合、ガイド部7は、自動二輪車110の進行方向をガイドするものの、進行方向を制限しない。ガイド部7は、自動二輪車110の進行方向を制限するように構成されていてもよい。例えば、ガイド部7は、地面から突出していてもよい。 A plurality of guide portions 7 are arranged in at least one of the inside and outside of the annular area Za. The plurality of guide portions 7 are provided to guide the traveling direction of the motorcycle 110 so that the motorcycle 110 travels in the annular region Za. The guide part 7 is provided on the ground. The guide unit 7 may be configured such that the motorcycle 110 can travel on the guide unit 7. For example, the guide unit 7 may be a mark or the like displayed on the ground. In this case, the guide portion 7 guides the traveling direction of the motorcycle 110, but does not limit the traveling direction. The guide unit 7 may be configured to limit the traveling direction of the motorcycle 110. For example, the guide portion 7 may project from the ground.
 ガイド部7は、設置場所を自在に変更可能に地面に設置されてもよい。ガイド部7は、地面に固定されていてもよい。設置場所を自在に変更可能なガイド部7として、例えば、ロードコーン(パイロン)が用いられてもよい。ロードコーンは、円錐状のロードコーンであってもよく、例えば半球状などの円錐状以外の形状のロードコーンであってもよい。ロードコーンは、高さが45~70cm程度のロードコーンであってもよく、高さが5cm程度の小型のロードコーンであってもよい。 The guide unit 7 may be installed on the ground so that the installation location can be freely changed. The guide part 7 may be fixed to the ground. For example, a load cone (pylon) may be used as the guide unit 7 whose installation location can be freely changed. The load cone may be a conical load cone, and may be a load cone having a shape other than a conical shape such as a hemispherical shape. The load cone may be a load cone having a height of about 45 to 70 cm, or a small load cone having a height of about 5 cm.
 複数のガイド部7は、自動二輪車110がアプローチ旋回領域Zb内を走行するように自動二輪車110の進行方向をガイドするための複数のアプローチ旋回ガイド部7bを含む。複数のアプローチ旋回ガイド部7bは、アプローチ旋回領域Zbの中および外の少なくとも一方に設けられる。ここでのアプローチ旋回領域Zbの外とは、アプローチ旋回領域Zbの外で且つ環状領域Zaの外をいう。 The plurality of guide portions 7 include a plurality of approach turning guide portions 7b for guiding the traveling direction of the motorcycle 110 so that the motorcycle 110 travels in the approach turning area Zb. The plurality of approach turning guide portions 7b are provided in at least one of the inside and outside of the approach turning area Zb. The outside of the approach turning area Zb herein means outside the approach turning area Zb and outside the annular area Za.
 複数のアプローチ旋回ガイド部7bは、自動二輪車110がアプローチ領域Zc内を走行するように自動二輪車110の進行方向をガイドするための2つのアプローチガイド部7cを含む。複数のアプローチ旋回ガイド部7bは、自動二輪車110が第1旋回領域Zd内を走行するように自動二輪車110の進行方向をガイドするための複数の旋回ガイド部7dを含む。図10では、旋回ガイド部7dの数は5つである。 The plurality of approach turning guide parts 7b include two approach guide parts 7c for guiding the traveling direction of the motorcycle 110 so that the motorcycle 110 travels in the approach region Zc. The plurality of approach turning guide parts 7b include a plurality of turning guide parts 7d for guiding the traveling direction of the motorcycle 110 so that the motorcycle 110 travels in the first turning region Zd. In FIG. 10, the number of turning guide portions 7d is five.
 2つのアプローチガイド部7cは、アプローチ領域Zcの略中央に配置される。2つのアプローチガイド部7cを通る直線は、第1直線SL1と略直交する。自動二輪車110は、2つのアプローチガイド部7cの間を通過する。図10では、2つのアプローチガイド部7cのうち第1直線SL1に近い方のアプローチガイド部7cは、アプローチ領域Zcの外に配置されている。2つのアプローチガイド部7cのうち第1直線SL1に近い方のアプローチガイド部7cは、第1直線SL1上に配置されてもよく、アプローチ領域Zcの中に配置されてもよい。図10では、2つのアプローチガイド部7cのうち第2直線SL2に近い方のアプローチガイド部7cは、アプローチ領域Zcの中に配置されている。2つのアプローチガイド部7cのうち第2直線SL2に近い方のアプローチガイド部7cは、第2直線SL2上に配置されてもよく、アプローチ領域Zcの外に配置されてもよい。2つのアプローチガイド部7cと第1直線SL1との最短距離は、2つのアプローチガイド部7cと第2直線SL2との最短距離よりも短くてもよい。 The two approach guide parts 7c are arranged in the approximate center of the approach area Zc. The straight line passing through the two approach guide portions 7c is substantially orthogonal to the first straight line SL1. The motorcycle 110 passes between the two approach guide portions 7c. In FIG. 10, one of the two approach guide portions 7c, which is closer to the first straight line SL1, is located outside the approach area Zc. Of the two approach guide portions 7c, the approach guide portion 7c closer to the first straight line SL1 may be arranged on the first straight line SL1 or may be arranged in the approach area Zc. In FIG. 10, the approach guide portion 7c, which is closer to the second straight line SL2, of the two approach guide portions 7c is arranged in the approach area Zc. Of the two approach guide portions 7c, the approach guide portion 7c that is closer to the second straight line SL2 may be arranged on the second straight line SL2 or may be arranged outside the approach region Zc. The shortest distance between the two approach guide portions 7c and the first straight line SL1 may be shorter than the shortest distance between the two approach guide portions 7c and the second straight line SL2.
 複数の旋回ガイド部7dは、第1円弧CA1に沿って配列されている。自動二輪車110は、旋回ガイド部7dと第2円弧CA2との間を通過する。図10では、複数の旋回ガイド部7dは、第1円弧CA1上に配置されている。旋回ガイド部7dは、第1円弧CA1の径方向内側に配置されてもよく、第1円弧CA1の径方向外側に配置されてもよい。 The plurality of turning guide portions 7d are arranged along the first arc CA1. The motorcycle 110 passes between the turning guide portion 7d and the second arc CA2. In FIG. 10, the plurality of turning guide portions 7d are arranged on the first arc CA1. The turning guide portion 7d may be arranged radially inside the first arc CA1, or may be arranged radially outside the first arc CA1.
 第2直線領域Zeのガイド部7は、アプローチ領域Zcのアプローチガイド部7cと同様に設けられる。第2旋回領域Zfのガイド部7は、第1旋回領域Zdの旋回ガイド部7dと同様に設けられる。 The guide portion 7 of the second linear area Ze is provided similarly to the approach guide portion 7c of the approach area Zc. The guide portion 7 of the second turning area Zf is provided similarly to the turning guide portion 7d of the first turning area Zd.
 このようなガイド部7が設けられた環状下で自動二輪車110が環状領域Zaを走行したときの走行軌跡のうちの1つを、第1環状軌跡Ta1とする。第1環状軌跡Ta1は、アプローチ旋回領域Zbを含む環状領域Za内を少なくとも1周にわたって連続して走行したときの自動二輪車110の走行軌跡である。第1環状軌跡Ta1は、自動二輪車110がアプローチ旋回領域Zbを走行したときの走行軌跡である第1アプローチ旋回軌跡Tb1を含む。第1アプローチ旋回軌跡Tb1は、アプローチ領域Zcから第1旋回領域Zdに進入するように、アプローチ旋回領域Zbの全域にわたって連続して走行したときの自動二輪車110の走行軌跡である。第1アプローチ旋回軌跡Tb1は、第1直線SL1および第1円弧CA1に沿って走行したときの自動二輪車110の走行軌跡である。第1環状軌跡Ta1は、第1アプローチ旋回軌跡Tb1の後端に接続され、第1アプローチ旋回軌跡Tb1と旋回方向が同じである旋回中の走行軌跡を含む。その走行軌跡とは、第2旋回領域Zfを走行したときの走行軌跡である。 One of the traveling loci when the motorcycle 110 travels in the annular area Za under the annular shape provided with such a guide portion 7 is referred to as a first annular locus Ta1. The first annular locus Ta1 is a traveling locus of the motorcycle 110 when the motorcycle 110 continuously travels in the annular region Za including the approach turning region Zb for at least one revolution. The first annular locus Ta1 includes a first approach turning locus Tb1 which is a running locus when the motorcycle 110 travels in the approach turning region Zb. The first approach turning locus Tb1 is a running locus of the motorcycle 110 when running continuously over the entire approach turning area Zb so as to enter the first turning area Zd from the approach area Zc. The first approach turning trajectory Tb1 is a traveling trajectory of the motorcycle 110 when traveling along the first straight line SL1 and the first arc CA1. The first annular locus Ta1 is connected to the rear end of the first approach turning locus Tb1 and includes a traveling locus during turning having the same turning direction as the first approach turning locus Tb1. The traveling locus is a traveling locus when traveling in the second turning region Zf.
 第1アプローチ旋回軌跡Tb1は、アプローチ領域Zcを走行したときの自動二輪車110の走行軌跡である第1アプローチ軌跡Tc1と、第1旋回領域Zdを走行したときの自動二輪車110の走行軌跡である第1旋回軌跡Td1とを含む。第1アプローチ軌跡Tc1は、2つのアプローチガイド部7cの間を通過しつつ、アプローチ領域Zcを走行したときの走行軌跡である。第1旋回軌跡Td1は、自動二輪車110が旋回ガイド部7dと第2円弧CA2との間を通過しつつ、第1旋回領域Zdを走行したときの走行軌跡である。 The first approach turning locus Tb1 is the running locus of the motorcycle 110 when traveling in the approach area Zc, and the first approach locus Tc1 is the running trajectory of the motorcycle 110 when traveling in the first turning area Zd. One turning locus Td1 is included. The first approach trajectory Tc1 is a traveling trajectory when traveling in the approach area Zc while passing between the two approach guide portions 7c. The first turning locus Td1 is a running locus when the motorcycle 110 travels in the first turning region Zd while passing between the turning guide portion 7d and the second arc CA2.
 第1環状軌跡Ta1は、自動二輪車110が第2旋回領域Zfを旋回したときの走行軌跡を含む。自動二輪車110が第2旋回領域Zfを旋回したときの走行軌跡は、第1アプローチ旋回軌跡Tb1の後端に接続される。自動二輪車110が第2旋回領域Zfを旋回したときの走行軌跡は、第1アプローチ旋回軌跡Tb1と旋回方向が同じである。 The first annular locus Ta1 includes a traveling locus when the motorcycle 110 turns in the second turning region Zf. The traveling locus when the motorcycle 110 turns in the second turning region Zf is connected to the rear end of the first approach turning locus Tb1. The traveling locus when the motorcycle 110 turns in the second turning region Zf has the same turning direction as the first approach turning locus Tb1.
 図11のフローチャートを参照しつつ、プロセッサ102が実行する情報処理について説明する。図11に示すように、プロセッサ102は、鞍乗型車両走行データ取得処理S11と、ライダー識別データ取得処理S12と、鞍乗型車両走行複合データ生成処理S13と、鞍乗型車両走行複合データ記憶処理S14と、鞍乗型車両走行複合データ出力処理S15とを実行する。 Information processing executed by the processor 102 will be described with reference to the flowchart of FIG. 11. As shown in FIG. 11, the processor 102 includes a saddle-ride type vehicle travel data acquisition process S11, a rider identification data acquisition process S12, a saddle-ride type vehicle travel composite data generation process S13, and a saddle-ride type vehicle travel composite data storage. The processing S14 and the saddle riding type vehicle traveling composite data output processing S15 are executed.
 鞍乗型車両走行データ取得処理S11において、プロセッサ102は、第1アプローチ旋回軌跡データDTb1を取得する。第1アプローチ旋回軌跡データDTb1は、第1アプローチ旋回軌跡Tb1に関連するデータである。上述の走行軌跡データBTは、第1アプローチ旋回軌跡データDTb1を含んでいる。プロセッサ102は、走行軌跡データBTから、第1アプローチ旋回軌跡データDTb1を抽出する。したがって、第1アプローチ旋回軌跡データDTb1は、GNSSを利用して生成されたデータである。プロセッサ102は、走行軌跡データBTに示される走行軌跡の形状を基に、走行軌跡データBTから第1アプローチ旋回軌跡データDTb1を抽出してもよい。 In the saddle riding type vehicle travel data acquisition process S11, the processor 102 acquires the first approach turning trajectory data DTb1. The first approach turning locus data DTb1 is data related to the first approach turning locus Tb1. The traveling locus data BT described above includes the first approach turning locus data DTb1. The processor 102 extracts the first approach turning trajectory data DTb1 from the traveling trajectory data BT. Therefore, the first approach turning trajectory data DTb1 is data generated using GNSS. The processor 102 may extract the first approach turning trajectory data DTb1 from the traveling trajectory data BT based on the shape of the traveling trajectory shown in the traveling trajectory data BT.
 鞍乗型車両走行データ取得処理S11において、プロセッサ102は、第1環状軌跡データDTa1を取得してもよい。第1環状軌跡データDTa1は、第1環状軌跡Ta1に関連するデータである。プロセッサ102は、走行軌跡データBTから、第1環状軌跡データDTa1を抽出する。第1環状軌跡データDTa1は、第1アプローチ旋回軌跡データDTb1を含む。 In the saddle riding type vehicle travel data acquisition process S11, the processor 102 may acquire the first ring-shaped trajectory data DTa1. The first ring-shaped trajectory data DTa1 is data related to the first ring-shaped trajectory Ta1. The processor 102 extracts the first circular trajectory data DTa1 from the traveling trajectory data BT. The first circular trajectory data DTa1 includes first approach turning trajectory data DTb1.
 鞍乗型車両走行データ取得処理S11において、プロセッサ102は、第1アプローチ旋回前方向加速度データDAb1を取得する。第1アプローチ旋回前方向加速度データDAb1は、第1アプローチ旋回軌跡Tb1を走行したときの自動二輪車110の車両前方向の加速度に関連するデータである。上述の前方向加速度データBAは、第1アプローチ旋回前方向加速度データDAb1を含んでいる。プロセッサ102は、前方向加速度データBAから、第1アプローチ旋回前方向加速度データDAb1を抽出する。前方向加速度データBAがGNSS受信ユニット90から取得された場合、第1アプローチ旋回前方向加速度データDAb1は、GNSSを利用して生成されたデータである。第1アプローチ旋回前方向加速度データDAb1は、第1アプローチ旋回軌跡Tb1を走行中の複数のタイミングの加速度を示すデータである。複数のタイミングは連続していてもよい。前方向加速度データBAが、GNSS受信ユニット90により生成されたデータであって、走行軌跡データBTと予め関連付けられている場合、第1アプローチ旋回前方向加速度データDAb1は、第1アプローチ旋回軌跡データDTb1に基づいて抽出されてもよい。走行軌跡データBTは、軌跡上の各位置の日時のデータを含んでいる。前方向加速度データBAも、加速度が検出された日時のデータを含んでいる。第1アプローチ旋回軌跡データDTb1に含まれる日時のデータと前方向加速度データBAに含まれる日時のデータを用いることで、第1アプローチ旋回前方向加速度データDAb1が抽出されてもよい。 In the saddle riding type vehicle traveling data acquisition processing S11, the processor 102 acquires the first approach turning front direction acceleration data DAb1. The first approach turning front direction acceleration data DAb1 is data relating to the vehicle front direction acceleration of the motorcycle 110 when traveling on the first approach turning locus Tb1. The above-mentioned forward acceleration data BA includes the first approach turning forward acceleration data DAb1. The processor 102 extracts the first approach turning front direction acceleration data DAb1 from the front direction acceleration data BA. When the forward acceleration data BA is acquired from the GNSS receiving unit 90, the first approach turning forward acceleration data DAb1 is data generated using GNSS. The first approach turning front direction acceleration data DAb1 is data indicating accelerations at a plurality of timings during traveling on the first approach turning trajectory Tb1. The plurality of timings may be consecutive. When the forward acceleration data BA is data generated by the GNSS receiving unit 90 and is associated with the traveling trajectory data BT in advance, the first approach turning forward acceleration data DAb1 is the first approach turning trajectory data DTb1. May be extracted based on. The traveling locus data BT includes date and time data of each position on the locus. The forward acceleration data BA also includes the date and time when the acceleration was detected. The first approach turning forward acceleration data DAb1 may be extracted by using the date and time data included in the first approach turning trajectory data DTb1 and the date and time data included in the forward acceleration data BA.
 鞍乗型車両走行データ取得処理S11において、プロセッサ102は、第1環状前方向加速度データDAa1を取得してもよい。第1環状前方向加速度データDAa1は、第1環状軌跡Ta1を走行したときの自動二輪車110の車両前方向の加速度に関連するデータである。プロセッサ102は、左右方向加速度データBLから、第1環状前方向加速度データDAa1を抽出する。第1環状前方向加速度データDAa1は、第1アプローチ旋回前方向加速度データDAb1を含む。 In the saddle riding type vehicle travel data acquisition process S11, the processor 102 may acquire the first annular forward acceleration data DAa1. The first annular forward acceleration data DAa1 is data relating to the vehicle forward acceleration of the motorcycle 110 when traveling on the first annular locus Ta1. The processor 102 extracts the first annular forward acceleration data DAa1 from the lateral acceleration data BL. The first annular forward acceleration data DAa1 includes first approach forward turning acceleration data DAb1.
 鞍乗型車両走行データ取得処理S11において、プロセッサ102は、第1アプローチ旋回左右方向加速度データDLb1を取得してもよい。第1アプローチ旋回左右方向加速度データDLb1は、第1アプローチ旋回軌跡Tb1を走行したときの自動二輪車110の車両左右方向の加速度に関連するデータである。上述の左右方向加速度データBLは、第1アプローチ旋回左右方向加速度データDLb1を含んでいる。プロセッサ102は、左右方向加速度データBLから、第1アプローチ旋回左右方向加速度データDLb1を抽出する。したがって、第1アプローチ旋回左右方向加速度データDLb1は、GNSSを利用して生成されたデータである。第1アプローチ旋回左右方向加速度データDLb1は、第1アプローチ旋回軌跡Tb1を走行中の複数のタイミングの加速度を示すデータである。複数のタイミングは連続していてもよい。左右方向加速度データBLが、走行軌跡データBTと予め関連付けられている場合、第1アプローチ旋回左右方向加速度データDLb1は、第1アプローチ旋回軌跡データDTb1に基づいて抽出されてもよい。左右方向加速度データBLは、加速度が検出された日時のデータを含んでいる。第1アプローチ旋回軌跡データDTb1に含まれる日時のデータと左右方向加速度データBLに含まれる日時のデータを用いることで、第1アプローチ旋回左右方向加速度データDLb1が抽出されてもよい。 In the saddle riding type vehicle travel data acquisition process S11, the processor 102 may acquire the first approach turning left / right direction acceleration data DLb1. The first approach turning left-right acceleration data DLb1 is data relating to the vehicle left-right acceleration of the motorcycle 110 when traveling on the first approach turning trajectory Tb1. The left-right acceleration data BL includes the first approach turning left-right acceleration data DLb1. The processor 102 extracts the first approach turning left / right acceleration data DLb1 from the left / right acceleration data BL. Therefore, the first approach turn left / right acceleration data DLb1 is data generated using GNSS. The first approach turning left / right acceleration data DLb1 is data indicating accelerations at a plurality of timings during traveling on the first approach turning trajectory Tb1. The plurality of timings may be consecutive. When the lateral acceleration data BL is associated with the traveling trajectory data BT in advance, the first approach turning lateral acceleration data DLb1 may be extracted based on the first approach turning trajectory data DTb1. The lateral acceleration data BL includes data of the date and time when the acceleration was detected. The first approach turning left / right acceleration data DLb1 may be extracted by using the date / time data included in the first approach turning trajectory data DTb1 and the date / time data included in the left / right acceleration data BL.
 鞍乗型車両走行データ取得処理S11において、プロセッサ102は、第1環状左右方向加速度データDLa1を取得してもよい。第1環状左右方向加速度データDLa1は、第1環状軌跡Ta1を走行したときの自動二輪車110の車両左右方向の加速度に関連するデータである。プロセッサ102は、左右方向加速度データBLから、第1環状左右方向加速度データDLa1を抽出する。第1環状左右方向加速度データDLa1は、第1アプローチ旋回左右方向加速度データDLb1を含む。 In the saddle riding type vehicle travel data acquisition processing S11, the processor 102 may acquire the first annular left-right acceleration data DLa1. The first annular left-right acceleration data DLa1 is data relating to the vehicle left-right acceleration of the motorcycle 110 when traveling on the first annular locus Ta1. The processor 102 extracts the first annular lateral acceleration data DLa1 from the lateral acceleration data BL. The first annular lateral acceleration data DLa1 includes first approach turning lateral acceleration data DLb1.
 鞍乗型車両走行データ取得処理S11において、プロセッサ102は、第1旋回車両姿勢データD1V1を取得してもよい。第1旋回車両姿勢データD1V1は、第1旋回軌跡Td1を走行したときの自動二輪車110の姿勢に関連するデータである。上述の車両姿勢データB1Vは、第1旋回車両姿勢データD1V1を含んでいる。プロセッサ102は、車両姿勢データB1Vから、第1旋回車両姿勢データD1V1を抽出する。そのため、第1旋回車両姿勢データD1V1は、第1旋回軌跡Td1を走行中の自動二輪車110のロール角、ピッチ角、ヨー角、前輪11(操舵車輪)の操舵角、自動二輪車110のある位置の車両左右方向の変位、自動二輪車110のある位置の車両上下方向の変位の少なくとも1つに関連したデータである。第1旋回車両姿勢データD1V1は、第1旋回軌跡Td1を走行中の複数のタイミングの車両110の姿勢を示すデータであってもよく、第1旋回軌跡Td1を走行中の1つのタイミングだけの車両110の姿勢を示すデータであってもよい。複数のタイミングは連続していてもよい。車両姿勢データB1Vは、車両姿勢データB1Vの基になるデータをセンサ等が検出した日時のデータを含んでいる。第1アプローチ旋回軌跡データDTb1に含まれる日時のデータと車両姿勢データB1Vに含まれる日時のデータを用いることで、第1旋回車両姿勢データD1V1が抽出されてもよい。 In the saddle riding type vehicle travel data acquisition process S11, the processor 102 may acquire the first turning vehicle attitude data D1V1. The first turning vehicle attitude data D1V1 is data relating to the attitude of the motorcycle 110 when traveling on the first turning trajectory Td1. The vehicle attitude data B1V described above includes the first turning vehicle attitude data D1V1. The processor 102 extracts the first turning vehicle attitude data D1V1 from the vehicle attitude data B1V. Therefore, the first turning vehicle attitude data D1V1 indicates the roll angle, the pitch angle, the yaw angle of the motorcycle 110 running on the first turning trajectory Td1, the steering angle of the front wheels 11 (steering wheels), and the position of the motorcycle 110. It is data related to at least one of displacement in the vehicle left-right direction and displacement in the vehicle up-down direction at a certain position of the motorcycle 110. The first turning vehicle attitude data D1V1 may be data indicating the attitude of the vehicle 110 at a plurality of timings when traveling on the first turning trajectory Td1, and the vehicle at only one timing when traveling on the first turning trajectory Td1. It may be data indicating the posture of 110. The plurality of timings may be consecutive. The vehicle attitude data B1V includes data on the date and time when a sensor or the like detects the data that is the basis of the vehicle attitude data B1V. The first turning vehicle attitude data D1V1 may be extracted by using the date and time data included in the first approach turning trajectory data DTb1 and the date and time data included in the vehicle attitude data B1V.
 鞍乗型車両走行データ取得処理S11において、プロセッサ102は、第1旋回ライダー姿勢データD1R1を取得してもよい。第1旋回ライダー姿勢データD1R1は、第1旋回軌跡Td1を走行したときの自動二輪車110に乗車するライダーRの姿勢に関連するデータである。上述のライダー姿勢データB1Rは、第1旋回ライダー姿勢データD1R1を含んでいる。プロセッサ102は、ライダー姿勢データB1Rから、第1旋回ライダー姿勢データD1R1を抽出する。そのため、第1旋回ライダー姿勢データD1R1は、第1旋回軌跡Td1を走行中のライダーRの頭の向き、肩の位置、脚の位置、尻の位置、および、股の位置の少なくともいずれか1つに関連するデータである。第1旋回ライダー姿勢データD1R1は、第1旋回軌跡Td1を走行中の複数のタイミングのライダーRの姿勢を示すデータであってもよく、第1旋回軌跡Td1を走行中の1つのタイミングだけのライダーRの姿勢を示すデータであってもよい。ライダー姿勢データB1Rは、撮像装置91のカメラで撮影された日時のデータを含んでいる。上述したように、走行軌跡データBTと車両姿勢データB1Vは、日時のデータを含んでいる。第1アプローチ旋回軌跡データDTb1に含まれる日時のデータとライダー姿勢データB1Rに含まれる日時のデータを用いることで、第1旋回ライダー姿勢データD1R1が抽出されてもよい。また、第1旋回車両姿勢データD1V1に含まれる日時のデータとライダー姿勢データB1Rに含まれる日時のデータを用いることで、第1旋回車両姿勢データD1V1と同じタイミングの第1旋回ライダー姿勢データD1R1が抽出されてもよい。 In the saddle riding type vehicle travel data acquisition process S11, the processor 102 may acquire the first turning rider posture data D1R1. The first turning rider posture data D1R1 is data relating to the posture of the rider R riding on the motorcycle 110 when traveling on the first turning locus Td1. The rider attitude data B1R described above includes the first turning rider attitude data D1R1. The processor 102 extracts the first turning rider posture data D1R1 from the rider posture data B1R. Therefore, the first turning rider posture data D1R1 includes at least one of the head direction, shoulder position, leg position, hip position, and crotch position of the rider R traveling on the first turning trajectory Td1. Is data related to. The first turning rider posture data D1R1 may be data indicating the postures of the rider R at a plurality of timings during traveling on the first turning trajectory Td1, and the rider at only one timing during traveling on the first turning trajectory Td1. It may be data indicating the posture of R. The rider posture data B1R includes data of the date and time when the camera of the image pickup device 91 took a picture. As described above, the traveling locus data BT and the vehicle attitude data B1V include date and time data. The first turning rider posture data D1R1 may be extracted by using the date and time data included in the first approach turning trajectory data DTb1 and the date and time data included in the rider posture data B1R. Further, by using the date and time data included in the first turning vehicle attitude data D1V1 and the date and time data included in the rider attitude data B1R, the first turning rider attitude data D1R1 at the same timing as the first turning vehicle attitude data D1V1 is obtained. It may be extracted.
 ライダー識別データ取得処理S12において、プロセッサ102は、第1ライダー識別データDI1を取得する。第1ライダー識別データDI1は、第1アプローチ旋回軌跡Tb1を走行したときの自動二輪車110に乗車するライダーRを識別するデータである。第1ライダー識別データDI1は、記憶部103に記憶された現在のライダー識別データBIと同じである。 In the rider identification data acquisition process S12, the processor 102 acquires the first rider identification data DI1. The first rider identification data DI1 is data for identifying the rider R who gets on the motorcycle 110 when traveling on the first approach turning trajectory Tb1. The first rider identification data DI1 is the same as the current rider identification data BI stored in the storage unit 103.
 鞍乗型車両走行複合データ生成処理S13において、プロセッサ102は、第1アプローチ旋回軌跡データDTb1と、第1アプローチ旋回前方向加速度データDAb1とに基づいて、第1鞍乗型車両走行複合データD1c1を生成する。第1鞍乗型車両走行複合データD1c1は、第1アプローチ旋回軌跡Tb1、および、第1アプローチ旋回軌跡Tb1を走行したときの自動二輪車110の車両前方向の加速度を関連付けて生成される。 In the saddle riding type vehicle traveling composite data generation process S13, the processor 102 generates the first straddling type vehicle traveling composite data D1c1 based on the first approach turning trajectory data DTb1 and the first approach turning front direction acceleration data DAb1. To generate. The first straddle-type vehicle traveling composite data D1c1 is generated in association with the first approach turning trajectory Tb1 and the acceleration in the vehicle front direction of the motorcycle 110 when traveling on the first approach turning trajectory Tb1.
 鞍乗型車両走行複合データ生成処理S13において、プロセッサ102は、第1アプローチ旋回軌跡データDTb1と、第1アプローチ旋回前方向加速度データDAb1と、第1アプローチ旋回左右方向加速度データDLb1とに基づいて、第1鞍乗型車両走行複合データD1c1を生成してもよい。この場合、第1鞍乗型車両走行複合データD1c1は、第1アプローチ旋回軌跡Tb1、第1アプローチ旋回軌跡Tb1を走行したときの自動二輪車110の車両前方向の加速度、および、第1アプローチ旋回軌跡Tb1を走行したときの自動二輪車110の車両左右方向の加速度を関連付けて生成される。 In the saddle riding type vehicle traveling composite data generation processing S13, the processor 102, based on the first approach turning trajectory data DTb1, the first approach turning front direction acceleration data DAb1, and the first approach turning left / right direction acceleration data DLb1. The first saddle riding type vehicle traveling composite data D1c1 may be generated. In this case, the first straddle-type vehicle traveling composite data D1c1 includes the first approach turning locus Tb1, the acceleration in the vehicle front direction of the motorcycle 110 when traveling on the first approach turning locus Tb1, and the first approach turning locus. It is generated in association with the acceleration in the vehicle left-right direction of the motorcycle 110 when traveling on Tb1.
 鞍乗型車両走行複合データ生成処理S13において、プロセッサ102は、第1アプローチ旋回軌跡データDTb1と、第1アプローチ旋回前方向加速度データDAb1と、第1旋回車両姿勢データD1V1とに基づいて、第1鞍乗型車両走行複合データD1c1を生成してもよい。この場合、第1鞍乗型車両走行複合データD1c1は、第1アプローチ旋回軌跡Tb1、第1アプローチ旋回軌跡Tb1を走行したときの自動二輪車110の車両前方向の加速度、および、第1旋回軌跡Td1を走行したときの自動二輪車110の姿勢を関連付けて生成される。 In the saddle riding type vehicle traveling composite data generation processing S13, the processor 102 performs the first approach turning trajectory data DTb1, the first approach turning front direction acceleration data DAb1 and the first turning vehicle attitude data D1V1 based on the first approach turning trajectory data DTb1. The saddle riding type vehicle traveling composite data D1c1 may be generated. In this case, the first straddle-type vehicle traveling composite data D1c1 includes the first approach turning locus Tb1, the acceleration in the vehicle front direction of the motorcycle 110 when traveling on the first approach turning locus Tb1, and the first turning locus Td1. It is generated by associating the posture of the motorcycle 110 when the vehicle travels.
 鞍乗型車両走行複合データ生成処理S13において、プロセッサ102は、第1アプローチ旋回軌跡データDTb1と、第1アプローチ旋回前方向加速度データDAb1と、第1旋回ライダー姿勢データD1R1とに基づいて、第1鞍乗型車両走行複合データD1c1を生成してもよい。この場合、第1鞍乗型車両走行複合データD1c1は、第1アプローチ旋回軌跡Tb1、第1アプローチ旋回軌跡Tb1を走行したときの自動二輪車110の車両前方向の加速度、および、第1旋回軌跡Td1を走行したときの自動二輪車110に乗車するライダーRの姿勢を関連付けて生成される。 In the saddle riding type vehicle traveling composite data generation processing S13, the processor 102 performs the first approach turning trajectory data DTb1, the first approach turning front direction acceleration data DAb1, and the first turning rider posture data D1R1 based on the first approach turning trajectory data DTb1. The saddle riding type vehicle traveling composite data D1c1 may be generated. In this case, the first straddle-type vehicle traveling composite data D1c1 includes the first approach turning locus Tb1, the acceleration in the vehicle front direction of the motorcycle 110 when traveling on the first approach turning locus Tb1, and the first turning locus Td1. It is generated by associating the posture of the rider R who gets on the motorcycle 110 when traveling on the vehicle.
 第1鞍乗型車両走行複合データD1c1は、第1アプローチ旋回軌跡データDTb1と、第1アプローチ旋回前方向加速度データDAb1と、第1アプローチ旋回左右方向加速度データDLb1と、第1旋回車両姿勢データD1V1とに基づいて生成されてもよい。第1鞍乗型車両走行複合データD1c1は、第1アプローチ旋回軌跡データDTb1と、第1アプローチ旋回前方向加速度データDAb1と、第1アプローチ旋回左右方向加速度データDLb1と、第1旋回ライダー姿勢データD1R1とに基づいて生成されてもよい。第1鞍乗型車両走行複合データD1c1は、第1アプローチ旋回軌跡データDTb1と、第1アプローチ旋回前方向加速度データDAb1と、第1アプローチ旋回左右方向加速度データDLb1と、第1旋回車両姿勢データD1V1と、第1旋回ライダー姿勢データD1R1とに基づいて生成されてもよい。 The first saddle riding type vehicle traveling composite data D1c1 includes the first approach turning trajectory data DTb1, the first approach turning front direction acceleration data DAb1, the first approach turning left and right direction acceleration data DLb1, and the first turning vehicle attitude data D1V1. May be generated based on The first straddle-type vehicle traveling composite data D1c1 includes first approach turning trajectory data DTb1, first approach turning front direction acceleration data DAb1, first approach turning left / right acceleration data DLb1, and first turning rider attitude data D1R1. May be generated based on The first saddle riding type vehicle traveling composite data D1c1 includes the first approach turning trajectory data DTb1, the first approach turning front direction acceleration data DAb1, the first approach turning left and right direction acceleration data DLb1, and the first turning vehicle attitude data D1V1. And the first turning rider posture data D1R1.
 上述した第1鞍乗型車両走行複合データD1c1の例において、第1鞍乗型車両走行複合データD1c1の基になるデータとして、第1アプローチ旋回軌跡データDTb1の代わりに、第1環状軌跡データDTa1が用いられてもよい。第1環状軌跡データDTa1が用いられた場合、第1アプローチ旋回前方向加速度データDAb1の代わりに、第1環状前方向加速度データBAが用いられてもよい。第1環状軌跡データDTa1が用いられた場合、第1アプローチ旋回左右方向加速度データDLb1の代わりに、環状軌跡Ta1を走行したときの左右方向加速度データBLが用いられてもよい。例えば、第1鞍乗型車両走行複合データD1c1は、第1環状軌跡データDTa1および第1環状前方向加速度データDAa1に基づいて生成されてもよい。この場合、第1鞍乗型車両走行複合データD1c1は、第1環状軌跡Ta1および第1環状軌跡Ta1を走行したときの自動二輪車110の車両前方向の加速度を関連付けて生成される。 In the example of the first saddle riding type vehicle traveling composite data D1c1 described above, as the data that is the basis of the first straddle type vehicle traveling composite data D1c1, instead of the first approach turning trajectory data DTb1, the first annular trajectory data DTa1. May be used. When the first annular trajectory data DTa1 is used, the first annular forward acceleration data BA may be used instead of the first approach turning frontward acceleration data DAb1. When the first circular trajectory data DTa1 is used, the lateral acceleration data BL when traveling on the circular trajectory Ta1 may be used instead of the first approach turning lateral acceleration data DLb1. For example, the first saddle riding type vehicle traveling composite data D1c1 may be generated based on the first annular track data DTa1 and the first annular forward acceleration data DAa1. In this case, the first straddle-type vehicle traveling composite data D1c1 is generated in association with the first annular locus Ta1 and the acceleration in the vehicle front direction of the motorcycle 110 when traveling on the first annular locus Ta1.
 第1鞍乗型車両走行複合データD1c1は、上述のいずれかの組合せのデータに加えて、第1ライダー識別データDI1に基づいて生成されてもよい。この場合、第1鞍乗型車両走行複合データD1c1は、第1旋回動作中の自動二輪車110に乗車するライダーRに関連付けて生成される。 The first saddle riding type vehicle traveling composite data D1c1 may be generated based on the first rider identification data DI1 in addition to the data of any combination described above. In this case, the first saddle riding type vehicle traveling composite data D1c1 is generated in association with the rider R who gets on the motorcycle 110 during the first turning motion.
 鞍乗型車両走行複合データ生成処理S13において生成される第1鞍乗型車両走行複合データD1c1は、第1鞍乗型車両走行複合データD1c1の基になるデータをそのまま含むデータではない。第1鞍乗型車両走行複合データD1c1は、例えば、複数の評価値のうちのいずれかであってもよい。評価値は例えば無次元数である。 The first straddle-type vehicle travel composite data D1c1 generated in the saddle-ride type vehicle travel composite data generation processing S13 is not data that directly includes the data that is the basis of the first saddle-ride type vehicle travel composite data D1c1. The first saddle riding type vehicle traveling composite data D1c1 may be, for example, one of a plurality of evaluation values. The evaluation value is, for example, a dimensionless number.
 鞍乗型車両走行複合データ記憶処理S14において、プロセッサ102は、鞍乗型車両走行複合データ生成処理S13により生成された第1鞍乗型車両走行複合データD1c1を記憶部103に記憶させる。 In the saddle riding type vehicle traveling composite data storage processing S14, the processor 102 stores the first saddle riding type vehicle traveling composite data D1c1 generated by the saddle riding type vehicle traveling composite data generation processing S13 in the storage unit 103.
 鞍乗型車両走行複合データ出力処理S15において、プロセッサ102は、記憶部103に記憶された第1鞍乗型車両走行複合データD1c1を出力対象に出力する。出力対象は、エンジン制御プロセッサ61およびブレーキ制御プロセッサ62の少なくとも一方である。出力対象は、タッチパネル28(表示装置)を含んでいてもよい。 In the saddle riding type vehicle traveling composite data output process S15, the processor 102 outputs the first saddle riding type vehicle traveling composite data D1c1 stored in the storage unit 103 as an output target. The output target is at least one of the engine control processor 61 and the brake control processor 62. The output target may include the touch panel 28 (display device).
 第1鞍乗型車両走行複合データD1c1がエンジン制御プロセッサ61に出力された場合、エンジン制御プロセッサ61は下記の制御を実行する。エンジン制御プロセッサ61は、取得した第1鞍乗型車両走行複合データD1c1に含まれる第1ライダー識別データDI1と、記憶部103に記憶された現在のライダー識別データBIとが一致する場合に、第1鞍乗型車両走行複合データD1c1に基づいて、エンジン制御処理(燃料制御処理および点火時期制御処理)を行ってもよい。具体的には、エンジン制御プロセッサ61は、センサ71~75、81~88等の信号および第1鞍乗型車両走行複合データD1c1に基づいて、燃料ポンプ46およびインジェクタ44を制御する。例えば、アクセルグリップの操作量が同じであっても、第1鞍乗型車両走行複合データD1c1が示す評価値に応じて、燃料噴射量を異ならせてもよい。エンジン制御プロセッサ61は、センサ71~75、81~88等の信号および第1鞍乗型車両走行複合データD1c1に基づいて、点火コイル37への通電を制御する。例えば、アクセルグリップの操作量が同じであっても、第1鞍乗型車両走行複合データD1c1が示す評価値に応じて、点火時期を異ならせてもよい。 When the first saddle riding type vehicle traveling composite data D1c1 is output to the engine control processor 61, the engine control processor 61 executes the following control. The engine control processor 61 determines whether the first rider identification data DI1 included in the acquired first saddle riding type vehicle traveling composite data D1c1 and the current rider identification data BI stored in the storage unit 103 match. The engine control process (fuel control process and ignition timing control process) may be performed based on the single-saddle type vehicle traveling composite data D1c1. Specifically, the engine control processor 61 controls the fuel pump 46 and the injector 44 based on the signals from the sensors 71 to 75, 81 to 88 and the first straddle type vehicle traveling composite data D1c1. For example, even if the operation amount of the accelerator grip is the same, the fuel injection amount may be changed according to the evaluation value indicated by the first saddle riding type vehicle traveling composite data D1c1. The engine control processor 61 controls energization to the ignition coil 37 based on signals from the sensors 71 to 75, 81 to 88 and the like and the first saddle riding type vehicle traveling composite data D1c1. For example, even if the operation amount of the accelerator grip is the same, the ignition timing may be changed according to the evaluation value indicated by the first saddle riding type vehicle traveling composite data D1c1.
 第1鞍乗型車両走行複合データD1c1がブレーキ制御プロセッサ62に出力された場合、ブレーキ制御プロセッサ62は下記の制御を実行する。ブレーキ制御プロセッサ62は、取得した第1鞍乗型車両走行複合データD1c1に含まれる第1ライダー識別データDI1と、記憶部103に記憶された現在のライダー識別データBIとが一致する場合に、第1鞍乗型車両走行複合データD1c1に基づいて、前ブレーキ駆動装置26および後ブレーキ駆動装置25を制御してもよい。例えば、ブレーキレバーの操作状態が同じであっても、第1鞍乗型車両走行複合データD1c1が示す評価値に応じて、前輪11に付与される制動力の制御を異ならせてもよい。また、例えば、ブレーキペダル23の操作状態が同じであっても、第1鞍乗型車両走行複合データD1c1が示す評価値に応じて、後輪12に付与される制動力の制御を異ならせてもよい。 When the first straddle-type vehicle traveling composite data D1c1 is output to the brake control processor 62, the brake control processor 62 executes the following control. The brake control processor 62 determines whether the first rider identification data DI1 included in the acquired first saddle riding type vehicle traveling composite data D1c1 and the current rider identification data BI stored in the storage unit 103 match. The front brake drive device 26 and the rear brake drive device 25 may be controlled based on the single-saddle type vehicle traveling composite data D1c1. For example, even if the operation state of the brake lever is the same, the control of the braking force applied to the front wheels 11 may be changed according to the evaluation value indicated by the first saddle riding type vehicle traveling composite data D1c1. Further, for example, even when the operation state of the brake pedal 23 is the same, the control of the braking force applied to the rear wheels 12 is changed according to the evaluation value indicated by the first saddle riding type vehicle traveling composite data D1c1. Good.
 図11に示す一連の処理は、自動二輪車110がアプローチ旋回領域Zbを走行するごとに実行される。自動二輪車110がアプローチ旋回領域Zbを走行したときの走行軌跡であって、第1アプローチ旋回軌跡Tb1とは異なる走行軌跡の1つを、第2アプローチ旋回軌跡Tb2とする。第2アプローチ旋回軌跡Tb2も、アプローチ領域Zcから第1旋回領域Zdに進入するように、アプローチ旋回領域Zbの全域にわたって連続して走行したときの走行軌跡である。また、環状領域Za内を少なくとも1周にわたって連続して走行したときの自動二輪車110の走行軌跡であって、第2アプローチ旋回軌跡Tb2を含む走行軌跡を、第2環状軌跡Ta2とする。 A series of processing shown in FIG. 11 is executed every time the motorcycle 110 travels in the approach turning area Zb. One of the traveling loci when the motorcycle 110 travels in the approach turning area Zb and different from the first approach turning locus Tb1 is referred to as a second approach turning locus Tb2. The second approach turning locus Tb2 is also a running locus when traveling continuously over the entire approach turning area Zb so as to enter the first turning area Zd from the approach area Zc. Further, a traveling locus of the motorcycle 110 when traveling continuously in the annular region Za for at least one round and including the second approach turning locus Tb2 is referred to as a second annular locus Ta2.
 図11に示す一連の処理を、第2アプローチ旋回軌跡Tb2に関して実行した場合の詳細は、第1アプローチ旋回軌跡Tb1の場合と同じである。鞍乗型車両走行データ取得処理S11において、少なくとも、第2アプローチ旋回軌跡データDTb2、および第2アプローチ旋回前方向加速度データDAb2が取得される。鞍乗型車両走行データ取得処理S11において、第2アプローチ旋回左右方向加速度データDLb2、第2旋回車両姿勢データD1V2、および第2旋回ライダー姿勢データD1R2の少なくとも1つが取得されてもよい。鞍乗型車両走行データ取得処理S11において、第2環状軌跡Ta2に関連する第2環状軌跡データDTa2が取得されてもよい。第2環状軌跡データDTa2が取得された場合、第2環状軌跡Ta2を走行したときの前方向加速度データBAが取得されてもよい。第2環状軌跡データDTa2が取得された場合、第2環状軌跡Ta2を走行したときの左右方向加速度データBLが取得されてもよい。 Details of the case where the series of processes shown in FIG. 11 are executed for the second approach turning locus Tb2 are the same as those for the first approach turning locus Tb1. In the saddle riding type vehicle travel data acquisition processing S11, at least the second approach turning trajectory data DTb2 and the second approach turning front direction acceleration data DAb2 are acquired. In the saddle riding type vehicle traveling data acquisition processing S11, at least one of the second approach turning left / right direction acceleration data DLb2, the second turning vehicle attitude data D1V2, and the second turning rider attitude data D1R2 may be acquired. In the straddle-type vehicle travel data acquisition process S11, the second annular trajectory data DTa2 related to the second annular trajectory Ta2 may be acquired. When the second annular trajectory data DTa2 is acquired, the forward acceleration data BA when traveling on the second annular trajectory Ta2 may be acquired. When the second annular trajectory data DTa2 is acquired, the lateral acceleration data BL when traveling on the second annular trajectory Ta2 may be acquired.
 ライダー識別データ取得処理S12において、プロセッサ102は、第2アプローチ旋回軌跡Tb2を走行したときの自動二輪車110に乗車するライダーRを識別する第2ライダー識別データDI2を取得する。 In the rider identification data acquisition process S12, the processor 102 acquires the second rider identification data DI2 that identifies the rider R riding on the motorcycle 110 when traveling on the second approach turning trajectory Tb2.
 鞍乗型車両走行複合データ生成処理S13において、プロセッサ102は、第2アプローチ旋回軌跡データDTb2と、第2アプローチ旋回前方向加速度データDAb2とに基づいて、第2鞍乗型車両走行複合データD1c2を生成する。第2鞍乗型車両走行複合データD1c2は、第2アプローチ旋回軌跡データDTb2と、第2アプローチ旋回前方向加速度データDAb2と、第2アプローチ旋回左右方向加速度データDLb2とに基づいて生成されてもよい。第2鞍乗型車両走行複合データD1c2は、第2アプローチ旋回軌跡データDTb2と、第2アプローチ旋回前方向加速度データDAb2と、第2旋回車両姿勢データD1V2とに基づいて生成されてもよい。第2鞍乗型車両走行複合データD1c2は、第2アプローチ旋回軌跡データDTb2と、第2アプローチ旋回前方向加速度データDAb2と、第2旋回ライダー姿勢データD1R2とに基づいて生成されてもよい。第2鞍乗型車両走行複合データD1c2は、第2アプローチ旋回軌跡データDTb2と、第2アプローチ旋回前方向加速度データDAb2と、第2アプローチ旋回左右方向加速度データDLb2と、第2旋回車両姿勢データD1V2とに基づいて生成されてもよい。第2鞍乗型車両走行複合データD1c2は、第2アプローチ旋回軌跡データDTb2と、第2アプローチ旋回前方向加速度データDAb2と、第2アプローチ旋回左右方向加速度データDLb2と、第2旋回ライダー姿勢データD1R2とに基づいて生成されてもよい。第2鞍乗型車両走行複合データD1c2は、第2アプローチ旋回軌跡データDTb2と、第2アプローチ旋回前方向加速度データDAb2と、第2アプローチ旋回左右方向加速度データDLb2と、第2旋回車両姿勢データD1V2と、第2旋回ライダー姿勢データD1R2とに基づいて生成されてもよい。 In the saddle riding type vehicle traveling composite data generation process S13, the processor 102 generates the second straddling type vehicle traveling composite data D1c2 based on the second approach turning trajectory data DTb2 and the second approach turning front direction acceleration data DAb2. To generate. The second saddle riding type vehicle traveling composite data D1c2 may be generated based on the second approach turning trajectory data DTb2, the second approach turning front direction acceleration data DAb2, and the second approach turning left and right direction acceleration data DLb2. .. The second straddle type vehicle traveling composite data D1c2 may be generated based on the second approach turning trajectory data DTb2, the second approach turning front direction acceleration data DAb2, and the second turning vehicle attitude data D1V2. The second saddle riding type vehicle traveling composite data D1c2 may be generated based on the second approach turning trajectory data DTb2, the second approach turning front direction acceleration data DAb2 and the second turning rider attitude data D1R2. The second saddle riding type vehicle traveling composite data D1c2 includes the second approach turning trajectory data DTb2, the second approach turning front direction acceleration data DAb2, the second approach turning left and right direction acceleration data DLb2, and the second turning vehicle attitude data D1V2. May be generated based on The second saddle riding type vehicle traveling composite data D1c2 includes the second approach turning trajectory data DTb2, the second approach turning front direction acceleration data DAb2, the second approach turning left and right direction acceleration data DLb2, and the second turning rider attitude data D1R2. May be generated based on The second saddle riding type vehicle traveling composite data D1c2 includes the second approach turning trajectory data DTb2, the second approach turning front direction acceleration data DAb2, the second approach turning left and right direction acceleration data DLb2, and the second turning vehicle attitude data D1V2. And the second turning rider posture data D1R2.
 上述した第2鞍乗型車両走行複合データD1c2の例において、第2鞍乗型車両走行複合データD1c2の基になるデータとして、第2アプローチ旋回軌跡データDTb2の代わりに、第2環状軌跡データDTa2が用いられてもよい。第2環状軌跡データDTa2が用いられた場合、第2アプローチ旋回前方向加速度データDAb2の代わりに、第2環状軌跡Ta2を走行したときの前方向加速度データBAが用いられてもよい。第2環状軌跡データDTa2が用いられた場合、第2アプローチ旋回左右方向加速度データDLb2の代わりに、第2環状軌跡Ta2を走行したときの左右方向加速度データBLが用いられてもよい。 In the example of the second saddle riding type vehicle traveling composite data D1c2 described above, as the data that is the basis of the second saddle riding type vehicle traveling composite data D1c2, instead of the second approach turning trajectory data DTb2, the second annular trajectory data DTa2. May be used. When the second annular trajectory data DTa2 is used, the forward acceleration data BA when traveling on the second annular trajectory Ta2 may be used instead of the second approach turning frontward acceleration data DAb2. When the second annular trajectory data DTa2 is used, the lateral acceleration data BL when traveling on the second annular trajectory Ta2 may be used instead of the second approach turning left / right acceleration data DLb2.
 第2鞍乗型車両走行複合データD1c2は、上述のいずれかの組合せのデータに加えて、第2ライダー識別データDI2に基づいて生成される。 The second saddle riding type vehicle traveling composite data D1c2 is generated based on the second rider identification data DI2 in addition to the data of any combination described above.
 鞍乗型車両走行複合データ記憶処理S14において、鞍乗型車両走行複合データ生成処理S13により生成された第2鞍乗型車両走行複合データD1c2が記憶部103に記憶される。鞍乗型車両走行複合データ出力処理S15において、記憶部103に記憶された第2鞍乗型車両走行複合データD1c2が出力対象に出力される。 In the saddle riding type vehicle traveling composite data storage processing S14, the second saddle riding type vehicle traveling composite data D1c2 generated by the saddle riding type vehicle traveling composite data generation processing S13 is stored in the storage unit 103. In the saddle riding type vehicle traveling composite data output process S15, the second saddle riding type vehicle traveling composite data D1c2 stored in the storage unit 103 is output to the output target.
 このように、アプローチ旋回領域Zbを複数回走行した場合に、複数回の走行動作に対して、図11に示す一連の処理が実行される。それにより、複数の鞍乗型車両走行複合データD1c1、D1c2、D1c3、・・・が出力対象に出力される。複数の鞍乗型車両走行複合データD1c1、D1c2、D1c3、・・・を、鞍乗型車両走行複合データD1cと総称する。複数の鞍乗型車両走行複合データD1cは、記憶部103に記憶されている。 In this way, when the vehicle travels in the approach turning area Zb a plurality of times, a series of processing shown in FIG. 11 is executed for a plurality of traveling operations. Thereby, a plurality of saddle riding type vehicle traveling composite data D1c1, D1c2, D1c3, ... Is output to the output target. The plurality of saddle riding type vehicle traveling composite data D1c1, D1c2, D1c3, ... Are collectively referred to as saddle riding type vehicle traveling composite data D1c. The plurality of saddle riding type vehicle traveling composite data D1c are stored in the storage unit 103.
 次に、図12のフローチャートを参照しつつ、プロセッサ102が実行する情報処理の他の例について説明する。図12に示すように、プロセッサ102は、図11と同じ処理S11~S14の後に、鞍乗型車両走行一体複合データ生成処理S20と、鞍乗型車両走行複合データ出力処理S21を実行する。 Next, another example of information processing executed by the processor 102 will be described with reference to the flowchart in FIG. As shown in FIG. 12, the processor 102 performs the saddle-ride type vehicle traveling integrated data generation process S20 and the saddle-ride type vehicle traveling complex data output process S21 after the same processes S11 to S14 as in FIG.
 鞍乗型車両走行一体複合データ生成処理S20において、プロセッサ102は、少なくとも1つの鞍乗型車両走行一体複合データD1uを生成する。鞍乗型車両走行一体複合データD1uは、記憶部103に記憶された複数の鞍乗型車両走行複合データD1cを関連づけて生成される。1つの鞍乗型車両走行一体複合データD1uを生成するために使用される鞍乗型車両走行複合データD1cの数は、2つであってもよく、2つより多くてもよい。例えば、第1鞍乗型車両走行複合データD1c1と第2鞍乗型車両走行複合データD1c2に基づいて、ある1つの鞍乗型車両走行一体複合データD1uが生成されてもよい。 In the saddle riding type vehicle traveling integrated data generation process S20, the processor 102 generates at least one saddle type vehicle traveling integrated data D1u. The saddle-ride type vehicle traveling integrated data D1u is generated in association with the plurality of saddle-ride type vehicle traveling combined data D1c stored in the storage unit 103. The number of the saddle riding type vehicle traveling composite data D1c used to generate one saddle riding type vehicle traveling integrated data D1u may be two or may be more than two. For example, one certain saddle riding type vehicle traveling integrated data D1u may be generated based on the first straddle type vehicle traveling composite data D1c1 and the second saddle riding type vehicle traveling composite data D1c2.
 鞍乗型車両走行一体複合データD1uは、同じライダー識別データに基づいて生成された複数の鞍乗型車両走行複合データD1cに基づいて生成されてもよい。この場合に生成された鞍乗型車両走行一体複合データD1uを、同一ライダー鞍乗型車両走行一体複合データD1usとする。例えば、第1ライダー識別データDI1と第2ライダー識別データDI2が同じ場合、第1鞍乗型車両走行複合データD1c1と第2鞍乗型車両走行複合データD1c2に基づいて、同一ライダー鞍乗型車両走行一体複合データD1usが生成されてもよい。 The saddle riding type vehicle travel integrated data D1u may be generated based on a plurality of saddle riding type vehicle travel composite data D1c generated based on the same rider identification data. The saddle-ride type vehicle traveling integrated data D1u generated in this case is set as the same rider-saddle type vehicle traveling integrated data D1us. For example, when the first rider identification data DI1 and the second rider identification data DI2 are the same, based on the first saddle riding type vehicle traveling composite data D1c1 and the second saddle riding type vehicle traveling composite data D1c2, the same rider saddle riding type vehicle The traveling integrated data D1us may be generated.
 鞍乗型車両走行一体複合データD1uは、異なるライダー識別データDIに基づいて生成された複数の鞍乗型車両走行複合データD1cに基づいて生成されてもよい。この場合に生成された鞍乗型車両走行一体複合データD1uを、相違ライダー鞍乗型車両走行一体複合データD1udとする。例えば、第1ライダー識別データDI1と第2ライダー識別データDI2が異なる場合、第1鞍乗型車両走行複合データD1c1と第2鞍乗型車両走行複合データD1c2に基づいて、相違ライダー鞍乗型車両走行一体複合データD1udが生成されてもよい。 The saddle riding type vehicle traveling integrated data D1u may be generated based on a plurality of saddle riding type vehicle traveling compound data D1c generated based on different rider identification data DI. The saddle-ride type vehicle traveling integrated data D1u generated in this case is defined as different rider-saddle-type vehicle traveling integrated data D1ud. For example, when the first rider identification data DI1 and the second rider identification data DI2 are different, the different rider saddle type vehicle is determined based on the first saddle riding type vehicle traveling composite data D1c1 and the second saddle riding type vehicle traveling composite data D1c2. The traveling integrated data D1ud may be generated.
 鞍乗型車両走行一体複合データ生成処理S20において複数の鞍乗型車両走行一体複合データD1uが生成される場合、複数の鞍乗型車両走行一体複合データD1uは、同一ライダー鞍乗型車両走行一体複合データD1usおよび相違ライダー鞍乗型車両走行一体複合データD1udの一方だけを含んでいてもよく、両方を含んでいてもよい。 When a plurality of saddle riding type vehicle traveling integrated compound data D1u is generated in the saddle riding type vehicle traveling integrated compound data generating process S20, the plurality of saddle riding type vehicle traveling integrated compound data D1u are the same rider saddle riding type vehicle traveling integrated. Only one of the composite data D1us and the different rider-saddle-type vehicle traveling integrated composite data D1ud may be included, or both may be included.
 鞍乗型車両走行一体複合データD1uは、複数の鞍乗型車両走行一体複合データD1uを含んでいてもよく、含まなくてもよい。鞍乗型車両走行一体複合データD1uは、複数の鞍乗型車両走行複合データD1cの差分や比較や組み合わせなどによって生成されたデータであってもよい。鞍乗型車両走行一体複合データD1uは、例えば、第1鞍乗型車両走行複合データD1c1と第2鞍乗型車両走行複合データD1c2との差分であってもよい。鞍乗型車両走行一体複合データD1uは、複数の鞍乗型車両走行複合データD1cの代表(例えば平均)を示すデータであってもよい。鞍乗型車両走行一体複合データD1uは、例えば、第1鞍乗型車両走行複合データD1c1と第2鞍乗型車両走行複合データD1c2の代表値(例えば平均)であってもよい。第1鞍乗型車両走行一体複合データD1uは、例えば、複数の評価値のうちのいずれかであってもよい。 The saddle-ride type vehicle traveling integrated data D1u may or may not include a plurality of saddle-type vehicle traveling integrated data D1u. The saddle-ride type vehicle traveling integrated data D1u may be data generated by a difference, comparison, combination or the like of the plurality of saddle-type vehicle traveling combined data D1c. The saddle riding type vehicle traveling integrated data D1u may be, for example, a difference between the first saddle riding type vehicle traveling composite data D1c1 and the second saddle riding type vehicle traveling composite data D1c2. The saddle riding type vehicle traveling integrated data D1u may be data indicating a representative (for example, an average) of the plurality of saddle riding type vehicle traveling composite data D1c. The saddle riding type vehicle traveling integrated data D1u may be, for example, a representative value (for example, an average) of the first saddle riding type vehicle traveling composite data D1c1 and the second saddle riding type vehicle traveling composite data D1c2. The first saddle riding type vehicle traveling integrated data D1u may be, for example, one of a plurality of evaluation values.
 鞍乗型車両走行複合データ出力処理S21において、プロセッサ102は、生成された鞍乗型車両走行一体複合データD1uを、出力対象に出力する。出力対象は、エンジン制御プロセッサ61およびブレーキ制御プロセッサ62の少なくとも一方である。出力対象は、タッチパネル28(表示装置)を含んでいてもよい。エンジン制御プロセッサ61または/およびブレーキ制御プロセッサ62は、取得した鞍乗型車両走行一体複合データD1uに基づいて、エンジン制御または/およびブレーキ制御を行う。鞍乗型車両走行一体複合データD1uの出力対象は、鞍乗型車両走行複合データD1cの出力対象と異なっていてもよい。 In the saddle riding type vehicle traveling composite data output process S21, the processor 102 outputs the generated saddle riding type vehicle traveling integrated data D1u to an output target. The output target is at least one of the engine control processor 61 and the brake control processor 62. The output target may include the touch panel 28 (display device). The engine control processor 61 and / or the brake control processor 62 performs engine control and / or brake control based on the acquired saddle riding type vehicle traveling integrated composite data D1u. The output target of the saddle-ride type vehicle traveling integrated data D1u may be different from the output target of the saddle-ride type vehicle traveling composite data D1c.
 本具体例1は、上述した本発明の実施形態の効果に加えて、以下の効果を奏する。 The specific example 1 has the following effects in addition to the effects of the above-described embodiment of the present invention.
 第1鞍乗型車両走行複合データD1c1が、第1環状軌跡Ta1と第1環状軌跡Ta1を走行したときの自動二輪車110の加速度が関連付けられたデータである場合、下記の効果が得られる。
 第1環状軌跡Ta1は、第1アプローチ旋回軌跡Tb1を含む環状の走行軌跡である。第1環状軌跡Ta1は、少なくとも2回の旋回中の走行軌跡を有する。そのため、第1環状軌跡Ta1が関連付けられた第1鞍乗型車両走行複合データD1c1は、1回しか旋回しなかった場合に取得される第1鞍乗型車両走行複合データD1c1に比べて、自動二輪車110の走行状態を反映したデータとしての精度(信頼性)が高い。そのため、第1鞍乗型車両走行複合データD1c1を車両の制御などにより活用しやすくなる。第1鞍乗型車両走行複合データD1c1をより活用しやすくなるため、出力された第1鞍乗型車両走行複合データD1c1の後処理がより容易である。出力された第1鞍乗型車両走行複合データD1c1の後処理がより容易であるため、第1鞍乗型車両走行複合データD1c1が出力される出力対象61、62のハードウェアリソースをより低減することができる。
 以上のように、本具体例1の鞍乗型車両走行データ処理装置101は、出力されたデータの後処理を効率化して、ハードウェアリソースをより低減することができる。また、本具体例1の鞍乗型車両走行データ処理方法は、出力されたデータの後処理を効率化して、ハードウェアリソースをより低減することができる。
When the first saddle riding type vehicle traveling composite data D1c1 is data in which the first annular locus Ta1 and the acceleration of the motorcycle 110 when traveling on the first annular locus Ta1 are associated with each other, the following effects are obtained.
The first annular locus Ta1 is an annular traveling locus including the first approach turning locus Tb1. The first annular trajectory Ta1 has a traveling trajectory during at least two turns. Therefore, the first saddle riding type vehicle traveling composite data D1c1 associated with the first annular locus Ta1 is automatically compared with the first saddle riding type vehicle traveling composite data D1c1 acquired when the vehicle makes only one turn. The accuracy (reliability) as data that reflects the traveling state of the motorcycle 110 is high. Therefore, it becomes easy to utilize the first straddle-type vehicle traveling composite data D1c1 for vehicle control or the like. Since the first saddle riding type vehicle traveling composite data D1c1 is more easily utilized, the post-processing of the output first saddle riding type vehicle traveling composite data D1c1 is easier. Since the post-processing of the output first saddle riding type vehicle traveling composite data D1c1 is easier, the hardware resources of the output targets 61 and 62 to which the first saddle riding type vehicle traveling composite data D1c1 is output are further reduced. be able to.
As described above, the straddle-type vehicle travel data processing apparatus 101 according to the first specific example can efficiently post-process the output data and further reduce hardware resources. Further, the straddle-type vehicle traveling data processing method according to the first specific example can make post-processing of output data more efficient and further reduce hardware resources.
 第1鞍乗型車両走行複合データD1c1が、第1環状軌跡Ta1と第1環状軌跡Ta1を走行したときの自動二輪車110の加速度が関連付けられたデータである場合、さらに下記の効果が得られる。
 環状領域Za(第1環状領域)は、アプローチ旋回領域Zbと、直線状の第2直線領域Zeと、円弧状の第2旋回領域Zfとからなる。したがって、環状領域Zaは、凹部を有さないシンプルな形状である。形状がシンプルでありながら、環状領域Zaを走行したときの第1環状軌跡Ta1は、2回の旋回中の走行軌跡と旋回前後の直進時の走行軌跡を有する。そのため、環状領域Zaを走行したときの走行軌跡と車両前方向の加速度は、自動二輪車110の走行状態が大きく反映されている。そのため、第1鞍乗型車両走行複合データD1c1を車両の制御などにより活用しやすくなる。第1鞍乗型車両走行複合データD1c1をより活用しやすくなるため、出力された第1鞍乗型車両走行複合データD1c1の後処理がより容易である。出力された第1鞍乗型車両走行複合データD1c1の後処理がより容易であるため、第1鞍乗型車両走行複合データD1c1が出力される出力対象61、62のハードウェアリソースをより低減することができる。
 以上のように、本具体例1の鞍乗型車両走行データ処理装置101は、出力されたデータの後処理をより効率化して、ハードウェアリソースをより低減することができる。また、本具体例1の鞍乗型車両走行データ処理方法は、出力されたデータの後処理を効率化して、ハードウェアリソースをより低減することができる。
When the first straddle-type vehicle traveling composite data D1c1 is data in which the first annular locus Ta1 and the acceleration of the motorcycle 110 when traveling on the first annular locus Ta1 are associated with each other, the following effects are further obtained.
The annular area Za (first annular area) includes an approach turning area Zb, a linear second linear area Ze, and an arcuate second turning area Zf. Therefore, the annular region Za has a simple shape without a recess. Although the shape is simple, the first annular locus Ta1 when traveling in the annular region Za has a traveling locus during two turns and a traveling locus before and after straight turning. Therefore, the traveling state of the motorcycle 110 is largely reflected in the traveling locus and the acceleration in the vehicle front direction when traveling in the annular region Za. Therefore, it becomes easy to utilize the first straddle-type vehicle traveling composite data D1c1 for vehicle control or the like. Since the first saddle riding type vehicle traveling composite data D1c1 is more easily utilized, the post-processing of the output first saddle riding type vehicle traveling composite data D1c1 is easier. Since the post-processing of the output first saddle riding type vehicle traveling composite data D1c1 is easier, the hardware resources of the output targets 61 and 62 to which the first saddle riding type vehicle traveling composite data D1c1 is output are further reduced. be able to.
As described above, the straddle-type vehicle travel data processing apparatus 101 according to the first specific example can more efficiently post-process the output data and further reduce the hardware resources. Further, the straddle-type vehicle traveling data processing method according to the first specific example can make post-processing of output data more efficient and further reduce hardware resources.
 第1鞍乗型車両走行複合データD1c1が、第1アプローチ旋回軌跡Tb1と、第1アプローチ旋回軌跡Tb1を走行したときの自動二輪車110の車両前方向の加速度と、第1アプローチ旋回軌跡Tb1を走行したときの自動二輪車110の車両左右方向の加速度とが関連付けられたデータである場合、下記の効果が得られる。
 自動二輪車110は、車両の挙動の変化だけでなく、ライダーRの姿勢の変化も利用して旋回する乗り物である。そのため、旋回中と旋回前の直進中の車両左右方向の加速度は、ライダーRの意思によって決まる自動二輪車110の走行状態と密接に関連している。また、旋回中と旋回前の直進中における自動二輪車110の走行軌跡と車両前方向の加速度と車両左右方向の加速度は密接に関連する。したがって、第1鞍乗型車両走行複合データD1c1は、自動二輪車110の走行状態をより大きく反映している。そのため、第1鞍乗型車両走行複合データD1c1をより活用しやすくなる。第1鞍乗型車両走行複合データD1c1をより活用しやすくなるため、出力された第1鞍乗型車両走行複合データD1c1の後処理がより容易である。出力された第1鞍乗型車両走行複合データD1c1の後処理がより容易であるため、第1鞍乗型車両走行複合データD1c1が出力される出力対象61、62のハードウェアリソースをより低減することができる。
 以上のように、本具体例1の鞍乗型車両走行データ処理装置101は、出力されたデータの後処理を効率化して、ハードウェアリソースをより低減することができる。また、本具体例1の鞍乗型車両走行データ処理方法は、出力されたデータの後処理を効率化して、ハードウェアリソースをより低減することができる。
The first straddle-type vehicle traveling composite data D1c1 includes the first approach turning locus Tb1, the acceleration in the vehicle front direction of the motorcycle 110 when the vehicle travels along the first approach turning locus Tb1, and the first approach turning locus Tb1. When the data is associated with the acceleration in the vehicle left-right direction of the motorcycle 110 at the time, the following effects are obtained.
The motorcycle 110 is a vehicle that makes a turn not only by changing the behavior of the vehicle but also by changing the posture of the rider R. Therefore, the acceleration in the vehicle left-right direction during turning and during straight ahead before turning is closely related to the traveling state of the motorcycle 110 determined by the rider R's intention. Further, the traveling locus of the motorcycle 110 during the turn and during the straight advance before the turn, the acceleration in the vehicle front direction, and the acceleration in the vehicle left-right direction are closely related. Therefore, the first straddle-type vehicle traveling composite data D1c1 largely reflects the traveling state of the motorcycle 110. Therefore, it becomes easier to utilize the first straddle-type vehicle traveling composite data D1c1. Since the first saddle riding type vehicle traveling composite data D1c1 is more easily utilized, the post-processing of the output first saddle riding type vehicle traveling composite data D1c1 is easier. Since the post-processing of the output first saddle riding type vehicle traveling composite data D1c1 is easier, the hardware resources of the output targets 61 and 62 to which the first saddle riding type vehicle traveling composite data D1c1 is output are further reduced. be able to.
As described above, the straddle-type vehicle travel data processing apparatus 101 according to the first specific example can efficiently post-process the output data and further reduce hardware resources. Further, the straddle-type vehicle traveling data processing method according to the first specific example can make post-processing of output data more efficient and further reduce hardware resources.
 第1鞍乗型車両走行複合データD1c1が、第1アプローチ旋回軌跡Tb1を走行したときの自動二輪車110に乗車するライダーRに関連付けられたデータである場合、下記の効果が得られる。
 旋回中と旋回前の直進中の自動二輪車110の走行軌跡と車両前方向の加速度は、ライダーRの意思によって決まる自動二輪車110の走行状態と密接に関連している。同じアプローチ旋回領域Zbを走行した場合であっても、ライダーRごとに自動二輪車110の走行状態は異なる。第1鞍乗型車両走行複合データD1c1は、ライダーRの固有の自動二輪車110の走行状態を反映している。そのため、出力された第1鞍乗型車両走行複合データD1c1を、車両の制御などにより活用しやすくなる。第1鞍乗型車両走行複合データD1c1をより活用しやすくなるため、出力された第1鞍乗型車両走行複合データD1c1の後処理がより容易である。出力された第1鞍乗型車両走行複合データD1c1の後処理がより容易であるため、第1鞍乗型車両走行複合データD1c1が出力される出力対象61、62のハードウェアリソースをより低減することができる。
 以上のように、本具体例1の鞍乗型車両走行データ処理装置101は、出力されたデータの後処理をより効率化して、ハードウェアリソースをより低減することができる。また、本具体例1の鞍乗型車両走行データ処理方法は、出力されたデータの後処理を効率化して、ハードウェアリソースをより低減することができる。
When the first saddle riding type vehicle traveling composite data D1c1 is data associated with the rider R riding on the motorcycle 110 when traveling on the first approach turning locus Tb1, the following effects are obtained.
The running locus of the motorcycle 110 and the acceleration in the vehicle front direction during turning and during straight ahead before turning are closely related to the running state of the motorcycle 110 determined by the intention of the rider R. Even when traveling in the same approach turning area Zb, the traveling state of the motorcycle 110 differs for each rider R. The first saddle riding type vehicle traveling composite data D1c1 reflects the traveling state of the unique motorcycle 110 of the rider R. Therefore, it becomes easy to utilize the output first straddle-type vehicle traveling composite data D1c1 for vehicle control and the like. Since the first saddle riding type vehicle traveling composite data D1c1 is more easily utilized, the post-processing of the output first saddle riding type vehicle traveling composite data D1c1 is easier. Since the post-processing of the output first saddle riding type vehicle traveling composite data D1c1 is easier, the hardware resources of the output targets 61 and 62 to which the first saddle riding type vehicle traveling composite data D1c1 is output are further reduced. be able to.
As described above, the straddle-type vehicle travel data processing apparatus 101 according to the first specific example can more efficiently post-process the output data and further reduce the hardware resources. Further, the straddle-type vehicle traveling data processing method according to the first specific example can make post-processing of output data more efficient and further reduce hardware resources.
 記憶部103は、第1鞍乗型車両走行複合データD1c1と第2鞍乗型車両走行複合データD1c2を記憶する。第2鞍乗型車両走行複合データD1c2は、第1アプローチ旋回軌跡Tb1と異なる第2アプローチ旋回軌跡Tb2および第2アプローチ旋回軌跡Tb2を走行したときの自動二輪車110の車両前方向の加速度が関連付けられたデータである。そのため、鞍乗型車両走行データ処理装置101において、第1鞍乗型車両走行複合データD1c1と第2鞍乗型車両走行複合データD1c2を比較したり、差分を求めたり、組み合わせることができる。つまり、鞍乗型車両走行データ処理装置101における第1鞍乗型車両走行複合データD1c1の処理(活用)の自由度が高まる。 The storage unit 103 stores the first saddle riding type vehicle traveling composite data D1c1 and the second saddle riding type vehicle traveling composite data D1c2. The second straddle type vehicle traveling composite data D1c2 is associated with the acceleration in the vehicle front direction of the motorcycle 110 when traveling on the second approach turning trajectory Tb2 and the second approach turning trajectory Tb2 different from the first approach turning trajectory Tb1. Data. Therefore, in the saddle riding type vehicle travel data processing device 101, it is possible to compare the first straddle type vehicle travel composite data D1c1 and the second saddle riding type vehicle travel composite data D1c2, obtain a difference, and combine them. That is, the degree of freedom in processing (utilization) of the first saddle riding type vehicle traveling composite data D1c1 in the saddle riding type vehicle traveling data processing device 101 is increased.
 鞍乗型車両走行一体複合データD1uが出力対象61、62に出力された場合、下記の効果が得られる。
 鞍乗型車両走行一体複合データD1uは、第1鞍乗型車両走行複合データD1c1と第2鞍乗型車両走行複合データD1c2が関連付けられたデータである。そのため、鞍乗型車両走行一体複合データD1uは、出力対象61、62において車両の制御などに活用しやすい。鞍乗型車両走行一体複合データD1uを活用しやすいため、出力された鞍乗型車両走行一体複合データD1uの後処理が容易である。出力された鞍乗型車両走行一体複合データD1uの後処理が容易であるため、鞍乗型車両走行一体複合データD1uが出力される出力対象61、62のハードウェアリソースを低減することができる。
 以上のように、本具体例1の鞍乗型車両走行データ処理装置101は、出力されたデータの後処理を効率化して、ハードウェアリソースを低減することができる。また、本具体例1の鞍乗型車両走行データ処理方法は、出力されたデータの後処理を効率化して、ハードウェアリソースを低減することができる。
When the saddle riding type vehicle traveling integrated data D1u is output to the output targets 61 and 62, the following effects are obtained.
The saddle riding type vehicle traveling integrated data D1u is data in which the first saddle riding type vehicle traveling composite data D1c1 and the second saddle riding type vehicle traveling composite data D1c2 are associated with each other. Therefore, the saddle-ride type vehicle traveling integrated data D1u is easily used for controlling the vehicle in the output targets 61 and 62. Since it is easy to utilize the saddle-ride type vehicle traveling integrated data D1u, post-processing of the output saddle-type vehicle traveling integrated data D1u is easy. Since the post-processing of the output saddle riding type vehicle traveling integrated data D1u is easy, it is possible to reduce the hardware resources of the output targets 61 and 62 to which the saddle riding type vehicle traveling integrated data D1u is output.
As described above, the straddle-type vehicle travel data processing apparatus 101 according to the first specific example can make post-processing of output data efficient and reduce hardware resources. Further, the straddle-type vehicle travel data processing method according to the first specific example can efficiently post-process the output data and reduce hardware resources.
 同一ライダー鞍乗型車両走行一体複合データD1usが出力対象61、62に出力された場合、下記の効果が得られる。
 旋回中と旋回前の直進中の自動二輪車110の走行軌跡と車両前方向の加速度は、ライダーRの意思によって決まる自動二輪車110の走行状態と密接に関連している。同じアプローチ旋回領域Zbを走行した場合であっても、ライダーRごとに自動二輪車110の走行状態は異なる。そのため、出力対象61、62において、同一ライダー鞍乗型車両走行一体複合データD1usに基づいて、例えば、同じライダーRの2つの鞍乗型車両走行複合データの差分を利用することができる。同一ライダー鞍乗型車両走行一体複合データD1usを、ライダーRごとの特徴を反映した活用ができる。つまり、出力対象61、62に出力される同一ライダー鞍乗型車両走行一体複合データD1usは、活用の自由度が高く、活用しやすい。同一ライダー鞍乗型車両走行一体複合データD1usを活用しやすいため、出力された同一ライダー鞍乗型車両走行一体複合データD1usの後処理が容易である。出力された同一ライダー鞍乗型車両走行一体複合データD1usの後処理が容易であるため、同一ライダー鞍乗型車両走行一体複合データD1usが出力される出力対象61、62のハードウェアリソースを低減することができる。
 以上のように、本具体例1の鞍乗型車両走行データ処理装置101は、出力されたデータの後処理を効率化して、ハードウェアリソースを低減することができる。また、本具体例1の鞍乗型車両走行データ処理方法は、出力されたデータの後処理を効率化して、ハードウェアリソースを低減することができる。
When the same rider-saddle-type vehicle traveling integrated data D1us is output to the output targets 61 and 62, the following effects are obtained.
The running locus of the motorcycle 110 and the acceleration in the vehicle front direction during turning and during straight ahead before turning are closely related to the running state of the motorcycle 110 determined by the intention of the rider R. Even when traveling in the same approach turning area Zb, the traveling state of the motorcycle 110 differs for each rider R. Therefore, in the output targets 61 and 62, for example, the difference between two saddle riding type vehicle running composite data of the same rider R can be used based on the same rider saddle riding type vehicle running integrated data D1us. The same rider saddle riding type vehicle traveling integrated data D1us can be utilized by reflecting the characteristics of each rider R. That is, the same rider saddle riding type vehicle traveling integrated composite data D1us output to the output targets 61 and 62 has a high degree of freedom of utilization and is easy to utilize. Since it is easy to use the same rider-saddle-type vehicle traveling integrated data D1us, post-processing of the output same-rider-saddle type vehicle traveling integrated data D1us is easy. Since the post-processing of the outputted same rider-saddle type vehicle traveling integrated compound data D1us is easy, the hardware resources of the output targets 61 and 62 to which the same rider-saddle type vehicle traveling integrated compound data D1us is outputted are reduced. be able to.
As described above, the straddle-type vehicle travel data processing apparatus 101 according to the first specific example can make post-processing of output data efficient and reduce hardware resources. Further, the straddle-type vehicle travel data processing method according to the first specific example can efficiently post-process the output data and reduce hardware resources.
 相違ライダー鞍乗型車両走行一体複合データD1udが出力対象61、62に出力された場合、下記の効果が得られる。
 旋回中と旋回前の直進中の自動二輪車110の走行軌跡と車両前方向の加速度は、ライダーRの意思によって決まる自動二輪車110の走行状態と密接に関連している。同じアプローチ旋回領域Zbを走行した場合であっても、ライダーRごとに自動二輪車110の走行状態は異なる。そのため、出力対象61、62において、相違ライダー鞍乗型車両走行一体複合データD1udに基づいて、例えば、異なるライダーRの2つの鞍乗型車両走行複合データの差分を利用することができる。相違ライダー鞍乗型車両走行一体複合データD1uddを、ライダーRの違いを反映した活用ができる。つまり、出力対象61、62に出力される相違ライダー鞍乗型車両走行一体複合データD1udは、活用の自由度が高く、活用しやすい。相違ライダー鞍乗型車両走行一体複合データD1udを活用しやすいため、出力された相違ライダー鞍乗型車両走行一体複合データD1udの後処理が容易である。出力された相違ライダー鞍乗型車両走行一体複合データD1udの後処理が容易であるため、相違ライダー鞍乗型車両走行一体複合データD1udが出力される出力対象61、62のハードウェアリソースを低減することができる。
 以上のように、本具体例1の鞍乗型車両走行データ処理装置101は、出力されたデータの後処理を効率化して、ハードウェアリソースを低減することができる。また、本具体例1の鞍乗型車両走行データ処理方法は、出力されたデータの後処理を効率化して、ハードウェアリソースを低減することができる。
When the different rider-saddle-type vehicle traveling integrated data D1ud is output to the output targets 61 and 62, the following effects are obtained.
The running locus of the motorcycle 110 and the acceleration in the vehicle front direction during turning and during straight ahead before turning are closely related to the running state of the motorcycle 110 determined by the intention of the rider R. Even when traveling in the same approach turning area Zb, the traveling state of the motorcycle 110 differs for each rider R. Therefore, in the output targets 61 and 62, for example, the difference between the two saddle riding type vehicle traveling composite data of different riders R can be used based on the different rider saddle riding type vehicle traveling integrated data D1ud. The difference rider saddle type vehicle traveling integrated data D1udd can be utilized by reflecting the difference of the rider R. That is, the different rider-saddle-type vehicle traveling integrated data D1ud output to the output targets 61 and 62 has a high degree of freedom of utilization and is easy to utilize. Since it is easy to utilize the different rider-saddle type vehicle traveling integrated data D1ud, the post-processing of the output different rider-saddle type vehicle traveling integrated data D1ud is easy. Since the post-processing of the outputted different rider-saddle type vehicle traveling integrated compound data D1ud is easy, the hardware resources of the output targets 61, 62 to which the different rider-saddle type vehicle traveling integrated compound data D1ud are outputted are reduced. be able to.
As described above, the straddle-type vehicle travel data processing apparatus 101 according to the first specific example can make post-processing of output data efficient and reduce hardware resources. Further, the straddle-type vehicle travel data processing method according to the first specific example can efficiently post-process the output data and reduce hardware resources.
 第1鞍乗型車両走行複合データD1c1と第2鞍乗型車両走行複合データD1c2との差分である鞍乗型車両走行一体複合データD1uが出力対象61、62に出力される場合、下記の効果が得られる。
 第1鞍乗型車両走行複合データD1c1と第2鞍乗型車両走行複合データD1c2との差分は、車両の制御などに活用しやすい。鞍乗型車両走行一体複合データD1uを活用しやすいため、出力された鞍乗型車両走行一体複合データD1uの後処理が容易である。出力された鞍乗型車両走行一体複合データD1uの後処理が容易であるため、鞍乗型車両走行一体複合データD1uが出力される出力対象61、62のハードウェアリソースを低減することができる。
 以上のように、本具体例1の鞍乗型車両走行データ処理装置101は、出力されたデータの後処理を効率化して、ハードウェアリソースを低減することができる。また、本具体例1の鞍乗型車両走行データ処理方法は、出力されたデータの後処理を効率化して、ハードウェアリソースを低減することができる。
When the saddle riding type vehicle traveling integrated data D1u, which is the difference between the first saddle riding type vehicle traveling composite data D1c1 and the second saddle riding type vehicle traveling composite data D1u, is output to the output targets 61 and 62, the following effects Is obtained.
The difference between the first saddle riding type vehicle traveling composite data D1c1 and the second saddle riding type vehicle traveling composite data D1c2 is easily utilized for vehicle control and the like. Since it is easy to utilize the saddle-ride type vehicle traveling integrated data D1u, post-processing of the output saddle-type vehicle traveling integrated data D1u is easy. Since the post-processing of the output saddle riding type vehicle traveling integrated data D1u is easy, it is possible to reduce the hardware resources of the output targets 61 and 62 to which the saddle riding type vehicle traveling integrated data D1u is output.
As described above, the straddle-type vehicle travel data processing apparatus 101 according to the first specific example can make post-processing of output data efficient and reduce hardware resources. Further, the straddle-type vehicle travel data processing method according to the first specific example can efficiently post-process the output data and reduce hardware resources.
 第1アプローチ旋回軌跡データDTb1または第1アプローチ旋回前方向加速度データDAb1の少なくとも一方は、GNSSを利用して生成されたデータである。GNSSを利用して生成された第1アプローチ旋回軌跡データDTb1は、第1アプローチ旋回軌跡Tb1を高い精度で示す。GNSSを利用して生成された第1アプローチ旋回前方向加速度データDAb1は、第1アプローチ旋回軌跡Tb1を走行したときの自動二輪車110の車両前方向の加速度を高い精度で示す。そのため、第1鞍乗型車両走行複合データD1c1をより活用しやすくなる。第1鞍乗型車両走行複合データD1c1をより活用しやすくなるため、出力された第1鞍乗型車両走行複合データD1c1の後処理がより容易である。出力された第1鞍乗型車両走行複合データD1c1の後処理がより容易であるため、第1鞍乗型車両走行複合データD1c1が出力される出力対象61、62のハードウェアリソースをより低減することができる。
 以上のように、本具体例1の鞍乗型車両走行データ処理装置101は、出力されたデータの後処理をより効率化して、ハードウェアリソースをより低減することができる。また、本具体例1の鞍乗型車両走行データ処理方法は、出力されたデータの後処理を効率化して、ハードウェアリソースをより低減することができる。
At least one of the first approach turning trajectory data DTb1 and the first approach turning front direction acceleration data DAb1 is data generated using GNSS. The first approach turning trajectory data DTb1 generated by using GNSS indicates the first approach turning trajectory Tb1 with high accuracy. The first approach turning front acceleration data DAb1 generated using the GNSS indicates with high accuracy the vehicle front acceleration of the motorcycle 110 when traveling on the first approach turning trajectory Tb1. Therefore, it becomes easier to utilize the first straddle-type vehicle traveling composite data D1c1. Since the first saddle riding type vehicle traveling composite data D1c1 is more easily utilized, the post-processing of the output first saddle riding type vehicle traveling composite data D1c1 is easier. Since the post-processing of the output first saddle riding type vehicle traveling composite data D1c1 is easier, the hardware resources of the output targets 61 and 62 to which the first saddle riding type vehicle traveling composite data D1c1 is output are further reduced. be able to.
As described above, the straddle-type vehicle travel data processing apparatus 101 according to the first specific example can more efficiently post-process the output data and further reduce the hardware resources. Further, the straddle-type vehicle traveling data processing method according to the first specific example can make post-processing of output data more efficient and further reduce hardware resources.
 第1鞍乗型車両走行複合データD1c1が、第1アプローチ旋回軌跡Tb1と、第1アプローチ旋回軌跡Tb1を走行したときの自動二輪車110の車両前方向の加速度と、第1アプローチ旋回軌跡Tb1を走行したときの自動二輪車110の姿勢と、第1アプローチ旋回軌跡Tb1を走行したときの自動二輪車110に乗車するライダーRの姿勢が関連付けられたデータである場合、下記の効果が得られる。
 自動二輪車110は、車両の挙動の変化だけでなく、ライダーRの姿勢の変化も利用して旋回する乗り物である。そのため、旋回中と旋回前のライダーRの姿勢と車両の挙動は、ライダーRの意思によって決まる自動二輪車110の走行状態と密接に関連している。したがって、第1鞍乗型車両走行複合データD1c1は、自動二輪車110の走行状態をより大きく反映している。そのため、第1鞍乗型車両走行複合データD1c1を活用しやすくなる。第1鞍乗型車両走行複合データD1c1を活用しやすくなるため、出力された第1鞍乗型車両走行複合データD1c1の後処理が容易である。出力された第1鞍乗型車両走行複合データD1c1の後処理が容易であるため、第1鞍乗型車両走行複合データD1c1が出力される出力対象61、62のハードウェアリソースを低減することができる。
 以上のように、本具体例1の鞍乗型車両走行データ処理装置101は、出力されたデータの後処理を効率化して、ハードウェアリソースをより低減することができる。また、本具体例1の鞍乗型車両走行データ処理方法は、出力されたデータの後処理を効率化して、ハードウェアリソースを低減することができる。
The first straddle-type vehicle traveling composite data D1c1 includes the first approach turning locus Tb1, the acceleration in the vehicle front direction of the motorcycle 110 when the vehicle travels along the first approach turning locus Tb1, and the first approach turning locus Tb1. The following effects can be obtained when the data of the attitude of the motorcycle 110 when the data is associated with the attitude of the rider R who rides on the motorcycle 110 when traveling on the first approach turning trajectory Tb1.
The motorcycle 110 is a vehicle that makes a turn not only by changing the behavior of the vehicle but also by changing the posture of the rider R. Therefore, the posture of the rider R and the behavior of the vehicle during and before the turn are closely related to the traveling state of the motorcycle 110 determined by the intention of the rider R. Therefore, the first straddle-type vehicle traveling composite data D1c1 largely reflects the traveling state of the motorcycle 110. Therefore, it becomes easy to utilize the first straddle-type vehicle traveling composite data D1c1. Since it becomes easy to utilize the first saddle riding type vehicle traveling composite data D1c1, the post-processing of the output first saddle riding type vehicle traveling composite data D1c1 is easy. Since the post-processing of the output first straddle-type vehicle travel composite data D1c1 is easy, it is possible to reduce the hardware resources of the output targets 61 and 62 to which the first saddle-ride type vehicle travel composite data D1c1 is output. it can.
As described above, the straddle-type vehicle travel data processing apparatus 101 according to the first specific example can efficiently post-process the output data and further reduce hardware resources. Further, the straddle-type vehicle travel data processing method according to the first specific example can efficiently post-process the output data and reduce hardware resources.
 第1アプローチ旋回軌跡Tb1は、少なくとも1つのアプローチ旋回ガイド部7bが設けられた環境下で走行して得られた走行軌跡である。自動二輪車110はアプローチ旋回ガイド部7bによって、アプローチ旋回領域Zb内を走行するように進行方向がガイドされる。アプローチ旋回ガイド部7bによって、アプローチ旋回領域Zbを、所望のサイズ、形状、および位置に設定しやすい。それにより、アプローチ旋回領域Zbのばらつきによる自動二輪車110の走行状態のばらつきを低減できる。そのため、第1鞍乗型車両走行複合データD1c1を車両の制御などにより活用しやすくなる。第1鞍乗型車両走行複合データD1c1をより活用しやすくなるため、出力された第1鞍乗型車両走行複合データD1c1の後処理がより容易である。出力された第1鞍乗型車両走行複合データD1c1の後処理がより容易であるため、第1鞍乗型車両走行複合データD1c1が出力される出力対象61、62のハードウェアリソースをより低減することができる。
 以上のように、本具体例1の鞍乗型車両走行データ処理装置101は、出力されたデータの後処理をより効率化して、ハードウェアリソースをより低減することができる。また、本具体例1の鞍乗型車両走行データ処理方法は、出力されたデータの後処理を効率化して、ハードウェアリソースをより低減することができる。
The first approach turning locus Tb1 is a running locus obtained by running in an environment in which at least one approach turning guide portion 7b is provided. The approach direction of the motorcycle 110 is guided by the approach turning guide portion 7b so as to travel within the approach turning region Zb. It is easy to set the approach turning area Zb to a desired size, shape, and position by the approach turning guide portion 7b. Accordingly, it is possible to reduce the variation in the traveling state of the motorcycle 110 due to the variation in the approach turning area Zb. Therefore, it becomes easy to utilize the first straddle-type vehicle traveling composite data D1c1 for vehicle control or the like. Since the first saddle riding type vehicle traveling composite data D1c1 is more easily utilized, the post-processing of the output first saddle riding type vehicle traveling composite data D1c1 is easier. Since the post-processing of the output first saddle riding type vehicle traveling composite data D1c1 is easier, the hardware resources of the output targets 61 and 62 to which the first saddle riding type vehicle traveling composite data D1c1 is output are further reduced. be able to.
As described above, the straddle-type vehicle travel data processing apparatus 101 according to the first specific example can more efficiently post-process the output data and further reduce the hardware resources. Further, the straddle-type vehicle traveling data processing method according to the first specific example can make post-processing of output data more efficient and further reduce hardware resources.
 第1アプローチ旋回軌跡Tb1の第1アプローチ軌跡Tc1は、2つのアプローチガイド部7cの間を通過しつつアプローチ領域Zcを走行したときの走行軌跡である。2つのアプローチガイド部7cによって、アプローチ領域Zcを所望の長さおよび位置に設定しやすい。よって、アプローチ領域Zcのばらつきによる自動二輪車110の走行状態のばらつきを低減できる。そのため、第1鞍乗型車両走行複合データD1c1を車両の制御などにより活用しやすくなる。第1鞍乗型車両走行複合データD1c1をより活用しやすくなるため、出力された第1鞍乗型車両走行複合データD1c1の後処理がより容易である。出力された第1鞍乗型車両走行複合データD1c1の後処理がより容易であるため、第1鞍乗型車両走行複合データD1c1が出力される出力対象61、62のハードウェアリソースをより低減することができる。
 以上のように、本具体例1の鞍乗型車両走行データ処理装置101は、出力されたデータの後処理をより効率化して、ハードウェアリソースをより低減することができる。また、本具体例1の鞍乗型車両走行データ処理方法は、出力されたデータの後処理を効率化して、ハードウェアリソースをより低減することができる。
The first approach trajectory Tc1 of the first approach turning trajectory Tb1 is a traveling trajectory when traveling in the approach area Zc while passing between the two approach guide portions 7c. With the two approach guide portions 7c, it is easy to set the approach area Zc to a desired length and position. Therefore, it is possible to reduce the variation in the traveling state of the motorcycle 110 due to the variation in the approach area Zc. Therefore, it becomes easy to utilize the first straddle-type vehicle traveling composite data D1c1 by controlling the vehicle or the like. Since the first saddle riding type vehicle traveling composite data D1c1 is more easily utilized, the post-processing of the output first saddle riding type vehicle traveling composite data D1c1 is easier. Since the post-processing of the output first saddle riding type vehicle traveling composite data D1c1 is easier, the hardware resources of the output targets 61 and 62 to which the first saddle riding type vehicle traveling composite data D1c1 is output are further reduced. be able to.
As described above, the straddle-type vehicle travel data processing apparatus 101 according to the first specific example can further improve the efficiency of post-processing of output data and further reduce hardware resources. Further, the straddle-type vehicle traveling data processing method according to the first specific example can make post-processing of output data more efficient and further reduce hardware resources.
 第1アプローチ旋回軌跡Tb1の第1旋回軌跡Td1は、旋回ガイド部7dと第2円弧CA2との間を通過しつつ第1旋回領域Zdを走行したときの走行軌跡である。旋回ガイド部7dによって、第1旋回領域Zdを所望のサイズ、形状、および位置に設定しやすい。よって、第1旋回領域Zdのばらつきによる自動二輪車110の走行状態のばらつきを低減できる。そのため、第1鞍乗型車両走行複合データD1c1を車両の制御などにより活用しやすくなる。第1鞍乗型車両走行複合データD1c1をより活用しやすくなるため、出力された第1鞍乗型車両走行複合データD1c1の後処理がより容易である。出力された第1鞍乗型車両走行複合データD1c1の後処理がより容易であるため、第1鞍乗型車両走行複合データD1c1が出力される出力対象61、62のハードウェアリソースをより低減することができる。
 以上のように、本具体例1の鞍乗型車両走行データ処理装置101は、出力されたデータの後処理をより効率化して、ハードウェアリソースをより低減することができる。また、本具体例1の鞍乗型車両走行データ処理方法は、出力されたデータの後処理を効率化して、ハードウェアリソースをより低減することができる。
The first turning locus Td1 of the first approach turning locus Tb1 is a running locus when traveling in the first turning region Zd while passing between the turning guide portion 7d and the second arc CA2. The turning guide portion 7d makes it easy to set the first turning area Zd to a desired size, shape, and position. Therefore, it is possible to reduce the variation in the traveling state of the motorcycle 110 due to the variation in the first turning region Zd. Therefore, it becomes easy to utilize the first straddle-type vehicle traveling composite data D1c1 by controlling the vehicle or the like. Since the first saddle riding type vehicle traveling composite data D1c1 is more easily utilized, the post-processing of the output first saddle riding type vehicle traveling composite data D1c1 is easier. Since the post-processing of the output first saddle riding type vehicle traveling composite data D1c1 is easier, the hardware resources of the output targets 61 and 62 to which the first saddle riding type vehicle traveling composite data D1c1 is output are further reduced. be able to.
As described above, the straddle-type vehicle travel data processing apparatus 101 according to the first specific example can further improve the efficiency of post-processing of output data and further reduce hardware resources. Further, the straddle-type vehicle traveling data processing method according to the first specific example can make post-processing of output data more efficient and further reduce hardware resources.
 アプローチ旋回ガイド部7bが、自動二輪車110の進行方向を制限するように構成されている場合、下記の効果が得られる。
 アプローチ旋回ガイド部7bによって、アプローチ旋回領域Zbを所望のサイズ、形状、および位置により確実に設定できる。よって、アプローチ旋回領域Zbのばらつきによる自動二輪車110の走行状態のばらつきをより低減できる。そのため、第1鞍乗型車両走行複合データD1c1を車両の制御などにより活用しやすくなる。第1鞍乗型車両走行複合データD1c1をより活用しやすくなるため、出力された第1鞍乗型車両走行複合データD1c1の後処理がより容易である。出力された第1鞍乗型車両走行複合データD1c1の後処理がより容易であるため、第1鞍乗型車両走行複合データD1c1が出力される出力対象61、62のハードウェアリソースをより低減することができる。
 以上のように、本具体例1の鞍乗型車両走行データ処理装置101は、出力されたデータの後処理をより効率化して、ハードウェアリソースをより低減することができる。また、本具体例1の鞍乗型車両走行データ処理方法は、出力されたデータの後処理を効率化して、ハードウェアリソースをより低減することができる。
When the approach turning guide portion 7b is configured to limit the traveling direction of the motorcycle 110, the following effects are obtained.
By the approach turning guide portion 7b, the approach turning area Zb can be reliably set to a desired size, shape, and position. Therefore, it is possible to further reduce the variation in the traveling state of the motorcycle 110 due to the variation in the approach turning area Zb. Therefore, it becomes easy to utilize the first straddle-type vehicle traveling composite data D1c1 by controlling the vehicle or the like. Since the first saddle riding type vehicle traveling composite data D1c1 is more easily utilized, the post-processing of the output first saddle riding type vehicle traveling composite data D1c1 is easier. Since the post-processing of the output first saddle riding type vehicle traveling composite data D1c1 is easier, the hardware resources of the output targets 61 and 62 to which the first saddle riding type vehicle traveling composite data D1c1 is output are further reduced. be able to.
As described above, the straddle-type vehicle travel data processing apparatus 101 according to the first specific example can more efficiently post-process the output data and further reduce the hardware resources. Further, the straddle-type vehicle traveling data processing method according to the first specific example can make post-processing of output data more efficient and further reduce hardware resources.
 アプローチ旋回ガイド部7bが、設置場所を自在に変更可能に地面に設置される場合、下記の効果が得られる。
 アプローチ旋回ガイド部7bを様々な場所に配置することができる。そのため、例えば駐車場などの道路以外の場所に、アプローチ旋回領域Zbを設定することができる。
 また、アプローチ旋回ガイド部7bの位置の変更が容易である。そのため、アプローチ旋回領域Zbのサイズ、形状、および位置を容易に変更できる。
 また、アプローチ旋回ガイド部7bの数を増やすことが容易である。アプローチ旋回ガイド部7bの数を増やすことで、アプローチ旋回領域Zbを、所望のサイズ、形状、および位置により確実に設定できる。よって、アプローチ旋回領域Zbのばらつきによる自動二輪車110の走行状態のばらつきをより低減できる。そのため、第1鞍乗型車両走行複合データD1c1を車両の制御などにより活用しやすくなる。第1鞍乗型車両走行複合データD1c1をより活用しやすくなるため、出力された第1鞍乗型車両走行複合データD1c1の後処理がより容易である。出力された第1鞍乗型車両走行複合データD1c1の後処理がより容易であるため、第1鞍乗型車両走行複合データD1c1が出力される出力対象61、62のハードウェアリソースをより低減することができる。
 以上のように、本具体例1の鞍乗型車両走行データ処理装置101は、出力されたデータの後処理をより効率化して、ハードウェアリソースをより低減することができる。また、本具体例1の鞍乗型車両走行データ処理方法は、出力されたデータの後処理を効率化して、ハードウェアリソースをより低減することができる。
When the approach turning guide portion 7b is installed on the ground so that the installation location can be freely changed, the following effects can be obtained.
The approach turning guide portion 7b can be arranged in various places. Therefore, the approach turning area Zb can be set at a place other than the road, such as a parking lot.
Further, it is easy to change the position of the approach turning guide portion 7b. Therefore, the size, shape, and position of the approach turning area Zb can be easily changed.
Further, it is easy to increase the number of approach turning guide portions 7b. By increasing the number of approach turning guide portions 7b, the approach turning area Zb can be set reliably according to a desired size, shape, and position. Therefore, it is possible to further reduce the variation in the traveling state of the motorcycle 110 due to the variation in the approach turning area Zb. Therefore, it becomes easy to utilize the first straddle-type vehicle traveling composite data D1c1 by controlling the vehicle or the like. Since the first saddle riding type vehicle traveling composite data D1c1 is more easily utilized, the post-processing of the output first saddle riding type vehicle traveling composite data D1c1 is easier. Since the post-processing of the output first saddle riding type vehicle traveling composite data D1c1 is easier, the hardware resources of the output targets 61 and 62 to which the first saddle riding type vehicle traveling composite data D1c1 is output are further reduced. be able to.
As described above, the straddle-type vehicle travel data processing apparatus 101 according to the first specific example can more efficiently post-process the output data and further reduce the hardware resources. Further, the straddle-type vehicle traveling data processing method according to the first specific example can make post-processing of output data more efficient and further reduce hardware resources.
 (実施形態の具体例2)
 次に、本発明の実施形態の具体例2について図13を参照しつつ説明する。本具体例2の鞍乗型車両走行データ処理装置201は、上述した本発明の実施形態の鞍乗型車両走行データ処理装置1の特徴を全て有する。なお、以下の説明において、上述した本発明の実施形態または具体例1と同じ部位または処理についての説明は適宜省略する。図13に示すように、鞍乗型車両走行データ処理装置201は、自動二輪車210に搭載される。自動二輪車210は、上記実施形態の鞍乗型車両10の一例である。鞍乗型車両走行データ処理装置201は、自動二輪車210に搭載されたECU260に含まれる。鞍乗型車両走行データ処理装置201は、走行中の自動二輪車210に関連するデータを蓄積するデータ収録装置である。
(Specific Example 2 of Embodiment)
Next, a second specific example of the embodiment of the present invention will be described with reference to FIG. The saddle riding type vehicle travel data processing device 201 of the second specific example has all the features of the saddle riding type vehicle travel data processing device 1 of the embodiment of the present invention described above. In the following description, description of the same parts or processes as those of the above-described embodiment or specific example 1 of the present invention will be appropriately omitted. As shown in FIG. 13, the saddle riding type vehicle traveling data processing device 201 is mounted on the motorcycle 210. The motorcycle 210 is an example of the saddle riding type vehicle 10 of the above embodiment. The saddle riding type vehicle traveling data processing device 201 is included in the ECU 260 mounted on the motorcycle 210. The saddle riding type vehicle traveling data processing device 201 is a data recording device for accumulating data relating to the motorcycle 210 during traveling.
 自動二輪車210の構成は、具体例1の自動二輪車110の構成とほぼ同じである。自動二輪車210は、下記の点で自動二輪車110と異なる。自動二輪車210のECU260は、具体例1の自動二輪車110のECU60と異なる。自動二輪車210は、着脱可能な外部記憶装置(二次記憶装置、補助記憶装置)205を有する。外部記憶装置205は、ECU260に接続される。外部記憶装置205は、データ収録装置(鞍乗型車両走行データ処理装置)201に接続される。外部記憶装置205は、データ収録装置201から送信されたデータを記憶する。 The configuration of the motorcycle 210 is almost the same as the configuration of the motorcycle 110 of the first specific example. The motorcycle 210 differs from the motorcycle 110 in the following points. The ECU 260 of the motorcycle 210 is different from the ECU 60 of the motorcycle 110 of the first specific example. The motorcycle 210 has a removable external storage device (secondary storage device, auxiliary storage device) 205. The external storage device 205 is connected to the ECU 260. The external storage device 205 is connected to a data recording device (saddle-type vehicle travel data processing device) 201. The external storage device 205 stores the data transmitted from the data recording device 201.
 ECU260は、CPUなどの少なくとも1つのプロセッサ、および、ROMやRAMなどの少なくとも1つの記憶装置で構成されている。CPUは、ROMやRAMに記憶されたプログラムや各種データに基づいて情報処理を実行する。ECU260は、1箇所に配置された1つの装置であってもよく、異なる位置に配置された複数の装置で構成されていてもよい。ECU260は、GNSS受信ユニット90、撮像装置91、センサ71~76、81~86等の各種センサ、およびタッチパネル28と接続されている。ECU260は、自動二輪車210の各部を制御する。ECU260はエンジン制御やブレーキ制御などを行う。ECU260は、データ収録装置(鞍乗型車両走行データ処理装置)201を含む。データ収録装置201は、エンジン制御およびブレーキ制御のいずれも行わない。 The ECU 260 is composed of at least one processor such as a CPU and at least one storage device such as a ROM or a RAM. The CPU executes information processing based on programs and various data stored in the ROM and RAM. The ECU 260 may be one device arranged at one place, or may be composed of a plurality of devices arranged at different positions. The ECU 260 is connected to the GNSS receiving unit 90, the imaging device 91, various sensors such as the sensors 71 to 76 and 81 to 86, and the touch panel 28. The ECU 260 controls each part of the motorcycle 210. The ECU 260 performs engine control, brake control, and the like. The ECU 260 includes a data recording device (saddle-type vehicle travel data processing device) 201. The data recording device 201 performs neither engine control nor brake control.
 鞍乗型車両走行データ処理装置201は、プロセッサ102と、記憶部103とを含む。鞍乗型車両走行データ処理装置201は、走行軌跡データBT、前方向加速度データBA、左右方向加速度データBL、車両姿勢データB1V、および、ライダー姿勢データB1R、およびライダー識別データBIを取得する。 The saddle riding type vehicle travel data processing device 201 includes a processor 102 and a storage unit 103. The saddle riding type vehicle traveling data processing device 201 acquires traveling locus data BT, forward acceleration data BA, lateral acceleration data BL, vehicle attitude data B1V, rider attitude data B1R, and rider identification data BI.
 本具体例2のライダー姿勢データB1Rは、具体例1と同様に、イメージデータでなくてもよい。本具体例2のライダー姿勢データB1Rは、具体例1と異なり、イメージデータであってもよい。ライダー姿勢データB1Rは、具体例1と同様に、撮像装置91から送信されたイメージデータに基づいてECU260により生成されたデータであってもよい。ライダー姿勢データB1Rは、撮像装置91から送信されたイメージデータであってもよい。いずれの場合も、ライダー姿勢データB1Rは、ライダーRの頭の向き、肩の位置、脚の位置、尻の位置、および、股の位置の少なくともいずれか1つに関連するデータである。 Like the specific example 1, the rider attitude data B1R in the specific example 2 need not be image data. Unlike the specific example 1, the rider posture data B1R of the specific example 2 may be image data. The rider posture data B1R may be data generated by the ECU 260 based on the image data transmitted from the imaging device 91, as in the first specific example. The rider posture data B1R may be image data transmitted from the imaging device 91. In any case, the rider posture data B1R is data relating to at least one of the head orientation, shoulder position, leg position, hip position, and crotch position of the rider R.
 次に、本具体例2の鞍乗型車両走行データ処理方法について説明する。本具体例2の鞍乗型車両走行データ処理方法とは、鞍乗型車両走行データ処理装置201のプロセッサ102が実行する処理の手順である。 Next, the saddle riding type vehicle traveling data processing method of the second specific example will be described. The saddle-ride type vehicle travel data processing method according to the second specific example is a procedure of processing executed by the processor 102 of the saddle-ride type vehicle travel data processing device 201.
 鞍乗型車両走行データ処理装置201のプロセッサ102は、図11に示す一連の処理S11~S15を実行する。 The processor 102 of the saddle riding type vehicle traveling data processing device 201 executes a series of processes S11 to S15 shown in FIG.
 本具体例2の鞍乗型車両走行複合データ生成処理S13で生成される鞍乗型車両走行複合データD1cは、鞍乗型車両走行複合データD1cの基になるデータを含んでいてもよく、含まなくてもよい。鞍乗型車両走行複合データD1cは、イメージデータを含んでいてもよく、含まなくてもよい。 The saddle riding type vehicle travel composite data D1c generated in the saddle riding type vehicle travel composite data generation processing S13 of the present specific example 2 may include data which is a basis of the saddle riding type vehicle travel composite data D1c. You don't have to. The saddle riding type vehicle traveling composite data D1c may or may not include image data.
 本具体例2の鞍乗型車両走行複合データ記憶処理S14で記憶部103に記憶された複数の鞍乗型車両走行複合データD1cの一例を図14に示す。図14の鞍乗型車両走行複合データD1cは、鞍乗型車両走行複合データD1cを生成するために使用されたデータを含んでいる。図14中の第1鞍乗型車両走行複合データD1c1は、第1アプローチ旋回軌跡データDTb1、第1アプローチ旋回前方向加速度データDAb1、第1アプローチ旋回左右方向加速度データDLb1、第1旋回車両姿勢データD1V1、第1旋回ライダー姿勢データD1R1、および、第1ライダー識別データDI1に基づいて生成されている。第1鞍乗型車両走行複合データD1c1以外の鞍乗型車両走行複合データD1cも、第1鞍乗型車両走行複合データD1c1と同様に構成されている。第1ライダー識別データDI1と第4ライダー識別データDI4は、ライダーRがライダーRaであることを示す。第2ライダー識別データDI2と第3ライダー識別データDI3と第5ライダー識別データDI5は、ライダーRがライダーRbであることを示す。第6ライダー識別データDI6は、ライダーRがライダーRcであることを示す。ライダーRa、Rb、Rcは互いに異なる。 FIG. 14 shows an example of a plurality of saddle-ride type vehicle traveling composite data D1c stored in the storage unit 103 in the saddle-ride type vehicle traveling composite data storage processing S14 of the specific example 2. The saddle riding type vehicle traveling composite data D1c of FIG. 14 includes data used to generate the saddle riding type vehicle traveling composite data D1c. The first straddle-type vehicle traveling composite data D1c1 in FIG. 14 is the first approach turning trajectory data DTb1, the first approach turning front direction acceleration data DAb1, the first approach turning left / right direction acceleration data DLb1, and the first turning vehicle attitude data. It is generated based on D1V1, the first turning rider attitude data D1R1, and the first rider identification data DI1. The saddle riding type vehicle traveling composite data D1c other than the first saddle riding type vehicle traveling composite data D1c1 is configured similarly to the first saddle riding type vehicle traveling composite data D1c1. The first rider identification data DI1 and the fourth rider identification data DI4 indicate that the rider R is the rider Ra. The second rider identification data DI2, the third rider identification data DI3, and the fifth rider identification data DI5 indicate that the rider R is the rider Rb. The sixth rider identification data DI6 indicates that the rider R is the rider Rc. The riders Ra, Rb and Rc are different from each other.
 本具体例2の鞍乗型車両走行複合データ出力処理S15において、鞍乗型車両走行複合データD1cは、外部記憶装置205に出力される。外部記憶装置205は、鞍乗型車両走行データ処理装置201から取得した鞍乗型車両走行複合データD1cを記憶する。自動二輪車210から取り外された外部記憶装置205は、例えば、解析装置に接続される。解析装置は、外部記憶装置205に記憶された第1鞍乗型車両走行複合データD1c1等を読み出して解析する。自動二輪車210から取り外された外部記憶装置205の用途は、上記に限らない。 In the saddle-ride type vehicle traveling composite data output process S15 of the present specific example 2, the saddle-ride type vehicle traveling composite data D1c is output to the external storage device 205. The external storage device 205 stores the saddle riding type vehicle traveling composite data D1c acquired from the saddle riding type vehicle traveling data processing device 201. The external storage device 205 removed from the motorcycle 210 is connected to, for example, an analysis device. The analysis device reads and analyzes the first saddle riding type vehicle traveling composite data D1c1 and the like stored in the external storage device 205. The usage of the external storage device 205 removed from the motorcycle 210 is not limited to the above.
 プロセッサ102は、図12に示す一連の処理S11~S14、S20、S21を実行してもよい。 The processor 102 may execute the series of processes S11 to S14, S20, and S21 shown in FIG.
 本具体例2の鞍乗型車両走行一体複合データ生成処理S20で生成される鞍乗型車両走行一体複合データD1uは、複数の鞍乗型車両走行複合データD1cを含んでいてもよく、含まなくてもよい。鞍乗型車両走行一体複合データD1uは、鞍乗型車両走行複合データD1cの基になるデータを含んでいてもよく、含まなくてもよい。鞍乗型車両走行一体複合データD1uは、複数の鞍乗型車両走行複合データD1cの差分や比較や組み合わせなどによって生成されたデータであってもよい。鞍乗型車両走行一体複合データD1uは、例えば、第1鞍乗型車両走行複合データD1c1と第2鞍乗型車両走行複合データD1c2との差分であってもよい。鞍乗型車両走行一体複合データD1uは、複数の鞍乗型車両走行複合データD1cの代表(例えば平均)を示すデータであってもよい。鞍乗型車両走行一体複合データD1uは、例えば、第1鞍乗型車両走行複合データD1c1と第2鞍乗型車両走行複合データD1c2の代表値(例えば平均)であってもよい。 The saddle-ride type vehicle traveling integrated data D1u generated in the saddle-ride type vehicle traveling integrated data generation process S20 according to the second specific example may or may not include a plurality of saddle-type vehicle traveling combined data D1c. You may. The saddle riding type vehicle traveling integrated data D1u may or may not include the data that is the basis of the saddle riding type vehicle traveling composite data D1c. The saddle-ride type vehicle traveling integrated data D1u may be data generated by a difference, comparison, combination or the like of the plurality of saddle-type vehicle traveling combined data D1c. The saddle riding type vehicle traveling integrated data D1u may be, for example, a difference between the first saddle riding type vehicle traveling composite data D1c1 and the second saddle riding type vehicle traveling composite data D1c2. The saddle riding type vehicle traveling integrated data D1u may be data indicating a representative (for example, an average) of the plurality of saddle riding type vehicle traveling composite data D1c. The saddle riding type vehicle traveling integrated data D1u may be, for example, a representative value (for example, an average) of the first saddle riding type vehicle traveling composite data D1c1 and the second saddle riding type vehicle traveling composite data D1c2.
 本具体例2の鞍乗型車両走行複合データ出力処理S21において、鞍乗型車両走行一体複合データD1uは、外部記憶装置205に出力される。外部記憶装置205は、鞍乗型車両走行データ処理装置201から取得した鞍乗型車両走行一定複合データD1uを記憶する。自動二輪車210から取り外された外部記憶装置205は、例えば、解析装置に接続される。解析装置は、外部記憶装置205に記憶された第1鞍乗型車両走行複合データD1c1等を読み出して解析する。鞍乗型車両走行一体複合データD1uが複数の鞍乗型車両走行複合データを含んでいる場合、解析装置において、複数の鞍乗型車両走行複合データD1cの差分や比較や組み合わせなどの処理ができる。なお、自動二輪車210から取り外された外部記憶装置205の用途は、上記に限らない。 In the saddle-ride type vehicle traveling composite data output processing S21 of the second specific example, the saddle-ride type vehicle traveling integrated data D1u is output to the external storage device 205. The external storage device 205 stores the constant saddle type vehicle travel composite data D1u acquired from the saddle type vehicle travel data processing device 201. The external storage device 205 removed from the motorcycle 210 is connected to, for example, an analysis device. The analysis device reads and analyzes the first saddle riding type vehicle traveling composite data D1c1 and the like stored in the external storage device 205. When the saddle riding type vehicle traveling integrated data D1u includes a plurality of saddle riding type vehicle traveling compound data, the analyzing device can perform processing such as difference, comparison and combination of the plurality of saddle type vehicle traveling compound data D1c. . The usage of the external storage device 205 removed from the motorcycle 210 is not limited to the above.
 本具体例2で、記憶部103または/および外部記憶装置205に記憶された複数の同一ライダー鞍乗型車両走行一体複合データD1usの一例を図15に示す。図15の同一ライダー鞍乗型車両走行一体複合データD1usは、複数の鞍乗型車両走行複合データD1cを含んでいる。図15の同一ライダー鞍乗型車両走行一体複合データD1us1、D1us2、D1us3は、図14の複数の鞍乗型車両走行複合データD1cに基づいて生成されている。 In Specific Example 2, an example of a plurality of identical rider-saddle type vehicle traveling integrated composite data D1us stored in the storage unit 103 and / or the external storage device 205 is shown in FIG. The same rider-saddle-type vehicle traveling integrated data D1us in FIG. 15 includes a plurality of saddle-type vehicle traveling composite data D1c. The same rider-saddle-type vehicle traveling integrated data D1us1, D1us2, D1us3 of FIG. 15 is generated based on the plurality of saddle-type vehicle traveling composite data D1c of FIG.
 本具体例2は、具体例1と同様の構成または処理について、具体例1と同様の効果を奏する。 This specific example 2 has the same effect as the specific example 1 with respect to the same configuration or processing as the specific example 1.
 (実施形態の具体例3)
 次に、本発明の実施形態の具体例3について図16を参照しつつ説明する。本具体例3の鞍乗型車両走行データ処理装置301は、上述した本発明の実施形態の鞍乗型車両走行データ処理装置1の特徴を全て有する。なお、以下の説明において、上述した本発明の実施形態および具体例1と同じ部位または処理についての説明は適宜省略する。図16に示すように、鞍乗型車両走行データ処理装置301は、自動二輪車310に搭載されない。自動二輪車310は、上記実施形態の鞍乗型車両10の一例である。鞍乗型車両走行データ処理装置301は、走行中の自動二輪車310に関連するデータを蓄積するデータ収録装置である。より詳細には、鞍乗型車両走行データ処理装置301は、走行中の自動二輪車310に関連するデータを蓄積する運転技術データ収録装置である。
(Specific Example 3 of Embodiment)
Next, a third specific example of the embodiment of the present invention will be described with reference to FIG. The saddle riding type vehicle travel data processing device 301 of the third specific example has all the features of the saddle riding type vehicle travel data processing device 1 of the embodiment of the present invention described above. In the following description, description of the same parts or processes as those in the embodiment of the present invention and the specific example 1 will be appropriately omitted. As shown in FIG. 16, the saddle riding type vehicle traveling data processing device 301 is not mounted on the motorcycle 310. The motorcycle 310 is an example of the saddle-ride type vehicle 10 of the above embodiment. The saddle riding type vehicle traveling data processing device 301 is a data recording device for accumulating data relating to the motorcycle 310 during traveling. More specifically, the saddle riding type vehicle travel data processing device 301 is a driving technology data recording device that accumulates data related to the motorcycle 310 that is running.
 鞍乗型車両走行データ処理装置301は、プロセッサ302と、記憶部303とを含む。プロセッサ302は、上記実施形態のプロセッサ2の一例である。記憶部303は、上記実施形態の記憶部3の一例である。プロセッサ302は、記憶部303に記憶されたプログラムやデータに基づいて情報処理を実行する。 The saddle type vehicle traveling data processing device 301 includes a processor 302 and a storage unit 303. The processor 302 is an example of the processor 2 of the above embodiment. The storage unit 303 is an example of the storage unit 3 of the above embodiment. The processor 302 executes information processing based on the programs and data stored in the storage unit 303.
 撮像装置308は、カメラを含む。カメラは、例えば、CMOS(Complementary Metal Oxide Semiconductor)センサまたはCCD(Charge coupled Device)センサなどによって実現される。撮像装置308で生成されたイメージデータは、カメラで撮影した日時(年月日と時刻)のデータを含む。 The image pickup device 308 includes a camera. The camera is realized by, for example, a CMOS (Complementary Metal Oxide Semiconductor) sensor or a CCD (Charge coupled Device) sensor. The image data generated by the imaging device 308 includes data of the date and time (year, month, day and time) taken by the camera.
 撮像装置308は、例えば、地面に設置される。撮像装置308は、第1旋回領域Zdを旋回しているときの自動二輪車310の姿勢とライダーRの姿勢を撮影できるように配置および設定されている。撮像装置308は、例えば、図1に示すような、旋回中の自動二輪車310とライダーRを撮影できるように配置および設定されている。撮像装置308は、少なくとも、自動二輪車310が第1旋回領域Zdを旋回しているときに撮影するように、操作者によって操作される。 The image pickup device 308 is installed on the ground, for example. The image pickup device 308 is arranged and set so as to be able to capture the posture of the motorcycle 310 and the posture of the rider R when turning in the first turning region Zd. The image capturing device 308 is arranged and set so as to capture an image of the motorcycle 310 and the rider R who are turning, as shown in FIG. 1, for example. The imaging device 308 is at least operated by the operator so as to take an image when the motorcycle 310 is turning in the first turning region Zd.
 鞍乗型車両走行データ処理装置301は、撮像装置308から、撮像装置308が生成したイメージデータを取得する。鞍乗型車両走行データ処理装置301は、例えば、撮像装置308が有する無線通信装置または外部記憶装置を利用して、撮像装置308からイメージデータを取得する。鞍乗型車両走行データ処理装置301は、複数の静止画像データまたは動画データを撮像装置308から取得する。 The saddle riding type vehicle travel data processing device 301 acquires the image data generated by the imaging device 308 from the imaging device 308. The saddle riding type vehicle traveling data processing device 301 acquires image data from the imaging device 308, for example, using a wireless communication device or an external storage device included in the imaging device 308. The saddle riding type vehicle traveling data processing device 301 acquires a plurality of still image data or moving image data from the image capturing device 308.
 鞍乗型車両走行データ処理装置301が撮像装置308から取得するイメージデータには、ライダー識別データBI、ライダー識別データBI以外の識別データBX、および、撮影した日付のデータの少なくとも1つが付けられていてもよい。 At least one of the rider identification data BI, the identification data BX other than the rider identification data BI, and the data of the shooting date is attached to the image data acquired by the saddle riding type vehicle travel data processing device 301 from the imaging device 308. May be.
 自動二輪車310の基本的な構成は、具体例1、2の自動二輪車110、210の構成とほぼ同じである。自動二輪車310は、GNSS受信ユニット90を有する。自動二輪車310は、鞍乗型車両走行データ処理装置101および鞍乗型車両走行データ処理装置201のどちらも有さなくてもよい。自動二輪車310は、撮像装置91を有さなくてもよい。自動二輪車310は、IMU86を有さなくてもよい。自動二輪車310は、これら以外の点で、自動二輪車110または自動二輪車210と異なっていてもよい。自動二輪車310の構成は、自動二輪車110または自動二輪車210と同じであってもよい。 The basic configuration of the motorcycle 310 is almost the same as the configurations of the motorcycles 110 and 210 of the specific examples 1 and 2. The motorcycle 310 has a GNSS receiving unit 90. The motorcycle 310 may have neither the saddle riding type vehicle running data processing device 101 nor the saddle riding type vehicle running data processing device 201. The motorcycle 310 may not have the imaging device 91. The motorcycle 310 may not have the IMU 86. The motorcycle 310 may be different from the motorcycle 110 or the motorcycle 210 in other points. The configuration of the motorcycle 310 may be the same as that of the motorcycle 110 or the motorcycle 210.
 鞍乗型車両走行データ処理装置301は、自動二輪車310が有する少なくとも1つの無線通信装置(図示せず)を利用して、自動二輪車310が取得した各種のデータを取得する。自動二輪車310の無線通信装置は、自動二輪車310が取得した各種のデータを送信する。鞍乗型車両走行データ処理装置301は、自動二輪車310の無線通信装置から送信されたデータを受信してもよい。鞍乗型車両走行データ処理装置301は、自動二輪車310の無線通信装置から送信されたデータを受信した装置から、外部記憶装置などを介して、これらのデータを取得してもよい。無線通信装置と鞍乗型車両走行データ処理装置301との間の通信は、複数の通信方式が利用されてもよく、無線通信だけが利用されてもよい。 The saddle riding type vehicle traveling data processing device 301 acquires various data acquired by the motorcycle 310 by using at least one wireless communication device (not shown) included in the motorcycle 310. The wireless communication device of the motorcycle 310 transmits various data acquired by the motorcycle 310. The saddle riding type vehicle traveling data processing device 301 may receive the data transmitted from the wireless communication device of the motorcycle 310. The saddle riding type vehicle traveling data processing device 301 may acquire these data from a device that has received the data transmitted from the wireless communication device of the motorcycle 310 via an external storage device or the like. A plurality of communication methods may be used for communication between the wireless communication device and the saddle riding type vehicle travel data processing device 301, or only wireless communication may be used.
 鞍乗型車両走行データ処理装置301は、無線通信装置の代わりに、自動二輪車310に着脱可能な外部記憶装置(図示せず)を利用して、自動二輪車310が取得した各種のデータを取得してもよい。外部記憶装置は、自動二輪車310が取得した各種のデータを記憶する。自動二輪車310から取り外された外部記憶装置は、鞍乗型車両走行データ処理装置301に接続されてもよい。自動二輪車310から取り外された外部記憶装置は、鞍乗型車両走行データ処理装置301と通信可能な装置に接続されてもよい。いずれの場合も、鞍乗型車両走行データ処理装置301は、外部記憶装置に記憶された各種データを取得できる。 The saddle riding type vehicle traveling data processing device 301 acquires various data acquired by the motorcycle 310 by using an external storage device (not shown) detachable from the motorcycle 310 instead of the wireless communication device. May be. The external storage device stores various data acquired by the motorcycle 310. The external storage device removed from the motorcycle 310 may be connected to the saddle riding type vehicle travel data processing device 301. The external storage device removed from the motorcycle 310 may be connected to a device that can communicate with the saddle riding type vehicle travel data processing device 301. In any case, the saddle riding type vehicle travel data processing device 301 can acquire various data stored in the external storage device.
 鞍乗型車両走行データ処理装置301が自動二輪車310から取得する各種のデータには、ライダー識別データBI、ライダー識別データBI以外の識別データBX、および、検出した日付のデータの少なくとも1つが付けられていてもよい。 At least one of the rider identification data BI, the identification data BX other than the rider identification data BI, and the data of the detected date is attached to various data acquired from the motorcycle 310 by the saddle riding type vehicle travel data processing device 301. May be.
 鞍乗型車両走行データ処理装置301が自動二輪車310から取得するデータの具体例は、下記の通りである。但し、鞍乗型車両走行データ処理装置301は、下記以外のデータを自動二輪車310から取得してもよい。 Specific examples of the data that the saddle riding type vehicle traveling data processing device 301 acquires from the motorcycle 310 are as follows. However, the saddle riding type vehicle travel data processing device 301 may acquire data other than the following from the motorcycle 310.
 鞍乗型車両走行データ処理装置301は、GNSS受信ユニット90が生成した走行軌跡データBTを、自動二輪車310から取得する。もしくは、鞍乗型車両走行データ処理装置301は、GNSS受信ユニット90が生成した位置座標データを、自動二輪車310から取得してもよい。この場合、鞍乗型車両走行データ処理装置301は、GNSS受信ユニット90の位置座標データに基づいて走行軌跡データBTを生成する。 The saddle riding type vehicle traveling data processing device 301 acquires the traveling locus data BT generated by the GNSS receiving unit 90 from the motorcycle 310. Alternatively, the saddle riding type vehicle traveling data processing device 301 may acquire the position coordinate data generated by the GNSS receiving unit 90 from the motorcycle 310. In this case, the saddle riding type vehicle traveling data processing device 301 generates traveling locus data BT based on the position coordinate data of the GNSS receiving unit 90.
 鞍乗型車両走行データ処理装置301は、自動二輪車310の車両前方向の加速度に関連する前方向加速度データBAを自動二輪車310から取得する。もしくは、鞍乗型車両走行データ処理装置301は、自動二輪車310から取得したデータに基づいて、自動二輪車310の車両前方向の加速度に関連する前方向加速度データBAを生成する。具体的には、前方向加速度データBAは、自動二輪車310のGNSS受信ユニット90から取得されてもよい。前方向加速度データBAは、GNSS受信ユニット90が検出した自動二輪車310の車両前方向の速度に基づいて、自動二輪車310のEUCまたは鞍乗型車両走行データ処理装置301が生成したデータであってもよい。前方向加速度データBAは、車輪速度センサ85の信号に基づいて、自動二輪車310のEUCまたは鞍乗型車両走行データ処理装置301が生成したデータであってもよい。 The saddle riding type vehicle traveling data processing device 301 acquires from the motorcycle 310 forward acceleration data BA related to the acceleration of the motorcycle 310 in the vehicle forward direction. Alternatively, the saddle riding type vehicle traveling data processing device 301 generates the forward acceleration data BA related to the vehicle forward acceleration of the motorcycle 310 based on the data acquired from the motorcycle 310. Specifically, the forward acceleration data BA may be acquired from the GNSS receiving unit 90 of the motorcycle 310. The forward acceleration data BA is data generated by the EUC of the motorcycle 310 or the saddle riding type vehicle travel data processing device 301 based on the vehicle forward speed of the motorcycle 310 detected by the GNSS receiving unit 90. Good. The forward acceleration data BA may be data generated by the EUC of the motorcycle 310 or the saddle riding type vehicle travel data processing device 301 based on the signal of the wheel speed sensor 85.
 鞍乗型車両走行データ処理装置301は、自動二輪車310の車両左右方向の加速度に関連する左右方向加速度データBLを取得する。左右方向加速度データBLは、自動二輪車310のGNSS受信ユニット90から取得される。 The saddle riding type vehicle traveling data processing device 301 acquires lateral acceleration data BL related to the lateral acceleration of the motorcycle 310. The lateral acceleration data BL is acquired from the GNSS receiving unit 90 of the motorcycle 310.
 鞍乗型車両走行データ処理装置301は、自動二輪車310または他の装置から、自動二輪車310の排気量を示す排気量データを取得してもよい。鞍乗型車両走行データ処理装置301は、自動二輪車310または他の装置から、自動二輪車310のカテゴリーを示すカテゴリーデータを取得してもよい。自動二輪車310のカテゴリーとは、自動二輪車310の用途や特性などで区分された分類のことである。自動二輪車310のカテゴリーとして、例えば、スポーツタイプ、オンロードやオフロードなどがある。 The saddle riding type vehicle traveling data processing device 301 may acquire displacement data indicating the displacement of the motorcycle 310 from the motorcycle 310 or another device. The saddle riding type vehicle travel data processing device 301 may acquire category data indicating the category of the motorcycle 310 from the motorcycle 310 or another device. The category of the motorcycle 310 is a classification divided according to the use and characteristics of the motorcycle 310. The categories of the motorcycle 310 include, for example, sports type, on-road and off-road.
 次に、本具体例3の鞍乗型車両走行データ処理方法について説明する。本具体例3の鞍乗型車両走行データ処理方法とは、鞍乗型車両走行データ処理装置301のプロセッサ302が実行する処理の手順である。 Next, the saddle riding type vehicle traveling data processing method of the third specific example will be described. The saddle riding type vehicle travel data processing method of the third specific example is a procedure of processing executed by the processor 302 of the saddle riding type vehicle travel data processing device 301.
 鞍乗型車両走行データ処理装置301のプロセッサ302は、図11に示す一連の処理S11~S15を実行する。 The processor 302 of the saddle riding type vehicle travel data processing device 301 executes a series of processes S11 to S15 shown in FIG.
 鞍乗型車両走行データ取得処理S11において、プロセッサ302は、第1アプローチ旋回軌跡データDTb1を取得する。プロセッサ302は、走行軌跡データBTを取得することで、第1アプローチ旋回軌跡データDTb1を取得してもよい。この場合、プロセッサ302は、第1環状軌跡データDTa1も取得する。1つの走行軌跡データBTは、メインスイッチをオンにしてからオフにするまでの走行軌跡、または、エンジンユニット30の運転を開始してから停止するまでの走行軌跡を示す。具体例1、2と同様に、本具体例3の鞍乗型車両走行データ処理方法を行うために自動二輪車310が走行するコースは、制限される。したがって、1つの走行軌跡データBTが示す走行軌跡は比較的短い。プロセッサ302は、具体例1、2と同様に、走行軌跡データBTから、第1アプローチ旋回軌跡データDTb1を抽出してもよい。プロセッサ302は、走行軌跡データBTから、第1環状軌跡データDTa1を抽出してもよい。 In the saddle riding type vehicle traveling data acquisition processing S11, the processor 302 acquires the first approach turning trajectory data DTb1. The processor 302 may acquire the first approach turning trajectory data DTb1 by acquiring the traveling trajectory data BT. In this case, the processor 302 also acquires the first circular trajectory data DTa1. One traveling locus data BT indicates a traveling locus from turning on the main switch to turning off the main switch, or a traveling locus from starting to stopping the operation of the engine unit 30. Similar to the specific examples 1 and 2, the course on which the motorcycle 310 travels to carry out the saddle riding type vehicle travel data processing method of the specific example 3 is limited. Therefore, the traveling locus indicated by one traveling locus data BT is relatively short. The processor 302 may extract the first approach turning trajectory data DTb1 from the traveling trajectory data BT, as in the first and second examples. The processor 302 may extract the first annular trajectory data DTa1 from the traveling trajectory data BT.
 鞍乗型車両走行データ取得処理S11において、プロセッサ302は、第1アプローチ旋回前方向加速度データDAb1を取得する。プロセッサ302は、前方向加速度データBAを取得することで、第1アプローチ旋回前方向加速度データDAb1を取得してもよい。この場合、プロセッサ302は、第1環状前方向加速度データDAa1も取得する。1つの前方向加速度データBAは、メインスイッチをオンにしてからオフにするまでの加速度および減速度、または、エンジンユニット30の運転を開始してから停止するまでの加速度および減速度を示す。プロセッサ302は、具体例1、2と同様に、前方向加速度データBAから、第1アプローチ旋回前方向加速度データDAb1を抽出してもよい。プロセッサ302は、前方向加速度データBAから、第1環状前方向加速度データDAa1を抽出してもよい。 In the saddle riding type vehicle traveling data acquisition processing S11, the processor 302 acquires the first approach turning front direction acceleration data DAb1. The processor 302 may acquire the first approach turning front direction acceleration data DAb1 by acquiring the front direction acceleration data BA. In this case, the processor 302 also acquires the first annular forward acceleration data DAa1. One forward acceleration data BA indicates the acceleration and deceleration from turning on the main switch to turning it off, or the acceleration and deceleration from starting to stopping the operation of the engine unit 30. The processor 302 may extract the first approach turning front direction acceleration data DAb1 from the front direction acceleration data BA as in the first and second embodiments. The processor 302 may extract the first annular forward acceleration data DAa1 from the forward acceleration data BA.
 鞍乗型車両走行データ取得処理S11において、プロセッサ302は、第1アプローチ旋回左右方向加速度データDLb1を取得する。プロセッサ302は、左右方向加速度データBLを取得することで、第1アプローチ旋回左右方向加速度データDLb1を取得してもよい。この場合、プロセッサ302は、第1環状左右方向加速度データDLa1も取得する。プロセッサ302は、具体例1、2と同様に、左右方向加速度データBLから、第1アプローチ旋回左右方向加速度データDLb1を抽出してもよい。プロセッサ302は、左右方向加速度データBLから、第1環状左右方向加速度データDLa1を抽出してもよい。 In the saddle riding type vehicle traveling data acquisition processing S11, the processor 302 acquires the first approach turning left / right direction acceleration data DLb1. The processor 302 may acquire the first approach turning left / right acceleration data DLb1 by acquiring the left / right acceleration data BL. In this case, the processor 302 also acquires the first annular lateral acceleration data DLa1. The processor 302 may extract the first approach turn left / right acceleration data DLb1 from the left / right acceleration data BL, as in the first and second embodiments. The processor 302 may extract the first annular lateral acceleration data DLa1 from the lateral acceleration data BL.
 鞍乗型車両走行データ取得処理S11において、プロセッサ302は、第1旋回車両姿勢データD3V1と、第1旋回ライダー姿勢データD3R1を取得する。第1旋回車両姿勢データD3V1は、第1旋回軌跡Td1を走行したときの自動二輪車310の姿勢に関連するデータである。第1旋回ライダー姿勢データD3R1は、第1旋回軌跡Td1を走行したときの自動二輪車310に乗車するライダーRの姿勢に関連するデータである。プロセッサ302は、第1旋回車両姿勢データD3V1と第1旋回ライダー姿勢データD3R1とが一体化された第1旋回姿勢データD3RV1を取得する。第1旋回姿勢データD3RV1は、撮像装置308から取得される。第1旋回姿勢データD3RV1は、イメージデータである。第1旋回姿勢データD3RV1は、1つの静止画像データであってもよく、複数の静止画像データであってもよく、動画データであってもよい。鞍乗型車両走行データ取得処理S11において、プロセッサ302は、撮像装置308から鞍乗型車両走行データ処理装置301が取得した複数の静止画像データまたは動画データの中から、第1旋回姿勢データD3RV1を抽出してもよい。プロセッサ302は、撮像装置308から鞍乗型車両走行データ処理装置301が取得した複数の静止画像データまたは動画データの中から、第1旋回姿勢データD3RV1として1つの静止画像データを抽出してもよい。例えば、画像の解析結果に基づいて、どのデータを抽出するか決定してもよい。 In the saddle riding type vehicle traveling data acquisition processing S11, the processor 302 acquires the first turning vehicle attitude data D3V1 and the first turning rider attitude data D3R1. The first turning vehicle attitude data D3V1 is data relating to the attitude of the motorcycle 310 when traveling on the first turning trajectory Td1. The first turning rider posture data D3R1 is data relating to the posture of the rider R riding on the motorcycle 310 when traveling on the first turning locus Td1. The processor 302 acquires the first turning attitude data D3RV1 in which the first turning vehicle attitude data D3V1 and the first turning rider attitude data D3R1 are integrated. The first turning posture data D3RV1 is acquired from the imaging device 308. The first turning posture data D3RV1 is image data. The first turning posture data D3RV1 may be one still image data, a plurality of still image data, or moving image data. In the straddle-type vehicle travel data acquisition process S11, the processor 302 obtains the first turning attitude data D3RV1 from the plurality of still image data or moving image data acquired by the saddle-ride type vehicle travel data processing device 301 from the imaging device 308. You may extract. The processor 302 may extract one still image data as the first turning attitude data D3RV1 from a plurality of still image data or moving image data acquired by the saddle riding type vehicle travel data processing device 301 from the image capturing device 308. . For example, which data may be extracted may be determined based on the analysis result of the image.
 ライダー識別データ取得処理S12において、プロセッサ302は、第1ライダー識別データDI1を取得する。第1ライダー識別データDI1は、第1アプローチ旋回軌跡Tb1を走行したときの自動二輪車310に乗車するライダーRを識別するデータである。 In the rider identification data acquisition process S12, the processor 302 acquires the first rider identification data DI1. The first rider identification data DI1 is data for identifying the rider R who gets on the motorcycle 310 when traveling on the first approach turning trajectory Tb1.
 上述したように、自動二輪車310から鞍乗型車両走行データ処理装置301が取得した各種データにライダー識別データBIが付されている場合がある。プロセッサ302は、第1アプローチ旋回軌跡データDTb1に付された第1ライダー識別データDI1を取得してもよい。プロセッサ302は、第1アプローチ旋回前方向加速度データDAb1に付された第1ライダー識別データDI1を取得してもよい。プロセッサ302は、第1アプローチ旋回左右方向加速度データDLb1に付された第1ライダー識別データDI1を取得してもよい。撮像装置308から鞍乗型車両走行データ処理装置301が取得したイメージデータにライダー識別データBIが付されている場合がある。プロセッサ302は、第1旋回姿勢データD3RV1(第1旋回車両姿勢データD3V1および第1旋回ライダー姿勢データD3R1)に付された第1ライダー識別データDI1を取得してもよい。 As described above, the rider identification data BI may be attached to various data acquired by the saddle riding type vehicle travel data processing device 301 from the motorcycle 310. The processor 302 may acquire the first rider identification data DI1 attached to the first approach turning trajectory data DTb1. The processor 302 may acquire the first rider identification data DI1 attached to the first approach frontward turning acceleration data DAb1. The processor 302 may obtain the first rider identification data DI1 attached to the first approach turning left / right acceleration data DLb1. The image data acquired by the saddle riding type vehicle travel data processing device 301 from the image pickup device 308 may be attached with the rider identification data BI. The processor 302 may acquire the first rider identification data DI1 attached to the first turning attitude data D3RV1 (the first turning vehicle attitude data D3V1 and the first turning rider attitude data D3R1).
 プロセッサ302は、自動二輪車310から、ライダー識別データBIが付された識別データBXを取得してもよい。上述したように、自動二輪車310から鞍乗型車両走行データ処理装置301が取得した各種データには、識別データBXが付されている場合がある。プロセッサ302は、第1アプローチ旋回軌跡データDTb1に付された識別データBXと、ライダー識別データBIが付された識別データBXとの照合により、第1ライダー識別データDI1を取得してもよい。プロセッサ302は、第1アプローチ旋回前方向加速度データDAb1に付された識別データBXと、ライダー識別データBIが付された識別データBXとの照合により、第1ライダー識別データDI1を取得してもよい。プロセッサ302は、第1アプローチ旋回左右方向加速度データDLb1に付された識別データBXと、ライダー識別データBIが付された識別データBXとの照合により、第1ライダー識別データDI1を取得してもよい。撮像装置308から鞍乗型車両走行データ処理装置301が取得したイメージデータには、識別データBXが付されている場合がある。プロセッサ302は、第1旋回姿勢データD3RV1に付された識別データBXと、ライダー識別データBIが付された識別データBXとの照合により、第1ライダー識別データDI1を取得してもよい。 The processor 302 may acquire the identification data BX with the rider identification data BI from the motorcycle 310. As described above, the identification data BX may be attached to various data acquired by the saddle riding type vehicle travel data processing device 301 from the motorcycle 310. The processor 302 may acquire the first rider identification data DI1 by collating the identification data BX attached to the first approach turning trajectory data DTb1 with the identification data BX attached to the rider identification data BI. The processor 302 may obtain the first rider identification data DI1 by collating the identification data BX attached to the first approach frontward turn acceleration data DAb1 with the identification data BX attached to the rider identification data BI. .. The processor 302 may obtain the first rider identification data DI1 by collating the identification data BX attached to the first approach turning left / right acceleration data DLb1 with the identification data BX attached to the rider identification data BI. .. The identification data BX may be attached to the image data acquired by the saddle riding type vehicle travel data processing device 301 from the imaging device 308. The processor 302 may acquire the first rider identification data DI1 by collating the identification data BX attached to the first turning attitude data D3RV1 with the identification data BX attached to the rider identification data BI.
 鞍乗型車両走行複合データ生成処理S13において、プロセッサ302は、第1アプローチ旋回軌跡データDTb1と、第1アプローチ旋回前方向加速度データDAb1とに基づいて、第1鞍乗型車両走行複合データD3c1を生成する。第1鞍乗型車両走行複合データD3c1は、第1アプローチ旋回軌跡Tb1、および、第1アプローチ旋回軌跡Tb1を走行したときの自動二輪車310の車両前方向の加速度を関連付けて生成される。 In the saddle riding type vehicle traveling composite data generation processing S13, the processor 302 generates the first straddling type vehicle traveling composite data D3c1 based on the first approach turning trajectory data DTb1 and the first approach turning front direction acceleration data DAb1. To generate. The first saddle riding type vehicle traveling composite data D3c1 is generated in association with the first approach turning trajectory Tb1 and the acceleration in the vehicle front direction of the motorcycle 310 when traveling on the first approach turning trajectory Tb1.
 鞍乗型車両走行複合データ生成処理S13において、プロセッサ302は、第1アプローチ旋回軌跡データDTb1と、第1アプローチ旋回前方向加速度データDAb1と、第1アプローチ旋回左右方向加速度データDLb1とに基づいて、第1鞍乗型車両走行複合データD3c1を生成してもよい。この場合、第1鞍乗型車両走行複合データD3c1は、第1アプローチ旋回軌跡Tb1、第1アプローチ旋回軌跡Tb1を走行したときの自動二輪車310の車両前方向の加速度、および、第1アプローチ旋回軌跡Tb1を走行したときの自動二輪車310の車両左右方向の加速度を関連付けて生成される。 In the saddle riding type vehicle traveling composite data generation process S13, the processor 302 determines, based on the first approach turning trajectory data DTb1, the first approach turning front direction acceleration data DAb1 and the first approach turning left / right direction acceleration data DLb1. The first saddle riding type vehicle traveling composite data D3c1 may be generated. In this case, the first straddle-type vehicle traveling composite data D3c1 includes the first approach turning locus Tb1, the acceleration in the vehicle front direction of the motorcycle 310 when traveling on the first approach turning locus Tb1, and the first approach turning locus. It is generated in association with the vehicle lateral acceleration of the motorcycle 310 when traveling on Tb1.
 鞍乗型車両走行複合データ生成処理S13において、プロセッサ302は、第1アプローチ旋回軌跡データDTb1と、第1アプローチ旋回前方向加速度データDAb1と、第1旋回車両姿勢データD3V1(第1旋回車両姿勢データD3V1および第1旋回ライダー姿勢データD3R1)とに基づいて、第1鞍乗型車両走行複合データD3c1を生成してもよい。この場合、第1鞍乗型車両走行複合データD3c1は、第1アプローチ旋回軌跡Tb1、第1アプローチ旋回軌跡Tb1を走行したときの自動二輪車310の車両前方向の加速度、および、第1アプローチ旋回軌跡Tb1を走行したときの自動二輪車310の姿勢およびライダーRの姿勢を関連付けて生成される。 In the saddle riding type vehicle traveling composite data generation process S13, the processor 302 causes the first approach turning trajectory data DTb1, the first approach turning front direction acceleration data DAb1, the first turning vehicle attitude data D3V1 (first turning vehicle attitude data). The first saddle riding type vehicle traveling composite data D3c1 may be generated based on D3V1 and the first turning rider attitude data D3R1). In this case, the first straddle-type vehicle traveling composite data D3c1 includes the first approach turning locus Tb1, the acceleration in the vehicle front direction of the motorcycle 310 when traveling on the first approach turning locus Tb1, and the first approach turning locus. It is generated by associating the attitude of the motorcycle 310 and the attitude of the rider R when traveling on Tb1.
 第1鞍乗型車両走行複合データD3c1は、第1アプローチ旋回軌跡データDTb1と、第1アプローチ旋回前方向加速度データDAb1と、第1アプローチ旋回左右方向加速度データDLb1と、第1旋回車両姿勢データD3V1(第1旋回車両姿勢データD3V1および第1旋回ライダー姿勢データD3R1)とに基づいて生成されてもよい。 The first straddle-type vehicle traveling composite data D3c1 includes the first approach turning trajectory data DTb1, the first approach turning front direction acceleration data DAb1, the first approach turning left and right direction acceleration data DLb1, and the first turning vehicle attitude data D3V1. It may be generated based on (first turning vehicle attitude data D3V1 and first turning rider attitude data D3R1).
 上述した第1鞍乗型車両走行複合データD3c1の例において、第1鞍乗型車両走行複合データD3c1の基になるデータとして、第1アプローチ旋回軌跡データDTb1の代わりに、第1環状軌跡データDTa1が用いられてもよい。第1環状軌跡データDTa1が用いられた場合、第1アプローチ旋回前方向加速度データDAb1の代わりに、第1環状前方向加速度データDAa1が用いられてもよい。第1環状軌跡データDTa1が用いられた場合、第1アプローチ旋回左右方向加速度データDLb1の代わりに、第1環状左右方向加速度データDLa1が用いられてもよい。 In the example of the first straddle-type vehicle travel composite data D3c1 described above, the first annular trajectory data DTa1 instead of the first approach turning trajectory data DTb1 is used as the base data of the first saddle-ride vehicle traveling composite data D3c1. May be used. When the first annular trajectory data DTa1 is used, the first annular forward acceleration data DAa1 may be used instead of the first approach turning forward acceleration data DAb1. When the first annular trajectory data DTa1 is used, the first annular left / right acceleration data DLa1 may be used instead of the first approach turn left / right acceleration data DLb1.
 本具体例3の鞍乗型車両走行複合データ生成処理S13で生成される第1鞍乗型車両走行複合データD3c1は、第1鞍乗型車両走行複合データD3c1の基になるデータを含んでいてもよく、含まなくてもよい。 The first straddle-type vehicle travel composite data D3c1 generated in the saddle-ride type vehicle travel composite data generation processing S13 of the third specific example includes data that is a basis of the first saddle-ride type vehicle travel composite data D3c1. May or may not be included.
 第1鞍乗型車両走行複合データD3c1は、第1アプローチ旋回軌跡データDTb1に基づいたメージデータを含む。このイメージデータは、走行軌跡をラインで表したものである。 The first saddle riding type vehicle traveling composite data D3c1 includes image data based on the first approach turning trajectory data DTb1. This image data is a line representing the travel locus.
 第1鞍乗型車両走行複合データD3c1は、第1アプローチ旋回軌跡データDTb1および第1アプローチ旋回前方向加速度データDAb1に基づいた1つのイメージデータを含んでいてもよい。このイメージデータは、具体的には、例えば、図5、図6(a)および図7(a)のように、走行軌跡を示すラインを、車両前方向の加速度に応じた表示形態で表したものであってもよい。より具体的には、車両前方向の加速度に応じて色を変えてもよい。 The first saddle riding type vehicle traveling composite data D3c1 may include one image data based on the first approach turning trajectory data DTb1 and the first approach turning front direction acceleration data DAb1. Specifically, the image data represents, for example, as shown in FIGS. 5, 6 (a) and 7 (a), a line indicating a traveling locus in a display form corresponding to the acceleration in the front direction of the vehicle. It may be one. More specifically, the color may be changed according to the acceleration in the vehicle front direction.
 第1鞍乗型車両走行複合データD3c1は、第1アプローチ旋回軌跡データDTb1および第1アプローチ旋回左右方向加速度データDLb1に基づいた1つのイメージデータを含んでいてもよい。このイメージデータは、具体的には、例えば、図6(b)および図7(b)のように、走行軌跡を示すラインを、車両左右方向の加速度に応じた表示形態で表したものであってもよい。より具体的には、車両左右方向の加速度に応じて色を変えてもよい。 The first straddle-type vehicle traveling composite data D3c1 may include one image data based on the first approach turning trajectory data DTb1 and the first approach turning left / right direction acceleration data DLb1. Specifically, the image data is, for example, as shown in FIGS. 6B and 7B, a line indicating a traveling locus in a display form corresponding to the acceleration in the vehicle left-right direction. You may. More specifically, the color may be changed according to the acceleration in the vehicle left-right direction.
 第1鞍乗型車両走行複合データD3c1は、第1アプローチ旋回軌跡データDTb1、第1アプローチ旋回前方向加速度データDAb1、および第1アプローチ旋回左右方向加速度データDLb1に基づいた1つのイメージデータを有していてもよい。例えば、車両左右方向の加速度に応じた表示形態で表した走行軌跡のラインの内側に、車両左右方向の加速度に応じた表示形態で表したラインが配置されたイメージデータを含んでいてもよい。また、例えば、車両左右方向の加速度に応じた表示形態で表した走行軌跡のラインと、車両左右方向の加速度に応じた表示形態で表したラインとが部分的に重なるイメージデータを含んでいてもよい。 The first saddle riding type vehicle traveling composite data D3c1 has one image data based on the first approach turning trajectory data DTb1, the first approach turning front direction acceleration data DAb1 and the first approach turning left and right direction acceleration data DLb1. May be. For example, image data in which a line represented in a display form corresponding to the acceleration in the vehicle left-right direction is arranged may be included inside the line of the travel locus represented in the display form corresponding to the acceleration in the vehicle left-right direction. Further, for example, even if image data including a line of a travel locus represented in a display form corresponding to the acceleration in the vehicle left-right direction and a line represented in a display form corresponding to the acceleration in the vehicle left-right direction partially overlap each other, Good.
 第1鞍乗型車両走行複合データD3c1は、第1アプローチ旋回前方向加速度データDAb1および第1アプローチ旋回左右方向加速度データDLb1に基づいた1つのイメージデータを含んでいてもよい。このイメージデータは、具体的には、例えば、図6(c)および図7(c)のように、車両前方向の加速度を縦軸とし、車両左右方向の加速度を横軸としたグラフのイメージデータであってもよい。このグラフは、車両前方向の加速度がゼロのとき、車両左右方向の加速度もゼロとする。このグラフには、運転技術レベルの目安のために、ゼロを中心とした少なくとも1つの円が含まれていてもよい。円は、縦軸上と横軸上の同じ数値(加速度)を通る。図6(c)および図7(c)のグラフには、黒色と灰色の2つの円が含まれているが、1つのグラフに含まれる円の数は1つだけでもよい。1つのグラフに含まれる円が1つだけの場合、円の半径は、例えば0.3G~0.8Gである。1つのグラフに含まれる円が2つの場合、大きい方の円の半径は、例えば0.4G~0.8Gであって、小さい方の円の半径は、例えば0.3G~0.6Gである。このような円は、第1鞍乗型車両走行複合データD3c1に含まれていてもよく、第1鞍乗型車両走行複合データD3c1が後述する出力対象305に出力された後で追加されてもよい。  The first saddle riding type vehicle traveling composite data D3c1 may include one image data based on the first approach turning front direction acceleration data DAb1 and the first approach turning left and right direction acceleration data DLb1. Specifically, this image data is, for example, as shown in FIGS. 6C and 7C, an image of a graph in which the vertical axis represents the acceleration in the vehicle front direction and the horizontal axis represents the acceleration in the vehicle left-right direction. It may be data. In this graph, when the acceleration in the front direction of the vehicle is zero, the acceleration in the lateral direction of the vehicle is also zero. The graph may include at least one circle centered on zero for the purpose of driving skill level. A circle passes through the same numerical value (acceleration) on the vertical axis and the horizontal axis. The graphs of FIG. 6C and FIG. 7C include two circles of black and gray, but one graph may include only one circle. When only one circle is included in one graph, the radius of the circle is, for example, 0.3G to 0.8G. When two circles are included in one graph, the radius of the larger circle is, for example, 0.4G to 0.8G, and the radius of the smaller circle is, for example, 0.3G to 0.6G. . Such a circle may be included in the first saddle riding type vehicle traveling composite data D3c1 or may be added after the first saddle riding type vehicle traveling composite data D3c1 is output to the output target 305 described later. Good. ‥
 第1鞍乗型車両走行複合データD3c1は、第1アプローチ旋回前方向加速度データDAb1に基づいた1つのイメージデータを含んでいてもよい。第1アプローチ旋回前方向加速度データDAb1に基づいたイメージデータは、例えば、車両前方向の加速度を縦軸とし、時間を横軸としたグラフのイメージデータであってもよい。第1アプローチ旋回前方向加速度データDAb1に基づいたイメージデータは、例えば、車両前方向の加速度を縦軸とし、車両前方向の速度を横軸としたグラフのイメージデータであってもよい。縦軸と横軸が逆であってもよい。車両前方向の速度は、第1アプローチ旋回前方向加速度データDAb1から算出されたものであってもよく、GNSS受信ユニット90によって検出されたものであってもよく、車輪速度センサ85の信号に基づいて生成されたものであってもよい。この場合、第1鞍乗型車両走行複合データD3c1の基になるデータは、車両前方向の速度に関連するデータを含む。 The first saddle riding type vehicle traveling composite data D3c1 may include one image data based on the first approach turning front direction acceleration data DAb1. The image data based on the first approach turning front direction acceleration data DAb1 may be, for example, image data of a graph with the vehicle front direction acceleration on the vertical axis and the time on the horizontal axis. The image data based on the first approach turning front acceleration data DAb1 may be, for example, image data of a graph having the vehicle front acceleration as the vertical axis and the vehicle front speed as the horizontal axis. The vertical axis and the horizontal axis may be opposite. The speed in the vehicle front direction may be calculated from the first approach turning front direction acceleration data DAb1 or may be detected by the GNSS receiving unit 90, and is based on the signal of the wheel speed sensor 85. It may be generated by In this case, the data on which the first straddle-type vehicle traveling composite data D3c1 is based includes data relating to the speed in the vehicle front direction.
 第1鞍乗型車両走行複合データD3c1は、第1アプローチ旋回左右方向加速度データDLb1に基づいた1つのイメージデータを含んでいてもよい。第1アプローチ旋回左右方向加速度データDLb1に基づいたイメージデータは、例えば、車両左右方向の加速度を縦軸とし、時間を横軸としたグラフのイメージデータであってもよい。第1アプローチ旋回左右方向加速度データDLb1に基づいたイメージデータは、例えば、車両左右方向の加速度を縦軸とし、車両前方向の速度を横軸としたグラフのイメージデータであってもよい。縦軸と横軸が逆であってもよい。車両左右方向の速度は、第1アプローチ旋回左右方向加速度データDLb1から算出されたものであってもよく、GNSS受信ユニット90によって検出されたものであってもよく、車輪速度センサ85の信号に基づいて生成されたものであってもよい。この場合、第1鞍乗型車両走行複合データD3c1の基になるデータは、車両左右方向の速度に関連するデータを含む。 The first saddle riding type vehicle traveling composite data D3c1 may include one image data based on the first approach turning left / right direction acceleration data DLb1. The image data based on the first approach turning left / right acceleration data DLb1 may be, for example, image data of a graph with the vehicle left / right acceleration as the vertical axis and the time as the horizontal axis. The image data based on the first approach turning left / right acceleration data DLb1 may be, for example, image data of a graph in which the vehicle left / right acceleration is on the vertical axis and the vehicle front speed is on the horizontal axis. The vertical axis and the horizontal axis may be opposite. The vehicle left-right speed may be calculated from the first approach turning left-right acceleration data DLb1 or may be detected by the GNSS receiving unit 90, and based on the signal from the wheel speed sensor 85. It may be generated by In this case, the data on which the first straddle-type vehicle traveling composite data D3c1 is based includes data relating to the speed in the vehicle left-right direction.
 第1鞍乗型車両走行複合データD3c1は、第1旋回車両姿勢データD3V1および第1旋回ライダー姿勢データD3R1に基づいたイメージデータを含んでもよい。 The first straddle-type vehicle traveling composite data D3c1 may include image data based on the first turning vehicle attitude data D3V1 and the first turning rider attitude data D3R1.
 第1鞍乗型車両走行複合データD3c1は、上述のいずれかの組合せのデータに加えて、第1ライダー識別データDI1に基づいて生成されてもよい。この場合、第1鞍乗型車両走行複合データD3c1は、第1旋回動作中の自動二輪車310に乗車するライダーRに関連付けて生成される。 The first saddle riding type vehicle traveling composite data D3c1 may be generated based on the first rider identification data DI1 in addition to the data of any combination described above. In this case, the first saddle riding type vehicle traveling composite data D3c1 is generated in association with the rider R who gets on the motorcycle 310 during the first turning motion.
 第1鞍乗型車両走行複合データD3c1は、上述のいずれかの組合せのデータに加えて、カテゴリーデータに基づいて生成されてもよい。この場合、第1鞍乗型車両走行複合データD3c1は、第1旋回動作中の自動二輪車310のカテゴリーに関連付けて生成される。第1鞍乗型車両走行複合データD3c1は、上述のいずれかの組合せのデータに加えて、排気量データに基づいて生成されてもよい。この場合、第1鞍乗型車両走行複合データD3c1は、第1旋回動作中の自動二輪車310の排気量に関連付けて生成される。 The first straddle-type vehicle traveling composite data D3c1 may be generated based on category data in addition to data of any combination described above. In this case, the first saddle riding type vehicle traveling composite data D3c1 is generated in association with the category of the motorcycle 310 in the first turning motion. The first saddle riding type vehicle traveling composite data D3c1 may be generated based on the displacement data in addition to the data of any combination described above. In this case, the first straddle-type vehicle traveling composite data D3c1 is generated in association with the displacement of the motorcycle 310 during the first turning motion.
 鞍乗型車両走行複合データ記憶処理S14において、プロセッサ302は、鞍乗型車両走行複合データ生成処理S13により生成された第1鞍乗型車両走行複合データD3c1を記憶部303に記憶させる。 In the saddle riding type vehicle traveling composite data storage processing S14, the processor 302 stores the first saddle riding type vehicle traveling composite data D3c1 generated by the saddle riding type vehicle traveling composite data generation processing S13 in the storage unit 303.
 鞍乗型車両走行複合データ出力処理S15において、プロセッサ302は、記憶部303に記憶された第1鞍乗型車両走行複合データD3c1を出力対象305に出力する。 In the saddle riding type vehicle traveling composite data output process S15, the processor 302 outputs the first saddle riding type vehicle traveling composite data D3c1 stored in the storage unit 303 to the output target 305.
 出力対象305は、例えば、表示装置であってもよく、印刷装置であってもよく、それ以外の装置であってもよい。表示装置は、例えば、表示機能だけを有するものであってもよく、表示機能以外の機能も有するものであってもよい。表示機能以外の機能も有する表示装置とは、例えばタブレット端末などである。 The output target 305 may be, for example, a display device, a printing device, or another device. The display device may have only a display function, for example, or may have a function other than the display function. The display device having a function other than the display function is, for example, a tablet terminal.
 図示は省略するが、表示装置は、情報を表示可能な表示部と、データ取得部と、表示制御部とを有する。データ取得部は、出力された第1鞍乗型車両走行複合データD3c1を取得する。表示制御部は、データ取得部が取得した第1鞍乗型車両走行複合データD3c1を表示部の1つの画面上に同時に表示させる。 Although not shown, the display device includes a display unit capable of displaying information, a data acquisition unit, and a display control unit. The data acquisition unit acquires the output first saddle riding type vehicle traveling composite data D3c1. The display control unit causes the first straddle-type vehicle traveling composite data D3c1 acquired by the data acquisition unit to be simultaneously displayed on one screen of the display unit.
 図示は省略するが、印刷装置は、情報を用紙に印刷可能な印刷部と、データ取得部と、印刷制御部とを有する。データ取得部は、出力された第1鞍乗型車両走行複合データD3c1を取得する。印刷制御部は、データ取得部が取得した第1鞍乗型車両走行複合データD3c1を印刷部によって1枚の用紙の同一面に印刷させる。 Although not shown, the printing device has a printing unit capable of printing information on paper, a data acquisition unit, and a printing control unit. The data acquisition unit acquires the output first saddle riding type vehicle traveling composite data D3c1. The print control unit causes the printing unit to print the first straddle-type vehicle traveling composite data D3c1 acquired by the data acquisition unit, on the same surface of one sheet of paper.
 第1鞍乗型車両走行複合データD3c1が、上述したような、第1アプローチ旋回軌跡データDTb1および第1アプローチ旋回前方向加速度データDAb1に基づいたイメージデータと、第1アプローチ旋回軌跡データDTb1および第1アプローチ旋回左右方向加速度データDLb1に基づいたイメージデータを含む場合、この2つのイメージデータの表示から、フロントサスペンションの伸縮状態を推定することができる。つまり、車両前方向の減速がある程度大きい状態と、車両左方向の加速がある程度大きい状態が、ほぼ連続していれば、フロントサスペンションは縮んだままであると推定できる。 The first straddle-type vehicle traveling composite data D3c1 is image data based on the first approach turning trajectory data DTb1 and the first approach turning front direction acceleration data DAb1 as described above, the first approach turning trajectory data DTb1 and the first approach turning trajectory data DTb1. When the image data based on the 1-approach turn left / right acceleration data DLb1 is included, the expansion / contraction state of the front suspension can be estimated from the display of these two image data. That is, if the deceleration in the front direction of the vehicle is relatively large and the acceleration in the left direction of the vehicle is relatively large, it can be estimated that the front suspension remains contracted.
 第1鞍乗型車両走行複合データD3c1が、第1アプローチ旋回前方向加速度データDAb1および第1アプローチ旋回左右方向加速度データDLb1に基づいた上述のグラフを含む場合にも、このグラフからフロントサスペンションの伸縮状態をある程度推定することができる。 Even when the first saddle riding type vehicle traveling composite data D3c1 includes the above-mentioned graph based on the first approach turning front direction acceleration data DAb1 and the first approach turning left / right direction acceleration data DLb1, expansion / contraction of the front suspension is also performed from this graph. The state can be estimated to some extent.
 第1鞍乗型車両走行複合データD3c1が、第1アプローチ旋回前方向加速度データDAb1および第1アプローチ旋回左右方向加速度データDLb1に基づいた上述のグラフを含む場合、第1鞍乗型車両走行複合データD3c1と共に、図8のような画像が表示または印刷されてもよい。図8のような画像は、第1鞍乗型車両走行複合データD3c1と同時に1つの画面上に表示されてもよく、同時に表示されなくてもよい。図8のような画像は、第1鞍乗型車両走行複合データD3c1と共に1枚の用紙の同一面に印刷されてもよく、同一の用紙の別の面または別の用紙に印刷されてもよい。出力対象305において、第1鞍乗型車両走行複合データD3c1だけが表示または印刷される場合、第1鞍乗型車両走行複合データD3c1は、図8のような画像のデータを含む。出力対象305において、第1鞍乗型車両走行複合データD3c1を用いて表示または印刷のレイアウトを決定する場合は、第1鞍乗型車両走行複合データD3c1は、図8のような画像のデータを含んでいなくてもよい。図8のような画像が表示または印刷されることで、ライダーRは、目標とする加速度を把握しやすい。 When the first saddle riding type vehicle traveling composite data D3c1 includes the above-mentioned graph based on the first approach turning front direction acceleration data DAb1 and the first approach turning lateral acceleration data DLb1, the first straddle type vehicle running composite data. An image as shown in FIG. 8 may be displayed or printed together with D3c1. The image as shown in FIG. 8 may be displayed on one screen at the same time as the first saddle riding type vehicle traveling composite data D3c1 or may not be displayed at the same time. The image as shown in FIG. 8 may be printed on the same side of one sheet together with the first saddle riding type vehicle traveling composite data D3c1, or may be printed on another side of the same sheet or on another sheet. .. When only the first straddle-type vehicle travel composite data D3c1 is displayed or printed in the output target 305, the first saddle-ride type vehicle travel composite data D3c1 includes image data as shown in FIG. 8. In the output target 305, when the display or print layout is determined using the first straddle-type vehicle traveling composite data D3c1, the first saddle-riding type vehicle traveling composite data D3c1 is the image data shown in FIG. It need not be included. By displaying or printing the image shown in FIG. 8, the rider R can easily grasp the target acceleration.
 図11に示す一連の処理は、第1アプローチ旋回軌跡Tb1を走行したときとは異なる、自動二輪車310がアプローチ旋回領域Zbを走行する動作についても、実行される。アプローチ旋回領域Zbを走行する複数回の走行動作について図11に示す一連の処理が実行されることにより、複数の鞍乗型車両走行複合データD3cが出力対象305に出力される。 The series of processing shown in FIG. 11 is also executed for the operation of the motorcycle 310 traveling in the approach turning area Zb, which is different from the movement when traveling in the first approach turning trajectory Tb1. By executing the series of processes shown in FIG. 11 for a plurality of traveling operations of traveling in the approach turning area Zb, a plurality of saddle riding type vehicle traveling composite data D3c are output to the output target 305.
 プロセッサ302は、図12に示す一連の処理S11~S14、S20、S21を実行してもよい。 The processor 302 may execute the series of processes S11 to S14, S20, and S21 shown in FIG.
 鞍乗型車両走行一体複合データ生成処理S20において、プロセッサ302は、少なくとも1つの鞍乗型車両走行一体複合データD3uを生成する。鞍乗型車両走行一体複合データD3uは、記憶部303に記憶された複数の鞍乗型車両走行複合データD3cを関連づけて生成される。1つの鞍乗型車両走行一体複合データD3uを生成するために使用される鞍乗型車両走行複合データD3cの数は、2つであってもよく、2つより多くてもよい。 In the saddle-ride type vehicle traveling integrated composite data generation process S20, the processor 302 generates at least one saddle-type vehicle traveling integrated compound data D3u. The saddle-ride type vehicle traveling integrated data D3u is generated in association with the plurality of saddle-ride type vehicle traveling combined data D3c stored in the storage unit 303. The number of the saddle riding type vehicle traveling composite data D3c used for generating one saddle riding type vehicle traveling integrated data D3u may be two or may be more than two.
 プロセッサ302は、同じライダー識別データに基づいて生成された複数の鞍乗型車両走行複合データD3cに基づいて、同一ライダー鞍乗型車両走行一体複合データD3usを生成してもよい。プロセッサ302は、異なるライダー識別データに基づいて生成された複数の鞍乗型車両走行複合データD3cに基づいて、相違ライダー鞍乗型車両走行一体複合データD3udを生成してもよい。鞍乗型車両走行一体複合データ生成処理S20において複数の鞍乗型車両走行一体複合データD3uが生成される場合、複数の鞍乗型車両走行一体複合データD3uは、同一ライダー鞍乗型車両走行一体複合データD3usおよび相違ライダー鞍乗型車両走行一体複合データD3udの一方だけを含んでいてもよく、両方を含んでいてもよい。 The processor 302 may generate the same rider-saddle-type vehicle traveling integrated data D3us based on a plurality of saddle-type vehicle traveling complex data D3c generated based on the same rider identification data. The processor 302 may generate the different rider-saddle-type vehicle traveling integrated data D3ud based on the plurality of saddle-type vehicle traveling complex data D3c generated based on the different rider identification data. When a plurality of saddle riding type vehicle traveling integrated composite data D3u is generated in the saddle riding type vehicle traveling integrated complex data generation process S20, the plurality of saddle riding type vehicle traveling integrated compound data D3u are the same rider saddle riding type vehicle traveling integrated. Only one of the composite data D3us and the different rider-saddle-type vehicle traveling integrated composite data D3ud may be included, or both may be included.
 本具体例3の鞍乗型車両走行一体複合データD3uは、鞍乗型車両走行複合データD3cを含んでいてもよく、含まなくてもよい。鞍乗型車両走行一体複合データD3uは、鞍乗型車両走行複合データD3cの基になるデータを含んでいてもよく、含まなくてもよい。
鞍乗型車両走行一体複合データD3uは、複数の鞍乗型車両走行複合データD3cの差分や比較や組み合わせなどによって生成されたデータであってもよい。鞍乗型車両走行一体複合データD3uは、例えば、第1鞍乗型車両走行複合データD3c1と第2鞍乗型車両走行複合データD3c2との差分であってもよい。鞍乗型車両走行一体複合データD3uは、複数の鞍乗型車両走行複合データD3cの代表(例えば平均)を示すデータであってもよい。
The saddle-ride type vehicle traveling integrated data D3u of the third specific example may or may not include the saddle-ride type vehicle traveling combined data D3c. The saddle-ride type vehicle traveling integrated data D3u may or may not include the data that is the basis of the saddle-ride type vehicle traveling combined data D3c.
The saddle-ride type vehicle traveling integrated data D3u may be data generated by a difference, comparison or combination of a plurality of saddle-type vehicle traveling combined data D3c. The saddle riding type vehicle traveling integrated data D3u may be, for example, a difference between the first saddle riding type vehicle traveling composite data D3c1 and the second saddle riding type vehicle traveling composite data D3c2. The saddle-ride type vehicle traveling integrated data D3u may be data indicating a representative (for example, an average) of the plurality of saddle-type vehicle traveling combined data D3c.
 鞍乗型車両走行一体複合データD3uは、例えば、第1旋回姿勢データD3RV1の画像と、第2旋回姿勢データD3RV2の画像とを重ね合わせたイメージデータを含んでいてもよい。また、鞍乗型車両走行一体複合データD3uは、例えば、同じ第1コーナーを走行して得られた第1アプローチ旋回軌跡データDTb1の走行軌跡と第2アプローチ旋回軌跡データDTb2の走行軌跡を重ねたイメージデータを含んでいてもよい。鞍乗型車両走行一体複合データD3uは、例えば、車両前方向の加速度に応じた表示形態で表した走行軌跡を示す2つのラインの一方を、他方のラインの内側に配置したイメージデータを含んでいてもよい。 The saddle-ride type vehicle traveling integrated data D3u may include, for example, image data in which the image of the first turning attitude data D3RV1 and the image of the second turning attitude data D3RV2 are superimposed. In addition, the saddle riding type vehicle traveling integrated data D3u is obtained by, for example, overlapping the traveling locus of the first approach turning locus data DTb1 and the traveling locus of the second approach turning locus data DTb2 obtained by traveling at the same first corner. It may include image data. The saddle-ride type vehicle traveling integrated data D3u includes, for example, image data in which one of two lines indicating a traveling locus represented in a display form corresponding to the acceleration in the vehicle front direction is arranged inside the other line. You may stay.
 鞍乗型車両走行複合データ出力処理S21において、プロセッサ302は、生成された鞍乗型車両走行一体複合データD3uを、出力対象305に出力する。出力対象305は、例えば、表示装置であってもよく、印刷装置であってもよく、それ以外の装置であってもよい。鞍乗型車両走行一体複合データD3uが出力される出力対象305は、鞍乗型車両走行複合データD3cが出力される出力対象と同じであってもよく、異なっていてもよい。表示装置の表示制御部は、データ取得部が取得した鞍乗型車両走行一体複合データD3uを表示部の1つの画面上に同時に表示させる。印刷装置の印刷制御部は、データ取得部が取得した鞍乗型車両走行一体複合データD3uを印刷部によって1枚の用紙の同一面に印刷させる。 In the saddle riding type vehicle traveling composite data output processing S21, the processor 302 outputs the generated saddle riding type vehicle traveling integrated data D3u to the output target 305. The output target 305 may be, for example, a display device, a printing device, or another device. The output target 305 to which the saddle riding type vehicle traveling integrated data D3u is output may be the same as or different from the output target to which the saddle riding type vehicle traveling composite data D3c is output. The display control unit of the display device simultaneously displays the saddle riding type vehicle traveling integrated composite data D3u acquired by the data acquisition unit on one screen of the display unit. The print control unit of the printing apparatus causes the printing unit to print the saddle-ride type vehicle traveling integrated composite data D3u acquired by the data acquisition unit on the same surface of one sheet of paper.
 なお、第1旋回車両姿勢データD3V1および第1旋回ライダー姿勢データD3R1は、自動二輪車310から取得されてもよい。第1旋回車両姿勢データD3V1は、具体例1、2の第1旋回車両姿勢データD1V1と同様のデータであってもよい。つまり、第1旋回車両姿勢データD3V1は、自動二輪車310のGNSS受信ユニット90と、IMU86と、操舵角センサ84の少なくとも1つを利用して生成されたデータであってもよい。第1旋回ライダー姿勢データD3R1は、具体例1、2の第1旋回ライダー姿勢データD1R1と同様のデータであってもよい。つまり、第1旋回ライダー姿勢データD3R1は、自動二輪車310の撮像装置91で生成されたイメージデータに基づいて生成されたデータであってもよい。 Note that the first turning vehicle attitude data D3V1 and the first turning rider attitude data D3R1 may be acquired from the motorcycle 310. The first turning vehicle attitude data D3V1 may be the same data as the first turning vehicle attitude data D1V1 of the first and second specific examples. That is, the first turning vehicle attitude data D3V1 may be data generated using at least one of the GNSS receiving unit 90 of the motorcycle 310, the IMU 86, and the steering angle sensor 84. The first turning rider attitude data D3R1 may be the same data as the first turning rider attitude data D1R1 in the first and second examples. That is, the first turning rider posture data D3R1 may be data generated based on the image data generated by the imaging device 91 of the motorcycle 310.
 なお、本具体例3の鞍乗型車両走行データ処理装置301は、自動二輪車310を含む複数の自動二輪車に関連するデータを処理してもよい。それにより、鞍乗型車両走行データ処理装置301は、相違ライダー鞍乗型車両走行一体複合データD3udを取得しやすくなる。 Note that the saddle type vehicle travel data processing device 301 of the third specific example may process data related to a plurality of motorcycles including the motorcycle 310. Thereby, the saddle riding type vehicle traveling data processing device 301 can easily acquire the different rider saddle riding type vehicle traveling integrated data D3ud.
 鞍乗型車両走行データ処理装置301は、撮像装置308を含む複数の撮像装置からイメージデータを取得可能であってもよい。複数の撮像装置は、異なる場所に設定された複数のアプローチ領域を走行しているときの自動二輪車を撮影できるように配置および設定される。 The saddle riding type vehicle traveling data processing device 301 may be capable of acquiring image data from a plurality of imaging devices including the imaging device 308. The plurality of imaging devices are arranged and set so as to capture images of the motorcycle while traveling in the plurality of approach areas set in different places.
 なお、撮像装置308は、例えば小型のドローン(無人飛行機)などの飛行体に設置されてもよい。この場合も、撮像装置308は、コーナーを旋回しているときの自動二輪車310の姿勢とライダーRの姿勢を撮影する。 The imaging device 308 may be installed in a flying body such as a small drone (unmanned aerial vehicle). In this case as well, the imaging device 308 captures the posture of the motorcycle 310 and the posture of the rider R while turning the corner.
 本具体例3は、具体例1と同様の構成または処理について、具体例1と同様の効果を奏する。本具体例3は、上述した本発明の実施形態の効果に加えて、以下の効果を奏する。 The specific example 3 has the same effect as the specific example 1 with respect to the same configuration or processing as the specific example 1. The present specific example 3 has the following effects in addition to the effects of the above-described embodiment of the present invention.
 第1鞍乗型車両走行複合データD3c1が、第1アプローチ旋回軌跡データDTb1および第1アプローチ旋回前方向加速度データDAb1に基づいたイメージデータを含む場合、下記の効果が得られる。
 この第1鞍乗型車両走行複合データD3c1は、第1アプローチ旋回軌跡Tb1と、第1アプローチ旋回軌跡Tb1を走行したときの自動二輪車310の車両前方向の加速度との関連性をより明確に示す。そのため、第1鞍乗型車両走行複合データD3c1をより活用しやすくなる。第1鞍乗型車両走行複合データD3c1をより活用しやすくなるため、出力された第1鞍乗型車両走行複合データD3c1の後処理がより容易である。出力された第1鞍乗型車両走行複合データD3c1の後処理がより容易であるため、第1鞍乗型車両走行複合データD3c1が出力される出力対象61、62のハードウェアリソースをより低減することができる。
 以上のように、本具体例3の鞍乗型車両走行データ処理装置301は、出力されたデータの後処理をより効率化して、ハードウェアリソースをより低減することができる。また、本具体例3の鞍乗型車両走行データ処理方法は、出力されたデータの後処理を効率化して、ハードウェアリソースをより低減することができる。
When the first saddle riding type vehicle traveling composite data D3c1 includes image data based on the first approach turning trajectory data DTb1 and the first approach turning front direction acceleration data DAb1, the following effects are obtained.
The first straddle-type vehicle traveling composite data D3c1 more clearly shows the relationship between the first approach turning locus Tb1 and the acceleration in the vehicle front direction of the motorcycle 310 when traveling on the first approach turning locus Tb1. .. Therefore, it becomes easier to utilize the first straddle-type vehicle traveling composite data D3c1. Since the first saddle riding type vehicle traveling composite data D3c1 is more easily utilized, the post-processing of the output first saddle riding type vehicle traveling composite data D3c1 is easier. Since the post-processing of the output first saddle riding type vehicle traveling composite data D3c1 is easier, the hardware resources of the output targets 61 and 62 to which the first saddle riding type vehicle traveling composite data D3c1 is output are further reduced. be able to.
As described above, the straddle-type vehicle travel data processing device 301 of the third specific example can more efficiently post-process the output data and further reduce hardware resources. Further, the saddle riding type vehicle travel data processing method according to the third specific example can make post-processing of the output data efficient and further reduce hardware resources.
 第1鞍乗型車両走行複合データD3c1が、第1アプローチ旋回軌跡データDTb1および第1アプローチ旋回左右方向加速度データに基づいたイメージデータを含む場合、下記の効果が得られる。
 この第1鞍乗型車両走行複合データD3c1は、第1アプローチ旋回軌跡Tb1と第1アプローチ旋回軌跡Tb1を走行したときの自動二輪車310の車両左右方向の加速度との関連性をより明確に示す。そのため、第1鞍乗型車両走行複合データD3c1をより活用しやすくなる。第1鞍乗型車両走行複合データD3c1をより活用しやすくなるため、出力された第1鞍乗型車両走行複合データD3c1の後処理がより容易である。出力された第1鞍乗型車両走行複合データD3c1の後処理がより容易であるため、第1鞍乗型車両走行複合データD3c1が出力される出力対象61、62のハードウェアリソースをより低減することができる。
 以上のように、本具体例3の鞍乗型車両走行データ処理装置301は、出力されたデータの後処理をより効率化して、ハードウェアリソースをより低減することができる。また、本具体例3の鞍乗型車両走行データ処理方法は、出力されたデータの後処理を効率化して、ハードウェアリソースをより低減することができる。
When the first saddle riding type vehicle traveling composite data D3c1 includes image data based on the first approach turning trajectory data DTb1 and the first approach turning left / right direction acceleration data, the following effects are obtained.
The first straddle-type vehicle traveling composite data D3c1 more clearly shows the relationship between the first approach turning locus Tb1 and the vehicle lateral acceleration of the motorcycle 310 when traveling on the first approach turning locus Tb1. Therefore, it becomes easier to utilize the first straddle-type vehicle traveling composite data D3c1. Since the first saddle riding type vehicle traveling composite data D3c1 is more easily utilized, the post-processing of the output first saddle riding type vehicle traveling composite data D3c1 is easier. Since the post-processing of the output first saddle riding type vehicle traveling composite data D3c1 is easier, the hardware resources of the output targets 61 and 62 to which the first saddle riding type vehicle traveling composite data D3c1 is output are further reduced. be able to.
As described above, the straddle-type vehicle travel data processing device 301 of the third specific example can more efficiently post-process the output data and further reduce hardware resources. Further, the saddle riding type vehicle travel data processing method according to the third specific example can make post-processing of the output data efficient and further reduce hardware resources.
 第1鞍乗型車両走行複合データD3c1が、第1アプローチ旋回軌跡データDTb1および第1アプローチ旋回前方向加速度データに基づいたイメージデータと、第1アプローチ旋回軌跡データDTb1および第1アプローチ旋回左右方向加速度データに基づいたイメージデータの両方を含む場合、下記の効果が得られる。
 このようなイメージデータにより、旋回前の車両前方向の減速が終了する時点と、旋回により車両左右方向の加速度がゼロから増加する時点との間に間隔があるかどうか判別しやすい。旋回前の車両前方向の減速が終了する時点と、旋回により車両左右方向の加速度が増加する時点との間に間隔がある場合、縮んだ状態のフロントサスペンションが一旦伸びて再び縮んでいる。フロントサスペンションが伸縮すると自動二輪車310の姿勢が変化する。そのため、このようなイメージデータを含む第1鞍乗型車両走行複合データD3c1は、出力対象において、例えば車両の走行状態の解析などにより活用しやすくなる。第1鞍乗型車両走行複合データD3c1をより活用しやすくなるため、出力された第1鞍乗型車両走行複合データD3c1の後処理がより容易である。出力された第1鞍乗型車両走行複合データD3c1の後処理がより容易であるため、第1鞍乗型車両走行複合データD3c1が出力される出力対象61、62のハードウェアリソースをより低減することができる。
 以上のように、本具体例3の鞍乗型車両走行データ処理装置301は、出力されたデータの後処理をより効率化して、ハードウェアリソースをより低減することができる。また、本具体例3の鞍乗型車両走行データ処理方法は、出力されたデータの後処理を効率化して、ハードウェアリソースをより低減することができる。
The first saddle riding type vehicle traveling composite data D3c1 is image data based on the first approach turning locus data DTb1 and the first approach turning front direction acceleration data, the first approach turning locus data DTb1 and the first approach turning left / right acceleration. If both image data based on the data are included, the following effects are obtained.
From such image data, it is easy to determine whether or not there is a gap between the time point when the deceleration in the vehicle front direction before the turning ends and the time point when the vehicle lateral acceleration increases from zero due to the turning. When there is a gap between the time point when the vehicle front deceleration before turning ends and the time point when the vehicle lateral acceleration increases due to turning, the front suspension in the contracted state once expands and then contracts again. When the front suspension expands and contracts, the posture of the motorcycle 310 changes. Therefore, the first straddle-type vehicle traveling composite data D3c1 including such image data can be easily used as an output target by, for example, analyzing the traveling state of the vehicle. Since the first saddle riding type vehicle traveling composite data D3c1 is more easily utilized, the post-processing of the output first saddle riding type vehicle traveling composite data D3c1 is easier. Since the post-processing of the output first saddle riding type vehicle traveling composite data D3c1 is easier, the hardware resources of the output targets 61 and 62 to which the first saddle riding type vehicle traveling composite data D3c1 is output are further reduced. be able to.
As described above, the straddle-type vehicle travel data processing device 301 of the third specific example can more efficiently post-process the output data and further reduce hardware resources. Further, the saddle riding type vehicle travel data processing method according to the third specific example can make post-processing of the output data efficient and further reduce hardware resources.
 第1鞍乗型車両走行複合データD3c1が、自動二輪車310の車両前方向の加速度を縦軸とし、自動二輪車310の車両左右方向の加速度を横軸としたグラフのイメージデータを含む場合、下記の効果が得られる。
 この第1鞍乗型車両走行複合データD3c1は、第1アプローチ旋回軌跡Tb1を走行したときの自動二輪車310の車両前方向の加速度と自動二輪車310の車両左右方向の加速度との関連性をより明確に示す。そのため、第1鞍乗型車両走行複合データD3c1をより活用しやすくなる。
 さらに、このグラフのイメージデータにより、旋回前の車両前方向の減速が終了する時点と、旋回により車両左右方向の加速度がゼロから増加する時点との間に間隔があるかどうか判別しやすい。旋回前の車両前方向の減速が終了する時点と、旋回により車両左右方向の加速度が増加する時点との間に間隔がある場合、縮んだ状態のフロントサスペンションが一旦伸びて再び縮んでいる。フロントサスペンションが伸縮すると自動二輪車310の姿勢が変化する。そのため、このようなグラフのイメージデータを含む第1鞍乗型車両走行複合データD3c1は、出力対象において、例えば車両の走行状態の解析などにより活用しやすくなる。
 第1鞍乗型車両走行複合データD3c1をより活用しやすくなるため、出力された第1鞍乗型車両走行複合データD3c1の後処理がより容易である。出力された第1鞍乗型車両走行複合データD3c1の後処理がより容易であるため、第1鞍乗型車両走行複合データD3c1が出力される出力対象61、62のハードウェアリソースをより低減することができる。
 以上のように、本具体例3の鞍乗型車両走行データ処理装置301は、出力されたデータの後処理をより効率化して、ハードウェアリソースをより低減することができる。また、本具体例3の鞍乗型車両走行データ処理方法は、出力されたデータの後処理を効率化して、ハードウェアリソースをより低減することができる。
When the first saddle riding type vehicle traveling composite data D3c1 includes image data of a graph in which the vertical axis represents the acceleration of the motorcycle 310 in the vehicle front direction and the horizontal axis represents the vehicle lateral direction acceleration of the motorcycle 310, The effect is obtained.
The first straddle-type vehicle traveling composite data D3c1 more clearly shows the relationship between the acceleration in the vehicle front direction of the motorcycle 310 and the acceleration in the vehicle left-right direction of the motorcycle 310 when traveling on the first approach turning locus Tb1. Shown in. Therefore, it becomes easier to utilize the first straddle-type vehicle traveling composite data D3c1.
Furthermore, it is easy to determine whether or not there is a gap between the time point when the vehicle front deceleration before turning ends and the time point when the vehicle lateral acceleration increases from zero due to turning based on the image data of this graph. When there is a gap between the time point when the vehicle front deceleration before turning ends and the time point when the vehicle lateral acceleration increases due to turning, the front suspension in the contracted state once expands and then contracts again. When the front suspension expands and contracts, the posture of the motorcycle 310 changes. Therefore, the first straddle-type vehicle traveling composite data D3c1 including the image data of such a graph can be easily used as an output target by, for example, analyzing the traveling state of the vehicle.
Since the first saddle riding type vehicle traveling composite data D3c1 is more easily utilized, the post-processing of the output first saddle riding type vehicle traveling composite data D3c1 is easier. Since the post-processing of the output first saddle riding type vehicle traveling composite data D3c1 is easier, the hardware resources of the output targets 61 and 62 to which the first saddle riding type vehicle traveling composite data D3c1 is output are further reduced. be able to.
As described above, the straddle-type vehicle travel data processing device 301 of the third specific example can more efficiently post-process the output data and further reduce hardware resources. Further, the saddle riding type vehicle travel data processing method according to the third specific example can make post-processing of the output data efficient and further reduce hardware resources.
 (実施形態の変更例)
 本発明は、上述した実施形態の具体例1~3に限られるものではなく、特許請求の範囲に記載した限りにおいて様々な変更が可能である。以下、本発明の実施形態の変更例について説明する。なお、上述した構成と同じ構成を有するものについては、同じ符号を用いて適宜その説明を省略する。上述の実施形態、実施形態の具体例、および後述する変更例は、適宜組み合わせて実施可能である。
(Modification of the embodiment)
The present invention is not limited to the specific examples 1 to 3 of the above-described embodiment, and various modifications can be made within the scope of the claims. Hereinafter, modified examples of the embodiment of the present invention will be described. In addition, about the thing which has the same structure as the above-mentioned structure, the same code | symbol is used and the description is abbreviate | omitted suitably. The above-described embodiments, specific examples of the embodiments, and modifications described below can be implemented in an appropriate combination.
 本発明の鞍乗型車両は、自動二輪車に限らない。本発明の鞍乗型車両は、自動二輪車以外に、自動三輪車(motor tricycle)、四輪バギー(ATV:All Terrain Vehicle / 全地形型車両)、スノーモービル、水上オートバイ(パーソナルウォータークラフト)などを含む。 The straddle-type vehicle of the present invention is not limited to a motorcycle. The straddle-type vehicle of the present invention includes a motorcycle, a motor tricycle, a four-wheel buggy (ATV: All Terrain Vehicle / ATV), a snowmobile, a water motorcycle (personal watercraft), etc., in addition to a motorcycle. ..
 自動二輪車、自動三輪車、四輪バギーは、少なくとも1つの前輪と、少なくとも1つの後輪を有する。自動二輪車は、スポーツタイプ、オンロードタイプ、およびオフロードタイプの自動二輪車、スクーター、原動機付き自転車、モペットなどを含む。自動三輪車は、2つの前輪と1つの後輪を有していてもよく、1つの前輪と2つの後輪を有していてもよい。自動二輪車、自動三輪車、および、四輪バギーの操舵車輪は、前輪であってもよく、後輪であってもよく、前輪と後輪の両方であってもよい。自動二輪車、自動三輪車、および、四輪バギーは、少なくとも1つの前輪の上下方向の振動を吸収する少なくとも1つのフロントサスペンションを有していてもよい。自動二輪車、自動三輪車、および、四輪バギーは、少なくとも1つの後輪の上下方向の振動を吸収する少なくとも1つのリアサスペンションを有していてもよい。 Motorcycles, tricycles, and four-wheeled buggies have at least one front wheel and at least one rear wheel. Motorcycles include sports, on-road, and off-road motorcycles, scooters, motorbikes, mopeds, and the like. The motorcycle may have two front wheels and one rear wheel, or one front wheel and two rear wheels. The steered wheels of a motorcycle, a motorcycle, and a four-wheel buggy may be front wheels, rear wheels, or both front and rear wheels. The motorcycle, the motorcycle, and the four-wheel buggy may have at least one front suspension that absorbs vertical vibration of at least one front wheel. Motorcycles, motorcycles, and four-wheel buggies may have at least one rear suspension that absorbs vertical vibrations of at least one rear wheel.
 スノーモービルは、雪上を走行する鞍乗型車両である。スノーモービルは、車両の前部に、1つまたは2つのスキーを有する。車両の前部に設けられた1つまたは2つのスキーは、操舵用スキーである。ライダーがステアリングホイール(ハンドルユニット)を操作することで、操舵用スキーの向きが変更される。第1旋回車両姿勢データは、操舵用スキーの操舵角に関連するデータであってもよい。スノーモービルは、車両の後部に、無限軌道(トラックベルト)を有してもよく、1つまたは2つのスキーを有してもよい。無限軌道(トラックベルト)の動力源は、エンジンであっても、電気モータであってもよい。スノーモービルは、上下方向の振動を吸収する少なくとも1つのサスペンションを有していてもよい。 A snowmobile is a saddle type vehicle that runs on snow. Snowmobiles have one or two skis at the front of the vehicle. One or two skis provided at the front of the vehicle are steering skis. The rider operates the steering wheel (handle unit) to change the direction of the steering ski. The first turning vehicle attitude data may be data related to the steering angle of the ski for steering. Snowmobiles may have endless tracks (track belts) at the rear of the vehicle and may have one or two skis. The power source of the endless track (track belt) may be an engine or an electric motor. The snowmobile may have at least one suspension that absorbs vertical vibrations.
 水上オートバイは、水面を走行する鞍乗型車両である。水上オートバイは、ウォータージェット推進システムによって、推進力を発生させる。ウォータージェット推進システムは、船体下部から取り込んだ水をジェットポンプで加速させて噴射することで、推進力を発生させる。ジェットポンプの動力源は、エンジンであっても、電気モータであってもよい。ライダーがステアリングホイール(ハンドルユニット)を操作することで、ジェットノズルの向きが変更されて、噴射される水流の向きが変更される。それにより、進行方向が変更される。水上オートバイは、上下方向の振動を吸収する少なくとも1つのサスペンションを有していてもよい。 Watercraft is a saddle type vehicle that runs on the water surface. Water motorcycles generate propulsion by a water jet propulsion system. The water jet propulsion system generates a propulsive force by accelerating and injecting water taken from the lower part of the hull by a jet pump. The power source of the jet pump may be an engine or an electric motor. When the rider operates the steering wheel (handle unit), the direction of the jet nozzle is changed and the direction of the jet of water is changed. As a result, the traveling direction is changed. The water motorcycle may have at least one suspension that absorbs vertical vibrations.
 自動三輪車は、自動二輪車と同様に、右旋回する場合に車両右方向に傾斜する。例えば図17に示す四輪バギー510のように、四輪バギーは、右旋回する場合、車両左右方向のどちらにもほとんど傾斜しない。四輪バギーが右旋回するとき、ライダーは重心を車両右方向に移動させる。それにより、重力と遠心力とのバランスをとっている。例えば図18に示す水上オートバイ610のように、水上オートバイは、右旋回する場合、車両右方向に傾斜する。自動二輪車と同様に、ライダーは、自身の姿勢を変化させることで、水上オートバイを車両右方向に傾斜させる。図19に示すスノーモービル710のように、スノーモービルは、比較的低速で右旋回する場合、車両左右方向のどちらにもほとんど傾斜しない。図20に示すスノーモービル810のように、スノーモービルは、比較的高速で右旋回する場合に、車両右方向に傾斜することがある。スノーモービルは、車両のタイプによっては、比較的高速で右旋回する場合も、車両左右方向のどちらにもほとんど傾斜しない。自動二輪車と同様に、ライダーは、自身の姿勢を変化させることで、スノーモービルを車両右方向に傾斜させる。なお、左旋回する場合は、右旋回の逆になるため、記載を省略する。このように、鞍乗型車両の種類に関わらず、鞍乗型車両は、遠心力と重力のバランスを利用して旋回する乗り物である。 ▽ A motorcycle, like a motorcycle, leans to the right when turning right. For example, like a four-wheel buggy 510 shown in FIG. 17, when turning right, the four-wheel buggy hardly tilts in either the left-right direction of the vehicle. When the four-wheel buggy turns to the right, the rider moves the center of gravity to the right of the vehicle. This balances gravity and centrifugal force. For example, like a water motorcycle 610 shown in FIG. 18, a water motorcycle leans to the right of the vehicle when turning right. Similar to the motorcycle, the rider tilts the water motorcycle to the right of the vehicle by changing its posture. Like a snowmobile 710 shown in FIG. 19, when a snowmobile makes a right turn at a relatively low speed, it hardly leans in either the left or right direction of the vehicle. As with the snowmobile 810 shown in FIG. 20, the snowmobile may lean to the right of the vehicle when turning right at a relatively high speed. Depending on the type of vehicle, the snowmobile makes little right or left inclination when turning to the right at a relatively high speed. Similar to the motorcycle, the rider changes the posture of the rider to tilt the snowmobile to the right of the vehicle. When turning left, the description is omitted because it is the opposite of right turning. Thus, regardless of the type of straddle-type vehicle, the saddle-ride type vehicle is a vehicle that turns by utilizing the balance between centrifugal force and gravity.
 本発明のアプローチ旋回ガイド部は、地面に設けられるものに限らない。本発明の鞍乗型車両がスノーモービルの場合、アプローチ旋回ガイド部は、雪上に設けられてもよい。本発明の鞍乗型車両が水上オートバイの場合、アプローチ旋回ガイド部は、水面に設けられてもよい。 The approach turning guide unit of the present invention is not limited to one provided on the ground. When the straddle-type vehicle of the present invention is a snowmobile, the approach turning guide unit may be provided on snow. When the straddle-type vehicle of the present invention is a water motorcycle, the approach turning guide unit may be provided on the water surface.
 本発明において、鞍乗型車両がアプローチ領域内を走行するように鞍乗型車両の進行方向をガイドするためのアプローチガイド部の数は、2つに限らない。アプローチガイド部は、1つであってもよく、2つより多くてもよい。
 本発明において、鞍乗型車両が第1旋回領域内を走行するように鞍乗型車両の進行方向をガイドするための旋回ガイド部の数は、5つに限らない。旋回ガイド部は、5つよりすくなくてもよく、5つより多くてもよい。旋回ガイド部は、1つであってもよい。
In the present invention, the number of approach guide portions for guiding the traveling direction of the saddle riding type vehicle so that the saddle riding type vehicle travels in the approach area is not limited to two. There may be one approach guide part or more than two approach guide parts.
In the present invention, the number of turning guide portions for guiding the traveling direction of the saddle riding type vehicle so that the saddle riding type vehicle travels in the first turning region is not limited to five. The number of swivel guide portions may be less than five or more than five. The number of turning guides may be one.
 本発明において、第1アプローチ軌跡は、鞍乗型車両が2つのアプローチガイド部の間を通過しつつ、アプローチ領域を走行したときの走行軌跡でなくてもよい。アプローチガイド部は、上記とは異なる形態で配置されていてもよい。アプローチガイド部は設けられなくてもよい。
 本発明において、第1旋回軌跡は、鞍乗型車両が旋回ガイド部と第2円弧との間を通過しつつ、第1旋回領域を走行したときの走行軌跡でなくてもよい。旋回ガイド部は、上記とは異なる形態で配置されていてもよい。旋回ガイド部は設けられなくてもよい。
 本発明において、第1アプローチ旋回軌跡は、鞍乗型車両がアプローチ旋回領域内を走行するように鞍乗型車両の進行方向をガイドするための少なくとも1つのアプローチ旋回ガイド部が設けられた環境下で走行したときの走行軌跡でなくてもよい。つまり、アプローチ旋回ガイド部は設けられなくてもよい。
In the present invention, the first approach trajectory may not be a traveling trajectory when the saddle riding type vehicle travels in the approach area while passing between the two approach guide portions. The approach guide part may be arranged in a different form from the above. The approach guide part may not be provided.
In the present invention, the first turning locus may not be the running locus when the straddle-type vehicle travels in the first turning region while passing between the turning guide portion and the second arc. The turning guide part may be arranged in a form different from the above. The turning guide unit may not be provided.
In the present invention, the first approach turning trajectory is an environment in which at least one approach turning guide unit is provided for guiding the traveling direction of the saddle type vehicle so that the saddle type vehicle travels in the approach turning area. It does not have to be the traveling locus when traveling in. That is, the approach turning guide unit may not be provided.
 本発明の環状領域の形状は、具体例1で説明した形状に限定されない。なお、具体例1で説明した環状領域は、本発明の第1環状領域に相当する。本発明の環状領域の形状は、アプローチ旋回領域Zbを有し、且つ、環状でさえあればよい。本発明の環状領域の他の例について、以下、具体的に説明する。以下の説明において、第1環状領域内を鞍乗型車両が走行する方向を、前方向とする。環状領域の説明における前端とは、環状領域内を鞍乗型車両が走行(進行)する方向の端をいう。 The shape of the annular region of the present invention is not limited to the shape described in Specific Example 1. The annular region described in the specific example 1 corresponds to the first annular region of the present invention. The shape of the annular region of the present invention has only to have the approach turning region Zb and is annular. Another example of the annular region of the present invention will be specifically described below. In the following description, the direction in which the saddle riding type vehicle travels in the first annular region is the front direction. The front end in the description of the annular region refers to the end in the direction in which the saddle riding type vehicle travels (progresses) in the annular region.
 本発明の環状領域は、第2環状領域Z2aであってもよい。図21は、第2環状領域Z2aの一例を示す。第2環状領域Z2aは、アプローチ旋回領域Zbに加えて、直線状の第2直線領域Z2eと、曲線状の第2旋回領域Z2fと、直線状の第3直線領域Z2gと、曲線状の第3旋回領域Z2hと、直線状の第4直線領域Z2iと、曲線状の第4旋回領域Z2jと、直線状の第5直線領域Z2kと、曲線状の第5旋回領域Z2lと、直線状の第6直線領域Z2mと、曲線状の第6旋回領域Z2nとを含む。第2直線領域Z2eは、第1旋回領域Zdの前端に接続され、アプローチ領域Zcよりも短い。第2旋回領域Z2fは、第2直線領域Z2eの前端に接続される。第1アプローチ旋回軌跡Tb1を含む、第2環状領域Z2aを走行したときの走行軌跡の1つを、環状軌跡T2a1とする。環状軌跡T2a1は、本発明の第1環状軌跡に相当する。環状軌跡T2a1において、第2旋回領域Z2fの旋回方向はアプローチ旋回領域Zbの旋回方向と異なる。第3直線領域Z2gは、第2旋回領域Z2fの前端に接続される。第3旋回領域Z2hは、第3直線領域Z2gの前端に接続される。環状軌跡T2a1において、第3旋回領域Z2hの旋回方向は第2旋回領域Z2fの旋回方向と同じである。第4直線領域Z2iは、第3旋回領域Z2hの前端に接続される。第4旋回領域Z2jは、第4直線領域Z2iの前端に接続される。環状軌跡T2a1において、第4旋回領域Z2jの旋回方向は第3旋回領域Z2hの旋回方向と異なる。第5直線領域Z2kは、第4旋回領域Z2jの前端に接続され、第4直線領域Z2iよりも長い。第5旋回領域Z2lは、第5直線領域Z2kの前端に接続される。環状軌跡T2a1において、第5旋回領域Z2lの旋回方向は第4旋回領域Z2jの旋回方向と同じである。第6直線領域Z2mは、第5旋回領域Z2lの前端に接続され、第3直線領域Z2gよりも長い。第6旋回領域Z2nは、第6直線領域Z2mの前端およびアプローチ領域Zcの後端に接続される。環状軌跡T2a1において、第6旋回領域Z2nの旋回方向は第5旋回領域Z2lの旋回方向と同じである。環状軌跡T2a1において、第6旋回領域Z2nの旋回方向は第1旋回領域Zdの旋回方向と同じである。つまり、環状軌跡T2a1において、第1アプローチ旋回軌跡Tb1の後端に接続される旋回中の走行軌跡は、第1アプローチ旋回軌跡Tb1と旋回方向が同じである。 The annular region of the present invention may be the second annular region Z 2 a. FIG. 21 shows an example of the second annular region Z 2 a. The second annular region Z 2 a includes, in addition to the approach turning region Zb, a linear second linear region Z 2 e, a curved second turning region Z 2 f, and a linear third linear region Z 2 g, a curved third turning region Z 2 h, a straight fourth straight region Z 2 i, a curved fourth turning region Z 2 j, and a straight fifth straight region Z 2 k. , A curved fifth turning region Z 2 l, a linear sixth linear region Z 2 m, and a curved sixth turning region Z 2 n. The second linear region Z 2 e is connected to the front end of the first turning region Zd and is shorter than the approach region Zc. The second turning area Z 2 f is connected to the front end of the second linear area Z 2 e. Including a first approach turn trajectory Tb1, one of the travel locus of when traveling along second annular region Z 2 a, an annular trajectory T 2 a1. The circular locus T 2 a1 corresponds to the first circular locus of the present invention. On the circular trajectory T 2 a1, the turning direction of the second turning area Z 2 f is different from the turning direction of the approach turning area Zb. The third linear region Z 2 g is connected to the front end of the second turning region Z 2 f. The third turning area Z 2 h is connected to the front end of the third linear area Z 2 g. On the circular locus T 2 a1, the turning direction of the third turning area Z 2 h is the same as the turning direction of the second turning area Z 2 f. The fourth linear region Z 2 i is connected to the front end of the third turning region Z 2 h. The fourth turning area Z 2 j is connected to the front end of the fourth linear area Z 2 i. On the circular trajectory T 2 a1, the turning direction of the fourth turning area Z 2 j is different from the turning direction of the third turning area Z 2 h. The fifth linear region Z 2 k is connected to the front end of the fourth turning region Z 2 j and is longer than the fourth linear region Z 2 i. The fifth turning area Z 2 l is connected to the front end of the fifth linear area Z 2 k. On the circular trajectory T 2 a1, the turning direction of the fifth turning region Z 2 l is the same as the turning direction of the fourth turning region Z 2 j. Sixth linear region Z 2 m is connected to the front end of the fifth pivot region Z 2 l, longer than the third straight line region Z 2 g. The sixth turning region Z 2 n is connected to the front end of the sixth straight line region Z 2 m and the rear end of the approach region Zc. On the circular locus T 2 a1, the turning direction of the sixth turning area Z 2 n is the same as the turning direction of the fifth turning area Z 2 l. On the circular trajectory T 2 a1, the turning direction of the sixth turning area Z 2 n is the same as the turning direction of the first turning area Zd. That is, in the circular locus T 2 a1, the traveling locus that is connected to the rear end of the first approach turning locus Tb1 during turning has the same turning direction as the first approach turning locus Tb1.
 図21には、複数のアプローチガイド部7cと複数の旋回ガイド部7dを含む複数のガイド部7が表示されている。第2環状領域Z2aに対して設けられるガイド部7の位置および数は、図21に示すものに限定されない。ガイド部7は設けられなくてもよい。 In FIG. 21, a plurality of guide parts 7 including a plurality of approach guide parts 7c and a plurality of turning guide parts 7d are displayed. The position and the number of the guide portions 7 provided for the second annular region Z 2 a are not limited to those shown in FIG. The guide part 7 may not be provided.
 第2環状領域Z2aにおいて、本発明のアプローチ旋回領域に相当する箇所は、1箇所に限らない。例えば、第2直線領域Z2eと第2旋回領域Z2fが、本発明のアプローチ旋回領域に相当してもよい。また、例えば、第3直線領域Z2gと第3旋回領域Z2hが、本発明のアプローチ旋回領域に相当してもよい。また、例えば、第5直線領域Z2kと第5旋回領域Z2lが、本発明のアプローチ旋回領域に相当してもよい。また、例えば、第6直線領域Z2mと第6旋回領域Z2nが、本発明のアプローチ旋回領域に相当してもよい。 In the second annular region Z 2 a, the number of places corresponding to the approach turning region of the present invention is not limited to one. For example, the second straight line area Z 2 e and the second turning area Z 2 f may correspond to the approach turning area of the present invention. Further, for example, the third straight line area Z 2 g and the third turning area Z 2 h may correspond to the approach turning area of the present invention. Further, for example, the fifth straight line region Z 2 k and the fifth turning region Z 2 l may correspond to the approach turning region of the present invention. Further, for example, the sixth straight line area Z 2 m and the sixth turning area Z 2 n may correspond to the approach turning area of the present invention.
 本発明の環状領域は、第3環状領域Z3aであってもよい。図22は、第3環状領域Z3aの一例を示す。第3環状領域Z3aの形状は、図22に示す形状に限定されない。第3環状領域Z3aで囲まれた領域の形状は、E字状である。第3環状領域Z3aは、アプローチ旋回領域Zbに加えて、直線状の第2直線領域Z3eと、曲線状の第2旋回領域Z3fと、直線状の第3直線領域Z3gと、曲線状の第3旋回領域Z3hと、直線状の第4直線領域Z3iと、曲線状の第4旋回領域Z3jと、直線状の第5直線領域Z3kと、曲線状の第5旋回領域Z3lと、直線状の第6直線領域Z3mと、曲線状の第6旋回領域Z3nと、直線状の第7直線領域Z3oと、曲線状の第7旋回領域Z3pとを含む。第2直線領域Z3eは、第1旋回領域Zdの前端に接続され、アプローチ領域Zcよりも短い。第2旋回領域Z3fは、第2直線領域Z3eの前端に接続される。第1アプローチ旋回軌跡Tb1を含む、第3環状領域Z3aを走行したときの走行軌跡の1つを、環状軌跡T3a1とする。環状軌跡T3a1は、とする。本発明の第1環状軌跡に相当する。環状軌跡T3a1において、第2旋回領域Z3fの旋回方向はアプローチ旋回領域Zbの旋回方向と異なる。第3直線領域Z3gは、第2旋回領域Z3fの前端に接続される。第3旋回領域Z3hは、第3直線領域Z3gの前端に接続される。環状軌跡T3a1において、第3旋回領域Z3hの旋回方向は第2旋回領域Z3fの旋回方向と異なる。第4直線領域Z3iは、第3旋回領域Z3hの前端に接続される。第4旋回領域Z3jは、第4直線領域Z3iの前端に接続される。環状軌跡T3a1において、第4旋回領域Z3jの旋回方向は第3旋回領域Z3hの旋回方向と異なる。第4旋回領域Z3jは、第4旋回領域Z3jの前端に接続される。第5旋回領域Z3lは、第5直線領域Z3kの前端に接続される。環状軌跡T3a1において、第5旋回領域Z3lの旋回方向は第4旋回領域Z3jの旋回方向と異なる。第6直線領域Z3mは、第5旋回領域Z3lの前端に接続され、第2~第5直線領域Z3kよりも長い。第6旋回領域Z3nは、第6直線領域Z3mの前端に接続される。環状軌跡T3a1において、第6旋回領域Z3nの旋回方向は第5旋回領域Z3lの旋回方向と同じである。第7直線領域Z3oは、第6旋回領域Z3nの前端に接続される。第7旋回領域Z3pは、第7直線領域Z3oの前端およびアプローチ領域Zcの後端に接続される。環状軌跡T3a1において、第7旋回領域Z3pの旋回方向は第6旋回領域Z3nの旋回方向と同じである。環状軌跡T3a1において、第7旋回領域Z3pの旋回方向は第1旋回領域Zdの旋回方向と同じである。つまり、環状軌跡T3a1において、第1アプローチ旋回軌跡Tb1の後端に接続される旋回中の走行軌跡は、第1アプローチ旋回軌跡Tb1と旋回方向が同じである。 The annular region of the present invention may be the third annular region Z 3 a. FIG. 22 shows an example of the third annular region Z 3 a. The shape of the third annular region Z 3 a is not limited to the shape shown in FIG. The shape of the area surrounded by the third annular area Z 3 a is E-shaped. The third annular region Z 3 a includes, in addition to the approach turning region Zb, a linear second linear region Z 3 e, a curved second turning region Z 3 f, and a linear third linear region Z 3. g, a curved third turning area Z 3 h, a straight fourth straight area Z 3 i, a curved fourth turning area Z 3 j, and a straight fifth straight area Z 3 k. A curved fifth turning region Z 3 l, a straight sixth straight region Z 3 m, a curved sixth swing region Z 3 n, a straight seventh straight region Z 3 o, and a curved line A seventh swirl zone Z 3 p. The second linear region Z 3 e is connected to the front end of the first turning region Zd and is shorter than the approach region Zc. The second turning area Z 3 f is connected to the front end of the second linear area Z 3 e. Including a first approach turn trajectory Tb1, one of the travel locus of when traveling along the third annular region Z 3 a, an annular trajectory T 3 a1. The circular locus T 3 a1 is defined as It corresponds to the first annular locus of the present invention. On the circular trajectory T 3 a1, the turning direction of the second turning region Z 3 f is different from the turning direction of the approach turning region Zb. The third linear region Z 3 g is connected to the front end of the second turning region Z 3 f. The third turning area Z 3 h is connected to the front end of the third linear area Z 3 g. On the circular trajectory T 3 a1, the turning direction of the third turning area Z 3 h is different from the turning direction of the second turning area Z 3 f. The fourth straight line region Z 3 i is connected to the front end of the third turning region Z 3 h. The fourth turning area Z 3 j is connected to the front end of the fourth linear area Z 3 i. On the circular trajectory T 3 a1, the turning direction of the fourth turning area Z 3 j is different from the turning direction of the third turning area Z 3 h. The fourth turning area Z 3 j is connected to the front end of the fourth turning area Z 3 j. The fifth turning area Z 3 l is connected to the front end of the fifth linear area Z 3 k. On the circular trajectory T 3 a1, the turning direction of the fifth turning area Z 3 l is different from the turning direction of the fourth turning area Z 3 j. The sixth linear region Z 3 m is connected to the front end of the fifth turning region Z 3 l and is longer than the second to fifth linear regions Z 3 k. The sixth turning area Z 3 n is connected to the front end of the sixth linear area Z 3 m. On the circular trajectory T 3 a1, the turning direction of the sixth turning area Z 3 n is the same as the turning direction of the fifth turning area Z 3 l. The seventh linear region Z 3 o is connected to the front end of the sixth turning region Z 3 n. The seventh turning area Z 3 p is connected to the front end of the seventh linear area Z 3 o and the rear end of the approach area Zc. In the circular trajectory T 3 a1, the turning direction of the seventh turning area Z 3 p is the same as the turning direction of the sixth turning area Z 3 n. On the circular locus T 3 a1, the turning direction of the seventh turning area Z 3 p is the same as the turning direction of the first turning area Zd. That is, in the circular locus T 3 a1, the traveling locus that is connected to the rear end of the first approach turning locus Tb1 during turning is the same as the first approach turning locus Tb1 in the turning direction.
 図22には、複数のアプローチガイド部7cと複数の旋回ガイド部7dを含む複数のガイド部7が表示されている。第3環状領域Z3aに対して設けられるガイド部7の位置および数は、図22に示すものに限定されない。 In FIG. 22, a plurality of guide parts 7 including a plurality of approach guide parts 7c and a plurality of turning guide parts 7d are displayed. The position and the number of the guide portions 7 provided for the third annular region Z 3 a are not limited to those shown in FIG.
 第3環状領域Z3aにおいて、本発明のアプローチ旋回領域に相当する箇所は、1箇所に限らない。例えば、第2直線領域Z3eと第2旋回領域Z3fが、本発明のアプローチ旋回領域に相当してもよい。また、例えば、第6直線領域Z3mと第6旋回領域Z3nが、本発明のアプローチ旋回領域に相当してもよい。また、例えば、第7直線領域Z3oと第7旋回領域Z3pが、本発明のアプローチ旋回領域に相当してもよい。 In the third annular region Z 3 a, the number of places corresponding to the approach turning region of the present invention is not limited to one. For example, the second straight line region Z 3 e and the second turning region Z 3 f may correspond to the approach turning region of the present invention. Further, for example, the sixth straight line area Z 3 m and the sixth turning area Z 3 n may correspond to the approach turning area of the present invention. Further, for example, the seventh straight line area Z 3 o and the seventh turning area Z 3 p may correspond to the approach turning area of the present invention.
 本発明の環状領域は、第4環状領域Z4aであってもよい。図23は、第4環状領域Z4aの一例を示す。第4環状領域Z4aの形状は、図23に示す形状に限定されない。第4環状領域Z4aは、アプローチ旋回領域Zbに加えて、直線状の第2直線領域Z4eと、曲線状の第2旋回領域Z4fと、直線状の第3直線領域Z4gと、曲線状の第3旋回領域Z4hと、直線状の第4直線領域Z4iと、曲線状の第4旋回領域Z4jとを含む。第2直線領域Z4eは、第1旋回領域Zdの前端に接続される。第2旋回領域Z4fは、第2直線領域Z4eの前端に接続される。第1アプローチ旋回軌跡Tb1を含む、第4環状領域Z4aを走行したときの走行軌跡の1つを、環状軌跡T4a1とする。環状軌跡T4a1は、本発明の第1環状軌跡に相当する。環状軌跡T4a1において、第2旋回領域Z4fの旋回方向はアプローチ旋回領域Zbの旋回方向と異なる。第3直線領域Z4gは、第2旋回領域Z4fの前端に接続される。第3旋回領域Z4hは、第3直線領域Z4gの前端に接続される。環状軌跡T4a1において、第3旋回領域Z4hの旋回方向は第2旋回領域Z4fの旋回方向と異なる。第4直線領域Z4iは、第3旋回領域Z4hの前端に接続される。第4旋回領域Z4jは、第4直線領域Z4iの前端およびアプローチ領域Zcの後端に接続される。環状軌跡T4a1において、第4旋回領域Z4jの旋回方向は第3旋回領域Z4hの旋回方向と異なる。環状軌跡T4a1において、第4旋回領域Z4jの旋回方向は第1旋回領域Zdの旋回方向と異なる。つまり、環状軌跡T4a1において、第1アプローチ旋回軌跡Tb1の後端に接続される旋回中の走行軌跡は、第1アプローチ旋回軌跡Tb1と旋回方向が異なる。 The annular region of the present invention may be the fourth annular region Z 4 a. FIG. 23 shows an example of the fourth annular region Z 4 a. The shape of the fourth annular region Z 4 a is not limited to the shape shown in FIG. The fourth annular region Z 4 a is approach turning in addition to the area Zb, and the second linear region Z 4 e linear, and curvilinear second pivot region Z 4 f, the third linear region Z 4 linear g, a curved third turning region Z 4 h, a straight fourth straight region Z 4 i, and a curved fourth turning region Z 4 j. The second linear region Z 4 e is connected to the front end of the first turning region Zd. The second turning area Z 4 f is connected to the front end of the second linear area Z 4 e. Including a first approach turn trajectory Tb1, one of the travel locus of when traveling along the fourth annular region Z 4 a, an annular trajectory T 4 a1. The circular locus T 4 a1 corresponds to the first circular locus of the present invention. On the circular trajectory T 4 a1, the turning direction of the second turning area Z 4 f is different from the turning direction of the approach turning area Zb. The third linear region Z 4 g is connected to the front end of the second turning region Z 4 f. The third turning area Z 4 h is connected to the front end of the third linear area Z 4 g. On the circular trajectory T 4 a1, the turning direction of the third turning area Z 4 h is different from the turning direction of the second turning area Z 4 f. Fourth linear region Z 4 i is connected to the front end of the third pivot region Z 4 h. The fourth turning region Z 4 j is connected to the front end of the fourth linear region Z 4 i and the rear end of the approach region Zc. On the circular trajectory T 4 a1, the turning direction of the fourth turning area Z 4 j is different from the turning direction of the third turning area Z 4 h. On the circular trajectory T 4 a1, the turning direction of the fourth turning area Z 4 j is different from the turning direction of the first turning area Zd. That is, in the circular locus T 4 a1, the traveling locus which is connected to the rear end of the first approach turning locus Tb1 during turning differs from the first approach turning locus Tb1 in the turning direction.
 図23には、複数の旋回ガイド部7dを含む複数のガイド部7が表示されている。第3環状領域Z3aに対して設けられるガイド部7の位置および数は、図23に示すものに限定されない。 In FIG. 23, a plurality of guide portions 7 including a plurality of turning guide portions 7d are displayed. The positions and the numbers of the guide portions 7 provided for the third annular region Z 3 a are not limited to those shown in FIG.
 第4環状領域Z4aにおいて、本発明のアプローチ旋回領域に相当する箇所は、1箇所に限らない。例えば、第2直線領域Z3eと第2旋回領域Z3fが、本発明のアプローチ旋回領域に相当してもよい。 In the fourth annular region Z 4 a, the number of places corresponding to the approach turning region of the present invention is not limited to one. For example, the second straight line region Z 3 e and the second turning region Z 3 f may correspond to the approach turning region of the present invention.
 本発明の第1鞍乗型車両走行複合データが、第2~第4環状領域Z2a、Z3a、Z4aを走行したときの環状軌跡T2a1、T3a1、T4a1に基づいて生成される場合、下記の効果が得られる。
 第2~第4環状領域Z2a、Z3a、Z4aを走行したときの環状軌跡T2a1、T3a1、T4a1は、4回以上の旋回中の走行軌跡を含む。さらに、第2~第4環状領域Z2a、Z3a、Z4aを走行したときの環状軌跡T2a1、T3a1、T4a1は、第1アプローチ旋回軌跡Tb1と旋回方向が同じ走行軌跡と、第1アプローチ旋回軌跡Tb1と旋回方向が異なる走行軌跡の両方を含む。したがって、第2~第4環状領域Z2a、Z3a、Z4aを走行したときの第1環状軌跡T2a1、T3a1、T4a1と車両前方向の加速度が関連付けられた第1鞍乗型車両走行複合データは、旋回方向が全て同じ場合の第1鞍乗型車両走行複合データに比べて、鞍乗型車両の走行状態を反映したデータとしての精度(信頼性)が高い。そのため、第1鞍乗型車両走行複合データを例えば車両の制御や車両の解析などにより活用しやすくなる。第1鞍乗型車両走行複合データをより活用しやすくなるため、出力された第1鞍乗型車両走行複合データの後処理がより容易である。出力された第1鞍乗型車両走行複合データの後処理がより容易であるため、第1鞍乗型車両走行複合データが出力される出力対象のハードウェアリソースをより低減することができる。
According to the first saddle riding type vehicle traveling composite data of the present invention, the annular loci T 2 a1, T 3 a1, T 4 a1 when traveling in the second to fourth annular regions Z 2 a, Z 3 a, Z 4 a. When generated based on, the following effects can be obtained.
The annular loci T 2 a1, T 3 a1, T 4 a1 when traveling in the second to fourth annular regions Z 2 a, Z 3 a, Z 4 a include traveling loci during four or more turns. Further, the circular loci T 2 a1, T 3 a1, and T 4 a1 when traveling in the second to fourth annular regions Z 2 a, Z 3 a, and Z 4 a are the same as the first approach turning locus Tb1 and the turning direction. Both the same traveling locus and the traveling loci having different turning directions from the first approach turning locus Tb1 are included. Therefore, the acceleration in the vehicle front direction is associated with the first annular loci T 2 a1, T 3 a1, T 4 a1 when traveling in the second to fourth annular regions Z 2 a, Z 3 a, Z 4 a. Compared to the first saddle riding type vehicle traveling composite data when the turning directions are all the same, the first saddle riding type vehicle traveling composite data has accuracy (reliability) as data reflecting the running state of the saddle riding type vehicle. high. Therefore, it becomes easy to utilize the first straddle-type vehicle traveling composite data by, for example, vehicle control or vehicle analysis. Since it becomes easier to utilize the first saddle riding type vehicle traveling composite data, the post-processing of the output first saddle riding type vehicle traveling composite data is easier. Since the post-processing of the output first straddle-type vehicle travel composite data is easier, it is possible to further reduce the hardware resources to be output to which the first saddle-ride type vehicle travel composite data is output.
 環状軌跡T4a1のように、本発明の第1環状軌跡が、第1アプローチ旋回軌跡の後端に接続され、第1アプローチ旋回軌跡と旋回方向が異なる旋回中の走行軌跡を含む場合、下記の効果が得られる。
 このような走行軌跡に基づいて生成される第1鞍乗型車両走行複合データは、旋回方向が全て同じ場合に得られる第1鞍乗型車両走行複合データに比べて、鞍乗型車両の走行状態を反映したデータとしての精度(信頼性)が高い。そのため、第1鞍乗型車両走行複合データを例えば車両の制御や車両の解析などにより活用しやすくなる。第1鞍乗型車両走行複合データをより活用しやすくなるため、出力された第1鞍乗型車両走行複合データの後処理がより容易である。出力された第1鞍乗型車両走行複合データの後処理がより容易であるため、第1鞍乗型車両走行複合データが出力される出力対象のハードウェアリソースをより低減することができる。
When the first annular locus of the present invention is connected to the rear end of the first approach turning locus and includes a running locus in a turning direction different from that of the first approach turning locus, such as the annular locus T 4 a1, The effect of is obtained.
The first straddle-type vehicle traveling composite data generated based on such a traveling locus is compared to the first straddle-type vehicle traveling composite data obtained when the turning directions are all the same as each other. The accuracy (reliability) as data that reflects the state is high. Therefore, it becomes easy to utilize the first straddle-type vehicle traveling composite data by, for example, vehicle control or vehicle analysis. Since it becomes easier to utilize the first saddle riding type vehicle traveling composite data, the post-processing of the output first saddle riding type vehicle traveling composite data is easier. Since the post-processing of the output first straddle-type vehicle travel composite data is easier, it is possible to further reduce the hardware resources to be output to which the first saddle-ride type vehicle travel composite data is output.
 上述の第1~第4環状領域Z2a、Z3a、Z4aの各直線領域内を走行した走行軌跡は、略直線状である。各直線領域内の走行軌跡は、1つの直線で構成されてもよく、少なくとも1つの直線と曲線で構成されていてもよく、曲線だけで構成されていてもよい。上述の第1~第4環状領域の各旋回領域内の走行軌跡は、1つの円弧で構成されてもよく、複数の円弧で構成されていてもよく、曲線だけで構成されていてもよく、少なくとも1つの直線と曲線で構成されていてもよい。 The traveling locus of traveling in each of the linear regions of the first to fourth annular regions Z 2 a, Z 3 a, and Z 4 a described above is substantially linear. The traveling locus in each straight line region may be configured by one straight line, at least one straight line and a curved line, or may be configured by only a curved line. The traveling locus in each of the turning regions of the above-mentioned first to fourth annular regions may be constituted by one arc, may be constituted by a plurality of arcs, or may be constituted by only curved lines, It may be composed of at least one straight line and a curved line.
 本発明の環状領域は、例えば、円形であってもよい。本発明の環状領域は、例えば、トライカーナで使用されるコースと同様の形状であってもよい。トライカーナで使用されるコースとは、横長の8の字状のコースである。トライカーナとは、モータースポーツの1種であるジムカーナ(gymkhana)のうち、上記の形状のコースに限定されたものをいう。 The annular region of the present invention may be circular, for example. The annular region of the present invention may have a shape similar to that of a course used in a tri-khana, for example. The course used in Trikhana is a laterally long 8-shaped course. Trikhana refers to a gymkhana, which is one type of motor sports, limited to a course of the above shape.
 本発明の環状軌跡は、環状領域内を少なくとも1周にわたって連続して走行したときの鞍乗型車両の走行軌跡である。環状軌跡に含まれる第1アプローチ旋回軌跡は、アプローチ領域から第1旋回領域に進入するように、第1直線および第1円弧に沿ってアプローチ旋回領域の全域にわたって連続して走行したときの鞍乗型車両の走行軌跡である。上記の条件を満たせば、第1環状領域の始点と終点は、どの位置であってもよい。第1環状領域の始点は、鞍乗型車両を発進させた時点でないことが好ましい。第1環状領域の始点は、アプローチ領域の端で鞍乗型車両を発進させた時点であってもよい。第1環状領域の終点は、鞍乗型車両を停止させた時点でないことが好ましい。第1環状領域の終点は、鞍乗型車両を停止させた時点であってもよい。 The annular locus of the present invention is a running locus of the saddle type vehicle when the vehicle continuously runs at least once in the annular region. The first approach turning locus included in the circular path is a saddle riding when continuously traveling along the first straight line and the first arc over the entire approach turning area so as to enter the first turning area from the approach area. 3 is a traveling locus of the type vehicle. If the above conditions are satisfied, the start point and the end point of the first annular region may be at any position. It is preferable that the start point of the first annular region is not the time point when the saddle riding type vehicle is started. The starting point of the first annular region may be the time when the straddle-type vehicle is started at the end of the approach region. It is preferable that the end point of the first annular region is not the time point when the saddle riding type vehicle is stopped. The end point of the first annular region may be a time point when the saddle riding type vehicle is stopped.
 図10および図21~図23の第1アプローチ旋回軌跡Tb1の旋回方向は、いずれも車両左方向である。本発明の第1アプローチ旋回軌跡の旋回方向は、車両右方向であってもよく、車両左方向であってもよい。 The turning direction of the first approach turning locus Tb1 shown in FIGS. 10 and 21 to 23 is the vehicle left direction. The turning direction of the first approach turning locus of the present invention may be the vehicle right direction or the vehicle left direction.
 本具体例1~3では、第1アプローチ旋回軌跡Tb1は、自動二輪車110、210、310がアプローチ領域Zcを走行中に加速と減速の両方を行った場合の走行軌跡である。しかし、本発明の第1アプローチ旋回軌跡は、鞍乗型車両が、アプローチ領域を走行中に減速のみを行った場合の走行軌跡であってもよい。本発明の第1アプローチ旋回軌跡は、鞍乗型車両が、アプローチ領域で加速せずに、アプローチ領域と旋回領域を走行中に減速した場合の走行軌跡であってもよい。 In the specific examples 1 to 3, the first approach turning locus Tb1 is a running locus when the motorcycles 110, 210 and 310 both accelerate and decelerate while traveling in the approach area Zc. However, the first approach turning trajectory of the present invention may be a traveling trajectory when the saddle riding type vehicle only decelerates while traveling in the approach area. The first approach turning locus of the present invention may be a running locus when the saddle riding type vehicle decelerates while traveling in the approach area and the turning area without accelerating in the approach area.
 鞍乗型車両がスノーモービルの場合、鞍乗型車両の姿勢とライダーの姿勢を撮影する撮像装置は、雪上に設置されてもよい。本発明の鞍乗型車両が水上オートバイの場合、アプローチ旋回領域を走行中の鞍乗型車両の姿勢とライダーの姿勢を撮影する撮像装置は、水面に設置されてもよく、岸などの陸地に設置されてもよい。撮像装置は、カメラで撮影された画像を解析して、コンピュータグラフィックスデータを生成する装置であってもよい。 If the straddle-type vehicle is a snowmobile, the imaging device that captures the posture of the straddle-type vehicle and the rider's posture may be installed on the snow. When the straddle-type vehicle of the present invention is a water motorcycle, the image pickup device for photographing the posture of the saddle-ride type vehicle and the posture of the rider traveling in the approach turning area may be installed on the water surface, or on a land such as a shore. It may be installed. The imaging device may be a device that analyzes an image captured by a camera and generates computer graphics data.
 スノーモービルおよび水上オートバイは、GNSSを利用せずに、車両前方向または進行方向の速度を検出する速度センサを有する場合がある。本発明の第1アプローチ旋回前方向加速度データは、この速度センサの信号に基づいて生成されてもよく、GNSSを利用して生成されてもよい。本発明の第1アプローチ旋回前方向加速度データは、スノーモービルの無限軌道の回転速度を検出するセンサの信号に基づいて生成されてもよい。 Snowmobiles and water motorcycles may have speed sensors that detect the speed in the vehicle front direction or the traveling direction without using GNSS. The first approach forward turn acceleration data of the present invention may be generated based on the signal of the speed sensor or may be generated using GNSS. The first approach forward turn acceleration data of the present invention may be generated based on a signal of a sensor that detects the rotational speed of the endless track of the snowmobile.
 鞍乗型車両走行データ処理装置は、鞍乗型車両に搭載されてもよく、搭載されなくてもよい。鞍乗型車両走行データ処理装置が、走行中の鞍乗型車両に関連するデータに基づいて鞍乗型車両を制御する車両制御装置の場合、鞍乗型車両走行データ処理装置は鞍乗型車両に搭載されてもされなくてもよい。鞍乗型車両走行データ処理装置が、走行中の鞍乗型車両に関連するデータを蓄積するデータ収録装置の場合、鞍乗型車両走行データ処理装置は鞍乗型車両に搭載されてもよく、搭載されなくてもよい。鞍乗型車両走行データ処理装置が鞍乗型車両に搭載されない場合、鞍乗型車両走行データ処理装置は、複数の鞍乗型車両に関連するデータを取得してもよい。 The saddle riding type vehicle traveling data processing device may or may not be mounted on the saddle riding type vehicle. When the saddle riding type vehicle running data processing device is a vehicle control device which controls the saddle riding type vehicle based on data related to the running saddle riding type vehicle, the saddle riding type vehicle running data processing device is the saddle riding type vehicle. May or may not be mounted on. If the saddle riding type vehicle running data processing device is a data recording device that accumulates data related to the running saddle riding type vehicle, the saddle riding type vehicle running data processing device may be mounted on the saddle riding type vehicle, It may not be installed. When the saddle riding type vehicle traveling data processing device is not mounted on the saddle riding type vehicle, the saddle riding type vehicle traveling data processing device may acquire data related to the plurality of saddle riding type vehicles.
 本発明の鞍乗型車両走行データ処理装置は、1箇所に配置された1つの装置であってもよく、異なる位置に配置された複数の装置で構成されていてもよい。 The saddle riding type vehicle travel data processing device of the present invention may be one device arranged at one location, or may be composed of a plurality of devices arranged at different positions.
 第1旋回ライダー姿勢データは、モーションキャプチャを利用して生成されたデータであってもよい。モーションキャプチャとは、人やオブジェクトの動きをデジタル化してコンピュータに取り込む技術である。 The first turning rider attitude data may be data generated using motion capture. Motion capture is a technology that digitizes the movements of people and objects and captures them in a computer.
 第1旋回ライダー姿勢データは、慣性センサ式のモーションキャプチャを利用して生成されたデータであってもよい。具体的には、第1旋回ライダー姿勢データが、ライダーの各部に取り付けられたIMU(Inertial Measurement Unit)などの慣性センサの信号に基づいて生成されてもよい。 The first turning rider attitude data may be data generated using inertial sensor type motion capture. Specifically, the first turning rider posture data may be generated based on a signal from an inertial sensor such as an IMU (Inertial Measurement Unit) attached to each part of the rider.
 第1旋回ライダー姿勢データは、機械式のモーションキャプチャを利用して生成されたデータであってもよい。機械式のモーションキャプチャは、外骨格モーションキャプチャシステムとも呼ばれる。具体的には、第1旋回ライダー姿勢データが、ライダーの関節に取り付けられた角度または変位を検出するセンサの信号に基づいて生成されてもよい。 The first turning rider attitude data may be data generated using mechanical motion capture. Mechanical motion capture is also called an exoskeleton motion capture system. Specifically, the first turning rider posture data may be generated based on a signal of a sensor that detects an angle or a displacement attached to a joint of the rider.
 第1旋回ライダー姿勢データは、磁気式のモーションキャプチャを利用して生成されたデータであってもよい。具体的には、磁気コイルがライダーの関節に取り付けられる。磁気コイルが磁界内で動くことで生じる歪みを測定することで、磁気コイルの位置及び姿勢が求められる。その情報に基づいて、第1旋回ライダー姿勢データが生成されてもよい。 The first turning rider attitude data may be data generated using magnetic motion capture. Specifically, a magnetic coil is attached to the rider's joint. The position and orientation of the magnetic coil can be obtained by measuring the strain caused by the movement of the magnetic coil in the magnetic field. The first turning rider posture data may be generated based on the information.
 第1旋回ライダー姿勢データは、マーカーレス・モーションキャプチャを利用して生成されたデータであってもよい。具体的には、第1旋回ライダー姿勢データが、カメラで撮影された人の画像を解析することで生成されたデータであってもよい。マーカーレス・モーションキャプチャを利用して生成されたイメージデータは、カメラで撮影された写真または動画に、CGで作成されたラインや点を重ねて表示したものであってもよい。マーカーレス・モーションキャプチャを利用して生成されたイメージデータは、CGで作成されたイメージデータだけで構成されてもよい。マーカーレス・モーションキャプチャに使用されるカメラは、鞍乗型車両に搭載されていてもよく、鞍乗型車両に搭載されていなくてもよい。マーカーレス・モーションキャプチャのイメージデータを生成する処理は、本発明の鞍乗型車両走行データ処理装置が行ってもよく、撮像装置が行ってもよい。 The first turning rider attitude data may be data generated using markerless motion capture. Specifically, the first turning rider posture data may be data generated by analyzing an image of a person captured by a camera. The image data generated by using the markerless motion capture may be a photograph or a moving image taken by a camera and a line or a point created by the CG superimposed and displayed. The image data generated by using the markerless motion capture may be composed only of the image data created by CG. The camera used for the markerless motion capture may or may not be mounted on the straddle-type vehicle. The process of generating the image data of the markerless motion capture may be performed by the straddle type vehicle traveling data processing device of the present invention or may be performed by the imaging device.
 第1旋回ライダー姿勢データは、複数のモーションキャプチャ技術を組み合わせて生成されたデータであってもよい。 The first turning rider attitude data may be data generated by combining a plurality of motion capture technologies.
 第1旋回車両姿勢データは、モーションキャプチャを利用して生成されたデータであってもよい。モーションキャプチャの具体例は、第1旋回ライダー姿勢データと同じであるため、記載を省略する。但し、マーカーレス・モーションキャプチャが利用される場合、カメラは、鞍乗型車両に搭載されない。第1旋回車両姿勢データは、複数のモーションキャプチャ技術を組み合わせて生成されたデータであってもよい。第1旋回車両姿勢データは、いずれかのモーションキャプチャ技術と、鞍乗型車両に搭載されたIMUとを利用して生成されてもよい。第1旋回車両姿勢データは、いずれかのモーションキャプチャ技術と、鞍乗型車両に搭載されたGNSS受信ユニットとを利用して生成されてもよい。 The first turning vehicle attitude data may be data generated using motion capture. Since a specific example of the motion capture is the same as the first turning rider posture data, the description is omitted. However, when the markerless motion capture is used, the camera is not mounted on the saddle type vehicle. The first turning vehicle attitude data may be data generated by combining a plurality of motion capture technologies. The first turning vehicle attitude data may be generated by using one of the motion capture technologies and the IMU mounted on the saddle type vehicle. The first turning vehicle attitude data may be generated by using any motion capture technology and a GNSS receiving unit mounted on the saddle type vehicle.
 本発明において、第1旋回軌跡データは、GNSSと、鞍乗型車両が有するセンサとを利用して生成されたデータであってもよい。鞍乗型車両が有するセンサとは、例えば、IMU、操舵車輪または操舵用スキーの操舵角を検出するセンサ、鞍乗型車両の車両前方向または進行方向の速度の検出に寄与するセンサのいずれであってもよい。 In the present invention, the first turning trajectory data may be data generated by using the GNSS and the sensor included in the saddle type vehicle. The sensor included in the saddle type vehicle is, for example, any of a sensor that detects a steering angle of an IMU, a steered wheel or a ski for steering, and a sensor that contributes to detection of a speed in a vehicle front direction or a traveling direction of the saddle type vehicle. It may be.
 本発明において、第1旋回軌跡データは、GNSSを利用せずに生成されたデータであってもよい。例えば、第1旋回軌跡データは、無線標識(ビーコン)を利用して生成されたデータであってもよい。この場合、鞍乗型車両は、無線局から送信される電波などの電磁波を受信可能な受信機を搭載する。第1旋回軌跡データは、受信機が受信した電波に基づいて生成されたデータに基づいて生成されてもよい。第1旋回軌跡データは、受信機が受信した電波に基づいて生成されたデータと、地図データとに基づいて生成されてもよい。 In the present invention, the first turning trajectory data may be data generated without using GNSS. For example, the first turning trajectory data may be data generated using a wireless beacon (beacon). In this case, the saddle type vehicle is equipped with a receiver capable of receiving electromagnetic waves such as radio waves transmitted from a wireless station. The first turning trajectory data may be generated based on the data generated based on the radio wave received by the receiver. The first turning trajectory data may be generated based on the map data and the data generated based on the radio waves received by the receiver.
 本発明の鞍乗型車両は、車両前方向の加速度を検出する加速度センサを有していてもよい。第1アプローチ旋回前方向加速度データは、この加速度センサの信号に基づいて生成されてもよい。 The straddle-type vehicle of the present invention may have an acceleration sensor that detects acceleration in the front direction of the vehicle. The first approach turning front direction acceleration data may be generated based on the signal of the acceleration sensor.
 本発明において、鞍乗型車両走行一体複合データ生成処理後、鞍乗型車両走行一体複合デーを記憶部に記憶する処理が実行されてもよい。 In the present invention, after the saddle-ride type vehicle traveling integrated composite data generation process, the process of storing the saddle-ride type vehicle traveling integrated data in the storage unit may be executed.
 本発明の鞍乗型車両走行データ処理装置の記憶部は、鞍乗型車両走行複合データを1つしか記憶していなくてもよい。つまり、鞍乗型車両走行複合データ記憶処理において、記憶部に記憶される鞍乗型車両走行複合データが更新されてもよい。 The storage unit of the straddle-type vehicle travel data processing device of the present invention may store only one saddle-type vehicle travel composite data. That is, in the saddle riding type vehicle traveling composite data storage processing, the saddle riding type vehicle traveling composite data stored in the storage unit may be updated.
 鞍乗型車両走行一体複合データを出力対象に出力する処理を実行する場合、鞍乗型車両走行複合データが出力対象に出力されなくてもよい。但し、この内容は、本発明には含まれない。 When the process of outputting the saddle riding type vehicle traveling integrated data is output to the output target, the saddle riding type vehicle traveling composite data may not be output to the output target. However, this content is not included in the present invention.
 鞍乗型車両走行データ処理装置のプロセッサは、第1鞍乗型車両走行複合データの基になるデータと第2鞍乗型車両走行複合データの基になるデータとの差分である第1鞍乗型車両走行複合データ差分を生成する鞍乗型車両走行複合データ差分生成処理を実行するように構成されまたはプログラムされていてもよい。さらに、プロセッサは、生成された第1鞍乗型車両走行複合データ差分を、鞍乗型車両走行データ処理装置の記憶部に記憶する鞍乗型車両走行複合データ差分記憶処理を実行するように構成されまたはプログラムされていてもよい。さらに、プロセッサは、記憶部に記憶された第1鞍乗型車両走行複合データ差分を出力対象に出力する鞍乗型車両走行複合データ差分出力処理を実行するように構成されまたはプログラムされていてもよい。第1鞍乗型車両走行複合データ差分を出力対象に出力する場合、鞍乗型車両走行データ処理装置は、第1鞍乗型車両走行複合データを出力対象に出力しなくてもよい。但し、この鞍乗型車両走行データ処理装置は、本発明には含まれない。第1鞍乗型車両走行複合データ差分を出力対象に出力する場合、鞍乗型車両走行データ処理装置は、第1鞍乗型車両走行複合データは生成されなくてもよい。但し、この場合、本発明には含まれない。 The processor of the straddle-type vehicle traveling data processing device uses the first straddle that is the difference between the data that is the basis of the first straddle-type vehicle traveling composite data and the data that is the basis of the second straddle-type vehicle traveling composite data. The straddle-type vehicle traveling composite data difference generating process for generating the type vehicle traveling composite data difference may be configured or programmed. Further, the processor is configured to execute a saddle riding type vehicle running composite data difference storage process of storing the generated first saddle riding type vehicle running composite data difference in a storage unit of the saddle riding type vehicle running data processing device. May be programmed or programmed. Further, the processor may be configured or programmed to execute a saddle-ride type vehicle traveling composite data difference output process of outputting the first straddle-type vehicle traveling composite data difference stored in the storage unit to an output target. Good. When outputting the first straddle-type vehicle travel composite data difference to the output target, the saddle-ride type vehicle travel data processing device may not output the first saddle-ride type vehicle travel composite data to the output target. However, the saddle riding type vehicle travel data processing device is not included in the present invention. When outputting the first straddle-type vehicle travel composite data difference to the output target, the saddle-ride type vehicle travel data processing device may not generate the first saddle-ride type vehicle travel composite data. However, this case is not included in the present invention.
 第1鞍乗型車両走行複合データ差分は、例えば、第1アプローチ旋回軌跡データと第1アプローチ旋回前方向加速度データとからなる第1データと、第2アプローチ旋回軌跡データと第2アプローチ旋回前方向加速度データとからなる第2データとの差分であって、第1アプローチ旋回軌跡、第1アプローチ旋回軌跡を走行したときの鞍乗型車両の車両前方向の加速度、第2アプローチ旋回軌跡、および、第2アプローチ旋回軌跡を走行したときの鞍乗型車両の車両前方向の加速度が関連付けられたデータであってもよい。この第1鞍乗型車両走行複合データ差分は、例えば、以下のいずれかの方法で生成されてもよい。
 第1の方法では、まず、第1アプローチ旋回軌跡データと第2アプローチ旋回軌跡データとの差分、第1アプローチ旋回前方向加速度データと第2アプローチ旋回前方向加速度データとの差分を算出する。これらの2つの差分に基づいて、これら2つの差分を関連付けた第1鞍乗型車両走行複合データ差分を生成する。
 第2の方法では、第1アプローチ旋回軌跡データと第1アプローチ旋回前方向加速度データとに基づいて、これら2つのデータを関連付けた第1の指標を生成する。第2アプローチ旋回軌跡データと第2アプローチ旋回前方向加速度データとに基づいて、これら2つのデータを関連付けた第2の指標を生成する。第1の指標と第2の指標との差分を算出して、第1鞍乗型車両走行複合データ差分を生成する。
The first straddle-type vehicle traveling composite data difference is, for example, first data including first approach turning trajectory data and first approach turning front direction acceleration data, second approach turning trajectory data, and second approach turning front direction. The difference between the acceleration data and the second data is the first approach turning locus, the acceleration in the vehicle front direction of the saddle riding type vehicle when traveling on the first approach turning locus, the second approach turning locus, and It may be data in which the acceleration in the vehicle front direction of the saddle riding type vehicle when traveling on the second approach turning locus is associated. The first saddle riding type vehicle traveling composite data difference may be generated by, for example, one of the following methods.
In the first method, first, the difference between the first approach turning trajectory data and the second approach turning trajectory data and the difference between the first approach turning front direction acceleration data and the second approach turning front direction acceleration data are calculated. Based on these two differences, a first straddle-type vehicle traveling composite data difference in which these two differences are associated is generated.
In the second method, based on the first approach turning trajectory data and the first approach turning front direction acceleration data, a first index associating these two data is generated. Based on the second approach turning trajectory data and the second approach turning front direction acceleration data, a second index associating these two data is generated. The difference between the first index and the second index is calculated to generate the first saddle riding type vehicle traveling composite data difference.
 第1鞍乗型車両走行複合データ差分は、例えば、第1アプローチ旋回軌跡データと第1アプローチ旋回前方向加速度データと第1アプローチ旋回左右方向加速度データとからなる第1データと、第2アプローチ旋回軌跡データと第2アプローチ旋回前方向加速度データと第2アプローチ旋回左右方向加速度データからなる第2データとの差分であって、第1アプローチ旋回軌跡、第1アプローチ旋回軌跡を走行したときの鞍乗型車両の車両前方向の加速度、第1アプローチ旋回軌跡を走行したときの鞍乗型車両の車両左右方向の加速度、第2アプローチ旋回軌跡、第2アプローチ旋回軌跡を走行したときの鞍乗型車両の車両前方向の加速度、および、第2アプローチ旋回軌跡を走行したときの鞍乗型車両の車両左右方向の加速度が関連付けられたデータであってもよい。この第1鞍乗型車両走行複合データ差分は、例えば、以下のいずれかの方法で生成されてもよい。
 第1の方法では、まず、第1アプローチ旋回軌跡データと第2アプローチ旋回軌跡データとの差分、第1アプローチ旋回前方向加速度データと第2アプローチ旋回前方向加速度データとの差分、第1アプローチ旋回左右方向加速度データと第2アプローチ旋回左右方向加速度データとの差分を算出する。これらの3つの差分に基づいて、これら3つの差分を関連付けた第1鞍乗型車両走行複合データ差分を生成する。
 第2の方法では、第1アプローチ旋回軌跡データと第1アプローチ旋回前方向加速度データと第1アプローチ旋回左右方向加速度データとに基づいて、これら3つのデータを関連付けた第1の指標を生成する。第2アプローチ旋回軌跡データと第2アプローチ旋回前方向加速度データと第2アプローチ旋回左右方向加速度データとに基づいて、これら3つのデータを関連付けた第2の指標を生成する。第1の指標と第2の指標との差分を算出して、第1鞍乗型車両走行複合データ差分を生成する。
 第3の方法では、第1アプローチ旋回軌跡データと第1アプローチ旋回前方向加速度データとに基づいて、この2つのデータを関連付けた第1の指標を生成する。第2アプローチ旋回軌跡データと第2アプローチ旋回前方向加速度データとに基づいて、この2つのデータを関連付けた第2の指標を生成する。第1の指標と第2の指標との差分を算出する。第1アプローチ旋回左右方向加速度データと第2アプローチ旋回左右方向加速度データとの差分を算出する。算出された2つの差分に基づいて、これら2つの差分を関連付けた第1鞍乗型車両走行複合データ差分を生成する。
 この第3の方法において、第1指標は、第1アプローチ旋回軌跡データと第1アプローチ旋回左右方向加速度データに基づいて生成されてもよい。第1指標は、第1アプローチ旋回前方向加速度データと第1アプローチ旋回左右方向加速度データに基づいて生成されてもよい。第2指標は、第1指標を生成する2つのデータと同じ種類の2つのデータに基づいて生成される。
The first saddle riding type vehicle traveling composite data difference is, for example, first data including first approach turning trajectory data, first approach turning front direction acceleration data, and first approach turning left / right direction acceleration data, and second approach turning. It is the difference between the trajectory data, the second approach turning front acceleration data, and the second data consisting of the second approach turning left / right acceleration data, and the first approach turning trajectory and the saddle riding when traveling on the first approach turning trajectory Acceleration in the vehicle front direction, saddle riding type vehicle when traveling on the first approach turning locus, lateral acceleration of the vehicle, second approach turning locus, straddle type vehicle when running on the second approach turning locus Of the vehicle front direction and the acceleration in the vehicle left-right direction of the straddle-type vehicle when traveling on the second approach turning locus may be data associated with each other. The first saddle riding type vehicle traveling composite data difference may be generated by, for example, one of the following methods.
In the first method, first, the difference between the first approach turning trajectory data and the second approach turning trajectory data, the difference between the first approach turning front direction acceleration data and the second approach turning front direction acceleration data, the first approach turning A difference between the lateral acceleration data and the second approach turning lateral acceleration data is calculated. Based on these three differences, a first saddle riding type vehicle traveling composite data difference in which these three differences are associated is generated.
In the second method, based on the first approach turning trajectory data, the first approach turning front direction acceleration data, and the first approach turning left / right direction acceleration data, a first index that associates these three data is generated. Based on the second approach turning trajectory data, the second approach turning front direction acceleration data, and the second approach turning left and right direction acceleration data, a second index that associates these three data is generated. The difference between the first index and the second index is calculated to generate the first saddle riding type vehicle traveling composite data difference.
In the third method, based on the first approach turning trajectory data and the first approach turning front direction acceleration data, a first index that associates these two data is generated. Based on the second approach turning trajectory data and the second approach turning front direction acceleration data, a second index that associates these two data is generated. The difference between the first index and the second index is calculated. A difference between the first approach turning left / right acceleration data and the second approach turning left / right acceleration data is calculated. Based on the calculated two differences, a first saddle riding type vehicle traveling composite data difference in which these two differences are associated is generated.
In the third method, the first index may be generated based on the first approach turning trajectory data and the first approach turning left / right acceleration data. The first index may be generated based on the first approach turning front direction acceleration data and the first approach turning left and right direction acceleration data. The second index is generated based on two data of the same type as the two data that generate the first index.
 第1鞍乗型車両走行複合データ差分は、例えば、第1環状軌跡データと第1環状前方向加速度データからなる第1データと、第2環状軌跡データと第2環状前方向加速度データからなる第2データとの差分であって、第1環状軌跡、第1環状軌跡を走行したときの鞍乗型車両の車両前方向の加速度、第2環状軌跡、および、第2環状軌跡を走行したときの鞍乗型車両の車両前方向の加速度が関連付けられたデータであってもよい。
 第1鞍乗型車両走行複合データ差分は、例えば、第1環状軌跡データと第1環状前方向加速度データと第1環状左右方向加速度データからなる第1データと、第2環状軌跡データと第2環状前方向加速度データと第2環状左右方向加速度データからなる第2データとの差分であって、第1環状軌跡、第1環状軌跡を走行したときの鞍乗型車両の車両前方向の加速度、第1環状軌跡を走行したときの鞍乗型車両の車両左右方向の加速度、第2環状軌跡、第2環状軌跡を走行したときの鞍乗型車両の車両前方向の加速度、および、第2環状軌跡を走行したときの鞍乗型車両の車両左右方向の加速度が関連付けられたデータであってもよい。
The first saddle-type vehicle traveling composite data difference is, for example, first data composed of first annular trajectory data and first annular forward acceleration data, second annular trajectory data and second annular forward acceleration data. It is the difference between the two data and the first annular locus, the acceleration in the vehicle front direction of the saddle riding type vehicle when traveling on the first annular locus, the second annular locus, and the second annular locus when traveling. It may be data associated with the acceleration in the vehicle front direction of the saddle type vehicle.
The first straddle-type vehicle traveling composite data difference is, for example, first data composed of first annular trajectory data, first annular frontward acceleration data, and first annular left-right acceleration data, second annular trajectory data, and second annular trajectory data and second annular trajectory data. The difference between the annular frontward acceleration data and the second data composed of the second annular left / right acceleration data, which is the first annular locus, the vehicle forward acceleration of the saddle-ride type vehicle when traveling on the first annular locus, Acceleration in the vehicle left-right direction of the saddle riding type vehicle when traveling on the first annular locus, second annular trajectory, acceleration in the vehicle front direction of the saddle riding type vehicle when traveling on the second annular trajectory, and second annular The data may be associated with acceleration in the vehicle left-right direction of the straddle-type vehicle when traveling on a locus.
 本発明において、鞍乗型車両一体複合データの基になるデータは、第1アプローチ旋回左右方向加速度データを含まなくてもよい。鞍乗型車両一体複合データの基になるデータは、第1旋回車両姿勢データを含まなくてもよい。鞍乗型車両一体複合データの基になるデータは、第1旋回ライダーデータを含まなくてもよい。鞍乗型車両一体複合データの基になるデータは、第1旋回ライダー姿勢データを含まず、第1旋回車両姿勢データを含んでいてもよい。鞍乗型車両一体複合データの基になるデータは、第1ライダー識別データを含まなくてもよい。本発明において、ライダー識別データ取得処理は無くてもよい。本発明において、鞍乗型車両走行一体複合データ生成処理は無くてもよい。 In the present invention, the data on which the saddle-ride type vehicle integrated composite data is based may not include the first approach turning left / right acceleration data. The data that is the basis of the saddle-ride type vehicle integrated composite data may not include the first turning vehicle attitude data. The data that is the basis of the saddle-ride type vehicle integrated composite data may not include the first turning rider data. The data that is the basis of the saddle-ride type vehicle integrated composite data may include the first turning vehicle attitude data instead of the first turning rider attitude data. The data that is the basis of the saddle-ride type vehicle integrated composite data may not include the first rider identification data. In the present invention, the rider identification data acquisition process may be omitted. In the present invention, the saddle-ride type vehicle traveling integrated data generation process may be omitted.
 1、101、201、301 鞍乗型車両走行データ処理装置
 2、102、302 プロセッサ
 3、103、303 記憶部
 4、5、305 出力対象
 7 ガイド部
 7b アプローチ旋回ガイド部
 7c アプローチガイド部
 7d 旋回ガイド部
 10 鞍乗型車両
 110、210、310 自動二輪車(鞍乗型車両)
 61 エンジン制御プロセッサ(出力対象)
 62 ブレーキ制御プロセッサ(出力対象)
 205 外部記憶装置(出力対象)
 308 撮像装置
 510 四輪バギー(鞍乗型車両)
 610 水上オートバイ(鞍乗型車両)
 710、810 スノーモービル(鞍乗型車両)
 Dc1、D1c1、D3c1 第1鞍乗型車両走行複合データ
 DTb1 第1アプローチ旋回軌跡データ
 DAb1 第1アプローチ旋回前方向加速度データ
 DLb1 第1アプローチ旋回左右方向加速度データ
 D1V1、D3V1 第1旋回車両姿勢データ
 D1R1、D3R1  第1旋回ライダー姿勢データ
 DI1 第1ライダー識別データ
 D1c2、D3c2 第2鞍乗型車両走行複合データ
 DTb2 第2アプローチ旋回軌跡データ
 DAb2 第2アプローチ旋回前方向加速度データ
 DLb2 第2アプローチ旋回左右方向加速度データ
 D1V2 第2旋回車両姿勢データ
 D1R2 第2旋回ライダー姿勢データ
 DI2 第2ライダー識別データ
 D1u、D3u 鞍乗型車両走行一体複合データ
 D1ud、D3ud 相違ライダー鞍乗型車両走行一体複合データ
 D1us、D3us 同一ライダー鞍乗型車両走行一体複合データ
 Ta1、T2a1、T3a1、T4a1 環状軌跡(第1環状軌跡)
 Tb1 第1アプローチ旋回軌跡
 Za 環状領域(第1環状領域)
 Z2a 第2環状領域
 Z3a 第3環状領域
 Z4a 第4環状領域
 Zb アプローチ旋回領域
 Zc アプローチ領域
 Zd 第1旋回領域
 Ze、Z2e、Z3e、Z4e 第2直線領域
 Zf、Z2f、Z3f、Z4f 第2旋回領域
 Z2g、Z3g、Z4g 第3直線領域
 Z2h、Z3h、Z4h 第3旋回領域
 Z2i、Z3i、Z4i 第4直線領域
 Z2j、Z3j、Z4j 第4旋回領域
 Z2k、Z3k 第5直線領域
 Z2l、Z3l 第5旋回領域
 Z2m、Z3m 第6直線領域
 Z2n、Z3n 第6旋回領域
 Z3o 第7直線領域
 Z3p 第7旋回領域
 R ライダー
1, 101, 201, 301 Saddle-type vehicle travel data processing device 2, 102, 302 Processor 3, 103, 303 Storage unit 4, 5, 305 Output target 7 Guide unit 7b Approach turning guide unit 7c Approach guide unit 7d Turning guide Part 10 Saddle- type vehicle 110, 210, 310 Motorcycle (saddle-type vehicle)
61 Engine control processor (output target)
62 Brake control processor (output target)
205 external storage device (output target)
308 Imaging device 510 Four-wheel buggy (saddle-type vehicle)
610 Water motorcycle (saddle-type vehicle)
710, 810 Snowmobile (saddle-type vehicle)
Dc1, D1c1, D3c1 First straddle type vehicle traveling composite data DTb1 First approach turning trajectory data DAb1 First approach turning forward acceleration data DLb1 First approach turning left / right acceleration data D1V1, D3V1 First turning vehicle attitude data D1R1, D3R1 First turn rider attitude data DI1 First rider identification data D1c2, D3c2 Second saddle riding type vehicle composite data DTb2 Second approach turn trajectory data DAb2 Second approach turn front acceleration data DLb2 Second approach turn left / right acceleration data D1V2 Second turning vehicle attitude data D1R2 Second turning rider attitude data DI2 Second rider identification data D1u, D3u Saddle-type vehicle traveling integrated data D1ud, D3ud Different rider saddle-type vehicle integrated data D1us, D3us Same rider saddle ride type vehicle running integral composite data Ta1, T 2 a1, T 3 a1, T 4 a1 annular trajectory (first annular trajectory)
Tb1 First approach turning locus Za Annular area (first annular area)
Z 2 a 2nd annular area Z 3 a 3rd annular area Z 4 a 4th annular area Zb Approach turning area Zc Approach area Zd 1st turning area Ze, Z 2 e, Z 3 e, Z 4 e 2nd linear area Zf, Z 2 f, Z 3 f, Z 4 f 2nd turning area Z 2 g, Z 3 g, Z 4 g 3rd linear area Z 2 h, Z 3 h, Z 4 h 3rd turning area Z 2 i , Z 3 i, Z 4 i 4th linear area Z 2 j, Z 3 j, Z 4 j 4th turning area Z 2 k, Z 3 k 5th linear area Z 2 l, Z 3 l 5th turning area Z 2 m, Z 3 m 6th linear area Z 2 n, Z 3 n 6th turning area Z 3 o 7th linear area Z 3 p 7th turning area R Rider

Claims (23)

  1.  走行中の鞍乗型車両に関連するデータを蓄積するデータ収録装置や、走行中の前記鞍乗型車両に関連するデータに基づいて前記鞍乗型車両を制御する車両制御装置のような、走行中の前記鞍乗型車両に関連するデータを処理する鞍乗型車両走行データ処理装置であって、
     (A)(a1)0mより大きく65m以下の第1直線と、前記第1直線に平行で前記第1直線から2m離れた第2直線との間のアプローチ領域、および、前記第1直線の端に接続され、中心角が90°以上270°以下で半径が2m以上10m以下の第1円弧と、前記第2直線の端に接続され、前記第1円弧と同心状であって、前記第1円弧の径方向外側に位置する第2円弧との間の第1旋回領域からなるアプローチ旋回領域内の前記鞍乗型車両の走行軌跡であって、前記アプローチ領域から前記第1旋回領域に進入するように、前記アプローチ旋回領域の全域にわたって連続して走行したときの前記鞍乗型車両の走行軌跡である第1アプローチ旋回軌跡に関連する第1アプローチ旋回軌跡データ、および、(a2)前記第1アプローチ旋回軌跡を走行したときの前記鞍乗型車両の車両前方向の加速度に関連する第1アプローチ旋回前方向加速度データが取得される鞍乗型車両走行データ取得処理と、
     (B)前記第1アプローチ旋回軌跡データおよび前記第1アプローチ旋回前方向加速度データに基づいて、前記第1アプローチ旋回軌跡および前記第1アプローチ旋回軌跡を走行したときの前記鞍乗型車両の車両前方向の加速度が関連付けられた第1鞍乗型車両走行複合データが生成される鞍乗型車両走行複合データ生成処理と、
     (C)前記鞍乗型車両走行複合データ生成処理により生成された前記第1鞍乗型車両走行複合データが記憶部に記憶される鞍乗型車両走行複合データ記憶処理と、
     (D)前記鞍乗型車両走行複合データ記憶処理により記憶された前記第1鞍乗型車両走行複合データが出力対象に出力される鞍乗型車両走行複合データ出力処理と、
     を実行するように構成されまたはプログラムされたプロセッサを有することを特徴とする、鞍乗型車両走行データ処理装置。
    A data recording device that accumulates data related to a saddle riding type vehicle that is running, or a vehicle control device that controls the saddle riding type vehicle based on data related to the saddle riding type vehicle that is running A saddle riding type vehicle travel data processing device for processing data related to the saddle riding type vehicle in,
    (A) (a1) An approach area between a first straight line greater than 0 m and 65 m or less and a second straight line parallel to the first straight line and separated from the first straight line by 2 m, and an end of the first straight line. A first arc having a central angle of 90 ° or more and 270 ° or less and a radius of 2 m or more and 10 m or less, connected to an end of the second straight line, concentric with the first arc, and A travel locus of the straddle-type vehicle in an approach turning area including a first turning area between a second arc located radially outside the arc and entering the first turning area from the approach area. As described above, the first approach turning locus data relating to the first approach turning locus, which is the running locus of the straddle-type vehicle when continuously running over the entire approach turning region, and (a2) the first Saddle riding type vehicle running data acquisition processing for obtaining first approach turning front direction acceleration data related to acceleration in the vehicle front direction of the saddle type vehicle when traveling on an approach turning locus,
    (B) Based on the first approach turning trajectory data and the first approach turning front direction acceleration data, the vehicle front of the saddle-ride type vehicle when traveling on the first approach turning trajectory and the first approach turning trajectory Saddle-ride type vehicle travel composite data generation processing for generating first saddle-ride type vehicle travel composite data associated with directional acceleration,
    (C) a saddle-type vehicle traveling composite data storage process in which the first saddle-type vehicle traveling composite data generated by the saddle-type vehicle traveling composite data generation process is stored in a storage unit;
    (D) Saddle-type vehicle travel composite data output processing in which the first saddle-type vehicle travel composite data stored by the saddle-ride type vehicle travel composite data storage processing is output to an output target.
    A straddle-type vehicle travel data processing device, characterized in that it has a processor configured or programmed to execute the.
  2.  鞍乗型車両走行データ取得処理において、
     (a3)前記アプローチ旋回領域を含む環状領域内を少なくとも1周にわたって連続して走行したときの前記鞍乗型車両の走行軌跡であって、前記第1アプローチ旋回軌跡を含む第1環状軌跡に関連する第1環状軌跡データ、および、(a4)前記第1アプローチ旋回前方向加速度データを含み、前記第1環状軌跡を走行したときの前記鞍乗型車両の車両前方向の加速度に関連する第1環状前方向加速度データが取得され、
     前記鞍乗型車両走行複合データ生成処理において、
     前記第1環状軌跡データおよび前記第1環状前方向加速度データに基づいて、前記第1環状軌跡および前記第1環状軌跡を走行したときの前記鞍乗型車両の車両前方向の加速度が関連付けられた前記第1鞍乗型車両走行複合データが生成されることを特徴とする請求項1に記載の鞍乗型車両走行データ処理装置。
    In the saddle riding type vehicle travel data acquisition process,
    (A3) A traveling locus of the straddle-type vehicle when traveling continuously for at least one round in an annular region including the approach turning region, which is related to a first annular locus including the first approach turning locus. A first annular trajectory data, and (a4) first acceleration turning forward direction acceleration data, which is related to the vehicle forward acceleration of the saddle type vehicle when traveling on the first annular trajectory. Annular forward acceleration data is acquired,
    In the saddle riding type vehicle traveling composite data generation process,
    Based on the first annular trajectory data and the first annular forward acceleration data, the first annular trajectory and the vehicle forward acceleration of the saddle riding type vehicle when traveling on the first annular trajectory are associated with each other. The straddle-type vehicle travel data processing device according to claim 1, wherein the first saddle-ride type vehicle travel composite data is generated.
  3.  前記第1環状軌跡における前記鞍乗型車両の進行方向を、前方向とした場合に、
     前記第1環状軌跡は、
     前記第1アプローチ旋回軌跡の後端に接続され、前記第1アプローチ旋回軌跡と旋回方向が異なる旋回中の走行軌跡を含むことを特徴とする請求項2に記載の鞍乗型車両走行データ処理装置。
    When the traveling direction of the straddle-type vehicle on the first annular locus is the forward direction,
    The first circular locus is
    The straddle-type vehicle travel data processing device according to claim 2, wherein the saddle-ride type vehicle travel data processing device is connected to a rear end of the first approach turning locus, and includes a running locus in a turning direction different from the first approach turning locus. ..
  4.  前記第1環状軌跡における前記鞍乗型車両の進行方向を、前方向とした場合に、
     前記第1環状軌跡は、
     前記第1アプローチ旋回軌跡の後端に接続され、前記第1アプローチ旋回軌跡と旋回方向が同じである旋回中の走行軌跡を含むことを特徴とする請求項2に記載の鞍乗型車両走行データ処理装置。
    When the traveling direction of the straddle-type vehicle on the first annular locus is the forward direction,
    The first circular locus is
    Straddle-type vehicle travel data according to claim 2, further comprising a travel locus that is connected to a rear end of the first approach turning locus and has a turning direction that is the same as that of the first approach turning locus. Processing equipment.
  5.  前記第1環状領域は、内周縁と外周縁との間の距離が2mであって、
     前記第1環状領域内を前記鞍乗型車両が走行する方向を、前方向とした場合に、
     前記環状領域は、
     (i)前記アプローチ旋回領域に加えて、
     前記第1旋回領域の前端に接続された直線状の第2直線領域と、
     前記第2直線領域の前端および前記アプローチ領域の後端に接続された円弧状の第2旋回領域とを含む第1環状領域であるか、または、
     (ii)前記アプローチ旋回領域に加えて、
     前記第1旋回領域の前端に接続され、前記アプローチ領域よりも短い直線状の第2直線領域と、
     前記第2直線領域の前端に接続された曲線状の第2旋回領域であって、前記第1環状軌跡における前記第2旋回領域の旋回方向が前記アプローチ旋回領域の旋回方向と異なる前記第2旋回領域と、
     前記第2旋回領域の前端に接続された直線状の第3直線領域内と、
     前記第3直線領域の前端に接続された曲線状の第3旋回領域であって、前記第1環状軌跡における前記第3旋回領域の旋回方向が前記第2旋回領域の旋回方向と同じである前記第3旋回領域と、
     前記第3旋回領域の前端に接続された直線状の第4直線領域と、
     前記第4直線領域の前端に接続された曲線状の第4旋回領域であって、前記第1環状軌跡における前記第4旋回領域の旋回方向が前記第3旋回領域の旋回方向と異なる前記第4旋回領域と、
     前記第4旋回領域の前端に接続され、前記第4直線領域よりも長い直線状の第5直線領域と、
     前記第5直線領域の前端に接続された曲線状の第5旋回領域であって、前記第1環状軌跡における前記第5旋回領域の旋回方向が前記第4旋回領域の旋回方向と同じである前記第5旋回領域と、
     前記第5旋回領域の前端に接続され、前記第3直線領域よりも長い直線状の第6直線領域と、
     前記第6直線領域の前端および前記アプローチ領域の後端に接続された曲線状の第6旋回領域であって、前記第1環状軌跡における前記第6旋回領域の旋回方向が前記第5旋回領域の旋回方向と同じである前記第6旋回領域とを含む第2環状領域であるか、または、
     (iii)前記アプローチ旋回領域に加えて、
     前記第1旋回領域の前端に接続され、前記アプローチ領域よりも短い直線状の第2直線領域と、
     前記第2直線領域の前端に接続された曲線状の第2旋回領域であって、前記第1環状軌跡における前記第2旋回領域の旋回方向が前記アプローチ旋回領域の旋回方向と異なる前記第2旋回領域と、
     前記第2旋回領域の前端に接続された直線状の第3直線領域と、
     前記第3直線領域の前端に接続された曲線状の第3旋回領域であって、前記第1環状軌跡における前記第3旋回領域の旋回方向が前記第2旋回領域の旋回方向と異なる前記第3旋回領域と、
     前記第3旋回領域の前端に接続された直線状の第4直線領域と、
     前記第4直線領域の前端に接続された曲線状の第4旋回領域であって、前記第1環状軌跡における前記第4旋回領域の旋回方向が前記第3旋回領域の旋回方向と異なる前記第4旋回領域と、
     前記第4旋回領域の前端に接続された直線状の第5直線領域と、
     前記第5直線領域の前端に接続された曲線状の第5旋回領域であって、前記第1環状軌跡における前記第5旋回領域の旋回方向が前記第4旋回領域の旋回方向と異なる前記第5旋回領域と、
     前記第5旋回領域の前端に接続され、前記第2~第5直線領域よりも長い直線状の第6直線領域と、
     前記第6直線領域の前端に接続された曲線状の第6旋回領域であって、前記第1環状軌跡における前記第6旋回領域の旋回方向が前記第5旋回領域の旋回方向と同じである前記第6旋回領域と、
     前記第6旋回領域の前端に接続された直線状の第7直線領域と、
     前記第7直線領域の前端および前記アプローチ領域の後端に接続された曲線状の第7旋回領域であって、前記第1環状軌跡における前記第7旋回領域の旋回方向が前記第6旋回領域の旋回方向と同じである前記第7旋回領域とを含み、
     前記環状軌跡で囲まれた領域の形状がE字状となる第3環状領域であるか、または、
     (iv)前記アプローチ旋回領域に加えて、
     前記第1旋回領域の前端に接続された直線状の第2直線領域と、
     前記第2直線領域の前端に接続された曲線状の第2旋回領域であって、前記第1環状軌跡における前記第2旋回領域の旋回方向が前記アプローチ旋回領域の旋回方向と異なる前記第2旋回領域と、
     前記第2旋回領域の前端に接続された直線状の第3直線領域と、
     前記第3直線領域の前端に接続された曲線状の第3旋回領域であって、前記第1環状軌跡における前記第3旋回領域の旋回方向が前記第2旋回領域の旋回方向と異なる前記第3旋回領域と、
     前記第3旋回領域の前端に接続された直線状の第4直線領域と、
     前記第4直線領域の前端および前記アプローチ領域の後端に接続された曲線状の第4旋回領域であって、前記第1環状軌跡における前記第4旋回領域の旋回方向が前記第3旋回領域の旋回方向と異なる前記第4旋回領域とを含む第4環状領域であることを特徴とする請求項2に記載の鞍乗型車両走行データ処理装置。
    In the first annular region, the distance between the inner peripheral edge and the outer peripheral edge is 2 m,
    When the direction in which the straddle-type vehicle travels in the first annular region is the front direction,
    The annular region is
    (I) In addition to the approach turning area,
    A linear second linear region connected to the front end of the first turning region;
    A first annular region including an arcuate second turning region connected to a front end of the second linear region and a rear end of the approach region, or
    (Ii) In addition to the approach turning area,
    A linear second linear region connected to the front end of the first turning region and shorter than the approach region;
    The curved second swirl region connected to the front end of the second straight region, wherein the swirl direction of the second swirl region in the first annular trajectory is different from the swirl direction of the approach swirl region. Area and
    In a linear third linear region connected to the front end of the second turning region,
    The curved third turning region connected to the front end of the third linear region, wherein the turning direction of the third turning region in the first annular locus is the same as the turning direction of the second turning region. A third turning area,
    A linear fourth linear region connected to the front end of the third turning region;
    A fourth curved turning region connected to the front end of the fourth straight region, wherein the turning direction of the fourth turning region in the first annular locus is different from the turning direction of the third turning region. Swirl area,
    A linear fifth linear region that is connected to the front end of the fourth turning region and is longer than the fourth linear region;
    The curved fifth turning region connected to the front end of the fifth linear region, wherein the turning direction of the fifth turning region in the first annular locus is the same as the turning direction of the fourth turning region. A fifth turning area,
    A linear sixth linear region that is connected to the front end of the fifth turning region and is longer than the third linear region;
    A curved sixth turning region connected to a front end of the sixth straight region and a rear end of the approach region, wherein a turning direction of the sixth turning region in the first annular locus is the fifth turning region. A second annular region including the sixth turning region which is the same as the turning direction, or
    (Iii) In addition to the approach turning area,
    A linear second linear region connected to the front end of the first turning region and shorter than the approach region;
    The curved second swirl region connected to the front end of the second straight region, wherein the swirl direction of the second swirl region in the first annular trajectory is different from the swirl direction of the approach swirl region. Area and
    A linear third linear region connected to the front end of the second turning region,
    The curved third turning region connected to the front end of the third straight region, wherein the turning direction of the third turning region in the first annular locus is different from the turning direction of the second turning region. Swirl area,
    A linear fourth linear region connected to the front end of the third turning region;
    A fourth curved turning region connected to the front end of the fourth straight region, wherein the turning direction of the fourth turning region in the first annular locus is different from the turning direction of the third turning region. Swirl area,
    A linear fifth linear region connected to the front end of the fourth turning region,
    The curved fifth turning region connected to the front end of the fifth linear region, wherein the turning direction of the fifth turning region in the first annular locus is different from the turning direction of the fourth turning region. Swirl area,
    A linear sixth linear region which is connected to the front end of the fifth turning region and is longer than the second to fifth linear regions;
    In the curved sixth turning region connected to the front end of the sixth straight region, the turning direction of the sixth turning region in the first annular locus is the same as the turning direction of the fifth turning region. A sixth turning area,
    A linear seventh linear region connected to the front end of the sixth turning region,
    A curved seventh turning region connected to a front end of the seventh straight region and a rear end of the approach region, wherein a turning direction of the seventh turning region in the first annular locus is the sixth turning region. And a seventh turning area that is the same as the turning direction,
    The shape of the area surrounded by the annular locus is an E-shaped third annular area, or
    (Iv) In addition to the approach turning area,
    A linear second linear region connected to the front end of the first turning region;
    The curved second turning region connected to the front end of the second straight region, wherein the turning direction of the second turning region in the first annular locus is different from the turning direction of the approach turning region. Area and
    A linear third linear region connected to the front end of the second turning region,
    The curved third turning region connected to the front end of the third straight region, wherein the turning direction of the third turning region in the first annular locus is different from the turning direction of the second turning region. Swirl area,
    A linear fourth linear region connected to the front end of the third turning region;
    A curved fourth turning region connected to the front end of the fourth straight region and the rear end of the approach region, wherein the turning direction of the fourth turning region in the first annular locus is the third turning region. The straddle-type vehicle travel data processing device according to claim 2, wherein the saddle-type vehicle travel data processing device is a fourth annular region including the fourth turning region different from a turning direction.
  6.  前記鞍乗型車両走行データ取得処理において、
     前記第1アプローチ旋回軌跡を走行したときの前記鞍乗型車両の車両左右方向の加速度に関連する第1アプローチ旋回左右方向加速度データが取得され、
     前記鞍乗型車両走行複合データ生成処理において、
     前記第1鞍乗型車両走行複合データが、前記第1アプローチ旋回軌跡データ、前記第1アプローチ旋回前方向加速度データ、および前記第1アプローチ旋回左右方向加速度データに基づいて、前記第1アプローチ旋回軌跡、前記第1アプローチ旋回軌跡を走行したときの前記鞍乗型車両の車両前方向の加速度、および、前記第1アプローチ旋回軌跡を走行したときの前記鞍乗型車両の車両左右方向の加速度を関連付けて生成されることを特徴とする請求項1~5のいずれか一項に記載の鞍乗型車両走行データ処理装置。
    In the saddle riding type vehicle travel data acquisition process,
    First approach turning left / right acceleration data relating to vehicle left / right acceleration of the straddle-type vehicle when traveling on the first approach turning trajectory is acquired;
    In the saddle riding type vehicle traveling composite data generation process,
    The first saddle riding type vehicle traveling composite data is based on the first approach turning locus data, the first approach turning front direction acceleration data, and the first approach turning left / right direction acceleration data, and the first approach turning locus. And associating the acceleration in the vehicle front direction of the saddle riding type vehicle when traveling on the first approach turning trajectory and the acceleration in the vehicle left and right direction of the saddle riding type vehicle when traveling on the first approach turning trajectory. The straddle-type vehicle traveling data processing device according to any one of claims 1 to 5, wherein the straddle-type vehicle traveling data processing device is generated.
  7.  前記プロセッサは、
     前記第1アプローチ旋回軌跡を走行したときの前記鞍乗型車両に乗車するライダーを識別する第1ライダー識別データが取得されるライダー識別データ取得処理、を更に実行するように構成されまたはプログラムされており、
     前記鞍乗型車両走行複合データ生成処理において、
     前記第1鞍乗型車両走行複合データが、前記第1アプローチ旋回軌跡データと、前記第1アプローチ旋回前方向加速度データと、前記第1ライダー識別データとに基づいて、前記第1アプローチ旋回軌跡、前記第1アプローチ旋回軌跡を走行したときの前記鞍乗型車両の車両前方向の加速度、および、前記第1アプローチ旋回軌跡を走行したときの前記鞍乗型車両に乗車するライダーを関連付けて生成されることを特徴とする請求項1~6のいずれか一項に記載の鞍乗型車両走行データ処理装置。
    The processor is
    Configured or programmed to further perform a rider identification data acquisition process for obtaining first rider identification data for identifying a rider riding the saddle riding type vehicle when traveling on the first approach turning locus. Cage,
    In the saddle riding type vehicle traveling composite data generation process,
    The first straddle-type vehicle traveling composite data is based on the first approach turning locus data, the first approach turning front direction acceleration data, and the first rider identification data, and the first approach turning locus, The acceleration in the vehicle front direction of the saddle riding type vehicle when traveling on the first approach turning locus and the rider riding on the saddle riding type vehicle when traveling on the first approach turning locus are generated in association with each other. The straddle-type vehicle traveling data processing device according to any one of claims 1 to 6, characterized in that:
  8.  前記鞍乗型車両走行データ取得処理において、
     前記アプローチ旋回軌跡を走行した前記鞍乗型車両と同一または異なる鞍乗型車両が、前記アプローチ領域から前記第1旋回領域に進入するように、前記アプローチ旋回領域の全域にわたって連続して走行したときの走行軌跡である第2アプローチ旋回軌跡に関連する第2アプローチ旋回軌跡データ、および、前記第2アプローチ旋回軌跡を走行したときの前記鞍乗型車両の車両前方向の加速度に関連する第2アプローチ旋回前方向加速度データが取得され、
     前記鞍乗型車両走行複合データ生成処理において、
     前記第2アプローチ旋回軌跡データおよび前記第2アプローチ旋回前方向加速度データに基づいて、前記第2アプローチ旋回軌跡および前記第2アプローチ旋回軌跡を走行したときの前記鞍乗型車両の車両前方向の加速度が関連付けられた第2鞍乗型車両走行複合データが生成され、
     前記鞍乗型車両走行複合データ記憶処理において、
     前記鞍乗型車両走行複合データ生成処理により生成された前記第2鞍乗型車両走行複合データが記憶部に記憶されることを特徴とする請求項1~7のいずれか一項に記載の鞍乗型車両走行データ処理装置。
    In the saddle riding type vehicle travel data acquisition process,
    When a saddle riding type vehicle that is the same as or different from the saddle riding type vehicle that has traveled on the approach turning locus travels continuously over the entire approach turning area so as to enter the first turning area from the approach area. Second approach turning locus data relating to a second approach turning locus, which is a running locus of the vehicle, and a second approach relating to vehicle forward acceleration of the saddle-ride type vehicle when the vehicle travels on the second approach turning locus. Pre-turn acceleration data is acquired,
    In the saddle riding type vehicle traveling composite data generation process,
    Based on the second approach turning locus data and the second approach turning front direction acceleration data, the acceleration in the vehicle front direction of the saddle riding type vehicle when traveling on the second approach turning locus and the second approach turning locus The second straddle-type vehicle traveling composite data associated with
    In the saddle riding type vehicle traveling composite data storage processing,
    The saddle according to any one of claims 1 to 7, wherein the second saddle riding type vehicle traveling composite data generated by the saddle riding type vehicle traveling composite data generation processing is stored in a storage unit. Ride-type vehicle traveling data processing device.
  9.  前記プロセッサは、
     前記鞍乗型車両走行複合データ記憶処理で前記記憶部に記憶された前記第1鞍乗型車両走行複合データと前記第2鞍乗型車両走行複合データを互いに関連づけて鞍乗型車両走行一体複合データが生成される鞍乗型車両走行一体複合データ生成処理、を更に実行するように構成されまたはプログラムされており、
     前記第1鞍乗型車両走行複合データ出力処理において、
     前記鞍乗型車両走行一体複合データ生成処理により生成された前記鞍乗型車両走行一体複合データが前記出力対象に出力されることを特徴とする請求項8に記載の鞍乗型車両走行データ処理装置。
    The processor is
    The first saddle riding type vehicle traveling composite data and the second saddle riding type vehicle traveling composite data stored in the storage unit in the saddle riding type vehicle traveling composite data storage processing are associated with each other to make the saddle riding type vehicle traveling integrated composite. A saddle-type vehicle traveling integrated composite data generation process, in which data is generated, is configured or programmed to further execute,
    In the first straddle-type vehicle traveling composite data output process,
    9. The saddle-ride type vehicle traveling data processing according to claim 8, wherein the saddle-ride type vehicle traveling integrated data generated by the saddle-type vehicle traveling integrated data generation processing is output to the output target. apparatus.
  10.  前記プロセッサは、
     前記第1アプローチ旋回軌跡を走行したときの前記鞍乗型車両に乗車するライダーを識別する第1ライダー識別データ、および、前記第2アプローチ旋回軌跡を走行したときの前記鞍乗型車両に乗車するライダーを識別する第2ライダー識別データが取得されるライダー識別データ取得処理、を更に実行するように構成されまたはプログラムされており、
     前記鞍乗型車両走行複合データ生成処理において、
     前記第1鞍乗型車両走行複合データが、前記第1アプローチ旋回軌跡データと、前記第1アプローチ旋回前方向加速度データと、前記第1ライダー識別データとに基づいて、前記第1アプローチ旋回軌跡、前記第1アプローチ旋回軌跡を走行したときの前記鞍乗型車両の車両前方向の加速度、および、前記第1アプローチ旋回軌跡を走行したときの前記鞍乗型車両に乗車するライダーを関連付けて生成され、
     前記第2鞍乗型車両走行複合データが、前記第2アプローチ旋回軌跡データと、前記第2アプローチ旋回前方向加速度データと、前記第2ライダー識別データとに基づいて、前記第2アプローチ旋回軌跡、前記第2アプローチ旋回軌跡を走行したときの前記鞍乗型車両の車両前方向の加速度、および、前記第2アプローチ旋回軌跡を走行したときの前記鞍乗型車両に乗車するライダーを関連付けて生成され、
     前記鞍乗型車両走行一体複合データ生成処理において、
     前記第1ライダー識別データと前記第2ライダー識別データが同じ場合に、前記第1鞍乗型車両走行複合データと前記第2鞍乗型車両走行複合データを互いに関連づけて同一ライダー鞍乗型車両走行一体複合データが生成され、
     前記鞍乗型車両走行複合データ合出力処理において、
     前記鞍乗型車両走行一体複合データ生成処理により生成された前記同一ライダー鞍乗型車両走行一体複合データが前記出力対象に出力されることを特徴とする請求項9に記載の鞍乗型車両走行データ処理装置。
    The processor is
    First rider identification data for identifying a rider who rides on the saddle-ride type vehicle when traveling on the first approach turning trajectory, and riding on the saddle-ride type vehicle when traveling on the second approach turning trajectory. Configured or programmed to further perform a rider identification data acquisition process, wherein second rider identification data identifying a rider is acquired,
    In the saddle riding type vehicle traveling composite data generation process,
    The first straddle-type vehicle traveling composite data is based on the first approach turning locus data, the first approach turning front direction acceleration data, and the first rider identification data, and the first approach turning locus, The acceleration in the vehicle front direction of the saddle riding type vehicle when traveling on the first approach turning locus and the rider riding on the saddle riding type vehicle when traveling on the first approach turning locus are generated in association with each other. ,
    The second saddle riding type vehicle travel composite data is based on the second approach turning locus data, the second approach turning front direction acceleration data and the second rider identification data, and the second approach turning locus, The acceleration in the vehicle front direction of the saddle riding type vehicle when traveling on the second approach turning trajectory and the rider riding on the saddle riding type vehicle when traveling on the second approach turning trajectory are generated in association with each other. ,
    In the saddle-ride type vehicle traveling integrated compound data generation process,
    When the first rider identification data and the second rider identification data are the same, the first saddle riding type vehicle traveling composite data and the second saddle riding type vehicle traveling composite data are associated with each other and the same rider straddling type vehicle traveling is performed. Integrated compound data is generated,
    In the saddle riding type vehicle traveling composite data output process,
    The straddle-type vehicle travel according to claim 9, wherein the same rider-saddle-type vehicle travel-integrated composite data generated by the saddle-ride type vehicle travel-integrated composite data generation processing is output to the output target. Data processing device.
  11.  前記プロセッサは、
     前記第1アプローチ旋回軌跡を走行したときの前記鞍乗型車両に乗車するライダーを識別する第1ライダー識別データ、および、前記第2アプローチ旋回軌跡を走行したときの前記鞍乗型車両に乗車するライダーを識別する第2ライダー識別データが取得されるライダー識別データ取得処理、を更に実行するように構成されまたはプログラムされており、
     前記鞍乗型車両走行複合データ生成処理において、
     前記第1鞍乗型車両走行複合データが、前記第1アプローチ旋回軌跡データと、前記第1アプローチ旋回前方向加速度データと、前記第1ライダー識別データとに基づいて、前記第1アプローチ旋回軌跡、前記第1アプローチ旋回軌跡を走行したときの前記鞍乗型車両の車両前方向の加速度、および、前記第1アプローチ旋回軌跡を走行したときの前記鞍乗型車両に乗車するライダーを関連付けて生成され、
     前記第2鞍乗型車両走行複合データが、前記第2アプローチ旋回軌跡データと、前記第2アプローチ旋回前方向加速度データと、前記第2ライダー識別データとに基づいて、前記第2アプローチ旋回軌跡、前記第2アプローチ旋回軌跡を走行したときの前記鞍乗型車両の車両前方向の加速度、および、前記第2アプローチ旋回軌跡を走行したときの前記鞍乗型車両に乗車するライダーを関連付けて生成され、
     前記鞍乗型車両走行一体複合データ生成処理において、
     前記第1ライダー識別データと前記第2ライダー識別データが異なる場合に、前記第1鞍乗型車両走行複合データと前記第2鞍乗型車両走行複合データを互いに関連づけて相違ライダー鞍乗型車両走行一体複合データが生成され、
     前記鞍乗型車両走行複合データ出力処理において、
     前記鞍乗型車両走行一体複合データ生成処理により生成された前記相違ライダー鞍乗型車両走行一体複合データが前記出力対象に出力されることを特徴とする請求項9に記載の鞍乗型車両走行データ処理装置。
    The processor is
    First rider identification data for identifying a rider who rides on the saddle-ride type vehicle when traveling on the first approach turning trajectory, and riding on the saddle-ride type vehicle when traveling on the second approach turning trajectory. Configured or programmed to further perform a rider identification data acquisition process, wherein second rider identification data identifying a rider is acquired,
    In the saddle riding type vehicle traveling composite data generation process,
    The first straddle-type vehicle traveling composite data is based on the first approach turning locus data, the first approach turning front direction acceleration data, and the first rider identification data, and the first approach turning locus, The acceleration in the vehicle front direction of the saddle riding type vehicle when traveling on the first approach turning locus and the rider riding on the saddle riding type vehicle when traveling on the first approach turning locus are generated in association with each other. ,
    The second saddle riding type vehicle travel composite data is based on the second approach turning locus data, the second approach turning front direction acceleration data and the second rider identification data, and the second approach turning locus, The acceleration in the vehicle front direction of the saddle riding type vehicle when traveling on the second approach turning trajectory and the rider riding on the saddle riding type vehicle when traveling on the second approach turning trajectory are generated in association with each other. ,
    In the saddle-ride type vehicle traveling integrated compound data generation process,
    When the first rider identification data and the second rider identification data are different, the first saddle riding type vehicle traveling composite data and the second saddle riding type vehicle traveling composite data are associated with each other to be different rider saddle riding type vehicle traveling. Integrated compound data is generated,
    In the saddle riding type vehicle traveling composite data output process,
    The straddle-type vehicle traveling according to claim 9, wherein the different rider-saddle-type vehicle traveling integral complex data generated by the saddle-riding type vehicle traveling integral complex-data generation processing is output to the output target. Data processing device.
  12.  前記鞍乗型車両走行一体複合データ生成処理において、
     前記第1鞍乗型車両走行複合データと、前記第2鞍乗型車両走行複合データとの差分により前記鞍乗型車両走行一体複合データが生成されることを特徴とする請求項9~11のいずれか一項に記載の鞍乗型車両走行データ処理装置。
    In the saddle-ride type vehicle traveling integrated compound data generation process,
    12. The saddle riding type vehicle traveling integrated data is generated by the difference between the first straddle type vehicle traveling composite data and the second saddle riding type vehicle traveling composite data. The straddle-type vehicle travel data processing device according to any one of claims.
  13.  前記第1アプローチ旋回軌跡データまたは前記第1アプローチ旋回前方向加速度データの少なくとも一方が、GNSS(Global Navigation Satellite System / 全球測位衛星システム)を利用して生成されたデータであることを特徴とする、請求項1~12のいずれか一項に記載の鞍乗型車両走行データ処理装置。 At least one of the first approach turning trajectory data and the first approach turning forward acceleration data is data generated by using GNSS (Global Navigation Satellite System / Global Positioning Satellite System), The straddle-type vehicle travel data processing device according to any one of claims 1 to 12.
  14.  前記鞍乗型車両走行複合データ生成処理において、
     前記第1鞍乗型車両走行複合データが、前記第1アプローチ旋回軌跡データおよび前記第1アプローチ旋回前方向加速度データに基づいたイメージデータを含むように生成されることを特徴とする請求項1~13のいずれか一項に記載の鞍乗型車両走行データ処理装置。
    In the saddle riding type vehicle traveling composite data generation process,
    The first straddle-type vehicle traveling composite data is generated so as to include image data based on the first approach turning trajectory data and the first approach turning front direction acceleration data. 13. The straddle-type vehicle travel data processing device according to any one of 13 above.
  15.  前記鞍乗型車両走行複合データ生成処理において、
     前記第1鞍乗型車両走行複合データが、前記第1アプローチ旋回軌跡データおよび前記第1アプローチ旋回左右方向加速度データに基づいたイメージデータを含むように生成されることを特徴とする請求項6に記載の鞍乗型車両走行データ処理装置。
    In the saddle riding type vehicle traveling composite data generation process,
    7. The first saddle riding type vehicle traveling composite data is generated so as to include image data based on the first approach turning trajectory data and the first approach turning left / right acceleration data. The straddle-type vehicle traveling data processing device described.
  16.  前記鞍乗型車両走行複合データ生成処理において、
     前記第1鞍乗型車両走行複合データが、前記第1アプローチ旋回前方向加速度データおよび前記第1アプローチ旋回左右方向加速度データに基づいて生成された、前記鞍乗型車両の車両前方向の加速度を縦軸とし、前記鞍乗型車両の車両左右方向の加速度を横軸としたグラフのイメージデータを含むことを特徴とする請求項6に記載の鞍乗型車両走行データ処理装置。
    In the saddle riding type vehicle traveling composite data generation process,
    The first straddle-type vehicle traveling composite data is a vehicle front-direction acceleration of the straddle-type vehicle generated based on the first approach turn front direction acceleration data and the first approach turn left and right direction acceleration data. 7. The straddle-type vehicle travel data processing device according to claim 6, wherein the vertical axis includes image data of a graph in which the lateral acceleration of the straddle-type vehicle is a horizontal axis.
  17.  前記第1アプローチ旋回軌跡は、前記アプローチ領域を走行したときの前記鞍乗型車両の走行軌跡である第1アプローチ軌跡と、前記第1旋回領域を走行したときの前記鞍乗型車両の走行軌跡である第1旋回軌跡とを含み、
     前記鞍乗型車両走行データ取得処理において、
     前記第1旋回軌跡を走行したときの前記鞍乗型車両の姿勢に関連する第1旋回車両姿勢データと、
     前記第1旋回軌跡を走行したときの前記鞍乗型車両に乗車するライダーの姿勢に関連する第1旋回ライダー姿勢データとが取得され、
     前記鞍乗型車両走行複合データ生成処理において、
     前記第1鞍乗型車両走行複合データが、前記第1アプローチ旋回軌跡データ、前記第1アプローチ旋回前方向加速度データ、前記第1旋回車両姿勢データおよび前記第1旋回ライダー姿勢データに基づいて、前記第1アプローチ旋回軌跡、前記第1アプローチ旋回軌跡を走行したときの前記鞍乗型車両の車両前方向の加速度、前記第1旋回軌跡を走行したときの前記鞍乗型車両の姿勢、および、前記第1旋回軌跡を走行したときの前記鞍乗型車両に乗車する前記ライダーの姿勢を関連付けて生成されることを特徴とする請求項1~16のいずれか一項に記載の鞍乗型車両走行データ処理装置。
    The first approach turning trajectory is a first approach trajectory that is a traveling trajectory of the saddle riding type vehicle when traveling in the approach area, and a traveling trajectory of the saddle riding type vehicle when traveling in the first turning area. And a first turning locus that is
    In the saddle riding type vehicle travel data acquisition process,
    First turning vehicle attitude data relating to the attitude of the saddle riding type vehicle when traveling on the first turning locus,
    The first turning rider posture data relating to the posture of the rider riding the saddle riding type vehicle when traveling on the first turning locus,
    In the saddle riding type vehicle traveling composite data generation process,
    The first saddle riding type vehicle traveling composite data is based on the first approach turning locus data, the first approach turning front direction acceleration data, the first turning vehicle attitude data and the first turning rider attitude data. A first approach turning locus, an acceleration in the vehicle front direction of the saddle riding type vehicle when traveling on the first approach turning locus, a posture of the saddle riding type vehicle when running on the first turning locus, and The straddle-type vehicle traveling according to any one of claims 1 to 16, wherein the saddle-type vehicle traveling is generated in association with a posture of the rider who rides on the straddle-type vehicle when traveling on the first turning locus. Data processing device.
  18.  前記第1アプローチ旋回軌跡は、前記鞍乗型車両が前記アプローチ旋回領域内を走行するように前記鞍乗型車両の進行方向をガイドするための少なくとも1つのアプローチ旋回ガイド部が設けられた環境下で走行したときの走行軌跡であることを特徴とする請求項1~17のいずれか一項に記載の鞍乗型車両走行データ処理装置。 The first approach turning trajectory is an environment in which at least one approach turning guide unit is provided to guide the traveling direction of the saddle type vehicle so that the saddle type vehicle travels in the approach turning area. The straddle-type vehicle traveling data processing device according to any one of claims 1 to 17, wherein the traveling locus is a traveling locus when traveling on a vehicle.
  19.  前記第1アプローチ旋回軌跡は、前記アプローチ領域を走行したときの前記鞍乗型車両の走行軌跡である第1アプローチ軌跡を含み、
     前記アプローチ旋回ガイド部は、前記鞍乗型車両が前記アプローチ領域内を走行するように前記鞍乗型車両の進行方向をガイドするための少なくとも2つのアプローチガイド部を含み、
     前記第1アプローチ軌跡は、前記鞍乗型車両が2つの前記アプローチガイド部の間を通過しつつ、前記アプローチ領域を走行したときの走行軌跡であることを特徴とする請求項18に記載の鞍乗型車両走行データ処理装置。
    The first approach turning locus includes a first approach locus which is a running locus of the saddle type vehicle when traveling in the approach area,
    The approach turning guide portion includes at least two approach guide portions for guiding the traveling direction of the saddle riding type vehicle so that the saddle riding type vehicle travels in the approach area.
    19. The saddle according to claim 18, wherein the first approach trajectory is a traveling trajectory when the saddle riding type vehicle travels in the approach area while passing between the two approach guide portions. Ride-type vehicle traveling data processing device.
  20.  前記第1アプローチ旋回軌跡は、前記第1旋回領域を走行したときの前記鞍乗型車両の走行軌跡である第1旋回軌跡を含み、
     前記アプローチ旋回ガイド部は、前記鞍乗型車両が前記第1旋回領域内を走行するように前記鞍乗型車両の進行方向をガイドするための少なくとも1つの旋回ガイド部を含み、
     前記第1旋回軌跡は、前記鞍乗型車両が前記旋回ガイド部と前記第2円弧との間を通過しつつ、前記第1旋回領域を走行したときの走行軌跡であることを特徴とする請求項18または19に記載の鞍乗型車両走行データ処理装置。
    The first approach turning locus includes a first turning locus that is a running locus of the straddle-type vehicle when traveling in the first turning region,
    The approach turning guide part includes at least one turning guide part for guiding the traveling direction of the saddle riding type vehicle so that the saddle riding type vehicle travels in the first turning region.
    The first turning locus is a running locus when the straddle-type vehicle travels in the first turning region while passing between the turning guide portion and the second arc. 20. The saddle riding type vehicle traveling data processing device according to item 18 or 19.
  21.  前記アプローチ旋回ガイド部は、前記鞍乗型車両の進行方向を制限するように構成されていることを特徴とする請求項18~20のいずれか一項に記載の鞍乗型車両走行データ処理装置。 The straddle-type vehicle travel data processing device according to any one of claims 18 to 20, wherein the approach turning guide unit is configured to limit a traveling direction of the straddle-type vehicle. ..
  22.  前記鞍乗型車両が、地面を走行可能であって、
     前記少なくとも1つのアプローチ旋回ガイド部が、設置場所を自在に変更可能に前記地面に配置されることを特徴とする請求項21に記載の鞍乗型車両走行データ処理装置。
    The saddle type vehicle is capable of traveling on the ground,
    22. The straddle-type vehicle travel data processing device according to claim 21, wherein the at least one approach turning guide unit is arranged on the ground such that an installation location can be freely changed.
  23.  走行中の鞍乗型車両に関連するデータを蓄積するデータ収録装置や、走行中の前記鞍乗型車両に関連するデータに基づいて前記鞍乗型車両を制御する車両制御装置のような、走行中の前記鞍乗型車両に関連するデータを処理する鞍乗型車両走行データ処理装置において、走行中の前記鞍乗型車両に関連するデータを処理する鞍乗型車両走行データ処理方法であって、
     (A)(a1)0mより大きく65m以下の第1直線と、前記第1直線に平行で前記第1直線から2m離れた第2直線との間のアプローチ領域、および、前記第1直線の端に接続され、中心角が90°以上270°以下で半径が2m以上10m以下の第1円弧と、前記第2直線の端に接続され、前記第1円弧と同心状であって、前記第1円弧の径方向外側に位置する第2円弧との間の第1旋回領域からなるアプローチ旋回領域内の前記鞍乗型車両の走行軌跡であって、前記アプローチ領域から前記第1旋回領域に進入するように、前記アプローチ旋回領域の全域にわたって連続して走行したときの前記鞍乗型車両の走行軌跡である第1アプローチ旋回軌跡に関連する第1アプローチ旋回軌跡データ、および、(a2)前記第1アプローチ旋回軌跡を走行したときの前記鞍乗型車両の車両前方向の加速度に関連する第1アプローチ旋回前方向加速度データが取得される鞍乗型車両走行データ取得処理と、
     (B)前記第1アプローチ旋回軌跡データおよび前記第1アプローチ旋回前方向加速度データに基づいて、前記第1アプローチ旋回軌跡および前記第1アプローチ旋回軌跡を走行したときの前記鞍乗型車両の車両前方向の加速度が関連付けられた第1鞍乗型車両走行複合データが生成される鞍乗型車両走行複合データ生成処理と、
     (C)前記鞍乗型車両走行複合データ生成処理により生成された前記第1鞍乗型車両走行複合データが記憶部に記憶される鞍乗型車両走行複合データ記憶処理と、
     (D)前記鞍乗型車両走行複合データ記憶処理により記憶された前記第1鞍乗型車両走行複合データが出力対象に出力される鞍乗型車両走行複合データ出力処理と、
     を行うことを特徴とする、鞍乗型車両走行データ処理方法。
    A data recording device that accumulates data related to a straddle-type vehicle that is running, or a vehicle control device that controls the saddle-ride type vehicle based on data related to the straddle-type vehicle that is running A saddle riding type vehicle running data processing method for processing data related to the running saddle riding type vehicle in a saddle riding type vehicle running data processing device for processing data related to the saddle riding type vehicle ,
    (A) (a1) An approach area between a first straight line greater than 0 m and 65 m or less and a second straight line parallel to the first straight line and separated from the first straight line by 2 m, and an end of the first straight line. A first arc having a central angle of 90 ° or more and 270 ° or less and a radius of 2 m or more and 10 m or less, connected to an end of the second straight line, concentric with the first arc, and A travel locus of the straddle-type vehicle in an approach turning area including a first turning area between a second arc located radially outside the arc and entering the first turning area from the approach area. As described above, the first approach turning locus data relating to the first approach turning locus, which is the running locus of the straddle-type vehicle when continuously running over the entire approach turning region, and (a2) the first Saddle riding type vehicle running data acquisition processing for obtaining first approach turning front direction acceleration data related to acceleration in the vehicle front direction of the saddle type vehicle when traveling on an approach turning locus,
    (B) Based on the first approach turning trajectory data and the first approach turning front direction acceleration data, the vehicle front of the saddle-ride type vehicle when traveling on the first approach turning trajectory and the first approach turning trajectory Saddle-ride type vehicle travel composite data generation processing for generating first saddle-ride type vehicle travel composite data associated with directional acceleration,
    (C) Saddle-type vehicle travel composite data storage processing in which the first saddle-ride type vehicle travel composite data generated by the saddle-ride type vehicle travel composite data generation processing is stored in a storage unit,
    (D) Saddle-type vehicle traveling composite data output processing in which the first saddle-type vehicle traveling composite data stored by the saddle-type vehicle traveling composite data storage processing is output to an output target.
    A method for processing saddle riding type vehicle travel data, comprising:
PCT/JP2018/042341 2018-11-15 2018-11-15 Straddled vehicle traveling data processing device, and straddled vehicle traveling data processing method WO2020100267A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2018/042341 WO2020100267A1 (en) 2018-11-15 2018-11-15 Straddled vehicle traveling data processing device, and straddled vehicle traveling data processing method
PCT/JP2019/023381 WO2020100332A1 (en) 2018-11-15 2019-06-12 Straddled vehicle traveling data processing device, straddled vehicle traveling data processing method, and straddled vehicle traveling data processing program
CN201980075372.1A CN113039119B (en) 2018-11-15 2019-06-12 Straddle-type vehicle travel data processing device and straddle-type vehicle travel data processing method
JP2019533123A JP6619914B1 (en) 2018-11-15 2019-06-12 Saddle-type vehicle travel data processing device, straddle-type vehicle travel data processing method, and straddle-type vehicle travel data processing program
BR112021009394-0A BR112021009394B1 (en) 2018-11-15 2019-06-12 APPARATUS, METHOD AND PROGRAM FOR PROCESSING VEHICLE OPERATION DATA OF THE TYPE TO ASSEMBLE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/042341 WO2020100267A1 (en) 2018-11-15 2018-11-15 Straddled vehicle traveling data processing device, and straddled vehicle traveling data processing method

Publications (1)

Publication Number Publication Date
WO2020100267A1 true WO2020100267A1 (en) 2020-05-22

Family

ID=70730450

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2018/042341 WO2020100267A1 (en) 2018-11-15 2018-11-15 Straddled vehicle traveling data processing device, and straddled vehicle traveling data processing method
PCT/JP2019/023381 WO2020100332A1 (en) 2018-11-15 2019-06-12 Straddled vehicle traveling data processing device, straddled vehicle traveling data processing method, and straddled vehicle traveling data processing program

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023381 WO2020100332A1 (en) 2018-11-15 2019-06-12 Straddled vehicle traveling data processing device, straddled vehicle traveling data processing method, and straddled vehicle traveling data processing program

Country Status (3)

Country Link
CN (1) CN113039119B (en)
BR (1) BR112021009394B1 (en)
WO (2) WO2020100267A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170032316A (en) 2014-06-19 2017-03-22 잉크론 오이 Led lamp with siloxane particle material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023112092A1 (en) * 2021-12-13 2023-06-22 ヤマハ発動機株式会社 Straddled vehicle data processing device and straddled vehicle data processing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005038746A1 (en) * 2003-10-20 2005-04-28 Yamaha Hatsudoki Kabushiki Kaisha Travel support method and system for two-wheeled motor vehicle
JP2012254729A (en) * 2011-06-09 2012-12-27 Pioneer Electronic Corp Display device for motorcycle, display device, display method for motorcycle, display program for motorcycle, and recording medium storing the display program for motorcycle
JP2013166555A (en) * 2009-12-25 2013-08-29 Yamaha Motor Co Ltd Rider characteristic determining device and saddle-ride type vehicle having the same
JP2016068769A (en) * 2014-09-30 2016-05-09 本田技研工業株式会社 Saddle-riding type vehicle
JP2017178284A (en) * 2016-03-31 2017-10-05 本田技研工業株式会社 Operator posture detection device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001171388A (en) * 1999-12-16 2001-06-26 Mazda Motor Corp Vehicular driving characteristic reporting device
JP5774847B2 (en) * 2010-12-20 2015-09-09 デジスパイス株式会社 Vehicle travel reproduction evaluation device
JP6146865B2 (en) * 2011-12-26 2017-06-14 ヤマハ発動機株式会社 Audio information providing device
US9665997B2 (en) * 2013-01-08 2017-05-30 Gordon*Howard Associates, Inc. Method and system for providing feedback based on driving behavior
US11352090B2 (en) * 2014-07-28 2022-06-07 Robert Bosch Gmbh Information providing device and program for motorcycle
KR102079524B1 (en) * 2015-07-29 2020-02-20 야마하하쓰도키 가부시키가이샤 Automatic driving vehicle and automatic driving system with the same
CN105654808A (en) * 2016-02-03 2016-06-08 北京易驾佳信息科技有限公司 Intelligent training system for vehicle driver based on actual vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005038746A1 (en) * 2003-10-20 2005-04-28 Yamaha Hatsudoki Kabushiki Kaisha Travel support method and system for two-wheeled motor vehicle
JP2013166555A (en) * 2009-12-25 2013-08-29 Yamaha Motor Co Ltd Rider characteristic determining device and saddle-ride type vehicle having the same
JP2012254729A (en) * 2011-06-09 2012-12-27 Pioneer Electronic Corp Display device for motorcycle, display device, display method for motorcycle, display program for motorcycle, and recording medium storing the display program for motorcycle
JP2016068769A (en) * 2014-09-30 2016-05-09 本田技研工業株式会社 Saddle-riding type vehicle
JP2017178284A (en) * 2016-03-31 2017-10-05 本田技研工業株式会社 Operator posture detection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170032316A (en) 2014-06-19 2017-03-22 잉크론 오이 Led lamp with siloxane particle material

Also Published As

Publication number Publication date
BR112021009394B1 (en) 2023-10-24
BR112021009394A2 (en) 2021-08-10
CN113039119A (en) 2021-06-25
CN113039119B (en) 2022-09-02
WO2020100332A1 (en) 2020-05-22

Similar Documents

Publication Publication Date Title
WO2020100257A1 (en) Straddled vehicle travel data processing device and straddled vehicle travel data processing method
JP7223845B2 (en) straddled vehicle
WO2020100267A1 (en) Straddled vehicle traveling data processing device, and straddled vehicle traveling data processing method
JP7285673B2 (en) Attitude control device for saddle type vehicle
CN104670415A (en) Shift rod device of motorcycle
CN113631470A (en) Driving support device for saddle-ride type vehicle
CN113631440B (en) Driving support device for saddle-ride type vehicle
US20220161788A1 (en) Driving support device of saddle-riding type vehicle
US20190211919A1 (en) Vehicle
CN113631471A (en) Driving support device for saddle-ride type vehicle
JP6619914B1 (en) Saddle-type vehicle travel data processing device, straddle-type vehicle travel data processing method, and straddle-type vehicle travel data processing program
WO2020100246A1 (en) Straddled vehicle travel data processing device and straddled vehicle travel data processing method
JP6899431B2 (en) Vehicle
CN110281925A (en) Travel controlling system, vehicle and travel control method
JP6796576B2 (en) Driving control device for autonomous vehicles
JP2022096468A (en) Control device and control method
JP6620268B1 (en) Saddle-type vehicle travel data processing device, straddle-type vehicle travel data processing method, and straddle-type vehicle travel data processing program
JP2022096469A (en) Control device and control method
JP6619915B1 (en) Saddle-type vehicle travel data processing device, straddle-type vehicle travel data processing method, and straddle-type vehicle travel data processing program
EP2873546B1 (en) Saddle type vehicle with display on the steering handle for indicating appropriate vehicle characteristic changes
JP2020066383A (en) Vehicle control device
JP2009257270A (en) Saddle type vehicle
JP6706385B2 (en) Internal combustion engine
US20240208509A1 (en) Controller and control method
US20240025401A1 (en) Vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18939817

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18939817

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP