WO2020094009A1 - 多联机空调系统内机阀的控制方法 - Google Patents

多联机空调系统内机阀的控制方法 Download PDF

Info

Publication number
WO2020094009A1
WO2020094009A1 PCT/CN2019/115719 CN2019115719W WO2020094009A1 WO 2020094009 A1 WO2020094009 A1 WO 2020094009A1 CN 2019115719 W CN2019115719 W CN 2019115719W WO 2020094009 A1 WO2020094009 A1 WO 2020094009A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
internal
opening degree
conditioning system
air conditioner
Prior art date
Application number
PCT/CN2019/115719
Other languages
English (en)
French (fr)
Inventor
陈东
黄春
刘合心
任小辉
陈华
Original Assignee
宁波奥克斯电气股份有限公司
奥克斯空调股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波奥克斯电气股份有限公司, 奥克斯空调股份有限公司 filed Critical 宁波奥克斯电气股份有限公司
Publication of WO2020094009A1 publication Critical patent/WO2020094009A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature

Definitions

  • the disclosed embodiment of the present invention relates to a control method of a machine valve in a multi-line air conditioning system.
  • electronic expansion valves can achieve variable flow throttling according to the actual load changes of air conditioners to meet the requirements of improving energy efficiency and comfort of air conditioners. Therefore, more and more manufacturers favor Use electronic expansion valve to throttle.
  • the multi-line air-conditioning system that uses electronic expansion valve throttling is under high temperature. The initial opening of the electronic expansion valve is fixed after refrigeration is turned on. If the external machine has a dirty plug, insufficient refrigerant, or a harsh installation environment, the internal machine electronic expansion valve During the initialization process, frequent protection shutdowns are prone to occur, and once the shutdown is stopped, it will not start normally next time, affecting the user's use effect.
  • an embodiment of the present disclosure proposes a method for controlling internal engine valves in a multi-connected air-conditioning system to solve the problem that the internal engine valves are in the process of being initialized due to dirty plugs, insufficient refrigerant, or poor installation environment in the known technology The technical problems of frequent protection shutdowns are prone to occur.
  • a control method of a machine valve in a multi-line air-conditioning system includes the following steps:
  • step S1 the standard exhaust temperature T 0 is obtained , the air conditioner is started, and the outdoor ambient temperature T out is detected. If T out > A, the internal engine valve operates at the original opening degree P 0 ;
  • Step S2 when the inner valve machine in step S1 runs at the original opening degree P 0 for a predetermined period of time and ends, the actual exhaust gas temperature T 1 is detected;
  • Step S3 comparing the actual exhaust gas temperature T 1 in step S2 with the standard exhaust gas temperature T 0 in step S1, when T 1 ⁇ T 0 , the initial opening degree of the internal machine valve at the next startup P 1 is fitted and corrected to increase the opening degree of the internal machine valve at the next startup; when T 1 ⁇ T 0 , the opening degree of the internal machine valve at the next startup remains unchanged.
  • step S3 when T 1 ⁇ T 0 , the initial opening degree P 1 of the internal engine valve is fitted and corrected when starting next time, including:
  • Step S31 when the air conditioner is working normally when T 1 ⁇ T 0 , the initial opening degree P 11 of the internal machine valve is fitted and corrected when the power is turned on next time;
  • Step S32 when the air conditioner is shut down when T 1 ⁇ T 0 , the opening degree P of the internal machine valve at the time of shutdown is recorded, and the initial opening degree P 12 of the internal machine valve is fitted at the next startup Fix.
  • the air conditioner includes a plurality of indoor units, and at least one of the indoor units is in a starting state.
  • the air conditioner includes a plurality of indoor units, and one of the indoor units is in a stopped state after being started.
  • the standard exhaust gas temperature T 0 in step S1 is 100 ° C ⁇ T 0 ⁇ 110 ° C.
  • the original opening degree P 0 is the default internal engine valve opening degree of the system when the air conditioner is started.
  • the predetermined time in step S2 is 1-3 minutes.
  • control method of the engine valve in the multi-line air conditioning system described in the present disclosure has the following advantages:
  • Another technical solution of the present disclosure is to provide an air conditioner, including a non-transitory computer-readable storage medium, where the storage medium stores an executable program, and when the executable program is executed to run, the above method is implemented.
  • the air conditioner described in this disclosure includes a non-transitory computer-readable storage medium that stores an executable program.
  • the executable program When executed and executed, the method described above is implemented, and The control method of the engine valve in the multi-line air conditioning system has the same advantages, and will not be repeated here.
  • FIG. 1 is a flowchart of a control method of an engine valve in a multi-connected air-conditioning system according to an embodiment of the present invention.
  • this embodiment provides a control method of a machine valve in a multi-line air conditioning system, which includes the following steps:
  • step S1 the standard exhaust temperature T 0 is obtained , the air conditioner is started, and the outdoor ambient temperature T out is detected. If T out > A, the internal engine valve operates at the original opening degree P 0 ;
  • Step S2 when the operation in step S1 is completed, the actual exhaust gas temperature T 1 is detected;
  • Step S3 compare the actual exhaust gas temperature T 1 in step S2 with the standard exhaust gas temperature T 0 in step S1, and when T 1 ⁇ T 0 , fit and correct the initial opening P 1 of the internal engine valve at the next startup, Increasing the opening degree of the internal machine valve increases the opening degree of the internal machine valve when starting next time; when T 1 ⁇ T 0 , the opening degree of the internal machine valve remains unchanged when starting next time.
  • the standard exhaust temperature T 0 in step S1 is 100 °C ⁇ T 0 ⁇ 110 °C
  • the original opening P 0 is the default internal engine valve opening of the system when the air conditioner is started
  • the internal engine valve in step S1 is The operation time of the original opening degree P 0 is 1-3 min, and in this embodiment, it can be selected as 2 min, that is, after the internal machine valve runs at the original opening degree P 0 for 2 min, the internal machine valve starts to perform automatic adjustment.
  • Step S31 when T 1 ⁇ T 0 the air conditioner is working normally, the initial opening P 11 of the internal unit valve is fitted and corrected when the power is turned on next time.
  • the principle of this calculation formula is that if the first opening degree is corrected, if the exhaust is too high to stop after a period of operation, it means that the exhaust temperature is still very high after the initial opening degree is corrected, and the internal engine valve adjustment is still not timely enough. Therefore, the correction is increased. K 1 is corrected according to the outdoor ambient temperature T out and the exhaust temperature T 1 after the initial opening is completed. That is to say, the higher the ambient temperature T out and the higher the exhaust temperature after the initial opening, the K 1 is corrected. The bigger the value is, therefore, if a protection shutdown occurs, the initial opening can be adjusted according to the exhaust temperature and outdoor temperature to reduce the probability of the next exhaust protection shutdown, and the system can start normally.
  • the opening degree of the internal machine valve initialization is accurately corrected and controlled to avoid that the exhaust temperature is too high during the initialization process of the internal machine valve at the next start-up, resulting in subsequent internal machine
  • the valve does not move fast enough, the exhaust temperature rises too fast, resulting in protection shutdown; and if the protection shutdown occurs when the single machine starts, the opening of the internal engine valve initialization can also be initialized through the exhaust temperature and outdoor temperature during the initialization process. Carry out accurate correction control to reduce the probability of the next exhaust protection shutdown, so that the air conditioning system can start normally.
  • Embodiment 1 is an application example of Embodiment 1, specifically as follows:
  • a method for controlling a valve in a multi-line air conditioning system includes the following steps:
  • Step S1 Obtain a standard exhaust temperature T 0 of 105 ° C and start two indoor air conditioners. At this time, the outdoor ambient temperature T out is detected at 55 ° C, and the internal unit valve operates at the original opening degree P 0 of 160 for 2 minutes, that is, the internal After the machine valve runs at the original opening P 0 for 2 minutes, the inner machine valve starts to adjust automatically;
  • Step S2 when the operation in step S1 ends, the actual exhaust gas temperature T 1 is detected to be 120 ° C;
  • Step S3 compare the actual exhaust temperature T 1 of step S2 with the standard exhaust temperature T 0 of step S1, and find that when T 1 > T 0 , the initial opening degree P 11 of the internal engine valve is fitted and corrected when the machine is turned on next time.
  • K can be selected as 20.
  • the opening degree of the internal valve initialization is accurately corrected and controlled, and the opening degree of the internal valve is increased to make the exhaust temperature It has been reduced to avoid that the exhaust temperature is too high during the initialization of the internal engine valve during the next start-up, resulting in the subsequent internal engine valve not moving fast enough, and the exhaust temperature rising too fast, resulting in protection shutdown.
  • Embodiment 1 is an application example of Embodiment 1, specifically as follows:
  • a method for controlling a valve in a multi-line air conditioning system includes the following steps:
  • Step S1 Obtain a standard exhaust temperature T 0 of 100 ° C and start two indoor air conditioners. At this time, the outdoor ambient temperature T out is detected to be 50 ° C, and the internal unit valve is operated at the original opening degree P 0 of 190 for 1 min. After the machine valve runs at the original opening P 0 for 1 min, the inner machine valve starts to adjust automatically;
  • Step S2 when the operation in step S1 is completed, the actual exhaust gas temperature T 1 is detected to be 90 ° C;
  • Step S3 compare the actual exhaust temperature T 1 of step S2 with the standard exhaust temperature T 0 of step S1, when T 1 ⁇ T 0 , the opening degree of the internal engine valve will remain unchanged during the next startup, that is, the next startup
  • the timing valve will operate with 190 as the original opening.
  • Embodiment 1 is an application example of Embodiment 1, specifically as follows:
  • a method for controlling a valve in a multi-line air conditioning system includes the following steps:
  • Step S1 Obtain a standard exhaust temperature T 0 of 105 ° C and start an indoor air conditioner.
  • the outdoor ambient temperature T out is detected at 52 ° C, and the internal unit valve is operated at the original opening degree P 0 of 100 for 3 minutes, that is, the internal After the engine valve is operated at the original opening P 0 for 3 minutes, the internal engine valve starts to adjust automatically;
  • Step S2 when the operation in step S1 is completed, the actual exhaust gas temperature T 1 is detected to be 110 ° C;
  • step S3 protection shutdown occurs after 10 minutes of continuous operation.
  • the opening degree P of the internal engine valve is 200
  • the actual exhaust gas temperature T 1 in step S2 is compared with the standard exhaust gas temperature T 0 in step S1, and it is found that T 1 >
  • the initial opening P 12 of the internal engine valve is fitted and corrected at the next start-up to increase the opening of the internal engine valve at the next start-up, that is, by calculating the initial opening of the internal engine valve P 12
  • K 1 K * (T out -A) / (120-T 1 ) calculation, where K can be selected as 5, to obtain the internal machine when the next boot
  • This embodiment provides an air conditioner, including a non-transitory computer-readable storage medium, where the storage medium stores an executable program, and when the executable program is executed and executed, the above method is implemented.
  • the opening degree of the internal valve of the air conditioner is accurately corrected and controlled to avoid that the exhaust temperature is too high during the internal valve initialization of the next start-up, resulting in insufficient action of the subsequent internal valve Fast, the exhaust temperature rises too fast, resulting in protection shutdown; if protection shutdown occurs, through the exhaust temperature and outdoor temperature in the initialization process, the initial opening of the internal valve of the air conditioner is accurately corrected and controlled to reduce The probability of secondary exhaust protection shutdown, the system can start normal operation.

Abstract

一种多联机空调系统内机阀的控制方法,所述方法包括获取标准排气温度T0,启动空调器,检测室外环境温度Tout,内机阀以原始化开度P0运行;当所述运行结束后,检测实际排气温度T1;将所述实际排气温度T1与所述标准排气温度T0比较,当T1≥T0时,对下次开机时所述内机阀的初始化开度P1拟合修正,增大下次开机时所述内机阀的开度;当T1<T0时,下次开机时所述内机阀的开度维持不变。所述方法通过排气温度与室外温度,对内机阀初始化的开度进行修正控制,避免下次开机内机阀初始化过程中排气温度过高,导致出现保护停机现象;且单机启动时如果出现保护停机后,也可对内机阀初始化的开度进行修正控制,降低下次停机的几率。

Description

多联机空调系统内机阀的控制方法
本申请要求于2018年11月6日提交的中国专利申请第201811312349.3的优先权,该中国专利申请的全文通过引用的方式结合于此以作为本申请的一部分。
技术领域
本发明公开实施例涉及一种多联机空调系统内机阀的控制方法。
背景技术
目前随着对空调能效及舒适性要求的提高,因电子膨胀阀可以根据空调的实际负荷变动情况实现变流量节流,达到提高空调能效及舒适性的要求,因此,越来越多的厂家青睐采用电子膨胀阀来节流。目前采用电子膨胀阀节流的多联机空调系统高温工况下,制冷开启后电子膨胀阀的初始开度是固定的,如果外机存在脏堵、冷媒不足或安装环境恶劣,内机电子膨胀阀初始化过程中极易出现频繁保护停机,且一旦停机后下次无法正常启动,影响用户使用效果。
发明内容
有鉴于此,本公开实施例提出一种多联机空调系统内机阀的控制方法,以解决已知技术中由于外机存在脏堵、冷媒不足或安装环境恶劣,而使内机阀初始化过程中极易出现频繁保护停机的技术问题。
为达到上述目的,本公开的技术方案是这样实现的:
一种多联机空调系统内机阀的控制方法,其包括以下步骤:
步骤S1,获取标准排气温度T 0,启动空调器,检测室外环境温度T out,若T out>A,内机阀以原始化开度P 0运行;
步骤S2,当步骤S1中所述内阀机以原始化开度P 0运行预定时间后结束,检测实际排气温度T 1
步骤S3,将步骤S2所述实际排气温度T 1与步骤S1所述标准排气温度 T 0进行比较,当T 1≥T 0时,对下次开机时所述内机阀的初始化开度P 1拟合修正,增大下次开机时所述内机阀的开度;当T 1<T 0时,下次开机时所述内机阀的开度维持不变。
进一步的,步骤S3中所述当T 1≥T 0时,对下次开机时所述内机阀的初始化开度P 1拟合修正,包括:
步骤S31,当T 1≥T 0时所述空调器正常工作时,对下次开机时所述内机阀的初始化开度P 11拟合修正;
步骤S32,当T 1≥T 0时所述空调器出现保护停机时,记录停机时所述内机阀的开度P,对下次开机时所述内机阀的初始化开度P 12拟合修正。
进一步的,步骤S31中所述内机阀的初始化开度P 11拟合修正的计算公式为P 11=P 0+K(T out-A),其中5≤K≤20,A为标准室外环境温度。
进一步的,步骤S31中所述空调器包括多个室内机,且至少一个所述室内机处于启动状态。
进一步的,步骤S32中所述内机阀的初始化开度P 12拟合修正的计算公式为P 12=P 0+0.4K 1(P-P 0),K 1=K*(T out-A)/(120-T 1),其中5≤K≤20,A为标准室外环境温度。
进一步的,步骤S32中所述空调器包括多个室内机,且一个所述室内机处于启动后停机状态。
进一步的,步骤S1中所述标准排气温度T 0为100℃≤T 0≤110℃。
进一步的,步骤S1中所述原始化开度P 0为所述空调器启动时系统默认的内机阀开度。
进一步的,步骤S2中所述预定时间为1-3min。
相对于已知技术,本公开所述的多联机空调系统内机阀的控制方法具有以下优势:
(1)通过初始化过程中排气温度与室外温度,对内机阀初始化的开度进行精确的修正控制,避免下次开机内机阀初始化过程中排气温度过高,导致后续内机阀动作不够快,排气温度上升过快,导致出现保护停机现象;
(2)如果出现保护停机后,通过初始化过程中排气温度与室外温度,对内机阀初始化的开度进行精确的修正控制,降低下次排气保护停机的几率,系统能够正常启动运行。
本公开的另一技术方案在于提供一种空调器,包括非临时性计算机可读存储介质,所述存储介质存储有可执行程序,所述可执行程序被执行运行时,实现上述的方法。
相对于已知技术,本公开所述的空调器包括非临时性计算机可读存储介质,所述存储介质存储有可执行程序,所述可执行程序被执行运行时,实现上述的方法,并与所述的多联机空调系统内机阀的控制方法具有相同的优势,在此不再赘述。
附图说明
构成本公开的一部分的附图用来提供对本公开的进一步理解,本发明的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1为本发明实施例所述的多联机空调系统内机阀的控制方法流程图。
具体实施方式
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
下面将参考附图并结合实施例来详细说明本公开。
实施例1
如图1,本实施例提供一种多联机空调系统内机阀的控制方法,其包括以下步骤:
步骤S1,获取标准排气温度T 0,启动空调器,检测室外环境温度T out,若T out>A,内机阀以原始化开度P 0运行;
步骤S2,当步骤S1中运行结束后,检测实际排气温度T 1
步骤S3,将步骤S2实际排气温度T 1与步骤S1标准排气温度T 0进行比较,当T 1≥T 0时,对下次开机时内机阀的初始化开度P 1拟合修正,增大所述内机阀的开度增大下次开机时所述内机阀的开度;当T 1<T 0时,下次开机时内机阀的开度维持不变。
其中步骤S1中标准排气温度T 0为100℃≤T 0≤110℃,原始化开度P 0为所述空调器启动时系统默认的内机阀开度,且步骤S1中内机阀以原始化 开度P 0运行的时间为1-3min,本实施例中可选为2min,即内机阀以原始化开度P 0运行2min后,内机阀开始进行自动调节。
步骤S31,当T 1≥T 0空调器正常工作时,对下次开机时所述内机阀的初始化开度P 11拟合修正,所述空调器包括多个室内机,此时多联机空调器中至少有一个室内机处于开启状态,即可以为单机启动,也可以为多机同时启动,此时内机阀的初始化开度P 11拟合修正的计算公式为P 11=P 0+K(T out-A),其中5≤K≤20,45℃≤A≤50℃。在高温工况下,通过初始化过程中排气温度与室外温度,对内机阀初始化的开度进行精确的修正控制,避免下次开机内机阀初始化过程中排气温度过高,导致后续内机阀动作不够快,排气温度上升过快,导致出现保护停机现象。
步骤S32,多联机空调器中有且仅有一个室内机处于开启状态,即为单机启动,当T 1≥T 0时所述空调器出现保护停机时,记录停机时所述内机阀的开度P,对下次开机时所述内机阀的初始化开度P 12拟合修正,内机阀的初始化开度P 12拟合修正的计算公式为P 12=P 0+0.4K 1(P-P 0),K 1=K*(T out-A)/(120-T 1),其中5≤K≤20,45℃≤A≤50℃。此计算公式的原理在于,如果第一次开度进行修正后,运行一段实现出现排气过高停机,说明之前初始开度修正后,排气温度还是很高,内机阀调节还是不够及时,故加大修正,K 1根据室外环境温度T out和初始化开度结束后排气温度T 1进行修正,也就是说环境温度T out越高及初始化开度退出排气温度越高,K 1修正的越大,因此,如果出现保护停机后,能够根据排气温度和室外温度进行拟合修正初始开度,降低下次排气保护停机的几率,系统能够正常启动运行。
因此,本实施例通过初始化过程中排气温度与室外温度,对内机阀初始化的开度进行精确的修正控制,避免下次开机内机阀初始化过程中排气温度过高,导致后续内机阀动作不够快,排气温度上升过快,导致出现保护停机现象;且单机启动时如果出现保护停机后,也可同样通过初始化过程中排气温度与室外温度,对内机阀初始化的开度进行精确的修正控制,降低下次排气保护停机的几率,使空调系统能够正常启动运行。
实施例2
本实施例为实施例1的应用实例,具体如下:
本实施例中假定环境温度T out>48℃,本实施例一种多联机空调系统内机 阀的控制方法,其包括以下步骤:
步骤S1,获取标准排气温度T 0为105℃,启动两台室内空调器,此时检测室外环境温度T out为55℃,内机阀以原始化开度P 0为160运行2min,即内机阀以原始化开度P 0运行2min后,内机阀开始进行自动调节;
步骤S2,当步骤S1中运行结束后,检测实际排气温度T 1为120℃;
步骤S3,将步骤S2实际排气温度T 1与步骤S1标准排气温度T 0进行比较,发现T 1>T 0时,对下次开机时内机阀的初始化开度P 11拟合修正,增大下次开机时所述内机阀的开度,即通过内机阀的初始化开度P 11的计算公式为P 11=P 0+K(T out-48)计算,其中K可以选为20,获得下次开机时内机阀的初始化开度P 11=160+20*(55-48)=300,则下次开机时内机阀将以300作为原始化开度运行,因此,本实施例通过在高温工况下,通过初始化过程中排气温度与室外温度,对内机阀初始化的开度进行精确的修正控制,增大所述内机阀的开度,使其排气温度有所下降,避免下次开机内机阀初始化过程中排气温度过高,导致后续内机阀动作不够快,排气温度上升过快,导致出现保护停机现象。
实施例3
本实施例为实施例1的应用实例,具体如下:
本实施例中假定环境温度T out>45℃,本实施例一种多联机空调系统内机阀的控制方法,其包括以下步骤:
步骤S1,获取标准排气温度T 0为100℃,启动两台室内空调器,此时检测室外环境温度T out为50℃,内机阀以原始化开度P 0为190运行1min,即内机阀以原始化开度P 0运行1min后,内机阀开始进行自动调节;
步骤S2,当步骤S1中运行结束后,检测实际排气温度T 1为90℃;
步骤S3,将步骤S2实际排气温度T 1与步骤S1标准排气温度T 0进行比较,T 1<T 0时,则下次开机时内机阀的开度维持不变,即下次开机时内机阀将以190作为原始化开度运行。
实施例4
本实施例为实施例1的应用实例,具体如下:
本实施例中假定环境温度T out>48℃,本实施例一种多联机空调系统内机阀的控制方法,其包括以下步骤:
步骤S1,获取标准排气温度T 0为105℃,启动一台室内空调器,此时检测室外环境温度T out为52℃,内机阀以原始化开度P 0为100运行3min,即内机阀以原始化开度P 0运行3min后,内机阀开始进行自动调节;
步骤S2,当步骤S1中运行结束后,检测实际排气温度T 1为110℃;
步骤S3,继续运行10min后出现保护停机,此时所述内机阀的开度P为200,将步骤S2实际排气温度T 1与步骤S1标准排气温度T 0进行比较,发现T 1>T 0时,对下次开机时内机阀的初始化开度P 12拟合修正,增大下次开机时所述内机阀的开度,即通过内机阀的初始化开度P 12的计算公式为P 12=P 0+0.4K 1(P-P 0),K 1=K*(T out-A)/(120-T 1)计算,其中K可选为5,获得下次开机时内机阀的初始化开度P 12=100+0.4*5*(52-48)/(120-110)*(200-100)=180,则下次开机时内机阀将以180作为原始化开度运行,因此,本实施例单机启动时出现保护停机后,也可同样通过初始化过程中排气温度与室外温度,对内机阀初始化的开度进行精确的修正控制,降低下次排气保护停机的几率,使空调系统能够正常启动运行。
实施例5
本实施例提提供一种空调器,包括非临时性计算机可读存储介质,所述存储介质存储有可执行程序,所述可执行程序被执行运行时,实现上述的方法。通过初始化过程中排气温度与室外温度,对空调器内机阀初始化的开度进行精确的修正控制,避免下次开机内机阀初始化过程中排气温度过高,导致后续内机阀动作不够快,排气温度上升过快,导致出现保护停机现象;如果出现保护停机后,通过初始化过程中排气温度与室外温度,对空调器内机阀初始化的开度进行精确的修正控制,降低下次排气保护停机的几率,系统能够正常启动运行。
以上所述仅为本发明的一些实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (10)

  1. 一种多联机空调系统内机阀的控制方法,其特征在于,其包括以下步骤:
    步骤S1,获取标准排气温度T 0,启动空调器,检测室外环境温度T out,若T out>A,内机阀以原始化开度P 0运行;
    步骤S2,当步骤S1中所述内阀机以原始化开度P 0运行预定时间后结束,检测实际排气温度T 1
    步骤S3,将步骤S2所述实际排气温度T 1与步骤S1所述标准排气温度T 0进行比较,当T 1≥T 0时,对下次开机时所述内机阀的初始化开度P 1拟合修正,增大下次开机时所述内机阀的开度;当T 1<T 0时,下次开机时所述内机阀的开度维持不变。
  2. 根据权利要求2所述的多联机空调系统内机阀的控制方法,其特征在于,步骤S3中所述当T 1≥T 0时,对下次开机时所述内机阀的初始化开度P 1拟合修正,包括:
    步骤S31,当T 1≥T 0时所述空调器正常工作时,对下次开机时所述内机阀的初始化开度P 11拟合修正;
    步骤S32,当T 1≥T 0时所述空调器出现保护停机时,记录停机时所述内机阀的开度P,对下次开机时所述内机阀的初始化开度P 12拟合修正。
  3. 根据权利要求2所述的多联机空调系统内机阀的控制方法,其特征在于,步骤S31中所述内机阀的初始化开度P 11拟合修正的计算公式为P 11=P 0+K(T out-A),其中5≤K≤20,A为标准室外环境温度。
  4. 根据权利要求3所述的多联机空调系统内机阀的控制方法,其特征在于,步骤S31中所述空调器包括多个室内机,且至少一个所述室内机处于启动状态。
  5. 根据权利要求2所述的多联机空调系统内机阀的控制方法,其特征在于,步骤S32中所述内机阀的初始化开度P 12拟合修正的计算公式为P 12=P 0+0.4K 1(P-P 0),K 1=K*(T out-A)/(120-T 1),其中5≤K≤20,A为标准室外环境温度。
  6. 根据权利要求5所述的多联机空调系统内机阀的控制方法,其特征在 于,步骤S32中所述空调器包括多个室内机,且一个所述室内机处于启动后停机状态。
  7. 根据权利要求1所述的多联机空调系统内机阀的控制方法,其特征在于,步骤S1中所述标准排气温度T 0为100℃≤T0≤110℃。
  8. 根据权利要求7所述的多联机空调系统内机阀的控制方法,其特征在于,步骤S1中所述原始化开度P 0为所述空调器启动时系统默认的内机阀开度。
  9. 根据权利要求8所述的多联机空调系统内机阀的控制方法,其特征在于,步骤S2中所述预定时间为1-3min。
  10. 一种空调器,包括非临时性计算机可读存储介质,所述存储介质存储有可执行程序,所述可执行程序被执行时,实现如权利要求1-9中任意一项所述的方法。
PCT/CN2019/115719 2018-11-06 2019-11-05 多联机空调系统内机阀的控制方法 WO2020094009A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811312349.3 2018-11-06
CN201811312349.3A CN109442699B (zh) 2018-11-06 2018-11-06 一种多联机空调系统内机阀的控制方法

Publications (1)

Publication Number Publication Date
WO2020094009A1 true WO2020094009A1 (zh) 2020-05-14

Family

ID=65551874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115719 WO2020094009A1 (zh) 2018-11-06 2019-11-05 多联机空调系统内机阀的控制方法

Country Status (2)

Country Link
CN (1) CN109442699B (zh)
WO (1) WO2020094009A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109442699B (zh) * 2018-11-06 2019-08-30 宁波奥克斯电气股份有限公司 一种多联机空调系统内机阀的控制方法
CN109945435B (zh) * 2019-03-25 2020-10-27 宁波奥克斯电气股份有限公司 一种多联机室内机关机控制方法及多联机装置
CN111854032B (zh) * 2020-07-13 2021-09-21 珠海格力电器股份有限公司 电子膨胀阀的控制方法、空调的控制方法和空调器
CN113465101B (zh) * 2021-05-31 2022-09-27 宁波奥克斯电气股份有限公司 一种空调启动控制方法、装置及空调器
CN115200195B (zh) * 2022-08-26 2023-07-18 宁波奥克斯电气股份有限公司 一种初始开度修正方法、装置及空调器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002195666A (ja) * 2000-12-21 2002-07-10 Fujitsu General Ltd 空気調和機の制御方法
CN1502950A (zh) * 2002-11-22 2004-06-09 Lg电子株式会社 空调器以及控制空调器的电子膨胀阀的方法
CN1808023A (zh) * 2005-01-20 2006-07-26 松下电器产业株式会社 冷冻循环系统及其控制方法
WO2015006925A1 (zh) * 2013-07-16 2015-01-22 广东美芝制冷设备有限公司 补气增焓空调系统及其控制方法
CN104896669A (zh) * 2015-06-04 2015-09-09 广东美的制冷设备有限公司 空调器及其的保护控制方法
CN105299974A (zh) * 2015-11-02 2016-02-03 青岛海尔空调器有限总公司 一种空调电子膨胀阀的控制方法
CN105352239A (zh) * 2015-11-02 2016-02-24 青岛海尔空调器有限总公司 空调电子膨胀阀的控制方法
CN107642873A (zh) * 2017-10-31 2018-01-30 海信(山东)空调有限公司 一种空调及其启动时电子膨胀阀开度控制方法
CN109442699A (zh) * 2018-11-06 2019-03-08 宁波奥克斯电气股份有限公司 一种多联机空调系统内机阀的控制方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6733424B2 (ja) * 2016-08-25 2020-07-29 株式会社富士通ゼネラル 空気調和装置
CN108679789B (zh) * 2018-03-30 2021-01-29 青岛海尔空调器有限总公司 一种空调系统的控制方法及装置
CN108731211B (zh) * 2018-04-25 2020-12-29 武汉海尔电器股份有限公司 空调器及其控制方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002195666A (ja) * 2000-12-21 2002-07-10 Fujitsu General Ltd 空気調和機の制御方法
CN1502950A (zh) * 2002-11-22 2004-06-09 Lg电子株式会社 空调器以及控制空调器的电子膨胀阀的方法
CN1808023A (zh) * 2005-01-20 2006-07-26 松下电器产业株式会社 冷冻循环系统及其控制方法
WO2015006925A1 (zh) * 2013-07-16 2015-01-22 广东美芝制冷设备有限公司 补气增焓空调系统及其控制方法
CN104896669A (zh) * 2015-06-04 2015-09-09 广东美的制冷设备有限公司 空调器及其的保护控制方法
CN105299974A (zh) * 2015-11-02 2016-02-03 青岛海尔空调器有限总公司 一种空调电子膨胀阀的控制方法
CN105352239A (zh) * 2015-11-02 2016-02-24 青岛海尔空调器有限总公司 空调电子膨胀阀的控制方法
CN107642873A (zh) * 2017-10-31 2018-01-30 海信(山东)空调有限公司 一种空调及其启动时电子膨胀阀开度控制方法
CN109442699A (zh) * 2018-11-06 2019-03-08 宁波奥克斯电气股份有限公司 一种多联机空调系统内机阀的控制方法

Also Published As

Publication number Publication date
CN109442699B (zh) 2019-08-30
CN109442699A (zh) 2019-03-08

Similar Documents

Publication Publication Date Title
WO2020094009A1 (zh) 多联机空调系统内机阀的控制方法
CN110513819B (zh) 一种空调控制方法、空调以及存储介质
CN105627524B (zh) 空调器防冻结控制方法及空调器
WO2020062598A1 (zh) 水多联机组运行控制方法、装置、介质和水多联空调系统
CN111780333B (zh) 空调器的控制方法及装置、空调器设备
CN105222277B (zh) 一种变频空调室外机快速启动压缩机的控制方法及系统
WO2018040936A1 (zh) 热泵干衣设备控制方法
WO2020094007A1 (zh) 提升变频空调器制冷舒适性的控制方法、装置及空调器
WO2019104966A1 (zh) 多联式空调系统的噪音控制方法及控制器
CN109210699B (zh) 空调防冻结保护的控制方法
WO2021135679A1 (zh) 空调外风机的转速控制方法
CN103851847A (zh) 空调电子膨胀阀控制系统、控制方法及多联机空调室外机
WO2020103407A1 (zh) 多联机空调系统及其启动控制方法
CN109237743A (zh) 空调控制的方法、装置及计算机存储介质
CN107763792B (zh) 多联式空调机组控制方法
CN109539380B (zh) 一种热泵热水器压缩机频率控制方法
WO2018149417A1 (zh) 空调机组及其运行控制方法、装置、存储介质和处理器
CN111059724B (zh) 一种空调器制冷制热控制方法与空调器
CN110044005A (zh) 一种空调控制方法、装置及空调
CN105465956A (zh) 一种双缸变容空调器的控制方法
CN108800421A (zh) 空调的控制方法、装置及具有其的空调
CN113865059B (zh) 多联机空调器制热运行控制方法
CN111536652A (zh) 一种改善分体变频空调器运行的方法
CN113465101B (zh) 一种空调启动控制方法、装置及空调器
CN106288130B (zh) 空调室外机电机的控制方法以及空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19881460

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19881460

Country of ref document: EP

Kind code of ref document: A1