WO2020098798A1 - 转换电路、电池均衡系统及电池管理系统 - Google Patents

转换电路、电池均衡系统及电池管理系统 Download PDF

Info

Publication number
WO2020098798A1
WO2020098798A1 PCT/CN2019/118891 CN2019118891W WO2020098798A1 WO 2020098798 A1 WO2020098798 A1 WO 2020098798A1 CN 2019118891 W CN2019118891 W CN 2019118891W WO 2020098798 A1 WO2020098798 A1 WO 2020098798A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
management system
conversion circuit
unit
wake
Prior art date
Application number
PCT/CN2019/118891
Other languages
English (en)
French (fr)
Inventor
但志敏
史德龙
侯贻真
张伟
王连松
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP19883901.1A priority Critical patent/EP3712007A4/en
Publication of WO2020098798A1 publication Critical patent/WO2020098798A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/10Control circuit supply, e.g. means for supplying power to the control circuit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present application relates to the technical field of batteries, in particular to a conversion circuit, a battery balancing system and a battery management system.
  • the development of electric vehicles is restricted by the battery range.
  • Electric vehicle manufacturers often use the method of expanding the battery pack capacity (number of battery cells) to increase the cruising range of electric vehicles. Due to different manufacturing processes or different use environments, the power of each battery cell in the battery pack may be inconsistent during operation, resulting in a reduced service life of the battery pack. Therefore, the battery cell needs to be balanced to maintain the battery pack The power of each cell in the cell is the same.
  • BMS battery management systems
  • passive equalization refers to connecting a shunt resistor in parallel to each battery cell to consume excess power in the battery cell with a large capacity.
  • the implementation of the passive equalization method usually requires a lead-acid battery to supply power to the BMS. Due to the large static leakage current of lead-acid batteries, the lead-acid batteries will be turned off when the electric vehicle is not working for a long time to prevent the lead-acid batteries from losing power due to the large static leakage current and reduce the service life of the lead-acid batteries.
  • the embodiments of the present application provide a conversion circuit, a battery balancing system, and a battery management system, so that the BMS can wake up and work under the condition of the power supply of the lead-free battery.
  • an embodiment of the present application provides a conversion circuit including: a high-voltage isolated power supply, a wake-up unit, and a configuration unit; wherein the high-voltage isolated power supply is connected to the two poles of the battery pack for outputting high voltage from the battery pack Electricity is converted to low-voltage electricity to power the battery management system of the battery pack; wake-up unit is used to periodically wake up the high-voltage isolated power supply to make the high-voltage isolated power supply work; configuration unit is used to send to the wake-up unit when the battery management system is powered off Timing information.
  • the configuration unit is provided in the battery management system.
  • the wake-up unit when the wake-up unit receives the timing information from the configuration unit, the timing information is received through the isolated communication mode.
  • the configuration unit is further configured to detect an interrupt flag bit in the wake-up unit, and set an unset interrupt flag bit.
  • the wake-up unit includes a clock chip, and the clock chip is powered by a coin battery or a voltage stabilizing source; wherein, the voltage stabilizing source includes a voltage stabilizing element and a resistance element, and the first end of the voltage stabilizing element Grounding, the second end of the voltage stabilizing element is connected to the clock chip, the first end of the resistance element is connected to the positive electrode of the battery pack, and the second end of the resistance element is also connected to the clock chip.
  • the voltage stabilizing source includes a voltage stabilizing element and a resistance element, and the first end of the voltage stabilizing element Grounding, the second end of the voltage stabilizing element is connected to the clock chip, the first end of the resistance element is connected to the positive electrode of the battery pack, and the second end of the resistance element is also connected to the clock chip.
  • the voltage stabilizing element is a voltage stabilizing diode.
  • the clock chip is powered by the battery management system after the battery management system is powered on.
  • the clock chip when the clock chip is powered by the battery management system, the power provided by the battery management system is received through a low-voltage isolation mode.
  • an embodiment of the present application provides a battery balancing system for a battery pack.
  • the battery pack includes a plurality of battery cells;
  • the battery balancing system includes a plurality of balancing units, a battery management system, and the conversion circuit described above ;
  • a plurality of balancing units and a plurality of battery cells are provided in one-to-one correspondence for collecting the status data of the corresponding battery cells and performing balancing operations on the battery cells;
  • the battery management system is powered by lead-free batteries It is awakened by the conversion circuit at the time, and according to the state data, the target cell unit that needs to perform the equalization operation is obtained, and an equalization instruction is sent to the equalization unit corresponding to the target cell unit.
  • the battery management system performs the power-off operation when there is no cell unit that needs to perform the balancing operation.
  • an embodiment of the present application provides a battery management system.
  • the battery management system includes the configuration unit described above.
  • the wake-up unit When the conversion circuit in the embodiment of the present application is working, the wake-up unit generates an interrupt after timing to the set time, and outputs a high level or a low level through the interrupt output terminal to wake up the high-voltage isolated power supply.
  • High-voltage electricity is converted to low-voltage electricity to power BMS, which can replace lead-acid batteries to supply power to BMS, prevent lead-acid batteries from losing power due to large static leakage current, and reduce the service life of lead-acid batteries.
  • FIG. 1 is a schematic structural diagram of a conversion circuit provided by a first embodiment of this application
  • FIG. 2 is a schematic structural diagram of a conversion circuit provided by a second embodiment of this application.
  • FIG. 3 is a schematic structural diagram of a conversion circuit provided by a third embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a battery balancing system provided by a fourth embodiment of the present application.
  • Embodiments of the present application provide a conversion circuit, a battery balancing system, and a battery management system, which can wake up a battery management system (BMS) under the condition of power supply from a lead-free battery to enable it to perform a balancing function on a battery pack. Thereby improving the performance of the battery pack and extending the service life.
  • BMS battery management system
  • the battery pack in the embodiment of the present application may include one or more battery modules, and each battery module includes at least one battery cell.
  • the battery cell monomer may be a lithium ion battery, a lithium metal battery, a lead acid battery, a nickel battery, a nickel hydrogen battery, a lithium sulfur battery, a lithium air battery, or a sodium ion battery, which is not limited herein.
  • FIG. 1 is a schematic structural diagram of a conversion circuit provided by a first embodiment of the present application. As shown in FIG. 1, the conversion circuit includes a high-voltage isolated power supply 101, a wake-up unit 102 and a configuration unit 103.
  • the high-voltage isolation power supply 101 is connected to the two poles of the battery pack (Pack + and Pack-), and is used to convert the high-voltage electricity output by the battery pack into low-voltage electricity, thereby supplying power to the BMS of the battery pack.
  • the wake-up unit 102 is used to periodically wake up the high-voltage isolated power supply 101 to enable the high-voltage isolated power supply 101 to work.
  • the configuration unit 103 is used to send timing information to the wake-up unit 102 when the BMS is powered off.
  • the wake-up unit 102 When the conversion circuit in the embodiment of the present application is working, the wake-up unit 102 generates an interrupt after timing to the set time, and outputs a high level or a low level through the interrupt output terminal to wake up the high-voltage isolated power supply 101, which disconnects the battery Pack high voltage electricity is converted into low voltage electricity to power BMS, which can replace lead-acid batteries to supply power to BMS, prevent lead-acid batteries from losing power due to large static leakage current, and reduce the service life of lead-acid batteries.
  • the configuration unit 103 may be a device with an independent operation function, capable of detecting whether the BMS is powered off, and capable of sending timing information to the wake-up unit 102 when the BMS is powered off.
  • FIG. 2 is a schematic structural diagram of a conversion circuit provided by a second embodiment of the present application, wherein the configuration unit 103 may also be provided in the BMS, or it may be understood that the BMS integrates the function of the configuration unit .
  • the timing information may be received through isolated communication.
  • the communication connection between the wake-up unit 102 and the configuration unit 103 may be established using an isolated communication chip.
  • the wake-up unit 102 may be a clock chip, such as a real-time clock chip (Real-Time Clock, RTC).
  • RTC Real-Time Clock
  • the RTC needs to have an interrupt function for timing generation, and the high-voltage isolation power supply 101 can be controlled to be enabled by outputting a high level or a low level.
  • the high-voltage isolated power supply 101 may be a high-voltage power supply chip with an enabling function.
  • the configuration unit 103 can also detect the interrupt flag bit in the RTC while sending timing information to the RTC; and when it is detected that the interrupt flag bit is not set, promptly perform the interrupt flag bit that is not set Set to improve the control accuracy of the conversion circuit.
  • the RTC can be powered by a coin battery or a voltage source.
  • FIG. 3 is a schematic structural diagram of a conversion circuit provided in a third embodiment of the present application, and is used to specifically show the component structure of a voltage stabilization source that supplies power to an RTC.
  • the voltage stabilizing source includes a voltage stabilizing element 301 and a resistance element 302. Among them, the first end of the voltage stabilizing element 301 is grounded, the second end of the voltage stabilizing element 301 is connected to RTC, the first end of the resistance element 302 is connected to the positive electrode Pack + of the battery pack, and the second end of the resistance element 302 is also connected to RTC .
  • the voltage stabilizing element 301 specifically includes a voltage stabilizing diode DZ1
  • the resistance element 302 specifically includes a resistance network R1.
  • the number of resistors in the resistance network R1 is one or more.
  • the end of the Zener diode DZ1 away from ground can be maintained at a constant voltage, so that the RTC can be powered without a separate power supply.
  • the BMS system can supply power to the RTC through the low-voltage isolated power supply to set the wake-up time after the BMS is powered off.
  • the battery balancing system includes multiple balancing units 401, BMS, and conversion circuit 402.
  • a plurality of equalization units 401 are provided in a one-to-one correspondence with a plurality of battery cells.
  • the equalization unit 401 can collect the status data of the corresponding cell, and send the collected status data to the BMS.
  • the balancing unit 401 is also an execution module of cell balancing, which can directly control the cell to perform a passive balancing function.
  • the conversion circuit 402 is the conversion circuit described in FIGS. 1-3.
  • the battery pack 403 is also shown in FIG. 4. When the BMS is powered by a lead-free battery, it is awakened by the conversion circuit 402 and combined with the battery pack 403 to supply power to the BMS.
  • the BMS can determine whether the battery pack 403 needs to be balanced and which cell needs to be balanced according to the received cell state data, and send a balancing instruction to the balancing unit 401 corresponding to the target cell alone.
  • the corresponding equalization unit 401 performs the passive equalization operation on the cells alone.
  • the BMS also performs the power-off operation when there is no cell core that needs to perform the balancing operation, thereby avoiding wasted power.
  • An embodiment of the present application further provides a battery management system BMS.
  • the BMS includes a configuration unit 103 (see FIG. 2 to FIG. 4), or the BMS integrates a function of sending timing information to the wake-up unit 102 when the BMS is powered off.

Abstract

一种转换电路、电池均衡系统及电池管理系统。该转换电路包括:高压隔离电源(101)、唤醒单元(102)和配置单元(103);其中,高压隔离电源(101)与电池包的两极连接用于将电池包输出的高压电转换为低压电,为电池包的电池管理系统供电;唤醒单元(102)用于定时唤醒高压隔离电源(101),以使高压隔离电源(101)工作;配置单元(103)用于在电池管理系统下电时,向唤醒单元(102)发送定时信息。采用上述转换电路,使得电池管理系统能够在无铅酸蓄电池供电的条件下唤醒及工作。

Description

转换电路、电池均衡系统及电池管理系统
相关申请的交叉引用
本申请要求享有于2018年11月16日提交的名称为“转换电路、电池均衡系统及电池管理系统”的中国专利申请201811372030.X的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池技术领域,特别是涉及一种转换电路、电池均衡系统及电池管理系统。
背景技术
目前,电动汽车的发展受到电池续航里程的制约。电动汽车制造商常采用扩充电池包容量(电芯单体数量)的方法来提高电动汽车的续航里程。由于制造过程或者使用环境不同等原因,使得工作时电池包中的各电芯单体的电量可能不一致,导致电池包的使用寿命降低,因此,需要对电芯单体进行均衡,以维持电池包中的各电芯单体的电量一致。
现有技术中的多数电池管理系统(Battery Management System,BMS)采用被动均衡的方式对电芯单体进行均衡。其中,被动均衡指的是为每个电芯单体并联一个分流电阻,将容量多的电芯单体中的多余电量消耗掉,被动均衡方式的执行通常需要铅酸蓄电池为BMS供电。由于铅酸蓄电池的静态漏电流比较大,电动汽车长时间不工作时会将铅酸蓄电池关掉,以防止铅酸蓄电池因静态漏电流较大而发生亏电,降低铅酸蓄电池的使用寿命。
因此,电动汽车在非工作时间时会因铅酸蓄电池关掉而无法执行均衡操作。如何使得BMS能够在无铅酸蓄电池供电的条件下唤醒及工作成为需要解决的问题。
发明内容
本申请实施例提供了一种转换电路、电池均衡系统及电池管理系统,使得BMS能够在无铅酸蓄电池供电的条件下唤醒及工作。
第一方面,本申请实施例提供一种转换电路,该转换电路包括:高压隔离电源、唤醒单元和配置单元;其中,高压隔离电源与电池包的两极连接,用于将电池包输出的高压电转换为低压电,为电池包的电池管理系统供电;唤醒单元,用于定时唤醒高压隔离电源,以使高压隔离电源工作;配置单元,用于在电池管理系统下电时,向唤醒单元发送定时信息。
在第一方面的一种可能的实施方式中,配置单元设置于电池管理系统中。
在第一方面的一种可能的实施方式中,唤醒单元从配置单元接收定时信息时,通过隔离通信方式接收定时信息。
在第一方面的一种可能的实施方式中,配置单元还用于检测唤醒单元中的中断标志位,以及对未置位的中断标志位进行置位。
在第一方面的一种可能的实施方式中,唤醒单元包括时钟芯片,时钟芯片由纽扣电池或者稳压源供电;其中,稳压源包括稳压元件和电阻元件,稳压元件的第一端接地,稳压元件的第二端与时钟芯片连接,电阻元件的第一端与电池包的正极连接,电阻元件的第二端也与时钟芯片连接。
在第一方面的一种可能的实施方式中,稳压元件为稳压二极管。
在第一方面的一种可能的实施方式中,时钟芯片在电池管理系统上电后,由电池管理系统供电。
在第一方面的一种可能的实施方式中,时钟芯片由电池管理系统供电时,通过低压隔离方式接收电池管理系统提供的电量。
第二方面,本申请实施例提供一种电池均衡系统,用于电池包,电池包包括多个电芯单体;该电池均衡系统包括多个均衡单元、电池管理系统和如上所述的转换电路;其中,多个均衡单元与多个电芯单体一一对应设置,用于采集对应电芯单体的状态数据,以及对电芯单体执行均衡操作;电池管理系统在无铅酸蓄电池供电时由转换电路唤醒,并根据状态数据得 到需要执行均衡操作的目标电芯单体,并向与目标电芯单体对应的均衡单元发送均衡指令。
在第二方面的一种可能的实施方式中,电池管理系统在未有电芯单体需要执行均衡操作时,执行下电操作。
第三方面,本申请实施例提供一种电池管理系统,电池管理系统包括如上文所述的配置单元。
本申请实施例中的转换电路在工作时,唤醒单元计时到设定时间后产生中断,并通过中断输出端输出高电平或低电平,唤醒高压隔离电源,高压隔离电源将电池包(Pack)高压电转换为低压电为BMS供电,从而能够替代铅酸蓄电池为BMS供电,防止铅酸蓄电池因静态漏电流较大而发生亏电,降低铅酸蓄电池的使用寿命。
附图说明
下面将通过参考附图来描述本申请示例性实施例的特征、优点和技术效果。
图1为本申请第一实施例提供的转换电路的结构示意图;
图2为本申请第二实施例提供的转换电路的结构示意图;
图3为本申请第三实施例提供的转换电路的结构示意图;
图4为本申请第四实施例提供的电池均衡系统的结构示意图。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
本申请实施例提供了一种转换电路、电池均衡系统及电池管理系统,能够在无铅酸蓄电池供电的条件下唤醒电池管理系统(Battery Management System,BMS),使其对电池包执行均衡功能,从而提高电池包的性能并延长使用寿命。
需要说明的是,本申请实施例中的电池包可以包括一个或者多个电池 模组,每个电池模组包括至少一个电芯单体。电芯单体可以为锂离子电池、锂金属电池、铅酸电池、镍隔电池、镍氢电池、锂硫电池、锂空气电池或者钠离子电池,此处不做限定。
图1为本申请第一实施例提供的转换电路的结构示意图。如图1所示,该转换电路包括高压隔离电源101、唤醒单元102和配置单元103。
其中,高压隔离电源101与电池包的两极连接(Pack+和Pack-),用于将电池包输出的高压电转换为低压电,从而为电池包的BMS供电。唤醒单元102用于定时唤醒高压隔离电源101,以使高压隔离电源101工作。配置单元103用于在BMS下电时向唤醒单元102发送定时信息。
本申请实施例中的转换电路在工作时,唤醒单元102计时到设定时间后产生中断,并通过中断输出端输出高电平或低电平,唤醒高压隔离电源101,高压隔离电源101将电池包(Pack)高压电转换为低压电为BMS供电,从而能够替代铅酸蓄电池为BMS供电,防止铅酸蓄电池因静态漏电流较大而发生亏电,降低铅酸蓄电池的使用寿命。
在一些实施例中,配置单元103可以为具有独立运算功能的器件,能够检测到BMS是否下电,并能够在BMS下电时向唤醒单元102发送定时信息。
在一些实施例中,参阅图2,图2为本申请第二实施例提供的转换电路的结构示意图,其中,配置单元103还可以设置于BMS中,也可以理解为BMS集成有配置单元的功能。
在一些实施例中,为避免定时信息受到BMS的其他信号的干扰,当唤醒单元102从BMS中的配置单元103接收定时信息时,可以通过隔离通信方式接收定时信息。示例性地,可以利用隔离通信芯片建立唤醒单元102和配置单元103之间的通信连接。
在一些实施例中,唤醒单元102可以为时钟芯片,比如,实时时钟芯片(Real-Time Clock,RTC)。该RTC需要具备定时产生中断功能,可通过输出高电平或低电平来控制高压隔离电源101使能。对应地,该高压隔离电源101可以为具有使能功能的高压电源芯片。
在一些实施例中,配置单元103还可以在向RTC发送定时信息的同 时,检测RTC中的中断标志位;并在检测到中断标志位未置位时,及时对未置位的中断标志位进行置位,以提高转换电路的控制精度。
在一个实施例中,RTC可以由纽扣电池或者稳压源供电。
图3为本申请第三实施例提供的转换电路的结构示意图,用于具体展示为RTC供电的稳压源的元器件结构组成。
如图3所示,稳压源包括稳压元件301和电阻元件302。其中,稳压元件301的第一端接地,稳压元件301的第二端与RTC连接,电阻元件302的第一端与电池包的正极Pack+连接,电阻元件302的第二端也与RTC连接。
在图3的示例中,稳压元件301具体包括稳压二极管DZ1,电阻元件302具体包括电阻网络R1,电阻网络R1中的电阻的数量为一个或多个。稳压二极管DZ1远离接地的一端可以维持在恒定电压,从而可以在RTC无单独供电电源的情况下为RTC供电。而在有铅酸蓄电池供电且高压隔离电源不工作的条件下,BMS系统可以通过低压隔离电源给RTC供电,以设置BMS下电后的唤醒时间。
图4为本申请第四实施例提供的电池均衡系统的结构示意图。如图4所示,电池均衡系统包括多个均衡单元401、BMS和转换电路402。
其中,多个均衡单元401与多个电芯单体一一对应设置。均衡单元401可以采集对应电芯单体的状态数据,并将采集到的状态数据发送至BMS。均衡单元401也为电芯均衡的执行模块,能够直接控制电芯单体执行被动均衡功能。
转换电路402为如图1-图3所述的转换电路。图4中还示出了电池包403。BMS在无铅酸蓄电池供电的情况下由转换电路402唤醒并结合电池包403向BMS供电。
BMS可以根据接收到的电芯状态数据,判断电池包403是否需要均衡,哪一节电芯需要均衡,并向与目标电芯单体对应的均衡单元401发送均衡指令。由对应的均衡单元401执行对电芯单体的被动均衡操作。
在一些实施例中BMS还在未有电芯单体需要执行均衡操作时,执行下电操作,从而避免电量浪费。
本申请实施例还提供一种电池管理系统BMS,该BMS包括配置单元103(参阅图2-图4),或者BMS集成有在BMS下电时向唤醒单元102发送定时信息的功能。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (11)

  1. 一种转换电路,其特征在于,包括:高压隔离电源、唤醒单元和配置单元;其中,
    所述高压隔离电源与电池包的两极连接,用于将所述电池包输出的高压电转换为低压电,为所述电池包的电池管理系统供电;
    所述唤醒单元,用于定时唤醒所述高压隔离电源,以使所述高压隔离电源工作;
    所述配置单元,用于在所述电池管理系统下电时,向所述唤醒单元发送定时信息。
  2. 根据权利要求1所述的转换电路,其中,所述配置单元设置于所述电池管理系统中。
  3. 根据权利要求2所述的转换电路,其中,所述唤醒单元从所述配置单元接收定时信息时,通过隔离通信方式接收所述定时信息。
  4. 根据权利要求1所述的转换电路,其中,所述配置单元还用于检测所述唤醒单元中的中断标志位,以及对未置位的中断标志位进行置位。
  5. 根据权利要求1所述的转换电路,其中,所述唤醒单元包括时钟芯片,所述时钟芯片由纽扣电池或者稳压源供电;其中,
    所述稳压源包括稳压元件和电阻元件,所述稳压元件的第一端接地,所述稳压元件的第二端与所述时钟芯片连接,所述电阻元件的第一端与所述电池包的正极连接,所述电阻元件的第二端也与所述时钟芯片连接。
  6. 根据权利要求5所述的转换电路,其中,所述稳压元件为稳压二极管。
  7. 根据权利要求5所述的转换电路,其中,所述时钟芯片在所述电池管理系统上电后,由所述电池管理系统供电。
  8. 根据权利要求7所述的转换电路,其中,所述时钟芯片由所述电池管理系统供电时,通过低压隔离方式接收所述电池管理系统提供的电量。
  9. 一种电池均衡系统,用于电池包,所述电池包包括多个电芯单 体;其中,所述电池均衡系统包括多个均衡单元、电池管理系统和权利要求1-8任一项所述的转换电路;其中,
    所述多个均衡单元与所述多个电芯单体一一对应设置,用于采集对应电芯单体的状态数据,以及对所述电芯单体执行均衡操作;
    所述电池管理系统在无铅酸蓄电池供电时由转换电路唤醒,并根据所述状态数据得到需要执行均衡操作的目标电芯单体,并向与所述目标电芯单体对应的均衡单元发送均衡指令。
  10. 根据权利要求9所述的电池均衡系统,其中,所述电池管理系统在未有电芯单体需要执行均衡操作时,执行下电操作。
  11. 一种电池管理系统,其中,包括如权利要求1或4所述的配置单元。
PCT/CN2019/118891 2018-11-16 2019-11-15 转换电路、电池均衡系统及电池管理系统 WO2020098798A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19883901.1A EP3712007A4 (en) 2018-11-16 2019-11-15 CONVERSION CIRCUIT, BATTERY BALANCING SYSTEM AND BATTERY MANAGEMENT SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811372030.X 2018-11-16
CN201811372030.XA CN111196178A (zh) 2018-11-16 2018-11-16 转换电路、电池均衡系统及电池管理系统

Publications (1)

Publication Number Publication Date
WO2020098798A1 true WO2020098798A1 (zh) 2020-05-22

Family

ID=70731012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/118891 WO2020098798A1 (zh) 2018-11-16 2019-11-15 转换电路、电池均衡系统及电池管理系统

Country Status (3)

Country Link
EP (1) EP3712007A4 (zh)
CN (1) CN111196178A (zh)
WO (1) WO2020098798A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114290900A (zh) * 2022-01-21 2022-04-08 石家庄通合电子科技股份有限公司 Bms系统供电装置及电动汽车

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205417472U (zh) * 2016-04-08 2016-08-03 成都雅骏新能源汽车科技股份有限公司 基于纯电动汽车的一种低压电源系统
CN105978099A (zh) * 2016-06-29 2016-09-28 浙江合众新能源汽车有限公司 一种电动汽车低压电源管理系统
CN206106977U (zh) * 2016-09-30 2017-04-19 华南理工大学 一种电动汽车动力电池能量管理系统
US20170288422A1 (en) * 2011-04-22 2017-10-05 Sk Innovation Co., Ltd. Charge equalization apparatus for a battery string
CN207490551U (zh) * 2017-11-02 2018-06-12 深圳市科列技术股份有限公司 一种电动汽车功率回路和电池管理系统及其供电电路
CN108215915A (zh) * 2018-01-25 2018-06-29 宁德时代新能源科技股份有限公司 一种电能传输电路及装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070257642A1 (en) * 2003-06-19 2007-11-08 Sean Xiao Battery cell monitoring and balancing circuit
CN101692502B (zh) * 2009-09-25 2011-08-17 深圳市航盛电子股份有限公司 电池管理系统
CN102299529B (zh) * 2010-06-25 2014-04-02 凹凸电子(武汉)有限公司 电池组管理系统、电动车及管理电池组的方法
CN105226733B (zh) * 2014-05-27 2019-04-05 重庆邮电大学 一种电池组主动-被动混合均衡方法
CN105119022A (zh) * 2015-03-04 2015-12-02 重庆长安汽车股份有限公司 一种混合动力汽车用锂离子电池均衡控制使能和退出的方法
CN205543135U (zh) * 2016-03-10 2016-08-31 宝沃汽车(中国)有限公司 一种电动汽车及其电池管理系统
CN205811597U (zh) * 2016-06-29 2016-12-14 浙江合众新能源汽车有限公司 一种电动汽车低压电源管理系统
CN106080239A (zh) * 2016-07-01 2016-11-09 北京新能源汽车股份有限公司 电动车辆的低压蓄电池充电控制方法和电动车辆
CN207039214U (zh) * 2017-05-18 2018-02-23 宁德时代新能源科技股份有限公司 均衡保护电路和电池均衡系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170288422A1 (en) * 2011-04-22 2017-10-05 Sk Innovation Co., Ltd. Charge equalization apparatus for a battery string
CN205417472U (zh) * 2016-04-08 2016-08-03 成都雅骏新能源汽车科技股份有限公司 基于纯电动汽车的一种低压电源系统
CN105978099A (zh) * 2016-06-29 2016-09-28 浙江合众新能源汽车有限公司 一种电动汽车低压电源管理系统
CN206106977U (zh) * 2016-09-30 2017-04-19 华南理工大学 一种电动汽车动力电池能量管理系统
CN207490551U (zh) * 2017-11-02 2018-06-12 深圳市科列技术股份有限公司 一种电动汽车功率回路和电池管理系统及其供电电路
CN108215915A (zh) * 2018-01-25 2018-06-29 宁德时代新能源科技股份有限公司 一种电能传输电路及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3712007A4 *

Also Published As

Publication number Publication date
EP3712007A1 (en) 2020-09-23
CN111196178A (zh) 2020-05-26
EP3712007A4 (en) 2021-03-03

Similar Documents

Publication Publication Date Title
US20180159574A1 (en) Wakeup circuit for battery sampling integrated chip and battery energy storage system
CN105383320B (zh) 一种用于电动汽车电池管理系统备选电源系统及使用方法
CN202512170U (zh) 具有断电保护功能的智能电表通信模块电路结构
CN102306949A (zh) 传感器网络节点能量自供给方法和装置
JP2023520331A (ja) 太陽光電力で動作するリアルタイムクロックを備えた需給計器
CN109923754A (zh) 一种供电装置以及应用其的无人机
WO2020098798A1 (zh) 转换电路、电池均衡系统及电池管理系统
JP7162375B2 (ja) 車両始動機能付きの電動工具用電源
WO2012088929A1 (zh) 电池充电控制方法、装置及系统
CN209344816U (zh) 锂电池保护板
CN205670717U (zh) 长寿命智能电能表
CN108808778B (zh) 一种智能蓄电池充放电结构
EP3996236A2 (en) Battery management system and battery pack
TWM575779U (zh) Vehicle low voltage electrical system
CN210927172U (zh) 锂电池管理系统的唤醒电路
CN213072146U (zh) 一种应用于框架断路器的可充电实时时钟电路
CN101814764A (zh) 直流电动扳手专用锂电池电源系统
CN204030692U (zh) 一种内河船舶电子信息终端的电源管理系统
CN113140814A (zh) 一种适用于多电芯的芯片级联采集装置
CN213817282U (zh) 一种电池管理系统以及电池包
CN205489628U (zh) 二次锂电池组管理系统
CN220382797U (zh) 供电电路和供电装置
CN211374995U (zh) 动力电池模组电压采样系统唤醒电路
CN211579624U (zh) 一种锂电池管理系统低功耗电路
CN219806980U (zh) 一种无人机辅助供电模块及无人机

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019883901

Country of ref document: EP

Effective date: 20200616

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19883901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE