WO2020096010A1 - Curable composition containing ionic-group-containing rotaxane monomer, and polishing pad obtained from said curable composition - Google Patents

Curable composition containing ionic-group-containing rotaxane monomer, and polishing pad obtained from said curable composition Download PDF

Info

Publication number
WO2020096010A1
WO2020096010A1 PCT/JP2019/043737 JP2019043737W WO2020096010A1 WO 2020096010 A1 WO2020096010 A1 WO 2020096010A1 JP 2019043737 W JP2019043737 W JP 2019043737W WO 2020096010 A1 WO2020096010 A1 WO 2020096010A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
functional group
monomer
rotaxane
polymerizable
Prior art date
Application number
PCT/JP2019/043737
Other languages
French (fr)
Japanese (ja)
Inventor
康智 清水
川崎 剛美
誉夫 野口
光喜 戸知
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Publication of WO2020096010A1 publication Critical patent/WO2020096010A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention is A novel rotaxane monomer containing both an ionic group forming a cation or an anion and a polymerizable group,
  • the present invention relates to a novel curable composition containing the rotaxane monomer and a polymerizable monomer composition other than the rotaxane monomer.
  • the present invention relates to a novel cured product made of the curable composition and a novel polishing pad obtained from the cured product.
  • the polishing member is a material used to planarize the other member (the member to be polished) with an abrasive. Specifically, the polishing member is used to flatten the surface of the member to be polished by supplying an abrasive such as slurry to the surface and slidingly contacting the surface. is there. For example, a polishing pad is included.
  • polishing members A lot of polyurethane resins are used for such polishing members.
  • a polishing member a highly durable material having good wear resistance over a long period of time is always desired from the viewpoint of cost reduction, stable production, and improvement in productivity.
  • the polishing member is used as a pad material in the CMP (Chemical Mechanical Polishing) method (hereinafter, also referred to as a polishing pad).
  • the CMP method is a polishing method that imparts excellent surface flatness, and is particularly used in manufacturing processes of liquid crystal displays (LCD), glass substrates for hard disks, silicon wafers, and semiconductor devices.
  • a method of supplying a slurry (polishing liquid) in which abrasive grains are dispersed in an alkaline solution or an acid solution during polishing is generally adopted. That is, the member to be polished is flattened by the mechanical action of the abrasive grains in the slurry and the chemical action of the alkaline solution or the acid solution.
  • the surface of the member to be polished is flattened by supplying the slurry to the surface of the member to be polished and bringing the polishing pad material into contact with the surface while sliding.
  • the polishing characteristics of the polishing pad in the CMP method are required to be excellent in flatness of the object to be polished and to have a high polishing rate (polishing rate). Further, in order to improve productivity, improvement in abrasion resistance is desired.
  • Patent Document 1 As a material for such a polishing pad, an abrasive obtained from a urethane-based curable composition is known (see Patent Document 1).
  • Patent Document 2 there is disclosed a polishing pad in which the holding power of the slurry is improved by improving the hydrophilicity of the polishing pad resin to improve the polishing characteristics.
  • Patent Document 2 by using a polyol having a hydrophilic group (for example, an ionic functional group) as a curing agent, excellent polishing characteristics are exhibited.
  • the polyol compound is a diol compound, and the urethane resin obtained has a concern about abrasion resistance and the like.
  • the polyurethane uses a diol compound having a low molecular weight. Therefore, it is considered that the hydrophilic group introduced into the polyurethane to increase the hydrophilicity has a high probability of existing in the vicinity of the hard segment of the polyurethane. As a result, it may be difficult to exert a sufficient hydrophilicity-imparting effect, and there is room for improvement.
  • an object of the present invention is to provide a curable composition having a high abrasion resistance and being a cured product having improved hydrophilicity without impairing mechanical properties.
  • a curable composition that can be a polyurethane resin (cured body) that can be suitably used as a polishing pad.
  • the inventors of the present invention have made various studies, thinking that a rotaxane-introduced hardened product may be further functionalized to give a higher-performance hardened product. Then, it was examined to impart hydrophilicity to the cyclic molecule (introduce an ionic functional group) by taking advantage of the characteristic that the cyclic molecule slides on the axial molecule.
  • a rotaxane having a specific structure in particular, a cyclic molecule having both a polymerizable functional group and an ionic functional group, and a polymerizable monomer capable of reacting with the polymerizable functional group of the rotaxane are obtained. It was found that the cured product exerts an excellent effect while maximizing the properties of the rotaxane, and has completed the present invention.
  • the first aspect of the present invention is (A) a rotaxane monomer having a composite molecular structure composed of a cyclic molecule and an axial molecule penetrating the inside of the cyclic molecule, wherein the cyclic molecule has both a polymerizable functional group and an ionic functional group; , (B) A curable composition containing the polymerizable functional group of the rotaxane monomer (A) and a polymerizable monomer composition containing a polymerizable monomer having a polymerizable functional group capable of polymerization.
  • the polymerizable functional group contained in the (A) rotaxane monomer is A radically polymerizable group, an epoxy group, a hydroxyl group, a thiol group, a primary amino group, and at least one group selected from the group consisting of a secondary amino group,
  • the (A) rotaxane monomer has the ionic functional group, A group capable of forming at least one ion selected from the group consisting of a carboxyl ion, a sulfonate ion, a phosphate ion, a phosphonate ion, and a quaternary ammonium cation is preferable.
  • the second invention is a cured product obtained by curing the curable composition of the first invention.
  • the obtained cured product can be suitably used as a polishing pad.
  • a third aspect of the present invention has (A) a complex molecular structure composed of a cyclic molecule and an axial molecule that penetrates the ring of the cyclic molecule, wherein the cyclic molecule has a polymerizable functional group and an ionic functional group.
  • a rotaxane monomer having both of ..
  • the cured product obtained from the curable composition of the present invention has excellent mechanical properties, particularly high wear resistance. Further, the cured product has excellent hydrophilicity. Therefore, when the cured product is used as a sliding member (abrasive), for example, as a polishing pad, it has good wear resistance. In addition, the cured product has excellent polishing characteristics. Specifically, the cured product can be used as a polishing pad that has good abrasion resistance and can exhibit an excellent polishing rate.
  • the curable composition of the present invention is (A) A rotaxane monomer having a composite molecular structure composed of a cyclic molecule and an axial molecule that penetrates the ring of the cyclic molecule, wherein the cyclic molecule has both a polymerizable functional group and an ionic functional group ( Hereinafter, it may be simply referred to as “(A) rotaxane monomer” or “(A) component”.
  • (B) A polymerizable monomer having a polymerizable functional group capable of polymerizing with the polymerizable functional group of the rotaxane monomer (A) (the polymerizable functional group of the cyclic molecule) (hereinafter, simply referred to as “polymerizable monomer”).
  • Curable composition containing a polymerizable monomer composition hereinafter, may be simply referred to as “(B) polymerizable monomer composition” or “(B) composition”.
  • the (A) rotaxane monomer used in the present invention is designated by "1" as a whole as shown in FIG.
  • the (A) rotaxane monomer has a composite molecular structure formed of chain-shaped axial molecule “2” and cyclic molecule “3”. That is, a plurality of cyclic molecules "3" include a chain-shaped axial molecule "2", and the axial molecule "2" penetrates the inside of the ring of the cyclic molecule "3". Therefore, the cyclic molecule "3" is free to slide on the axial molecule "2".
  • a polymerizable functional group “6” and an ionic functional group “7” have been introduced into the cyclic molecule “3” of the (A) rotaxane monomer. These may be directly attached to the ring. However, it is preferable that the side chain “4” is introduced into the ring, and the polymerizable functional group “6” and the ionic functional group “7” are introduced into the side chain, particularly the terminal of the side chain.
  • the (A) rotaxane monomer has a complex molecular structure in which a chain axis molecule penetrates the inside of a plurality of cyclic molecules. At least one end of the axial molecule may have a group larger than the inner diameter of the cyclic molecule (bulky group “5”) in order to prevent the cyclic molecule from slipping through.
  • the bulky group does not necessarily need to be present at the end of the axis molecule.
  • the bulky group “5” is prevented so that the cyclic molecule is not separated at both ends of the axial molecule “2”. Is preferably present.
  • the cyclic molecule “3” has a polymerizable functional group “6” and can slide on the axis molecule “2”. Therefore, it is considered that the cured product produced by using the (A) rotaxane monomer has high abrasion resistance and can exhibit excellent mechanical properties. Therefore, when used as a polishing pad material, excellent polishing characteristics and abrasion resistance can be exhibited.
  • the ionic functional group “7” is introduced into the cyclic molecule “3”. Therefore, this ionic functional group can also slide in the cured product. Therefore, it is considered that the hydrophilicity of the obtained cured product can be improved (the uniform hydrophilicity in the cured product can be maintained). As a result, it is presumed that the polishing pad made of the cured product can improve the flatness of the object to be polished.
  • the slidable cyclic molecule “3” has the polymerizable functional group “6” and the ionic functional group “7” is considered to be particularly exerted in the following cases. That is, as described above, when the cyclic molecule “3” has a side chain “4” and a polymerizable functional group “6” and an ionic functional group “7” are introduced into the side chain “4”. Is. Among these, the case where the side chain “4” has a polymerizable functional group “6” and an ionic functional group “7” at the end is preferable. It is considered that the presence of both groups at the end of the side chain makes it possible to obtain a cured product that is more uniform and has higher performance. From the above, the present inventors believe that if the obtained cured product is used as a pad material for polishing, the polishing slurry can be more easily held and excellent polishing characteristics can be exhibited.
  • the (A) rotaxane monomer can be synthesized by using the method described in WO2015 / 068798 and the like. The constitution of the component (A) will be described in detail.
  • the axial molecule may be linear or branched as long as it can penetrate the ring of the cyclic molecule, and is generally formed of a polymer.
  • the axis molecule is described in International Publication No. 2015-068798 and the like.
  • Suitable polymers forming such axial molecules are, for example, polyethylene glycol, polyisoprene, polyisobutylene, polybutadiene, polypropylene glycol, polytetrahydrofuran, polydimethylsiloxane, polyethylene, polypropylene, polyvinyl alcohol or polyvinyl methyl ether, Furthermore, the copolymer of the polymer selected from these can be mentioned. Among these, polyethylene glycol, polytetrahydrofuran, polypropylene, and copolymers of polymers selected from polyethylene glycol, polytetrahydrofuran and polypropylene are particularly preferable.
  • the (A) rotaxane monomer may have a bulky group “5” as a blocking group at both ends of the shaft molecule.
  • the bulky group "5" is not necessary if the sliding effect of rotaxane can be introduced into the cured product by polymerizing with the polymerizable monomer composition (B) described in detail below.
  • the presence of the bulky group “5” allows the sliding effect of rotaxane to be efficiently introduced into the cured product. Furthermore, the productivity of the (A) rotaxane monomer itself can be improved.
  • the bulky group is not particularly limited as long as it is a group that prevents the cyclic molecule from being detached from the axial molecule.
  • examples thereof include an adamantyl group, a trityl group, a fluoresceinyl group, a dinitrophenyl group, a pyrenyl group, a trinitrobenzenesulfonic acid group, and a 3,5-dimethoxybenzoic acid group.
  • an adamantyl group, a trinitrobenzenesulfonic acid group, and a 3,5-dimethoxybenzoic acid group can be mentioned particularly in terms of ease of introduction.
  • the (A) rotaxane monomer may be a pseudo-rotaxane monomer in which a bulky group does not exist at the end of the shaft molecule, as described above.
  • the (A) rotaxane monomer used is a pseudo-rotaxane monomer
  • the polymerizable functional group at the terminal of the axis molecule of the pseudo-rotaxane monomer is not particularly limited. Examples of the preferred polymerizable functional group include a hydroxyl group, a thiol group, an amino group (primary amino group or secondary amino group), a (meth) acrylate group, a vinyl group, or an allyl group.
  • the method of introducing the polymerizable functional group at the end of the axis molecule is not particularly limited, and a known method may be adopted.
  • the terminal of the axis molecule is originally the polymerizable functional group, it can be used as it is. If not, it can be introduced by modifying the end.
  • the weight average molecular weight (Mw) of the axial molecule is preferably 400 to 100,000, particularly 1,000 to 50,000, and particularly preferably 2,000 to 30,000.
  • the weight average molecular weight (Mw) is a value measured by the GPC measuring method described in the examples below.
  • the molecular weight of the axial molecule is preferably 400 to 100,000 for the same reason.
  • the cyclic molecule has a ring having a size capable of including the axis molecule as described above.
  • a ring include a cyclodextrin ring, a crown ether ring, a benzocrown ring, a dibenzocrown ring and a dicyclohexanocrown ring.
  • a cyclodextrin ring is particularly preferable.
  • Cyclodextrin rings include ⁇ -body (ring inner diameter 0.45-0.6 nm), ⁇ -body (ring inner diameter 0.6-0.8 nm), and ⁇ -body (ring inner diameter 0.8-0.95 nm).
  • ⁇ -cyclodextrin ring and ⁇ -cyclodextrin are most preferable.
  • one or more cyclic molecules are included in one axial molecule.
  • the inclusion number of the cyclic molecule is preferably 0.8 or less at the maximum.
  • the cyclic molecules are densely present with respect to one axial molecule.
  • the mobility (slide width) tends to decrease, the mechanical properties tend to deteriorate, and the effect of exhibiting uniform hydrophilicity in the cured product tends to decrease.
  • the molecular weight of the (A) rotaxane monomer itself increases.
  • the handleability of the curable composition tends to decrease. Furthermore, the resulting cured product tends to be poor in molding and tends to be inexpensive. From the above, it is more preferable that one axial molecule is clathrated by at least two or more cyclic molecules, and the number of clathrates of the cyclic molecules is at most 0.5 or less.
  • the maximum inclusion number of the cyclic molecule with respect to one axial molecule can be calculated from the length of the axial molecule and the ring thickness of the cyclic molecule.
  • the maximum inclusion number is calculated as follows. That is, two repeating units of polypropylene glycol [—CH (CH 3 ) —CH 2 O—] approximate the thickness of one ⁇ -cyclodextrin ring.
  • the number of repeating units is calculated from the molecular weight of this polyethylene glycol, and 1/2 of this repeating unit is determined as the maximum number of inclusions of the cyclic molecule.
  • This maximum inclusion number is set to 1.0, and the inclusion number of the cyclic molecule is adjusted within the above range.
  • the value of the inclusion number is an average value.
  • the side chain is not particularly limited, it is preferably formed by repeating an organic chain having a carbon number of 3 to 20. Further, those having different side chains and different number average molecular weights may be introduced into the cyclic molecule.
  • the number average molecular weight of such a side chain is in the range of 45 to 10000, preferably 55 to 5000, and more preferably 55 to 1500.
  • the number average molecular weight of this side chain can be adjusted by the amount of the substance used when introducing the side chain, and can be calculated. Further, when it is obtained from the obtained (A) rotaxane monomer, it can be obtained from 1 H-NMR measurement.
  • the compatibility with other (B) polymerizable monomer composition tends to decrease. Further, if the side chain is too short, when introducing a polymerizable functional group, and an ionic functional group into the side chain, the mechanical properties of the resulting cured product tend to deteriorate, and uniform in the cured product. The effect of exhibiting hydrophilicity tends to decrease. On the other hand, if the side chain is too long, the viscosity will increase when mixed with the polymerizable monomer composition (B), which tends to cause a poor appearance of the cured product or decrease the hardness of the cured product. is there.
  • the side chain is introduced by utilizing the reactive functional group of the cyclic molecule and modifying this reactive functional group (introduced by reacting with the reactive functional group).
  • the (A) rotaxane monomer in which the cyclic molecule has a hydroxyl group and the hydroxyl group reacts to introduce a side chain into the cyclic molecule is preferable.
  • the ⁇ -cyclodextrin ring has 18 OH groups (hydroxyl groups) as reactive functional groups.
  • a side chain is introduced via this OH group (reacting this OH group). That is, a maximum of 18 side chains can be introduced into one ⁇ -cyclodextrin ring.
  • the side chain In order to fully exhibit the function of the side chain, it is preferable that 4% to 70% (modification degree) of the total number of reactive functional groups of such a ring is modified by the side chain. It is preferable that a side chain is introduced into 4% to 70% of the total number of reactive functional groups possessed. In addition, as a matter of course, the ratio of the introduced side chains (the degree of modification of the side chains) is an average value.
  • the reactive functional group (eg, hydroxyl group) of the cyclic molecule has lower reactivity than the OH group (hydroxyl group) of the side chain. Therefore, even if the degree of modification is low, the problems of reduced compatibility and bleed-out are unlikely to occur. Therefore, if the modification degree is in the above range, a more excellent effect is exhibited.
  • a hydroxyl group corresponds to a polymerizable functional group
  • the cyclic molecule is a cyclodextrin ring, and among the hydroxyl groups of the cyclodextrin ring, a hydroxyl group in which a side chain is not introduced is regarded as a polymerizable functional group.
  • the modification degree is 50%.
  • the side chain (organic chain) as described above may be linear or branched if the molecular weight is within the above range.
  • the methods and compounds disclosed in WO 2015/159875 can be appropriately used. Specifically, ring-opening polymerization; radical polymerization; cationic polymerization; anionic polymerization; living radical polymerization such as atom transfer radical polymerization, RAFT polymerization, and NMP polymerization can be used.
  • a side chain of an appropriate size can be introduced by reacting an appropriately selected compound with the reactive functional group of the ring.
  • side chains derived from cyclic compounds such as lactones and cyclic ethers can be introduced.
  • an OH group is introduced as a group having active hydrogen at the end of the side chain.
  • cyclic ethers and lactones are preferably used from the viewpoints of easy availability, high reactivity, and easy adjustment of size (molecular weight).
  • Suitable cyclic ether and lactone cyclic compounds are disclosed in WO 2015/159875.
  • the above cyclic compounds can be used alone or in combination of two or more.
  • the side chain-introducing compound preferably used in the present invention is a lactone compound, and is a lactone such as ⁇ -caprolactone, ⁇ -acetyl- ⁇ -butyrolactone, ⁇ -methyl- ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -butyrolactone.
  • the compound is particularly preferred, most preferred is ⁇ -caprolactone.
  • a side chain derived from a cyclic compound such as a cyclic acetal, a cyclic amine, a cyclic carbonate, a cyclic imino ether, and a cyclic thiocarbonate
  • a side chain with can be introduced.
  • a side chain with can be introduced.
  • suitable cyclic compounds are described in WO 2015/068798.
  • the method of introducing a side chain into a cyclic molecule using radical polymerization is as follows.
  • the ring of the cyclic molecule of the rotaxane monomer does not have an active site that serves as a radical initiation point. Therefore, prior to reacting the radical polymerizable compound, a compound for forming a radical initiation point is reacted with a functional group (eg, OH group) of the ring to form an active site serving as a radical initiation point. Need to be formed.
  • a functional group eg, OH group
  • Organohalogen compounds are typical as compounds for forming the above radical initiation points.
  • 2-bromoisobutyryl bromide, 2-bromobutyric acid, 2-bromopropionic acid, 2-chloropropionic acid, 2-bromoisobutyric acid, epichlorohydrin, epibromohydrin, 2-chloroethylisocyanate, etc. be able to. That is, such an organic halogen compound is bonded to the ring by a condensation reaction with a functional group contained in the ring of the cyclic molecule, and a group containing a halogen atom (organic halogen compound residue) is introduced into the ring.
  • radicals are generated in the residue of the organic halogen compound due to migration of halogen atoms and the like, and this serves as a starting point of radical polymerization, and radical polymerization proceeds.
  • the group (organic halogen compound residue) having an active site serving as a radical polymerization initiation point as described above is obtained by reacting a compound having a functional group such as amine, isocyanate and imidazole with a hydroxyl group of a ring. It is also possible to introduce a functional group other than the hydroxyl group, and to introduce such a functional group by reacting the above-mentioned organic halogen compound.
  • the radical polymerizable compound used for introducing a side chain by radical polymerization is a group having an ethylenically unsaturated bond, for example, at least one functional group such as a (meth) acrylate group, a vinyl group or a styryl group.
  • a compound having (hereinafter referred to as an ethylenically unsaturated monomer) is preferably used.
  • an oligomer or polymer having a terminal ethylenically unsaturated bond hereinafter referred to as macromonomer
  • suitable ethylenically unsaturated monomers include those described in International Publication No. WO2015 / 068798.
  • the reaction of reacting the functional group of the side chain with another compound to introduce a structure derived from the compound may be referred to as “denaturation”.
  • the compound used for the modification may be any compound that can react with the functional group of the side chain.
  • the side chain introduced into the ring of the cyclic compound may have various functional groups.
  • a part of this side chain is bonded to the functional group of the ring of the cyclic molecule that the other axis molecule has, It may also form a crosslinked structure.
  • the polymerizable functional group contained in the cyclic molecule is not particularly limited.
  • preferred polymerizable functional groups are radically polymerizable groups, epoxy groups, hydroxyl groups (OH groups), thiol groups (SH groups), primary amino groups (—NH 2 ), and secondary amino groups.
  • (-NHR; R is at least one group selected from the group consisting of substituents such as alkyl groups).
  • the radically polymerizable group include a (meth) acrylate group, a vinyl group, or an allyl group. Of these polymerizable functional groups, the most preferred is a hydroxyl group.
  • a hydroxyl group when the end of the side chain introduced when the functional group of the cyclic molecule is reacted is a hydroxyl group, it may be used as it is as a polymerizable functional group. Further, when the cyclic molecule originally has a hydroxyl group, the hydroxyl group directly serves as a polymerizable functional group. However, considering the reactivity and the like, it is preferable that the terminal of the side chain is a polymerizable functional group (hydroxyl group).
  • the number of polymerizable functional groups contained in the cyclic molecule is not particularly limited. Among them, it is preferable that the cyclic molecule contains at least two polymerizable functional groups in order to introduce the rotaxane moiety into the resin serving as the matrix and to exert an excellent effect.
  • the polymerizable functional group is contained in the cyclic molecule or contained in the side chain introduced into the cyclic molecule.
  • the terminal of the side chain is a polymerizable functional group.
  • two or more of the polymerizable functional groups introduced at the end of the side chain are present per molecule of the (A) rotaxane monomer.
  • the upper limit of the number of polymerizable functional groups is not particularly limited.
  • the upper limit of the number of polymerizable functional groups is a value obtained by dividing the number of moles of the polymerizable functional groups introduced at the end of the side chain by the weight average molecular weight (Mw) of the (A) rotaxane monomer (hereinafter, the polymerizable value). It is preferable that the content of the functional group content X is 10 mmol / g. As described above, the polymerizable functional group content X is a value obtained by dividing the number of moles of the polymerizable functional group introduced at the end of the side chain by the weight average molecular weight (Mw) of the (A) rotaxane monomer. And the number of moles of the polymerizable functional group introduced at the terminal of the side chain per 1 g of the (A) rotaxane monomer.
  • the content X of the polymerizable functional group is 0.2 mmol to 8 mmol / g. Particularly preferably, the content X of the polymerizable functional group is 0.5 mmol to 5 mmol / g.
  • the weight average molecular weight is a value measured by gel permeation chromatography (GPC) described in detail below.
  • the polymerizable functional group not introduced into the side chain for example, the polymerizable functional group that the cyclic molecule has
  • the content Y of all the polymerizable functional groups of the polymerizable functional group introduced into the side chain The following range is preferable.
  • the total polymerizable functional group content Y is preferably 0.2 mmol to 20 mmol / g.
  • the content Y of all polymerizable functional groups is more preferably 0.4 mmol to 16 mmol / g, and particularly preferably 1 mmol to 10 mmol / g.
  • the content Y of all the polymerizable functional groups is the total of the number of moles of the polymerizable functional groups not introduced into the side chain and the number of moles of the polymerizable functional groups introduced into the side chain (A) the weight average of the rotaxane monomer. It is a value divided by the molecular weight (Mw).
  • the all polymerizable functional group for example, a polymerizable functional group having a cyclic molecule in which the side chain is not introduced (specifically, an unmodified hydroxyl group in which the side chain in the cyclodextrin ring is not introduced) Is included.
  • cyclic molecules may be desorbed.
  • the (A) rotaxane monomer is a pseudo-rotaxane monomer
  • the end of the (A) rotaxane monomer may be sealed with a bulky group and GPC may be measured to consider the molecular weight of the bulky group.
  • the cyclic molecule needs to have an ionic functional group. Then, in order to obtain a cured product with more excellent effect, it is preferable that the ionic functional group is introduced into the cyclic molecule through the side chain. Particularly preferably, the ionic functional group is introduced at the end of the side chain. To introduce the ionic functional group, specifically, after introducing the side chain by the above method, the functional group of the side chain may be modified to another ionic functional group.
  • the ionic functional group refers to a group having a portion which becomes a cation or an anion.
  • a group capable of forming at least one ion selected from the group consisting of a carboxyl ion, a sulfonate ion, a phosphate ion, a phosphonate ion, and a quaternary ammonium cation is preferable.
  • carboxyl group or carboxyl group (carboxyl group base), sulfonic acid group or sulfonate group (sulfonic acid group base), phosphoric acid group or phosphate group (phosphoric acid group base), phosphonic acid Groups or phosphonate groups (bases of phosphonate groups), as well as quaternary ammonium cation groups or quaternary ammonium bases.
  • the method of introducing an ionic functional group into the cyclic molecule is not particularly limited.
  • the following is an example of the introduction method.
  • the introduction method is not limited, and the ionic functional group can be introduced into the cyclic molecule of the (A) rotaxane monomer by a method other than the following introduction methods.
  • a ring-opening reaction of an acid anhydride can be used.
  • an acid anhydride is used. It is possible to introduce a carboxyl group by reacting.
  • a sulfonic acid can be introduced by reacting an OH group with a sultone compound.
  • acid anhydride compound examples include succinic anhydride, butylsuccinic anhydride, decylsuccinic anhydride, 2-dodecen-1-ylsuccinic anhydride, 2,2-dimethylsuccinic anhydride, and hexadecylsuccinic anhydride.
  • the carboxyl group can be introduced into the cyclic molecule by reacting these acid anhydride compounds with the hydroxyl group of the cyclic molecule. This carboxyl group can be further (neutralized) reacted to form a carboxyl base.
  • sultone compound examples include 1,3-propane sultone and 1,4-butane sultone.
  • the sulfonic acid group can be introduced into the cyclic molecule by reacting these sultone compounds with the hydroxyl group of the cyclic molecule. This sulfonic acid group can be further (neutralized) reacted to form a sulfonic acid group.
  • a phosphoric acid group, a phosphonic acid group, and a quaternary ammonium cation group it can be introduced by forming an ester bond or an amide bond.
  • the ionic group when the cyclic molecule has a hydroxyl group as a reactive group (the cyclic molecule may have a hydroxyl group directly or the side chain introduced into the cyclic molecule may have a hydroxyl group), the ionic group Besides, by using a compound containing a carboxyl group or an acid chloride group (for example, —COCl group), the ionic functional group can be introduced through an ester bond.
  • a compound containing a carboxyl group or an acid chloride group for example, —COCl group
  • ionic functional group-containing compound containing a carboxyl group and an acid chloride group examples include as follows.
  • a phosphoric acid group or a phosphonic acid group 4-phosphonobutyric acid, glycine-N, N-bis (methylenesulfonic acid), 2-phosphonobutane-1,2,4-tricarboxylic acid, 3-phosphonopropionic acid, Examples include phosphoserine.
  • minoisonipecotic acid betaine anhydride, betaine hydrochloride, carnitine hydrochloride, carnitine and the like.
  • the cyclic molecule has a carboxyl group as a reactive group (the cyclic molecule may directly have a carboxyl group, or the side chain introduced into the cyclic molecule may have a carboxyl group), It is also possible to react a carboxyl group or a carboxyl group with a compound having a hydroxyl group or an amino group in the molecule and having an ionic functional group.
  • Alendronic acid 4-hydroxymethyl-2,6,7-trioxa-1-phosphabicyclo [2,2,2] octane 1-oxide, (1-aminoethyl) phosphonic acid, phosphoriethanolamine, N, N-dimethylethanolamine, N, N-dimethylpropanolamine, N, N-dimethylisopropanolamine, N, N-diisopropylethanolamine, 4-dimethylamino-1-butanol, 6-dimethylamino-1-hexanol, Dimethylamino neopentanol, N '-(2-hydroxyethyl) -N, N, N'-trimethylethylenediamine, 5-diethylamino-1-pentanol, 4-methylpiperazine-1-ethanol, 1- (2-hydroxy Ethyl) piperazine, 3,3-diaminoethanol-methyldipropylamine, N, N-diethylaminopropylamine,
  • the ionic functional group of the (A) rotaxane monomer may be neutralized to form a salt structure.
  • the reactivity can be controlled when the iso (thio) cyanate compound is used in the composition (B) described below.
  • the solubility can be improved depending on the salt structure selected.
  • the solubility can be improved by using a quaternary ammonium salt for the carboxylic acid group or the sulfonic acid group to form a carboxylic acid salt or sulfonic acid salt.
  • the ionic functional group of the cyclic molecule of the rotaxane monomer (A) is particularly preferably a carboxylic acid group, a sulfonic acid group, a quaternary ammonium salt, or a quaternary ammonium cation group.
  • the number of ionic functional groups contained in the cyclic molecule is not particularly limited.
  • the value (ionic functional group content Z) obtained by dividing the number of moles of the ionic functional group of the cyclic molecule by the weight average molecular weight of the (A) rotaxane monomer is preferably 0.01 to 5.0 mmol / g, 0.05 to 1.0 mmol / g is more preferable, and 0.05 to 0.7 mmol / g is further preferable. That is, if the amount of ionic functional groups is too large, the mechanical strength of the cured product tends to decrease.
  • the ionic functional group content Z is a value obtained by dividing the number of moles of the ionic functional group of the cyclic molecule by the weight average molecular weight (Mw) of the (A) rotaxane monomer, in other words, ( A) Refers to the number of moles of the ionic functional group of the cyclic molecule per 1 g of the rotaxane monomer. As a matter of course, the number of moles of the ionic functional group is an average value.
  • the cured product obtained by curing the curable composition of the present invention is used for a polishing pad described later, by setting the ionic functional group content Z of the (A) rotaxane monomer in the above range, the polishing rate As a result, scratch resistance is improved, hysteresis loss is reduced, and polishing characteristics are improved.
  • the ionic functional group is, as the case may be, one that the cyclic molecule has, or one that is introduced into the cyclic molecule using the side chain.
  • the terminal of the side chain becomes an ionic functional group and the number thereof satisfies the above range.
  • the ionic functional group is introduced into the side chain (preferably the end of the side chain), but the side chain may have the above-mentioned polymerizable functional group and ionic functional group.
  • the side chain has a polymerizable functional group and an ionic functional group, among the side chains of the cyclic molecule, at least one side chain has both a polymerizable functional group and an ionic functional group, or Of the side chains of the cyclic molecule, at least one side chain has only a polymerizable functional group, and among the side chains other than the side chains having only the polymerizable functional group, at least one side chain is an ion. It means that it has only a sex functional group.
  • the rotaxane monomer (A) in the present invention is obtained by introducing the polymerizable functional group and the ionic functional group into a slidable cyclic molecule. And, it is preferable that the cyclic molecule preferably has the polymerizable functional group and the ionic functional group through a side chain. Most preferably, the terminal of the side chain has a polymerizable functional group and an ionic functional group.
  • the ratio of the polymerizable functional group and the ionic functional group is such that the total molar ratio of the polymerizable functional group and the ionic functional group is 100 mol%. Is preferably 1 mol% or more and less than 90 mol%. Considering the balance of the physical properties of the obtained cured product, the ratio of the ionic functional group is more preferably 2 mol% or more and 30 mol% or less, and further preferably 2 mol% or more and 25 mol% or less.
  • the ratio of this polymerizable functional group is the ratio of all polymerizable functional groups possessed by the cyclic molecule.
  • the polymerizable functional group is a hydroxyl group
  • the total number of moles of the hydroxyl group on the cyclic molecule that has not been modified with a side chain, and the hydroxyl group introduced into the side chain is Is the number of moles of the above-mentioned polymerizable functional groups (the number of moles of all polymerizable functional groups). Therefore, the above part can be read as follows.
  • the ratio of the total polymerizable functional groups to the ionic functional groups is the ratio of the ionic functional groups when the total molar ratio of all the polymerizable functional groups and the total molar ratio of the ionic functional groups are 100 mol%. Is preferably 1 mol% or more and less than 90 mol%. Considering the balance of the physical properties of the obtained cured product, the ratio of the ionic functional group is more preferably 2 mol% or more and 30 mol% or less, and further preferably 2 mol% or more and 25 mol% or less.
  • the polymerizable functional groups that have not been modified with side chains may have poor reactivity. Therefore, the most preferred case is the case where the number of moles of the polymerizable functional group introduced into the side chain is targeted. That is, when the total molar ratio of the polymerizable functional group introduced into the side chain and the ionic functional group introduced into the side chain is 100 mol%, in order to obtain a cured product with excellent physical properties, The ratio of the functional group is more preferably 2 mol% or more and 90 mol% or less, further preferably 3 mol% or more and 70 mol% or less, and particularly preferably 4 mol% or more and 50 mol% or less.
  • the polishing rate can be increased by setting the ratio of the ionic functional group of the (A) rotaxane monomer in the above range. As it increases, scratch resistance is improved, hysteresis loss is reduced, and polishing characteristics are improved.
  • the (A) rotaxane monomer most preferably used preferably has polyethylene glycol as the axis molecule. Further, it is preferable to have a cyclic molecule having an ⁇ -cyclodextrin ring with polyethylene glycol having adamantyl groups bonded to both ends of the axis molecule as an axis molecule. Furthermore, it is preferable that a side chain (terminal is an OH group; a polymerizable functional group) is introduced into the ring by polycaprolactone, and further an ionic functional group is introduced by modifying the OH group at the terminal of the side chain. ..
  • the ionic functional group is preferably a group that forms a carboxylate ion, a sulfonate ion, or a quaternary ammonium cation.
  • the OH group of the ⁇ -cyclodextrin ring may be hydroxypropylated, and then polycaprolactone may be introduced by ring-opening polymerization.
  • the weight average molecular weight of the axial molecule, the inclusion number of the ⁇ -cyclodextrin ring, the ratio (modification degree) of the hydroxyl group of the ⁇ -cyclodextrin ring, the molecular weight of the side chain, and the polymerizable functional group and the ionic functional group is preferably as described above.
  • the weight average molecular weight of the rotaxane monomer (A) is not particularly limited, but is preferably 2000 to 1,000,000, and more preferably 5000 to 500000. When the weight average molecular weight is at least the lower limit value, the polishing characteristics are improved, and when the weight average molecular weight is at most the upper limit value, the moldability of the cured product obtained by curing the curable composition is improved.
  • the weight average molecular weight of the (A) rotaxane monomer can be measured by GPC.
  • the polymerizable monomer contained in the (B) polymerizable monomer composition is a compound having a group capable of reacting (polymerizing) with the polymerizable functional group of the (A) rotaxane monomer. And, of course, it is a compound other than the (A) rotaxane monomer.
  • any known compound can be used without any limitation as long as it includes the polymerizable monomer (A) which can be polymerized with the rotaxane monomer.
  • various polymerizable functional groups can be introduced into the (A) rotaxane monomer.
  • the polymerizable monomer may be selected accordingly.
  • the polymerizable monomer described in WO2015 / 068798 can be mentioned.
  • the polymerizable functional group of the (A) rotaxane monomer has a hydroxyl group, a thiol group, a primary amino group (—NH 2 ), and a secondary amino group (—NHR;
  • the polymerizable monomer contained in the polymerizable monomer composition (B) has at least an iso (thio) cyanate group in the molecule (B1).
  • the iso (thio) cyanate compound hereinafter, may be simply referred to as “(B1) iso (thio) cyanate compound” or “(B1) component”).
  • the polymerizable functional group of the (A) rotaxane monomer is a hydroxyl group, an amino group, or an iso (thio) cyanate group
  • the polymerizable monomer is (B2) an epoxy group-containing monomer having an epoxy group.
  • (B2) epoxy group-containing monomer or "(B2) component”
  • the polymerizable functional group of the (A) rotaxane monomer is an iso (thio) cyanate group
  • the polymerizable monomer has at least one group selected from (B3) hydroxyl group and thiol group ( Chi) ol compound (hereinafter sometimes referred to simply as “(B3) (thi) ol compound” or “(B3) component”), and (B4) amino group-containing monomer having an amino group (simply “(B4)” Amino group-containing monomer "or” (B4) component ").
  • the iso (thio) cyanate group means an isocyanate group (NCO group) or an isothiocyanate group (NCS group). Therefore, when there are a plurality of iso (thio) cyanate groups, the total number of isocyanate groups and isothiocyanate groups is the number of iso (thio) cyanate groups.
  • the (B) polymerizable monomer composition may contain other components as long as it contains the (A) rotaxane monomer and a polymerizable monomer that can be polymerized.
  • the polymerization reaction is a sequential addition (for example, polycondensation / polyaddition) reaction, if (A) the rotaxane monomer and at least a polymerizable monomer that can be polymerized are contained, the (B) polymerizable monomer composition is ) Other polymerized monomers that do not polymerize with the rotaxane monomer can be included.
  • the polymerizable monomer composition (B) can include not only a polymerizable monomer that can be polymerized with the component (A) but also a polymerizable monomer that can be copolymerized.
  • the polymerizable monomer composition (B) may be composed of a polymerizable monomer capable of being polymerized with the component (A).
  • the polymerizable functional group of the (A) rotaxane monomer is an active hydrogen-containing group such as a hydroxyl group
  • iso (thio) having a (B1) iso (thio) cyanate group as the polymerizable monomer.
  • the component (B3) and the component (B4) can be included. That is, if the polymerizable monomer composition (B) includes the component (B1) that is polymerized with the component (A), the component (B3) that does not react with the component (A) and the component (B4) can be included.
  • the presence of the component (B1) makes it possible to obtain a cured product obtained by copolymerizing the component (A), the component (B1), the component (B3), and the component (B4).
  • the component (B2) may be included in the polymerizable monomer composition (B).
  • the polymerizable monomer composition (B) may be composed of the component (A1) and the polymerizable component (B1).
  • the (B) polymerizable monomer composition is composed of a monomer having a radically polymerizable group.
  • radical polymerization since it is chain polymerization, unlike the sequential addition reaction, all the polymerizable monomers contained in the polymerizable monomer composition (B) are monomers having a radical polymerizable group.
  • the (B) polymerizable monomer composition is preferably selected from the (meth) acrylate compound having the (meth) acrylate group of the component (B5) and the allyl compound, which are described in detail below, and particularly preferably. , (Meth) acrylate compounds are preferred.
  • the (B) polymerizable monomer composition is Only a (meth) acrylate compound having a (meth) acrylate group, an allyl compound or the like may be used.
  • the (B) polymerizable monomer composition is polymerized.
  • the (B1) iso (thio) cyanate compound is contained as the ionic monomer, other components (B2), (B3), (B4) and (B5) may be contained.
  • the rotaxane monomer (A) when it is a pseudo-rotaxane monomer, it can have a polymerizable functional group at the terminal of the axial molecule in addition to the cyclic molecule.
  • these may have a plurality of types of polymerizable functional groups in the cyclic molecule, or may have different polymerizable functional groups at the ends of the axial molecule, and the polymerizable functional groups of the cyclic molecule and the axial molecule may be present. May be different.
  • the combination with other polymerizable monomers is preferably as follows.
  • the polymerizable functional group contained in the pseudo-rotaxane monomer is a hydroxyl group, a thiol group, and a polymerizable functional group such as an amino group (a primary amino group or a secondary amino group), and the polymerizable monomer is ( B1) An iso (thio) cyanate compound is preferred.
  • the polymerizable functional group contained in the pseudo-rotaxane monomer is a radical polymerizable group
  • the polymerizable monomer is preferably a monomer having a radical polymerizable group.
  • (B) Polymerizable monomer composition > ⁇ Polymerization Method / Sequential Addition Reaction> Polymerizable Monomer ⁇ (B1) Iso (thia) cyanate Compound; (B1) Component>
  • the (B1) iso (thio) cyanate compound is a monomer having at least one type of isocyanate group or isothiocyanate group.
  • a monomer having two groups, an isocyanate group and an iso (thio) cyanate group is also selected.
  • compounds having 2 to 6 iso (thio) cyanate groups in the molecule are preferable, compounds having 2 to 4 are more preferable, and compounds having 2 are more preferable.
  • the (B1) iso (thio) cyanate compound is A bifunctional polyiso (thio) cyanate compound having two iso (thio) cyanate groups in the molecule (B13) described below (hereinafter, simply referred to as "(B13) bifunctional polyiso (thio) cyanate compound” or “(B13) Component)) and (B32) a bifunctional active hydrogen-containing compound having two active hydrogen-containing groups in the molecule (hereinafter simply referred to as “(B32) bifunctional active hydrogen-containing compound” or “(B32 In some cases, it is prepared (manufactured) by a reaction with It may be a urethane prepolymer (B12) (hereinafter sometimes simply referred to as “(B12) urethane prepolymer” or “(B12) component”). As the (B12) urethane prepolymer corresponding to the iso (thio) cyanate compound, those generally used which contain an unreacted iso (thio)
  • the active hydrogen-containing group is a group selected from a hydroxyl group, a thiol group, a primary amino group, or a secondary amino group (eg, —NHR; R is preferably an alkyl group). Therefore, the component (B32) is specifically exemplified as the (B3) (thi) ol compound or (B4) the amino group-containing monomer, which will be described in detail below.
  • the active hydrogen-containing group is preferably a hydroxyl group or a thiol group. Therefore, the component (B32) is also preferably a bifunctional poly (thi) ol compound having two hydroxyl groups, two thiol groups, or one hydroxyl group and one thiol group.
  • the (B1) iso (thio) cyanate compound can be roughly classified into, for example, aliphatic isocyanate, alicyclic isocyanate, aromatic isocyanate, isothiocyanate compound, and (B12) urethane prepolymer.
  • As the (B1) iso (thio) cyanate compound one kind of compound can be used or a plurality of kinds of compounds can be used. When multiple types of compounds are used, the reference mass is the total amount of multiple types of compounds. Specific examples of these iso (thio) cyanate compounds include the following monomers.
  • Aliphatic Isocyanate (B1) Component Ethylene diisocyanate, trimethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, octamethylene diisocyanate, nonamethylene diisocyanate, 2,2′-dimethylpentane diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate , Decamethylene diisocyanate, butene diisocyanate, 1,3-butadiene-1,4-diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, 1,6,11-trimethylundecamethylene diisocyanate, 1,3,6-trimethyl Hexamethylene diisocyanate, 1,8-diisocyanate-4-isocyanate methyl octane, 2,5,7-trimethyl-1 8-diisocyanate-5-isocyanate methyl octane, bis (isocyanate
  • Monofunctional isocyanate monomers such as ethyl isocyanate, n-propyl isocyanate, i-propyl isocyanate, butyl isocyanate and octadecyl isocyanate.
  • Monofunctional isocyanate monomers such as cyclohexyl isocyanate.
  • Aromatic isocyanate Component (B1) Xylylene diisocyanate (o-, m-, p-), tetrachloro-m-xylylene diisocyanate, methylenediphenyl-4,4'-diisocyanate, 4-chloro-m-xylylene diisocyanate , 4,5-dichloro-m-xylylene diisocyanate, 2,3,5,6-tetrabromo-p-xylylene diisocyanate, 4-methyl-m-xylylene diisocyanate, 4-ethyl-m-xylylene diisocyanate, bis (Isocyanate ethyl) benzene, bis (isocyanatopropyl) benzene, 1,3-bis ( ⁇ , ⁇ -dimethylisocyanatomethyl) benzene, 1,4-bis ( ⁇ , ⁇ -dimethylisocyanatomethyl) benzene, ⁇ ,
  • Monofunctional isocyanate monomers such as phenyl isocyanate, 3-i-propenyl cumyl isocyanate, 4-methoxyphenyl isocyanate, m-tolyl isocyanate, p-tolyl isocyanate, 1-naphthyl isocyanate and dimethylbenzyl isocyanate.
  • Isothiocyanate compound Component (B1) Bifunctional iso (thio) cyanate group-containing monomer such as p-phenylene diisothiocyanate, xylylene-1,4-diisothiocyanate, and ethylidyne diisothiocyanate (described in detail below ( B12) (corresponding to the bifunctional polyiso (thio) cyanate compound (B13) constituting the urethane prepolymer).
  • the (B12) urethane prepolymer it is not particularly limited, but as the (B13) bifunctional polyiso (thio) cyanate compound, it is particularly preferable to use the following exemplified monomers. Specifically, 1,5-naphthalene diisocyanate, xylene diisocyanate (o-, m-, p-), 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, phenylene diisocyanate (o-, m-, P-), 2,2'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate and 4,4'-diphenylmethane diisocyanate are preferably used. It is preferable to react these with a (B32) bifunctional active hydrogen-containing compound to obtain a (B12) component having an iso (thio) cyanate group at both ends.
  • the active hydrogen-containing group refers to a hydroxyl group, a thiol group, a primary amino group, or a secondary amino group.
  • the active hydrogen-containing group in the (B32) bifunctional active hydrogen-containing compound is preferably a hydroxyl group and / or a thiol group.
  • the (B32) bifunctional active hydrogen-containing compound having a molecular weight (number average molecular weight) of 300 to 2000 can be used in combination of different types and different molecular weights. Further, in order to adjust the hardness and the like of the urethane resin finally obtained, when the (B12) urethane prepolymer is formed, the molecular weight (number average molecular weight) of the (B32) bifunctional active hydrogen content of 300 to 2000 is contained. A compound and a (B32) bifunctional active hydrogen-containing compound having a molecular weight (number average molecular weight) of 90 to 300 can also be used in combination.
  • the (B32) bifunctional active hydrogen-containing compound and the (B13) bifunctional polyiso (thio) cyanate compound used are used, depending on the kinds of the (B32) bifunctional active hydrogen-containing compound and the (B13) bifunctional polyiso (thio) cyanate compound used, and the amount of those used, the (B32) bifunctional having a molecular weight of 300 to 2000 is used.
  • the active hydrogen-containing compound is 100 parts by mass, it is preferable that the (B32) bifunctional active hydrogen-containing compound having a molecular weight of 90 to 300 be 0 to 50 parts by mass. Furthermore, it is preferable to use 1 to 40 parts by mass of the (B32) bifunctional active hydrogen-containing compound having a molecular weight of 90 to 300.
  • the urethane prepolymer (B12) must have iso (thio) cyanate groups at both ends of the molecule. Therefore, the (B12) urethane prepolymer has a mole number (n5) of the iso (thio) cyanate group in the (B13) bifunctional polyiso (thio) cyanate compound and the active hydrogen-containing group ((B32) of the bifunctional active hydrogen-containing compound ( Within the range where the number of moles (n6) of a hydroxyl group, a thiol group, or an amino group (even if it is a primary amino group, it is considered to be 1 mole) is 1 ⁇ (n5) / (n6) ⁇ 2.3.
  • the number of moles (n5) of the iso (thio) cyanate group is equal to that of the (B13) polyiso (thio) cyanate compound. It is the total number of moles of iso (thio) cyanate groups.
  • the number of moles (n6) of the active hydrogen-containing groups of the two or more kinds of (B32) bifunctional active hydrogen-containing compounds is the total number of moles of the active hydrogens of the active hydrogen-containing groups. Even when the active hydrogen-containing group is a primary amino group, the primary amino group is considered to be 1 mol.
  • the primary amino group in the primary amino group, a considerable amount of energy is required for the reaction of the second amino group (—NH) (even if the primary amino group, the second —NH does not react). hard). Therefore, in the present invention, even if a (B32) bifunctional active hydrogen-containing compound having a primary amino group is used, the primary amino group can be calculated to be 1 mol.
  • the iso (thio) cyanate equivalent of the (B12) urethane prepolymer can be determined by quantifying the iso (thio) cyanate group of the (B12) urethane prepolymer in accordance with JIS K7301.
  • the iso (thio) cyanate group can be quantified by the following back titration method. First, the obtained urethane prepolymer (B12) is dissolved in a dry solvent.
  • (B12) di-n-butylamine which has a known concentration and is clearly in excess of the amount of the iso (thio) cyanate group contained in the urethane prepolymer, is added to the dry solvent, and (B12) ) Reacting all iso (thio) cyanate groups of the urethane prepolymer with di-n-butylamine.
  • the unconsumed (not involved in the reaction) di-n-butylamine is then titrated with acid to determine the amount of di-n-butylamine consumed.
  • the iso (thio) cyanate equivalent can be determined. Further, since the (B12) urethane prepolymer is a linear urethane prepolymer having iso (thio) cyanate groups at both ends, the number average molecular weight of the (B12) urethane prepolymer is equal to the iso (thio) cyanate equivalent. It is twice as much. The molecular weight of this (B12) urethane prepolymer is likely to agree with the value measured by gel permeation chromatography (GPC). When the (B12) urethane prepolymer and the (B13) bifunctional polyiso (thio) cyanate compound are used in combination, the mixture of both may be measured according to the above method.
  • GPC gel permeation chromatography
  • the urethane prepolymer (B12) is not particularly limited, but the iso (thio) cyanate equivalent is preferably 300 to 5000, more preferably 350 to 3000, and particularly preferably 350 to 2000.
  • the reason for this is not clear, but is considered as follows. That is, when the (B12) urethane prepolymer having a certain molecular weight reacts with the polymerizable functional group of the (A) rotaxane monomer, the slidable molecule becomes large and the movement of the molecule itself becomes large, resulting in deformation. It is considered that it is easy to recover (elastic recovery; low hysteric).
  • the use of the (B12) urethane prepolymer facilitates dispersion of the crosslinking points in the urethane resin and allows them to exist randomly and uniformly, thus exhibiting stable performance.
  • the urethane resin obtained by using the (B12) urethane prepolymer can be easily controlled during production and can be suitably used as a polishing pad.
  • Such an effect is obtained when the (B12) urethane prepolymer and the (B13) bifunctional polyiso (thio) cyanate compound are used in combination, when the average iso (thio) cyanate equivalent of the polyiso (thio) cyanate compound is 300 to 5,000.
  • the above effect becomes more remarkable when only the (B12) urethane prepolymer is used.
  • the method for producing a prepolymer used in the present invention is a (B32) bifunctional active hydrogen containing compound having two active hydrogen containing groups in the molecule such as a hydroxyl group, an amino group or a thiol group, and a (B13) bifunctional polyiso (
  • a (B12) urethane prepolymer having an iso (thio) cyanate group at the terminal of the molecule may be produced by reacting with a thio) cyanate compound.
  • a prepolymer having an iso (thio) cyanate group at the terminal can be obtained.
  • the preferable blending amounts of the (B32) bifunctional active hydrogen-containing compound and the (B13) bifunctional polyiso (thio) cyanate compound for obtaining the (B12) urethane prepolymer are as follows. Specifically, the number of moles of iso (thio) cyanate groups (n5) in the (B13) bifunctional polyiso (thio) cyanate compound and the number of moles of active hydrogen (n6) of the (B32) bifunctional active hydrogen-containing compound are It is preferable to manufacture in the range of 1 ⁇ (n5) / (n6) ⁇ 2.3.
  • the epoxy group-containing monomer has an epoxy group in the molecule as a polymerizable group, and in particular, when a hydroxyl group, an NH 2 group or an NCO group is introduced as the polymerizable functional group of the (A) rotaxane monomer. Suitable for
  • Such an epoxy compound is roughly classified into an aliphatic epoxy compound, an alicyclic epoxy monomer and an aromatic epoxy monomer, and preferable specific examples thereof are described in WO 2015/068798. Any thing can be used.
  • the (thi) ol compound is a monomer having one or more groups selected from the group consisting of OH groups and SH groups in one molecule. Of course, a monomer having two groups, an OH group and an SH group, is also selected.
  • the (thi) ol compounds are roughly classified into aliphatic alcohols, alicyclic alcohols, aromatic alcohols, polyester polyols, polyether polyols, polycaprolactone polyols, polycarbonate polyols, polyacrylic polyols, thiols, and OH / SH type. It is classified as a polymerizable group-containing monomer. Specific examples include the following.
  • Aliphatic alcohol; component (B3) ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, butylene glycol, 1,5-dihydroxypentane, 1,6-dihydroxyhexane, 1,7-dihydroxyheptane, 1,8-dihydroxyoctane , 1,9-dihydroxynonane, 1,10-dihydroxydecane, 1,11-dihydroxyundecane, 1,12-dihydroxydodecane, neopentyl glycol, glyceryl monooleate, monoelaidin, polyethylene glycol, 3-methyl-1, Bifunctional polyol monomers such as 5-dihydroxypentane, dihydroxyneopentyl, 2-ethyl-1,2-dihydroxyhexane and 2-methyl-1,3-dihydroxypropane (B32) which constitutes the repolymer (B12) corresponds to a bifunctional active hydrogen-containing compound).
  • Glycerin trimethylol ethane, trimethylol propane, ditrimethylol propane, trimethylol propane tripolyoxyethylene ether (eg, TMP-30, TMP-60, TMP-90, etc. of Nippon Emulsifier Co., Ltd.), butanetriol, 1,2- Methyl glucoside, pentaerythritol, dipentaerythritol, tripentaerythritol, sorbitol, erythritol, threitol, ribitol, arabinitol, xylitol, allitol, mannitol, dorsitol, iditol, glycol, inositol, hexanetriol, triglycerol, diglycerol, triethylene.
  • Polyfunctional polyol monomer such as glycol.
  • Multifunctional polyol monomers such as tris (2-hydroxyethyl) isocyanurate, cyclohexanetriol, sucrose, maltitol, lactitol.
  • Aromatic alcohol; (B3) component Dihydroxynaphthalene, dihydroxybenzene, bisphenol A, bisphenol F, xylylene glycol, tetrabromobisphenol A, bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane , 1,2-bis (4-hydroxyphenyl) ethane, bis (4-hydroxyphenyl) phenylmethane, bis (4-hydroxyphenyl) diphenylmethane, bis (4-hydroxyphenyl) -1-naphthylmethane, 1,1- Bis (4-hydroxyphenyl) -1-phenylethane, 2- (4-hydroxyphenyl) -2- (3-hydroxyphenyl) propane, 2,2-bis (4-hydroxyphenyl) butane, 1,1-bis (4-hydroxyphenyl) butane, 2 , 2-bis (4-hydroxyphenyl) -3-methylbutane, 2,2-bis (4-hydroxyphenyl) pentane, 3,3-
  • Multifunctional polyol monomers such as trihydroxynaphthalene, tetrahydroxynaphthalene, benzenetriol, biphenyltetraol, pyrogallol, (hydroxynaphthyl) pyrogallol, and trihydroxyphenanthrene.
  • Polyester polyol; component (B3) A compound obtained by a condensation reaction of a polyol and a polybasic acid is mentioned. Among them, the number average molecular weight is preferably 400 to 2000, more preferably 500 to 1500, and most preferably 600 to 1200. Those having a hydroxyl group (two in the molecule) only at both ends of the molecule correspond to the (B32) bifunctional active hydrogen-containing compound constituting the (B12) urethane prepolymer.
  • the number average molecular weight is preferably 400 to 2000, more preferably 500 to 1500, and most preferably 600 to 1200.
  • Those having a hydroxyl group (two in the molecule) only at both ends of the molecule correspond to the (B32) bifunctional active hydrogen-containing compound constituting the (B12) urethane prepolymer.
  • Polycaprolactone polyol (Component (B3)) A compound obtained by ring-opening polymerization of ⁇ -caprolactone.
  • the number average molecular weight is preferably 400 to 2000, more preferably 500 to 1500, and most preferably 600 to 1200.
  • Those having a hydroxyl group (two in the molecule) only at both ends of the molecule correspond to the (B32) bifunctional active hydrogen-containing compound constituting the (B12) urethane prepolymer.
  • Polycarbonate Polyol; Component (B3) A compound obtained by phosgenating one or more low molecular weight polyols or a compound obtained by transesterification using ethylene carbonate, diethyl carbonate, diphenyl carbonate or the like.
  • the number average molecular weight is preferably 400 to 2000, more preferably 500 to 1500, and most preferably 600 to 1200.
  • Those having a hydroxyl group (two in the molecule) only at both ends of the molecule correspond to the (B32) bifunctional active hydrogen-containing compound constituting the (B12) urethane prepolymer.
  • Polyacryl polyol; (B3) component A (meth) acrylate ester or a polyol compound obtained by polymerizing a vinyl monomer can be mentioned. Those having a hydroxyl group (two in the molecule) only at both ends of the molecule correspond to the (B32) bifunctional active hydrogen-containing compound constituting the (B12) urethane prepolymer.
  • Thiol (B3) Component
  • thiol those described in International Publication No. WO2015 / 068798 can be used. Among them, the following are given as examples of particularly preferable ones.
  • the (B4) amino group-containing monomer is a monomer having at least one primary or secondary amino group in one molecule, and among them, it is roughly classified into aliphatic amine, alicyclic amine, and aromatic. They are classified into group amines, and specific examples thereof include the following monomers.
  • Aliphatic amine (B4) component Polyamines such as ethylenediamine, hexamethylenediamine, nonamethylenediamine, undecanemethylenediamine, dodecamethylenediamine, metaxylenediamine, 1,3-propanediamine, putrescine and diethylenetriamine.
  • Monofunctional amines such as monoethylamine, n-propylamine, diethylamine, di-n-propylamine, n-propylamine, di-n-butylamine, and n-butylamine.
  • Alicyclic amine (B4) component Polyamines such as isophoronediamine and cyclohexyldiamine.
  • Monofunctional amines such as cyclohexylamine and N-methylcyclohexylamine.
  • Monofunctional amines such as benzylamine and dibenzylamine.
  • the diamine compound can also be regarded as a bifunctional active hydrogen-containing compound having two active hydrogen-containing groups in the (B32) molecule.
  • the total amount of the component (B1) (including the components (B12) and (B13) when they are used), the component (B2), the component (B3), and the component (B4).
  • (B) composition amount 100 parts by weight of the total amount of the (A) component, 3 to 50 parts by weight of the (A) component and 50 parts by weight of the (B) composition amount. It is preferably contained in the range of to 97 parts by mass.
  • the amount of the component (A) is 5 to 45 parts by mass and the amount of the composition (B) is 55 to 95 parts by mass.
  • the component (B1) when the amount of the composition (B) is 100% by mass, the component (B1) 0 to 100% by mass, the component (B2) 0 to 100% by mass, the component (B3) 0 to 80% by mass, and the component (B4). It is preferable that the content of the component is 0 to 30% by mass, because excellent mechanical properties are exhibited. In order to exert this effect more, the component (B1) is 20 to 95% by mass, the component (B2) is 0 to 20% by mass, the component (B3) is 0 to 70% by mass, and the component (B4) is 0 to 25% by mass.
  • the component (B1) is 40 to 95% by mass
  • the component (B2) is 0 to 5% by mass
  • the component (B3) is 0 to 35% by mass
  • the component (B4) is 0 to 20% by mass.
  • the ratio of the component B1) to the total number of moles of iso (thio) cyanate groups is 1: 0.8 to 1.2.
  • ⁇ (B) Polymerizable monomer composition > ⁇ Polymerization Method / Chain Polymerization (Radical Polymerization) Reaction> Polymerizable Monomer ⁇ (B5) Radical Polymerizable Monomer>
  • the radical-polymerizable monomer (B5) (hereinafter sometimes referred to simply as the component (B5)) is not particularly limited as long as it has a radical-polymerizable group.
  • the polymerizable functional group contained in the (A) rotaxane monomer is a radical polymerizable group.
  • the (B) polymerizable monomer composition contains at least the (B5) component.
  • Radically polymerizable monomers can be roughly classified into (meth) acrylate compounds having (meth) acrylate groups, vinyl compounds having vinyl groups, and allyl compounds having allyl groups.
  • radically polymerizable monomer (B5) those described in International Publication No. 2015/068798 can be used.
  • the rotaxane monomer (A) and the polymerizable monomer composition (B) may be appropriately selected depending on the intended use.
  • the polymerizable functional group of the cyclic molecule of the (A) rotaxane monomer is preferably selected from a hydroxyl group, a thiol group, a primary amino group, and a secondary amino group
  • the (B) polymerizable monomer composition preferably contains (B1) an iso (thio) cyanate compound.
  • the polymerizable functional group of the (A) rotaxane monomer contains at least a hydroxyl group
  • the (B1) iso (thio) cyanate compound contained in the (B) polymerizable monomer composition is (B12) urethane prepolymer. It preferably contains a polymer.
  • the (B) polymerizable monomer composition preferably contains (B1) iso (thio) cyanate compound and (B4) amino group-containing monomer, and (B1) iso (thio) cyanate compound and (B4) amino group-containing monomer. More preferably, The (B1) iso (thio) cyanate compound is preferably a (B12) urethane prepolymer.
  • the amino group-containing monomer is preferably a (B12) urethane prepolymer.
  • the amino group-containing monomer is preferably 0.5 to 20 parts by mass, more preferably 3 to 15 parts by mass, relative to 100 parts by mass of the (B1) iso (thio) cyanate compound. Is.
  • the rotaxane monomer has a polymerizable functional group which is a polymerizable group such as an OH group, an amino group, an epoxy group, and an SH group
  • the composition contains the (B1) iso (thio) cyanate compound, the (C1) urethane or urea reaction catalyst or the (C2) condensing agent is used as a polymerization curing accelerator.
  • the polymerizable functional group contained in the (A) rotaxane monomer is a polymerizable functional group such as a hydroxyl group or an amino group and the (B) composition contains the (B2) epoxy group-containing monomer, (C3 ) An epoxy curing agent or a (C4) cationic polymerization catalyst for ring-opening polymerization of an epoxy group is used as a polymerization curing accelerator.
  • the (B) composition contains the (B5) radical polymerizable monomer, a (C5) radical polymerization initiator Is used as a polymerization hardening accelerator.
  • (C) polymerization and curing accelerators may be used alone or in combination of two or more, but the amount used may be a so-called catalytic amount, for example, (A) rotaxane monomer and ( A small amount in the range of 0.001 to 10 parts by mass, particularly 0.01 to 5 parts by mass, may be used per 100 parts by mass of the B) polymerizable monomer composition.
  • abrasive grains antioxidants, ultraviolet absorbers, infrared absorbers, coloring inhibitors, fluorescent dyes, dyes, photochromic compounds, pigments, fragrances, surfactants, flame retardants, plasticizers, fillers, antistatic agents, A foam stabilizer, a solvent, a leveling agent, and other additives may be added. These additives may be used alone or in combination of two or more. These additives can be contained in the curable composition, and can be contained in the cured product by polymerizing the curable composition.
  • abrasive grains specifically, particles made of a material selected from cerium oxide, silicon oxide, alumina, silicon carbide, zirconia, iron oxide, manganese dioxide, titanium oxide and diamond, or two particles made of these materials. Examples include particles of at least one kind.
  • the polymerization method a known method can be adopted.
  • the conditions described in WO 2015/068798, WO 2016/143910, and JP-A-2017-48305 can be adopted.
  • radical polymerization the conditions described in WO 2014/136804 and WO 2015/068798 can be adopted.
  • the cured product obtained by curing the curable composition of the present invention may have pores in the cured product depending on the application.
  • a pad material for polishing is known as such an application.
  • a known foaming method or the like can be used without any limitation. Examples of these methods include volatile foaming agents such as low-boiling hydrocarbons, dispersion hardening of fine hollow particles (microballoons), and mixing of heat-expandable fine particles followed by heating to foam fine particles.
  • a mechanical froth foaming method in which an inert gas such as air or nitrogen is blown during the mixing can be exemplified.
  • a foaming agent foaming method in which water or the like is added can also be applied.
  • the hollow particles that can be preferably used when the obtained cured product is formed into a foam will be described.
  • a curable composition containing the component (A) and the composition (B) may further include (D) hollow particles (hereinafter, simply referred to as “(D) component”). There is) can also be blended.
  • hollow particles hollow particles
  • microballoons can be used without any limitation.
  • particles in which a vinylidene chloride resin, a (meth) acrylate resin, an acrylonitrile-vinylidene chloride copolymer, an epoxy resin, a phenol resin, a melamine resin, a urethane resin or the like form an outer shell can be used.
  • the hollow particles (D) are preferably hollow particles composed of an outer shell part made of a urethane resin and a hollow part surrounded by the outer shell part.
  • the urethane-based resin is a resin having a urethane bond and / or a urea bond.
  • the average particle size of the hollow particles is not particularly limited, but is preferably in the following range. Specifically, it is preferably 1 ⁇ m to 500 ⁇ m, more preferably 5 ⁇ m to 200 ⁇ m, and most preferably 10 to 100 ⁇ m.
  • the density of the hollow particles is also not particularly limited, but is preferably in the following range. Specifically, it is preferably 0.01 g / cm 3 to 0.5 g / cm 3 , and more preferably 0.02 g / cm 3 to 0.3 g / cm 3 .
  • the density is the density of the hollow particles when expanded. If the hollow particles are unexpanded type particles and expand by heat when mixed with the curable composition and cured, the density when expanded is preferably the above density.
  • the blending amount of hollow particles may be appropriately determined according to the intended use. Above all, when the obtained cured product is used as a polishing pad material, the following compounding amounts are preferable. Specifically, it is preferable that the hollow particles (D) be 0.1 to 20 parts by mass, and 0.2 to 10 parts by mass, per 100 parts by mass of the total of the component (A) and the composition (B). It is more preferable that the amount is 0.5 to 8 parts by mass.
  • the polymerizable functional group of the (A) rotaxane monomer is an active hydrogen-containing group containing active hydrogen
  • the (B) polymerized monomer is an isohydric group having at least an iso (thio) cyanate group in the (B1) molecule.
  • a (thio) cyanate compound is used, a urethane resin can be obtained.
  • the cured product obtained from the curable composition of the present invention can be used in a polishing pad, and particularly when the cured product is a urethane resin, it is suitable to be used in a polishing pad because of its excellent mechanical properties. .. Further, the urethane resin can have any appropriate hardness.
  • the hardness can be measured according to the Shore method, for example, according to JIS standard (hardness test) K6253.
  • the urethane resin preferably has a Shore hardness of 20A to 90D.
  • the Shore hardness of a general urethane-based resin used for the present invention is preferably 30A to 70D, more preferably 40A to 50D (“A” means Shore “A” scale, "D” indicates hardness on the Shore "D” scale).
  • the hardness may be any hardness by changing the compounding composition and the compounding amount as necessary.
  • the urethane resin has a compressibility within a certain range in order to express the flatness of the object to be polished.
  • the compression ratio can be measured, for example, by a method based on JIS L1096.
  • the compressibility of the urethane resin is preferably 0.5% to 50%. Within the above range, excellent flatness of the object to be polished can be exhibited.
  • the urethane resin has a low hysteresis loss property or an excellent elastic recovery property, when it is used as a polishing pad, the flatness of an object to be polished and a high polishing rate can be exhibited.
  • the hysteresis loss can be measured, for example, by a method according to JIS K6251. Specifically, a test piece prepared in the shape of a dumbbell is stretched by 100% and then returned to its original state to obtain a hysteresis loss (elongation when stretched and returned to the original state and area of stress / elongation when stretched). The area of stress ⁇ 100) can be measured.
  • the hysteresis loss is not particularly limited, but is preferably 60% or less, more preferably 50% or less, and further preferably 40% or less. Since the hysteresis loss is low, it is presumed that when used as a polishing pad, the kinetic energy of abrasive grains can be uniformly utilized for polishing an object to be polished. Therefore, it becomes possible to exhibit excellent flatness and a high polishing rate. Furthermore, since the hysteresis loss is reduced, it is considered that an excellent polishing rate can be exhibited even in a soft pad.
  • the urethane resin obtained by the present invention may have a polishing layer formed of a plurality of layers.
  • the polishing layer includes a first layer having a polishing surface that comes into contact with an object to be polished when polishing and a surface facing the polishing surface of the first layer.
  • a second layer in contact with the first layer may be used.
  • the physical properties of the first layer can be adjusted because the second layer has a hardness and elastic modulus different from those of the first layer.
  • the polishability of the object to be polished can be adjusted.
  • both the first and second layers are cured products obtained from the curable composition of the present invention.
  • the urethane-based resin obtained may be in the following forms when used as a polishing pad material. Specifically, it is possible to make the so-called fixed-abrasive urethane-based resin by containing abrasive grains inside.
  • the abrasive grains include, for example, particles made of a material selected from cerium oxide, silicon oxide, alumina, silicon carbide, zirconia, iron oxide, manganese dioxide, titanium oxide and diamond, or two or more kinds of particles made of these materials. Is mentioned.
  • the method of retaining these abrasive grains is not particularly limited, but they can be retained inside the urethane resin (cured body) by, for example, dispersing the curable composition in the curable composition and then curing the curable composition.
  • the urethane resin (cured product) obtained is not particularly limited, but a groove structure can be formed on the surface thereof.
  • the groove structure has a shape for holding and renewing the slurry when polishing the member to be polished.
  • An example is a combination of grooves.
  • the method for producing the groove structure is not particularly limited.
  • a method of machine cutting using a jig such as a bite of a predetermined size a method of casting by casting a resin into a mold having a predetermined surface shape and curing, a press plate having a predetermined surface shape.
  • Examples of the method include a method of pressing a resin with a method described above, a method of manufacturing using photolithography, a method of manufacturing using a printing method, and a method of manufacturing with a laser beam using a carbon dioxide gas laser or the like.
  • a nonwoven fabric can be impregnated with a curable composition capable of forming a urethane resin (cured body) and then cured to obtain a nonwoven urethane resin polishing pad.
  • the application of the cured product obtained by curing the curable composition of the present invention can be used not only for the photochromic cured product described above and the polishing pad, but also for a cushioning material, a vibration damping material, a sound absorbing material and the like.
  • the hardened material composition of the present invention to a non-woven fabric and then curing it, it can be applied to the above-mentioned non-woven fabric polishing pad, cushioning material, damping material, or sound absorbing material.
  • dimethylformamide (DMF) was used as a developing solution, and measurement was performed under the conditions of a flow rate of 1 ml / min and a temperature of 40 ° C. Using polystyrene as a standard sample, the weight average molecular weight was determined by comparative conversion. A differential refractometer was used as the detector.
  • Rotaxane monomer RX-1 (A) rotaxane monomer / (A) rotaxane having a side chain in a cyclic molecule, and having a hydroxyl group as a polymerizable functional group and a carboxyl group as an ionic functional group at the end of the side chain.
  • Weight average molecular weight Mw (GPC) of monomer 168000 ⁇ Molecular weight of axial molecule: 10,000 ⁇ Inclusion number of cyclic molecule: 0.25 ⁇ Modification degree of side chain: 0.5 (50% when expressed as%) ⁇ Molecular weight of side chain: about 360 on average -Polymerizable functional group content
  • X polymerizable functional group introduced into the side chain
  • Z 0.15 mmol / g -Content of unreacted hydroxyl group in which side chain is not introduced: 1.52 mmol / g -Content of all polymerizable functional groups
  • Y 2.89 mmol / g
  • A Molar ratio of the ionic functional group in the total number of moles of the polymerizable functional group introduced into the side chain and the ionic functional group introduced into the side chain: 10.0 mol%
  • B Molar ratio of ionic functional groups in the total
  • RX-2 A rotaxane monomer (A) having a side chain in a cyclic molecule, a hydroxyl group as a polymerizable functional group and a carboxyl group as an ionic functional group at the end of the side chain.
  • ⁇ Molecular weight of axial molecule 10,000 ⁇ Inclusion number of cyclic molecule: 0.25 -(A)
  • RX-3 Weight average molecular weight of (A) rotaxane monomer / (A) rotaxane monomer having a side chain in a cyclic molecule, a hydroxyl group as a polymerizable functional group and a carboxyl group as an ionic functional group at the end of the side chain.
  • RX-4 Weight average molecular weight of (A) rotaxane monomer / (A) rotaxane monomer having a side chain in a cyclic molecule, a hydroxyl group as a polymerizable functional group and a carboxyl group as an ionic functional group at the end of the side chain.
  • RX-5 Weight of (A) rotaxane monomer / (A) rotaxane monomer having a side chain in the cyclic molecule, a hydroxyl group as a polymerizable functional group and a quaternary ammonium salt group as an ionic functional group at the end of the side chain Average molecular weight Mw (GPC): 169000 ⁇ Molecular weight of axial molecule: 10,000 ⁇ Inclusion number of cyclic molecule: 0.25 ⁇ Modification degree of side chain: 0.5 (50% when expressed as%) ⁇ Molecular weight of side chain: about 370 on average -Polymerizable functional group content X (polymerizable functional group introduced into the side chain): 1.36 mmol / g -Ionic functional group (quaternary ammonium salt group) content Z: 0.15 mmol / g -Content of unreacted hydroxyl group in which side chain is not introduced: 1.51 mmol / g -Content of all
  • RX-6 Weight average molecular weight of (A) rotaxane monomer / (A) rotaxane monomer having a side chain in a cyclic molecule, a hydroxyl group as a polymerizable functional group and a carboxyl group as an ionic functional group at the end of the side chain.
  • RX-7 Weight of (A) rotaxane monomer / (A) rotaxane monomer having a side chain in a cyclic molecule, a hydroxyl group as a polymerizable functional group and a sulfonic acid sodium salt as an ionic functional group at the end of the side chain Average molecular weight Mw (GPC): 169000 ⁇ Molecular weight of axial molecule: 10,000 ⁇ Inclusion number of cyclic molecule: 0.25 ⁇ Modification degree of side chain: 0.5 (50% when expressed as%) ⁇ Molecular weight of side chain: about 360 on average -Polymerizable functional group content X (polymerizable functional group introduced into the side chain): 1.36 mmol / g -Ionic functional group (sulfonic acid sodium salt) content Z: 0.15 mmol / g -Content of unreacted hydroxyl group in which side chain is not introduced: 1.51 mmol / g -Content of all polyme
  • the slurry-like reagent obtained above was allowed to stand for 12 hours at 4 ° C. Then, 50 ml of a DMF / methanol mixed solvent (volume ratio 1/1) was added, mixed and centrifuged to discard the supernatant. Further, after washing with the above DMF / methanol mixed solution, washing with methanol and centrifugation were performed to obtain a precipitate.
  • the obtained precipitate was dried by vacuum drying, then dissolved in 50 mL of DMSO (dimethylsulfoxide), and the obtained transparent solution was dropped into 700 mL of water to precipitate rotaxane. The precipitated rotaxane was collected by centrifugation and vacuum dried. Further, it was dissolved in DMSO, precipitated in water, collected, and dried to obtain a purified rotaxane.
  • the inclusion number of ⁇ -CD at this time is 0.25.
  • the inclusion number was calculated by the following method, in which rotaxane was dissolved in DMSO-d 6 and measured by a 1 H-NMR measuring device (JNM-LA500 manufactured by JEOL Ltd.).
  • X, Y and X / (YX) have the following meanings.
  • X integrated value of protons derived from the hydroxyl group of cyclodextrin of 4 to 6 ppm.
  • Y integrated value of protons derived from the methylene chain of cyclodextrin and PEG at 3 to 4 ppm.
  • X / (YX) Proton ratio of cyclodextrin to PEG First, theoretically, X / (YX) at the maximum inclusion number of 1 was calculated in advance, and from this value and the actual analysis value of the compound. The inclusion number was calculated by comparing the calculated X / (YX).
  • the introduced amount of the carboxyl group was confirmed by a 1 H-NMR measurement device (JNM-LA500 manufactured by JEOL Ltd.). That is, when the proton nuclear magnetic resonance spectrum of (A1) was measured, the following characteristic peaks were observed. A peak derived from a methylene group adjacent to the carbonyl carbon was confirmed near ⁇ 2.49 ppm. The content of the polymerizable functional group (hydroxyl value) was calculated from the hydroxyl value. However, since the carboxylic acid was introduced, the hydroxyl value was calculated by measuring the oxidation of RX-1 in advance and adding the amount. The physical properties of RX-1 were as described above.
  • the inclusion number of ⁇ -CD is 0.45 Degree of modification of side chain: 0.5 (50% when expressed as%)
  • Molecular weight of side chain about 350 on average It is a rotaxane monomer having a hydroxyl group at the end of the side chain.
  • the step (1-5) of introducing an ionic functional group of RX-1 The same method as in Example 1 was used except that the rotaxane used was RX-A, the amount of succinic anhydride was changed to 1.18 g, and the amount of triethylamine was changed to 1.18 mg.
  • the physical properties of this (A) rotaxane monomer; RX-4 were as described above.
  • reaction solution was added to 500 mL of an aqueous solution having a NaCl concentration of 0.5%, and a solid was obtained by centrifugation. Further, the solution was dissolved in 20 mL of a solution of methanol and dioxane at a weight ratio of 1: 1, added to 200 mL of hexane, and again centrifuged to obtain a solid. Then, it was dried to obtain (A) sulfonic acid group sodium salt-containing rotaxane monomer (RX-7). The amount of sodium sulfonate contained was confirmed by a 1 H-NMR measuring device (JNM-LA500 manufactured by JEOL Ltd.).
  • Pre-2 a terminal isocyanate urethane prepolymer having an iso (thio) cyanate equivalent weight of 475
  • Component (B3) Component (thi) ol compound RX: Rotaxane having side chain in cyclic molecule and hydroxyl group at side chain terminal In the preparation (production) of rotaxane containing ionic functional group (RX-1), (1-5 ) A rotaxane monomer (RX) which has not been subjected to the step of introducing an ionic functional group.
  • RX The physical properties of this rotaxane monomer; RX were as follows.
  • -Polyrotaxane weight average molecular weight Mw (GPC): 165000 ⁇ Modification degree of side chain: 0.5 (50% when expressed as%) ⁇ Molecular weight of side chain: about 350 on average -Polymerizable functional group content (polymerizable functional group introduced into the side chain): 1.55 mmol / g -Unreacted hydroxyl group with no side chain introduced: 1.55 mmol / g -Content of all polymerizable active groups: 3.10 mmol / g Ionic functional group: None A rotaxane monomer having a hydroxyl group as a polymerizable functional group at the end of the side chain.
  • Component (B4) Amino group-containing monomer MOCA: 4,4′-methylenebis (o-chloroaniline).
  • Hollow particles Hollow particles 1: hollow microcapsules 920-40 (manufactured by Nippon Philite) having a particle size of 40 ⁇ m and a density of 0.03 g / cm 3 .
  • Hollow particle 2 a urethane resin ⁇ balloon having a hollow particle size of 30 ⁇ m and a density of 0.13 g / cm 3 .
  • Example 1 A curable composition was prepared according to the following formulation using (A) a rotaxane monomer.
  • the component (A) RX-1 (26.4 parts by mass) and the component (B4) MOCA (4.8 parts by mass) were mixed at 120 ° C. to form a uniform solution, which was thoroughly degassed to 100 Cooled to 0 ° C. (solution 1).
  • the solution 1 was added to Pre-1 (68.8 parts by mass) of the component (B12) heated to 70 ° C. and uniformly mixed with a rotation / revolution agitator to obtain a curable composition.
  • the curable composition was poured into a mold and cured at 100 ° C. for 15 hours to obtain a cured product having a thickness of 2 mm.
  • Urethane prepolymer Pre-1 68.8 parts by mass
  • Amine monomer MOCA 4.8 parts by mass
  • the Taber abrasion loss of the cured product obtained above was 16 mg, and the water absorption rate was 2.4%. Each evaluation method is shown below.
  • Comparative Examples 2 A cured product was prepared and evaluated in the same manner as in Example 1 except that the curable composition having the composition shown in Table 1 was used. The blending ratio of each component and the results are summarized in Table 1. Comparative Example 1 is an example in which only the rotaxane monomer (RX) before introducing the ionic functional group is used, and Comparative Example 2 is the result of the urethane resin containing no rotaxane structure.
  • polishing pad compositions prepared using the rotaxane monomer of the present invention (having both a polymerizable functional group and an ionic functional group) were prepared.
  • the polishing pad obtained by the effect showed excellent wear resistance and water absorption characteristics.
  • Example 3 A curable composition was prepared according to the following formulation using (A) a rotaxane monomer.
  • the component (A) RX-1 (26.4 parts by mass) and the component (B4) MOCA (4.8 parts by mass) were mixed at 120 ° C. to form a uniform solution, which was thoroughly degassed to 100 Cooled to 0 ° C. (solution 1).
  • the hollow particles 1 (0.8 parts by mass) of (other components) were added to Pre-1 (68.8 parts by mass) of the component (B12) heated to 70 ° C., and the mixture was stirred by a rotation-revolution agitator. A homogeneous solution was obtained (solution 2).
  • the solution 1 was added to the solution 2 prepared above and uniformly mixed to obtain a curable composition.
  • the curable composition was poured into a mold and cured at 100 ° C. for 15 hours.
  • the urethane resin was removed from the mold and sliced to obtain a urethane resin having a thickness of 1 mm. Spiral grooves were formed on the surface of the urethane resin, and a double-sided tape was attached to the back surface to form a polishing pad having a size of 500 mm ⁇ and a thickness of 1 mm.
  • the respective blending amounts are shown in Table 2.
  • Table 2 also shows the water absorption rate of the non-foamed resin described in Example 1 (that is, the water absorption rate of the cured product obtained without containing hollow particles in this Example).
  • Polishing rate The polishing conditions are shown below. Workpiece: 4-inch sapphire wafer slurry: FUJIMI Compol 80 stock solution pressure: 4 Psi Rotation speed: 45 rpm Time: 1 hour Under the above conditions, the polishing rate ( ⁇ m / hr) when the polishing was performed was measured. The polishing rate is an average value of 100 wafers.
  • Examples 4-5, 11-16, and Comparative Examples 3-4 A urethane resin was prepared and evaluated in the same manner as in Example 3 except that the curable composition having the composition shown in Table 2 was used. The blending ratio of each component and the result are summarized in Table 2. Comparative Example 3 is an example in which only rotaxane (RX) before introducing an ionic functional group is used, and Comparative Example 4 is a result of a urethane resin containing no rotaxane structure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

The present invention relates to a curable composition comprising: (A) a rotaxane monomer which has a composite molecular structure comprising cyclic molecules and an axial molecule extending through the rings of the cyclic molecules, the cyclic molecules each having both a polymerizable functional group and an ionic functional group; and (B) a polymerizable monomer having a polymerizable functional group capable of polymerizing with the polymerizable functional groups of the rotaxane monomer (A). The present invention can provide a curable composition that gives cured objects which have high wear resistance and have improved hydrophilicity while retaining the intact mechanical properties. In particular, it is possible to provide a curable composition capable of giving polyurethane resins (cured objects) suitable for use as polishing pads.

Description

イオン性基含有ロタキンサンモノマーを含む硬化性組成物、および該硬化性組成物からなる研磨用パッドA curable composition containing an ionic group-containing rotaquinsan monomer, and a polishing pad comprising the curable composition
 本発明は、
 カチオン、又はアニオンを形成するイオン性基と、重合性基との両方を含む、新規なロタキサンモノマー、
 該ロタキサンモノマー、および該ロタキサンモノマー以外の重合性モノマー組成物を含む新規な硬化性組成物に関する。
The present invention is
A novel rotaxane monomer containing both an ionic group forming a cation or an anion and a polymerizable group,
The present invention relates to a novel curable composition containing the rotaxane monomer and a polymerizable monomer composition other than the rotaxane monomer.
 さらには、本発明は、該硬化性組成物からなる新規な硬化体、および該硬化体より得られる新規な研磨用パッドに関する。 Furthermore, the present invention relates to a novel cured product made of the curable composition and a novel polishing pad obtained from the cured product.
 研磨用部材とは、相手方の部材(被研磨部材)を研磨剤より平坦化する際に使用される材料である。具体的には、該研磨用部材とは、被研磨部材の表面を平坦化するに際し、スラリー等の研磨剤を該表面に供給しながら、該表面に摺動させながら接触させて使用するものである。例えば、研磨用パッドが含まれる。 The polishing member is a material used to planarize the other member (the member to be polished) with an abrasive. Specifically, the polishing member is used to flatten the surface of the member to be polished by supplying an abrasive such as slurry to the surface and slidingly contacting the surface. is there. For example, a polishing pad is included.
 このような研磨用部材には、ポリウレタン樹脂が数多く用いられている。一般的に研磨用部材としては、コスト低減、安定製造、及び生産性の向上から長期にわたって耐摩耗が良好な耐久性の高い材料が常に望まれる。 A lot of polyurethane resins are used for such polishing members. In general, as a polishing member, a highly durable material having good wear resistance over a long period of time is always desired from the viewpoint of cost reduction, stable production, and improvement in productivity.
 研磨用部材は、具体的には、CMP(Chemical Mechanical Polishing)法におけるパッド材(以下、研磨用パッドとする場合もある)として使用される。CMP法は、優れた表面平坦性を付与する研磨方法であり、特に、液晶ディスプレイ(LCD)、ハードディスク用ガラス基盤、シリコンウェハ、半導体デバイスの製造プロセスで採用されている。 Specifically, the polishing member is used as a pad material in the CMP (Chemical Mechanical Polishing) method (hereinafter, also referred to as a polishing pad). The CMP method is a polishing method that imparts excellent surface flatness, and is particularly used in manufacturing processes of liquid crystal displays (LCD), glass substrates for hard disks, silicon wafers, and semiconductor devices.
 前記CMP法では、通常、研磨加工時に砥粒をアルカリ溶液、又は酸溶液に分散させたスラリー(研磨液)を供給して研磨する方式が一般的に採用されている。すなわち、被研磨部材は、スラリー中の砥粒により機械的作用と、アルカリ溶液、又は酸溶液により化学的作用とにより平坦化される。通常、該スラリーを被研磨部材の表面に供給し、研磨パッド材を滑らしながら該表面に接触させることにより、該被研磨部材の表面を平坦化する。 In the CMP method, generally, a method of supplying a slurry (polishing liquid) in which abrasive grains are dispersed in an alkaline solution or an acid solution during polishing is generally adopted. That is, the member to be polished is flattened by the mechanical action of the abrasive grains in the slurry and the chemical action of the alkaline solution or the acid solution. Usually, the surface of the member to be polished is flattened by supplying the slurry to the surface of the member to be polished and bringing the polishing pad material into contact with the surface while sliding.
 前記CMP法においての研磨パッドの研磨特性としては、被研磨物の平坦性に優れ、研磨レート(研磨速度)が大きいことが要求される。さらには生産性の向上の為、耐摩耗性の向上が望まれている。 The polishing characteristics of the polishing pad in the CMP method are required to be excellent in flatness of the object to be polished and to have a high polishing rate (polishing rate). Further, in order to improve productivity, improvement in abrasion resistance is desired.
 このような研磨パッドの材質としては、ウレタン系硬化性組成物から得られる研磨材が知られている(特許文献1参照)。 As a material for such a polishing pad, an abrasive obtained from a urethane-based curable composition is known (see Patent Document 1).
 また、研磨パッド樹脂の親水性を向上させることで、スラリーの保持力を向上させ、研磨特性を向上させた研磨パッドが開示されている(特許文献2参照)。特許文献2では、親水性基(例えば、イオン性官能基)を有するポリオールを硬化剤として用いることで、優れた研磨特性を発現している。 Further, there is disclosed a polishing pad in which the holding power of the slurry is improved by improving the hydrophilicity of the polishing pad resin to improve the polishing characteristics (see Patent Document 2). In Patent Document 2, by using a polyol having a hydrophilic group (for example, an ionic functional group) as a curing agent, excellent polishing characteristics are exhibited.
特開2007-77207号公報JP-A-2007-77207 特開2007-276061号公報JP, 2007-276061, A 国際公開第2018/092826号International Publication No. 2018/092826
 しかしながら、近年、より一層の性能向上、特に、親水性が高く、耐久性が高いものが求められており、従来の技術においては改善の余地があった。 However, in recent years, there has been a demand for further performance improvement, in particular, one having high hydrophilicity and high durability, and there is room for improvement in the conventional technology.
 具体的には、特許文献2に記載のポリウレタンは、ポリオール化合物がジオール化合物であり、得られるウレタン樹脂においては、耐摩耗性等の懸念があった。また、該ポリウレタンでは、分子量の低いジオール化合物を用いている。そのため、親水性を高めるためにポリウレタンに導入した親水基が、該ポリウレタンのハードセグメント近傍に存在する確率が高くなると考えられる。その結果、十分な親水性付与効果が発揮され難い可能性がり、改善の余地があった。 Specifically, in the polyurethane described in Patent Document 2, the polyol compound is a diol compound, and the urethane resin obtained has a concern about abrasion resistance and the like. Further, the polyurethane uses a diol compound having a low molecular weight. Therefore, it is considered that the hydrophilic group introduced into the polyurethane to increase the hydrophilicity has a high probability of existing in the vicinity of the hard segment of the polyurethane. As a result, it may be difficult to exert a sufficient hydrophilicity-imparting effect, and there is room for improvement.
 したがって、本発明の目的は、耐摩耗性が高く、機械特性を損なうことなく親水性を向上した硬化体となる硬化性組成物を提供することにある。特に、研磨用パッドとして好適に使用できるポリウレタン樹脂(硬化体)となり得る硬化性組成物を提供することにある。 Therefore, an object of the present invention is to provide a curable composition having a high abrasion resistance and being a cured product having improved hydrophilicity without impairing mechanical properties. In particular, it is to provide a curable composition that can be a polyurethane resin (cured body) that can be suitably used as a polishing pad.
 本発明者等は、上記課題を解決するために鋭意検討した。近年、軸分子と、それを包接する環状分子とを含み、該環状分子が該軸分子上をスライドできるロタキサンの性能を利用した研磨パッドが開示されている(特許文献3参照)。この方法によれば、良好な耐摩耗性だけではなく、優れた研磨特性(高い研磨レート、低スクラッチ性、高平坦性)を有する硬化体を得ることができる。 The present inventors diligently studied to solve the above problems. In recent years, there has been disclosed a polishing pad that includes a shaft molecule and a cyclic molecule that includes the shaft molecule, and that utilizes the ability of a rotaxane that allows the cyclic molecule to slide on the shaft molecule (see Patent Document 3). According to this method, it is possible to obtain a cured product having not only good abrasion resistance but also excellent polishing characteristics (high polishing rate, low scratch resistance, and high flatness).
 本発明者等は、ロタキサンが導入された硬化体において、ロタキサンにさらに機能を付与することにより、より一層、高性能な硬化体が得られるのではないかと考え、様々な検討を行った。そして、環状分子が軸分子上をスライドするその特性を生かし、該環状分子に親水性を付与すること(イオン性官能基を導入すること)を検討した。 The inventors of the present invention have made various studies, thinking that a rotaxane-introduced hardened product may be further functionalized to give a higher-performance hardened product. Then, it was examined to impart hydrophilicity to the cyclic molecule (introduce an ionic functional group) by taking advantage of the characteristic that the cyclic molecule slides on the axial molecule.
 その結果、特定の構造を有する、特に、環状分子に重合性官能基とイオン性官能基との両方を有するロタキサン、及び、該ロタキサンの重合性官能基と反応しうる重合性モノマーとから得られる硬化体が、該ロタキサンの特性を最大限に生かしながら、優れた効果を発揮することを見出し、本発明を完成するに至った。 As a result, a rotaxane having a specific structure, in particular, a cyclic molecule having both a polymerizable functional group and an ionic functional group, and a polymerizable monomer capable of reacting with the polymerizable functional group of the rotaxane are obtained. It was found that the cured product exerts an excellent effect while maximizing the properties of the rotaxane, and has completed the present invention.
 すなわち、第一の本発明は、
 (A)環状分子と、該環状分子の環内を貫通する軸分子とからなる複合分子構造を有し、該環状分子が、重合性官能基、及びイオン性官能基の両方を有するロタキサンモノマーと、 
 (B)前記(A)ロタキサンモノマーの前記重合性官能基と重合し得る重合性官能基を有する重合性モノマーを含む重合性モノマー組成物
とを含有する硬化性組成物である。
That is, the first aspect of the present invention is
(A) a rotaxane monomer having a composite molecular structure composed of a cyclic molecule and an axial molecule penetrating the inside of the cyclic molecule, wherein the cyclic molecule has both a polymerizable functional group and an ionic functional group; ,
(B) A curable composition containing the polymerizable functional group of the rotaxane monomer (A) and a polymerizable monomer composition containing a polymerizable monomer having a polymerizable functional group capable of polymerization.
 第一の本発明においては、
 前記(A)ロタキサンモノマーが有する前記重合性官能基が、
 ラジカル重合性基、エポキシ基、水酸基、チオール基、第一級アミノ基、及び第二級アミノ基からなる群より選ばれる少なくとも1種の基であり、
 前記(A)ロタキサンモノマーが有する前記イオン性官能基が、
 カルボキシルイオン、スルホン酸イオン、リン酸イオン、ホスホン酸イオン、及び第4級アンモニウムカチオンからなる群より選ばれる少なくとも1種のイオンを形成し得る基であることが好ましい。
In the first invention,
The polymerizable functional group contained in the (A) rotaxane monomer is
A radically polymerizable group, an epoxy group, a hydroxyl group, a thiol group, a primary amino group, and at least one group selected from the group consisting of a secondary amino group,
The (A) rotaxane monomer has the ionic functional group,
A group capable of forming at least one ion selected from the group consisting of a carboxyl ion, a sulfonate ion, a phosphate ion, a phosphonate ion, and a quaternary ammonium cation is preferable.
 第二の本発明は、第一の本発明の硬化性組成物を硬化して得られる硬化体である。 The second invention is a cured product obtained by curing the curable composition of the first invention.
 得られる硬化体は、研磨用パッドとして好適に使用できる。 The obtained cured product can be suitably used as a polishing pad.
 第三の本発明は、(A)環状分子と、該環状分子の環内を貫通する軸分子とからなる複合分子構造を有し、該環状分子が重合性官能基、及び、イオン性官能基の両方を有するロタキサンモノマーである。  A third aspect of the present invention has (A) a complex molecular structure composed of a cyclic molecule and an axial molecule that penetrates the ring of the cyclic molecule, wherein the cyclic molecule has a polymerizable functional group and an ionic functional group. A rotaxane monomer having both of ‥
 本発明の硬化性組成物から得られる硬化体は、優れた機械特性、特に耐摩耗性が高い。さらに、該硬化体は、親水性に優れたものとなる。そのため、摺動部材用(研磨材)、例えば、研磨用パッドとして該硬化体を使用した場合には、良好な耐摩耗性を有するものとなる。加えて、該硬化体は、優れた研磨特性を有するものとなる。具体的には、該硬化体は、耐摩耗性が良好で、かつ優れた研磨レートを発現できる研磨用パッドとすることができる。 The cured product obtained from the curable composition of the present invention has excellent mechanical properties, particularly high wear resistance. Further, the cured product has excellent hydrophilicity. Therefore, when the cured product is used as a sliding member (abrasive), for example, as a polishing pad, it has good wear resistance. In addition, the cured product has excellent polishing characteristics. Specifically, the cured product can be used as a polishing pad that has good abrasion resistance and can exhibit an excellent polishing rate.
本発明で使用する(A)ロタキサンモノマーの概略図Schematic diagram of (A) rotaxane monomer used in the present invention
 本発明の硬化性組成物は、
 (A)環状分子と、該環状分子の環内を貫通する軸分子とからなる複合分子構造を有し、該環状分子が、重合性官能基、及びイオン性官能基の両方を有するロタキサンモノマー(以下、単に「(A)ロタキサンモノマー」、又は「(A)成分」とする場合もある。)と、
 (B)前記(A)ロタキサンモノマーの前記重合性官能基(前記環状分子が有する前記重合性官能基)と重合し得る重合性官能基を有する重合性モノマー(以下、単に「重合性モノマー」とする場合もある。)を含む重合性モノマー組成物(以下、単に「(B)重合性モノマー組成物」又は「(B)組成物」とする場合もある。)とを含有する硬化性組成物である。先ず、(A)ロタキサンモノマーについて説明する。
 <(A)ロタキサンモノマー;(A)成分>
 本発明で使用する(A)ロタキサンモノマーは、図1に示されているように、全体として“1”で示されている。そして、(A)ロタキサンモノマーは、鎖状の軸分子“2”と環状分子“3”から形成されている複合分子構造を有している。即ち、鎖状の軸分子“2”を複数の環状分子“3”が包接しており、環状分子“3”が有する環の内部を軸分子“2”が貫通している。従って、環状分子“3”は、軸分子“2”上を自由にスライドし得る。なお、ロタキサンの中でも環状分子が複数存在する場合を「ポリロタキサン」という場合もあるが、本明細書では、環状分子が複数存在する場合も含めて「ロタキサン」と記載する。
The curable composition of the present invention is
(A) A rotaxane monomer having a composite molecular structure composed of a cyclic molecule and an axial molecule that penetrates the ring of the cyclic molecule, wherein the cyclic molecule has both a polymerizable functional group and an ionic functional group ( Hereinafter, it may be simply referred to as “(A) rotaxane monomer” or “(A) component”.
(B) A polymerizable monomer having a polymerizable functional group capable of polymerizing with the polymerizable functional group of the rotaxane monomer (A) (the polymerizable functional group of the cyclic molecule) (hereinafter, simply referred to as “polymerizable monomer”). Curable composition containing a polymerizable monomer composition (hereinafter, may be simply referred to as “(B) polymerizable monomer composition” or “(B) composition”). Is. First, the (A) rotaxane monomer will be described.
<(A) Rotaxane monomer; (A) component>
The (A) rotaxane monomer used in the present invention is designated by "1" as a whole as shown in FIG. The (A) rotaxane monomer has a composite molecular structure formed of chain-shaped axial molecule “2” and cyclic molecule “3”. That is, a plurality of cyclic molecules "3" include a chain-shaped axial molecule "2", and the axial molecule "2" penetrates the inside of the ring of the cyclic molecule "3". Therefore, the cyclic molecule "3" is free to slide on the axial molecule "2". In addition, although the case where there are a plurality of cyclic molecules among the rotaxanes may be referred to as “polyrotaxane”, in the present specification, the case where there are a plurality of cyclic molecules is described as “rotaxane”.
 該(A)ロタキサンモノマーの環状分子“3”には、重合性官能基“6”とイオン性官能基“7”が導入されている。これらは、環に直接ついていてもよい。ただし、好ましくは環に側鎖“4”が導入され、該側鎖、特に該側鎖の末端に前記重合性官能基“6”とイオン性官能基“7”が導入されることが好ましい。 A polymerizable functional group “6” and an ionic functional group “7” have been introduced into the cyclic molecule “3” of the (A) rotaxane monomer. These may be directly attached to the ring. However, it is preferable that the side chain “4” is introduced into the ring, and the polymerizable functional group “6” and the ionic functional group “7” are introduced into the side chain, particularly the terminal of the side chain.
 前記(A)ロタキサンモノマーは、複数の環状分子の環内を鎖状の軸分子が貫通した複合分子構造を有するものである。そして、軸分子の少なくとも片端には、環状分子のすり抜けを防ぐために、該環状分子の内径よりも大きな基(嵩高い基“5”)を有していてもよい。軸分子の末端に、該嵩高い基は必ずしも存在しなくてもよい。ただし、該(A)ロタキサンモノマー自体の生産性、及び硬化体におけるスライド効果の導入効率等を勘案すると、軸分子“2”の両末端に環状分子が離脱しないように、嵩高い基“5”が存在していることが好ましい。 The (A) rotaxane monomer has a complex molecular structure in which a chain axis molecule penetrates the inside of a plurality of cyclic molecules. At least one end of the axial molecule may have a group larger than the inner diameter of the cyclic molecule (bulky group “5”) in order to prevent the cyclic molecule from slipping through. The bulky group does not necessarily need to be present at the end of the axis molecule. However, in consideration of the productivity of the (A) rotaxane monomer itself and the efficiency of introducing the sliding effect in the cured product, the bulky group “5” is prevented so that the cyclic molecule is not separated at both ends of the axial molecule “2”. Is preferably present.
 前記(A)ロタキサンモノマーにおいて、該環状分子“3”は重合性官能基“6”を有し、且つ、軸分子“2”上をスライド可能である。これにより、前記(A)ロタキサンモノマーを用いて作製した硬化体は、高い耐摩耗性を有し、優れた機械特性を発現できるものと考えられる。そのため、研磨用のパッド剤に使用すれば、優れた研磨特性、および、耐摩耗性を発現できる。 In the (A) rotaxane monomer, the cyclic molecule “3” has a polymerizable functional group “6” and can slide on the axis molecule “2”. Therefore, it is considered that the cured product produced by using the (A) rotaxane monomer has high abrasion resistance and can exhibit excellent mechanical properties. Therefore, when used as a polishing pad material, excellent polishing characteristics and abrasion resistance can be exhibited.
 さらに、前記(A)ロタキサンモノマーにおいて、環状分子“3”はイオン性官能基“7”が導入されている。このことから、このイオン性官能基も硬化体中をスライドできる。そのため、得られる硬化体の親水性を向上できるものと考えられる(硬化体における均一な親水性を維持できるものと考えられる。)。その結果、該硬化体からなる研磨用パッドは、被研磨物の平坦性を向上できるものと推定される。 Further, in the rotaxane monomer (A), the ionic functional group “7” is introduced into the cyclic molecule “3”. Therefore, this ionic functional group can also slide in the cured product. Therefore, it is considered that the hydrophilicity of the obtained cured product can be improved (the uniform hydrophilicity in the cured product can be maintained). As a result, it is presumed that the polishing pad made of the cured product can improve the flatness of the object to be polished.
 そして、スライド可能な環状分子“3”が重合性官能基“6”、及びイオン性官能基“7”を有することの効果は、以下の場合に、特に発揮されるものと考えられる。すなわち、前記の通り、該環状分子“3”が側鎖“4”を有し、この側鎖“4”に重合性官能基“6”、及びイオン性官能基“7”が導入される場合である。この中でも、該側鎖“4”の末端に重合性官能基“6”、及びイオン性官能基“7”を有する場合が好ましい。側鎖の末端に両方の基が存在することにより、より均一であり、より高性能な硬化体が得られるものと考えられる。以上のことから、本発明者等は、得られた硬化体を研磨用のパッド材に使用すれば、研磨用スラリーをより保持し易くなり、優れた研磨特性を発現できるものと考えている。 The effect that the slidable cyclic molecule “3” has the polymerizable functional group “6” and the ionic functional group “7” is considered to be particularly exerted in the following cases. That is, as described above, when the cyclic molecule “3” has a side chain “4” and a polymerizable functional group “6” and an ionic functional group “7” are introduced into the side chain “4”. Is. Among these, the case where the side chain “4” has a polymerizable functional group “6” and an ionic functional group “7” at the end is preferable. It is considered that the presence of both groups at the end of the side chain makes it possible to obtain a cured product that is more uniform and has higher performance. From the above, the present inventors believe that if the obtained cured product is used as a pad material for polishing, the polishing slurry can be more easily held and excellent polishing characteristics can be exhibited.
 前記(A)ロタキサンモノマーは、国際公開第2015-068798号等に記載の方法を利用して合成できる。前記(A)成分の構成について詳細に説明する。 The (A) rotaxane monomer can be synthesized by using the method described in WO2015 / 068798 and the like. The constitution of the component (A) will be described in detail.
 ((A)ロタキサンモノマーの軸分子“2”/嵩高い基“5”)
 前記(A)ロタキサンモノマーにおいて、軸分子としては、種々のものが知られている。例えば、軸分子としては、環状分子が有する環を貫通し得る限りにおいて直鎖状、又は分岐鎖であってよく、一般にポリマーにより形成される。具体的には、該軸分子は、国際公開第2015-068798号等に記載されている。
((A) Rotaxane monomer axial molecule “2” / bulky group “5”)
In the rotaxane monomer (A), various axial molecules are known. For example, the axial molecule may be linear or branched as long as it can penetrate the ring of the cyclic molecule, and is generally formed of a polymer. Specifically, the axis molecule is described in International Publication No. 2015-068798 and the like.
 このような軸分子を形成する好適なポリマーとしては、例えば、ポリエチレングリコール、ポリイソプレン、ポリイソブチレン、ポリブタジエン、ポリプロピレングリコール、ポリテトラヒドロフラン、ポリジメチルシロキサン、ポリエチレン、ポリプロピレン、ポリビニルアルコール又はポリビニルメチルエーテルであり、さらに、これらの中から選択されるポリマーの共重合体を挙げることができる。これらのうち、ポリエチレングリコール、ポリテトラヒドロフラン、ポリプロピレン、また、ポリエチレングリコール、ポリテトラヒドロフラン、ポリプロピレンから選択されるポリマーの共重合体が特に好ましいものとして挙げられる。 Suitable polymers forming such axial molecules are, for example, polyethylene glycol, polyisoprene, polyisobutylene, polybutadiene, polypropylene glycol, polytetrahydrofuran, polydimethylsiloxane, polyethylene, polypropylene, polyvinyl alcohol or polyvinyl methyl ether, Furthermore, the copolymer of the polymer selected from these can be mentioned. Among these, polyethylene glycol, polytetrahydrofuran, polypropylene, and copolymers of polymers selected from polyethylene glycol, polytetrahydrofuran and polypropylene are particularly preferable.
 さらに、本発明において、前記(A)ロタキサンモノマーは、軸分子の両端に封鎖基として、嵩高い基“5”を有していてもよい。下記に詳述する(B)重合性モノマー組成物と重合させることにより、ロタキサンが有するスライド効果を硬化体中に導入できれば、該嵩高い基“5”は必要ない。ただし、以下の点で軸分子の両末端に嵩高い基が存在することが好ましい。すなわち、(B)重合性モノマー組成物、及び有機溶剤中で環状分子のすり抜けを防止するために、嵩高い基“5”が存在することが好ましい。嵩高い基“5”が存在することにより、ロタキサンが有するスライド効果を、効率よく硬化体中に導入できる。さらには、前記(A)ロタキサンモノマー自体の生産性を向上できる。 Further, in the present invention, the (A) rotaxane monomer may have a bulky group “5” as a blocking group at both ends of the shaft molecule. The bulky group "5" is not necessary if the sliding effect of rotaxane can be introduced into the cured product by polymerizing with the polymerizable monomer composition (B) described in detail below. However, it is preferable that bulky groups be present at both ends of the axis molecule from the following points. That is, in order to prevent the cyclic molecule from slipping through in the polymerizable monomer composition (B) and the organic solvent, it is preferable that the bulky group “5” be present. The presence of the bulky group “5” allows the sliding effect of rotaxane to be efficiently introduced into the cured product. Furthermore, the productivity of the (A) rotaxane monomer itself can be improved.
 嵩高い基としては、軸分子からの環状分子の脱離を防ぐ基であれば、特に制限されない。中でも、嵩高さの観点から、例えば、アダマンチル基、トリチル基、フルオレセイニル基、ジニトロフェニル基、ピレニル基、トリニトロベンゼンスルホン酸、3,5-ジメトキシ安息香酸基を挙げることができる。これらのうち、特に導入のし易さなどの点で、アダマンチル基、トリニトロベンゼンスルホン酸基、3,5-ジメトキシ安息香酸基を挙げることができる。 The bulky group is not particularly limited as long as it is a group that prevents the cyclic molecule from being detached from the axial molecule. Among them, from the viewpoint of bulkiness, examples thereof include an adamantyl group, a trityl group, a fluoresceinyl group, a dinitrophenyl group, a pyrenyl group, a trinitrobenzenesulfonic acid group, and a 3,5-dimethoxybenzoic acid group. Among these, an adamantyl group, a trinitrobenzenesulfonic acid group, and a 3,5-dimethoxybenzoic acid group can be mentioned particularly in terms of ease of introduction.
 本発明において、前記(A)ロタキサンモノマーは、前記の通り、軸分子の末端に嵩高い基が存在しない擬ロタキサンモノマーであってもよい。本発明において、使用する(A)ロタキサンモノマーが擬ロタキサンモノマーである場合は、前記擬ロタキサンモノマーの軸分子の末端に重合性官能基を導入することが好ましい。前記擬ロタキサンモノマーの軸分子の末端における重合性官能基は、特に制限されるものではない。好ましい該重合性官能基としては、水酸基、チオール基、アミノ基(第一級アミノ基、又は第二級アミノ基)、(メタ)アクリレート基、ビニル基、または、アリル基が挙げられる。 In the present invention, the (A) rotaxane monomer may be a pseudo-rotaxane monomer in which a bulky group does not exist at the end of the shaft molecule, as described above. In the present invention, when the (A) rotaxane monomer used is a pseudo-rotaxane monomer, it is preferable to introduce a polymerizable functional group at the terminal of the axis molecule of the pseudo-rotaxane monomer. The polymerizable functional group at the terminal of the axis molecule of the pseudo-rotaxane monomer is not particularly limited. Examples of the preferred polymerizable functional group include a hydroxyl group, a thiol group, an amino group (primary amino group or secondary amino group), a (meth) acrylate group, a vinyl group, or an allyl group.
 軸分子の末端に該重合性官能基を導入する方法は、特に限定されるものではなく、公知の方法を採用すればよい。軸分子の末端が、元々、該重合性官能基である場合はそのまま利用することができる。また、そうでない場合には、末端を変性することで導入することができる。 The method of introducing the polymerizable functional group at the end of the axis molecule is not particularly limited, and a known method may be adopted. When the terminal of the axis molecule is originally the polymerizable functional group, it can be used as it is. If not, it can be introduced by modifying the end.
 上述した軸分子の末端に重合性官能基を導入することにより、後述する(B)重合性モノマー組成物と反応して、該軸分子がマトリックスの一部に組み込まれる。そのことにより、優れた機械特性を発現させることができる。また、結合により、軸分子の軸長が結合点を介して、他のポリマー鎖まで伸長するため、より環状分子のスライド効果を高めることができる。 By introducing a polymerizable functional group at the end of the above-mentioned axis molecule, it reacts with the (B) polymerizable monomer composition described below, and the axis molecule is incorporated into a part of the matrix. Thereby, excellent mechanical properties can be exhibited. In addition, since the axial length of the axial molecule extends to another polymer chain through the binding point by the binding, the sliding effect of the cyclic molecule can be further enhanced.
 本発明において、前記(A)ロタキサンモノマーの軸分子の分子量は、大きすぎると、他の成分、例えば、その他の(B)重合性モノマー組成物等と混合した際に、粘度が増大し、扱いが困難となる。また、場合によっては、相溶性が悪くなる傾向がある。このような観点から、軸分子の重量平均分子量(Mw)は、400~100000であり、特に1000~50000、特に好ましくは2000~30000の範囲にあることが好適である。なお、この重量平均分子量(Mw)は、下記の実施例で記載したGPC測定方法で測定した値である。当然のことながら、擬ロタキサンモノマーの場合も、軸分子の分子量は、同様の理由で400~100000であることが好ましい。 In the present invention, if the molecular weight of the axial molecule of the (A) rotaxane monomer is too large, the viscosity increases when mixed with other components, for example, other (B) polymerizable monomer composition, etc. Becomes difficult. Further, in some cases, the compatibility tends to be poor. From this point of view, the weight average molecular weight (Mw) of the axial molecule is preferably 400 to 100,000, particularly 1,000 to 50,000, and particularly preferably 2,000 to 30,000. The weight average molecular weight (Mw) is a value measured by the GPC measuring method described in the examples below. As a matter of course, also in the case of the pseudo-rotaxane monomer, the molecular weight of the axial molecule is preferably 400 to 100,000 for the same reason.
 ((A)ロタキサンモノマーの環状分子“3”)
 環状分子は、上記のような軸分子を包接し得る大きさの環を有するものである。このような環としては、例えばシクロデキストリン環、クラウンエーテル環、ベンゾクラウン環、ジベンゾクラウン環およびジシクロヘキサノクラウン環を挙げることができ、これらのうち特にシクロデキストリン環が好ましい。
((A) Rotaxane monomer cyclic molecule “3”)
The cyclic molecule has a ring having a size capable of including the axis molecule as described above. Examples of such a ring include a cyclodextrin ring, a crown ether ring, a benzocrown ring, a dibenzocrown ring and a dicyclohexanocrown ring. Of these, a cyclodextrin ring is particularly preferable.
 シクロデキストリン環には、α体(環内径0.45~0.6nm)、β体(環内径0.6~0.8nm)、γ体(環内径0.8~0.95nm)がある。特に、α-シクロデキストリン環、β-シクロデキストリンが最も好ましい。 Cyclodextrin rings include α-body (ring inner diameter 0.45-0.6 nm), β-body (ring inner diameter 0.6-0.8 nm), and γ-body (ring inner diameter 0.8-0.95 nm). In particular, α-cyclodextrin ring and β-cyclodextrin are most preferable.
 上記のような環を有する環状分子は、1つの軸分子に一つ以上の環状分子が包接することとなる。そして、1つの軸分子に包接し得る環状分子の最大包接数を1としたとき、環状分子の包接数は最大でも0.8以下であることが好ましい。環状分子の包接数が多すぎると、一つの軸分子に対して環状分子が密に存在するようになる。その結果、可動性(スライド幅)が低下し、機械特性が低下する傾向にあり、硬化体中の均一な親水性を発揮する効果が低下する傾向にある。加えて、前記(A)ロタキサンモノマー自体の分子量が増大する。そのため、硬化性組成物に使用した場合、該硬化性組成物のハンドリング性が低下する傾向にある。さらには、得られる硬化体の成形不良を発現させ安い傾向にある。以上のことから、より好ましくは、1つの軸分子が少なくとも2つ以上の環状分子で包接されており、環状分子の包接数は最大でも0.5以下の範囲にあることが好ましい。 -In the cyclic molecule having a ring as described above, one or more cyclic molecules are included in one axial molecule. When the maximum number of inclusions of the cyclic molecule that can be included in one axial molecule is 1, the inclusion number of the cyclic molecule is preferably 0.8 or less at the maximum. When the inclusion number of the cyclic molecule is too large, the cyclic molecules are densely present with respect to one axial molecule. As a result, the mobility (slide width) tends to decrease, the mechanical properties tend to deteriorate, and the effect of exhibiting uniform hydrophilicity in the cured product tends to decrease. In addition, the molecular weight of the (A) rotaxane monomer itself increases. Therefore, when used in a curable composition, the handleability of the curable composition tends to decrease. Furthermore, the resulting cured product tends to be poor in molding and tends to be inexpensive. From the above, it is more preferable that one axial molecule is clathrated by at least two or more cyclic molecules, and the number of clathrates of the cyclic molecules is at most 0.5 or less.
 なお、一つの軸分子に対する環状分子の最大包接数は、軸分子の長さ、及び環状分子の環の厚みから算出することができる。例えば、軸分子の鎖状部分がポリエチレングリコールで形成され、環状分子がα-シクロデキストリン環である場合を例にとると、次のようにして最大包接数が算出される。即ち、ポリプロピレングリコールの繰り返し単位[-CH(CH)-CHO-]の2つ分がα-シクロデキストリン環1つの厚みに近似する。従って、このポリエチレングリコールの分子量から繰り返し単位数を算出し、この繰り返し単位数の1/2が環状分子の最大包接数として求められる。この最大包接数を1.0とし、環状分子の包接数が前述した範囲に調整されることとなる。なお、この包接数の値は、平均値である。 The maximum inclusion number of the cyclic molecule with respect to one axial molecule can be calculated from the length of the axial molecule and the ring thickness of the cyclic molecule. For example, taking the case where the chain portion of the axial molecule is formed of polyethylene glycol and the cyclic molecule is an α-cyclodextrin ring as an example, the maximum inclusion number is calculated as follows. That is, two repeating units of polypropylene glycol [—CH (CH 3 ) —CH 2 O—] approximate the thickness of one α-cyclodextrin ring. Therefore, the number of repeating units is calculated from the molecular weight of this polyethylene glycol, and 1/2 of this repeating unit is determined as the maximum number of inclusions of the cyclic molecule. This maximum inclusion number is set to 1.0, and the inclusion number of the cyclic molecule is adjusted within the above range. The value of the inclusion number is an average value.
 ((A)ロタキサンモノマーにおける環状分子“3”が有する側鎖“4”)
 また、本発明で使用する(A)ロタキサンモノマーにおいては、上述した環状分子が有する環は、側鎖が導入されていてもよい。この側鎖は、図1において”4”で示されている。
((A) Side chain “4” possessed by cyclic molecule “3” in rotaxane monomer)
In the rotaxane monomer (A) used in the present invention, a side chain may be introduced into the ring of the above cyclic molecule. This side chain is indicated by "4" in FIG.
 上記の側鎖としては、特に制限されるものではないが、炭素数が3~20の範囲にある有機鎖の繰り返しにより形成されていることが好適である。また、側鎖の種類や数平均分子量が異なるものが環状分子に導入されていてもよい。このような側鎖の数平均分子量は45~10000、好ましくは55~5000、より好ましくは55~1500の範囲である。この側鎖の数平均分子量は、側鎖の導入時に使用する物質の量により調整ができ、計算により求めることができる。また、得られた(A)ロタキサンモノマーから求める場合には、H-NMRの測定から求めることができる。 Although the side chain is not particularly limited, it is preferably formed by repeating an organic chain having a carbon number of 3 to 20. Further, those having different side chains and different number average molecular weights may be introduced into the cyclic molecule. The number average molecular weight of such a side chain is in the range of 45 to 10000, preferably 55 to 5000, and more preferably 55 to 1500. The number average molecular weight of this side chain can be adjusted by the amount of the substance used when introducing the side chain, and can be calculated. Further, when it is obtained from the obtained (A) rotaxane monomer, it can be obtained from 1 H-NMR measurement.
 側鎖が短過ぎると(側鎖の分子量が小さ過ぎると)、その他の(B)重合性モノマー組成物との相溶性が低下する傾向にある。また、側鎖が短過ぎると、側鎖に重合性官能基、及びイオン性官能基を導入する場合には、得られる硬化体の機械的特性が低下する傾向にあり、硬化体中における均一な親水性が発揮される効果が低下する傾向にある。その反対に、側鎖が長すぎると、(B)重合性モノマー組成物と混合した際に粘度が増粘してしまい、硬化体の外観不良を引き起こしたり、硬化体の硬度が低下する傾向にある。 If the side chain is too short (the molecular weight of the side chain is too small), the compatibility with other (B) polymerizable monomer composition tends to decrease. Further, if the side chain is too short, when introducing a polymerizable functional group, and an ionic functional group into the side chain, the mechanical properties of the resulting cured product tend to deteriorate, and uniform in the cured product. The effect of exhibiting hydrophilicity tends to decrease. On the other hand, if the side chain is too long, the viscosity will increase when mixed with the polymerizable monomer composition (B), which tends to cause a poor appearance of the cured product or decrease the hardness of the cured product. is there.
 前記側鎖は、環状分子が有する反応性官能基を利用し、この反応性官能基を修飾することによって導入される(反応性官能基と反応することによって導入される)。中でも、環状分子が水酸基を有し、該水酸基が反応して環状分子に側鎖が導入された(A)ロタキサンモノマーが好ましい。例えば、α-シクロデキストリン環は、反応性官能基として18個のOH基(水酸基)を有している。このOH基を介して(このOH基を反応させて)側鎖が導入される。即ち、1つのα-シクロデキストリン環に対しては最大で18個の側鎖を導入できることとなる。前記側鎖の機能を十分に発揮させるためには、このような環が有する全反応性官能基数の4%~70%(修飾度)が、側鎖で修飾されていることが好ましい(環が有する全反応性官能基数の4%~70%に側鎖が導入されていることが好ましい。)。なお、当然のことではあるが、この側鎖が導入された割合(側鎖の修飾度)は、平均値である。 The side chain is introduced by utilizing the reactive functional group of the cyclic molecule and modifying this reactive functional group (introduced by reacting with the reactive functional group). Among them, the (A) rotaxane monomer in which the cyclic molecule has a hydroxyl group and the hydroxyl group reacts to introduce a side chain into the cyclic molecule is preferable. For example, the α-cyclodextrin ring has 18 OH groups (hydroxyl groups) as reactive functional groups. A side chain is introduced via this OH group (reacting this OH group). That is, a maximum of 18 side chains can be introduced into one α-cyclodextrin ring. In order to fully exhibit the function of the side chain, it is preferable that 4% to 70% (modification degree) of the total number of reactive functional groups of such a ring is modified by the side chain. It is preferable that a side chain is introduced into 4% to 70% of the total number of reactive functional groups possessed. In addition, as a matter of course, the ratio of the introduced side chains (the degree of modification of the side chains) is an average value.
 なお、下記に詳述するが、環状分子の反応性官能基(例えば、水酸基)は、側鎖が有するOH基(水酸基)よりも反応性が低い。そのため、修飾度が低くても相溶性の低下、ブリードアウトの問題は生じ難い。そのため、修飾度は、上記範囲であれば、より優れた効果を発揮する。 As will be described in detail below, the reactive functional group (eg, hydroxyl group) of the cyclic molecule has lower reactivity than the OH group (hydroxyl group) of the side chain. Therefore, even if the degree of modification is low, the problems of reduced compatibility and bleed-out are unlikely to occur. Therefore, if the modification degree is in the above range, a more excellent effect is exhibited.
 なお、本発明においては、水酸基が重合性官能基に該当する場合には、以下のように見なす。例えば、環状分子がシクロデキストリン環であって、該シクロデキストリン環が有する水酸基において、側鎖が導入されていない水酸基は、重合性官能基と見なすものとする。因みに、上記α-シクロデキストリン環の18個のOH基の内の9個に側鎖が結合している場合、その修飾度(導入度)は50%となる。 In addition, in the present invention, when a hydroxyl group corresponds to a polymerizable functional group, it is considered as follows. For example, the cyclic molecule is a cyclodextrin ring, and among the hydroxyl groups of the cyclodextrin ring, a hydroxyl group in which a side chain is not introduced is regarded as a polymerizable functional group. By the way, when the side chain is bonded to 9 of the 18 OH groups of the α-cyclodextrin ring, the modification degree (introduction degree) is 50%.
 本発明において、上記のような側鎖(有機鎖)は、分子量が前述した範囲内にある場合、直鎖状であってもよいし、分枝状であってもよい。側鎖の導入については、国際公開第2015/159875号に開示されている手法や化合物を適宜使用できる。具体的には、開環重合;ラジカル重合;カチオン重合;アニオン重合;原子移動ラジカル重合、RAFT重合、NMP重合などのリビングラジカル重合などが利用できる。上記手法により、適宜選択された化合物を前記環が有する反応性官能基に反応させることによって適宜の大きさの側鎖を導入することができる。 In the present invention, the side chain (organic chain) as described above may be linear or branched if the molecular weight is within the above range. Regarding the introduction of side chains, the methods and compounds disclosed in WO 2015/159875 can be appropriately used. Specifically, ring-opening polymerization; radical polymerization; cationic polymerization; anionic polymerization; living radical polymerization such as atom transfer radical polymerization, RAFT polymerization, and NMP polymerization can be used. By the method described above, a side chain of an appropriate size can be introduced by reacting an appropriately selected compound with the reactive functional group of the ring.
 例えば、開環重合により、ラクトンや環状エーテル等の環状化合物に由来する側鎖を導入することができる。ラクトンや環状エーテル等の環状化合物を開環重合して導入した側鎖は、該側鎖の末端に活性水素を持つ基としてOH基が導入されることとなる。 For example, by ring-opening polymerization, side chains derived from cyclic compounds such as lactones and cyclic ethers can be introduced. In the side chain introduced by ring-opening polymerization of a cyclic compound such as lactone or cyclic ether, an OH group is introduced as a group having active hydrogen at the end of the side chain.
 該環状化合物の中でも、入手が容易であり、反応性が高く、さらには大きさ(分子量)の調整が容易であるという観点から、環状エーテル、ラクトンを用いることが好ましい。好適な環状エーテル、ラクトンの環状化合物は国際公開第2015/159875号に開示されている。 Among the cyclic compounds, cyclic ethers and lactones are preferably used from the viewpoints of easy availability, high reactivity, and easy adjustment of size (molecular weight). Suitable cyclic ether and lactone cyclic compounds are disclosed in WO 2015/159875.
 上記の環状化合物は、単独で使用することができ、また複数種を併用することもできる。 The above cyclic compounds can be used alone or in combination of two or more.
 本発明において、好適に使用される側鎖導入化合物はラクトン化合物であり、ε-カプロラクトン、α-アセチル-γ-ブチロラクトン、α-メチル-γ-ブチロラクトン、γ-バレロラクトン、γ-ブチロラクトン等のラクトン化合物が特に好適であり、もっとも好ましいものはε-カプロラクトンである。 The side chain-introducing compound preferably used in the present invention is a lactone compound, and is a lactone such as ε-caprolactone, α-acetyl-γ-butyrolactone, α-methyl-γ-butyrolactone, γ-valerolactone, γ-butyrolactone. The compound is particularly preferred, most preferred is ε-caprolactone.
 また、開環重合により環状化合物を反応させて側鎖を導入する場合、環に結合している反応性官能基(例えば水酸基)は反応性に乏しく、特に立体障害などにより大きな分子を直接反応させることが困難な場合がある。このような場合には、例えば、カプロラクトンなどを反応させるために、プロピレンオキシドなどの低分子化合物を官能基と反応させてのヒドロキシプロピル化を行い、反応性に富んだ官能基(水酸基)を導入する。その後、前述した環状化合物を用いての開環重合により、側鎖を導入するという手段を採用することができる。この場合、ヒドロキシプロピル化した部分も側鎖と見なすことができる。 When a side chain is introduced by reacting a cyclic compound by ring-opening polymerization, the reactive functional group (for example, hydroxyl group) bonded to the ring has poor reactivity, and a large molecule is directly reacted particularly due to steric hindrance. Can be difficult. In such a case, for example, in order to react with caprolactone or the like, a low molecular weight compound such as propylene oxide is reacted with a functional group for hydroxypropylation to introduce a highly reactive functional group (hydroxyl group). To do. Then, a means of introducing a side chain by ring-opening polymerization using the above-mentioned cyclic compound can be adopted. In this case, the hydroxypropylated portion can also be regarded as a side chain.
 この他、開環重合により、環状アセタール、環状アミン、環状カーボネート、環状イミノエーテル、環状チオカーボネート等の環状化合物に由来する側鎖を導入することにより、活性水素を有する基(活性水素含有基)を有する側鎖を導入することができる。これらの中でも、好適な環状化合物の具体例は、国際公開第2015/068798号に記載されているものである。 In addition, by ring-opening polymerization, by introducing a side chain derived from a cyclic compound such as a cyclic acetal, a cyclic amine, a cyclic carbonate, a cyclic imino ether, and a cyclic thiocarbonate, a group having active hydrogen (active hydrogen-containing group) A side chain with can be introduced. Among these, specific examples of suitable cyclic compounds are described in WO 2015/068798.
 また、ラジカル重合を利用して環状分子に側鎖を導入する方法は、以下の通りである。ロタキサンモノマーの環状分子が有している環は、ラジカル開始点となる活性部位を有していない。このため、ラジカル重合性化合物を反応させるに先立って、環が有している官能基(例えば、OH基)にラジカル開始点を形成するための化合物を反応させて、ラジカル開始点となる活性部位を形成しておく必要がある。 Also, the method of introducing a side chain into a cyclic molecule using radical polymerization is as follows. The ring of the cyclic molecule of the rotaxane monomer does not have an active site that serves as a radical initiation point. Therefore, prior to reacting the radical polymerizable compound, a compound for forming a radical initiation point is reacted with a functional group (eg, OH group) of the ring to form an active site serving as a radical initiation point. Need to be formed.
 上記のようなラジカル開始点を形成するための化合物としては、有機ハロゲン化合物が代表的である。例えば、2-ブロモイソブチリルブロミド、2-ブロモブチル酸、2-ブロモプロピオン酸、2-クロロプロピオン酸、2-ブロモイソ酪酸、エピクロロヒドリン、エピブロモヒドリン、2-クロロエチルイソシアネートなどを挙げることができる。即ち、かかる有機ハロゲン化合物は、環状分子の環が有している官能基との縮合反応により、該環に結合し、該環にハロゲン原子を含む基(有機ハロゲン化合物残基)を導入する。この有機ハロゲン化合物残基には、ラジカル重合に際して、ハロゲン原子の移動等によりラジカルが生成し、これがラジカル重合開始点となって、ラジカル重合が進行することとなる。 Organohalogen compounds are typical as compounds for forming the above radical initiation points. For example, 2-bromoisobutyryl bromide, 2-bromobutyric acid, 2-bromopropionic acid, 2-chloropropionic acid, 2-bromoisobutyric acid, epichlorohydrin, epibromohydrin, 2-chloroethylisocyanate, etc. be able to. That is, such an organic halogen compound is bonded to the ring by a condensation reaction with a functional group contained in the ring of the cyclic molecule, and a group containing a halogen atom (organic halogen compound residue) is introduced into the ring. At the time of radical polymerization, radicals are generated in the residue of the organic halogen compound due to migration of halogen atoms and the like, and this serves as a starting point of radical polymerization, and radical polymerization proceeds.
 また、上記のようなラジカル重合開始点となる活性部位を有する基(有機ハロゲン化合物残基)は、例えば環が有している水酸基に、アミン、イソシアネート、イミダゾールなどの官能基を有する化合物を反応させ、水酸基以外の他の官能基を導入し、このような他の官能基に前述した有機ハロゲン化合物を反応させて導入することもできる。 In addition, the group (organic halogen compound residue) having an active site serving as a radical polymerization initiation point as described above is obtained by reacting a compound having a functional group such as amine, isocyanate and imidazole with a hydroxyl group of a ring. It is also possible to introduce a functional group other than the hydroxyl group, and to introduce such a functional group by reacting the above-mentioned organic halogen compound.
 また、ラジカル重合により側鎖を導入するために用いるラジカル重合性化合物としては、エチレン性不飽和結合を有する基、例えば、(メタ)アクリレート基、ビニル基、スチリル基等の官能基を少なくとも1種有する化合物(以下、エチレン性不飽和モノマーと呼ぶ)が好適に使用される。また、エチレン性不飽和モノマーとしては、末端エチレン性不飽和結合を有するオリゴマーもしくはポリマー(以下、マクロモノマーと呼ぶ)も使用することができる。このようなエチレン性不飽和モノマーとしては、好適なエチレン性不飽和モノマーの具体例は、国際公開第WO2015/068798号に記載されているものが使用できる。 The radical polymerizable compound used for introducing a side chain by radical polymerization is a group having an ethylenically unsaturated bond, for example, at least one functional group such as a (meth) acrylate group, a vinyl group or a styryl group. A compound having (hereinafter referred to as an ethylenically unsaturated monomer) is preferably used. Further, as the ethylenically unsaturated monomer, an oligomer or polymer having a terminal ethylenically unsaturated bond (hereinafter referred to as macromonomer) can also be used. As such an ethylenically unsaturated monomer, specific examples of suitable ethylenically unsaturated monomers include those described in International Publication No. WO2015 / 068798.
 <(A)ロタキサンモノマー 重合性官能基(側鎖が有する重合性官能基“6”)>
 前記(A)ロタキサンモノマーは、環状分子が重合性官能基を有している必要がある。そして、より効果の優れた硬化体を得るためには、該重合性官能基は、前記側鎖を介して環状分子に導入されていることが好ましい。具体的には、前記方法で側鎖を導入した後に、側鎖の官能基を他の重合性官能基に変性させることができる。
<(A) Rotaxane monomer polymerizable functional group (polymerizable functional group “6” in side chain)>
In the (A) rotaxane monomer, the cyclic molecule needs to have a polymerizable functional group. Then, in order to obtain a cured product with more excellent effect, it is preferable that the polymerizable functional group is introduced into the cyclic molecule through the side chain. Specifically, after introducing the side chain by the above method, the functional group of the side chain can be modified to another polymerizable functional group.
 本発明においては、側鎖の官能基と他の化合物とを反応させて、該化合物に由来する構造を導入する反応を「変性」とする場合もある。変性に用いる化合物は、特に、側鎖の官能基と反応可能な化合物であれば使用できる。該化合物を選定することで、側鎖に様々な重合性官能基を導入したり、重合性基を有さない基に変性することも可能である。 In the present invention, the reaction of reacting the functional group of the side chain with another compound to introduce a structure derived from the compound may be referred to as “denaturation”. The compound used for the modification may be any compound that can react with the functional group of the side chain. By selecting the compound, it is possible to introduce various polymerizable functional groups into the side chain or to modify it into a group having no polymerizable group.
 上述した説明から理解されるように、環状化合物の環に導入される側鎖は、様々な官能基を有していることもある。 As can be understood from the above description, the side chain introduced into the ring of the cyclic compound may have various functional groups.
 さらに、側鎖導入のために用いる化合物が有している官能基の種類によっては、この側鎖の一部が、他の軸分子が有している環状分子の環の官能基に結合し、架橋構造を形成することもある。 Furthermore, depending on the type of functional group that the compound used for introducing the side chain has, a part of this side chain is bonded to the functional group of the ring of the cyclic molecule that the other axis molecule has, It may also form a crosslinked structure.
 <環状分子が有する好適な重合性官能基、およびその数>
 環状分子が有する重合性官能基としては、特に限定されない。本発明においては、好ましい重合性官能基は、ラジカル重合性基、エポキシ基、水酸基(OH基)、チオール基(SH基)、第一級アミノ基(-NH)、及び第二級アミノ基(-NHR;Rは置換基、例えば、アルキル基)からなる群より選ばれる少なくとも1種の基である。上記ラジカル重合性基としては、例えば、(メタ)アクリレート基、ビニル基、又はアリル基が挙げられる。これら重合性官能基の中でも、最も好ましいのは、水酸基である。水酸基の場合には、環状分子の官能基を反応させた際に導入される側鎖の末端が水酸基の場合には、そのまま重合性官能基とすればよい。また、環状分子が元来水酸基を有する場合には、その水酸基がそのまま重合性官能基となる。ただし、反応性等を考えると、側鎖の末端が重合性官能基(水酸基)となることが好ましい。
<Suitable Polymerizable Functional Group of Cyclic Molecule and Its Number>
The polymerizable functional group contained in the cyclic molecule is not particularly limited. In the present invention, preferred polymerizable functional groups are radically polymerizable groups, epoxy groups, hydroxyl groups (OH groups), thiol groups (SH groups), primary amino groups (—NH 2 ), and secondary amino groups. (-NHR; R is at least one group selected from the group consisting of substituents such as alkyl groups). Examples of the radically polymerizable group include a (meth) acrylate group, a vinyl group, or an allyl group. Of these polymerizable functional groups, the most preferred is a hydroxyl group. In the case of a hydroxyl group, when the end of the side chain introduced when the functional group of the cyclic molecule is reacted is a hydroxyl group, it may be used as it is as a polymerizable functional group. Further, when the cyclic molecule originally has a hydroxyl group, the hydroxyl group directly serves as a polymerizable functional group. However, considering the reactivity and the like, it is preferable that the terminal of the side chain is a polymerizable functional group (hydroxyl group).
 前記(A)ロタキサンモノマーにおいて、環状分子が有する重合性官能基の数は、特に制限されるものではない。中でも、マトリックスとなる樹脂中にロタキサン部分が導入されて優れた効果を発揮するためには、環状分子に少なくとも2つの重合性官能基を含むことが好ましい。 In the rotaxane monomer (A), the number of polymerizable functional groups contained in the cyclic molecule is not particularly limited. Among them, it is preferable that the cyclic molecule contains at least two polymerizable functional groups in order to introduce the rotaxane moiety into the resin serving as the matrix and to exert an excellent effect.
 該重合性官能基は、前記環状分子が有するもの、又は前記環状分子に導入された前記側鎖が有するものである。この中でも、反応性を考慮すると、側鎖の末端が重合性官能基となることが好ましい。そして、(A)ロタキサンモノマー1分子当たり、側鎖の末端に導入された該重合性官能基が2つ以上存在することが好ましい。なお、重合性官能基の数の上限は、特に制限されるものではない。中でも、重合性官能基の数の上限は、側鎖の末端に導入された該重合性官能基のモル数を(A)ロタキサンモノマーの重量平均分子量(Mw)で割った値(以下、重合性官能基含有量Xともいう)が、10mmol/gとなる数であることが好ましい。重合性官能基含有量Xは、上記したとおり、側鎖の末端に導入された重合性官能基のモル数を前記(A)ロタキサンモノマーの重量平均分子量(Mw)で割った値であり、言い換えると、前記(A)ロタキサンモノマー1g当たりの、側鎖の末端に導入された重合性官能基のモル数を指す。 The polymerizable functional group is contained in the cyclic molecule or contained in the side chain introduced into the cyclic molecule. Among these, in consideration of reactivity, it is preferable that the terminal of the side chain is a polymerizable functional group. Further, it is preferable that two or more of the polymerizable functional groups introduced at the end of the side chain are present per molecule of the (A) rotaxane monomer. The upper limit of the number of polymerizable functional groups is not particularly limited. Among them, the upper limit of the number of polymerizable functional groups is a value obtained by dividing the number of moles of the polymerizable functional groups introduced at the end of the side chain by the weight average molecular weight (Mw) of the (A) rotaxane monomer (hereinafter, the polymerizable value). It is preferable that the content of the functional group content X is 10 mmol / g. As described above, the polymerizable functional group content X is a value obtained by dividing the number of moles of the polymerizable functional group introduced at the end of the side chain by the weight average molecular weight (Mw) of the (A) rotaxane monomer. And the number of moles of the polymerizable functional group introduced at the terminal of the side chain per 1 g of the (A) rotaxane monomer.
 さらに好ましくは、重合性官能基含有量Xは、0.2mmol~8mmol/gである。特に好ましくは、重合性官能基含有量Xは、0.5mmol~5mmol/gである。なお、重量平均分子量は、下記に詳述するゲルパーミエーションクロマトグラフィー(GPC)で測定した値である。 More preferably, the content X of the polymerizable functional group is 0.2 mmol to 8 mmol / g. Particularly preferably, the content X of the polymerizable functional group is 0.5 mmol to 5 mmol / g. The weight average molecular weight is a value measured by gel permeation chromatography (GPC) described in detail below.
 また、側鎖に導入されていない重合性官能基(例えば、環状分子が有する重合性官能基)、および前記側鎖に導入された重合性官能基の全重合性官能基の含有量Yは、以下の範囲であることが好ましい。具体的には、全重合性官能基の含有量Yが0.2mmol~20mmol/gとなることが好ましい。より好ましくは、全重合性官能基の含有量Yは0.4mmol~16mmol/gであり、特に好ましくは1mmol~10mmol/gである。全重合性官能基の含有量Yは、側鎖に導入されていない重合性官能基のモル数と側鎖に導入された重合性官能基のモル数の合計を(A)ロタキサンモノマーの重量平均分子量(Mw)で割った値である。
 なお、前記全重合性官能基には、例えば、側鎖が導入されていない環状分子が有する重合性官能基(具体的には、シクロデキストリン環における側鎖が導入されていない未修飾の水酸基)を含むものである。
Further, the polymerizable functional group not introduced into the side chain (for example, the polymerizable functional group that the cyclic molecule has), and the content Y of all the polymerizable functional groups of the polymerizable functional group introduced into the side chain, The following range is preferable. Specifically, the total polymerizable functional group content Y is preferably 0.2 mmol to 20 mmol / g. The content Y of all polymerizable functional groups is more preferably 0.4 mmol to 16 mmol / g, and particularly preferably 1 mmol to 10 mmol / g. The content Y of all the polymerizable functional groups is the total of the number of moles of the polymerizable functional groups not introduced into the side chain and the number of moles of the polymerizable functional groups introduced into the side chain (A) the weight average of the rotaxane monomer. It is a value divided by the molecular weight (Mw).
Incidentally, the all polymerizable functional group, for example, a polymerizable functional group having a cyclic molecule in which the side chain is not introduced (specifically, an unmodified hydroxyl group in which the side chain in the cyclodextrin ring is not introduced) Is included.
 なお、当然のことではあるが、以上の説明した重合性官能基のモル数は、平均値である。 Note that, of course, the number of moles of the polymerizable functional group described above is an average value.
 GPCの測定条件によっては、環状分子が脱離する場合もある。特に、(A)ロタキサンモノマーが擬ロタキサンモノマーである場合には、そうなる可能性が高くなる。そのため、GPC測定を行う場合には、先ず、その測定条件で環状分子が脱離するかどうかを確認する。脱離が生じない場合には、そのまま測定する。一方、脱離する場合には、予備的な実験として、(A)ロタキサンモノマーの末端を嵩高い基で封止してGPCを測定し、該嵩高い基分の分子量を勘案することもできる。 Depending on GPC measurement conditions, cyclic molecules may be desorbed. In particular, when the (A) rotaxane monomer is a pseudo-rotaxane monomer, such a possibility is high. Therefore, when performing GPC measurement, it is first confirmed whether the cyclic molecule is desorbed under the measurement conditions. If desorption does not occur, measure as it is. On the other hand, in the case of elimination, as a preliminary experiment, the end of the (A) rotaxane monomer may be sealed with a bulky group and GPC may be measured to consider the molecular weight of the bulky group.
 <(A)ロタキサンモノマー イオン性官能基(側鎖が有するイオン性官能基“7”)>
 前記(A)ロタキサンモノマーは、環状分子がイオン性官能基を有している必要がある。そして、より効果の優れた硬化体を得るためには、該イオン性官能基は、前記側鎖を介して環状分子に導入されていることが好ましい。特に好ましくは、該イオン性官能基が側鎖の末端に導入される場合である。該イオン性官能基を導入するためには、具体的には、前記方法で側鎖を導入した後に、側鎖の官能基を他のイオン性官能基に変性させればよい。
<(A) Rotaxane monomer ionic functional group (ionic functional group “7” in side chain)>
In the rotaxane monomer (A), the cyclic molecule needs to have an ionic functional group. Then, in order to obtain a cured product with more excellent effect, it is preferable that the ionic functional group is introduced into the cyclic molecule through the side chain. Particularly preferably, the ionic functional group is introduced at the end of the side chain. To introduce the ionic functional group, specifically, after introducing the side chain by the above method, the functional group of the side chain may be modified to another ionic functional group.
 本発明において、イオン性官能基は、カチオン、又はアニオンとなる部分を有している基を指す。具体的には、カルボキシルイオン、スルホン酸イオン、リン酸イオン、ホスホン酸イオン、及び第4級アンモニウムカチオンからなる群より選ばれる少なくとも1種のイオンを形成し得る基であることが好ましい。さらに具体的には、カルボキシル基又はカルボキシル塩基(カルボキシル基の塩基)、スルホン酸基又はスルホン酸塩基(スルホン酸基の塩基)、リン酸基又はリン酸塩基(リン酸基の塩基)、ホスホン酸基又はホスホン酸塩基(ホスホン酸基の塩基)、並びに4級アンモニウムカチオン基又は4級アンモニウム塩基である。 In the present invention, the ionic functional group refers to a group having a portion which becomes a cation or an anion. Specifically, a group capable of forming at least one ion selected from the group consisting of a carboxyl ion, a sulfonate ion, a phosphate ion, a phosphonate ion, and a quaternary ammonium cation is preferable. More specifically, carboxyl group or carboxyl group (carboxyl group base), sulfonic acid group or sulfonate group (sulfonic acid group base), phosphoric acid group or phosphate group (phosphoric acid group base), phosphonic acid Groups or phosphonate groups (bases of phosphonate groups), as well as quaternary ammonium cation groups or quaternary ammonium bases.
 本発明において、環状分子にイオン性官能基を導入する方法は、特に限定されるものではない。下記に導入方法の一例を例示する。上記にも記載したが、導入方法は限定されず、下記の導入方法以外の方法でも(A)ロタキサンモノマーの環状分子にイオン性官能基を導入することもできる。 In the present invention, the method of introducing an ionic functional group into the cyclic molecule is not particularly limited. The following is an example of the introduction method. As described above, the introduction method is not limited, and the ionic functional group can be introduced into the cyclic molecule of the (A) rotaxane monomer by a method other than the following introduction methods.
 <イオン性官能基(その塩基を含む)の導入例>
 カルボン酸基やスルホン酸基を導入するには、酸無水物の開環反応を利用することができる。例えば、環状分子が反応性基として水酸基(環状分子が直接水酸基を有していてもよいし、環状分子に導入された側鎖が水酸基を有してもよい)を有する場合、酸無水物を反応させることでカルボキシル基を導入することが可能である。同様に、OH基にスルトン化合物と反応させることでスルホン酸を導入することができる。
<Example of introduction of ionic functional group (including its base)>
To introduce a carboxylic acid group or a sulfonic acid group, a ring-opening reaction of an acid anhydride can be used. For example, when the cyclic molecule has a hydroxyl group as a reactive group (the cyclic molecule may have a hydroxyl group directly or the side chain introduced into the cyclic molecule may have a hydroxyl group), an acid anhydride is used. It is possible to introduce a carboxyl group by reacting. Similarly, a sulfonic acid can be introduced by reacting an OH group with a sultone compound.
 酸無水物化合物の具体例を挙げると、無水コハク酸、ブチルこはく無水物、デシルこはく酸無水物、2-ドデセン-1-イルこはく酸無水物、2,2-ジメチルこはく酸無水物、ヘキサデシルこはく酸無水物、2-ヘキセン-1-イルこはく酸無水物、イソオクタデシルこはく酸無水物、イソオクタデセニルこはく酸無水物、(2-メチル-2-プロぺニル)こはく酸無水物、オクタデシルこはく酸無水物、2-オクテニルこはく酸無水物、n-オクチルこはく酸無水物、(2,7-オクタジエン-1-イル)こはく酸無水物、テトラデセニルこはく酸無水物、テトラデシルこはく酸無水物、テトラプロぺニルこはく酸無水物、ドデシルこはく酸無水物、グルタル酸無水物、3,3-ジメチルグルタル無水物、2,2-ジメチルグルタル酸無水物、3-メチルグルタル酸無水物、1,4-ジオキサン-2,6-ジオン、無水マレイン酸、無水フタル酸等が挙げられる。 Specific examples of the acid anhydride compound include succinic anhydride, butylsuccinic anhydride, decylsuccinic anhydride, 2-dodecen-1-ylsuccinic anhydride, 2,2-dimethylsuccinic anhydride, and hexadecylsuccinic anhydride. Acid anhydride, 2-hexen-1-yl succinic anhydride, isooctadecyl succinic anhydride, isooctadecenyl succinic anhydride, (2-methyl-2-propenyl) succinic anhydride, octadecyl Succinic anhydride, 2-octenyl succinic anhydride, n-octyl succinic anhydride, (2,7-octadiene-1-yl) succinic anhydride, tetradecenyl succinic anhydride, tetradecyl succinic anhydride, tetrapro Penyl succinic anhydride, dodecyl succinic anhydride, glutaric anhydride, 3,3-dimethyl glutaric anhydride, 2,2-dimethyl glutaric acid Anhydride, 3-methyl glutaric anhydride, 1,4-dioxane-2,6-dione, maleic anhydride, phthalic anhydride is.
 これら酸無水物化合物と環状分子が有する水酸基とを反応させて、カルボキシル基を環状分子に導入することができる。このカルボキシル基をさらに(中和)反応させて、カルボキシル塩基とすることもできる。 The carboxyl group can be introduced into the cyclic molecule by reacting these acid anhydride compounds with the hydroxyl group of the cyclic molecule. This carboxyl group can be further (neutralized) reacted to form a carboxyl base.
 スルトン化合物の具体例を挙げると、1,3-プロパンスルトン、1,4-ブタンスルトン等が挙げられる。 Specific examples of the sultone compound include 1,3-propane sultone and 1,4-butane sultone.
 これらスルトン化合物と環状分子が有する水酸基とを反応させて、スルホン酸基を環状分子に導入することができる。このスルホン酸基をさらに(中和)反応させて、スルホン酸塩基とすることもできる。 The sulfonic acid group can be introduced into the cyclic molecule by reacting these sultone compounds with the hydroxyl group of the cyclic molecule. This sulfonic acid group can be further (neutralized) reacted to form a sulfonic acid group.
 リン酸基、ホスホン酸基、及び4級アンモニウムカチオン基の導入例としては、エステル結合やアミド結合を形成させることで導入出来る。 As an example of introducing a phosphoric acid group, a phosphonic acid group, and a quaternary ammonium cation group, it can be introduced by forming an ester bond or an amide bond.
 例えば、環状分子が反応性基として水酸基(環状分子が直接水酸基を有していてもよいし、環状分子に導入された側鎖が水酸基を有してもよい)を有する場合、該イオン性基の他に、カルボキシル基や、酸塩化物の基(例えば、-COCl基)を含有する化合物を用いることで、エステル結合を介して該イオン性官能基を導入することが出来る。 For example, when the cyclic molecule has a hydroxyl group as a reactive group (the cyclic molecule may have a hydroxyl group directly or the side chain introduced into the cyclic molecule may have a hydroxyl group), the ionic group Besides, by using a compound containing a carboxyl group or an acid chloride group (for example, —COCl group), the ionic functional group can be introduced through an ester bond.
 カルボキシル基、及び、酸塩化物の基を含み、且つ、該イオン性官能基含化合物の具体例を挙げると、以下の通りである。リン酸基、ホスホン酸基を導入する場合、4-ホスホノ酪酸、グリシン-N,N-ビス(メチレンスルホン酸)、2-ホスホノブタン-1,2,4-トリカルボン酸、3-ホスホノプロピオン酸、ホスホセリンが挙げられる。また、4級アンモニウム塩、及び、4級アンモニウムカチオンを導入する場合、N,N-ジプロピル-アラニン、N,N-ジメチル-β-アラニン塩酸塩、1-(エトキシカルボニル)イソニペコチン酸、1-ホルミノイソニペコチン酸、無水べタイン、ベタイン塩酸塩、カルニチン塩酸塩、カルニチン等が挙げられる。 Specific examples of the ionic functional group-containing compound containing a carboxyl group and an acid chloride group are as follows. When a phosphoric acid group or a phosphonic acid group is introduced, 4-phosphonobutyric acid, glycine-N, N-bis (methylenesulfonic acid), 2-phosphonobutane-1,2,4-tricarboxylic acid, 3-phosphonopropionic acid, Examples include phosphoserine. When a quaternary ammonium salt and a quaternary ammonium cation are introduced, N, N-dipropyl-alanine, N, N-dimethyl-β-alanine hydrochloride, 1- (ethoxycarbonyl) isonipecotic acid, 1-form Examples thereof include minoisonipecotic acid, betaine anhydride, betaine hydrochloride, carnitine hydrochloride, carnitine and the like.
 また、環状分子が反応性基としてカルボキシル基(環状分子が直接カルボキシル基を有していてもよいし、環状分子に導入された側鎖がカルボキシル基を有してもよい)を有する場合には、カルボンキシル基又はカルボキシル塩基と、分子内に水酸基、又はアミノ基を有し、且つ、イオン性官能基を有する化合物とを反応させることもできる。 When the cyclic molecule has a carboxyl group as a reactive group (the cyclic molecule may directly have a carboxyl group, or the side chain introduced into the cyclic molecule may have a carboxyl group), It is also possible to react a carboxyl group or a carboxyl group with a compound having a hydroxyl group or an amino group in the molecule and having an ionic functional group.
 具体的に、OH基、又はアミノ基を含み、且つ、イオン性官能基をさらに含む化合物の例を挙げると、以下の通りである。 Specific examples of the compound containing an OH group or an amino group and further containing an ionic functional group are as follows.
 アレンドロン酸、4-ヒドロキシメチル-2,6,7-トリオキサ-1-ホスファビシクロ[2,2,2]オクタン1-オキシド、(1-アミノエチル)ホスホン酸、ホスホリエタノールアミン、
 N,N-ジメチルエタノールアミン、N,N-ジメチルプロパノールアミン、N,N-ジメチルイソプロパノールアミン、N,N-ジイソプロピルエタノールアミン、4-ジメチルアミノ-1-ブタノール、6-ジメチルアミノ-1-ヘキサノール、ジメチルアミノネオペンタノール、N’-(2-ヒドロキシエチル)-N,N,N’-トリメチルエチレンジアミン、5-ジエチルアミノ-1-ペンタノール、4-メチルピペラジン-1-エタノール、1-(2-ヒドロキシエチル)ピペラジン、3,3-ジアミノエタノール-メチルジプロピルアミン、N,N-ジエチルアミノプロピルアミン、N,N-ジエチルアミノエチルアミン、N,N-ジメチルエチレンジアミン、N,N-ジメチルアミノプロピルアミン、N,N-ジエチル-1,4-ジアミノペンタン、N,N-ジブチル-1,3-ジアミノプロパン、N,N-ジエチル-N’-メチルエチレンジアミン、N,N-ジブチルエチレンジアミン、N,N-ジメチルネオペンタンジアミン、N,N-ビス[3-(ジメチルアミノ)プロピル]アミン、N,N,N’-トリメチルエチレンジアミン、N-(2-アミノエチル)ピペラジン、1-ブチルピペラジン、1-エチルピペラジン、1-メチルピペラジン、1-イソプロピルピペラジン、1-(2-メトキシエチル)ピペラジン、
 β-メチルコリンヨージド、コリンクロリド、コリンブロミド、ビス(2-ヒドロキシエチル)ジメチルアンモニウムクロリド、ベタネコールクロリド、アルバミルコリンクロリド、トリメチルアセトヒドラジドアンモニウムクロリド等が挙げられる。
Alendronic acid, 4-hydroxymethyl-2,6,7-trioxa-1-phosphabicyclo [2,2,2] octane 1-oxide, (1-aminoethyl) phosphonic acid, phosphoriethanolamine,
N, N-dimethylethanolamine, N, N-dimethylpropanolamine, N, N-dimethylisopropanolamine, N, N-diisopropylethanolamine, 4-dimethylamino-1-butanol, 6-dimethylamino-1-hexanol, Dimethylamino neopentanol, N '-(2-hydroxyethyl) -N, N, N'-trimethylethylenediamine, 5-diethylamino-1-pentanol, 4-methylpiperazine-1-ethanol, 1- (2-hydroxy Ethyl) piperazine, 3,3-diaminoethanol-methyldipropylamine, N, N-diethylaminopropylamine, N, N-diethylaminoethylamine, N, N-dimethylethylenediamine, N, N-dimethylaminopropylamine, N, N -Diethyl-1,4 Diaminopentane, N, N-dibutyl-1,3-diaminopropane, N, N-diethyl-N'-methylethylenediamine, N, N-dibutylethylenediamine, N, N-dimethylneopentanediamine, N, N-bis [ 3- (dimethylamino) propyl] amine, N, N, N′-trimethylethylenediamine, N- (2-aminoethyl) piperazine, 1-butylpiperazine, 1-ethylpiperazine, 1-methylpiperazine, 1-isopropylpiperazine, 1- (2-methoxyethyl) piperazine,
Examples include β-methylcholine iodide, choline chloride, choline bromide, bis (2-hydroxyethyl) dimethylammonium chloride, bethanechol chloride, albamylcholine chloride, trimethylacetohydrazide ammonium chloride and the like.
 また、本発明において、(A)ロタキサンモノマーが有するイオン性官能基を中和し、塩構造とすることも出来る。そうすることで、例えば、下記に記載する(B)組成物に、イソ(チオ)シアネート化合物を用いた際に、反応性を制御することもできる。また、選択する塩構造によっては、溶解性を向上させることも出来る。例えば、カルボン酸基やスルホン酸基に4級アンモニウム塩を用い、カルボン酸塩、スルホン酸塩とし、溶解性を向上させることも出来る。 Further, in the present invention, the ionic functional group of the (A) rotaxane monomer may be neutralized to form a salt structure. By doing so, for example, the reactivity can be controlled when the iso (thio) cyanate compound is used in the composition (B) described below. Also, depending on the salt structure selected, the solubility can be improved. For example, the solubility can be improved by using a quaternary ammonium salt for the carboxylic acid group or the sulfonic acid group to form a carboxylic acid salt or sulfonic acid salt.
 本発明において、前記(A)ロタキサンモノマーの環状分子が有するイオン性官能基として特に好ましいのは、カルボン酸基、スルホン酸基、4級アンモニウム塩、又は4級アンモニウムカチオン基が挙げられる。 In the present invention, the ionic functional group of the cyclic molecule of the rotaxane monomer (A) is particularly preferably a carboxylic acid group, a sulfonic acid group, a quaternary ammonium salt, or a quaternary ammonium cation group.
 前記(A)ロタキサンモノマーにおいて、環状分子が有するイオン性官能基の数は、特に限定されるものではない。中でも、環状分子が有するイオン性官能基のモル数を(A)ロタキサンモノマーの重量平均分子量で割った値(イオン性官能基含有量Z)が、0.01~5.0mmol/gが好ましく、0.05~1.0mmol/gがより好ましく、0.05~0.7mmol/gがさらに好ましい。即ち、イオン性官能基が多すぎると、硬化体の機械的強度が低下する傾向にある。一方、イオン性官能基が少な過ぎると、親水性を発揮する効果が低下する傾向にある。イオン性官能基含有量Zは、上記した通り、環状分子が有するイオン性官能基のモル数を前記(A)ロタキサンモノマーの重量平均分子量(Mw)で割った値であり、言い換えると、前記(A)ロタキサンモノマー1g当たりの、環状分子が有するイオン性官能基のモル数を指す。当然のことながら、このイオン性官能基のモル数は、平均値である。 In the (A) rotaxane monomer, the number of ionic functional groups contained in the cyclic molecule is not particularly limited. Among them, the value (ionic functional group content Z) obtained by dividing the number of moles of the ionic functional group of the cyclic molecule by the weight average molecular weight of the (A) rotaxane monomer is preferably 0.01 to 5.0 mmol / g, 0.05 to 1.0 mmol / g is more preferable, and 0.05 to 0.7 mmol / g is further preferable. That is, if the amount of ionic functional groups is too large, the mechanical strength of the cured product tends to decrease. On the other hand, if there are too few ionic functional groups, the effect of exhibiting hydrophilicity tends to decrease. As described above, the ionic functional group content Z is a value obtained by dividing the number of moles of the ionic functional group of the cyclic molecule by the weight average molecular weight (Mw) of the (A) rotaxane monomer, in other words, ( A) Refers to the number of moles of the ionic functional group of the cyclic molecule per 1 g of the rotaxane monomer. As a matter of course, the number of moles of the ionic functional group is an average value.
 本発明の硬化性組成物を硬化して得られる硬化体を、後述する研磨用パッドに用いる場合において、(A)ロタキサンモノマーのイオン性官能基含有量Zを上記範囲とすることにより、研磨レートが高まると共に、耐スクラッチ性が向上し、ヒステリシスロスが低減され、研磨特性が向上する。 When the cured product obtained by curing the curable composition of the present invention is used for a polishing pad described later, by setting the ionic functional group content Z of the (A) rotaxane monomer in the above range, the polishing rate As a result, scratch resistance is improved, hysteresis loss is reduced, and polishing characteristics are improved.
 該イオン性官能基は、場合によっては、前記環状分子が有するもの、又は前記側鎖を利用して前記環状分子に導入されるものである。この中でも、イオン性基の効果を考慮すると、側鎖の末端がイオン性官能基となり、その数が上記範囲を満足することが好ましい。 The ionic functional group is, as the case may be, one that the cyclic molecule has, or one that is introduced into the cyclic molecule using the side chain. Among these, considering the effect of the ionic group, it is preferable that the terminal of the side chain becomes an ionic functional group and the number thereof satisfies the above range.
 上記した通り、イオン性官能基は側鎖(好ましくは側鎖の末端)に導入されていることが好適であるが、側鎖は、上記した重合性官能基及びイオン性官能基を有することが好ましい。なお、側鎖が重合性官能基及びイオン性官能基を有するとは、環状分子が有する側鎖のうち、少なくとも一つの側鎖が重合性官能基とイオン性官能基の両方を有すること、又は、環状分子が有する側鎖のうち、少なくとも一つの側鎖が重合性官能基のみを有し、かつ該重合性官能基のみを有する側鎖以外の側鎖のうち、少なくとも一つの側鎖がイオン性官能基のみを有することを意味する。 As described above, it is preferable that the ionic functional group is introduced into the side chain (preferably the end of the side chain), but the side chain may have the above-mentioned polymerizable functional group and ionic functional group. preferable. Note that the side chain has a polymerizable functional group and an ionic functional group, among the side chains of the cyclic molecule, at least one side chain has both a polymerizable functional group and an ionic functional group, or Of the side chains of the cyclic molecule, at least one side chain has only a polymerizable functional group, and among the side chains other than the side chains having only the polymerizable functional group, at least one side chain is an ion. It means that it has only a sex functional group.
 (重合性官能基とイオン性官能基との数)
 本発明における前記(A)ロタキサンモノマーは、前記重合性官能基と前記イオン性官能基とを、スライド可能な環状分子に導入したものである。そして、好ましくは、該環状分子は、側鎖を介して該重合性官能基と前記イオン性官能基とを有することが好ましい。最も好ましくは、該側鎖の末端が重合性官能基、およびイオン性官能基となるものが好ましい。
(Number of polymerizable functional groups and ionic functional groups)
The rotaxane monomer (A) in the present invention is obtained by introducing the polymerizable functional group and the ionic functional group into a slidable cyclic molecule. And, it is preferable that the cyclic molecule preferably has the polymerizable functional group and the ionic functional group through a side chain. Most preferably, the terminal of the side chain has a polymerizable functional group and an ionic functional group.
 前記(A)ロタキサンモノマーにおいて、重合性官能基とイオン性官能基との割合は、前記重合性官能基と前記イオン性官能基の合計モル割合を100モル%とした時、前記イオン性官能基の割合が1モル%以上90モル%未満であることが好ましい。得られる硬化体の物性のバランスを考慮すると、前記イオン性官能基の割合が2モル%以上30モル%以下であることがより好ましく、2モル%以上25モル%以下であることがさらに好ましい。 In the (A) rotaxane monomer, the ratio of the polymerizable functional group and the ionic functional group is such that the total molar ratio of the polymerizable functional group and the ionic functional group is 100 mol%. Is preferably 1 mol% or more and less than 90 mol%. Considering the balance of the physical properties of the obtained cured product, the ratio of the ionic functional group is more preferably 2 mol% or more and 30 mol% or less, and further preferably 2 mol% or more and 25 mol% or less.
 この重合性官能基の割合は、環状分子が有する全重合性官能基の割合である。例えば、シクロデキストリン環のような環状分子であり、重合性官能基が水酸基である場合、側鎖で修飾されなかった該環状分子上の水酸基、及び側鎖に導入された水酸基の合計モル数が、前記の重合性官能基のモル数(全重合性官能基のモル数)である。そのため、上記部分は、以下のように読み替えることができる。全重合性官能基とイオン性官能基との割合は、前記全重合性官能基の全モル数と前記イオン性官能基の合計モル割合を100モル%とした時、前記イオン性官能基の割合が1モル%以上90モル%未満であることが好ましい。得られる硬化体の物性のバランスを考慮すると、前記イオン性官能基の割合が2モル%以上30モル%以下であることがより好ましく、2モル%以上25モル%以下であることがさらに好ましい。 -The ratio of this polymerizable functional group is the ratio of all polymerizable functional groups possessed by the cyclic molecule. For example, in the case of a cyclic molecule such as a cyclodextrin ring, where the polymerizable functional group is a hydroxyl group, the total number of moles of the hydroxyl group on the cyclic molecule that has not been modified with a side chain, and the hydroxyl group introduced into the side chain is Is the number of moles of the above-mentioned polymerizable functional groups (the number of moles of all polymerizable functional groups). Therefore, the above part can be read as follows. The ratio of the total polymerizable functional groups to the ionic functional groups is the ratio of the ionic functional groups when the total molar ratio of all the polymerizable functional groups and the total molar ratio of the ionic functional groups are 100 mol%. Is preferably 1 mol% or more and less than 90 mol%. Considering the balance of the physical properties of the obtained cured product, the ratio of the ionic functional group is more preferably 2 mol% or more and 30 mol% or less, and further preferably 2 mol% or more and 25 mol% or less.
 ただし、前記の通り、側鎖で修飾されなかった重合性官能基は、反応性が乏しい場合がある。そのため、最も好ましくは、側鎖に導入された重合性官能基のモル数を対象とする場合である。すなわち、側鎖に導入された重合性官能基と側鎖に導入されたイオン性官能基との合計モル割合を100モル%とした時、優れた物性の硬化体を得るためには、イオン性官能基の割合が2モル%以上90%以下であることがより好ましく、3モル%以上70モル%以下であることがさらに好ましく、4モル%以上50モル%以下であることが特に好ましい。 However, as mentioned above, the polymerizable functional groups that have not been modified with side chains may have poor reactivity. Therefore, the most preferred case is the case where the number of moles of the polymerizable functional group introduced into the side chain is targeted. That is, when the total molar ratio of the polymerizable functional group introduced into the side chain and the ionic functional group introduced into the side chain is 100 mol%, in order to obtain a cured product with excellent physical properties, The ratio of the functional group is more preferably 2 mol% or more and 90 mol% or less, further preferably 3 mol% or more and 70 mol% or less, and particularly preferably 4 mol% or more and 50 mol% or less.
 本発明の硬化性組成物を硬化して得られる硬化体を、後述する研磨用パッドに用いる場合において、(A)ロタキサンモノマーのイオン性官能基の割合を上記範囲とすることにより、研磨レートが高まると共に、耐スクラッチ性が向上し、ヒステリシスロスが低減され、研磨特性が向上する。 When the cured product obtained by curing the curable composition of the present invention is used for a polishing pad described below, the polishing rate can be increased by setting the ratio of the ionic functional group of the (A) rotaxane monomer in the above range. As it increases, scratch resistance is improved, hysteresis loss is reduced, and polishing characteristics are improved.
 (その他の好適な(A)ロタキサンモノマーの構成)
 本発明において、最も好適に使用される(A)ロタキサンモノマーは、ポリエチレングリコールを軸分子とすることが好ましい。また、該軸分子の両端にアダマンチル基で結合しているポリエチレングリコールを軸分子とし、α-シクロデキストリン環を有する環状分子を有することが好ましい。さらに、ポリカプロラクトンにより該環に側鎖(末端がOH基;重合性官能基)が導入されており、さらに側鎖末端のOH基を変性することによってイオン性官能基が導入されることが好ましい。そして、このイオン性官能基は、カルボン酸イオン、スルホン酸イオン、又は4級アンモニウムカチオンを形成する基であることが好ましい。この際、α-シクロデキストリン環のOH基をヒドロキシプロピル化した後、開環重合によりポリカプロラクトンを導入してもよい。
(Other suitable (A) composition of rotaxane monomer)
In the present invention, the (A) rotaxane monomer most preferably used preferably has polyethylene glycol as the axis molecule. Further, it is preferable to have a cyclic molecule having an α-cyclodextrin ring with polyethylene glycol having adamantyl groups bonded to both ends of the axis molecule as an axis molecule. Furthermore, it is preferable that a side chain (terminal is an OH group; a polymerizable functional group) is introduced into the ring by polycaprolactone, and further an ionic functional group is introduced by modifying the OH group at the terminal of the side chain. .. The ionic functional group is preferably a group that forms a carboxylate ion, a sulfonate ion, or a quaternary ammonium cation. At this time, the OH group of the α-cyclodextrin ring may be hydroxypropylated, and then polycaprolactone may be introduced by ring-opening polymerization.
 そして、軸分子の重量平均分子量、α-シクロデキストリン環の包接数、α-シクロデキストリン環の水酸基が修飾された割合(修飾度)、側鎖の分子量、および重合性官能基とイオン性官能基とのモル数は、前記の通りであることが好ましい。 Then, the weight average molecular weight of the axial molecule, the inclusion number of the α-cyclodextrin ring, the ratio (modification degree) of the hydroxyl group of the α-cyclodextrin ring, the molecular weight of the side chain, and the polymerizable functional group and the ionic functional group. The number of moles with the group is preferably as described above.
((A)ロタキサンモノマーの重量平均分子量Mw)
 (A)ロタキサンモノマーの重量平均分子量は、特に限定されないが、好ましくは2000~1000000であり、より好ましくは5000~500000である。重量平均分子量がこれら下限値以上であると研磨特性が向上し、これら上限値以下であると硬化性組成物を硬化して得られる硬化体の成形性が向上する。(A)ロタキサンモノマーの重量平均分子量は、GPCにより測定することができる。
((A) Weight average molecular weight Mw of rotaxane monomer)
The weight average molecular weight of the rotaxane monomer (A) is not particularly limited, but is preferably 2000 to 1,000,000, and more preferably 5000 to 500000. When the weight average molecular weight is at least the lower limit value, the polishing characteristics are improved, and when the weight average molecular weight is at most the upper limit value, the moldability of the cured product obtained by curing the curable composition is improved. The weight average molecular weight of the (A) rotaxane monomer can be measured by GPC.
 <(A)ロタキサンモノマーの前記重合性官能基と重合し得る重合性官能基を有する重合性モノマーを少なくとも含む(B)重合性モノマー組成物>
 本発明において、(B)重合性モノマー組成物が含む重合性モノマーは、(A)ロタキサンモノマーが有する重合性官能基と反応(重合)し得る基を有する化合物である。そして、当然のことながら、(A)ロタキサンモノマー以外の化合物である。
<(A) Polymerizable monomer composition containing at least a polymerizable monomer having a polymerizable functional group capable of polymerizing with the polymerizable functional group of the rotaxane monomer>
In the present invention, the polymerizable monomer contained in the (B) polymerizable monomer composition is a compound having a group capable of reacting (polymerizing) with the polymerizable functional group of the (A) rotaxane monomer. And, of course, it is a compound other than the (A) rotaxane monomer.
 (B)重合性モノマー組成物は、(A)ロタキサンモノマーと重合し得る重合性モノマーを含むものであれば、公知の化合物が何ら制限なく使用できる。上述したように、(A)ロタキサンモノマーには様々な重合性官能基を導入できる。それに応じて重合性モノマーを選択すればよい。例えば、国際公開第2015/068798号に記載されている重合性モノマーが挙げられる。 As the polymerizable monomer composition (B), any known compound can be used without any limitation as long as it includes the polymerizable monomer (A) which can be polymerized with the rotaxane monomer. As described above, various polymerizable functional groups can be introduced into the (A) rotaxane monomer. The polymerizable monomer may be selected accordingly. For example, the polymerizable monomer described in WO2015 / 068798 can be mentioned.
 本発明においては、例えば、(A)ロタキサンモノマーが有している重合性官能基が水酸基、チオール基、第一級アミノ基(-NH)、及び第二級アミノ基(-NHR;Rは置換基、例えば、アルキル基)から選ばれる重合性官能基を有する場合には、(B)重合性モノマー組成物が含む重合性モノマーは、(B1)分子内に少なくともイソ(チオ)シアネート基を有するイソ(チオ)シアネート化合物(以下、単に「(B1)イソ(チオ)シアネート化合物」又は「(B1)成分」とする場合もある)が挙げられる。 In the present invention, for example, the polymerizable functional group of the (A) rotaxane monomer has a hydroxyl group, a thiol group, a primary amino group (—NH 2 ), and a secondary amino group (—NHR; When it has a polymerizable functional group selected from a substituent such as an alkyl group, the polymerizable monomer contained in the polymerizable monomer composition (B) has at least an iso (thio) cyanate group in the molecule (B1). Examples of the iso (thio) cyanate compound (hereinafter, may be simply referred to as “(B1) iso (thio) cyanate compound” or “(B1) component”).
 また、(A)ロタキサンモノマーが有している重合性官能基が水酸基、アミノ基、又はイソ(チオ)シアネート基の場合には、重合性モノマーは、(B2)エポキシ基を有するエポキシ基含有モノマー(以下、単に「(B2)エポキシ基含有モノマー」又は「(B2)成分」とする場合もある)も選択できる。 When the polymerizable functional group of the (A) rotaxane monomer is a hydroxyl group, an amino group, or an iso (thio) cyanate group, the polymerizable monomer is (B2) an epoxy group-containing monomer having an epoxy group. (Hereinafter, it may be simply referred to as "(B2) epoxy group-containing monomer" or "(B2) component").
 一方、(A)ロタキサンモノマーが有している重合性官能基がイソ(チオ)シアネート基である場合、重合性モノマーは、(B3)水酸基、およびチオール基から選ばれる基を少なくとも1つ有する(チ)オール化合物(以下、単に「(B3)(チ)オール化合物」又は「(B3)成分」とする場合もある)、並びに(B4)アミノ基を有するアミノ基含有モノマー(単に「(B4)アミノ基含有モノマー」又は「(B4)成分」)から選択できる。 On the other hand, when the polymerizable functional group of the (A) rotaxane monomer is an iso (thio) cyanate group, the polymerizable monomer has at least one group selected from (B3) hydroxyl group and thiol group ( Chi) ol compound (hereinafter sometimes referred to simply as “(B3) (thi) ol compound” or “(B3) component”), and (B4) amino group-containing monomer having an amino group (simply “(B4)” Amino group-containing monomer "or" (B4) component ").
 なお、本発明において、イソ(チオ)シアネート基とは、イソシアネート基(NCO基)、又はイソチオシアネート基(NCS基)を指す。したがって、イソ(チオ)シアネート基が複数存在する場合には、イソシアネート基とイソチオシアネート基との合計数がイソ(チオ)シアネート基の数となる。 In the present invention, the iso (thio) cyanate group means an isocyanate group (NCO group) or an isothiocyanate group (NCS group). Therefore, when there are a plurality of iso (thio) cyanate groups, the total number of isocyanate groups and isothiocyanate groups is the number of iso (thio) cyanate groups.
 <重合方法/逐次付加反応>
 本発明においては、(B)重合性モノマー組成物は、(A)ロタキサンモノマーと重合し得る重合性モノマーを含むものであれば、その他の成分を含むことができる。重合反応が逐次付加(例えば、重縮合・重付加)反応の場合には、(A)ロタキサンモノマーと重合し得る重合性モノマーが少なくとも含まれれば、(B)重合性モノマー組成物は、(A)ロタキサンモノマーと重合しない、その他の重合モノマーを含むことができる。逐次付加反応の場合には、(A)成分と重合し得る重合モノマーが存在すれば、(A)成分と重合しないその他の重合モノマーが存在していても、(A)成分、(A)成分と重合し得るモノマー、その他の重合性モノマーとが共重合できるからである。すなわち、逐次付加反応の場合には、(B)重合性モノマー組成物は、(A)成分と重合し得る重合モノマーだけではなく、共重合可能な重合性モノマーを含むことができる。ただし、(B)重合性モノマー組成物は(A)成分と重合し得る重合モノマーからなることもできる。
<Polymerization method / sequential addition reaction>
In the present invention, the (B) polymerizable monomer composition may contain other components as long as it contains the (A) rotaxane monomer and a polymerizable monomer that can be polymerized. In the case where the polymerization reaction is a sequential addition (for example, polycondensation / polyaddition) reaction, if (A) the rotaxane monomer and at least a polymerizable monomer that can be polymerized are contained, the (B) polymerizable monomer composition is ) Other polymerized monomers that do not polymerize with the rotaxane monomer can be included. In the case of the sequential addition reaction, as long as there is a polymerizable monomer capable of polymerizing with the component (A), even if there is another polymerizable monomer that does not polymerize with the component (A), the component (A), the component (A) This is because a monomer that can be polymerized with and another polymerizable monomer can be copolymerized. That is, in the case of the sequential addition reaction, the polymerizable monomer composition (B) can include not only a polymerizable monomer that can be polymerized with the component (A) but also a polymerizable monomer that can be copolymerized. However, the polymerizable monomer composition (B) may be composed of a polymerizable monomer capable of being polymerized with the component (A).
 逐次付加反応の例をより詳細に説明する。具体的には、例えば、(A)ロタキサンモノマーが有する重合性官能基が水酸基等の活性水素含有基である場合に、重合性モノマーとして(B1)イソ(チオ)シアネート基を有するイソ(チオ)シアネート化合物を含めば、前記(B3)成分、及び前記(B4)成分を含むことができる。すなわち、(B)重合性モノマー組成物が(A)成分と重合する(B1)成分を含めば、(A)成分と反応しない(B3)成分、及び(B4)成分を含むことができる。逐次付加反応の場合には、(B1)成分が存在することにより、(A)成分、(B1)成分、(B3)成分、及び(B4)成分が共重合した硬化体を得ることができる。なお、当然のことながら、この場合、(B)重合性モノマー組成物には、(B2)成分を含むこともできる。ただし、(B)重合性モノマー組成物は、(A)成分と重合し得る(B1)成分からなるものであってもよい。 Explain the example of sequential addition reaction in more detail. Specifically, for example, when the polymerizable functional group of the (A) rotaxane monomer is an active hydrogen-containing group such as a hydroxyl group, iso (thio) having a (B1) iso (thio) cyanate group as the polymerizable monomer. If the cyanate compound is included, the component (B3) and the component (B4) can be included. That is, if the polymerizable monomer composition (B) includes the component (B1) that is polymerized with the component (A), the component (B3) that does not react with the component (A) and the component (B4) can be included. In the case of the sequential addition reaction, the presence of the component (B1) makes it possible to obtain a cured product obtained by copolymerizing the component (A), the component (B1), the component (B3), and the component (B4). In addition, as a matter of course, in this case, the component (B2) may be included in the polymerizable monomer composition (B). However, the polymerizable monomer composition (B) may be composed of the component (A1) and the polymerizable component (B1).
 逐次付加反応の場合には、反応し合う各成分((A)成分、及び各重合性モノマー)は、分けて保存しておくことが好ましい。 In the case of sequential addition reaction, it is preferable to store each component (component (A) and each polymerizable monomer) that react with each other separately.
 <重合方法/連鎖重合>
 また、(A)ロタキサンモノマーが有している重合性官能基がラジカル重合性基の場合、(B)重合性モノマー組成物は、ラジカル重合性基を有するモノマーからなる。ラジカル重合の場合には、連鎖重合であるため、逐次付加反応とは異なり、(B)重合性モノマー組成物に含まれる重合性モノマーは、全てラジカル重合性基を有するモノマーからなる。具体的には、(B)重合性モノマー組成物は、下記に詳述する(B5)成分の(メタ)アクリレート基を有する(メタ)アクリレート化合物、アリル化合物から選択することが好ましく、特に好ましくは、(メタ)アクリレート化合物から選択することが好ましい。
<Polymerization method / chain polymerization>
When the polymerizable functional group of the (A) rotaxane monomer is a radically polymerizable group, the (B) polymerizable monomer composition is composed of a monomer having a radically polymerizable group. In the case of radical polymerization, since it is chain polymerization, unlike the sequential addition reaction, all the polymerizable monomers contained in the polymerizable monomer composition (B) are monomers having a radical polymerizable group. Specifically, the (B) polymerizable monomer composition is preferably selected from the (meth) acrylate compound having the (meth) acrylate group of the component (B5) and the allyl compound, which are described in detail below, and particularly preferably. , (Meth) acrylate compounds are preferred.
 <重合方法/逐次付加反応及び連鎖重合>
 以上の通り、逐次付加反応と連鎖重合との場合の説明をしたが、それら両方を行える場合には、以下のようにすることもできる。
<Polymerization method / sequential addition reaction and chain polymerization>
As described above, the case of the sequential addition reaction and the chain polymerization has been described, but when both of them can be performed, the following may be performed.
 例えば、(A)ロタキサンモノマーが有している重合性官能基が水酸基等の活性水素含有基とラジカル重合性基との両方を有している場合、(B)重合性モノマー組成物は、(メタ)アクリレート基を有する(メタ)アクリレート化合物、アリル化合物等のみであってもよい。又は、(A)ロタキサンモノマーが有している重合性官能基が水酸基等の活性水素含有基とラジカル重合性基との両方を有している場合、(B)重合性モノマー組成物に、重合性モノマーとして(B1)イソ(チオ)シアネート化合物を含有していれば、その他、(B2)(B3)、(B4)、(B5)成分を含むこともできる。 For example, when the polymerizable functional group of the (A) rotaxane monomer has both an active hydrogen-containing group such as a hydroxyl group and a radical polymerizable group, the (B) polymerizable monomer composition is Only a (meth) acrylate compound having a (meth) acrylate group, an allyl compound or the like may be used. Alternatively, when the polymerizable functional group of the (A) rotaxane monomer has both an active hydrogen-containing group such as a hydroxyl group and a radical polymerizable group, the (B) polymerizable monomer composition is polymerized. As long as the (B1) iso (thio) cyanate compound is contained as the ionic monomer, other components (B2), (B3), (B4) and (B5) may be contained.
 <その他>
 本発明において、(A)ロタキサンモノマーが擬ロタキサンモノマーである場合、環状分子の他にも、軸分子末端にも重合性官能基を有することができる。これらは、もちろん環状分子に複数種類の重合性官能基が存在してもよいし、軸分子の末端で違う重合性官能基を有していてもよく、環状分子と軸分子の重合性官能基が異なっていてもよい。ただし、重合反応を容易とし、副生物を抑制するためには、他の重合性モノマーとの組み合わせにおいて、以下の通りとなることが好ましい。すなわち、擬ロタキサンモノマーが有する重合性官能基は、水酸基、チオール基、及び、アミノ基(第一級アミノ基、又は第二級アミノ基)等の重合性官能基であり、重合性モノマーが(B1)イソ(チオ)シアネート化合物であることが好ましい。また、擬ロタキサンモノマーが有している重合性官能基がラジカル重合性基の場合、重合性モノマーは、ラジカル重合性基を有するモノマーが好ましい。
<Other>
In the present invention, when the rotaxane monomer (A) is a pseudo-rotaxane monomer, it can have a polymerizable functional group at the terminal of the axial molecule in addition to the cyclic molecule. Of course, these may have a plurality of types of polymerizable functional groups in the cyclic molecule, or may have different polymerizable functional groups at the ends of the axial molecule, and the polymerizable functional groups of the cyclic molecule and the axial molecule may be present. May be different. However, in order to facilitate the polymerization reaction and suppress by-products, the combination with other polymerizable monomers is preferably as follows. That is, the polymerizable functional group contained in the pseudo-rotaxane monomer is a hydroxyl group, a thiol group, and a polymerizable functional group such as an amino group (a primary amino group or a secondary amino group), and the polymerizable monomer is ( B1) An iso (thio) cyanate compound is preferred. When the polymerizable functional group contained in the pseudo-rotaxane monomer is a radical polymerizable group, the polymerizable monomer is preferably a monomer having a radical polymerizable group.
 <(B)重合性モノマー組成物>
 <重合方法/逐次付加反応>の重合性モノマー
 <(B1)イソ(チア)シアネート化合物;(B1)成分>
 (B1)イソ(チオ)シアネート化合物は、イソシアネート基、又はイソチオシアネート基を少なくとも1種類有するモノマーである。もちろん、イソシアネート基とイソ(チオ)シアネート基の二つの基を有しているモノマーも選択される。中でも、イソ(チオ)シアネート基を分子内に、2~6個有する化合物が好ましく、2~4個有する化合物がより好ましく、2個有する化合物がさらに好ましい。
<(B) Polymerizable monomer composition>
<Polymerization Method / Sequential Addition Reaction> Polymerizable Monomer <(B1) Iso (thia) cyanate Compound; (B1) Component>
The (B1) iso (thio) cyanate compound is a monomer having at least one type of isocyanate group or isothiocyanate group. Of course, a monomer having two groups, an isocyanate group and an iso (thio) cyanate group, is also selected. Among these, compounds having 2 to 6 iso (thio) cyanate groups in the molecule are preferable, compounds having 2 to 4 are more preferable, and compounds having 2 are more preferable.
 また、前記(B1)イソ(チオ)シアネート化合物は、
 下記に記載する(B13)分子内に2つのイソ(チオ)シアネート基を有する2官能ポリイソ(チオ)シアネート化合物(以下、単に「(B13)2官能ポリイソ(チオ)シアネート化合物」、又は「(B13)成分」とする場合もある)と
 (B32)分子内に2つの活性水素含有基を有する2官能活性水素含有化合物(以下、単に「(B32)2官能活性水素含有化合物」、又は「(B32)成分」とする場合もある)と
の反応により調製(製造)される、
 (B12)ウレタンプレポリマー(以下、単に「(B12)ウレタンプレポリマー」又は「(B12)成分」とする場合もある)であってもよい。イソ(チオ)シアネート化合物に該当する(B12)ウレタンプレポリマーは、未反応のイソ(チオ)シアネート基を含む一般に使用されているものが、何ら制限なく、本発明においても使用できる。
In addition, the (B1) iso (thio) cyanate compound is
A bifunctional polyiso (thio) cyanate compound having two iso (thio) cyanate groups in the molecule (B13) described below (hereinafter, simply referred to as "(B13) bifunctional polyiso (thio) cyanate compound" or "(B13) Component)) and (B32) a bifunctional active hydrogen-containing compound having two active hydrogen-containing groups in the molecule (hereinafter simply referred to as “(B32) bifunctional active hydrogen-containing compound” or “(B32 In some cases, it is prepared (manufactured) by a reaction with
It may be a urethane prepolymer (B12) (hereinafter sometimes simply referred to as “(B12) urethane prepolymer” or “(B12) component”). As the (B12) urethane prepolymer corresponding to the iso (thio) cyanate compound, those generally used which contain an unreacted iso (thio) cyanate group can be used in the present invention without any limitation.
 なお、前記活性水素含有基とは、水酸基、チオール基、第一級アミノ基、又は第二級アミノ基(例えば、-NHR;Rはアルキル基であることが好ましい)から選ばれる基である。そのため、(B32)成分は、具体的には、下記に詳述する(B3)(チ)オール化合物、又は(B4)アミノ基含有モノマーに具体的に例示している。前記活性水素含有基は、反応性を考慮すると、水酸基、又はチオール基であることが好ましい。そのため、(B32)成分も、2つの水酸基、2つのチオール基、又は1つの水酸基及び1つのチオール基を有する、2官能ポリ(チ)オール化合物であることが好ましい。 The active hydrogen-containing group is a group selected from a hydroxyl group, a thiol group, a primary amino group, or a secondary amino group (eg, —NHR; R is preferably an alkyl group). Therefore, the component (B32) is specifically exemplified as the (B3) (thi) ol compound or (B4) the amino group-containing monomer, which will be described in detail below. In consideration of reactivity, the active hydrogen-containing group is preferably a hydroxyl group or a thiol group. Therefore, the component (B32) is also preferably a bifunctional poly (thi) ol compound having two hydroxyl groups, two thiol groups, or one hydroxyl group and one thiol group.
 前記(B1)イソ(チオ)シアネート化合物としては、例えば、大きく分類すれば、脂肪族イソシアネート、脂環族イソシアネート、芳香族イソシアネート、イソチオシアネート化合物、(B12)ウレタンプレポリマーに分類することができる。また、前記(B1)イソ(チオ)シアネート化合物は、1種類の化合物を使用することもできるし、複数種類の化合物を使用することもできる。複数種類の化合物を使用する場合には、基準となる質量は、複数種類の化合物の合計量である。これらイソ(チオ)シアネート化合物を具体的に例示すると以下のモノマーが挙げられる。 The (B1) iso (thio) cyanate compound can be roughly classified into, for example, aliphatic isocyanate, alicyclic isocyanate, aromatic isocyanate, isothiocyanate compound, and (B12) urethane prepolymer. As the (B1) iso (thio) cyanate compound, one kind of compound can be used or a plurality of kinds of compounds can be used. When multiple types of compounds are used, the reference mass is the total amount of multiple types of compounds. Specific examples of these iso (thio) cyanate compounds include the following monomers.
 脂肪族イソシアネート;(B1)成分
 エチレンジイソシアネート、トリメチレンジイソシアネート、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、オクタメチレンジイソシアネート、ノナメチレンジイソシアネート、2,2’-ジメチルペンタンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、デカメチレンジイソシアネート、ブテンジイソシアネート、1,3-ブタジエン-1,4-ジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、1,6,11-トリメチルウンデカメチレンジイソシアネート、1,3,6-トリメチルヘキサメチレンジイソシアネート、1,8-ジイソシアネート-4-イソシアネートメチルオクタン、2,5,7-トリメチル-1,8-ジイソシアネート-5-イソシアネートメチルオクタン、ビス(イソシアネートエチル)カーボネート、ビス(イソシアネートエチル)エーテル、1,4-ブチレングリコールジプロピルエーテル-ω,ω’-ジイソシアネート、リジンジイソシアネートメチルエステル、2,4,4,-トリメチルヘキサメチレンジイソシアネート等の2官能イソシアネートモノマー、(下記に詳述する(B12)ウレタンプレポリマーを構成する(B13)2官能ポリイソ(チオ)シアネート化合物に該当する)。
Aliphatic Isocyanate; (B1) Component Ethylene diisocyanate, trimethylene diisocyanate, tetramethylene diisocyanate, hexamethylene diisocyanate, octamethylene diisocyanate, nonamethylene diisocyanate, 2,2′-dimethylpentane diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate , Decamethylene diisocyanate, butene diisocyanate, 1,3-butadiene-1,4-diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, 1,6,11-trimethylundecamethylene diisocyanate, 1,3,6-trimethyl Hexamethylene diisocyanate, 1,8-diisocyanate-4-isocyanate methyl octane, 2,5,7-trimethyl-1 8-diisocyanate-5-isocyanate methyl octane, bis (isocyanate ethyl) carbonate, bis (isocyanate ethyl) ether, 1,4-butylene glycol dipropyl ether-ω, ω'-diisocyanate, lysine diisocyanate methyl ester, 2,4 A bifunctional isocyanate monomer such as 4, -trimethylhexamethylene diisocyanate (corresponding to the (B13) bifunctional polyiso (thio) cyanate compound constituting the (B12) urethane prepolymer described in detail below).
 エチルイソシアネート、n-プロピルイソシアネート、i-プロピルイソシアネート、ブチルイソシアネート、オクタデシルイソシアネート等の単官能イソシアネートモノマー。 Monofunctional isocyanate monomers such as ethyl isocyanate, n-propyl isocyanate, i-propyl isocyanate, butyl isocyanate and octadecyl isocyanate.
 脂環族イソシアネート;(B1)成分
 イソホロンジイソシアネート、(ビシクロ[2.2.1]ヘプタン-2,5-ジイル)ビスメチレンジイソシアネート、(ビシクロ[2.2.1]ヘプタン-2,6-ジイル)ビスメチレンジイソシアネート、2β,5α-ビス(イソシアネート)ノルボルナン、2β,5β-ビス(イソシアネート)ノルボルナン、2β,6α-ビス(イソシアネート)ノルボルナン、2β,6β-ビス(イソシアネート)ノルボルナン、2,6-ジ(イソシアネートメチル)フラン、ビス(イソシアネートメチル)シクロヘキサン、ジシクロヘキシルメタン-4,4’-ジイソシアネート、4,4-イソプロピリデンビス(シクロヘキシルイソシアネート)、シクロヘキサンジイソシアネート、メチルシクロヘキサンジイソシアネート、ジシクロヘキシルジメチルメタンジイソシアネート、2,2’-ジメチルジシクロヘキシルメタンジイソシアネート、ビス(4-イソシアネート-n-ブチリデン)ペンタエリスリトール、ダイマー酸ジイソシアネート、2,5-ビス(イソシアネートメチル)-ビシクロ〔2,2,1〕-ヘプタン、2,6-ビス(イソシアネートメチル)-ビシクロ〔2,2,1〕-ヘプタン、3,8-ビス(イソシアネートメチル)トリシクロデカン、3,9-ビス(イソシアネートメチル)トリシクロデカン、4,8-ビス(イソシアネートメチル)トリシクロデカン、4,9-ビス(イソシアネートメチル)トリシクロデカン、1,5-ジイソシアネートデカリン、2,7-ジイソシアネートデカリン、1,4-ジイソシアネートデカリン、2,6-ジイソシアネートデカリン、ビシクロ[4.3.0]ノナン-3,7-ジイソシアネート、ビシクロ[4.3.0]ノナン-4,8-ジイソシアネート、ビシクロ[2.2.1]ヘプタン-2,5-ジイソシアネートとビシクロ[2.2.1]ヘプタン-2,6-ジイソシアネート、ビシクロ[2,2,2]オクタン-2,5-ジイソシアネート、ビシクロ[2,2,2]オクタン-2,6-ジイソシアネート、トリシクロ[5.2.1.02.6]デカン-3,8-ジイソシアネート、トリシクロ[5.2.1.02.6]デカン-4,9-ジイソシアネート等の2官能イソシアネートモノマー(下記に詳述する(B12)ウレタンプレポリマーを構成する(B13)2官能ポリイソ(チオ)シアネート化合物に該当する)。
Alicyclic Isocyanate; (B1) Component Isophorone diisocyanate, (bicyclo [2.2.1] heptane-2,5-diyl) bismethylene diisocyanate, (bicyclo [2.2.1] heptane-2,6-diyl) Bismethylene diisocyanate, 2β, 5α-bis (isocyanate) norbornane, 2β, 5β-bis (isocyanate) norbornane, 2β, 6α-bis (isocyanate) norbornane, 2β, 6β-bis (isocyanate) norbornane, 2,6-di ( Isocyanatomethyl) furan, bis (isocyanatomethyl) cyclohexane, dicyclohexylmethane-4,4'-diisocyanate, 4,4-isopropylidenebis (cyclohexylisocyanate), cyclohexanediisocyanate, methylcyclohexanediiso Anate, dicyclohexyldimethylmethane diisocyanate, 2,2'-dimethyldicyclohexylmethane diisocyanate, bis (4-isocyanate-n-butylidene) pentaerythritol, dimer acid diisocyanate, 2,5-bis (isocyanatomethyl) -bicyclo [2,2,2] 1] -Heptane, 2,6-bis (isocyanatomethyl) -bicyclo [2,2,1] -heptane, 3,8-bis (isocyanatomethyl) tricyclodecane, 3,9-bis (isocyanatomethyl) tricyclo Decane, 4,8-bis (isocyanatomethyl) tricyclodecane, 4,9-bis (isocyanatomethyl) tricyclodecane, 1,5-diisocyanate decalin, 2,7-diisocyanate decalin, 1,4-diisocyanate decali , 2,6-diisocyanate decalin, bicyclo [4.3.0] nonane-3,7-diisocyanate, bicyclo [4.3.0] nonane-4,8-diisocyanate, bicyclo [2.2.1] heptane- 2,5-diisocyanate and bicyclo [2.2.1] heptane-2,6-diisocyanate, bicyclo [2,2,2] octane-2,5-diisocyanate, bicyclo [2,2,2] octane-2, Bifunctional isocyanate such as 6-diisocyanate, tricyclo [5.2.1.0 2.6 ] decane-3,8-diisocyanate, tricyclo [5.2.1.0 2.6 ] decane-4,9-diisocyanate A monomer (corresponding to the (B13) bifunctional polyiso (thio) cyanate compound constituting the urethane prepolymer (B12) described in detail below).
 2-イソシアネートメチル-3-(3-イソシアネートプロピル)-5-イソシアネートメチル-ビシクロ〔2,2,1〕-ヘプタン、2-イソシアネートメチル-3-(3-イソシアネートプロピル)-6-イソシアネートメチル-ビシクロ〔2,2,1〕-ヘプタン、2-イソシアネートメチル-2-(3-イソシアネートプロピル)-5-イソシアネートメチル-ビシクロ〔2,2,1〕-ヘプタン、2-イソシアネートメチル-2-(3-イソシアネートプロピル)-6-イソシアネートメチル-ビシクロ〔2,2,1〕-ヘプタン、2-イソシアネートメチル-3-(3-イソシアネートプロピル)-5-(2-イソシアネートエチル)-ビシクロ〔2,2,1〕-ヘプタン、2-イソシアネートメチル-3-(3-イソシアネートプロピル)-6-(2-イソシアネートエチル)-ビシクロ〔2,1,1〕-ヘプタン、2-イソシアネートメチル-2-(3-イソシアネートプロピル)-5-(2-イソシアネートエチル)-ビシクロ〔2,2,1〕-ヘプタン、2-イソシアネートメチル-2-(3-イソシアネートプロピル)-6-(2-イソシアネートエチル)-ビシクロ〔2,2,1〕-ヘプタン、1,3,5-トリス(イソシアネートメチル)シクロヘキサン等の多官能イソシアネートモノマー。 2-isocyanatomethyl-3- (3-isocyanatepropyl) -5-isocyanatemethyl-bicyclo [2,2,1] -heptane, 2-isocyanatomethyl-3- (3-isocyanatopropyl) -6-isocyanatemethyl-bicyclo [2,2,1] -Heptane, 2-isocyanatomethyl-2- (3-isocyanatepropyl) -5-isocyanatemethyl-bicyclo [2,2,1] -heptane, 2-isocyanatemethyl-2- (3- Isocyanatopropyl) -6-isocyanatemethyl-bicyclo [2,2,1] -heptane, 2-isocyanatomethyl-3- (3-isocyanatopropyl) -5- (2-isocyanatoethyl) -bicyclo [2,2,1 ] -Heptane, 2-isocyanatomethyl-3- (3-isocyanate Topyl) -6- (2-isocyanatoethyl) -bicyclo [2,1,1] -heptane, 2-isocyanatomethyl-2- (3-isocyanatopropyl) -5- (2-isocyanatoethyl) -bicyclo [2,2 2,1] -heptane, 2-isocyanatomethyl-2- (3-isocyanatopropyl) -6- (2-isocyanatoethyl) -bicyclo [2,2,1] -heptane, 1,3,5-tris (isocyanate Methyl) cyclohexane and other polyfunctional isocyanate monomers.
 シクロヘキシルイソシアネート等の単官能イソシアネートモノマー。 Monofunctional isocyanate monomers such as cyclohexyl isocyanate.
 芳香族イソシアネート;(B1)成分
 キシリレンジイソシアネート(o-、m-,p-)、テトラクロロ-m-キシリレンジイソシアネート、メチレンジフェニル-4,4’-ジイソシアネート、4-クロル-m-キシリレンジイソシアネート、4,5-ジクロル-m-キシリレンジイソシアネート、2,3,5,6-テトラブロム-p-キシリレンジイソシアネート、4-メチル-m-キシリレンジイソシアネート、4-エチル-m-キシリレンジイソシアネート、ビス(イソシアネートエチル)ベンゼン、ビス(イソシアネートプロピル)ベンゼン、1,3-ビス(α,α-ジメチルイソシアネートメチル)ベンゼン、1,4-ビス(α,α-ジメチルイソシアネートメチル)ベンゼン、α,α,α’,α’-テトラメチルキシリレンジイソシアネート、ビス(イソシアネートブチル)ベンゼン、ビス(イソシアネートメチル)ナフタリン、ビス(イソシアネートメチル)ジフェニルエーテル、ビス(イソシアネートエチル)フタレート、2,6-ジ(イソシアネートメチル)フラン、フェニレンジイソシアネート(o-,m-,p-)、トリレンジイソシアネート、エチルフェニレンジイソシアネート、イソプロピルフェニレンジイソシアネート、ジメチルフェニレンジイソシアネート、ジエチルフェニレンジイソシアネート、ジイソプロピルフェニレンジイソシアネート、トリメチルベンゼントリイソシアネート、ベンゼントリイソシアネート、1,3,5-トリイソシアネートメチルベンゼン、1,5-ナフタレンジイソシアネート、メチルナフタレンジイソシアネート、ビフェニルジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、2,2'-ジフェニルメタンジイソシアネート、2,4'-ジフェニルメタンジイソシアネート、3,3’-ジメチルジフェニルメタン-4,4’-ジイソシアネート、ビベンジル-4,4’-ジイソシアネート、ビス(イソシアネートフェニル)エチレン、3,3’-ジメトキシビフェニル-4,4’-ジイソシアネート、フェニルイソシアネートメチルイソシアネート、フェニルイソシアネートエチルイソシアネート、テトラヒドロナフチレンジイソシアネート、ヘキサヒドロベンゼンジイソシアネート、ヘキサヒドロジフェニルメタン-4,4’-ジイソシアネート、ジフェニルエーテルジイソシアネート、エチレングリコ-ルジフェニルエーテルジイソシアネート、1,3-プロピレングリコールジフェニルエーテルジイソシアネート、ベンゾフェノンジイソシアネート、ジエチレングリコ-ルジフェニルエーテルジイソシアネート、ジベンゾフランジイソシアネート、カルバゾールジイソシアネート、エチルカルバゾールジイソシアネート、ジクロロカルバゾールジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート等の2官能イソシアネートモノマー(下記に詳述する(B12)ウレタンプレポリマーを構成する(B13)2官能ポリイソ(チオ)シアネート化合物に該当する)。
Aromatic isocyanate; Component (B1) Xylylene diisocyanate (o-, m-, p-), tetrachloro-m-xylylene diisocyanate, methylenediphenyl-4,4'-diisocyanate, 4-chloro-m-xylylene diisocyanate , 4,5-dichloro-m-xylylene diisocyanate, 2,3,5,6-tetrabromo-p-xylylene diisocyanate, 4-methyl-m-xylylene diisocyanate, 4-ethyl-m-xylylene diisocyanate, bis (Isocyanate ethyl) benzene, bis (isocyanatopropyl) benzene, 1,3-bis (α, α-dimethylisocyanatomethyl) benzene, 1,4-bis (α, α-dimethylisocyanatomethyl) benzene, α, α, α ', Α'-Tetramethylxylylene diisocyanate , Bis (isocyanatobutyl) benzene, bis (isocyanatomethyl) naphthalene, bis (isocyanatomethyl) diphenyl ether, bis (isocyanatoethyl) phthalate, 2,6-di (isocyanatomethyl) furan, phenylenediisocyanate (o-, m- , P-), tolylene diisocyanate, ethyl phenylene diisocyanate, isopropyl phenylene diisocyanate, dimethyl phenylene diisocyanate, diethyl phenylene diisocyanate, diisopropyl phenylene diisocyanate, trimethylbenzene triisocyanate, benzene triisocyanate, 1,3,5-triisocyanate methylbenzene, 1 , 5-naphthalene diisocyanate, methyl naphthalene diisocyanate, biphenyl Rudiisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 2,2'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, 3,3'-dimethyldiphenylmethane -4,4'-diisocyanate, bibenzyl-4,4'-diisocyanate, bis (isocyanatophenyl) ethylene, 3,3'-dimethoxybiphenyl-4,4'-diisocyanate, phenylisocyanate methylisocyanate, phenylisocyanateethylisocyanate, tetrahydro Naphthylene diisocyanate, hexahydrobenzene diisocyanate, hexahydrodiphenylmethane-4,4'-diisocyanate, diphenyl ether diisocyanate , Ethylene glycol diphenyl ether diisocyanate, 1,3-propylene glycol diphenyl ether diisocyanate, benzophenone diisocyanate, diethylene glycol diphenyl ether diisocyanate, dibenzofurandiocyanate, carbazole diisocyanate, ethylcarbazole diisocyanate, dichlorocarbazole diisocyanate, 2,4-tolylene diisocyanate, 2 , 6-Tolylene diisocyanate and other bifunctional isocyanate monomers (corresponding to the (B13) bifunctional polyiso (thio) cyanate compound that constitutes the (B12) urethane prepolymer described in detail below).
 メシチリレントリイソシアネート、トリフェニルメタントリイソシアネート、ポリメリックMDI、ナフタリントリイソシアネート、ジフェニルメタン-2,4,4’-トリイソシアネート、3-メチルジフェニルメタン-4,4’,6-トリイソシアネート、4-メチル-ジフェニルメタン-2,3,4’,5,6-ペンタイソシアネート等の多官能イソシアネートモノマー。 Mesitylylene triisocyanate, triphenylmethane triisocyanate, polymeric MDI, naphthalene triisocyanate, diphenylmethane-2,4,4'-triisocyanate, 3-methyldiphenylmethane-4,4 ', 6-triisocyanate, 4-methyl- Polyfunctional isocyanate monomers such as diphenylmethane-2,3,4 ', 5,6-pentaisocyanate.
 フェニルイソシアネート、3-i-プロペニルクミルイソシアネート、4-メトキシフェニルイソシアネート、m-トリルイソシアネート、p-トリルイソシアネート、1-ナフチルイソシアネート、ジメチルベンジルイソシアネート等の単官能イソシアネートモノマー。 Monofunctional isocyanate monomers such as phenyl isocyanate, 3-i-propenyl cumyl isocyanate, 4-methoxyphenyl isocyanate, m-tolyl isocyanate, p-tolyl isocyanate, 1-naphthyl isocyanate and dimethylbenzyl isocyanate.
 イソチオシアネート化合物;(B1)成分
 p-フェニレンジイソチオシアネート、キシリレン-1,4-ジイソチオシアネート、及びエチリジンジイソチオシアネート等の2官能イソ(チオ)シアネート基含有モノマー(下記に詳述する(B12)ウレタンプレポリマーを構成する(B13)2官能ポリイソ(チオ)シアネート化合物に該当する)。
Isothiocyanate compound; Component (B1) Bifunctional iso (thio) cyanate group-containing monomer such as p-phenylene diisothiocyanate, xylylene-1,4-diisothiocyanate, and ethylidyne diisothiocyanate (described in detail below ( B12) (corresponding to the bifunctional polyiso (thio) cyanate compound (B13) constituting the urethane prepolymer).
 <(B12)ウレタンプレポリマー;末端イソ(チオ)シアネート基を有するウレタン(B1)成分>
 本発明においては、前記(B13)2官能ポリイソ(チオ)シアネート化合物と後述する(B32)分子内に2つの活性水素含有基を有する2官能活性水素含有化合物との反応により調製される、(B12)ウレタンプレポリマーを、(B1)ポリイソ(チオ)シアネートモノマーとして使用することもできる。
<(B12) Urethane Prepolymer; Urethane (B1) Component Having Terminal Iso (thio) cyanate Group>
In the present invention, (B13) a bifunctional polyiso (thio) cyanate compound and a (B32) bifunctional active hydrogen-containing compound having two active hydrogen-containing groups in the molecule, which will be described later, are prepared by reaction (B12). ) Urethane prepolymers can also be used as (B1) polyiso (thio) cyanate monomers.
 (B12)ウレタンプレポリマーとする場合には、特に制限されるものではないが、(B13)2官能ポリイソ(チオ)シアネート化合物としては、特に、次に例示するモノマーを使用することが好ましい。具体的には、1,5-ナフタレンジイソシアネート、キシレンジイソシアネート(o-,m-,p-)、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、フェニレンジイソシアネート(o-,m-,p-)、2,2’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルメタンジイソシアネートを使用することが好ましい。これらに(B32)2官能活性水素含有化合物を反応させて、両末端にイソ(チオ)シアネート基を有する(B12)成分とすることが好ましい。 When the (B12) urethane prepolymer is used, it is not particularly limited, but as the (B13) bifunctional polyiso (thio) cyanate compound, it is particularly preferable to use the following exemplified monomers. Specifically, 1,5-naphthalene diisocyanate, xylene diisocyanate (o-, m-, p-), 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, phenylene diisocyanate (o-, m-, P-), 2,2'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate and 4,4'-diphenylmethane diisocyanate are preferably used. It is preferable to react these with a (B32) bifunctional active hydrogen-containing compound to obtain a (B12) component having an iso (thio) cyanate group at both ends.
 また、最終的に得られるウレタン樹脂が、特に優れた特性を発揮するためには、少なくとも1種類の分子量(数平均分子量)が300~2000の(B32)2官能活性水素含有化合物を使用して(B12)ウレタンプレポリマーを製造することが好ましい。活性水素含有基とは、水酸基、チオール基、第一級アミノ基、又は第二級アミノ基を指す。中でも、反応性を考慮すると、(B32)2官能活性水素含有化合物における活性水素含有基は、水酸基及び/又はチオール基であることが好ましい。 Further, in order for the finally obtained urethane resin to exhibit particularly excellent characteristics, at least one kind of (B32) bifunctional active hydrogen-containing compound having a molecular weight (number average molecular weight) of 300 to 2000 is used. It is preferable to produce the urethane prepolymer (B12). The active hydrogen-containing group refers to a hydroxyl group, a thiol group, a primary amino group, or a secondary amino group. Especially, in consideration of reactivity, the active hydrogen-containing group in the (B32) bifunctional active hydrogen-containing compound is preferably a hydroxyl group and / or a thiol group.
 分子量(数平均分子量)が300~2000の(B32)2官能活性水素含有化合物は、種類の異なるもの、分子量の異なるものを組み合わせて使用することもできる。また、最終的に得られるウレタン樹脂の硬度等を調整するために、(B12)ウレタンプレポリマーを形成する際に、該分子量(数平均分子量)が300~2000の(B32)2官能活性水素含有化合物と、該分子量(数平均分子量)が90~300の(B32)2官能活性水素含有化合物とを組み合わせて使用することもできる。この場合、使用する(B32)2官能活性水素含有化合物、および(B13)2官能ポリイソ(チオ)シアネート化合物の種類、およびそれらの使用量にもよるが、分子量300~2000の(B32)2官能活性水素含有化合物を100質量部とした時、分子量90~300の(B32)2官能活性水素含有化合物を0~50質量部とすることが好ましい。さらには、分子量90~300の(B32)2官能活性水素含有化合物を1~40質量部とすることが好ましい。 The (B32) bifunctional active hydrogen-containing compound having a molecular weight (number average molecular weight) of 300 to 2000 can be used in combination of different types and different molecular weights. Further, in order to adjust the hardness and the like of the urethane resin finally obtained, when the (B12) urethane prepolymer is formed, the molecular weight (number average molecular weight) of the (B32) bifunctional active hydrogen content of 300 to 2000 is contained. A compound and a (B32) bifunctional active hydrogen-containing compound having a molecular weight (number average molecular weight) of 90 to 300 can also be used in combination. In this case, depending on the kinds of the (B32) bifunctional active hydrogen-containing compound and the (B13) bifunctional polyiso (thio) cyanate compound used, and the amount of those used, the (B32) bifunctional having a molecular weight of 300 to 2000 is used. When the active hydrogen-containing compound is 100 parts by mass, it is preferable that the (B32) bifunctional active hydrogen-containing compound having a molecular weight of 90 to 300 be 0 to 50 parts by mass. Furthermore, it is preferable to use 1 to 40 parts by mass of the (B32) bifunctional active hydrogen-containing compound having a molecular weight of 90 to 300.
 <(B12)成分;ウレタンプレポリマーの特徴>
 また、(B12)ウレタンプレポリマーは、分子の両末端がイソ(チオ)シアネート基とならなければならない。そのため、(B12)ウレタンプレポリマーは、(B13)2官能ポリイソ(チオ)シアネート化合物におけるイソ(チオ)シアネート基のモル数(n5)と(B32)2官能活性水素含有化合物の活性水素含有基(水酸基、チオール基、又はアミノ基(第1級アミノ基であっても1モルと考える))のモル数(n6)とが、1<(n5)/(n6)≦2.3となる範囲で製造することが好ましい。2種類以上の、分子の末端が(B13)2官能ポリイソ(チオ)シアネート化合物を用いる場合、該イソ(チオ)シアネート基のモル数(n5)は、それら(B13)ポリイソ(チオ)シアネート化合物の合計のイソ(チオ)シアネート基のモル数とする。また、2種類以上の(B32)2官能活性水素含有化合物の活性水素含有基のモル数(n6)は、それら活性水素含有基の合計の活性水素のモル数とする。活性水素含有基が第一級アミノ基である場合であっても、第一級アミノ基を1モルと考える。つまり、第一級アミノ基において、2つ目のアミノ基(-NH)が反応するには、かなりのエネルギーを要する(第一級アミノ基であっても、2つ目の-NHは反応し難い)。そのため、本発明においては、第一級アミノ基を有する(B32)2官能活性水素含有化合物を使用したとしても、第一級アミノ基を1モルと計算できる。
<Component (B12); Characteristics of Urethane Prepolymer>
Further, the urethane prepolymer (B12) must have iso (thio) cyanate groups at both ends of the molecule. Therefore, the (B12) urethane prepolymer has a mole number (n5) of the iso (thio) cyanate group in the (B13) bifunctional polyiso (thio) cyanate compound and the active hydrogen-containing group ((B32) of the bifunctional active hydrogen-containing compound ( Within the range where the number of moles (n6) of a hydroxyl group, a thiol group, or an amino group (even if it is a primary amino group, it is considered to be 1 mole) is 1 <(n5) / (n6) ≦ 2.3. It is preferable to manufacture. When two or more kinds of (B13) bifunctional polyiso (thio) cyanate compounds having terminal molecules are used, the number of moles (n5) of the iso (thio) cyanate group is equal to that of the (B13) polyiso (thio) cyanate compound. It is the total number of moles of iso (thio) cyanate groups. In addition, the number of moles (n6) of the active hydrogen-containing groups of the two or more kinds of (B32) bifunctional active hydrogen-containing compounds is the total number of moles of the active hydrogens of the active hydrogen-containing groups. Even when the active hydrogen-containing group is a primary amino group, the primary amino group is considered to be 1 mol. That is, in the primary amino group, a considerable amount of energy is required for the reaction of the second amino group (—NH) (even if the primary amino group, the second —NH does not react). hard). Therefore, in the present invention, even if a (B32) bifunctional active hydrogen-containing compound having a primary amino group is used, the primary amino group can be calculated to be 1 mol.
 該(B12)ウレタンプレポリマーのイソ(チオ)シアネート当量は、(B12)ウレタンプレポリマーが有するイソ(チオ)シアネート基をJIS K 7301に準拠して定量することにより、求めることができる。該イソ(チオ)シアネート基は、以下の逆滴定法によって定量できる。先ず、得られた(B12)ウレタンプレポリマーを乾燥溶媒に溶解させる。次に、(B12)ウレタンプレポリマーが有するイソ(チオ)シアネート基の量よりも、明らかに過剰量であって、かつ濃度が既知のジ-n-ブチルアミンを、該乾燥溶媒に加え、(B12)ウレタンプレポリマーの全イソ(チオ)シアネート基とジ-n-ブチルアミンとを反応させる。次いで、消費されなかった(反応に関与しなかった)ジ-n-ブチルアミンを酸で滴定して、消費されたジ-n-ブチルアミンの量を求める。この消費されたジ-n-ブチルアミンと、(B12)ウレタンプレポリマーが有するイソ(チオ)シアネート基とは、同量であることからイソ(チオ)シアネート当量を求めることができる。また、(B12)ウレタンプレポリマーは、両末端がイソ(チオ)シアネート基の直鎖状のウレタンプレポリマーであることから、(B12)ウレタンプレポリマーの数平均分子量は、イソ(チオ)シアネート当量の2倍となる。この(B12)ウレタンプレポリマーの分子量は、ゲルパーミネーションクロマトグラフィー(GPC)で測定した値と一致し易い。なお、該(B12)ウレタンプレポリマーと(B13)2官能ポリイソ(チオ)シアネート化合物とを併用して使用する場合には、両者の混合物を上記方法に沿って測定すればよい。 The iso (thio) cyanate equivalent of the (B12) urethane prepolymer can be determined by quantifying the iso (thio) cyanate group of the (B12) urethane prepolymer in accordance with JIS K7301. The iso (thio) cyanate group can be quantified by the following back titration method. First, the obtained urethane prepolymer (B12) is dissolved in a dry solvent. Next, (B12) di-n-butylamine, which has a known concentration and is clearly in excess of the amount of the iso (thio) cyanate group contained in the urethane prepolymer, is added to the dry solvent, and (B12) ) Reacting all iso (thio) cyanate groups of the urethane prepolymer with di-n-butylamine. The unconsumed (not involved in the reaction) di-n-butylamine is then titrated with acid to determine the amount of di-n-butylamine consumed. Since the consumed di-n-butylamine and the iso (thio) cyanate group contained in the (B12) urethane prepolymer are in the same amount, the iso (thio) cyanate equivalent can be determined. Further, since the (B12) urethane prepolymer is a linear urethane prepolymer having iso (thio) cyanate groups at both ends, the number average molecular weight of the (B12) urethane prepolymer is equal to the iso (thio) cyanate equivalent. It is twice as much. The molecular weight of this (B12) urethane prepolymer is likely to agree with the value measured by gel permeation chromatography (GPC). When the (B12) urethane prepolymer and the (B13) bifunctional polyiso (thio) cyanate compound are used in combination, the mixture of both may be measured according to the above method.
 前記(B12)ウレタンプレポリマーは、特に制限されるものではないが、イソ(チオ)シアネート当量が好ましくは300~5000、より好ましくは350~3000、特に好ましくは350~2000が好ましい。この理由は、特に明らかではないが、以下のように考えられる。すなわち、ある程度の分子量を有する(B12)ウレタンプレポリマーが(A)ロタキサンモノマーの重合性官能基と反応することにより、スライド可能な分子が大きくなって分子自体の動きが大きくなり、その結果、変形に対しても回復(弾性回復;低ヒステリック)し易くなると考えられる。さらには、(B12)ウレタンプレポリマーが使用されることにより、ウレタン樹脂における架橋点が分散し易くなってランダムに且つ均一に存在するようになり、安定した性能が発揮されるものと考えられる。そして、(B12)ウレタンプレポリマーを使用して得られるウレタン樹脂は、製造時の制御がし易くなり、加えて研磨用パッドとして好適に使用できるようになると考えられる。このような効果は、(B12)ウレタンプレポリマーと(B13)2官能ポリイソ(チオ)シアネート化合物とを併用した場合において、ポリイソ(チオ)シアネート化合物の平均のイソ(チオ)シアネート当量が300~5000であっても、発現するものと考えられる。ただし、前記効果は、(B12)ウレタンプレポリマーのみである場合の方が顕著になると考えられる。 The urethane prepolymer (B12) is not particularly limited, but the iso (thio) cyanate equivalent is preferably 300 to 5000, more preferably 350 to 3000, and particularly preferably 350 to 2000. The reason for this is not clear, but is considered as follows. That is, when the (B12) urethane prepolymer having a certain molecular weight reacts with the polymerizable functional group of the (A) rotaxane monomer, the slidable molecule becomes large and the movement of the molecule itself becomes large, resulting in deformation. It is considered that it is easy to recover (elastic recovery; low hysteric). Furthermore, it is considered that the use of the (B12) urethane prepolymer facilitates dispersion of the crosslinking points in the urethane resin and allows them to exist randomly and uniformly, thus exhibiting stable performance. It is considered that the urethane resin obtained by using the (B12) urethane prepolymer can be easily controlled during production and can be suitably used as a polishing pad. Such an effect is obtained when the (B12) urethane prepolymer and the (B13) bifunctional polyiso (thio) cyanate compound are used in combination, when the average iso (thio) cyanate equivalent of the polyiso (thio) cyanate compound is 300 to 5,000. However, it is considered to be expressed. However, it is considered that the above effect becomes more remarkable when only the (B12) urethane prepolymer is used.
 ((B12)ウレタンプレポリマーの製造方法)
 本発明に用いる、プレポリマーの製造方法は、水酸基、アミノ基、又はチオール基等の分子内に2つの活性水素含有基を有する(B32)2官能活性水素含有化合物と(B13)2官能ポリイソ(チオ)シアネート化合物とを反応させて、分子の末端にイソ(チオ)シアネート基を有する(B12)ウレタンプレポリマーを製造すればよい。末端にイソ(チオ)シアネート基を有するプレポリマーを得ることが出来れば、何ら制限はない。
((B12) Method for producing urethane prepolymer)
The method for producing a prepolymer used in the present invention is a (B32) bifunctional active hydrogen containing compound having two active hydrogen containing groups in the molecule such as a hydroxyl group, an amino group or a thiol group, and a (B13) bifunctional polyiso ( A (B12) urethane prepolymer having an iso (thio) cyanate group at the terminal of the molecule may be produced by reacting with a thio) cyanate compound. There is no limitation as long as a prepolymer having an iso (thio) cyanate group at the terminal can be obtained.
 上述しているが、(B12)ウレタンプレポリマーを得るための好ましい(B32)2官能活性水素含有化合物と、(B13)2官能ポリイソ(チオ)シアネート化合物の配合量は、以下の通りである。具体的には、(B13)2官能ポリイソ(チオ)シアネート化合物におけるイソ(チオ)シアネート基のモル数(n5)と(B32)2官能活性水素含有化合物の活性水素のモル数(n6)とが、1<(n5)/(n6)≦2.3となる範囲で製造することが好ましい。 As mentioned above, the preferable blending amounts of the (B32) bifunctional active hydrogen-containing compound and the (B13) bifunctional polyiso (thio) cyanate compound for obtaining the (B12) urethane prepolymer are as follows. Specifically, the number of moles of iso (thio) cyanate groups (n5) in the (B13) bifunctional polyiso (thio) cyanate compound and the number of moles of active hydrogen (n6) of the (B32) bifunctional active hydrogen-containing compound are It is preferable to manufacture in the range of 1 <(n5) / (n6) ≦ 2.3.
 また、ウレタンプレポリマーの製造の為に反応においては、必要に応じて加熱やウレタン化触媒を添加することで製造することが可能である。 In addition, in the reaction for producing the urethane prepolymer, it is possible to produce it by heating or adding a urethanization catalyst as needed.
 <;(B2)エポキシ基含有モノマー;(B2)成分>
 エポキシ基含有モノマーは、重合性基として、分子内にエポキシ基を有するものであり、特に、(A)ロタキサンモノマーの重合性官能基として、水酸基、NH基、NCO基が導入されている場合に好適である。
<; (B2) Epoxy group-containing monomer; (B2) component>
The epoxy group-containing monomer has an epoxy group in the molecule as a polymerizable group, and in particular, when a hydroxyl group, an NH 2 group or an NCO group is introduced as the polymerizable functional group of the (A) rotaxane monomer. Suitable for
 このようなエポキシ化合物は、大きく分けて、脂肪族エポキシ化合物、脂環族エポキシモノマー及び芳香族エポキシモノマーに分類され、その好適な具体例としては、国際公開第2015/068798号に記載されているものを用いることができる。 Such an epoxy compound is roughly classified into an aliphatic epoxy compound, an alicyclic epoxy monomer and an aromatic epoxy monomer, and preferable specific examples thereof are described in WO 2015/068798. Any thing can be used.
 <(B3)(チ)オール化合物;(B3)成分>
 (チ)オール化合物は、OH基、及びSH基からなる群から選択される基を1分子中に1個以上有しているモノマーである。もちろん、OH基とSH基の二つの基を有しているモノマーも選択される。
<(B3) (thi) ol compound; (B3) component>
The (thi) ol compound is a monomer having one or more groups selected from the group consisting of OH groups and SH groups in one molecule. Of course, a monomer having two groups, an OH group and an SH group, is also selected.
 前記(チ)オール化合物を、大きく分類すれば、脂肪族アルコール、脂環族アルコール、芳香族アルコール、ポリエステルポリオール、ポリエーテルポリオール、ポリカプロラクトンポリオール、ポリカーボネートポリオール、ポリアクリルポリオール、チオール、OH/SH型重合性基含有モノマーに分類される。具体例としては、以下のものが挙げられる。 The (thi) ol compounds are roughly classified into aliphatic alcohols, alicyclic alcohols, aromatic alcohols, polyester polyols, polyether polyols, polycaprolactone polyols, polycarbonate polyols, polyacrylic polyols, thiols, and OH / SH type. It is classified as a polymerizable group-containing monomer. Specific examples include the following.
 脂肪族アルコール;(B3)成分
 エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、ブチレングリコール、1,5-ジヒドロキシペンタン、1,6-ジヒドロキシヘキサン、1,7-ジヒドロキシヘプタン、1,8-ジヒドロキシオクタン、1,9-ジヒドロキシノナン、1,10-ジヒドロキシデカン、1,11-ジヒドロキシウンデカン、1,12-ジヒドロキシドデカン、ネオペンチルグリコール、モノオレイン酸グリセリル、モノエライジン、ポリエチレングリコール、3-メチル-1,5-ジヒドロキシペンタン、ジヒドロキシネオペンチル、2-エチル-1,2-ジヒドロキシヘキサン、2-メチル-1,3-ジヒドロキシプロパン等の2官能ポリオールモノマー(前記ウレタンプレポリマー(B12)を構成する(B32)2官能活性水素含有化合物に該当する)。
Aliphatic alcohol; component (B3) ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, butylene glycol, 1,5-dihydroxypentane, 1,6-dihydroxyhexane, 1,7-dihydroxyheptane, 1,8-dihydroxyoctane , 1,9-dihydroxynonane, 1,10-dihydroxydecane, 1,11-dihydroxyundecane, 1,12-dihydroxydodecane, neopentyl glycol, glyceryl monooleate, monoelaidin, polyethylene glycol, 3-methyl-1, Bifunctional polyol monomers such as 5-dihydroxypentane, dihydroxyneopentyl, 2-ethyl-1,2-dihydroxyhexane and 2-methyl-1,3-dihydroxypropane (B32) which constitutes the repolymer (B12) corresponds to a bifunctional active hydrogen-containing compound).
 グリセリン、トリメチロールエタン、トリメチロールプロパン、ジトリメチロールプロパン、トリメチロールプロパントリポリオキシエチレンエーテル(例えば、日本乳化剤株式会社のTMP-30、TMP-60、TMP-90等)、ブタントリオール、1,2-メチルグルコサイド、ペンタエリトリトール、ジペンタエリトリトール、トリペンタエリトリトール、ソルビトール、エリスリトール、スレイトール、リビトール、アラビニトール、キシリトール、アリトール、マンニトール、ドルシトール、イディトール、グリコール、イノシトール、ヘキサントリオール、トリグリセロール、ジグリセロール、トリエチレングリコール等の多官能ポリオールモノマー。 Glycerin, trimethylol ethane, trimethylol propane, ditrimethylol propane, trimethylol propane tripolyoxyethylene ether (eg, TMP-30, TMP-60, TMP-90, etc. of Nippon Emulsifier Co., Ltd.), butanetriol, 1,2- Methyl glucoside, pentaerythritol, dipentaerythritol, tripentaerythritol, sorbitol, erythritol, threitol, ribitol, arabinitol, xylitol, allitol, mannitol, dorsitol, iditol, glycol, inositol, hexanetriol, triglycerol, diglycerol, triethylene. Polyfunctional polyol monomer such as glycol.
 脂環族アルコール;(B3)成分
 水添ビスフェノールA、シクロブタンジオール、シクロペンタンジオール、シクロヘキサンジオール、シクロヘプタンジオール、シクロオクタンジオール、シクロヘキサンジメタノール、ヒドロキシプロピルシクロヘキサノール、トリシクロ〔5,2,1,02,6〕デカン-ジメタノール、ビシクロ〔4,3,0〕-ノナンジオール、ジシクロヘキサンジオール、トリシクロ〔5,3,1,13,9〕ドデカンジオール、ビシクロ〔4,3,0〕ノナンジメタノール、トリシクロ〔5,3,1,13,9〕ドデカン-ジエタノール、ヒドロキシプロピルトリシクロ〔5,3,1,13,9〕ドデカノール、スピロ〔3,4〕オクタンジオール、ブチルシクロヘキサンジオール、1,1’-ビシクロヘキシリデンジオール、1,4-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,2-シクロヘキサンジメタノール、及びo-ジヒドロキシキシリレン等の2官能ポリオールモノマー(前記(B12)ウレタンプレポリマーを構成する(B32)2官能活性水素含有化合物に該当する)。
Alicyclic alcohol; (B3) component Hydrogenated bisphenol A, cyclobutanediol, cyclopentanediol, cyclohexanediol, cycloheptanediol, cyclooctanediol, cyclohexanedimethanol, hydroxypropylcyclohexanol, tricyclo [5,2,1,0] 2,6 ] Decane-dimethanol, bicyclo [4,3,0] -nonanediol, dicyclohexanediol, tricyclo [5,3,1,13,9] dodecanediol, bicyclo [4,3,0] nonanedi Methanol, tricyclo [5,3,1,1 3,9 ] dodecane-diethanol, hydroxypropyltricyclo [5,3,1,1 3,9 ] dodecanol, spiro [3,4] octanediol, butylcyclohexanediol, 1,1'-bicyclohex A bifunctional polyol monomer such as lidene diol, 1,4-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,2-cyclohexanedimethanol, and o-dihydroxyxylylene (the (B12) urethane prepolymer is constituted. (B32) Corresponds to a bifunctional active hydrogen-containing compound).
 トリス(2-ヒドロキシエチル)イソシアヌレート、シクロヘキサントリオール、スクロース、マルチトール、ラクチトール等の多官能ポリオールモノマー。 Multifunctional polyol monomers such as tris (2-hydroxyethyl) isocyanurate, cyclohexanetriol, sucrose, maltitol, lactitol.
 芳香族アルコール;(B3)成分
 ジヒドロキシナフタレン、ジヒドロキシベンゼン、ビスフェノールA、ビスフェノールF、キシリレングリコール、テトラブロムビスフェノールA、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、1,2-ビス(4-ヒドロキシフェニル)エタン、ビス(4-ヒドロキシフェニル)フェニルメタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、ビス(4-ヒドロキシフェニル)-1-ナフチルメタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、2-(4-ヒドロキシフェニル)-2-(3-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)ブタン、1,1-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)-3-メチルブタン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、3,3-ビス(4-ヒドロキシフェニル)ペンタン、2,2-ビス(4-ヒドロキシフェニル)ヘキサン、2,2-ビス(4-ヒドロキシフェニル)オクタン、2,2-ビス(4-ヒドロキシフェニル)-4-メチルペンタン、2,2-ビス(4-ヒドロキシフェニル)ヘプタン、4,4-ビス(4-ヒドロキシフェニル)ヘプタン、2,2-ビス(4-ヒドロキシフェニル)トリデカン、2,2-ビス(4-ヒドロキシフェニル)オクタン、2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-エチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-n-プロピル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-イソプロピル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-sec-ブチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-tert-ブチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-アリル-4'-ヒドロキシフェニル)プロパン、2,2-ビス(3-メトキシ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(2,3,5,6-テトラメチル-4-ヒドロキシフェニル)プロパン、ビス(4-ヒドロキシフェニル)シアノメタン、1-シアノ-3,3-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)シクロヘプタン、1,1-ビス(3-メチル-4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(3,5-ジメチル-4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(3,5-ジクロロ-4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(3-メチル-4-ヒドロキシフェニル)-4-メチルシクロヘキサン、1,1-ビス (4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、2,2-ビス(4-ヒドロキシフェニル)ノルボルナン、2,2-ビス(4-ヒドロキシフェニル)アダマンタン、4,4'- ジヒドロキシジフェニルエーテル、4,4'- ジヒドロキシ-3,3'-ジメチルジフェニルエーテル、エチレングリコールビス(4-ヒドロキシフェニル)エーテル、4,4'- ジヒドロキシジフェニルスルフィド、3,3'-ジメチル-4,4'-ジヒドロキシジフェニルスルフィド、3,3'-ジシクロヘキシル-4,4'-ジヒドロキシジフェニルスルフィド、3,3'-ジフェニル-4,4'-ジヒドロキシジフェニルスルフィド、4,4'-ジヒドロキシジフェニルスルホキシド、3,3'-ジメチル-4,4'-ジヒドロキシジフェニルスルホキシド、4,4'-ジヒドロキシジフェニルスルホン、4,4'-ジヒドロキシ-3,3'-ジメチルジフェニルスルホン、ビス(4-ヒドロキシフェニル)ケトン、ビス(4-ヒドロキシ-3-メチルフェニル)ケトン、7,7'-ジヒドロキシ-3,3',4,4'-テトラヒドロ-4,4,4',4'-テトラメチル-2,2'-スピロビ(2H-1-ベンゾピラン)、トランス-2,3-ビス(4-ヒドロキシフェニル)-2-ブテン、9,9-ビス(4-ヒドロキシフェニル)フルオレン、3,3-ビス(4-ヒドロキシフェニル)-2-ブタノン、1,6-ビス(4-ヒドロキシフェニル)-1,6-ヘキサンジオン、4,4'-ジヒドロキシビフェニル、m-ジヒドロキシキシリレン、p-ジヒドロキシキシリレン、1,4-ビス(2-ヒドロキシエチル)ベンゼン、1,4-ビス(3-ヒドロキシプロピル)ベンゼン、1,4-ビス(4-ヒドロキシブチル)ベンゼン、1,4-ビス(5-ヒドロキシペンチル)ベンゼン、1,4-ビス(6-ヒドロキシヘキシル)ベンゼン、2,2-ビス〔4-(2”-ヒドロキシエチルオキシ)フェニル〕プロパン、及びハイドロキノン、レゾールシン等の2官能ポリオールモノマー(前記(B12)ウレタンプレポリマーを構成する(B32)2官能活性水素含有化合物に該当する)。
Aromatic alcohol; (B3) component Dihydroxynaphthalene, dihydroxybenzene, bisphenol A, bisphenol F, xylylene glycol, tetrabromobisphenol A, bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane , 1,2-bis (4-hydroxyphenyl) ethane, bis (4-hydroxyphenyl) phenylmethane, bis (4-hydroxyphenyl) diphenylmethane, bis (4-hydroxyphenyl) -1-naphthylmethane, 1,1- Bis (4-hydroxyphenyl) -1-phenylethane, 2- (4-hydroxyphenyl) -2- (3-hydroxyphenyl) propane, 2,2-bis (4-hydroxyphenyl) butane, 1,1-bis (4-hydroxyphenyl) butane, 2 , 2-bis (4-hydroxyphenyl) -3-methylbutane, 2,2-bis (4-hydroxyphenyl) pentane, 3,3-bis (4-hydroxyphenyl) pentane, 2,2-bis (4-hydroxy) Phenyl) hexane, 2,2-bis (4-hydroxyphenyl) octane, 2,2-bis (4-hydroxyphenyl) -4-methylpentane, 2,2-bis (4-hydroxyphenyl) heptane, 4,4 -Bis (4-hydroxyphenyl) heptane, 2,2-bis (4-hydroxyphenyl) tridecane, 2,2-bis (4-hydroxyphenyl) octane, 2,2-bis (3-methyl-4-hydroxyphenyl) ) Propane, 2,2-bis (3-ethyl-4-hydroxyphenyl) propane, 2,2-bis (3-n-propyl-4-hydroxy) Phenyl) propane, 2,2-bis (3-isopropyl-4-hydroxyphenyl) propane, 2,2-bis (3-sec-butyl-4-hydroxyphenyl) propane, 2,2-bis (3-tert-) Butyl-4-hydroxyphenyl) propane, 2,2-bis (3-cyclohexyl-4-hydroxyphenyl) propane, 2,2-bis (3-allyl-4′-hydroxyphenyl) propane, 2,2-bis ( 3-methoxy-4-hydroxyphenyl) propane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane, 2,2-bis (2,3,5,6-tetramethyl-4-hydroxy) Phenyl) propane, bis (4-hydroxyphenyl) cyanomethane, 1-cyano-3,3-bis (4-hydroxyphenyl) butane, 2, -Bis (4-hydroxyphenyl) hexafluoropropane, 1,1-bis (4-hydroxyphenyl) cyclopentane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,1-bis (4-hydroxyphenyl) Cycloheptane, 1,1-bis (3-methyl-4-hydroxyphenyl) cyclohexane, 1,1-bis (3,5-dimethyl-4-hydroxyphenyl) cyclohexane, 1,1-bis (3,5-dichloro) -4-hydroxyphenyl) cyclohexane, 1,1-bis (3-methyl-4-hydroxyphenyl) -4-methylcyclohexane, 1,1-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 2,2-bis (4-hydroxyphenyl) norbornane, 2,2-bis (4-hydroxy) Phenyl) adamantane, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxy-3,3'-dimethyldiphenyl ether, ethylene glycol bis (4-hydroxyphenyl) ether, 4,4'-dihydroxydiphenyl sulfide, 3,3 '-Dimethyl-4,4'-dihydroxydiphenyl sulfide, 3,3'-dicyclohexyl-4,4'-dihydroxydiphenyl sulfide, 3,3'-diphenyl-4,4'-dihydroxydiphenyl sulfide, 4,4'- Dihydroxydiphenyl sulfoxide, 3,3′-dimethyl-4,4′-dihydroxydiphenyl sulfoxide, 4,4′-dihydroxydiphenyl sulfone, 4,4′-dihydroxy-3,3′-dimethyldiphenyl sulfone, bis (4-hydroxy) Phenyl) ketone, Su (4-hydroxy-3-methylphenyl) ketone, 7,7'-dihydroxy-3,3 ', 4,4'-tetrahydro-4,4,4', 4'-tetramethyl-2,2'- Spirobi (2H-1-benzopyran), trans-2,3-bis (4-hydroxyphenyl) -2-butene, 9,9-bis (4-hydroxyphenyl) fluorene, 3,3-bis (4-hydroxyphenyl) ) -2-Butanone, 1,6-bis (4-hydroxyphenyl) -1,6-hexanedione, 4,4′-dihydroxybiphenyl, m-dihydroxyxylylene, p-dihydroxyxylylene, 1,4-bis (2-hydroxyethyl) benzene, 1,4-bis (3-hydroxypropyl) benzene, 1,4-bis (4-hydroxybutyl) benzene, 1,4-bis (5-hydroxypropyl) Phenyl) benzene, 1,4-bis (6-hydroxyhexyl) benzene, 2,2-bis [4- (2 ″ -hydroxyethyloxy) phenyl] propane, and bifunctional polyol monomers such as hydroquinone and resorcin (see the above ( B12) which constitutes a urethane prepolymer (corresponds to a compound (B32) containing a bifunctional active hydrogen).
 トリヒドロキシナフタレン、テトラヒドロキシナフタレン、ベンゼントリオール、ビフェニルテトラオール、ピロガロール、(ヒドロキシナフチル)ピロガロール、トリヒドロキシフェナントレン等の多官能ポリオールモノマー。 Multifunctional polyol monomers such as trihydroxynaphthalene, tetrahydroxynaphthalene, benzenetriol, biphenyltetraol, pyrogallol, (hydroxynaphthyl) pyrogallol, and trihydroxyphenanthrene.
 ポリエステルポリオール;(B3)成分
 ポリオールと多塩基酸との縮合反応により得られる化合物が挙げられる。中でも、数平均分子量が400~2000であることが好ましく、500~1500より好ましく、600~1200が最も好ましい。分子の両末端にのみ(分子内に2つの)水酸基を有するものは、前記(B12)ウレタンプレポリマーを構成する(B32)2官能活性水素含有化合物に該当する。
Polyester polyol; component (B3) A compound obtained by a condensation reaction of a polyol and a polybasic acid is mentioned. Among them, the number average molecular weight is preferably 400 to 2000, more preferably 500 to 1500, and most preferably 600 to 1200. Those having a hydroxyl group (two in the molecule) only at both ends of the molecule correspond to the (B32) bifunctional active hydrogen-containing compound constituting the (B12) urethane prepolymer.
 ポリエーテルポリオール;(B3)成分
 アルキレンオキシドの開環重合、または、分子中に活性水素含有基を2個以上有する化合物とアルキレンオキサイドとの反応により得られる化合物およびその変性体が挙げられる。中でも、数平均分子量が400~2000であることが好ましく、500~1500より好ましく、600~1200が最も好ましい。分子の両末端にのみ(分子内に2つの)水酸基を有するものは、前記(B12)ウレタンプレポリマーを構成する(B32)2官能活性水素含有化合物に該当する。
Polyether polyol; (B3) component A compound obtained by ring-opening polymerization of an alkylene oxide or a reaction of a compound having two or more active hydrogen-containing groups in the molecule with an alkylene oxide, and a modified product thereof. Among them, the number average molecular weight is preferably 400 to 2000, more preferably 500 to 1500, and most preferably 600 to 1200. Those having a hydroxyl group (two in the molecule) only at both ends of the molecule correspond to the (B32) bifunctional active hydrogen-containing compound constituting the (B12) urethane prepolymer.
 ポリカプロラクトンポリオール;(B3)成分
 ε-カプロラクトンの開環重合により得られる化合物が挙げられる。中でも、数平均分子量が400~2000であることが好ましく、500~1500より好ましく、600~1200が最も好ましい。分子の両末端にのみ(分子内に2つの)水酸基を有するものは、前記(B12)ウレタンプレポリマーを構成する(B32)2官能活性水素含有化合物に該当する。
Polycaprolactone polyol (Component (B3)) A compound obtained by ring-opening polymerization of ε-caprolactone. Among them, the number average molecular weight is preferably 400 to 2000, more preferably 500 to 1500, and most preferably 600 to 1200. Those having a hydroxyl group (two in the molecule) only at both ends of the molecule correspond to the (B32) bifunctional active hydrogen-containing compound constituting the (B12) urethane prepolymer.
 ポリカーボネートポリオール;(B3)成分
 低分子ポリオールの1種類以上をホスゲン化して得られる化合物あるいはエチレンカーボネート、ジエチルカーボネート、ジフェニルカーボネート等を用いてエステル交換して得られる化合物が挙げられる。中でも、数平均分子量が400~2000であることが好ましく、500~1500より好ましく、600~1200が最も好ましい。分子の両末端にのみ(分子内に2つの)水酸基を有するものは、前記(B12)ウレタンプレポリマーを構成する(B32)2官能活性水素含有化合物に該当する。
Polycarbonate Polyol; Component (B3) A compound obtained by phosgenating one or more low molecular weight polyols or a compound obtained by transesterification using ethylene carbonate, diethyl carbonate, diphenyl carbonate or the like. Among them, the number average molecular weight is preferably 400 to 2000, more preferably 500 to 1500, and most preferably 600 to 1200. Those having a hydroxyl group (two in the molecule) only at both ends of the molecule correspond to the (B32) bifunctional active hydrogen-containing compound constituting the (B12) urethane prepolymer.
 ポリアクリルポリオール;(B3)成分
 (メタ)アクリレート酸エステルやビニルモノマーを重合させて得られるポリオール化合物が挙げられる。分子の両末端にのみ(分子内に2つの)水酸基を有するものは、前記(B12)ウレタンプレポリマーを構成する(B32)2官能活性水素含有化合物に該当する。
Polyacryl polyol; (B3) component A (meth) acrylate ester or a polyol compound obtained by polymerizing a vinyl monomer can be mentioned. Those having a hydroxyl group (two in the molecule) only at both ends of the molecule correspond to the (B32) bifunctional active hydrogen-containing compound constituting the (B12) urethane prepolymer.
 チオール;(B3)成分
 チオールの好適な具体例としては、国際公開第WO2015/068798号パンフレットに記載されているものを用いることが出来る。その中でも、特に好適なものを例示すれば以下のものが挙げられる。
Thiol: (B3) Component As a preferable specific example of the thiol, those described in International Publication No. WO2015 / 068798 can be used. Among them, the following are given as examples of particularly preferable ones.
 テトラエチレングリコ-ルビス(3-メルカプトプロピオネート)、1,4-ブタンジオールビス(3-メルカプトプロピオネート)、1,6-ヘキサンジオールビス(3-メルカプトプロピオネート)、1,4-ビス(メルカプトプロピルチオメチル)ベンゼン(前記(B12)ウレタンプレポリマーを構成する(B32)2官能活性水素含有化合物に該当する)。 Tetraethylene glycol bis (3-mercaptopropionate), 1,4-butanediol bis (3-mercaptopropionate), 1,6-hexanediol bis (3-mercaptopropionate), 1,4- Bis (mercaptopropylthiomethyl) benzene (corresponding to the (B32) bifunctional active hydrogen-containing compound constituting the (B12) urethane prepolymer).
 トリメチロ-ルプロパントリス(3-メルカプトプロピオネート)、ペンタエリスリト-ルテトラキス(3-メルカプトプロピオネート)、ジペンタエリスリト-ルヘキサキス(3-メルカプトプロピオネート)、1,2-ビス[(2-メルカプトエチル)チオ]-3-メルカプトプロパン、2,2-ビス(メルカプトメチル)-1,4-ブタンジチオール、2,5-ビス(メルカプトメチル)-1,4-ジチアン、4-メルカプトメチル-1,8-ジメルカプト-3,6-ジチアオクタン、1,1,1,1-テトラキス(メルカプトメチル)メタン、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、1,1,2,2-テトラキス(メルカプトメチルチオ)エタン、4,6-ビス(メルカプトメチルチオ)-1,3-ジチアン、トリス-{(3-メルカプトプロピオニルオキシ)エチル}-イソシアヌレ-ト等のチオールモノマー。 Trimethyl propane tris (3-mercaptopropionate), pentaerythritol tetrakis (3-mercaptopropionate), dipentaerythritol hexakis (3-mercaptopropionate), 1,2-bis [( 2-mercaptoethyl) thio] -3-mercaptopropane, 2,2-bis (mercaptomethyl) -1,4-butanedithiol, 2,5-bis (mercaptomethyl) -1,4-dithiane, 4-mercaptomethyl -1,8-dimercapto-3,6-dithiaoctane, 1,1,1,1-tetrakis (mercaptomethyl) methane, 1,1,3,3-tetrakis (mercaptomethylthio) propane, 1,1,2,2 -Tetrakis (mercaptomethylthio) ethane, 4,6-bis (mercaptomethylthio) -1,3-dithio Emissions, tris - {(3-mercaptopropionyl) ethyl} - isocyanurate - such DOO thiol monomers.
 OH/SH型重合性基含有モノマー;(B3)成分
 2-メルカプトエタノール、1-ヒドロキシ-4-メルカプトシクロヘキサン、2-メルカプトハイドロキノン、4-メルカプトフェノール、1-ヒドロキシエチルチオ-3-メルカプトエチルチオベンゼン、4-ヒドロキシ-4’-メルカプトジフェニルスルホン、2-(2-メルカプトエチルチオ)エタノール、ジヒドロキシエチルスルフィドモノ(3-メルカプトプロピオネート)、ジメルカプトエタンモノ(サルチレート)(前記(B12)ウレタンプレポリマーを構成する(B32)2官能活性水素含有化合物に該当する)。
OH / SH type polymerizable group-containing monomer; (B3) component 2-mercaptoethanol, 1-hydroxy-4-mercaptocyclohexane, 2-mercaptohydroquinone, 4-mercaptophenol, 1-hydroxyethylthio-3-mercaptoethylthiobenzene , 4-hydroxy-4'-mercaptodiphenyl sulfone, 2- (2-mercaptoethylthio) ethanol, dihydroxyethyl sulfide mono (3-mercaptopropionate), dimercaptoethane mono (sulfylate) ((B12) urethane pre (B32) corresponding to a bifunctional active hydrogen-containing compound constituting a polymer).
 3-メルカプト-1,2-プロパンジオール、グルセリンジ(メルカプトアセテート)、2,4-ジメルカプトフェノール、1,3-ジメルカプト-2-プロパノール、2,3-ジメルカプト-1-プロパノール、1,2-ジメルカプト-1,3-ブタンジオール、ペンタエリスリトールトリス(3-メルカプトプロピオネート)、ペンタエリスリトールモノ(3-メルカプトプロピオネート)、ペンタエリスリトールビス(3-メルカプトプロピオネート)、ペンタエリスリトールトリス(チオグリコレート)、ペンタエリスリトールペンタキス(3-メルカプトプロピオネート)、ヒドロキシメチル-トリス(メルカプトエチルチオメチル)メタン、ヒドロキシエチルチオメチルートリス(メルカプトエチルチオ)メタン等のポリ(チ)オールモノマー。 3-mercapto-1,2-propanediol, glycerin di (mercaptoacetate), 2,4-dimercaptophenol, 1,3-dimercapto-2-propanol, 2,3-dimercapto-1-propanol, 1,2-dimercapto -1,3-butanediol, pentaerythritol tris (3-mercaptopropionate), pentaerythritol mono (3-mercaptopropionate), pentaerythritol bis (3-mercaptopropionate), pentaerythritol tris (thioglycol) Rate), pentaerythritol pentakis (3-mercaptopropionate), hydroxymethyl-tris (mercaptoethylthiomethyl) methane, hydroxyethylthiomethyl-tris (mercaptoethylthio) methane, etc. All monomer.
 <(B4)アミノ基含有モノマー;(B4)成分>
 (B4)アミノ基含有モノマーは、一分子中に1級、または2級のアミノ基を1つ以上有しているモノマーであり、その中でも大きく分けて、脂肪族アミン、脂環族アミン、芳香族アミンに分類され、その具体例としては、以下のモノマーを挙げることができる。
<(B4) Amino group-containing monomer; (B4) component>
The (B4) amino group-containing monomer is a monomer having at least one primary or secondary amino group in one molecule, and among them, it is roughly classified into aliphatic amine, alicyclic amine, and aromatic. They are classified into group amines, and specific examples thereof include the following monomers.
 脂肪族アミン;(B4)成分
 エチレンジアミン、ヘキサメチレンジアミン、ノナメチレンジアミン、ウンデカンメチレンジアミン、ドデカメチレンジアミン、メタキシレンジアミン、1,3-プロパンジアミン、プトレシン、ジエチレントリアミン等のポリアミン。
Aliphatic amine; (B4) component Polyamines such as ethylenediamine, hexamethylenediamine, nonamethylenediamine, undecanemethylenediamine, dodecamethylenediamine, metaxylenediamine, 1,3-propanediamine, putrescine and diethylenetriamine.
 モノエチルアミン、n-プロピルアミン、ジエチルアミン、ジーn-プロピルアミン、n-プロピルアミン、ジーn-ブチルアミン、n-ブチルアミン等の単官能アミン。 Monofunctional amines such as monoethylamine, n-propylamine, diethylamine, di-n-propylamine, n-propylamine, di-n-butylamine, and n-butylamine.
 脂環族アミン;(B4)成分
 イソホロンジアミン、シクロヘキシルジアミン等のポリアミン。
Alicyclic amine; (B4) component Polyamines such as isophoronediamine and cyclohexyldiamine.
 シクロヘキシルアミン、N―メチルシクロヘキシルアミン等の単官能アミン。 Monofunctional amines such as cyclohexylamine and N-methylcyclohexylamine.
 芳香族アミン;(B4)成分
 4,4’-メチレンビス(o-クロロアニリン)(MOCA)、2,6-ジクロロ-p-フェニレンジアミン、4,4’-メチレンビス(2,3-ジクロロアニリン)、4,4’-メチレンビス(2-エチル-6-メチルアニリン)、3,5-ビス(メチルチオ)-2,4-トルエンジアミン、3,5-ビス(メチルチオ)-2,6-トルエンジアミン、3,5-ジエチルトルエン-2,4-ジアミン、3,5-ジエチルトルエン-2,6-ジアミン、トリメチレングリコール-ジ-p-アミノベンゾエート、ポリテトラメチレングリコール-ジ-p-アミノベンゾエート、4,4’-ジアミノ-3,3’,5,5’-テトラエチルジフェニルメタン、4,4’-ジアミノ-3,3’-ジイソプロピル-5,5’-ジメチルジフェニルメタン、4,4’-ジアミノ-3,3’,5,5’-テトライソプロピルジフェニルメタン、1,2-ビス(2-アミノフェニルチオ)エタン、4,4’-ジアミノ-3,3’-ジエチル-5,5’-ジメチルジフェニルメタン、N,N’-ジ-sec-ブチル-4,4’-ジアミノジフェニルメタン、3,3’-ジエチル-4,4’-ジアミノジフェニルメタン、m-キシリレンジアミン、N,N’-ジ-sec-ブチル-p-フェニレンジアミン、m-フェニレンジアミン、p-キシリレンジアミン、p-フェニレンジアミン、3,3’-メチレンビス(メチル-6-アミノベンゾエート)、2,4-ジアミノ-4-クロロ安息香酸-2-メチルプロピル、2,4-ジアミノ-4-クロロ安息香酸-イソプロピル、2,4-ジアミノ-4-クロロフェニル酢酸-イソプロピル、テレフタル酸-ジ-(2-アミノフェニル)チオエチル、ジフェニルメタンジアミン、トリレンジアミン、ピペラジン、1,3,5-ベンゼントリアミン、メラミン等のポリアミン。
Aromatic amine; (B4) component 4,4′-methylenebis (o-chloroaniline) (MOCA), 2,6-dichloro-p-phenylenediamine, 4,4′-methylenebis (2,3-dichloroaniline), 4,4'-methylenebis (2-ethyl-6-methylaniline), 3,5-bis (methylthio) -2,4-toluenediamine, 3,5-bis (methylthio) -2,6-toluenediamine, 3 , 5-diethyltoluene-2,4-diamine, 3,5-diethyltoluene-2,6-diamine, trimethylene glycol-di-p-aminobenzoate, polytetramethylene glycol-di-p-aminobenzoate, 4, 4'-diamino-3,3 ', 5,5'-tetraethyldiphenylmethane, 4,4'-diamino-3,3'-diisopropyl-5,5'-dimethyldi Phenylmethane, 4,4'-diamino-3,3 ', 5,5'-tetraisopropyldiphenylmethane, 1,2-bis (2-aminophenylthio) ethane, 4,4'-diamino-3,3'- Diethyl-5,5'-dimethyldiphenylmethane, N, N'-di-sec-butyl-4,4'-diaminodiphenylmethane, 3,3'-diethyl-4,4'-diaminodiphenylmethane, m-xylylenediamine, N, N'-di-sec-butyl-p-phenylenediamine, m-phenylenediamine, p-xylylenediamine, p-phenylenediamine, 3,3'-methylenebis (methyl-6-aminobenzoate), 2,4 -Dimethyl-4-chlorobenzoic acid-2-methylpropyl, 2,4-diamino-4-chlorobenzoic acid-isopropyl, 2,4-diamino-4-chloro Eniru acetate - isopropyl, terephthalic acid - di - (2-aminophenyl) thioethyl, diphenylmethane diamine, tolylene diamine, piperazine, 1,3,5-benzene triamine, polyamines melamine.
 ベンジルアミン、ジベンジルアミン等の単官能アミン。 Monofunctional amines such as benzylamine and dibenzylamine.
 なお、これら(B4)成分の中で、ジアミン化合物は、(B32)分子内に2つの活性水素含有基を有する2官能活性水素含有化合物と見なすこともできる。 Note that, of these (B4) components, the diamine compound can also be regarded as a bifunctional active hydrogen-containing compound having two active hydrogen-containing groups in the (B32) molecule.
 <重合方法/逐次付加反応>の重合性モノマー組成物 好適な配合割合
 (B1)成分、(B2)成分、(B3)成分、および(B4)成分を含む重合性モノマー組成物
 本発明において、(B1)成分、(B2)成分、(B3)成分、および(B4)成分を含む硬化性組成物の場合は、以下の配合となることが好ましい。すなわち、(A)ロタキサンモノマーにおける重合性官能基がラジカル重合性基ではなく、逐次付加反応(重縮合・重付加反応)により重合硬化して硬化体を製造する場合には、以下の配合割合とすることが好ましい。(A)成分の重合性官能基が活性水素含有基である場合には、(B1)成分が必須となる。
Polymerizable Monomer Composition of <Polymerization Method / Sequential Addition Reaction> Suitable Blending Ratio Polymerizable monomer composition containing component (B1), component (B2), component (B3), and component (B4) In the present invention, ( In the case of a curable composition containing the component (B1), the component (B2), the component (B3), and the component (B4), the following composition is preferable. That is, when the polymerizable functional group in the (A) rotaxane monomer is not a radically polymerizable group and a cured product is produced by polymerizing and curing by a sequential addition reaction (polycondensation / polyaddition reaction), Preferably. When the polymerizable functional group of the component (A) is an active hydrogen-containing group, the component (B1) is essential.
 具体的には、(B1)成分((B12)成分、(B13)成分を使用する場合には、それ等を含む)、(B2)成分、(B3)成分、および(B4)成分の合計量(以下、単に「(B)組成物量」とする場合もある)と、(A)成分との合計100質量部に対し、(A)成分を3~50質量部、(B)組成物量を50~97質量部の範囲で含有することが好ましい。この割合で(A)ロタキサンモノマーを含むことにより、得られる硬化体が、研磨用パッドの場合には優れた研磨特性や機械特性を発現させることが可能となる。以上のような効果を発揮するためには、(A)成分を5~45質量部、(B)組成物量を55~95質量部の範囲とすることがより好ましい。 Specifically, the total amount of the component (B1) (including the components (B12) and (B13) when they are used), the component (B2), the component (B3), and the component (B4). (Hereinafter, it may be simply referred to as “(B) composition amount”) and 100 parts by weight of the total amount of the (A) component, 3 to 50 parts by weight of the (A) component and 50 parts by weight of the (B) composition amount. It is preferably contained in the range of to 97 parts by mass. When the rotaxane monomer (A) is contained in this proportion, the obtained cured product can exhibit excellent polishing characteristics and mechanical characteristics in the case of a polishing pad. In order to exert the above effects, it is more preferable that the amount of the component (A) is 5 to 45 parts by mass and the amount of the composition (B) is 55 to 95 parts by mass.
 さらには、(B)組成物量を100質量%としたとき、(B1)成分0~100質量%、(B2)成分0~100質量%、(B3)成分0~80質量%、および(B4)成分0~30質量%とすることが、優れた機械特性を発現するため好ましい。この効果をより発揮するためには、(B1)成分20~95質量%、(B2)成分0~20質量%、(B3)成分0~70質量%、および(B4)成分0~25質量%とすることがさらに好ましく、(B1)成分40~95質量%、(B2)成分0~5質量%、(B3)成分0~35質量%、および(B4)成分0~20質量%とすることが最も好ましい
 そして、(A)ロタキサンモノマー、(B2)成分、(B3)成分、および(B4)成分に含まれるイソ(チオ)シアネート基と反応しうる全重合性官能基のモル数と、(B1)成分の全イソ(チオ)シアネート基のモル数との比が1:0.8~1.2を満足することが好ましい。
Further, when the amount of the composition (B) is 100% by mass, the component (B1) 0 to 100% by mass, the component (B2) 0 to 100% by mass, the component (B3) 0 to 80% by mass, and the component (B4). It is preferable that the content of the component is 0 to 30% by mass, because excellent mechanical properties are exhibited. In order to exert this effect more, the component (B1) is 20 to 95% by mass, the component (B2) is 0 to 20% by mass, the component (B3) is 0 to 70% by mass, and the component (B4) is 0 to 25% by mass. More preferably, the component (B1) is 40 to 95% by mass, the component (B2) is 0 to 5% by mass, the component (B3) is 0 to 35% by mass, and the component (B4) is 0 to 20% by mass. And (A) rotaxane monomer, (B2) component, (B3) component, and the number of moles of all polymerizable functional groups capable of reacting with the iso (thio) cyanate group contained in (B4) component, ( It is preferable that the ratio of the component B1) to the total number of moles of iso (thio) cyanate groups is 1: 0.8 to 1.2.
 <(B)重合性モノマー組成物>
 <重合方法/連鎖重合(ラジカル重合)反応>の重合性モノマー
 <(B5)ラジカル重合性モノマー>
 (B5)ラジカル重合性モノマー(以下、単に(B5)成分とする場合もある。)とは、ラジカル重合性基を有するものであれば、特に制限されるものではない。この場合、前記(A)ロタキサンモノマーに含まれる重合性官能基は、ラジカル重合性基である。そして、(B)重合性モノマー組成物は、少なくとも(B5)成分を含む。
<(B) Polymerizable monomer composition>
<Polymerization Method / Chain Polymerization (Radical Polymerization) Reaction> Polymerizable Monomer <(B5) Radical Polymerizable Monomer>
The radical-polymerizable monomer (B5) (hereinafter sometimes referred to simply as the component (B5)) is not particularly limited as long as it has a radical-polymerizable group. In this case, the polymerizable functional group contained in the (A) rotaxane monomer is a radical polymerizable group. The (B) polymerizable monomer composition contains at least the (B5) component.
 ラジカル重合性モノマーを、大きく分類すると(メタ)アクリレート基を有する(メタ)アクリレート化合物、ビニル基を有するビニル化合物、アリル基を有するアリル化合物に分類できる。 Radically polymerizable monomers can be roughly classified into (meth) acrylate compounds having (meth) acrylate groups, vinyl compounds having vinyl groups, and allyl compounds having allyl groups.
 前記(B5)ラジカル重合性モノマーの好適な具体例としては、国際公開第2015/068798号に記載されているものを用いることが出来る。 As a preferable specific example of the radically polymerizable monomer (B5), those described in International Publication No. 2015/068798 can be used.
 <好適な硬化性組成物について>
 上記(A)ロタキサンモノマー、および(B)重合性モノマー組成物は、用いる用途に応じて適宜選択すればよい。研磨用パッド材に用いられる場合には、(A)ロタキサンモノマーの環状分子の重合性官能基は水酸基、チオール基、第一級アミノ基、及び第二級アミノ基から選択されるのが好ましく、(B)重合性モノマー組成物は(B1)イソ(チオ)シアネート化合物を含むものであることが好ましい。特に、研磨用パッド材に用いる際には、(B1)イソ(チオ)シアネート化合物の中でも、(B12)ウレタンプレポリマーを含んでなることが好ましい。こうすることで、研磨用パッド材の機械特性を向上でき、特に良好な耐摩耗性特性を発現できる。中でも、特に、上記(A)ロタキサンモノマーが有する重合性官能基が、少なくとも水酸基を含み、(B)重合性モノマー組成物に含まれる(B1)イソ(チオ)シアネート化合物が、(B12)ウレタンプレポリマーを含むものであることが好ましい。
<Suitable curable composition>
The rotaxane monomer (A) and the polymerizable monomer composition (B) may be appropriately selected depending on the intended use. When used in a polishing pad material, the polymerizable functional group of the cyclic molecule of the (A) rotaxane monomer is preferably selected from a hydroxyl group, a thiol group, a primary amino group, and a secondary amino group, The (B) polymerizable monomer composition preferably contains (B1) an iso (thio) cyanate compound. In particular, when it is used for a polishing pad material, it is preferable to include (B12) urethane prepolymer among the (B1) iso (thio) cyanate compounds. By doing so, the mechanical characteristics of the polishing pad material can be improved, and particularly good wear resistance characteristics can be exhibited. Among them, in particular, the polymerizable functional group of the (A) rotaxane monomer contains at least a hydroxyl group, and the (B1) iso (thio) cyanate compound contained in the (B) polymerizable monomer composition is (B12) urethane prepolymer. It preferably contains a polymer.
 (B)重合性モノマー組成物は、(B1)イソ(チオ)シアネート化合物及び(B4)アミノ基含有モノマーを含むことが好ましく、(B1)イソ(チオ)シアネート化合物及び(B4)アミノ基含有モノマーからなることがより好ましい。また、上記(B1)イソ(チオ)シアネート化合物は(B12)ウレタンプレポリマーであることが好ましい。(B4)アミノ基含有モノマーを併用することにより、ウレタン樹脂の強度を向上させることができる。これらを併用する場合、(B1)イソ(チオ)シアネート化合物100質量部に対して、(B4)アミノ基含有モノマーの量は好ましくは0.5~20質量部、より好ましくは3~15質量部である。 The (B) polymerizable monomer composition preferably contains (B1) iso (thio) cyanate compound and (B4) amino group-containing monomer, and (B1) iso (thio) cyanate compound and (B4) amino group-containing monomer. More preferably, The (B1) iso (thio) cyanate compound is preferably a (B12) urethane prepolymer. By using (B4) the amino group-containing monomer in combination, the strength of the urethane resin can be improved. When these are used in combination, the amount of the (B4) amino group-containing monomer is preferably 0.5 to 20 parts by mass, more preferably 3 to 15 parts by mass, relative to 100 parts by mass of the (B1) iso (thio) cyanate compound. Is.
 (硬化性組成物に配合されるその他の配合成分)
 本発明の硬化性組成物においては、上述した(A)ロタキサンモノマーや、(B)重合性モノマー組成物に導入された重合性官能基の種類に応じて、その重合硬化を速やかに促進させるために各種の(C)重合硬化促進剤を使用することもできる。
(Other compounding ingredients to be incorporated in the curable composition)
In the curable composition of the present invention, in order to promptly accelerate the polymerization and curing of the above-mentioned (A) rotaxane monomer and (B) the polymerizable functional group introduced into the polymerizable monomer composition, depending on the type of the polymerizable functional group. It is also possible to use various (C) polymerization hardening accelerators.
 (C)重合硬化促進剤
 例えば、(A)ロタキサンモノマーが有している重合性官能基がOH基、アミノ基、エポキシ基、及び、SH基等の重合性基の場合であり、(B)組成物が(B1)イソ(チオ)シアネート化合物を含む場合には、(C1)ウレタン或いはウレア用反応触媒や(C2)縮合剤が重合硬化促進剤として使用される。
(C) Polymerization / curing accelerator For example, (A) the rotaxane monomer has a polymerizable functional group which is a polymerizable group such as an OH group, an amino group, an epoxy group, and an SH group, and (B) When the composition contains the (B1) iso (thio) cyanate compound, the (C1) urethane or urea reaction catalyst or the (C2) condensing agent is used as a polymerization curing accelerator.
 (A)ロタキサンモノマーが有している重合性官能基が水酸基、アミノ基等の重合性官能基であり、(B)組成物が、(B2)エポキシ基含有モノマーを含む場合には、(C3)エポキシ硬化剤やエポキシ基を開環重合させるための(C4)カチオン重合触媒が重合硬化促進剤として使用される。 When the polymerizable functional group contained in the (A) rotaxane monomer is a polymerizable functional group such as a hydroxyl group or an amino group and the (B) composition contains the (B2) epoxy group-containing monomer, (C3 ) An epoxy curing agent or a (C4) cationic polymerization catalyst for ring-opening polymerization of an epoxy group is used as a polymerization curing accelerator.
 (A)ロタキサンモノマーが有している重合性官能基がラジカル重合性基の場合であり、(B)組成物が(B5)ラジカル重合性モノマーを含む場合には、(C5)ラジカル重合開始剤が重合硬化促進剤として使用される。 When the polymerizable functional group contained in the (A) rotaxane monomer is a radical polymerizable group, and the (B) composition contains the (B5) radical polymerizable monomer, a (C5) radical polymerization initiator Is used as a polymerization hardening accelerator.
 本発明で好適に使用できる上記(C1)~(C5)の重合促進剤としては、具体例としては、国際公開第2015/068798号に記載されているものを用いることができる。 Specific examples of the above-mentioned (C1) to (C5) polymerization accelerators that can be preferably used in the present invention include those described in International Publication No. 2015/068798.
 これら各種の(C)重合硬化促進剤は、それぞれ、1種単独でも、2種以上を併用することもできるが、その使用量は、所謂触媒量でよく、例えば、(A)ロタキサンモノマーと(B)重合性モノマー組成物の合計100質量部当り、0.001~10質量部、特に0.01~5質量部の範囲の少量でよい。 These various (C) polymerization and curing accelerators may be used alone or in combination of two or more, but the amount used may be a so-called catalytic amount, for example, (A) rotaxane monomer and ( A small amount in the range of 0.001 to 10 parts by mass, particularly 0.01 to 5 parts by mass, may be used per 100 parts by mass of the B) polymerizable monomer composition.
 本発明の硬化性組成物は、その他にも、本発明の効果を損なわない範囲で、公知の各種配合剤を用いることができる。例えば、砥粒、酸化防止剤、紫外線吸収剤、赤外線吸収剤、着色防止剤、蛍光染料、染料、フォトクロミック化合物、顔料、香料、界面活性剤、難燃剤、可塑剤、充填剤、帯電防止剤、整泡剤、溶剤、レベリング剤、その他の添加剤を加えてもよい。これらの添加剤は単独で用いても2種以上を併用してもよい。これら添加剤は、硬化性組成物に含有させ、該硬化性組成物を重合することにより、硬化体に含有させることができる。上述した砥粒については、具体的には、酸化セリウム、酸化珪素、アルミナ、炭化珪素、ジルコニア、酸化鉄、二酸化マンガン、酸化チタン及びダイヤモンドから選択される材料からなる粒子、又はこれら材料からなる二種以上の粒子等が挙げられる。 In addition to the curable composition of the present invention, various known compounding agents can be used as long as the effects of the present invention are not impaired. For example, abrasive grains, antioxidants, ultraviolet absorbers, infrared absorbers, coloring inhibitors, fluorescent dyes, dyes, photochromic compounds, pigments, fragrances, surfactants, flame retardants, plasticizers, fillers, antistatic agents, A foam stabilizer, a solvent, a leveling agent, and other additives may be added. These additives may be used alone or in combination of two or more. These additives can be contained in the curable composition, and can be contained in the cured product by polymerizing the curable composition. Regarding the above-mentioned abrasive grains, specifically, particles made of a material selected from cerium oxide, silicon oxide, alumina, silicon carbide, zirconia, iron oxide, manganese dioxide, titanium oxide and diamond, or two particles made of these materials. Examples include particles of at least one kind.
 重合方法は、公知の方法を採用できる。重縮合、又は重付加反応の場合には、国際公開第2015/068798号、国際公開第2016/143910、特開2017-48305に記載の条件を採用できる。ラジカル重合の場合には、国際公開第2014/136804号、国際公開第2015/068798号の記載の条件を採用できる。 As the polymerization method, a known method can be adopted. In the case of polycondensation or polyaddition reaction, the conditions described in WO 2015/068798, WO 2016/143910, and JP-A-2017-48305 can be adopted. In the case of radical polymerization, the conditions described in WO 2014/136804 and WO 2015/068798 can be adopted.
 また、本発明の硬化性組成物を硬化させた硬化体は、その用途に応じて、硬化体中に細孔を設けてもよい。このような用途としては、研磨用のパッド剤が知られている。研磨用のパッド剤等に細孔を設ける手法としては、公知で知られている発泡方法等を何ら制限なく用いることが可能である。それらの方法を例示すれば、低沸点炭化水素等の揮発性の発泡剤や、微小中空粒子(マイクロバルーン)を分散硬化させる方法、熱膨張性の微粒子を混合したのち加熱し微粒子を発泡させる方法、または混合中に空気や窒素等の不活性ガスを吹き込むメカニカルフロス発泡法が例示できる。本発明の硬化性体に、ウレタン結合を形成させうることが可能な硬化性組成物を用いる場合には、水などを添加する発泡剤発泡法も適用できる。中でも、得られる硬化体を発泡体とする場合に好適に使用できる、中空粒子について説明する。 Further, the cured product obtained by curing the curable composition of the present invention may have pores in the cured product depending on the application. A pad material for polishing is known as such an application. As a method for providing pores in a polishing pad material or the like, a known foaming method or the like can be used without any limitation. Examples of these methods include volatile foaming agents such as low-boiling hydrocarbons, dispersion hardening of fine hollow particles (microballoons), and mixing of heat-expandable fine particles followed by heating to foam fine particles. Alternatively, a mechanical froth foaming method in which an inert gas such as air or nitrogen is blown during the mixing can be exemplified. When a curable composition capable of forming a urethane bond is used in the curable body of the present invention, a foaming agent foaming method in which water or the like is added can also be applied. Above all, the hollow particles that can be preferably used when the obtained cured product is formed into a foam will be described.
 (D)中空粒子
 本発明おいては、(A)成分、および(B)組成物を含む硬化性組成物に、さらに(D)中空粒子(以下、単に「(D)成分」とする場合もある)を配合することもできる。
該中空粒子(マイクロバルーン)は、公知のものが何ら制限なく使用できる。具体例を示せば、塩化ビニリデン樹脂、(メタ)アクリレート系樹脂、アクリルニトリルと塩化ビニリデン共重合体、エポキシ樹脂、フェノール樹脂、メラミン樹脂、ウレタン樹脂等が外殻を形成する粒子を使用できる。中でも、該(D)中空粒子は、ウレタン系樹脂からなる外殻部と、該外殻部に囲まれた中空部とから構成される中空粒子であることが好ましい。該ウレタン系樹脂とは、ウレタン結合、および/又はウレア結合を有する樹脂である。この中空粒子を使用した場合には、効率よく、容易に、均一な発泡体を製造できる。さらに、この中空粒子を使用した場合には、効率よく、容易に、均一な発泡体を製造でき、スクラッチ等の欠陥が出にくくなり、さらにヒステリシスロスも低減される。
(D) Hollow Particles In the present invention, a curable composition containing the component (A) and the composition (B) may further include (D) hollow particles (hereinafter, simply referred to as “(D) component”). There is) can also be blended.
Known hollow particles (microballoons) can be used without any limitation. As a specific example, particles in which a vinylidene chloride resin, a (meth) acrylate resin, an acrylonitrile-vinylidene chloride copolymer, an epoxy resin, a phenol resin, a melamine resin, a urethane resin or the like form an outer shell can be used. Above all, the hollow particles (D) are preferably hollow particles composed of an outer shell part made of a urethane resin and a hollow part surrounded by the outer shell part. The urethane-based resin is a resin having a urethane bond and / or a urea bond. When this hollow particle is used, a uniform foam can be produced efficiently and easily. Further, when the hollow particles are used, it is possible to efficiently and easily produce a uniform foamed body, defects such as scratches are less likely to occur, and hysteresis loss is reduced.
 中空粒子の平均粒子径は、特に制限されるものではないが、以下の範囲であることが好ましい。具体的には、1μm~500μmであることが好ましく、5μm~200μmであることがより好ましく、10~100μmであることが最も好ましい。 The average particle size of the hollow particles is not particularly limited, but is preferably in the following range. Specifically, it is preferably 1 μm to 500 μm, more preferably 5 μm to 200 μm, and most preferably 10 to 100 μm.
 また、中空粒子の密度も、特に制限されるものではないが、以下の範囲であることが好ましい。具体的には、0.01g/cm~0.5g/cmであることが好ましく、0.02g/cm~0.3g/cmであることがより好ましい。なお、前記密度は、膨張した際の中空粒子の密度である。未膨張タイプの粒子であり、硬化性組成物と混合し、硬化させる際の熱によって膨張する中空粒子であれば、膨張した際の密度が、上記の密度であることが好ましい。 The density of the hollow particles is also not particularly limited, but is preferably in the following range. Specifically, it is preferably 0.01 g / cm 3 to 0.5 g / cm 3 , and more preferably 0.02 g / cm 3 to 0.3 g / cm 3 . The density is the density of the hollow particles when expanded. If the hollow particles are unexpanded type particles and expand by heat when mixed with the curable composition and cured, the density when expanded is preferably the above density.
 中空粒子の配合量は、目的とする用途に応じて適宜決定すればよい。中でも、得られる硬化体を研磨用パッド材として使用する場合には、以下の配合量とすることが好ましい。具体的には、(A)成分と(B)組成物との合計100質量部当たり、(D)中空粒子を0.1~20質量部とすることが好ましく、0.2~10質量部とすることがより好ましく、0.5~8質量部とすることがさらに好ましい。 The blending amount of hollow particles may be appropriately determined according to the intended use. Above all, when the obtained cured product is used as a polishing pad material, the following compounding amounts are preferable. Specifically, it is preferable that the hollow particles (D) be 0.1 to 20 parts by mass, and 0.2 to 10 parts by mass, per 100 parts by mass of the total of the component (A) and the composition (B). It is more preferable that the amount is 0.5 to 8 parts by mass.
 <硬化体;研磨用パッド材>
 本発明においては、(A)ロタキサンモノマーが有する重合性官能基が活性水素を含む活性水素含有基であり、(B)重合モノマーが(B1)分子内に少なくともイソ(チオ)シアネート基を有するイソ(チオ)シアネート化合物を使用する場合には、ウレタン系樹脂を得ることができる。
<Cured product; polishing pad material>
In the present invention, the polymerizable functional group of the (A) rotaxane monomer is an active hydrogen-containing group containing active hydrogen, and the (B) polymerized monomer is an isohydric group having at least an iso (thio) cyanate group in the (B1) molecule. When a (thio) cyanate compound is used, a urethane resin can be obtained.
 本発明の硬化性組成物から得られる硬化体は、研磨用パットに使用でき、特に硬化体がウレタン系樹脂である場合は、その優れた機械特性から研磨用パッドに使用することが好適である。また、該ウレタン系樹脂は、任意の適当な硬さを有することができる。硬さは、ショアー(Shore)法に従って測定することができ、例えば、JIS規格(硬さ試験)K6253に従って測定することができる。該ウレタン系樹脂は、20A~90Dのショアー硬さを有することが好ましい。本発明に用いる、一般的な研磨用ウレタン系樹脂のショアー硬さは、30A~70Dであることが好ましく、40A~50Dであることがさらに好ましい(「A」はショアー「A」スケールを、「D」はショアー「D」スケールでの硬さを示している)。硬さは、必要に応じて配合組成、及び配合量を変えることにより、任意の硬さを有すればよい。 The cured product obtained from the curable composition of the present invention can be used in a polishing pad, and particularly when the cured product is a urethane resin, it is suitable to be used in a polishing pad because of its excellent mechanical properties. .. Further, the urethane resin can have any appropriate hardness. The hardness can be measured according to the Shore method, for example, according to JIS standard (hardness test) K6253. The urethane resin preferably has a Shore hardness of 20A to 90D. The Shore hardness of a general urethane-based resin used for the present invention is preferably 30A to 70D, more preferably 40A to 50D (“A” means Shore “A” scale, "D" indicates hardness on the Shore "D" scale). The hardness may be any hardness by changing the compounding composition and the compounding amount as necessary.
 また、該ウレタン系樹脂は、ある範囲に圧縮率があることが被研磨物の平坦性を発現させる上で好ましい。圧縮率は、例えば、JIS L 1096に準拠した方法により測定することが可能である。該ウレタン系樹脂の圧縮率は、0.5%~50%であることが好ましい。上記範囲内であることで、優れた被研磨物の平坦性を発現させることが可能となる。 Further, it is preferable that the urethane resin has a compressibility within a certain range in order to express the flatness of the object to be polished. The compression ratio can be measured, for example, by a method based on JIS L1096. The compressibility of the urethane resin is preferably 0.5% to 50%. Within the above range, excellent flatness of the object to be polished can be exhibited.
 また、該ウレタン系樹脂は、低ヒステリシスロス性または優れた弾性回復性を有することにより、研磨用パッドとして使用した場合、被研磨物の平坦性、及び高い研磨レートを発現させることができる。ヒステリシスロスは、例えば、JIS K 6251に準拠した方法で測定できる。具体的には、ダンベル状に準備した試験片を、100%伸長した後、元に戻すことで、ヒステリシスロス(伸長し、元に戻した際の伸びと応力の面積/伸長した際の伸びと応力の面積×100)を測定できる。 Further, since the urethane resin has a low hysteresis loss property or an excellent elastic recovery property, when it is used as a polishing pad, the flatness of an object to be polished and a high polishing rate can be exhibited. The hysteresis loss can be measured, for example, by a method according to JIS K6251. Specifically, a test piece prepared in the shape of a dumbbell is stretched by 100% and then returned to its original state to obtain a hysteresis loss (elongation when stretched and returned to the original state and area of stress / elongation when stretched). The area of stress × 100) can be measured.
 得られるウレタン系樹脂において、特に制限されるものではないが、ヒステリシスロスは、60%以下となることが好ましく、50%以下となることがより好ましく、40%以下となることがさらに好ましい。ヒステリシスロスが低くなることにより、研磨用パッドとして使用し場合に、砥粒の運動エネルギーを均一に被研磨物の研磨に利用できると推察される。そのため、優れた平坦性、高い研磨レートを発現することが可能となる。さらに、ヒステリシスロスが低くなることで、柔らかいパッドにおいても、優れた研磨レートを発現できるものと考えられる。 In the urethane resin obtained, the hysteresis loss is not particularly limited, but is preferably 60% or less, more preferably 50% or less, and further preferably 40% or less. Since the hysteresis loss is low, it is presumed that when used as a polishing pad, the kinetic energy of abrasive grains can be uniformly utilized for polishing an object to be polished. Therefore, it becomes possible to exhibit excellent flatness and a high polishing rate. Furthermore, since the hysteresis loss is reduced, it is considered that an excellent polishing rate can be exhibited even in a soft pad.
 また、本発明により得られるウレタン系樹脂は、複数の層から形成される研磨層を備えていてもよい。例えば、ウレタン系樹脂が2層からなる場合、前記研磨層は、研磨を行う際に被研磨物と接触する研磨面を有する第1層と、前記第1層の研磨面に相対する面で前記第1層と接する第2層を用いてもよい。この場合、第2層が第1層と違う硬度や弾性率を持つことで、第1層の物性を調整することも可能となる。例えば、第1層の硬度と第2層の硬度を変えることにより、被研磨物の研磨性を調整できる。中でも、第1、2層ともに本発明の硬化性組成物から得られる硬化体であることが好ましい。 Further, the urethane resin obtained by the present invention may have a polishing layer formed of a plurality of layers. For example, when the urethane resin is composed of two layers, the polishing layer includes a first layer having a polishing surface that comes into contact with an object to be polished when polishing and a surface facing the polishing surface of the first layer. A second layer in contact with the first layer may be used. In this case, the physical properties of the first layer can be adjusted because the second layer has a hardness and elastic modulus different from those of the first layer. For example, by changing the hardness of the first layer and the hardness of the second layer, the polishability of the object to be polished can be adjusted. Above all, it is preferable that both the first and second layers are cured products obtained from the curable composition of the present invention.
 また、得られるウレタン系樹脂は、研磨用パッド材とする場合には、以下のような態様とすることもできる。具体的には、内部に砥粒を含有させて、いわゆる固定砥粒ウレタン系樹脂とすることもできる。砥粒としては、例えば、酸化セリウム、酸化珪素、アルミナ、炭化珪素、ジルコニア、酸化鉄、二酸化マンガン、酸化チタン及びダイヤモンドから選択される材料からなる粒子、又はこれら材料からなる二種以上の粒子等が挙げられる。これら砥粒の保有方法は、特に限定されないが、例えば上記硬化性組成物に分散させた後に、該硬化性組成物を硬化させることで、ウレタン系樹脂(硬化体)の内部に保有できる。 The urethane-based resin obtained may be in the following forms when used as a polishing pad material. Specifically, it is possible to make the so-called fixed-abrasive urethane-based resin by containing abrasive grains inside. The abrasive grains include, for example, particles made of a material selected from cerium oxide, silicon oxide, alumina, silicon carbide, zirconia, iron oxide, manganese dioxide, titanium oxide and diamond, or two or more kinds of particles made of these materials. Is mentioned. The method of retaining these abrasive grains is not particularly limited, but they can be retained inside the urethane resin (cured body) by, for example, dispersing the curable composition in the curable composition and then curing the curable composition.
 本発明において、得られるウレタン系樹脂(硬化体)は、特に制限されるものではないが、その表面に溝構造を形成することもできる。特に、該硬化体を研磨用パッド材として使用する場合には、該溝構造は、被研磨部材を研磨する際に、スラリーを保持・更新する形状とすることが好ましい。具体的には、例えば、X(ストライプ)溝、XY格子溝、同心円状溝、貫通孔、貫通していない穴、多角柱、円柱、螺旋状溝、偏心円状溝、放射状溝、およびこれらの溝を組み合わせたものが挙げられる。 In the present invention, the urethane resin (cured product) obtained is not particularly limited, but a groove structure can be formed on the surface thereof. In particular, when the cured product is used as a polishing pad material, it is preferable that the groove structure has a shape for holding and renewing the slurry when polishing the member to be polished. Specifically, for example, an X (striped) groove, an XY lattice groove, a concentric circular groove, a through hole, a hole that does not penetrate, a polygonal column, a cylinder, a spiral groove, an eccentric circular groove, a radial groove, and these An example is a combination of grooves.
 上記溝構造の作製方法は特に限定されるものではない。例えば、所定サイズのバイトのような治具を用い機械切削する方法、所定の表面形状を有した金型に樹脂を流しこみ、硬化させることにより作製する方法、所定の表面形状を有したプレス板で樹脂をプレスし作製する方法、フォトリソグラフィを用いて作製する方法、印刷手法を用いて作製する方法、炭酸ガスレーザーなどを用いたレーザー光による作製方法などが挙げられる。 The method for producing the groove structure is not particularly limited. For example, a method of machine cutting using a jig such as a bite of a predetermined size, a method of casting by casting a resin into a mold having a predetermined surface shape and curing, a press plate having a predetermined surface shape. Examples of the method include a method of pressing a resin with a method described above, a method of manufacturing using photolithography, a method of manufacturing using a printing method, and a method of manufacturing with a laser beam using a carbon dioxide gas laser or the like.
 本発明においては、ウレタン系樹脂(硬化体)形成できる硬化性組成物を、例えば、不織布に含浸させ、その後、硬化して、不織布ウレタン樹脂研磨パッドとすることできる。
 本発明の硬化性組成物を硬化させた硬化体の用途は、上述したフォトクロミック硬化体や、研磨パッドの他にも、緩衝材、制振材料、吸音材料等に用いることも可能である。さらに、本発明の硬化体組成物を、不織布に塗布あるいは含浸後、硬化させることで、前述した不織布研磨パッドや、緩衝材、制振材料、吸音材料用途に適用することも可能である。
In the present invention, for example, a nonwoven fabric can be impregnated with a curable composition capable of forming a urethane resin (cured body) and then cured to obtain a nonwoven urethane resin polishing pad.
The application of the cured product obtained by curing the curable composition of the present invention can be used not only for the photochromic cured product described above and the polishing pad, but also for a cushioning material, a vibration damping material, a sound absorbing material and the like. Furthermore, by applying or impregnating the hardened material composition of the present invention to a non-woven fabric and then curing it, it can be applied to the above-mentioned non-woven fabric polishing pad, cushioning material, damping material, or sound absorbing material.
 次に、実施例及び比較例を用いて本発明を詳細に説明するが、本発明は本実施例に限定されるものではない。先ず、本発明で使用した測定装置、および各成分の製造方法等について説明する。 Next, the present invention will be described in detail using examples and comparative examples, but the present invention is not limited to these examples. First, the measuring device used in the present invention, the manufacturing method of each component, and the like will be described.
 (分子量測定;ゲルパーミエーションクロマトグラフィー(GPC測定))
 GPCの測定は、装置として液体クロマトグラフ装置(日本ウォーターズ社製)を用いた。カラムは分析するサンプルの分子量に応じて、昭和電工株式会社製Shodex GPC KF-802(排除限界分子量:5000)、KF802.5(排除限界分子量:20000)、KF-803(排除限界分子量:70000)、KF-804(排除限界分子量:400000)、KF-805(排除限界分子量:2000000)を適宜使用した。また、展開液としてジメチルホルムアミド(DMF)を用い、流速1ml/min、温度40℃の条件にて測定した。標準試料にポリスチレンを用い、比較換算により重量平均分子量を求めた。なお、検出器には示差屈折率計を用いた。
(Molecular weight measurement; gel permeation chromatography (GPC measurement))
For the measurement of GPC, a liquid chromatograph (manufactured by Nippon Waters Co., Ltd.) was used. Depending on the molecular weight of the sample to be analyzed, Showa Denko K.K. Shodex GPC KF-802 (exclusion limit molecular weight: 5000), KF802.5 (exclusion limit molecular weight: 20000), KF-803 (exclusion limit molecular weight: 70000). , KF-804 (exclusion limit molecular weight: 400000) and KF-805 (exclusion limit molecular weight: 2000000) were appropriately used. Further, dimethylformamide (DMF) was used as a developing solution, and measurement was performed under the conditions of a flow rate of 1 ml / min and a temperature of 40 ° C. Using polystyrene as a standard sample, the weight average molecular weight was determined by comparative conversion. A differential refractometer was used as the detector.
 (A)ロタキサンモノマー
 RX-1:環状分子に側鎖を有し、側鎖の末端に重合性官能基として水酸基を、イオン性官能基としてカルボキシル基を有する(A)ロタキサンモノマー
・(A)ロタキサンモノマーの重量平均分子量Mw(GPC):168000
・軸分子の分子量:10000
・環状分子の包接数:0.25
・側鎖の修飾度:0.5(%で表示すると50%となる)
・側鎖の分子量:平均で約360
・重合性官能基含有量X(側鎖に導入された重合性官能基):1.37mmol/g
・イオン性官能基(カルボキシル基)含有量Z:0.15mmol/g
・側鎖が未導入の未反応性水酸基の含有量:1.52mmol/g
・全重合性官能基の含有量Y:2.89mmol/g
・(a)側鎖に導入された重合性官能基と側鎖に導入されたイオン性官能基との合計モル数におけるイオン性官能基のモル割合:10.0モル%
・(b)全重合性官能基とイオン性官能基との合計モル数におけるイオン性官能基のモル割合:5.0モル%
(A) Rotaxane monomer RX-1: (A) rotaxane monomer / (A) rotaxane having a side chain in a cyclic molecule, and having a hydroxyl group as a polymerizable functional group and a carboxyl group as an ionic functional group at the end of the side chain. Weight average molecular weight Mw (GPC) of monomer: 168000
・ Molecular weight of axial molecule: 10,000
・ Inclusion number of cyclic molecule: 0.25
・ Modification degree of side chain: 0.5 (50% when expressed as%)
・ Molecular weight of side chain: about 360 on average
-Polymerizable functional group content X (polymerizable functional group introduced into the side chain): 1.37 mmol / g
-Ionic functional group (carboxyl group) content Z: 0.15 mmol / g
-Content of unreacted hydroxyl group in which side chain is not introduced: 1.52 mmol / g
-Content of all polymerizable functional groups Y: 2.89 mmol / g
(A) Molar ratio of the ionic functional group in the total number of moles of the polymerizable functional group introduced into the side chain and the ionic functional group introduced into the side chain: 10.0 mol%
(B) Molar ratio of ionic functional groups in the total number of moles of all polymerizable functional groups and ionic functional groups: 5.0 mol%
 RX-2:環状分子に側鎖を有し、側鎖の末端に重合性官能基として水酸基を、イオン性官能基としてカルボキシル基を有する(A)ロタキサンモノマー。
・軸分子の分子量:10000
・環状分子の包接数:0.25
・(A)ロタキサンモノマーの重量平均分子量Mw(GPC):180000
・側鎖の修飾度:0.5(%で表示すると50%となる)。
・側鎖の分子量:平均で約410
・重合性官能基含有量X(側鎖に導入された重合性官能基):0.64mmol/g
・イオン性基含有量(カルボキシル基)Z:0.78mmol/g
・側鎖が未導入の未反応性水酸基:1.42mmol/g
・全重合性官能基の含有量Y:2.06mmol/g
・(a)側鎖に導入された重合性官能基と側鎖に導入されたイオン性官能基との合計モル数におけるイオン性官能基のモル割合:55モル%
・(b)全重合性官能基とイオン性官能基との合計モル数におけるイオン性官能基のモル割合:27.5モル%
RX-2: A rotaxane monomer (A) having a side chain in a cyclic molecule, a hydroxyl group as a polymerizable functional group and a carboxyl group as an ionic functional group at the end of the side chain.
・ Molecular weight of axial molecule: 10,000
・ Inclusion number of cyclic molecule: 0.25
-(A) Rotaxane monomer weight average molecular weight Mw (GPC): 180,000
-Modification degree of side chain: 0.5 (50% when expressed in%).
・ Molecular weight of side chain: about 410 on average
-Polymerizable functional group content X (polymerizable functional group introduced into the side chain): 0.64 mmol / g
-Ionic group content (carboxyl group) Z: 0.78 mmol / g
-Unreacted hydroxyl group with no side chain introduced: 1.42 mmol / g
-Content of all polymerizable functional groups Y: 2.06 mmol / g
(A) Molar ratio of the ionic functional group in the total number of moles of the polymerizable functional group introduced into the side chain and the ionic functional group introduced into the side chain: 55 mol%
(B) Molar ratio of ionic functional groups in the total number of moles of all polymerizable functional groups and ionic functional groups: 27.5 mol%
 RX-3:環状分子に側鎖を有し、側鎖の末端に重合性官能基として水酸基を、イオン性官能基としてカルボキシル基を有する(A)ロタキサンモノマー
・(A)ロタキサンモノマーの重量平均分子量Mw(GPC):166000
・軸分子の分子量:10000
・環状分子の包接数:0.25
・側鎖の修飾度:0.5(%で表示すると50%となる)
・側鎖の分子量:平均で約350
・重合性官能基含有量X(側鎖に導入された重合性官能基):1.50mmol/g
・イオン性官能基(カルボキシル基)含有量Z:0.04mmol/g
・側鎖が未導入の未反応性水酸基の含有量:1.54mmol/g
・全重合性官能基の含有量Y:3.04mmol/g
・(a)側鎖に導入された重合性官能基と側鎖に導入されたイオン性官能基との合計モル数におけるイオン性官能基のモル割合:2.5モル%
・(b)全重合性官能基とイオン性官能基との合計モル数におけるイオン性官能基のモル割合:1.25モル%
RX-3: Weight average molecular weight of (A) rotaxane monomer / (A) rotaxane monomer having a side chain in a cyclic molecule, a hydroxyl group as a polymerizable functional group and a carboxyl group as an ionic functional group at the end of the side chain. Mw (GPC): 166000
・ Molecular weight of axial molecule: 10,000
・ Inclusion number of cyclic molecule: 0.25
・ Modification degree of side chain: 0.5 (50% when expressed as%)
・ Molecular weight of side chain: about 350 on average
-Polymerizable functional group content X (polymerizable functional group introduced into the side chain): 1.50 mmol / g
-Ionic functional group (carboxyl group) content Z: 0.04 mmol / g
-Content of unreacted hydroxyl group in which side chain is not introduced: 1.54 mmol / g
-Content of all polymerizable functional groups Y: 3.04 mmol / g
(A) Molar ratio of the ionic functional group in the total number of moles of the polymerizable functional group introduced into the side chain and the ionic functional group introduced into the side chain: 2.5 mol%
(B) Molar ratio of ionic functional groups in the total number of moles of all polymerizable functional groups and ionic functional groups: 1.25 mol%
 RX-4:環状分子に側鎖を有し、側鎖の末端に重合性官能基として水酸基を、イオン性官能基としてカルボキシル基を有する(A)ロタキサンモノマー
・(A)ロタキサンモノマーの重量平均分子量Mw(GPC):58000
・軸分子の分子量:2000
・環状分子の包接数:0.45
・側鎖の修飾度:0.5(%で表示すると50%となる)
・側鎖の分子量:平均で約430
・重合性官能基含有量X(側鎖に導入された重合性官能基):0.32mmol/g
・イオン性官能基(カルボキシル基)含有量Z:1.27mmol/g
・側鎖が未導入の未反応性水酸基の含有量:1.59mmol/g
・全重合性官能基の含有量Y:1.91mmol/g
・(a)側鎖に導入された重合性官能基と側鎖に導入されたイオン性官能基との合計モル数におけるイオン性官能基のモル割合:80モル%
・(b)全重合性官能基とイオン性官能基との合計モル数におけるイオン性官能基のモル割合:40モル%
RX-4: Weight average molecular weight of (A) rotaxane monomer / (A) rotaxane monomer having a side chain in a cyclic molecule, a hydroxyl group as a polymerizable functional group and a carboxyl group as an ionic functional group at the end of the side chain. Mw (GPC): 58000
・ Molecular weight of axial molecule: 2000
・ Inclusion number of cyclic molecule: 0.45
・ Modification degree of side chain: 0.5 (50% when expressed as%)
-Molecular weight of side chain: about 430 on average
-Polymerizable functional group content X (polymerizable functional group introduced into the side chain): 0.32 mmol / g
-Ionic functional group (carboxyl group) content Z: 1.27 mmol / g
Content of unreacted hydroxyl group with no side chain introduced: 1.59 mmol / g
-Content of all polymerizable functional groups Y: 1.91 mmol / g
(A) Molar ratio of the ionic functional group in the total number of moles of the polymerizable functional group introduced into the side chain and the ionic functional group introduced into the side chain: 80 mol%
(B) Molar ratio of ionic functional groups in the total number of moles of all polymerizable functional groups and ionic functional groups: 40 mol%
 RX-5:環状分子に側鎖を有し、側鎖の末端に重合性官能基として水酸基を、イオン性官能基として4級アンモニウム塩基を有する(A)ロタキサンモノマー
・(A)ロタキサンモノマーの重量平均分子量Mw(GPC):169000
・軸分子の分子量:10000
・環状分子の包接数:0.25
・側鎖の修飾度:0.5(%で表示すると50%となる)
・側鎖の分子量:平均で約370
・重合性官能基含有量X(側鎖に導入された重合性官能基):1.36mmol/g
・イオン性官能基(4級アンモニウム塩基)含有量Z:0.15mmol/g
・側鎖が未導入の未反応性水酸基の含有量:1.51mmol/g
・全重合性官能基の含有量Y:2.87mmol/g
・(a)側鎖に導入された重合性官能基と側鎖に導入されたイオン性官能基との合計モル数におけるイオン性官能基のモル割合:10.0モル%
・(b)全重合性官能基とイオン性官能基との合計モル数におけるイオン性官能基のモル割合:5.0モル%
RX-5: Weight of (A) rotaxane monomer / (A) rotaxane monomer having a side chain in the cyclic molecule, a hydroxyl group as a polymerizable functional group and a quaternary ammonium salt group as an ionic functional group at the end of the side chain Average molecular weight Mw (GPC): 169000
・ Molecular weight of axial molecule: 10,000
・ Inclusion number of cyclic molecule: 0.25
・ Modification degree of side chain: 0.5 (50% when expressed as%)
・ Molecular weight of side chain: about 370 on average
-Polymerizable functional group content X (polymerizable functional group introduced into the side chain): 1.36 mmol / g
-Ionic functional group (quaternary ammonium salt group) content Z: 0.15 mmol / g
-Content of unreacted hydroxyl group in which side chain is not introduced: 1.51 mmol / g
-Content of all polymerizable functional groups Y: 2.87 mmol / g
(A) Molar ratio of the ionic functional group in the total number of moles of the polymerizable functional group introduced into the side chain and the ionic functional group introduced into the side chain: 10.0 mol%
(B) Molar ratio of ionic functional groups in the total number of moles of all polymerizable functional groups and ionic functional groups: 5.0 mol%
 RX-6:環状分子に側鎖を有し、側鎖の末端に重合性官能基として水酸基を、イオン性官能基としてカルボキシル基を有する(A)ロタキサンモノマー
・(A)ロタキサンモノマーの重量平均分子量Mw(GPC):171000
・軸分子の分子量:10000
・環状分子の包接数:0.25
・側鎖の修飾度:0.5(%で表示すると50%となる)
・側鎖の分子量:平均で約370
・重合性官能基含有量X(側鎖に導入された重合性官能基):1.20mmol/g
・イオン性官能基(カルボキシル基)含有量Z:0.30mmol/g
・側鎖が未導入の未反応性水酸基の含有量:1.50mmol/g
・全重合性官能基の含有量Y:2.69mmol/g
・(a)側鎖に導入された重合性官能基と側鎖に導入されたイオン性官能基との合計モル数におけるイオン性官能基のモル割合:20.0モル%
・(b)全重合性官能基とイオン性官能基との合計モル数におけるイオン性官能基のモル割合:10.0モル%
RX-6: Weight average molecular weight of (A) rotaxane monomer / (A) rotaxane monomer having a side chain in a cyclic molecule, a hydroxyl group as a polymerizable functional group and a carboxyl group as an ionic functional group at the end of the side chain. Mw (GPC): 171000
・ Molecular weight of axial molecule: 10,000
・ Inclusion number of cyclic molecule: 0.25
・ Modification degree of side chain: 0.5 (50% when expressed as%)
・ Molecular weight of side chain: about 370 on average
-Polymerizable functional group content X (polymerizable functional group introduced into the side chain): 1.20 mmol / g
-Ionic functional group (carboxyl group) content Z: 0.30 mmol / g
-Content of unreacted hydroxyl group with no side chain introduced: 1.50 mmol / g
-Content of all polymerizable functional groups Y: 2.69 mmol / g
(A) Molar ratio of the ionic functional group in the total number of moles of the polymerizable functional group introduced into the side chain and the ionic functional group introduced into the side chain: 20.0 mol%
(B) Molar ratio of ionic functional groups in the total number of moles of all polymerizable functional groups and ionic functional groups: 10.0 mol%
 RX-7:環状分子に側鎖を有し、側鎖の末端に重合性官能基として水酸基を、イオン性官能基としてスルホン酸ナトリウム塩を有する(A)ロタキサンモノマー
・(A)ロタキサンモノマーの重量平均分子量Mw(GPC):169000
・軸分子の分子量:10000
・環状分子の包接数:0.25
・側鎖の修飾度:0.5(%で表示すると50%となる)
・側鎖の分子量:平均で約360
・重合性官能基含有量X(側鎖に導入された重合性官能基):1.36mmol/g
・イオン性官能基(スルホン酸ナトリウム塩)含有量Z:0.15mmol/g
・側鎖が未導入の未反応性水酸基の含有量:1.51mmol/g
・全重合性官能基の含有量Y:2.87mmol/g
・(a)側鎖に導入された重合性官能基と側鎖に導入されたイオン性官能基との合計モル数におけるイオン性官能基のモル割合:10.0モル%
・(b)全重合性官能基とイオン性官能基との合計モル数におけるイオン性官能基のモル割合:5.0モル%
RX-7: Weight of (A) rotaxane monomer / (A) rotaxane monomer having a side chain in a cyclic molecule, a hydroxyl group as a polymerizable functional group and a sulfonic acid sodium salt as an ionic functional group at the end of the side chain Average molecular weight Mw (GPC): 169000
・ Molecular weight of axial molecule: 10,000
・ Inclusion number of cyclic molecule: 0.25
・ Modification degree of side chain: 0.5 (50% when expressed as%)
・ Molecular weight of side chain: about 360 on average
-Polymerizable functional group content X (polymerizable functional group introduced into the side chain): 1.36 mmol / g
-Ionic functional group (sulfonic acid sodium salt) content Z: 0.15 mmol / g
-Content of unreacted hydroxyl group in which side chain is not introduced: 1.51 mmol / g
-Content of all polymerizable functional groups Y: 2.87 mmol / g
(A) Molar ratio of the ionic functional group in the total number of moles of the polymerizable functional group introduced into the side chain and the ionic functional group introduced into the side chain: 10.0 mol%
(B) Molar ratio of ionic functional groups in the total number of moles of all polymerizable functional groups and ionic functional groups: 5.0 mol%
 下記に、前記(A)ロタキサンモノマーの製造方法を記載する。 The method for producing the (A) rotaxane monomer is described below.
 <イオン性官能基含有ロタキサン(RX-1)/(A)ロタキサンモノマーの調製方法>
 (1-1)PEG-COOHの調製;
 軸分子形成用のポリマーとして、分子量10000の直鎖状ポリエチレングリコール(PEG)を用意した。
<Method for Preparing Rotaxane (RX-1) / (A) Rotaxane Monomer Containing Ionic Functional Group>
(1-1) Preparation of PEG-COOH;
As a polymer for forming a shaft molecule, a linear polyethylene glycol (PEG) having a molecular weight of 10,000 was prepared.
 下記処方;
 PEG 10g、
 TEMPO (2,2,6,6-テトラメチル-1-ピペリジニルオキシラジカル)100mg、
 臭化ナトリウム 1g
を準備し、各成分を水100mLに溶解させた。この溶液に、市販の次亜塩素酸ナトリウム水溶液(有効塩素濃度5%)5mLを添加し、室温で10分間撹拌した。その後、エタノールを最大5mLまでの範囲で添加して反応を終了させた。そして、50mLの塩化メチレンを用いた抽出を行った後、塩化メチレンを留去し、250mLのエタノールに溶解させてから、-4℃の温度で12時間かけて再沈させ、PEG-COOHを回収し、乾燥した。
The following prescription;
PEG 10g,
TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy radical) 100 mg,
Sodium bromide 1g
Was prepared, and each component was dissolved in 100 mL of water. To this solution, 5 mL of a commercially available sodium hypochlorite aqueous solution (effective chlorine concentration 5%) was added, and the mixture was stirred at room temperature for 10 minutes. Then, ethanol was added in a range of up to 5 mL to terminate the reaction. Then, after performing extraction with 50 mL of methylene chloride, the methylene chloride was distilled off and dissolved in 250 mL of ethanol, followed by reprecipitation at a temperature of -4 ° C for 12 hours to recover PEG-COOH. And dried.
 (1-2)ロタキサンの調製;
 上記で調製されたPEG-COOH 3gおよびα-シクロデキストリン(α-CD)12gを、それぞれ、70℃の温水50mLに溶解させ、得られた各溶液を混合し、よく振り混ぜた。次いで、この混合溶液を、4℃の温度で12時間再沈させ、析出した包接錯体を凍結乾燥して回収した。その後、室温でジメチルホルムアミド(DMF)50mlに、アダマンタンアミン0.13gを溶解した後、上記の包接錯体を添加して速やかによく振り混ぜた。続いてBOP試薬(ベンゾトリアゾール-1-イル-オキシ-トリス(ジメチルアミノ)ホスホニウムヘキサフルオロホスフェート)0.38gをDMFに溶解した溶液をさらに添加して、よく振り混ぜた。さらにジイソプロピルエチルアミン0.14mlをDMFに溶解させた溶液を添加してよく振り混ぜてスラリー状の試薬を得た。
(1-2) Preparation of rotaxane;
3 g of PEG-COOH and 12 g of α-cyclodextrin (α-CD) prepared above were dissolved in 50 mL of warm water at 70 ° C., and the obtained solutions were mixed and shaken well. Next, this mixed solution was reprecipitated at a temperature of 4 ° C. for 12 hours, and the clathrate complex thus precipitated was freeze-dried and recovered. Then, 0.13 g of adamantane amine was dissolved in 50 ml of dimethylformamide (DMF) at room temperature, the above inclusion complex was added, and the mixture was rapidly shaken well. Subsequently, a solution of 0.38 g of BOP reagent (benzotriazol-1-yl-oxy-tris (dimethylamino) phosphonium hexafluorophosphate) dissolved in DMF was further added, and the mixture was shaken well. Further, a solution prepared by dissolving 0.14 ml of diisopropylethylamine in DMF was added and well shaken to obtain a slurry reagent.
 上記で得られたスラリー状の試薬を4℃で12時間静置した。その後、DMF/メタノール混合溶媒(体積比1/1)50mlを添加、混合、遠心分離を行なって上澄みを捨てた。さらに、上記DMF/メタノール混合溶液による洗浄を行った後、メタノールを用いて洗浄、遠心分離を行い、沈殿物を得た。得られた沈殿物を真空乾燥で乾燥させた後、50mLのDMSO(ジメチルスルオキシド)に溶解させ、得られた透明な溶液を700mLの水中に滴下してロタキサンを析出させた。析出したロタキサンを遠心分離で回収し、真空乾燥させた。さらにDMSOに溶解、水中で析出、回収、乾燥を行い、精製ロタキサンを得た。このときのα-CDの包接数は0.25である。 The slurry-like reagent obtained above was allowed to stand for 12 hours at 4 ° C. Then, 50 ml of a DMF / methanol mixed solvent (volume ratio 1/1) was added, mixed and centrifuged to discard the supernatant. Further, after washing with the above DMF / methanol mixed solution, washing with methanol and centrifugation were performed to obtain a precipitate. The obtained precipitate was dried by vacuum drying, then dissolved in 50 mL of DMSO (dimethylsulfoxide), and the obtained transparent solution was dropped into 700 mL of water to precipitate rotaxane. The precipitated rotaxane was collected by centrifugation and vacuum dried. Further, it was dissolved in DMSO, precipitated in water, collected, and dried to obtain a purified rotaxane. The inclusion number of α-CD at this time is 0.25.
 ここで、包接数は、DMSO-dにロタキサンを溶解し、H-NMR測定装置(日本電子製JNM-LA500)により測定し、以下の方法により算出した。
ここで、X,Y及びX/(Y-X)は、以下の意味を示す。
X:4~6ppmのシクロデキストリンの水酸基由来プロトンの積分値。
Y:3~4ppmのシクロデキストリン及びPEGのメチレン鎖由来プロトンの積分値。
Here, the inclusion number was calculated by the following method, in which rotaxane was dissolved in DMSO-d 6 and measured by a 1 H-NMR measuring device (JNM-LA500 manufactured by JEOL Ltd.).
Here, X, Y and X / (YX) have the following meanings.
X: integrated value of protons derived from the hydroxyl group of cyclodextrin of 4 to 6 ppm.
Y: integrated value of protons derived from the methylene chain of cyclodextrin and PEG at 3 to 4 ppm.
 X/(Y-X):PEGに対するシクロデキストリンのプロトン比
 先ず、理論的に最大包接数1の時のX/(Y-X)を予め算出し、この値と実際の化合物の分析値から算出されたX/(Y-X)を比較することにより包接数を算出した。
X / (YX): Proton ratio of cyclodextrin to PEG First, theoretically, X / (YX) at the maximum inclusion number of 1 was calculated in advance, and from this value and the actual analysis value of the compound. The inclusion number was calculated by comparing the calculated X / (YX).
 (1-3)ロタキサンへの側鎖の導入;
 上記で精製されたロタキサン500mgを1mol/LのNaOH水溶液50mLに溶解し、プロピレンオキシド3.83g(66mmol)を添加し、アルゴン雰囲気下、室温で12時間撹拌した。次いで、1mol/LのHCl水溶液を用い、上記のロタキサン溶液を、pHが7~8となるように中和し、透析チューブにて透析した後、凍結乾燥し、ヒドロキシプロピル化ロタキサンを得た。得られたヒドロキシプロピル化ロタキサンは、H-NMRおよびGPCで同定し、所望の構造を有するヒドロキシプロピル化ロタキサンであることを確認した。 
(1-3) introduction of a side chain into the rotaxane;
500 mg of the rotaxane purified above was dissolved in 50 mL of a 1 mol / L NaOH aqueous solution, 3.83 g (66 mmol) of propylene oxide was added, and the mixture was stirred at room temperature for 12 hours under an argon atmosphere. Next, the above rotaxane solution was neutralized with a 1 mol / L HCl aqueous solution to a pH of 7 to 8, dialyzed with a dialysis tube, and then freeze-dried to obtain a hydroxypropylated rotaxane. The obtained hydroxypropylated rotaxane was identified by 1 H-NMR and GPC, and was confirmed to be a hydroxypropylated rotaxane having a desired structure.
 なお、ヒドロキシプロピル基による環状分子のOH基への修飾度は0.5であり、GPC測定により重量平均分子量Mw:50000であった。 Note that the degree of modification of the cyclic molecule with the OH group by the hydroxypropyl group was 0.5, and the weight average molecular weight Mw was 50000 by GPC measurement.
 得られたヒドロキシプロピル化ロタキサン5gを、ε-カプロラクトン15gに80℃で溶解させた混合液を調製した。この混合液を、乾燥窒素をブローさせながら110℃で1時間攪拌した後、2-エチルヘキサン酸錫(II)の50wt%キシレン溶液0.16gを加え、130℃で6時間攪拌した。その後、キシレンを添加し、不揮発濃度が約35質量%の側鎖を導入したポリカプロラクトン修飾ロタキサンキシレン溶液を得た。 5 g of the obtained hydroxypropylated rotaxane was dissolved in 15 g of ε-caprolactone at 80 ° C. to prepare a mixed solution. This mixed solution was stirred at 110 ° C. for 1 hour while blowing dry nitrogen, 0.16 g of a 50 wt% xylene solution of tin (II) 2-ethylhexanoate was added, and the mixture was stirred at 130 ° C. for 6 hours. Then, xylene was added to obtain a polycaprolactone-modified rotaxane xylene solution having a non-volatile concentration of about 35% by mass with introduced side chains.
 (1-4)ロタキサン(RX)の調製;
 上記で調製されたポリカプロラクトン修飾ロタキサンキシレン溶液をヘキサン中に滴下し、回収し、乾燥させることによりポリカプロラクトン修飾ロタキサン(RX)を取得した。なお、(RX)は、下記の比較例1に相当するロタキサンモノマーである。ロタキサンモノマー;RXの物性は以下の通りであった。
ロタキサン重量平均分子量Mw(GPC):165000
側鎖の修飾度:0.5(%で表示すると50%となる)
側鎖の分子量:平均で約350
側鎖の末端に水酸基を有するロタキサンモノマーである。
(1-4) Preparation of rotaxane (RX);
The polycaprolactone-modified rotaxane xylene solution prepared above was dropped into hexane, recovered, and dried to obtain a polycaprolactone-modified rotaxane (RX). Note that (RX) is a rotaxane monomer corresponding to Comparative Example 1 below. The physical properties of the rotaxane monomer; RX were as follows.
Rotaxane weight average molecular weight Mw (GPC): 165000
Degree of modification of side chain: 0.5 (50% when expressed as%)
Molecular weight of side chain: about 350 on average
It is a rotaxane monomer having a hydroxyl group at the end of the side chain.
 (1-5)イオン性官能基含有ロタキサン(RX-1)の調製/(A)ロタキサンモノマーの調製;
 上記で得たロタキサン(RX)5gを脱水THF10mLに溶解させた後、無水こはく酸82mgとトリエチルアミン82mgを添加し、窒素雰囲気下、室温で2日間攪拌させた。その後、反応液を蒸留水100mLに流し込み、遠心分離で固体を得た後、乾燥させて(A)カルボン酸基含有ロタキサンモノマー(RX-1)を得た。カルボキシル基の導入量は、H-NMR測定装置(日本電子製JNM-LA500)により、確認した。即ち、該(A1)のプロトン核磁気共鳴スペクトルを測定したところ、下記の特徴的なピークが観測された。δ2.49ppm付近にカルボニル炭素に隣接するメチレン基由来のピークを確認した。また、重合性官能基(水酸基価)含有量は、水酸基価から計算した。但し、水酸基価は、カルボン酸が導入されている為、予め、RX-1の酸化を測定し、その量を加味し計算した。RX-1の物性は上記の通りであった。
(1-5) Preparation of rotaxane containing ionic functional group (RX-1) / (A) Preparation of rotaxane monomer;
After dissolving 5 g of the rotaxane (RX) obtained above in 10 mL of dehydrated THF, 82 mg of succinic anhydride and 82 mg of triethylamine were added, and the mixture was stirred under a nitrogen atmosphere at room temperature for 2 days. Then, the reaction solution was poured into 100 mL of distilled water, and a solid was obtained by centrifugation, followed by drying to obtain (A) a carboxylic acid group-containing rotaxane monomer (RX-1). The introduced amount of the carboxyl group was confirmed by a 1 H-NMR measurement device (JNM-LA500 manufactured by JEOL Ltd.). That is, when the proton nuclear magnetic resonance spectrum of (A1) was measured, the following characteristic peaks were observed. A peak derived from a methylene group adjacent to the carbonyl carbon was confirmed near δ 2.49 ppm. The content of the polymerizable functional group (hydroxyl value) was calculated from the hydroxyl value. However, since the carboxylic acid was introduced, the hydroxyl value was calculated by measuring the oxidation of RX-1 in advance and adding the amount. The physical properties of RX-1 were as described above.
 <イオン性官能基含有ロタキサン(RX-2)の調製/(A)ロタキサンモノマーの調製>
 RX-1のイオン性官能基導入工程(1-5)において、使用した無水コハク酸を510mgとトリエチルアミンの量を510mgに変更した以外は実施例1と同様の方法で取得した。この(A)ロタキサンモノマー;RX-2の物性は、上記の通りであった。
<Preparation of ionic functional group-containing rotaxane (RX-2) / (A) Preparation of rotaxane monomer>
It was obtained in the same manner as in Example 1 except that 510 mg of succinic anhydride and 510 mg of triethylamine were used in the step (1-5) of introducing an ionic functional group of RX-1. The physical properties of this (A) rotaxane monomer; RX-2 were as described above.
 <イオン性官能基含有ロタキサン(RX-3)の調製/(A)ロタキサンモノマーの調製>
 RX-1のイオン性官能基導入工程(1-5)において、使用した無水コハク酸を20mgとトリエチルアミンの量を20mgに変更した以外は実施例1と同様の方法で取得した。この(A)ロタキサンモノマー;RX-3の物性は、上記の通りであった。
<Preparation of ionic functional group-containing rotaxane (RX-3) / (A) Preparation of rotaxane monomer>
It was obtained in the same manner as in Example 1 except that 20 mg of succinic anhydride and 20 mg of triethylamine were used in the step (1-5) of introducing an ionic functional group of RX-1. The physical properties of this rotaxane monomer (A); RX-3 were as described above.
<イオン性官能基含有ロタキサン(RX-4)の調製/(A)ロタキサンモノマーの調製>
 RX-1のPEG-COOHの調製工程(1-1)において、分子量2000の直鎖状ポリエチレングリコール(PEG)を用意した以外は、同様に合成し、ロタキサンモノマーRX-Aを得た。ロタキサンモノマー;RX-Aの物性は以下の通りであった。
ロタキサン重量平均分子量Mw(GPC):50000
α-CDの包接数は0.45
側鎖の修飾度:0.5(%で表示すると50%となる)
側鎖の分子量:平均で約350
側鎖の末端に水酸基を有するロタキサンモノマーである。
続いて、RX-1のイオン性官能基導入工程(1-5)において、
使用したロタキサンをRX-Aとし、無水コハク酸を1.18gとトリエチルアミンの量を1.18mgに変更した以外は実施例1と同様の方法で取得した。この(A)ロタキサンモノマー;RX-4の物性は、上記の通りであった。
<Preparation of ionic functional group-containing rotaxane (RX-4) / (A) Preparation of rotaxane monomer>
A rotaxane monomer RX-A was obtained in the same manner as in the step (1-1) of preparing PEG-COOH of RX-1, except that a linear polyethylene glycol (PEG) having a molecular weight of 2000 was prepared. The physical properties of the rotaxane monomer; RX-A were as follows.
Rotaxane weight average molecular weight Mw (GPC): 50,000
The inclusion number of α-CD is 0.45
Degree of modification of side chain: 0.5 (50% when expressed as%)
Molecular weight of side chain: about 350 on average
It is a rotaxane monomer having a hydroxyl group at the end of the side chain.
Then, in the step (1-5) of introducing an ionic functional group of RX-1,
The same method as in Example 1 was used except that the rotaxane used was RX-A, the amount of succinic anhydride was changed to 1.18 g, and the amount of triethylamine was changed to 1.18 mg. The physical properties of this (A) rotaxane monomer; RX-4 were as described above.
<イオン性官能基含有ロタキサン(RX-5)の調製/(A)ロタキサンモノマーの調製>
 (1-6)4級アンモニウム塩含有塩化アシルの調整
 無水ベタイン塩酸塩(CMTA)200mgを8mLの塩化チオニル中で懸濁させた後、60度2時間で反応させた。その後、過剰な塩化チオニルを減圧留去し、100mLのn-ヘキサンを用いデカンテーションで4回洗浄した。その後、得られた固体を乾燥し、4級アンモニウム塩含有塩化アシル210mgを得た。
 (1-6)で得られた4級アンモニウム塩含有塩化アシル140mg
 (1-4)で得たロタキサン(RX)5gを脱水トルエン15mLに溶解させた後、(1-6)で得られた4級アンモニウム塩含有塩化アシル140mgを添加し、50度で12時間攪拌させた。その後、反応液を蒸留水100mLに流し込み、遠心分離で固体を得た後、乾燥させて(A)4級アンモニウム塩含有ロタキサンモノマー(RX-5)を得た。4級アンモニウム塩の導入量は、H-NMR測定装置(日本電子製JNM-LA500)により、確認した。即ち、該(A1)のプロトン核磁気共鳴スペクトルを測定したところ、下記の特徴的なピークが観測された。δ3.05ppm付近に4級アンモニウム塩のN原子の横に隣接する3つのメチレン基由来のピークを確認した。また、重合性官能基(水酸基価)含有量は、水酸基価から計算した。RX-5の物性は上記の通りであった。
<Preparation of ionic functional group-containing rotaxane (RX-5) / (A) Preparation of rotaxane monomer>
(1-6) Preparation of Quaternary Ammonium Salt-Containing Acyl Chloride 200 mg of anhydrous betaine hydrochloride (CMTA) was suspended in 8 mL of thionyl chloride and then reacted at 60 ° C. for 2 hours. Then, excess thionyl chloride was distilled off under reduced pressure, and the residue was washed 4 times by decantation with 100 mL of n-hexane. Then, the obtained solid was dried to obtain 210 mg of a quaternary ammonium salt-containing acyl chloride.
140 mg of quaternary ammonium salt-containing acyl chloride obtained in (1-6)
After dissolving 5 g of the rotaxane (RX) obtained in (1-4) in 15 mL of dehydrated toluene, 140 mg of the acyl chloride containing the quaternary ammonium salt obtained in (1-6) was added, and the mixture was stirred at 50 ° C. for 12 hours. Let Then, the reaction solution was poured into 100 mL of distilled water, and a solid was obtained by centrifugation, followed by drying to obtain (A) quaternary ammonium salt-containing rotaxane monomer (RX-5). The amount of the quaternary ammonium salt introduced was confirmed by a 1 H-NMR measuring device (JNM-LA500 manufactured by JEOL Ltd.). That is, when the proton nuclear magnetic resonance spectrum of (A1) was measured, the following characteristic peaks were observed. A peak derived from three methylene groups adjacent to the N atom of the quaternary ammonium salt was confirmed near δ 3.05 ppm. The content of the polymerizable functional group (hydroxyl value) was calculated from the hydroxyl value. The physical properties of RX-5 were as described above.
<イオン性官能基含有ロタキサン(RX-6)の調製/(A)ロタキサンモノマーの調製>
 RX-1のイオン性官能基導入工程(1-5)において、使用した無水コハク酸を164mgとトリエチルアミンの量を164mgに変更した以外は実施例1と同様の方法で取得した。この(A)ロタキサンモノマー;RX-6の物性は、上記の通りであった。
<Preparation of rotaxane containing ionic functional group (RX-6) / (A) Preparation of rotaxane monomer>
In the same manner as in Example 1, except that the succinic anhydride used was changed to 164 mg and the amount of triethylamine was changed to 164 mg in the step (1-5) of introducing an ionic functional group of RX-1. The physical properties of this rotaxane monomer (A); RX-6 were as described above.
<イオン性官能基含有ロタキサン(RX-7)の調製/(A)ロタキサンモノマーの調製>
 (1-4)で得たロタキサン(RX)5gを脱水DMF50mLに溶解させた後、水素化ナトリウム20.5mgを添加し、室温で12時間攪拌させた。その後、1,3-プロパンスルトン104.12mgをDMF1mLに溶解させた溶液を滴下した。滴下後、24時間室温で攪拌させた。その後、反応液をNaCl濃度が0.5%の500mLの水溶液に加え、遠心分離で固体を得た。さらに、メタノールとジオキサンの重量比が1:1の溶液20mLに溶解させた後、ヘキサン200mLに加え、再度遠心分離で固体を得た。その後、乾燥させて(A)スルホン酸基ナトリウム塩含有ロタキサンモノマー(RX-7)を得た。スルホン酸ナトリウム塩含有の導入量は、H-NMR測定装置(日本電子製JNM-LA500)により、確認した。即ち、該(A1)のプロトン核磁気共鳴スペクトルを測定したところ、下記の特徴的なピークが観測された。δ1.84ppm付近にスルトン酸基のβ炭素由来のプロトンピークを確認した。また、重合性官能基(水酸基価)含有量は、水酸基価から計算した。RX-7の物性は上記の通りであった。
<Preparation of rotaxane containing ionic functional group (RX-7) / (A) Preparation of rotaxane monomer>
5 g of the rotaxane (RX) obtained in (1-4) was dissolved in 50 mL of dehydrated DMF, 20.5 mg of sodium hydride was added, and the mixture was stirred at room temperature for 12 hours. Then, a solution prepared by dissolving 104.12 mg of 1,3-propane sultone in 1 mL of DMF was added dropwise. After the dropping, the mixture was stirred at room temperature for 24 hours. Then, the reaction solution was added to 500 mL of an aqueous solution having a NaCl concentration of 0.5%, and a solid was obtained by centrifugation. Further, the solution was dissolved in 20 mL of a solution of methanol and dioxane at a weight ratio of 1: 1, added to 200 mL of hexane, and again centrifuged to obtain a solid. Then, it was dried to obtain (A) sulfonic acid group sodium salt-containing rotaxane monomer (RX-7). The amount of sodium sulfonate contained was confirmed by a 1 H-NMR measuring device (JNM-LA500 manufactured by JEOL Ltd.). That is, when the proton nuclear magnetic resonance spectrum of (A1) was measured, the following characteristic peaks were observed. A proton peak derived from the β-carbon of the sultonic acid group was confirmed near δ 1.84 ppm. The content of the polymerizable functional group (hydroxyl value) was calculated from the hydroxyl value. The physical properties of RX-7 were as described above.
 その他、使用した材料は以下の通りである。 Other materials used are as follows.
 <(B)重合性モノマー>
 (B12)ウレタンプレポリマー
 Pre-1:イソ(チオ)シアネート当量が905の末端イソシアネートウレタンプレポリマー
 Pre-1の製造方法
 窒素導入管、温度計、攪拌機を備えたフラスコに窒素雰囲気下中、2,4-トリレンジイソシアネート50gとポリオキシテトラメチレングリコール(数平均分子量;1000)90gとジエチレングリコール12gを、80℃で6時間反応させ、イソ(チオ)シアネート当量が905の末端イソシアネートウレタンプレポリマーを得た(Pre-1を得た)。
<(B) Polymerizable monomer>
(B12) Urethane Prepolymer Pre-1: Method for Producing Terminal Isocyanate Urethane Prepolymer Pre-1 with Iso (thio) cyanate Equivalent of 905 A flask equipped with a nitrogen inlet tube, a thermometer, and a stirrer was charged with 2, 50 g of 4-tolylene diisocyanate, 90 g of polyoxytetramethylene glycol (number average molecular weight: 1000) and 12 g of diethylene glycol were reacted at 80 ° C. for 6 hours to obtain a terminal isocyanate urethane prepolymer having an iso (thio) cyanate equivalent of 905. (I got Pre-1).
 Pre-2:イソ(チオ)シアネート当量が475の末端イソシアネートウレタンプレポリマー
 Pre-2の製造方法
 窒素導入管、温度計、攪拌機を備えたフラスコに窒素雰囲気下中、トリレンジイソシアネート(2, 4-体/2,6-体=80/20の混合物)27.8gとイソホロンジイソシアネート11.8gとポリオキシテトラメチレングリコール(数平均分子量;1000)54.3gとジエチレングリコール4.5gと2,2-ビス(ヒドロキシメチル)ブタン酸1.6gを、80℃で6時間反応させ、イソ(チオ)シアネート当量が475の末端イソシアネートウレタンプレポリマーを得た(Pre-2を得た)。
Pre-2: a terminal isocyanate urethane prepolymer having an iso (thio) cyanate equivalent weight of 475 A method for producing Pre-2 A flask equipped with a nitrogen inlet tube, a thermometer, and a stirrer is placed under a nitrogen atmosphere and tolylene diisocyanate (2,4- Body / 2,6-body = 80/20 mixture) 27.8 g, isophorone diisocyanate 11.8 g, polyoxytetramethylene glycol (number average molecular weight; 1000) 54.3 g, diethylene glycol 4.5 g and 2,2-bis 1.6 g of (hydroxymethyl) butanoic acid was reacted at 80 ° C. for 6 hours to obtain a terminal isocyanate urethane prepolymer having an iso (thio) cyanate equivalent of 475 (pre-2 was obtained).
 (B3)成分 (チ)オール化合物
 RX:環状分子に側鎖を有し、側鎖末端に水酸基を有するロタキサン
 イオン性官能基含有ロタキサン(RX-1)の調製(製造)において、(1-5)イオン性官能基導入工程を行わなかったロタキサンモノマー(RX)である。このロタキサンモノマー;RXの物性は以下の通りであった。
・ポリロタキサン重量平均分子量Mw(GPC):165000
・側鎖の修飾度:0.5(%で表示すると50%となる)
・側鎖の分子量:平均で約350
・重合性官能基含有量(側鎖に導入された重合性官能基):1.55mmol/g
・側鎖が未導入の未反応性水酸基:1.55mmol/g
・全重合性活性基の含有量:3.10mmol/g
・イオン性官能基:なし
側鎖の末端に重合性官能基として水酸基を有するロタキサンモノマーである
Component (B3) Component (thi) ol compound RX: Rotaxane having side chain in cyclic molecule and hydroxyl group at side chain terminal In the preparation (production) of rotaxane containing ionic functional group (RX-1), (1-5 ) A rotaxane monomer (RX) which has not been subjected to the step of introducing an ionic functional group. The physical properties of this rotaxane monomer; RX were as follows.
-Polyrotaxane weight average molecular weight Mw (GPC): 165000
・ Modification degree of side chain: 0.5 (50% when expressed as%)
・ Molecular weight of side chain: about 350 on average
-Polymerizable functional group content (polymerizable functional group introduced into the side chain): 1.55 mmol / g
-Unreacted hydroxyl group with no side chain introduced: 1.55 mmol / g
-Content of all polymerizable active groups: 3.10 mmol / g
Ionic functional group: None A rotaxane monomer having a hydroxyl group as a polymerizable functional group at the end of the side chain.
 (B4)成分 アミノ基含有モノマー
MOCA:4,4’-メチレンビス(o-クロロアニリン)。
Component (B4) Amino group-containing monomer MOCA: 4,4′-methylenebis (o-chloroaniline).
 (その他)
 (D)中空粒子
中空粒子1:中空の粒径40μm、密度0.03g/cmのマイクロカプセル920-40(日本フィライト社製)。
中空粒子2:中空の粒径30μm、密度0.13g/cmのウレタン樹脂μバルーン。
(Other)
(D) Hollow particles Hollow particles 1: hollow microcapsules 920-40 (manufactured by Nippon Philite) having a particle size of 40 μm and a density of 0.03 g / cm 3 .
Hollow particle 2: a urethane resin μ balloon having a hollow particle size of 30 μm and a density of 0.13 g / cm 3 .
 <中空粒子2の製造方法/ウレタン樹脂μバルーンの製造方法>
 ポリテトラメチレングリコール(数平均分子量2,000) 650gに、1,000gのトルエンを添加し、さらに142gのイソホロンジイソシアネートを添加し、トルエン還流下に120度で5時間反応を行った後、室温まで冷却し、25gのヘキサメチレンジアミン、及び20gのジエチレントリアミンを添加し60度で5時間反応を行った後、トルエンを減圧下に留去し、両末端に水酸基を持ちウレタンおよびウレア結合を有するポリウレタン樹脂を得た。得られた樹脂400g、酸化鉄12g、n-ヘキサン62g、酢酸エチル380gを混合し、あらかじめ作成したポリビニルアルコール0.5%水溶液2000gに滴下しながら分散した。得られた樹脂を濾紙濾過にて水中より取り出し、40度の循風乾燥機にて乾燥した。本球状体を音波式分級機により解砕して篩い分け、ウレタンμバルーンを得た。
<Production Method of Hollow Particles 2 / Production Method of Urethane Resin μ Balloon>
To 650 g of polytetramethylene glycol (number average molecular weight of 2,000), 1,000 g of toluene was added, and further 142 g of isophorone diisocyanate was added, and the mixture was reacted at 120 ° C for 5 hours under reflux of toluene, and then allowed to reach room temperature. After cooling, 25 g of hexamethylenediamine and 20 g of diethylenetriamine were added and reacted at 60 ° C. for 5 hours, then toluene was distilled off under reduced pressure, and a polyurethane resin having a hydroxyl group at both ends and a urethane and urea bond. Got 400 g of the obtained resin, 12 g of iron oxide, 62 g of n-hexane, and 380 g of ethyl acetate were mixed and dispersed while dropping in 2000 g of a 0.5% aqueous solution of polyvinyl alcohol prepared in advance. The obtained resin was taken out from water by filter paper filtration and dried by a 40-degree circulating air dryer. This spherical body was crushed by a sonic classifier and sieved to obtain a urethane μ balloon.
 実施例1
 (A)ロタキサンモノマーを用い、硬化性組成物を下記処方により調合した。
Example 1
A curable composition was prepared according to the following formulation using (A) a rotaxane monomer.
 (A)成分のRX-1(26.4質量部)と(B4)成分のMOCA(4.8質量部)とを120℃で混合して均一溶液にした後、十分に脱気し、100℃まで冷却した(溶液1)。その溶液1を、70℃に加温した(B12)成分のPre-1(68.8質量部)に添加し、自転公転攪拌機で均一混合し、硬化性組成物とした。前記硬化性組成物を金型へ注入し、100℃で15時間硬化させ、厚み2mmの硬化体を得た。
(A)ロタキサンモノマー:RX-1 26.4質量部
(B12)ウレタンプレポリマー:Pre-1 68.8質量部
(B4)アミンモノマー:MOCA 4.8質量部
The component (A) RX-1 (26.4 parts by mass) and the component (B4) MOCA (4.8 parts by mass) were mixed at 120 ° C. to form a uniform solution, which was thoroughly degassed to 100 Cooled to 0 ° C. (solution 1). The solution 1 was added to Pre-1 (68.8 parts by mass) of the component (B12) heated to 70 ° C. and uniformly mixed with a rotation / revolution agitator to obtain a curable composition. The curable composition was poured into a mold and cured at 100 ° C. for 15 hours to obtain a cured product having a thickness of 2 mm.
(A) Rotaxane monomer: RX-1 26.4 parts by mass (B12) Urethane prepolymer: Pre-1 68.8 parts by mass (B4) Amine monomer: MOCA 4.8 parts by mass
 上記で得られた硬化体のテーバー摩耗量は16mg、吸水率は2.4%であった。各評価方法を以下に示す。 The Taber abrasion loss of the cured product obtained above was 16 mg, and the water absorption rate was 2.4%. Each evaluation method is shown below.
 〔評価項目〕
(1)テーバー摩耗量:テーバー社製の5130型の装置で測定。荷重は1Kg、回転速度は60rpm、回転数は1000回転、摩耗輪はH-18でテーバー摩耗試験を実施した。平均値で評価した。
(2)吸水率の測定:硬化体を23度の蒸留水に24時間浸漬した。浸漬前後のサンプルの重量から下記式により吸水率(%)を算出した。
吸水率(%)=(浸漬後の重量-浸漬前の重量)/浸漬前の重量×100。
〔Evaluation item〕
(1) Taber abrasion loss: Measured with a Taber model 5130. A Taber abrasion test was conducted with a load of 1 kg, a rotation speed of 60 rpm, a rotation number of 1000 rotations, and an abrasion wheel of H-18. The average value was evaluated.
(2) Measurement of water absorption rate: The cured product was immersed in distilled water at 23 degrees for 24 hours. The water absorption rate (%) was calculated from the weight of the sample before and after the immersion by the following formula.
Water absorption rate (%) = (weight after immersion−weight before immersion) / weight before immersion × 100.
 実施例2、6~10、比較例1~2
 表1に示した組成の硬化性組成物を用いた以外は、実施例1と同様な方法で硬化体を作製し、評価を行なった。各成分の配合割合と結果を表1にまとめた。比較例1は、イオン性官能基を導入する前のロタキサンモノマー(RX)のみを使用した例であり、比較例2は、ロタキサン構造を含まないウレタン樹脂の結果である。
Examples 2, 6-10, Comparative Examples 1-2
A cured product was prepared and evaluated in the same manner as in Example 1 except that the curable composition having the composition shown in Table 1 was used. The blending ratio of each component and the results are summarized in Table 1. Comparative Example 1 is an example in which only the rotaxane monomer (RX) before introducing the ionic functional group is used, and Comparative Example 2 is the result of the urethane resin containing no rotaxane structure.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例1~2、6~10と比較例1~2から明らかな通り、本発明のロタキサンモノマー(重合性官能基とイオン性官能基の両方を有するもの)を用い作製した研磨パッド組成物を効果させて得られた研磨パッドは、優れた耐摩耗性、及び、吸水特性を示した。 As is clear from Examples 1 to 2 and 6 to 10 and Comparative Examples 1 and 2, polishing pad compositions prepared using the rotaxane monomer of the present invention (having both a polymerizable functional group and an ionic functional group) were prepared. The polishing pad obtained by the effect showed excellent wear resistance and water absorption characteristics.
 実施例3
(A)ロタキサンモノマーを用い、硬化性組成物を下記処方により調合した。
Example 3
A curable composition was prepared according to the following formulation using (A) a rotaxane monomer.
(A)成分のRX-1(26.4質量部)と(B4)成分のMOCA(4.8質量部)とを120℃で混合して均一溶液にした後、十分に脱気し、100℃まで冷却した(溶液1)。別途、70℃に加温した(B12)成分のPre-1(68.8質量部)に(その他の成分)の中空粒子1(0.8質量部)を加え、自転公転攪拌機で攪拌して均一な溶液を得た(溶液2)。前記で調合した溶液2に、溶液1を加え、均一混合し、硬化性組成物とした。前記硬化性組成物を金型へ注入し、100℃で15時間硬化させた。重合終了後、鋳型からウレタン樹脂を取り外し、スライスを行い、厚さ1mmのウレタン樹脂を得た。そのウレタン樹脂の表面にスパイラル状の溝を形成し、裏面に両面テープを張り付けることで、大きさ500mmφ、厚さ1mmの研磨パッドとした。各配合量を表2に示した。また、表2には、前記実施例1で記載した無発泡の樹脂の吸水率(すなわち、本実施例において、中空粒子を含有させないで得た硬化体の吸水率)も記載した。
(A)ロタキサンモノマー:RX-1 26.4質量部
(B12)ウレタンプレポリマー:Pre-1 68.8質量部
(B4)アミノ基含有モノマー:MOCA 4.8質量部
(その他):中空粒子1 0.8質量部
上記で得られたウレタン樹脂の片面に、両面テープ貼り、研磨レートは4.5μm/hr、密度は0.75g/cm、耐スクラッチ性は2であった。各評価方法を以下に示す。
The component (A) RX-1 (26.4 parts by mass) and the component (B4) MOCA (4.8 parts by mass) were mixed at 120 ° C. to form a uniform solution, which was thoroughly degassed to 100 Cooled to 0 ° C. (solution 1). Separately, the hollow particles 1 (0.8 parts by mass) of (other components) were added to Pre-1 (68.8 parts by mass) of the component (B12) heated to 70 ° C., and the mixture was stirred by a rotation-revolution agitator. A homogeneous solution was obtained (solution 2). The solution 1 was added to the solution 2 prepared above and uniformly mixed to obtain a curable composition. The curable composition was poured into a mold and cured at 100 ° C. for 15 hours. After completion of the polymerization, the urethane resin was removed from the mold and sliced to obtain a urethane resin having a thickness of 1 mm. Spiral grooves were formed on the surface of the urethane resin, and a double-sided tape was attached to the back surface to form a polishing pad having a size of 500 mmφ and a thickness of 1 mm. The respective blending amounts are shown in Table 2. In addition, Table 2 also shows the water absorption rate of the non-foamed resin described in Example 1 (that is, the water absorption rate of the cured product obtained without containing hollow particles in this Example).
(A) Rotaxane monomer: RX-1 26.4 parts by mass (B12) Urethane prepolymer: Pre-1 68.8 parts by mass (B4) Amino group-containing monomer: MOCA 4.8 parts by mass (others): Hollow particle 1 0.8 parts by mass A double-sided tape was attached to one surface of the urethane resin obtained above, the polishing rate was 4.5 μm / hr, the density was 0.75 g / cm 3 , and the scratch resistance was 2. Each evaluation method is shown below.
(3)研磨レート:研磨条件を下記に示す。
被研磨物:4インチサファイアウエハ
スラリー:FUJIMI コンポール 80原液
圧力:4 Psi
回転数:45rpm
時間:1時間
上記条件にて、研磨を実施した際の研磨レート(μm/hr)を測定した。研磨レートは100枚ウエハの平均値である。
(3) Polishing rate: The polishing conditions are shown below.
Workpiece: 4-inch sapphire wafer slurry: FUJIMI Compol 80 stock solution pressure: 4 Psi
Rotation speed: 45 rpm
Time: 1 hour Under the above conditions, the polishing rate (μm / hr) when the polishing was performed was measured. The polishing rate is an average value of 100 wafers.
 (4)密度:東洋精機製の(DSG-1)にて密度(g/cm)を測定した。
 (5)耐スクラッチ性:上記(3)で記載した条件で研磨した際の100枚のウエハのスクラッチの有無を確認した。評価は以下の基準で実施した。
1:レーザー顕微鏡で測定し、100枚のウエハ全てに欠陥がないもの
2:レーザー顕微鏡で測定し、100枚のウエハ中、1~2枚に欠陥が確認できるもの
3:レーザー顕微鏡で測定し、100枚のウエハ中、3~5枚に欠陥が確認できるもの
4:レーザー顕微鏡で測定し、100枚のウエハ中、6~9枚に欠陥が確認できるもの
5:レーザー顕微鏡で測定し、100枚のウエハ中、10枚以上に欠陥が確認できるもの
(6)ヒステリシスロス:厚み2mmのダンベル8号形状に打ち抜いた樹脂を島津社製AG-SXのオートグラフにて10mm/minで20mm伸長させ、その後、応力がゼロになるまで戻した際のヒステリシスロスを測定した。平均値で評価した。
(4) Density: The density (g / cm 3 ) was measured with (DSG-1) manufactured by Toyo Seiki.
(5) Scratch resistance: The presence or absence of scratches on 100 wafers when polished under the conditions described in (3) above was confirmed. The evaluation was performed according to the following criteria.
1: Measured with a laser microscope and having no defects on all 100 wafers 2: Measured with a laser microscope and capable of confirming defects on 1 to 2 of 100 wafers 3: Measured with a laser microscope Defects can be confirmed on 3 to 5 wafers among 100 wafers 4: Measured with a laser microscope, and defects can be confirmed on 6 to 9 wafers among 100 wafers 5: Measured with a laser microscope, 100 wafers (6) Hysteresis loss: 2 mm thick dumbbell No. 8 shaped resin was stretched by 20 mm at 10 mm / min with an autograph of AG-SX manufactured by Shimadzu. Then, the hysteresis loss was measured when the stress was returned to zero. The average value was evaluated.
 実施例4~5、11~16、及び比較例3~4
 表2に示した組成の硬化性組成物を用いた以外は、実施例3と同様な方法でウレタン樹脂を作製し、評価を行なった。各成分の配合割合と結果を表2にまとめた。
 比較例3は、イオン性官能基を導入する前のロタキサン(RX)のみを使用した例であり、比較例4は、ロタキサン構造を含まないウレタン樹脂の結果である。
Examples 4-5, 11-16, and Comparative Examples 3-4
A urethane resin was prepared and evaluated in the same manner as in Example 3 except that the curable composition having the composition shown in Table 2 was used. The blending ratio of each component and the result are summarized in Table 2.
Comparative Example 3 is an example in which only rotaxane (RX) before introducing an ionic functional group is used, and Comparative Example 4 is a result of a urethane resin containing no rotaxane structure.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
1:ロタキサンモノマー
2:軸分子
3:環状分子
4:側鎖
5:嵩高い基
6:重合性官能基
7:イオン性官能基
1: rotaxane monomer 2: axial molecule 3: cyclic molecule 4: side chain 5: bulky group 6: polymerizable functional group 7: ionic functional group

Claims (12)

  1.  (A)環状分子と、該環状分子の環内を貫通する軸分子とからなる複合分子構造を有し、該環状分子が、重合性官能基、及びイオン性官能基の両方を有するロタキサンモノマーと、 
     (B)前記(A)ロタキサンモノマーの前記重合性官能基と重合し得る重合性官能基を有する重合性モノマーを含む重合性モノマー組成物とを
    含有する硬化性組成物。
    (A) a rotaxane monomer having a composite molecular structure composed of a cyclic molecule and an axial molecule penetrating the inside of the cyclic molecule, wherein the cyclic molecule has both a polymerizable functional group and an ionic functional group; ,
    (B) A curable composition containing the polymerizable functional group of the rotaxane monomer (A) and a polymerizable monomer composition containing a polymerizable monomer having a polymerizable functional group capable of polymerizing.
  2.  前記(A)ロタキサンモノマーが有する前記重合性官能基が、
     ラジカル重合性基、エポキシ基、水酸基、チオール基、第一級アミノ基、及び第二級アミノ基からなる群より選ばれる少なくとも1種の基であり、
     前記(A)ロタキサンモノマーが有する前記イオン性官能基が、
     カルボキシルイオン、スルホン酸イオン、リン酸イオン、ホスホン酸イオン、及び第4級アンモニウムカチオンからなる群より選ばれる少なくとも1種のイオンを形成し得る基である請求項1に記載の硬化性組成物
    The polymerizable functional group contained in the (A) rotaxane monomer is
    A radically polymerizable group, an epoxy group, a hydroxyl group, a thiol group, a primary amino group, and at least one group selected from the group consisting of a secondary amino group,
    The (A) rotaxane monomer has the ionic functional group,
    The curable composition according to claim 1, which is a group capable of forming at least one ion selected from the group consisting of a carboxyl ion, a sulfonate ion, a phosphate ion, a phosphonate ion, and a quaternary ammonium cation.
  3.  前記(A)ロタキサンモノマーにおいて、前記重合性官能基と前記イオン性官能基との合計モル割合を100モル%とした時、前記イオン性官能基の割合が1モル%以上90モル%未満である請求項1又は2に記載の硬化性組成物。 In the (A) rotaxane monomer, when the total molar ratio of the polymerizable functional group and the ionic functional group is 100 mol%, the ratio of the ionic functional group is 1 mol% or more and less than 90 mol%. The curable composition according to claim 1 or 2.
  4.  前記(A)ロタキサンモノマーにおいて、
     前記環状分子が水酸基を有し、該水酸基が反応して該環状分子に側鎖が導入されてなり、かつ
     前記側鎖が、前記重合性官能基、及び前記イオン性官能基を有する請求項1~3の何れか1項に記載の硬化性組成物。
    In the (A) rotaxane monomer,
    The cyclic molecule has a hydroxyl group, the hydroxyl group reacts to introduce a side chain into the cyclic molecule, and the side chain has the polymerizable functional group and the ionic functional group. 4. The curable composition according to any one of 3 to 3.
  5.  前記(A)ロタキサンモノマーが、
     前記環状分子が脱離しない様に、前記軸分子の両末端に嵩高い基を有する請求項1~4の何れか1項に記載の硬化性組成物。
    The (A) rotaxane monomer is
    The curable composition according to any one of claims 1 to 4, which has bulky groups at both ends of the axial molecule so that the cyclic molecule is not detached.
  6.  前記(A)ロタキサンモノマーが有する前記重合性官能基が、水酸基、チオール基、第一級アミノ基、及び第二級アミノ基から選ばれる基であり、
     前記(B)重合性モノマー組成物に含まれる、前記(A)ロタキサンモノマーと重合し得る重合性モノマーが、(B1)分子内に少なくともイソ(チオ)シアネート基を有するイソ(チオ)シアネート化合物を含む
    請求項1~5の何れか1項に記載の硬化性組成物。
    The polymerizable functional group contained in the (A) rotaxane monomer is a group selected from a hydroxyl group, a thiol group, a primary amino group, and a secondary amino group,
    The polymerizable monomer capable of polymerizing with the (A) rotaxane monomer contained in the (B) polymerizable monomer composition is an (B1) iso (thio) cyanate compound having at least an iso (thio) cyanate group in the molecule. The curable composition according to any one of claims 1 to 5, which comprises:
  7.  前記(A)ロタキサンモノマーが有する前記重合性官能基が、少なくとも水酸基を含み、
     前記(B)重合性モノマー組成物に含まれる前記(B1)イソ(チオ)シアネート化合物が、
     (B32)分子内に2つの活性水素含有基を有する2官能活性水素含有化合物と、
     (B13)分子内に2つのイソ(チオ)シアネート基を有する2官能ポリイソ(チオ)シアネート化合物とを反応させて得られる、(B12)分子の両末端にイソ(チオ)シアネート基を有するウレタンプレポリマーを含む請求項6に記載の硬化性組成物。
    The polymerizable functional group contained in the (A) rotaxane monomer contains at least a hydroxyl group,
    The (B1) iso (thio) cyanate compound contained in the (B) polymerizable monomer composition is
    (B32) a bifunctional active hydrogen-containing compound having two active hydrogen-containing groups in the molecule,
    (B13) A urethane prepolymer having an iso (thio) cyanate group at both ends of the (B12) molecule, which is obtained by reacting with a bifunctional polyiso (thio) cyanate compound having two iso (thio) cyanate groups in the molecule. The curable composition according to claim 6, comprising a polymer.
  8.  前記(B12)ウレタンプレポリマーのイソ(チオ)シアネート当量が、300~5000である請求項7に記載の硬化性組成物。 The curable composition according to claim 7, wherein the (B12) urethane prepolymer has an iso (thio) cyanate equivalent of 300 to 5,000.
  9.  さらに、(D)ウレタン系樹脂からなる外殻部と、該外殻部に囲まれた中空部とから構成される中空粒子
    を含む請求項1~8の何れか1項に記載の硬化性組成物。
    9. The curable composition according to claim 1, further comprising (D) hollow particles composed of an outer shell part made of a urethane resin and a hollow part surrounded by the outer shell part. object.
  10.  請求項1~9の何れか1項に記載の硬化性組成物を硬化して得られる硬化体。 A cured product obtained by curing the curable composition according to any one of claims 1 to 9.
  11.  請求項10に記載の硬化体からなる研磨用パッド。 A polishing pad made of the cured product according to claim 10.
  12.  (A)環状分子と、該環状分子の環内を貫通する軸分子とからなる複合分子構造を有し、該環状分子が、重合性官能基、及び、イオン性官能基の両方を有するロタキサンモノマー。

     
    (A) A rotaxane monomer having a complex molecular structure composed of a cyclic molecule and an axial molecule penetrating the inside of the cyclic molecule, and the cyclic molecule having both a polymerizable functional group and an ionic functional group. ..

PCT/JP2019/043737 2018-11-08 2019-11-07 Curable composition containing ionic-group-containing rotaxane monomer, and polishing pad obtained from said curable composition WO2020096010A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018210159A JP2022013963A (en) 2018-11-08 2018-11-08 Curable composition containing ionic group-containing rotaxane monomer, and polishing pad made of the curable composition
JP2018-210159 2018-11-08

Publications (1)

Publication Number Publication Date
WO2020096010A1 true WO2020096010A1 (en) 2020-05-14

Family

ID=70612080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/043737 WO2020096010A1 (en) 2018-11-08 2019-11-07 Curable composition containing ionic-group-containing rotaxane monomer, and polishing pad obtained from said curable composition

Country Status (3)

Country Link
JP (1) JP2022013963A (en)
TW (1) TW202030218A (en)
WO (1) WO2020096010A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022030531A1 (en) * 2020-08-05 2022-02-10 株式会社トクヤマ Curable composition and cured article thereof
WO2022163765A1 (en) * 2021-01-29 2022-08-04 株式会社トクヤマ Novel curable composition containing cyclic monomer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007276061A (en) * 2006-04-07 2007-10-25 Toyo Tire & Rubber Co Ltd Polishing pad
WO2009145073A1 (en) * 2008-05-30 2009-12-03 アドバンスト・ソフトマテリアルズ株式会社 Polyrotaxane, aqueous polyrotaxane dispersion composition, crosslinked body of polyrotaxane and polymer and method for producing the same
WO2018092826A1 (en) * 2016-11-17 2018-05-24 株式会社トクヤマ Urethane resin using polyrotaxane, and polishing pad

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007276061A (en) * 2006-04-07 2007-10-25 Toyo Tire & Rubber Co Ltd Polishing pad
WO2009145073A1 (en) * 2008-05-30 2009-12-03 アドバンスト・ソフトマテリアルズ株式会社 Polyrotaxane, aqueous polyrotaxane dispersion composition, crosslinked body of polyrotaxane and polymer and method for producing the same
WO2018092826A1 (en) * 2016-11-17 2018-05-24 株式会社トクヤマ Urethane resin using polyrotaxane, and polishing pad

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022030531A1 (en) * 2020-08-05 2022-02-10 株式会社トクヤマ Curable composition and cured article thereof
CN116096774A (en) * 2020-08-05 2023-05-09 株式会社德山 Curable composition and cured product thereof
WO2022163765A1 (en) * 2021-01-29 2022-08-04 株式会社トクヤマ Novel curable composition containing cyclic monomer
KR20230134507A (en) 2021-01-29 2023-09-21 가부시끼가이샤 도꾸야마 Novel curable composition containing cyclic monomers

Also Published As

Publication number Publication date
JP2022013963A (en) 2022-01-19
TW202030218A (en) 2020-08-16

Similar Documents

Publication Publication Date Title
JP7130556B2 (en) Urethane resin using polyrotaxane and polishing pad
TWI794469B (en) Polyrotaxane-based urethane resin and polishing pad
WO2020032056A1 (en) Curable composition containing polypseudorotaxane monomer
JP7175163B2 (en) Photochromic curable composition and photochromic cured body
JP7352540B2 (en) Low water content polyrotaxane monomer and curable composition containing the monomer
WO2020096010A1 (en) Curable composition containing ionic-group-containing rotaxane monomer, and polishing pad obtained from said curable composition
WO2021241708A1 (en) Laminated polishing pad
WO2022030531A1 (en) Curable composition and cured article thereof
JP7545326B2 (en) Polyrotaxane-based urethane resin and polishing pad
WO2022163765A1 (en) Novel curable composition containing cyclic monomer
KR20230017777A (en) Polyfunctional active hydrogen group-containing sulfonic acid quaternary ammonium salt

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19881273

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19881273

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP