WO2020090844A1 - Tool shape measurement device and tool shape measurement method - Google Patents

Tool shape measurement device and tool shape measurement method Download PDF

Info

Publication number
WO2020090844A1
WO2020090844A1 PCT/JP2019/042460 JP2019042460W WO2020090844A1 WO 2020090844 A1 WO2020090844 A1 WO 2020090844A1 JP 2019042460 W JP2019042460 W JP 2019042460W WO 2020090844 A1 WO2020090844 A1 WO 2020090844A1
Authority
WO
WIPO (PCT)
Prior art keywords
tool
spindle
shape measuring
rotation angle
camera
Prior art date
Application number
PCT/JP2019/042460
Other languages
French (fr)
Japanese (ja)
Inventor
勇 室伏
Original Assignee
東芝機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝機械株式会社 filed Critical 東芝機械株式会社
Priority to KR1020217016306A priority Critical patent/KR102579691B1/en
Priority to CN201980070989.4A priority patent/CN112969900B/en
Priority to JP2020553953A priority patent/JP7132349B2/en
Publication of WO2020090844A1 publication Critical patent/WO2020090844A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/22Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/24Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/022Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by means of tv-camera scanning
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B7/00Control of exposure by setting shutters, diaphragms or filters, separately or conjointly
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/66Remote control of cameras or camera parts, e.g. by remote control devices
    • H04N23/661Transmitting camera control signals through networks, e.g. control via the Internet

Definitions

  • the present invention relates to a tool shape measuring device and a tool shape measuring method for measuring a tool shape such as a tool length, a tool diameter, and a shape of a tool blade.
  • the tool shape measuring device is used, for example, in measuring the shape of an end mill of a milling machine.
  • Patent Document 1 can measure the shape of the tool, but does not describe the rotating tool.
  • the machining point of the rotating tool changes due to thermal displacement. I want to accurately measure the position of a machining point during rotation to correct thermal displacement. Further, if the tool shape can be measured even during rotation at the rotation speed used for machining, it can be used for tool replacement and tool wear correction by observing the state of chipping or wear.
  • the present invention has been made in consideration of such circumstances, and provides a tool shape measuring device and a tool shape measuring method capable of measuring the shape of a tool even during rotation.
  • the present invention has the following features.
  • the present invention it is possible to read the rotation angle of the main shaft for attaching and rotating the tool from the angle sensor and photograph the shape of the tool at the specified angle.
  • a tool shape measuring device is a tool shape measuring device that measures the shape of a tool installed on a spindle of a machine tool, and a camera for photographing the tool and a rotation angle of the spindle. It has a spindle rotation angle sensor for detecting, and a control device for outputting a photographing command to the camera according to the rotation angle of the spindle detected by the spindle rotation angle sensor.
  • the spindle rotation angle sensor is configured to also detect the rotation speed of the spindle, and the control device outputs a shooting command to the camera. Is changed according to the number of rotations of the main shaft.
  • a tool shape measuring device includes a light emitting device, and is configured such that the light emitting device emits light toward the tool according to an output of a photographing command to the camera by the control device. There is.
  • the tool shape measuring device is configured such that the light emitting device emits light within the time when the shutter of the camera is opened by the output of the photographing command to the camera by the control device. ing.
  • the camera is installed on one side and the light emitting device is installed on the other side with the tool in between, and the light emitting device is the tool.
  • the tool is configured to shoot an image of the tool by emitting light toward the tool, and the light emitting device is configured to emit parallel light toward the tool.
  • the spindle rotation angle sensor outputs a continuous pulse signal when the spindle is rotating, and a pulse of one cycle is generated for each rotation of the spindle. It is configured to emit a signal.
  • a first output as an output of the imaging command by the control device, and a plurality of main shafts are rotated by a predetermined angle by the first output. Is configured to obtain an image of.
  • the tool shape measuring device there is further a second output as an output of the photographing command by the control device, and a tool rotation angle input unit for inputting a rotation angle of the tool is provided, and the control is performed.
  • the device is configured to output the second output in order to capture an image of the tool at the rotation angle input by the tool rotation angle input unit.
  • a tool shape measuring method is a tool shape measuring method for measuring a shape of a tool installed on a spindle of a machine tool, and a spindle rotation angle detecting step of detecting a rotation angle of the spindle. And a photographing step of photographing the tool according to the rotation angle of the spindle detected in the spindle rotation angle detection step.
  • the spindle rotation angle detecting step is a step of detecting the rotation number of the spindle, and in the photographing step, the timing of the photographing is set to the rotation number of the spindle. It changes according to.
  • the light emitting device in the photographing step, emits light toward the tool during the photographing.
  • the light emitting device in the photographing step, emits light within the time when the shutter of the camera is open.
  • a camera for taking an image in the imaging step is installed on one side with the tool in between, and the light emitting device is installed on the other side.
  • the light emitting device emits light toward the tool, so that the camera captures an image of the tool in the capturing step, and the light emitting device emits parallel light toward the tool. ing.
  • a continuous pulse signal is output while the spindle is rotating, and one cycle is generated for each rotation of the spindle.
  • the pulse signal is output.
  • the first step captures a plurality of images in a state in which the spindle is rotated by a predetermined angle. It is a process.
  • the photographing step further includes a second step, and the second step includes a predetermined rotation angle after the photographing in the first step. This is a step of photographing only the image of the tool which is set to.
  • the shape of a rotating tool can be measured, and the shape of the tool including thermal displacement during machining can be measured more accurately. If the machining point of the tool is corrected based on the measured shape of the tool, more accurate machining becomes possible.
  • FIG. 1 is a schematic diagram showing a device configuration (device according to the first embodiment) of an example of the present invention.
  • FIG. 2 is a diagram when the tool shape is measured in the example of the present invention (the apparatus according to the first embodiment).
  • FIG. 3 is a cross-sectional view of a two-blade tool as an example of a tool measured by the tool shape measuring device according to the first embodiment of the present invention.
  • FIG. 4 is a transverse cross-sectional view of a three-blade tool as another example of the tool measured by the tool shape measuring device according to the first embodiment of the present invention.
  • FIG. 5A is a diagram showing a schematic configuration of a spindle head of a machine tool used in the second embodiment of the present invention, and FIG.
  • FIG. 5B is a schematic VB arrow view in FIG. 5A.
  • FIG. 5C is a diagram showing a continuous pulse signal obtained by the spindle rotation angle sensor.
  • FIG. 6 is a view showing a tool (rotating tool) measured by the tool shape measuring apparatus according to the second embodiment of the present invention, in which the tool, the camera, and the light emitting device are arranged on the rotation center axis of the tool. It is the figure seen in the extending direction.
  • FIG. 7 is a diagram for explaining the positional relationship between the light emitting device, the tool, and the camera in the tool shape measuring device according to the second embodiment of the present invention. It is the figure seen in the extending direction.
  • FIG. 6 is a view showing a tool (rotating tool) measured by the tool shape measuring apparatus according to the second embodiment of the present invention, in which the tool, the camera, and the light emitting device are arranged on the rotation center axis of the tool. It is the figure seen in the extending direction.
  • FIG. 7 is
  • FIG. 8A is an image of the tool obtained by the tool shape measuring device according to the comparative example, and FIG. 8B is obtained by the tool shape measuring device according to the second embodiment of the present invention. It is an image of a tool.
  • 9A is a diagram showing a ball end mill which is an example of a tool
  • FIG. 9B is a diagram showing a square end mill which is an example of a tool
  • FIG. 9C is an example of a tool.
  • FIG.9 (d) is a figure which shows the shape error in a ball end mill.
  • FIG. 10A and FIG. 10B are views for explaining the photographing time lag in the tool shape measuring device according to the second embodiment of the present invention.
  • FIG. 11A is a diagram showing a cylindrical dummy tool used in the tool shape measuring device according to the second embodiment of the present invention
  • FIG. 11B is a side view of the cylindrical dummy tool.
  • the machine tool 2 shown in FIG. 1 has a table 16 and a gate-shaped column 10 on the upper surface of a bed 18, and a spindle head 4 is supported on a cross rail 8 of the column 10 via a saddle 6. A spindle 11 is supported on the spindle head 4.
  • a predetermined horizontal direction is defined as the X direction (X axis direction)
  • another predetermined horizontal direction orthogonal to the X direction is defined as the Y direction (Y axis direction).
  • the vertical direction orthogonal to the X and Y directions is the Z direction (Z axis direction).
  • the table 16 is movable in the X-axis direction with respect to the bed 18.
  • the saddle 6 is movable in the Y-axis direction along the cross rail 8.
  • the spindle head 4 is movable in the Z axis direction with respect to the saddle 6. By moving these three axes, it is possible to move the tool 12 in three dimensions with respect to the work 14 placed on the table 16 for machining.
  • the tool shape measuring device 1 is installed at the end of the table 16.
  • the control device 20 is connected to the machine tool 2 and the tool shape measuring device 1, and can control the machine tool 2 and the tool shape measuring device 1.
  • FIG. 2 shows a diagram in which the tool shape measuring device 1 measures the shape of the tool 12.
  • the tool 12 is moved to the position shown in FIG. 2 by the three axes shown above, and the tool shape is measured.
  • the tool shape measuring device 1 includes a camera 22 and an illuminating device 24. As shown in FIG. 2, the tool 12 measures the tool shape while being positioned between the camera 22 and the illuminating device 24. Since an image is captured by shining light from the illumination device 24 from behind the tool 12, the shape of the tool 12 is captured as a shadow.
  • the camera 22 is equipped with a high-speed shutter, and it is possible to shoot still images while the tool 12 is rotating at several thousand rotations / minute. Further, a zoom lens may be attached to the camera 22 so that the control device 20 can control the enlargement ratio.
  • the main shaft 11 is provided with a rotation angle sensor (not shown), and the control device 20 can control the rotation speed, the rotation angle, and the like.
  • the lighting device 24 has a strobe function. If a strobe with a short light emission time of several ⁇ sec is used, it is possible to measure the shape even with the rotating tool 12.
  • the maximum rotation speed of the tool 12 can be set to about 120,000 rotations / minute.
  • FIG. 3 shows an example of the tool 12A used and shows a two-flute end mill.
  • work 14 side in the state attached to the machine tool 2 is shown.
  • FIG. 4 shows an example of the tool 12B used, and shows a three-blade end mill.
  • work 14 side in the state attached to the machine tool 2 is shown.
  • the tool reference angle indicates the angle at which the camera 22 can photograph the tool 12A from the direction indicated by the arrow 26A in FIG.
  • the angle indicated by the arrow 26A has the maximum distance from the position of the spindle rotation axis to the outer shape of the tool 12A in the direction orthogonal to the spindle rotation axis. The distance is measured by counting the number of pixels of the digital image, for example.
  • the tool reference angle is determined as follows.
  • the position of the arrow 26A indicates the direction of the camera 22 for photographing, but the spindle 11 is manually rotated so that the position close to the angle of the tool 12A capable of photographing from this position.
  • the image captured by the camera 22 can be confirmed on a monitor (not shown).
  • the tool 22A is rotated in the forward rotation direction and the reverse rotation direction by a predetermined angle, and at that time, a plurality of images are taken by the camera 22 at constant angles.
  • the angle of the spindle 11 at the position where the distance from the image to the outer shape of the tool 12A from the rotation axis of the spindle 11 is the tool reference angle.
  • the tool reference angle can be determined as follows. Since the tool 12A is a double-edged blade, the tool 12A is rotated at a low speed of 180 ° or more from an arbitrary position, and an image is captured at each predetermined angle. The angle of the spindle 11 at the position where the distance from the captured image to the outer shape of the tool 12A from the rotation axis of the spindle 11 is the longest is the tool reference angle.
  • the tool 12B shown in FIG. 4 has three blades, it suffices to rotate the main shaft 11 by 120 ° or more for shooting.
  • the position of the arrow 26B shown in FIG. For a tool that is not rotationally symmetric, the number of captured images is large, but the tool 12 is photographed each time the spindle 11 is rotated once, for example, every 1 °, and among the 360 images obtained by this photography. Select the required image from.
  • the information that the tool 12 to be used is a 2-flute or 3-flute may be input to the control device 20 by an input device (not shown), or may be stored as a database in a storage device in the control device 20. Good.
  • the machine tool 2 stops machining and moves the tool 12 to the tool length measuring position shown in FIG.
  • the tool 12 is moved and measured by the tool shape measuring device 1 without stopping the rotation of the spindle 11 and maintaining the rotation speed during processing. Therefore, an accurate tool shape can be measured while being affected by centrifugal force during rotation, and if the measured value is used for thermal displacement correction and tool wear correction, it can be corrected in a state closer to the tool 12 being machined. Can be processed with high precision.
  • a measurement command is output from the control device 20 to the tool shape measuring device 1 when the spindle 11 reaches the previously determined tool reference angle, and a tool shape image is captured. ..
  • the shapes of all the blades can be photographed by photographing the tool reference angle and the tool reference angle + 180 °. Since the tool 12B has three blades, all the shapes of the blades can be photographed by photographing at the tool reference angle, the tool reference angle + 120 °, and the tool reference angle + 240 °.
  • the shooting may be one blade rotation or multiple rotations. Even in the case of a multi-blade tool, it is possible to manage all the blades by photographing the shape of each blade one by one.
  • the controller 20 issues a shooting command after the tool reference angle and the angle of the spindle 11 match, the actual shooting timing may be delayed if the spindle 11 rotates at high speed.
  • the control device may output the photographing command shortly before the tool reference angle and the angle sensor of the spindle 11 match.
  • the angle at which the command should be output should be measured in advance by experiments. It is also possible to carry out an experiment at a plurality of rotation speeds, obtain this angle and make a table, and obtain an appropriate angle from this table according to the rotation speed.
  • an illumination device 24 having a flash function (strobe function) is used, and the value of the spindle 11 rotation sensor and the value of the photographing angle of the tool 12 are calculated as follows. To correspond. The tool 12 is rotated, and when the value of a certain rotation sensor is reached, a shooting command is output from the control device 20 to the tool shape measuring device 1 to shoot an image.
  • a flash function strobe function
  • the predetermined angle is, for example, 5 °.
  • the shutter speed of the camera 22 cannot catch up, and it is impossible to capture an image shifted by 5 ° during one rotation of the tool 12. For this reason, an image of an angle rotated by 10 ° and 5 ° from the previous image is captured.
  • the lighting device 24 can set the time to delay the timing of emitting light in response to a command in ⁇ sec unit. Therefore, it is possible to accurately capture an image such as 10 rotations and a deviation of 5 °. Such images are taken by a predetermined rotation angle of the tool 12, and the values of the spindle 11 rotation sensor and the imaging angle values of the tool 12 are associated from these images.
  • the delay time when the lighting device 24 emits light is appropriately set, and the shooting command is measured from the control device 20 at an appropriate timing.
  • an image of the desired degree of angular rotation of the tool 12 can be taken.
  • a correction value is determined from that value and set in the control device 20 as the correction value. If the distance from the rotation axis of the spindle 11 to the outer shape of the tool 12 is remarkably fluctuated by the blade and is rotating, it is determined that the tool 12 has a large amount of rotational runout, and an alarm is displayed on the monitor of the control device 20. Good. Although there is no significant change depending on the blade, if only one blade has a short distance, it may be determined that the blade is missing and an alarm may be generated.
  • the spindle 11 can be rotated at the number of revolutions during machining to measure the shape of the tool 12 in the same state as during machining. Can be measured. Further, since the image can be taken in synchronization with the value of the rotation angle sensor of the spindle 11, only the image of the required rotation angle state of the tool 12 can be taken, and the capacity of the recording device can be reduced.
  • a machine tool 2 (see FIG. 1) used in the second embodiment of the present invention is the same as the machine tool 2 used in the first embodiment of the present invention, and includes a spindle head 4 and a controller 20. And so on.
  • the control device 20 is configured to include a CPU and a memory (not shown).
  • the tool shape measuring apparatus 1a according to the second embodiment of the present invention is also configured to be substantially the same as the tool shape measuring apparatus 1 according to the first embodiment of the present invention, and operates and is used in substantially the same manner. Is.
  • the tool 12 which is the measurement target of the tool shape measuring apparatus 1 or 1a according to the embodiment of the present invention, is used, for example, when forming the surface of the core or cavity of a mold by cutting.
  • the cutting process is carried out, for example, for final finishing of the surfaces of the core and the cavity of the mold, and the cutting process makes the surfaces of the core and the cavity of the mold look like mirror surfaces.
  • the tool 12 may be an end mill, for example.
  • the outer diameter of the end mill 12 is, for example, about 1 mm, and the rotation speed of the end mill 12 when cutting is about 60,000 rotations / minute.
  • the spindle head 4 is of a built-in motor type, and is configured to include a housing 31 and a spindle (spindle) 11.
  • the main shaft 11 is formed in a cylindrical shape, and is rotatably supported by the housing 31 by an air bearing.
  • Reference numeral C1 indicates the center axis of rotation of the main shaft 11.
  • a tool holding portion 33 is provided at one end portion (lower end portion in FIG. 5A) in the longitudinal direction of the main shaft 11 (extending direction of the rotation center axis C1; Z direction). Since the tool holding portion 33 is provided, the tool 12 can be attached to and detached from the spindle 11.
  • a rotor 37 of the motor 35 is integrally provided at the other end portion (upper end portion in FIG. 5A) in the longitudinal direction of the main shaft 11.
  • a stator 39 of the motor 35 is provided outside the rotor 37. The stator 39 is integrally provided in the housing 31 at a slight distance from the rotor 37.
  • the tool shape measuring device 1a is a device for measuring the shape of the tool 12 installed on the spindle 11 of the machine tool 2 in the same manner as the tool shape measuring device 1 according to the first embodiment of the present invention. As shown by, the camera 22 and the spindle rotation angle sensor (spindle rotation angle detection sensor) 41 and the control device 20 (see FIG. 1) are provided.
  • the camera 22 takes an image of the rotating tool 12 and obtains an image (still image) of the tool 12.
  • the camera 22 is, for example, a digital camera, and is adapted to capture an image of the tool 12 with a global shutter.
  • the shutter speed of the camera 22 (exposure time of the image sensor 75 of the camera 22 shown in FIG. 7) when photographing the tool 12 is such a short time that the image of the rotating tool 12 becomes a substantially still image. There is.
  • the spindle rotation angle sensor 41 detects the rotation angle of the spindle 11 (the tool 12 installed on the spindle 11). Further, the main spindle rotation angle sensor 41 outputs a continuous pulse signal (see FIG. 5C and FIG. 10) while the main spindle 11 is rotating, and a pulse of one cycle every one rotation of the main spindle 11. It is configured to emit a signal. Since the main shaft 11 rotates at a constant speed, the cycle of the continuous pulse signal has a constant value.
  • the spindle rotation angle sensor 41 will be described in more detail with reference to FIGS.
  • the spindle rotation angle sensor 41 includes, for example, a reflective photoelectric sensor 43 and a mark 45.
  • the photoelectric sensor 43 is provided integrally with the housing 31.
  • the mark 45 is integrally provided on the main shaft 11 over, for example, this half circumference (see the portion with the broken line in FIG. 5B). Then, when the main shaft 11 rotates, the photoelectric sensor 43 repeats the state in which the mark 45 is detected and the state in which it is not detected, and the photoelectric sensor 43 emits a continuous pulse signal as shown in FIG. 5C. Is becoming
  • the resolution of the rotation angle of the spindle 11 by the spindle rotation angle sensor 41 is extremely large, 180 °.
  • the controller 20 outputs a shooting command to the camera 22 according to the rotation angle of the spindle 11 detected by the spindle rotation angle sensor 41. For example, when the spindle rotation angle sensor 41 detects the mark 45, a shooting command is output.
  • the tool 12 is installed at a predetermined rotation angle with respect to the spindle 11. For example, when viewed in the extending direction (Z direction) of the rotation center axis C1, the angle (phase) of the end of the mark 45 (the end on the front side in the rotation direction of the main shaft 11) and the tip 47 of the cutting edge of the tool 12 (see FIG. 3). , FIG. 4 and FIG. 6).
  • the tip 47 of one cutting edge of the two-blade tool 12 is formed linearly, but is located on one plane, and the tip 47 of the other cutting edge of the two-blade tool 12 is also It is assumed to be located on the one plane.
  • the tip 47 of the cutting edge of the tool 12 formed in a linear shape does not need to be located exactly on one plane, and may be located on almost one plane.
  • the tip 47 of one cutting edge of the tool 12 may be located inside the sector with a central angle of about 1 ° to 5 °.
  • the rotation center axis C1 when viewed in the extending direction (Z direction) of the rotation center axis C1, the rotation center axis C1, the end of the mark 45, and the tip 47 of the cutting edge of the tool 12 exist on one straight line.
  • the tool 12 has a plurality of cutting edge tips 47 (two or three), but one tip 47 of the plurality of cutting edge tips 47, the rotation center axis C1, and the end of the mark 45 are one. It suffices if it exists on the straight line of.
  • the mark 45 may be provided at a portion other than the cutting edge of the tool 12 instead of the spindle 11, and the photoelectric sensor 43 may detect the mark 45 provided on the tool 12. Accordingly, when the tool 12 is installed on the spindle 11, it is not necessary to care about the installation angle of the tool 12, and the tool 12 can be easily installed on the spindle 11.
  • the rotation angle of the tool 12 installed on the spindle 11 may be detected by detecting the tip 47 of the cutting edge of the tool with a sensor such as a photoelectric sensor 43 or a proximity sensor without providing a mark. Good.
  • a sensor such as a photoelectric sensor 43 or a proximity sensor without providing a mark. Good.
  • the end mill 12 has two blades, a pulse signal of two cycles is issued every one rotation of the spindle 11, and if the end mill 12 has three blades, the spindle 11 makes one rotation. A pulse signal of 3 cycles is issued every time.
  • the control device 20 issues a command (imaging) that the rotating tool 12 should be imaged in accordance with the values of the rotation angles of the spindle 11 and the tool 12 detected by the spindle rotation angle sensor 41.
  • (Command; shooting command signal) is sent to the camera 22.
  • the camera 22, which has received the shooting command immediately shoots the rotating tool 12 and obtains a still image of the tool 12. Then, a still image of the maximum outer shape of the tool 12 at the tip 47 of the cutting edge of the rotating tool 12 is obtained.
  • the rotation angle of the spindle 11 and the tool 12 that can obtain a still image of this maximum outer shape is the maximum rotation angle.
  • the maximum rotation angle corresponds to the tool reference angle described in the first embodiment.
  • the ball end mill 12 will be described. As shown in FIG. 9A, the ball end mill 12 is provided with cutting edges (portions indicated by broken lines) on the outer circumference. It should be noted that in FIG. 9, the shape of the end mill 12 is drawn in a simplified manner, and therefore the display of cutting edges and grooves is omitted.
  • the ball end mill 12 is configured to include a cylindrical base end portion 49 and a hemispherical tip end portion 51 as shown in FIG. 9A.
  • the outer diameter of the proximal end portion 49 and the diameter of the distal end portion 51 match each other, and the distal end portion 51 is located at one end (lower end) in the extending direction (Z direction) of the central axis C1 of the proximal end portion 49. It has a sticky shape.
  • the center of the circular end surface of the hemispherical tip portion 51 is the center C2 of the tip portion 51
  • the center C2 is the ball. It exists on the central axis C1 of the end mill 12.
  • the cutting edge of the ball end mill 12 is formed on the outer periphery of the tip portion 51 and the end portion of the base end portion 49 (end portion on the tip end 51 side).
  • the ball end mill 12 is configured such that the other end portion of the base end portion 49 is engaged with the tool holding portion 33 and held by the tool holding portion 33.
  • the ball end mill 12 held by the tool holding portion 33 of the spindle 11 rotates with the spindle 11 (rotates around the central axis C1 as a rotation center) to cut the workpiece (workpiece) 14 with a cutting edge. It is designed to be processed.
  • the ball end mill 12 moves in the X direction, Y direction, and Z direction with respect to the workpiece 14. ing.
  • the point at which the ball end mill 12 is in contact with the workpiece 14 at the rearmost end in this moving direction is the processing point. become.
  • the processing point is formed at a part of the tip 47 of the cutting edge of the ball end mill 12.
  • the position of the cutting edge of the ball end mill 12 changes with the passage of time due to the rotation. For example, in the case of the two-blade ball end mill 12, one of the two cutting edges makes one revolution every time the ball end mill 12 makes one revolution.
  • a pair of cutting edges are formed so as to be point-symmetric with respect to the rotation center axis C1 (FIGS. 3 and 6). , See FIG. 7).
  • the distance between the tip 47 of the cutting edge and the rotation center axis C1 (for example, The distance in the X direction) changes.
  • the reference numeral La of FIG. 6A, the reference numeral Lb of FIG. 6B, the reference numeral Lc of FIG. 6C, and the reference numeral Ld of FIG. The distance in the direction.
  • the tool 12 is rotating counterclockwise as shown by the arrow in FIG. 6, and with time, the state shown in FIG. 6A, the state shown in FIG. The state shown in FIG. 6C, the state shown in FIG. 6D, the state shown in FIG.
  • the value of the distance between the tip 47 of one of the cutting edges of the ball end mill 12 and the rotation center axis C1 becomes maximum.
  • the values are Lb and Ld.
  • the still image of the ball end mill 12 at the maximum values Lb and Ld becomes the still image of the maximum outer shape of the ball end mill 12 at the tip 47 of one cutting edge of the rotating ball end mill 12.
  • the value of the distance between is the maximum value.
  • the still image of the ball end mill 12 when it reaches this maximum value is a still image of the maximum outer shape of the ball end mill 12 at the tip of the other cutting edge of the rotating ball end mill 12.
  • the outer shape (outer periphery; linear edge) of the cutting edge of the ball end mill 12 obtained by still images of these maximum outer shapes shows the tip 47 of the cutting edge of the ball end mill 12.
  • the tip 47 (47A) of one cutting edge and the tip 47 (47B) of the other cutting edge are slightly smaller than the rotation center axis C1. ) And are often asymmetric.
  • the still image of the maximum outer shape of the ball end mill 12 at the tip 47 of the cutting edge the one having the larger value of the distance from the rotation center axis C1 of the tip 47 of the pair of cutting edges is adopted. ..
  • the two-dot chain line in FIG. 9 (d) shows the tip 47A of one cutting edge arranged symmetrically with respect to the rotation center axis C1.
  • all the tips 47B of the other cutting edge are located inside the tip 47A of the one cutting edge, but a part of the tip 47B of the other cutting edge is It may be located outside the tip 47A.
  • the still image of the maximum outer shape of the ball end mill 12 at the tip 47 of the cutting edge is formed by a part of the tip 47A of one cutting edge and a part of the tip 47B of the other cutting edge.
  • the spindle rotation angle sensor 41 is also configured to detect the rotation speed (rotational angular velocity) of the spindle 11. As described above, the main shaft rotation angle sensor 41 is configured to emit a continuous pulse signal of, for example, a rectangular wave by the main shaft 11 rotating at a constant rotation speed.
  • the control device 20 receives the continuous pulse signal emitted from the spindle rotation angle sensor 41, and measures the time interval (the cycle of the continuous pulse signal) of the continuous pulse signal that is turned on / off per predetermined time. The number of rotations of the main shaft 11 is detected.
  • the spindle rotation angle sensor 41 is configured to detect the rotation speed of the spindle 11 by measuring the time interval of the continuous pulse signal in which the spindle rotation angle sensor 41 is turned on / off instead of the control device 20. May be.
  • the control device 20 changes the timing of outputting a shooting command to the camera 22 according to the rotation speed (rotational angular velocity) of the spindle 11.
  • the change (adjustment) in the timing of outputting the shooting command to the camera 22 by the control device 20 is performed in order to obtain a still image of the maximum outer shape of the tool 12 at the tip 47 of the cutting edge of the rotating tool 12. That is, it is performed to obtain a still image of the tool 12 having the maximum rotation angle.
  • shooting time lag delay time
  • delay time a slight delay from when the control device 20 outputs a shooting command to the camera 22 until the camera 22 actually shoots. For example, even if the control device 20 outputs a shooting command to the camera 22 when the tool 12 reaches a rotation angle at which a still image of the maximum outer shape of the tool 12 at the tip 47 of the cutting edge of the tool 12 can be obtained, In addition, it takes a short time until the camera 22 photographs the tool 12. The tool 12 slightly rotates during this short time, and it becomes impossible to obtain a still image of the maximum outer shape of the tool 12 at the tip 47 of the cutting edge of the tool 12.
  • FIG. 6 is a view of the two-blade tool 12 viewed in the Z direction.
  • the tool 12 is assumed to rotate 60,000 times in one minute in the direction indicated by the arrow. As described above, the time has passed from FIG. 6A to FIG. 6D.
  • State 1 shown in FIG. 6A shows a case where the delay is “0 ⁇ sec”
  • State 2 shown in FIG. 6B shows a case where the delay is “250 ⁇ sec”.
  • State 3 shown in (c) shows a case where the delay is "500 ⁇ sec”
  • state 4 shown in FIG. 6D shows a case where the delay is "750 ⁇ sec”.
  • the tool 12 having the rotation angle of the state 2 is shot.
  • FIG. 6 indicates a light emitting device 61 described later. Further, as described above, a still image of the maximum outer shape of the tool 12 can be obtained by photographing in the states 2 and 4 of FIGS. 6B and 6D.
  • the timing of outputting the shooting command to the camera 22 is adjusted using the shooting time lag (the shooting time lag time stored in the memory of the control device 20) that is obtained in advance. For example, a shooting command is output to the camera 22 at a time point that is a shooting time lag back from the time when the rotation angle at which the maximum outer shape of the tool 12 at the tip 47 of the cutting edge of the tool 12 can be obtained is reached. It has become.
  • the horizontal axis of FIG. 10 shows the passage of time t, and the vertical axis shows the ON / OFF state of the continuous pulse signal generated by the spindle rotation angle sensor 41.
  • the spindle 11 and the tool 12 are at the maximum rotation angle at time t1.
  • the spindle rotation angle sensor 41 starts emitting an ON signal at time t1, the ON signal stops at time t2, the spindle rotation angle sensor 41 starts emitting an ON signal at time t3, and the ON signal stops at time t4. It is like this.
  • the reference numeral TF shown in FIG. 10A is the time indicating one cycle in the continuous pulse signal.
  • Reference numeral TD in FIG. 10A indicates the time of the shooting time lag.
  • control device 20 when the control device 20 outputs a shooting command to the camera 22 at time td1 which is a time TD back from time t1, the time at which the camera 22 shoots the tool 12 becomes time t1, and a still image of the maximum outer shape of the tool 12 is obtained. Can be obtained.
  • control device 20 outputs a shooting command to the camera 22 at time td2, which is a time (TF-TD) that has elapsed from time t1, the time at which the camera 22 shoots the tool 12 becomes time t3. It is possible to obtain a still image of the maximum outer shape of the tool 12.
  • the time TD of the imaging time lag is shorter than the time TF indicating one cycle in the continuous pulse signal, but the time TD may be longer than the time TF.
  • the control device 20 outputs a shooting command to the camera 22 at time td2, which is a time (2 ⁇ TF-TD) elapsed after time t1.
  • time td2 is a time (2 ⁇ TF-TD) elapsed after time t1.
  • time t5 is a time at which the camera 22 captures the tool 12.
  • control device 20 may output a shooting command to the camera 22 at a time (not shown in FIG. 10B) that is traced back by time TD from time t1. Good. In this case, the time when the camera 22 photographs the tool 12 is time t3.
  • TF-TD and “2 ⁇ TF-TD” may be replaced with “n ⁇ TF-TD”.
  • n is an arbitrary natural number.
  • the control device 20 outputs a shooting command to the camera 22, and the camera 22 obtains a still image of the dummy tool in which the dummy tool is photographed.
  • the spindle rotation angle sensor 41 detects that the rotation angle of the mark of the dummy tool has become “0 °”, and the control device 20 causes the camera 22 to rotate.
  • a still image of the dummy tool is obtained by outputting a shooting command to the camera 22 and shooting the dummy tool by the camera 22. If the rotation angle of the mark shown in the obtained still image is "45 °", the time TD of the photographing time lag is 125 ⁇ sec, and if the rotation angle is "90 °". The time TD of the photographing time lag is 250 ⁇ sec.
  • time lag time TDa time lag time TDa ⁇ constant rotation speed nb / constant rotation speed na”.
  • the time lag time TDb when the spindle 11 is rotating at another constant rotation speed nb may be set as follows. However, na1 ⁇ na2 ⁇ na3 ... And TDa1> TDa2> TDa3.
  • the time lag time at this matching rotation speed is adopted as the time lag time TDb.
  • the spindle 11 may rotate 360 ° or more within the time lag TD.
  • the main spindle 11 is first rotated at a low rotational speed to find the time lag time TD, and then the rotational speed of the main spindle 11 is gradually increased to find the time lag time TD, the main spindle 11 is within the time lag time TD. Can be detected to have rotated by 360 ° or more.
  • the dummy tool shown in FIG. 11 may be adopted.
  • the dummy tool 63 shown in FIG. 11 is provided with a plurality of marks 67 (67A, 67B, 67C, 67D ”) On the side surface of a cylindrical dummy tool body 65.
  • the marks 67 are arranged at regular intervals in the circumferential direction of the cylindrical dummy tool main body 65 (the left-right direction in FIG. 11B).
  • the respective marks 67 (67A, 67B, 67C, 67D ...) Are arranged at regular intervals in the height direction of the cylindrical dummy tool body 65 (vertical direction in FIG. 11B). At the same time, the distance from the lower end in the Z direction gradually increases from the left to the right in FIG.
  • the spindle rotation angle sensor 41 emits a pulse signal for one cycle every time the spindle 11 makes one rotation, but instead of or in addition to the spindle rotation angle sensor 41, a rotary encoder (Fig. (Not shown) may be provided to detect the rotation angle of the spindle 11.
  • the resolution of the rotary encoder is sufficiently smaller than the resolution of the spindle rotation angle sensor 41, and is, for example, about 1 ° or about 0.1 ° to 5 °, or less.
  • the time lag caused by the control device 20 or the time lag caused by the control device 20 may be added to the time lag from when the control device 20 outputs the shooting command to the camera 22 to when the camera 22 shoots.
  • the first output and the second output may be listed as the output of the shooting command by the control device 20.
  • the first output is for obtaining a plurality of images (still images of a plurality of tools 12) in a state in which the spindle 11 is rotated by a predetermined angle (for example, 1 °).
  • the still images of the plurality of tools 12 are images corresponding to one rotation of the spindle 11.
  • the first image capturing (image capturing of the first group) is performed, and for example, 360 images for one rotation of the tool 12 can be captured by the camera 22.
  • the rotation angle of the spindle 11 that has a predetermined rotation angle is the reference angle (0 °)
  • an image of the tool 12 when rotated by 1 ° from the reference angle a tool when rotated by 2 ° from the reference angle 12 images
  • an image of the tool 12 when rotated from the reference angle by 3 °, and the like so that an image can be obtained on 360 sheets for one revolution of the tool 12.
  • the above-mentioned angle of 1 ° is an angle within which the error of the photographed image (the image obtained by photographing with the camera 22) with respect to the actual shape of the tool 12 falls within the allowable range.
  • the first image is an image in which the main axis 11 is rotated by 360 ° ⁇ m 1 + 1 ° from the reference angle.
  • the second image is an image in which the main shaft 11 is rotated 360 ° ⁇ m 2 + 2 ° from the reference angle.
  • the p-th image is an image in which the main shaft 11 is rotated by 360 ° ⁇ m p + p ° from the reference angle.
  • m 1, m 2 ⁇ m p ⁇ , p is a natural number, which is m 1 ⁇ m 2 ⁇ m p ⁇ .
  • m 1 ⁇ m 2 ⁇ ... m p ... 2 ° is photographed after 1 ° is photographed. That is, in the above description, the images are taken in order from the state where the rotation angle of the tool 12 from the reference angle is small. However, this does not necessarily have to be the case.
  • the images may be taken in a shooting order irrespective of the size of the rotation angle of the tool 12 from the reference angle. For example, shooting may be performed at 10 ° after shooting at 350 °, and shooting at 121 ° may be performed after shooting at 10 °.
  • the tool 12 in the state of being rotated by 360 ° ⁇ m 0 + 1 ° from the time when the first photographing signal is output is photographed to obtain the image of the first tool 12, and the photographing of the first image is completed.
  • the tool 12 in a state of being rotated by 360 ° ⁇ m 0 + 2 ° from the time when the second photographing signal is output is photographed to obtain an image of the second tool 12, ... p -After the image capturing of the first image is completed, and the image of the p-th tool 12 is captured by capturing an image of the tool 12 rotated 360 ° ⁇ m 0 + p ° from when the p-th image capturing signal was output.
  • the tool 12 is rotated 360 ° ⁇ m 0 + 360 ° after the 360th image signal is output, and the 360th image is captured.
  • the image of the tool 12 may be obtained.
  • the time between shootings needs to be long enough until the tool shape measuring device 1a finishes shooting the tool 12 and is ready for the next shooting.
  • m 0 is a natural number.
  • the tool shape measuring device 1a is provided with a tool rotation angle input unit (not shown) for inputting the rotation angle of the tool 12.
  • the tool rotation angle input unit is provided, for example, at the control device 20.
  • the rotation angle of the tool 12 at the rotation angle desired to be photographed is input to the control device 20 from the tool rotation angle input unit.
  • the operator selects the angle of the tool 12 that needs to be photographed by looking at the image photographed the first time (the necessary image of the plurality of images obtained by the first photographing). Then, when it is desired to shoot only with the selected angle, the rotation angle of the tool 12 to be shot is input from the tool rotation angle input unit. For example, when a tool having a rotation angle of 1 ° and 2 ° is photographed, 1 ° and 2 ° are input using the tool rotation angle input unit.
  • the control device 20 is configured to output the first output and then output the second output in order to capture an image of the tool 12 at the rotation angle input by the tool rotation angle input unit.
  • the second shooting (shooting of the second group) is performed, and only the image of the tool 12 at the rotation angle desired to be shot can be obtained.
  • control device 20 is configured to output the first output and then output the second output in order to capture the image of the tool 12 at the rotation angle input by the tool rotation angle input unit, the image data is output. Saves memory savings.
  • the tool shape measuring device 1a is provided with a light emitting device (illuminating device; for example, a strobe) 61 that emits light in synchronization with the photographing of the camera 22. Then, the strobe 61 emits light toward the tool 12 in response to the output of the photographing command to the camera 22 by the control device 20.
  • a light emitting device illumination device; for example, a strobe
  • the strobe 61 emits light toward the tool 12 in response to the output of the photographing command to the camera 22 by the control device 20.
  • an LED is adopted as the light emitting body (light emitting source) of the strobe 61.
  • the strobe 61 emits light in order to obtain a clearer still image of the tool 12 and to photograph the tool 12 in a shorter time.
  • the strobe 61 emits light for a shorter time than the shutter of the camera 22 is open, and the strobe 61 emits light within the period of time when the shutter of the camera 22 is open.
  • the strobe 61 is configured to emit light within the time when the shutter of the camera 22 is open (the time when the shutter of the camera 22 is fully open) by the output of the shooting command to the camera 22 by the control device 20. ing.
  • the strobe 61 is configured to emit light at a time slightly after the time when the camera 22 starts the operation of opening the shutter and before the camera 22 starts the operation of closing the shutter. There is.
  • a command may be given to the shutter of the camera 22 and the strobe 61 by a trigger measured by the spindle rotation angle sensor 41, but the strobe 61 emits light before the shutter of the camera 22 is fully opened. It may be lost. In order to avoid this, the timing of light emission of the strobe 61 is delayed (delay is inserted). The strobe 61 is made to emit light when the shutter is fully opened.
  • the light emitting device 61 does not emit light before the shutter of the camera 22 is fully opened. Further, the strobe 61 does not emit light when the shutter of the camera 22 is closed or in the middle of being closed.
  • the camera 22 shoots the tool 12 at a slow shutter speed as described above.
  • the brightness of the LED is high and it is very bright, so it is not necessary to make the shooting environment so dark.
  • the strobe 61 When the strobe 61 is provided, as shown in FIG. 7, the camera 22 is installed on one side and the strobe 61 is installed on the other side with the rotating tool 12 in between. Then, the strobe 61 emits light toward the tool 12 and the camera 22, so that the camera 12 takes an image of the tool 12. At this time, the strobe 61 is configured to emit parallel light 79 toward the tool 12.
  • the strobe 61 functions as a backlight and the camera 22 shoots the silhouette of the tool 12.
  • the traveling direction of the parallel light 79 emitted from the strobe 61 is, for example, the X direction and is orthogonal to the rotation center axis C1 of the tool 12, and the optical axis 71 of the lens 69 of the camera 22 is also in the X direction. It is extended.
  • an alignment adjusting device 73 for adjusting the alignment of the strobe 61 and the camera 22 with respect to the tool 12 may be provided.
  • the alignment adjusting device 73 shown in FIG. 7 adjusts the rotation angle of the strobe 61 around a predetermined axis extending in the Z direction and the rotation angle of the strobe 61 around a predetermined axis extending in the Y direction.
  • the strobe 61 can be rotationally positioned.
  • the camera 22 is also provided with a similar alignment adjusting device.
  • the alignment adjustment device 73 By providing the alignment adjustment device 73, it becomes easy to adjust the traveling direction of the parallel light 79 emitted from the strobe 61 and the optical axis 71 of the lens 69 of the camera 22 so as to be parallel to each other. Further, it becomes easy to make the traveling direction of the parallel light 79 emitted from the strobe 61 orthogonal to the plane of the image pickup element 75 of the camera 22.
  • the tool 12 In the initial state, the tool 12 is rotating at a constant rotation speed, and the time lag time TD is calculated in advance. Further, it is assumed that the tool 12 is located between the strobe 61 and the camera 22 as shown in FIG. 7, and the alignment of the strobe 61 and the camera 22 with respect to the tool 12 is also adjusted.
  • the workpiece 14 is machined while correcting the position of the tool 12 according to the actual shape of the tool 12. Processing can take tens of hours. During such machining, the shape of the tool 12 is sometimes measured by the tool shape measuring devices 1 and 1a to be used for correction of the tool 12 or to check whether the tool 12 needs to be replaced.
  • the number of rotations of the spindle 11 during processing is set by an NC (Numerical Control) device (control device 20).
  • the tool shape measuring device 1, 1a measures the shape of the tool 12 (before processing).
  • the trigger for the measurement is the predetermined value of the spindle rotation sensor (encoder) or the spindle rotation angle sensor 41.
  • the strobe 61 is caused to emit light at the same timing in synchronization with the trigger, an image of the tool 12 at the same angle can be taken at all times while rotating at that rotation speed.
  • the rotation of the tool 12 is stopped unless the tool 12 is removed from the spindle 11, and even when the rotation speed is returned to the original value, the image of the tool 12 at the same angle can be taken at the same timing.
  • the tool 12 is configured to be photographed by the camera 22 according to the rotation angle of the spindle 11 detected by the spindle rotation angle sensor 41, so that the time taken to photograph the tool 12 is minimized. Can be shortened. That is, since the still image of the tool 12 can be obtained by one shot at the maximum rotation angle described above, the tool 12 is shot many times and the still images obtained by these shots are compared with each other. You don't have to.
  • the shutter speed of the camera 22 is slowed (for example, the shutter is opened for a time longer than one rotation of the tool 12) and the tool 12 is photographed, as shown in FIG.
  • the reflection of the tool 12 is deteriorated on the outer peripheral side of the tool 12, the contour 77 of the tool 12 is blurred, and the shape of the tool 12 cannot be accurately obtained.
  • the blurring of the subject disappears and the contour 77 of the tool 12 becomes clear as shown in FIG. 8 (b). Then, the accurate shape of the tool 12 can be obtained.
  • control device 20 is configured to change the timing of outputting the photographing command to the camera 22 according to the rotation speed of the spindle 11, so that the rotation speed of the spindle 11 changes. Even in such a case, the still image of the maximum outer shape of the tool 12 can be easily obtained.
  • the strobe 61 emits light toward the tool 12 according to the output of the photographing command to the camera 22 by the control device 20, so that the shutter of the camera 22 is opened and closed.
  • the tool 12 can be imaged in a shorter time than in the case of the image capturing, and a clear image of the rotating tool 12 can be obtained easily at low cost. That is, it is cheap and easy to reduce the light emission time of the strobe 61 as compared with the case of increasing the shutter speed of the camera 22 (shortening the time when the shutter is open).
  • the strobe 61 which has a fast rise time and is capable of emitting light for a short period of time, even if an inexpensive camera is used as compared to a camera capable of high-speed shutter, the sharpness of the rotating tool 12 can be sharpened. Images can be obtained.
  • the camera 22 is installed on one side of the rotating tool 12 and the strobe 61 is installed on the other side. Since the parallel light 79 is emitted toward the camera 22, the tool 12 is photographed by the camera 22, so that the silhouette of the tool 12 having no difference from the actual outer shape of the tool 12 can be photographed.
  • the outer periphery (edge; contour) 77 of the tool 12 becomes clear, and the accurate outer shape of the tool 12 can be easily obtained.
  • the spindle rotation angle sensor 41 outputs a continuous pulse signal when the spindle 11 is rotating, and also emits a pulse signal of one cycle every rotation of the spindle 11. With such a configuration, it is possible to easily detect the rotation speed of the spindle 11 that is rotating at a high speed with a simple structure.
  • the spindle rotation angle sensor 41 and the rotary encoder are used to detect the rotation angle and the rotation speed of the spindle 11 and the tool 12, but the spindle rotation is detected from another device such as a function generator. It may be configured to emit a signal similar to that of the angle sensor 41 or the rotary encoder to take a picture with the camera 22.
  • all the images obtained by shooting may be combined to obtain a still image of the maximum outer shape of the tool 12. Then, the tool correction may be performed based on the maximum outer shape of the tool 12.
  • a tool shape measuring method for measuring a shape of a tool for example, an end mill
  • the spindle rotation angle detecting step of detecting a rotation angle of the spindle and the spindle rotation angle. It may be grasped as a tool shape measuring method having a photographing step of photographing the tool with a camera according to the rotation angle of the spindle detected in the detecting step.
  • the spindle rotation angle detecting step is a step of detecting the rotation number (rotational angular velocity) of the spindle, and in the photographing step, the timing of the photographing is changed according to the rotation number of the spindle. May be.
  • the light emitting device may emit light toward the tool when the image is captured in the image capturing step.
  • the light emitting device may emit light during the time when the shutter of the camera is open.
  • a camera for photographing in the photographing step is installed on one side with the rotating tool in between, and the light emitting device is installed on the other side, and the light emitting device is the tool ( By emitting light toward the camera, the image of the tool is captured by the camera in the image capturing step, and the light emitting device may emit parallel light toward the tool.
  • a continuous pulse signal is output while the spindle is rotating (at a constant speed), and a pulse signal of one cycle is output each time the spindle rotates once. It may be a process.
  • a first step and a second step are provided, and in the first step, a plurality of images in a state where the main shaft is rotated by a predetermined angle are photographed, and the first step is performed. It is also possible to capture only the image of the tool at a predetermined rotation angle in the second step after capturing the image in.

Abstract

Provided are a tool shape measurement device (1, 1a) that measures the shape of a tool (12) installed on a main shaft (11) of a machine tool (2), and a tool shape measurement method, the tool shape measurement device (1, 1a) having: a camera (22) that photographs the tool (12); a main shaft rotation angle sensor (41) that detects a rotation angle of the main shaft (11); and a control device (20) that outputs a photographing instruction to the camera (22) according to the rotation angle of the main shaft (11) detected by the main shaft rotation angle sensor (41).

Description

工具形状測定装置および工具形状測定方法Tool shape measuring device and tool shape measuring method
 本発明は、工具長、工具径、工具の刃部の形状等の工具の形状を測定する工具形状測定装置および工具形状測定方法に関する。 The present invention relates to a tool shape measuring device and a tool shape measuring method for measuring a tool shape such as a tool length, a tool diameter, and a shape of a tool blade.
 従来から、工作機械で使用する回転工具の形状測定装置が提供されている。該工具形状測定装置は、例えばフライス盤のエンドミルの形状測定で使用される。 Conventionally, shape measuring devices for rotary tools used in machine tools have been provided. The tool shape measuring device is used, for example, in measuring the shape of an end mill of a milling machine.
特開2007-49489号公報JP, 2007-49489, A
 特許文献1は、工具の形状を測定することができるが、回転中の工具についての記載がない。回転中の工具は熱変位等で加工点が変化する。熱変位補正を行うために回転中での加工点の位置を正確に測定したい。また、加工に用いる回転数で回転中でも工具の形状を測定することができれば、欠けや摩耗の様子を観察し工具交換や工具摩耗補正に利用できる。特許文献1では工具を停止して測定する必要があり、測定に時間がかかってしまう。また、工具を停止してしまえば、加工中の工具の形状と異なった測定となってしまい、正確な加工点の位置の補正ができない。 Patent Document 1 can measure the shape of the tool, but does not describe the rotating tool. The machining point of the rotating tool changes due to thermal displacement. I want to accurately measure the position of a machining point during rotation to correct thermal displacement. Further, if the tool shape can be measured even during rotation at the rotation speed used for machining, it can be used for tool replacement and tool wear correction by observing the state of chipping or wear. In Patent Document 1, it is necessary to stop the tool for measurement, and it takes time for measurement. Further, if the tool is stopped, the measurement will be different from the shape of the tool being machined, and the position of the machining point cannot be accurately corrected.
 本発明はこうした事情を考慮してなされたもので、工具の形状の測定を回転中でも可能な工具形状測定装置および工具形状測定方法を提供するものである。 The present invention has been made in consideration of such circumstances, and provides a tool shape measuring device and a tool shape measuring method capable of measuring the shape of a tool even during rotation.
 上記目的を達成するために、本発明は以下の特徴を有している。本発明では工具を取り付けて回転させる主軸の回転角度を角度センサから読み取り、指定した角度での工具の形状を撮影することができる。 In order to achieve the above object, the present invention has the following features. In the present invention, it is possible to read the rotation angle of the main shaft for attaching and rotating the tool from the angle sensor and photograph the shape of the tool at the specified angle.
 また、本発明の態様に係る工具形状測定装置は、工作機械の主軸に設置された工具の形状を測定する工具形状測定装置であって、前記工具を撮影するカメラと、前記主軸の回転角度を検出する主軸回転角度センサと、前記主軸回転角度センサが検出した前記主軸の回転角度に応じて前記カメラに撮影指令を出力する制御装置とを有する。 A tool shape measuring device according to an aspect of the present invention is a tool shape measuring device that measures the shape of a tool installed on a spindle of a machine tool, and a camera for photographing the tool and a rotation angle of the spindle. It has a spindle rotation angle sensor for detecting, and a control device for outputting a photographing command to the camera according to the rotation angle of the spindle detected by the spindle rotation angle sensor.
 また、本発明の態様に係る工具形状測定装置では、前記主軸回転角度センサが、前記主軸の回転数も検出するように構成されており、前記制御装置が、前記カメラに撮影指令を出力するタイミングを前記主軸の回転数に応じて変化させるように構成されている。 Further, in the tool shape measuring device according to the aspect of the present invention, the spindle rotation angle sensor is configured to also detect the rotation speed of the spindle, and the control device outputs a shooting command to the camera. Is changed according to the number of rotations of the main shaft.
 また、本発明の態様に係る工具形状測定装置は、発光装置を備え、前記制御装置による前記カメラへの撮影指令の出力によって、前記発光装置が前記工具に向けて光を発するように構成されている。 A tool shape measuring device according to an aspect of the present invention includes a light emitting device, and is configured such that the light emitting device emits light toward the tool according to an output of a photographing command to the camera by the control device. There is.
 また、本発明の態様に係る工具形状測定装置は、前記制御装置による前記カメラへの撮影指令の出力によって、前記カメラのシャッターが開いている時間内に、前記発光装置が発光するように構成されている。 Further, the tool shape measuring device according to the aspect of the present invention is configured such that the light emitting device emits light within the time when the shutter of the camera is opened by the output of the photographing command to the camera by the control device. ing.
 また、本発明の態様に係る工具形状測定装置では、前記工具を間にして一方の側に前記カメラが設置されており他方の側に前記発光装置が設置されており、前記発光装置が前記工具に向けて光を発することで、前記カメラでの前記工具の撮影がされるように構成されており、前記発光装置が、前記工具に向けて平行光を発するように構成されている。 Further, in a tool shape measuring device according to an aspect of the present invention, the camera is installed on one side and the light emitting device is installed on the other side with the tool in between, and the light emitting device is the tool. The tool is configured to shoot an image of the tool by emitting light toward the tool, and the light emitting device is configured to emit parallel light toward the tool.
 また、本発明の態様に係る工具形状測定装置では、前記主軸回転角度センサが、前記主軸が回転しているときに連続パルス信号を出力するとともに、前記主軸が1回転する毎に1周期のパルス信号を発するように構成されている。 Further, in the tool shape measuring device according to the aspect of the present invention, the spindle rotation angle sensor outputs a continuous pulse signal when the spindle is rotating, and a pulse of one cycle is generated for each rotation of the spindle. It is configured to emit a signal.
 また、本発明の態様に係る工具形状測定装置では、前記制御装置による撮影指令の出力として、第1の出力があり、前記第1の出力によって、前記主軸が所定の角度ずつ回転した状態における複数の画像を得るように構成されている。 Further, in the tool shape measuring device according to the aspect of the present invention, there is a first output as an output of the imaging command by the control device, and a plurality of main shafts are rotated by a predetermined angle by the first output. Is configured to obtain an image of.
 また、本発明の態様に係る工具形状測定装置では、前記制御装置による撮影指令の出力として、さらに第2の出力があり、前記工具の回転角度を入力する工具回転角度入力部を備え、前記制御装置が、前記第1の出力をした後、前記工具回転角度入力部で入力された回転角度における前記工具の撮影をするために、前記第2の出力をするように構成されている。 Further, in the tool shape measuring device according to the aspect of the present invention, there is further a second output as an output of the photographing command by the control device, and a tool rotation angle input unit for inputting a rotation angle of the tool is provided, and the control is performed. After the first output, the device is configured to output the second output in order to capture an image of the tool at the rotation angle input by the tool rotation angle input unit.
 また、本発明の態様に係る工具形状測定方法は、工作機械の主軸に設置された工具の形状を測定する工具形状測定方法であって、前記主軸の回転角度を検出する主軸回転角度検出工程と、前記主軸回転角度検出工程で検出した前記主軸の回転角度に応じて前記工具を撮影する撮影工程とを有する。 Further, a tool shape measuring method according to an aspect of the present invention is a tool shape measuring method for measuring a shape of a tool installed on a spindle of a machine tool, and a spindle rotation angle detecting step of detecting a rotation angle of the spindle. And a photographing step of photographing the tool according to the rotation angle of the spindle detected in the spindle rotation angle detection step.
 また、本発明の態様に係る工具形状測定方法では、前記主軸回転角度検出工程が、前記主軸の回転数も検出する工程であり、前記撮影工程では、前記撮影をするタイミングを前記主軸の回転数に応じて変化させている。 Further, in the tool shape measuring method according to the aspect of the present invention, the spindle rotation angle detecting step is a step of detecting the rotation number of the spindle, and in the photographing step, the timing of the photographing is set to the rotation number of the spindle. It changes according to.
 また、本発明の態様に係る工具形状測定方法では、前記撮影工程では、前記撮影をするときに、発光装置が前記工具に向けて光を発するようになっている。 Further, in the tool shape measuring method according to the aspect of the present invention, in the photographing step, the light emitting device emits light toward the tool during the photographing.
 また、本発明の態様に係る工具形状測定方法では、前記撮影工程で、前記カメラのシャッターが開いている時間内に、前記発光装置が発光するようになっている。 Further, in the tool shape measuring method according to the aspect of the present invention, in the photographing step, the light emitting device emits light within the time when the shutter of the camera is open.
 また、本発明の態様に係る工具形状測定方法では、前記工具を間にして一方の側に前記撮影工程での撮影をするカメラが設置されており他方の側に前記発光装置が設置されており、前記発光装置が前記工具に向けて光を発することで、前記撮影工程での前記カメラによる前記工具の撮影がされるとともに、前記発光装置が、前記工具に向けて平行光を発するようになっている。 Further, in the tool shape measuring method according to the aspect of the present invention, a camera for taking an image in the imaging step is installed on one side with the tool in between, and the light emitting device is installed on the other side. The light emitting device emits light toward the tool, so that the camera captures an image of the tool in the capturing step, and the light emitting device emits parallel light toward the tool. ing.
 また、本発明の態様に係る工具形状測定方法は、前記主軸回転角度検出工程が、前記主軸が回転しているときに連続パルス信号が出力されるとともに、前記主軸が1回転する毎に1周期のパルス信号が出力される工程になっている。 Further, in the tool shape measuring method according to the aspect of the present invention, in the spindle rotation angle detecting step, a continuous pulse signal is output while the spindle is rotating, and one cycle is generated for each rotation of the spindle. The pulse signal is output.
 また、本発明の態様に係る工具形状測定方法では、前記撮影工程として、第1の工程があり、前記第1の工程は、前記主軸が所定の角度ずつ回転した状態における複数の画像を撮影する工程である。 Further, in the tool shape measuring method according to the aspect of the present invention, there is a first step as the imaging step, and the first step captures a plurality of images in a state in which the spindle is rotated by a predetermined angle. It is a process.
 また、本発明の態様に係る工具形状測定方法では、前記撮影工程として、さらに第2の工程があり、前記第2の工程は、前記第1の工程での撮影をした後、所定の回転角度になっている前記工具の画像のみを撮影する工程である。 Further, in the tool shape measuring method according to the aspect of the present invention, the photographing step further includes a second step, and the second step includes a predetermined rotation angle after the photographing in the first step. This is a step of photographing only the image of the tool which is set to.
 本発明によれば、回転中の工具の形状を測定することができ、加工中の熱変位等を含んだ工具の形状をより正確に測定することができる。測定した工具の形状で工具の加工点の補正を行うと、より精度の高い加工が可能となる。 According to the present invention, the shape of a rotating tool can be measured, and the shape of the tool including thermal displacement during machining can be measured more accurately. If the machining point of the tool is corrected based on the measured shape of the tool, more accurate machining becomes possible.
図1は、本発明の実施例の装置構成(第1の実施形態に係る装置)を示す概略図である。FIG. 1 is a schematic diagram showing a device configuration (device according to the first embodiment) of an example of the present invention. 図2は、本発明の実施例(第1の実施形態に係る装置)で工具形状を測定しているときの図である。FIG. 2 is a diagram when the tool shape is measured in the example of the present invention (the apparatus according to the first embodiment). 図3は、本発明の第1の実施形態に係る工具形状測定装置で測定される工具の例で2枚刃工具の横断面図である。FIG. 3 is a cross-sectional view of a two-blade tool as an example of a tool measured by the tool shape measuring device according to the first embodiment of the present invention. 図4は、本発明第1の実施形態に係る工具形状測定装置で測定される工具の他の例で3枚刃工具の横断面図である。FIG. 4 is a transverse cross-sectional view of a three-blade tool as another example of the tool measured by the tool shape measuring device according to the first embodiment of the present invention. 図5(a)は、本発明の第2の実施形態で使用される工作機械の主軸ヘッドの概略構成を示す図であり、図5(b)は、図5(a)における略VB矢視図であり、図5(c)は、主軸回転角度センサで得られる連続パルス信号を示す図である。FIG. 5A is a diagram showing a schematic configuration of a spindle head of a machine tool used in the second embodiment of the present invention, and FIG. 5B is a schematic VB arrow view in FIG. 5A. FIG. 5C is a diagram showing a continuous pulse signal obtained by the spindle rotation angle sensor. 図6は、本発明の第2の実施形態に係る工具形状測定装置で測定される工具(回転している工具)を示す図であって、工具、カメラ、発光装置を工具の回転中心軸の延伸方向で見た図である。FIG. 6 is a view showing a tool (rotating tool) measured by the tool shape measuring apparatus according to the second embodiment of the present invention, in which the tool, the camera, and the light emitting device are arranged on the rotation center axis of the tool. It is the figure seen in the extending direction. 図7は、本発明の第2の実施形態に係る工具形状測定装置における発光装置と工具とカメラとの位置関係を説明する図であって、工具、カメラ、発光装置を工具の回転中心軸の延伸方向で見た図である。FIG. 7 is a diagram for explaining the positional relationship between the light emitting device, the tool, and the camera in the tool shape measuring device according to the second embodiment of the present invention. It is the figure seen in the extending direction. 図8(a)は、比較例に係る工具形状測定装置で得られた工具の画像であり、図8(b)は、本発明の第2の実施形態に係る工具形状測定装置で得られた工具の画像である。FIG. 8A is an image of the tool obtained by the tool shape measuring device according to the comparative example, and FIG. 8B is obtained by the tool shape measuring device according to the second embodiment of the present invention. It is an image of a tool. 図9(a)は、工具の例であるボールエンドミルを示す図であり、図9(b)は工具の例であるスクエアエンドミルを示す図であり、図9(c)は工具の例であるラジアスエンドミルを示す図であり、図9(d)はボールエンドミルのおける形状誤差を示す図である。9A is a diagram showing a ball end mill which is an example of a tool, FIG. 9B is a diagram showing a square end mill which is an example of a tool, and FIG. 9C is an example of a tool. It is a figure which shows a radius end mill, and FIG.9 (d) is a figure which shows the shape error in a ball end mill. 図10(a)、図10(b)は、本発明の第2の実施形態に係る工具形状測定装置における撮影タイムラグを説明する図である。FIG. 10A and FIG. 10B are views for explaining the photographing time lag in the tool shape measuring device according to the second embodiment of the present invention. 図11(a)は、本発明の第2の実施形態に係る工具形状測定装置で使用される円柱状のダミー工具を示す図であり、図11(b)は、円柱状のダミー工具の側面の展開図である。FIG. 11A is a diagram showing a cylindrical dummy tool used in the tool shape measuring device according to the second embodiment of the present invention, and FIG. 11B is a side view of the cylindrical dummy tool. FIG.
[第1の実施形態]
 本発明による第1実施形態を以下に示す。図1に示す工作機械2は、ベッド18の上面にテーブル16、門型のコラム10を有し、コラム10のクロスレール8にはサドル6を介して主軸ヘッド4が支持されている。主軸ヘッド4には主軸11が支持されている。
[First Embodiment]
The first embodiment according to the present invention will be described below. The machine tool 2 shown in FIG. 1 has a table 16 and a gate-shaped column 10 on the upper surface of a bed 18, and a spindle head 4 is supported on a cross rail 8 of the column 10 via a saddle 6. A spindle 11 is supported on the spindle head 4.
 ここで、説明の便宜のために水平な所定の一方向をX方向(X軸方向)とし、X方向に対して直交する水平な所定の他の一方向をY方向(Y軸方向)とし、X方向とY方向とに対して直交する上下方向をZ方向(Z軸方向)とする。 Here, for convenience of description, a predetermined horizontal direction is defined as the X direction (X axis direction), and another predetermined horizontal direction orthogonal to the X direction is defined as the Y direction (Y axis direction). The vertical direction orthogonal to the X and Y directions is the Z direction (Z axis direction).
 テーブル16はベッド18に対してX軸方向に移動可能である。サドル6はクロスレール8に沿ってY軸方向に移動可能である。主軸ヘッド4はサドル6に対してZ軸方向に移動可能である。これらの3軸を移動させることにより、テーブル16に載置されたワーク14に対して工具12を3次元で移動させ、加工することが可能である。テーブル16の端には工具形状測定装置1が設置されている。制御装置20は工作機械2と工具形状測定装置1に接続され、工作機械2と工具形状測定装置1を制御することができる。 The table 16 is movable in the X-axis direction with respect to the bed 18. The saddle 6 is movable in the Y-axis direction along the cross rail 8. The spindle head 4 is movable in the Z axis direction with respect to the saddle 6. By moving these three axes, it is possible to move the tool 12 in three dimensions with respect to the work 14 placed on the table 16 for machining. The tool shape measuring device 1 is installed at the end of the table 16. The control device 20 is connected to the machine tool 2 and the tool shape measuring device 1, and can control the machine tool 2 and the tool shape measuring device 1.
 図2は工具形状測定装置1で工具12の形状を測定している図を示している。先に示した3軸により図2で示す位置まで工具12を移動させ、工具形状を測定する。工具形状測定装置1はカメラ22、照明装置24を含み、図2で示すように工具12はカメラ22と照明装置24の間に位置した状態で工具形状を測定する。照明装置24からの光を工具12の後ろから当てて画像を撮影するため、工具12の形状が影として撮影される。 FIG. 2 shows a diagram in which the tool shape measuring device 1 measures the shape of the tool 12. The tool 12 is moved to the position shown in FIG. 2 by the three axes shown above, and the tool shape is measured. The tool shape measuring device 1 includes a camera 22 and an illuminating device 24. As shown in FIG. 2, the tool 12 measures the tool shape while being positioned between the camera 22 and the illuminating device 24. Since an image is captured by shining light from the illumination device 24 from behind the tool 12, the shape of the tool 12 is captured as a shadow.
 カメラ22は高速シャッターを備えていて、工具12が数千回転/分で回転中でも静止画のような撮影が可能である。またカメラ22にはズームレンズが取り付けられていて、制御装置20で拡大率の制御が行うことができるようになっていてもよい。主軸11には図示しない回転角度センサが備わっていて、回転数や回転角度の位置決め等の制御を制御装置20で行うことができる。 The camera 22 is equipped with a high-speed shutter, and it is possible to shoot still images while the tool 12 is rotating at several thousand rotations / minute. Further, a zoom lens may be attached to the camera 22 so that the control device 20 can control the enlargement ratio. The main shaft 11 is provided with a rotation angle sensor (not shown), and the control device 20 can control the rotation speed, the rotation angle, and the like.
 工具12が1万回転/分以上の回転数で回転する場合には、高速シャッターだけでの対応では難しい。この場合は照明装置24をストロボ機能付きとする。数μsecの短い発光時間のストロボを用いれば、回転中の工具12でも形状測定が可能である。なお、工具12の最大回転数は、12万回転/分程度に設定できる。 When the tool 12 rotates at 10,000 rpm or more, it is difficult to use only a high-speed shutter. In this case, the lighting device 24 has a strobe function. If a strobe with a short light emission time of several μsec is used, it is possible to measure the shape even with the rotating tool 12. The maximum rotation speed of the tool 12 can be set to about 120,000 rotations / minute.
 図3は使用する工具12Aの例で、2枚刃のエンドミルを示す。工作機械2に取り付けた状態でワーク14側から見た横断面を示す。図4は使用する工具12Bの例で、3枚刃のエンドミルを示す。工作機械2に取り付けた状態でワーク14側から見た横断面を示す。 Fig. 3 shows an example of the tool 12A used and shows a two-flute end mill. The cross section seen from the workpiece | work 14 side in the state attached to the machine tool 2 is shown. FIG. 4 shows an example of the tool 12B used, and shows a three-blade end mill. The cross section seen from the workpiece | work 14 side in the state attached to the machine tool 2 is shown.
 次に工具形状測定方法について図3の工具12Aを使用する場合で説明する。主軸11に工具12Aを取り付ける。ワーク14を加工する前に図2で示した測定位置に工具12Aを移動させ工具形状を測定する。最初に工具基準角度を決定する。工具基準角度は図3の矢印26Aで示した方向からカメラ22が工具12Aを撮影できる角度を示す。矢印26Aで示した角度は主軸回転軸の位置から工具12Aの外形までの主軸回転軸と直交する向きの距離が最大となる。距離の測定は例えばデジタル画像の画素数を数えて行う。 Next, the tool shape measuring method will be described using the tool 12A in FIG. A tool 12A is attached to the spindle 11. Before processing the work 14, the tool 12A is moved to the measurement position shown in FIG. 2 to measure the tool shape. First, the tool reference angle is determined. The tool reference angle indicates the angle at which the camera 22 can photograph the tool 12A from the direction indicated by the arrow 26A in FIG. The angle indicated by the arrow 26A has the maximum distance from the position of the spindle rotation axis to the outer shape of the tool 12A in the direction orthogonal to the spindle rotation axis. The distance is measured by counting the number of pixels of the digital image, for example.
 この工具基準角度は次のようにして決定する。図3では矢印26Aの位置が撮影するカメラ22の向きを示すが、この位置から撮影できる工具12Aの角度に近い状態になるように、主軸11をマニュアルで回転させる。カメラ22の撮影した画像は図示していないモニターで確認することができる。矢印26Aの角度に近い状態となったら、所定の角度だけ正回転方向、逆回転方向に工具22Aを回転させ、その時に一定の角度毎に複数の画像をカメラ22で撮影する。その画像から主軸11の回転軸から工具12Aの外形までの距離が一番長い位置の主軸11の角度を工具基準角度とする。 The tool reference angle is determined as follows. In FIG. 3, the position of the arrow 26A indicates the direction of the camera 22 for photographing, but the spindle 11 is manually rotated so that the position close to the angle of the tool 12A capable of photographing from this position. The image captured by the camera 22 can be confirmed on a monitor (not shown). When the state becomes close to the angle indicated by the arrow 26A, the tool 22A is rotated in the forward rotation direction and the reverse rotation direction by a predetermined angle, and at that time, a plurality of images are taken by the camera 22 at constant angles. The angle of the spindle 11 at the position where the distance from the image to the outer shape of the tool 12A from the rotation axis of the spindle 11 is the tool reference angle.
 工具基準角度はこの他に次のように決定することもできる。工具12Aは2枚刃なので、工具12Aを任意の位置から180°以上低速で回転させ、所定の角度毎に画像を撮影する。撮影した画像から主軸11の回転軸から工具12Aの外形までの距離が一番長い位置の主軸11の角度を工具基準角度とする。 Other than this, the tool reference angle can be determined as follows. Since the tool 12A is a double-edged blade, the tool 12A is rotated at a low speed of 180 ° or more from an arbitrary position, and an image is captured at each predetermined angle. The angle of the spindle 11 at the position where the distance from the captured image to the outer shape of the tool 12A from the rotation axis of the spindle 11 is the longest is the tool reference angle.
 図4で示す工具12Bは3枚刃であるので、120°以上、主軸11を回転させて撮影すればよいことになる。この場合、図3を用いて説明した場合と同様にして、図4で示す矢印26Bの位置が撮影するカメラ22の向きを示している。回転対称ではない工具については、撮影画像の枚数が多くなるが、主軸11を1回転させ、たとえば1°回転する毎に工具12の撮影を行い、この撮影で得られた360枚の画像の中から必要な画像を選択する。 Since the tool 12B shown in FIG. 4 has three blades, it suffices to rotate the main shaft 11 by 120 ° or more for shooting. In this case, similarly to the case described with reference to FIG. 3, the position of the arrow 26B shown in FIG. For a tool that is not rotationally symmetric, the number of captured images is large, but the tool 12 is photographed each time the spindle 11 is rotated once, for example, every 1 °, and among the 360 images obtained by this photography. Select the required image from.
 使用する工具12が2枚刃や3枚刃であるという情報は制御装置20に図示していない入力装置で入力してもよいし、データベースとして制御装置20内の記憶装置に記憶していてもよい。 The information that the tool 12 to be used is a 2-flute or 3-flute may be input to the control device 20 by an input device (not shown), or may be stored as a database in a storage device in the control device 20. Good.
 ワーク14を加工する前に工具12(12A、12B)の工具長、工具径、工具の刃部の形状等の工具形状を測定しておく。後で熱変位量や工具摩耗量を求める時にこれらの値と比較する。 Before processing the work 14, measure the tool shape such as the tool length of the tool 12 (12A, 12B), the tool diameter, the shape of the tool blade, and the like. These values will be compared later when the thermal displacement amount and the tool wear amount are obtained.
 次に加工中の工具長測定について記載する。工作機械2でワーク14を加工中に制御装置20に設定してある指定した時間になると工作機械2は加工を停止し、工具12を図2で示した工具長測定位置まで移動させる。この時に主軸11の回転を停止せずに加工中の回転速度を保ったまま、工具12を移動させて工具形状測定装置1で測定する。このため回転中の遠心力等の影響を受けたままの正確な工具形状を測定でき、測定値を熱変位補正や工具摩耗補正で用いれば、より加工中の工具12に近い状態で補正でき、精度よく加工することができる。 Next, describe the tool length measurement during machining. When the workpiece 14 is being machined by the machine tool 2 and the designated time set in the control device 20 is reached, the machine tool 2 stops machining and moves the tool 12 to the tool length measuring position shown in FIG. At this time, the tool 12 is moved and measured by the tool shape measuring device 1 without stopping the rotation of the spindle 11 and maintaining the rotation speed during processing. Therefore, an accurate tool shape can be measured while being affected by centrifugal force during rotation, and if the measured value is used for thermal displacement correction and tool wear correction, it can be corrected in a state closer to the tool 12 being machined. Can be processed with high precision.
 工具12Aの2枚刃の形状を測定する場合は、主軸11が先に求めた工具基準角度になった時に制御装置20から工具形状測定装置1に測定指令が出力され、工具形状画像を撮影する。工具12Aの2枚刃の場合は工具基準角度と工具基準角度+180°の位置で撮影すれば、すべての刃の形状を撮影できる。工具12Bの場合は3枚刃なので、工具基準角度と工具基準角度+120°、工具基準角度+240°の位置で撮影すれば、すべての刃の形状を撮影できる。 When measuring the shape of the two-blade of the tool 12A, a measurement command is output from the control device 20 to the tool shape measuring device 1 when the spindle 11 reaches the previously determined tool reference angle, and a tool shape image is captured. .. When the tool 12A has two blades, the shapes of all the blades can be photographed by photographing the tool reference angle and the tool reference angle + 180 °. Since the tool 12B has three blades, all the shapes of the blades can be photographed by photographing at the tool reference angle, the tool reference angle + 120 °, and the tool reference angle + 240 °.
 撮影は1回転分の刃の撮影でもいいし、複数回転分の撮影を行ってもよい。複数刃の工具の場合でも刃の形状を1枚1枚撮影することによりすべての刃の管理を行うことができる。 The shooting may be one blade rotation or multiple rotations. Even in the case of a multi-blade tool, it is possible to manage all the blades by photographing the shape of each blade one by one.
 工具基準角度と主軸11の角度が一致してから、撮影指令を制御装置20出していると、主軸11が高速回転している場合には、実際の撮影タイミングが遅れる場合がある。これを防止するため制御装置は工具基準角度と主軸11の角度センサが一致する少し前に撮影指令を出力してもよい。どの位の角度になったら指令を出力すればいいのかは事前に実験で測定しておく。複数の回転数で実験を行い、この角度を求めて表にしておき、回転数に応じてこの表から適切な角度を求めてもよい。 If the controller 20 issues a shooting command after the tool reference angle and the angle of the spindle 11 match, the actual shooting timing may be delayed if the spindle 11 rotates at high speed. In order to prevent this, the control device may output the photographing command shortly before the tool reference angle and the angle sensor of the spindle 11 match. The angle at which the command should be output should be measured in advance by experiments. It is also possible to carry out an experiment at a plurality of rotation speeds, obtain this angle and make a table, and obtain an appropriate angle from this table according to the rotation speed.
 1万回転/分以上の回転速度で工具12を回転させる場合は、フラッシュ機能(ストロボ機能)の付いた照明装置24を用い、主軸11回転センサの値と工具12の撮影角度の値を次のように対応付ける。工具12を回転させ、ある回転センサの値の時に制御装置20から撮影指令を工具形状測定装置1に出力し、画像を撮影する。 When rotating the tool 12 at a rotation speed of 10,000 revolutions / minute or more, an illumination device 24 having a flash function (strobe function) is used, and the value of the spindle 11 rotation sensor and the value of the photographing angle of the tool 12 are calculated as follows. To correspond. The tool 12 is rotated, and when the value of a certain rotation sensor is reached, a shooting command is output from the control device 20 to the tool shape measuring device 1 to shoot an image.
 次に先ほどの画像より所定の角度だけ回転した工具12の画像を撮影する。所定の角度とは、例えば5°である。この場合、カメラ22のシャッタースピードが追い付かず、工具12の1回転中に5°だけずれた画像を撮影するのは無理である。このため先ほどの画像より例えば10回転と5°だけ回転した角度の画像を撮影する。 Next, take an image of the tool 12 rotated by a predetermined angle from the previous image. The predetermined angle is, for example, 5 °. In this case, the shutter speed of the camera 22 cannot catch up, and it is impossible to capture an image shifted by 5 ° during one rotation of the tool 12. For this reason, an image of an angle rotated by 10 ° and 5 ° from the previous image is captured.
 照明装置24はμsec単位で、指令に対して発光するタイミングを遅延する時間を設定することができる。このため10回転と5°だけずれたというような画像を正確に撮影することができる。このような画像を工具12の所定の回転角度分だけ取り、それらの画像より主軸11回転センサの値と工具12の撮影角度の値を対応付ける。 The lighting device 24 can set the time to delay the timing of emitting light in response to a command in μsec unit. Therefore, it is possible to accurately capture an image such as 10 rotations and a deviation of 5 °. Such images are taken by a predetermined rotation angle of the tool 12, and the values of the spindle 11 rotation sensor and the imaging angle values of the tool 12 are associated from these images.
 主軸11回転センサの値と工具12の撮影角度の値が対応付けられると、照明装置24が発光するときの遅延時間を適切に設定し、制御装置20から適切なタイミングで撮影指令を工具形状測定装置1に出力すれば、希望する工具12の角回転度の画像を撮影することができる。工具12Aのような2枚刃の工具の刃形状を測定する場合は、最初に1枚目の刃を撮影した後、例えば10回転と180°回転した時に2枚目の刃の形状を測定する。 When the value of the spindle 11 rotation sensor and the value of the shooting angle of the tool 12 are associated with each other, the delay time when the lighting device 24 emits light is appropriately set, and the shooting command is measured from the control device 20 at an appropriate timing. When output to the device 1, an image of the desired degree of angular rotation of the tool 12 can be taken. When measuring the blade shape of a two-blade tool such as the tool 12A, first the first blade is photographed, and then the second blade shape is measured, for example, at 10 rotations and 180 ° rotations. ..
 ワークを加工する前に計測した値と加工中に計測した値が所定の値だけずれていたら、その値から補正値を決定して補正値として制御装置20に設定する。また、主軸11の回転軸から工具12の外形までの距離が、刃によって著しく変動して回転しているなら、工具12の回転振れが多いと判断しアラームを制御装置20のモニターに表示してもよい。また刃によっての著しい変動は無いが、1枚の刃だけが距離が少なくなっている場合には刃の欠けと判断し、アラームを発生してもよい。 If the value measured before machining the work and the value measured during machining deviate by a predetermined value, a correction value is determined from that value and set in the control device 20 as the correction value. If the distance from the rotation axis of the spindle 11 to the outer shape of the tool 12 is remarkably fluctuated by the blade and is rotating, it is determined that the tool 12 has a large amount of rotational runout, and an alarm is displayed on the monitor of the control device 20. Good. Although there is no significant change depending on the blade, if only one blade has a short distance, it may be determined that the blade is missing and an alarm may be generated.
 以上、述べたように本発明の工具形状測定装置1を用いて工具形状を測定すると、加工中の回転数で主軸11を回転させて測定できるので、加工中と同じ状態の工具12の形状を測定できる。また、主軸11の回転角度センサの値と同期して撮影できるため、工具12の必要な回転角度状態の画像のみを撮影でき、記録装置の容量を少なくすることができる。 As described above, when the tool shape measuring device 1 of the present invention is used to measure the tool shape, the spindle 11 can be rotated at the number of revolutions during machining to measure the shape of the tool 12 in the same state as during machining. Can be measured. Further, since the image can be taken in synchronization with the value of the rotation angle sensor of the spindle 11, only the image of the required rotation angle state of the tool 12 can be taken, and the capacity of the recording device can be reduced.
 [第2の実施形態]
 本発明の第2の実施形態で使用される工作機械2(図1参照)は、本発明の第1の実施形態で使用される工作機械2と同じものであり、主軸ヘッド4、制御装置20等を備えて構成されている。制御装置20は、図示しないCPUとメモリとを備えて構成されている。
[Second Embodiment]
A machine tool 2 (see FIG. 1) used in the second embodiment of the present invention is the same as the machine tool 2 used in the first embodiment of the present invention, and includes a spindle head 4 and a controller 20. And so on. The control device 20 is configured to include a CPU and a memory (not shown).
 本発明の第2の実施形態に係る工具形状測定装置1aも、本発明の第1の実施形態に係る工具形状測定装置1とほぼ同様に構成されており、ほぼ同様に動作し使用されるものである。 The tool shape measuring apparatus 1a according to the second embodiment of the present invention is also configured to be substantially the same as the tool shape measuring apparatus 1 according to the first embodiment of the present invention, and operates and is used in substantially the same manner. Is.
 本発明の実施形態に係る工具形状測定装置1、1aの測定対象である工具12は、たとえば、金型のコアやキャビティの表面を切削加工で形成するときに使用されるものである。上記切削加工は、金型のコアやキャビティの表面を、たとえば最終仕上げ加工するためにされるものであり、上記切削加工によって、金型のコアやキャビティの表面が鏡面のようになる。工具12としてたとえばエンドミルを掲げることができる。エンドミル12の外径はたとえば1mm程度であり、切削加工をするときのエンドミル12の回転数は6万回転/分程度である。 The tool 12, which is the measurement target of the tool shape measuring apparatus 1 or 1a according to the embodiment of the present invention, is used, for example, when forming the surface of the core or cavity of a mold by cutting. The cutting process is carried out, for example, for final finishing of the surfaces of the core and the cavity of the mold, and the cutting process makes the surfaces of the core and the cavity of the mold look like mirror surfaces. The tool 12 may be an end mill, for example. The outer diameter of the end mill 12 is, for example, about 1 mm, and the rotation speed of the end mill 12 when cutting is about 60,000 rotations / minute.
 ここで、工作機械2の主軸ヘッド4について、図5(a)を参照しつつより詳しく説明する。 Here, the spindle head 4 of the machine tool 2 will be described in more detail with reference to FIG.
 主軸ヘッド4は、ビルトインモータのタイプになっており、筐体31と主軸(スピンドル)11とを備えて構成されている。主軸11は、円柱状に形成されており、空気軸受けによって、筐体31に回転自在に支持されている。参照符号C1は、主軸11の回転中心軸を示している。 The spindle head 4 is of a built-in motor type, and is configured to include a housing 31 and a spindle (spindle) 11. The main shaft 11 is formed in a cylindrical shape, and is rotatably supported by the housing 31 by an air bearing. Reference numeral C1 indicates the center axis of rotation of the main shaft 11.
 主軸11の長手方向(回転中心軸C1の延伸方向;Z方向)の一方の端部(図5(a)の下端部)には、工具保持部33が設けられている。工具保持部33が設けられていることで、主軸11に対して工具12が着脱自在になっている。主軸11の長手方向の他方の端部(図5(a)の上端部)には、モータ35のロータ37が一体的に設けられている。ロータ37の外側にはモータ35のステータ39が設けられている。ステータ39は、ロータ37から僅かに離れて筐体31に一体的に設けられている。 A tool holding portion 33 is provided at one end portion (lower end portion in FIG. 5A) in the longitudinal direction of the main shaft 11 (extending direction of the rotation center axis C1; Z direction). Since the tool holding portion 33 is provided, the tool 12 can be attached to and detached from the spindle 11. A rotor 37 of the motor 35 is integrally provided at the other end portion (upper end portion in FIG. 5A) in the longitudinal direction of the main shaft 11. A stator 39 of the motor 35 is provided outside the rotor 37. The stator 39 is integrally provided in the housing 31 at a slight distance from the rotor 37.
 次に、本発明の第2の実施形態に係る工具形状測定装置1aについて詳しく説明する。 Next, the tool shape measuring device 1a according to the second embodiment of the present invention will be described in detail.
 工具形状測定装置1aは、本発明の第1の実施形態に係る工具形状測定装置1と同様にして、工作機械2の主軸11に設置された工具12の形状を測定する装置であり、図7で示すように、カメラ22と主軸回転角度センサ(主軸回転角度検出センサ)41と制御装置20(図1参照)とを備えている。 The tool shape measuring device 1a is a device for measuring the shape of the tool 12 installed on the spindle 11 of the machine tool 2 in the same manner as the tool shape measuring device 1 according to the first embodiment of the present invention. As shown by, the camera 22 and the spindle rotation angle sensor (spindle rotation angle detection sensor) 41 and the control device 20 (see FIG. 1) are provided.
 カメラ22は、回転している工具12を撮影して、工具12の画像(静止画像)を得るものである。カメラ22は、たとえば、デジタルカメラであり、グローバルシャッターによって工具12を撮影するようになっている。工具12を撮影するときのカメラ22のシャッタースピード(図7に示すカメラ22の撮像素子75の露光時間)は、回転している工具12の画像がほぼ静止画となる程度の短い時間になっている。 The camera 22 takes an image of the rotating tool 12 and obtains an image (still image) of the tool 12. The camera 22 is, for example, a digital camera, and is adapted to capture an image of the tool 12 with a global shutter. The shutter speed of the camera 22 (exposure time of the image sensor 75 of the camera 22 shown in FIG. 7) when photographing the tool 12 is such a short time that the image of the rotating tool 12 becomes a substantially still image. There is.
 主軸回転角度センサ41は、主軸11(主軸11に設置されている工具12)の回転角度を検出するものである。また、主軸回転角度センサ41は、主軸11が回転しているときに連続パルス信号(図5(c)、図10を参照)を出力するとともに、主軸11が1回転する毎に1周期のパルス信号を発するように構成されている。なお、主軸11が一定速度で回転していることで、連続パルス信号の周期は一定値になっている。 The spindle rotation angle sensor 41 detects the rotation angle of the spindle 11 (the tool 12 installed on the spindle 11). Further, the main spindle rotation angle sensor 41 outputs a continuous pulse signal (see FIG. 5C and FIG. 10) while the main spindle 11 is rotating, and a pulse of one cycle every one rotation of the main spindle 11. It is configured to emit a signal. Since the main shaft 11 rotates at a constant speed, the cycle of the continuous pulse signal has a constant value.
 主軸回転角度センサ41について、図5(a)(b)を参照してさらに詳しく説明する。主軸回転角度センサ41は、たとえば、反射式の光電センサ43とマーク45とを備えて構成されている。 The spindle rotation angle sensor 41 will be described in more detail with reference to FIGS. The spindle rotation angle sensor 41 includes, for example, a reflective photoelectric sensor 43 and a mark 45.
 光電センサ43は筐体31に一体的に設けられている。マーク45は、主軸11にたとえばこの半周にわたって一体的に設けられている(図5(b)の破線を付した部位を参照)。そして、主軸11が回転すると、光電センサ43がマーク45を検出している状態と検出していない状態とを繰り返し、光電センサ43が図5(c)で示すような連続パルス信号を発するようになっている。 The photoelectric sensor 43 is provided integrally with the housing 31. The mark 45 is integrally provided on the main shaft 11 over, for example, this half circumference (see the portion with the broken line in FIG. 5B). Then, when the main shaft 11 rotates, the photoelectric sensor 43 repeats the state in which the mark 45 is detected and the state in which it is not detected, and the photoelectric sensor 43 emits a continuous pulse signal as shown in FIG. 5C. Is becoming
 すでに理解されるように、主軸回転角度センサ41による主軸11の回転角度の分解能は、極めて大きく180°になっている。 As already understood, the resolution of the rotation angle of the spindle 11 by the spindle rotation angle sensor 41 is extremely large, 180 °.
 制御装置20は、主軸回転角度センサ41が検出した主軸11の回転角度に応じてカメラ22に撮影指令を出力するようになっている。たとえば、主軸回転角度センサ41がマーク45を検出したときに、撮影指令を出力するようになっている。 The controller 20 outputs a shooting command to the camera 22 according to the rotation angle of the spindle 11 detected by the spindle rotation angle sensor 41. For example, when the spindle rotation angle sensor 41 detects the mark 45, a shooting command is output.
 なお、工具12は主軸11に対して所定の回転角度で設置されているものとする。たとえば、回転中心軸C1の延伸方向(Z方向)で見て、マーク45の端(主軸11の回転方向における前側の端)の角度(位相)と、工具12の切れ刃の先端47(図3、図4、図6を参照)の角度(位相)とがお互いに一致している。 Note that the tool 12 is installed at a predetermined rotation angle with respect to the spindle 11. For example, when viewed in the extending direction (Z direction) of the rotation center axis C1, the angle (phase) of the end of the mark 45 (the end on the front side in the rotation direction of the main shaft 11) and the tip 47 of the cutting edge of the tool 12 (see FIG. 3). , FIG. 4 and FIG. 6).
 2枚刃の工具12の一方の切れ刃の先端47は、線状に形成されているが1つの平面上に位置しており、2枚刃の工具12の他方の切れ刃の先端47も、上記1つの平面上に位置しているものとする。なお、線状に形成された工具12の切れ刃の先端47が、厳密に1つの平面上に位置している必要はなく、概ね1つの平面状に位置していてもよい。たとえば、Z方向で見て、工具12の1つの切れ刃の先端47が、中心角が1°~5°程度である扇形の内側に位置していればよい。なお、上記扇形の2本の線分(半径)が交差している箇所を扇形の中心角形成点とすると、扇形の中心角形成点と工具12の回転中心軸C1とはお互いに位置している。 The tip 47 of one cutting edge of the two-blade tool 12 is formed linearly, but is located on one plane, and the tip 47 of the other cutting edge of the two-blade tool 12 is also It is assumed to be located on the one plane. In addition, the tip 47 of the cutting edge of the tool 12 formed in a linear shape does not need to be located exactly on one plane, and may be located on almost one plane. For example, when viewed in the Z direction, the tip 47 of one cutting edge of the tool 12 may be located inside the sector with a central angle of about 1 ° to 5 °. In addition, assuming that the intersection of the two line segments (radius) of the fan shape is the center angle forming point of the fan shape, the center angle forming point of the fan shape and the rotation center axis C1 of the tool 12 are located relative to each other. There is.
 さらに説明すると、回転中心軸C1の延伸方向(Z方向)で見て、回転中心軸C1とマーク45の端と工具12の切れ刃の先端47とが1本の直線上に存在している。なお、工具12の切れ刃の先端47は複数(2つもしくは3つ)あるが、複数の切れ刃の先端47のうちの1つの先端47と回転中心軸C1とマーク45の端とが1本の直線上に存在していればよい。 Describing further, when viewed in the extending direction (Z direction) of the rotation center axis C1, the rotation center axis C1, the end of the mark 45, and the tip 47 of the cutting edge of the tool 12 exist on one straight line. The tool 12 has a plurality of cutting edge tips 47 (two or three), but one tip 47 of the plurality of cutting edge tips 47, the rotation center axis C1, and the end of the mark 45 are one. It suffices if it exists on the straight line of.
 また、マーク45を、主軸11ではなく工具12の切れ刃以外の部位に設け、光電センサ43が工具12に設けられているマーク45を検出するようにしてもよい。これにより、工具12の主軸11への設置をするときに、工具12に設置角度を気にする必要が無くなり、工具12の主軸11への設置が容易になる。 Alternatively, the mark 45 may be provided at a portion other than the cutting edge of the tool 12 instead of the spindle 11, and the photoelectric sensor 43 may detect the mark 45 provided on the tool 12. Accordingly, when the tool 12 is installed on the spindle 11, it is not necessary to care about the installation angle of the tool 12, and the tool 12 can be easily installed on the spindle 11.
 さらに、マークを設けることなく、光電センサ43もしくは近接センサ等のセンサで工具の切れ刃の先端47を検出することで、主軸11に設置されている工具12の回転角度を検出するようにしてもよい。この場合、エンドミル12が2枚刃になっていると、主軸11が1回転する毎に2周期のパルス信号が発せられ、エンドミル12が3枚刃になっていると、主軸11が1回転する毎に3周期のパルス信号が発せられる。 Further, the rotation angle of the tool 12 installed on the spindle 11 may be detected by detecting the tip 47 of the cutting edge of the tool with a sensor such as a photoelectric sensor 43 or a proximity sensor without providing a mark. Good. In this case, if the end mill 12 has two blades, a pulse signal of two cycles is issued every one rotation of the spindle 11, and if the end mill 12 has three blades, the spindle 11 makes one rotation. A pulse signal of 3 cycles is issued every time.
 制御装置20についてさらに説明すると、制御装置20は、主軸回転角度センサ41が検出した主軸11や工具12の回転角度の値に応じて、回転している工具12を撮影すべき旨の指令(撮影指令;撮影指令信号)をカメラ22に送るように構成されている。撮影指令を受信したカメラ22は、ただちに回転している工具12の撮影をし、工具12の静止画像を得るようになっている。そして、回転している工具12の切れ刃の先端47における工具12の最大外形の静止画像を得るようになっている。この最大外形の静止画像を得ることができる主軸11や工具12の回転角度を最大回転角度とする。最大回転角度は、第1の実施形態で述べた工具基準角度に相当する。 The control device 20 will be further described. The control device 20 issues a command (imaging) that the rotating tool 12 should be imaged in accordance with the values of the rotation angles of the spindle 11 and the tool 12 detected by the spindle rotation angle sensor 41. (Command; shooting command signal) is sent to the camera 22. The camera 22, which has received the shooting command, immediately shoots the rotating tool 12 and obtains a still image of the tool 12. Then, a still image of the maximum outer shape of the tool 12 at the tip 47 of the cutting edge of the rotating tool 12 is obtained. The rotation angle of the spindle 11 and the tool 12 that can obtain a still image of this maximum outer shape is the maximum rotation angle. The maximum rotation angle corresponds to the tool reference angle described in the first embodiment.
 ここで、回転している工具12の切れ刃の先端47における工具12の最大外形の静止画像について、ボールエンドミルを例に掲げてより詳しく説明する。 Here, a still image of the maximum outer shape of the tool 12 at the tip 47 of the cutting edge of the rotating tool 12 will be described in more detail with a ball end mill as an example.
 まず、ボールエンドミル12について説明する。ボールエンドミル12は、図9(a)で示すように外周に切れ刃(破線で示した箇所)が設けられている。なお、図9では、エンドミル12の形状を単純化して描いているので、切れ刃や溝の表示は省略している。 First, the ball end mill 12 will be described. As shown in FIG. 9A, the ball end mill 12 is provided with cutting edges (portions indicated by broken lines) on the outer circumference. It should be noted that in FIG. 9, the shape of the end mill 12 is drawn in a simplified manner, and therefore the display of cutting edges and grooves is omitted.
 ボールエンドミル12は、図9(a)で示すように円柱状の基端部49と半球状の先端部51とを備えて構成されている。基端部49の外径と先端部51の直径とはお互いが一致しており、基端部49の中心軸C1の延伸方向(Z方向)の一方の端(下端)に、先端部51がくっついた形状になっている。半球状の先端部51の円形の端面(円柱状の基端部49の円形の平面面にくっついている円形状の平面)の中心を、先端部51の中心C2とすると、中心C2は、ボールエンドミル12の中心軸C1上に存在している。 The ball end mill 12 is configured to include a cylindrical base end portion 49 and a hemispherical tip end portion 51 as shown in FIG. 9A. The outer diameter of the proximal end portion 49 and the diameter of the distal end portion 51 match each other, and the distal end portion 51 is located at one end (lower end) in the extending direction (Z direction) of the central axis C1 of the proximal end portion 49. It has a sticky shape. Assuming that the center of the circular end surface of the hemispherical tip portion 51 (the circular plane sticking to the circular plane surface of the cylindrical base end portion 49) is the center C2 of the tip portion 51, the center C2 is the ball. It exists on the central axis C1 of the end mill 12.
 ボールエンドミル12の切れ刃は、先端部51の外周と基端部49の端部(先端部51側の端部)とに形成されている。ボールエンドミル12は、基端部49の他方の端部が工具保持部33に係合して工具保持部33で保持されるようになっている。 The cutting edge of the ball end mill 12 is formed on the outer periphery of the tip portion 51 and the end portion of the base end portion 49 (end portion on the tip end 51 side). The ball end mill 12 is configured such that the other end portion of the base end portion 49 is engaged with the tool holding portion 33 and held by the tool holding portion 33.
 そして、主軸11の工具保持部33で保持されているボールエンドミル12は、主軸11とともに回転(中心軸C1を回転中心にして自転)することで、切れ刃で被加工物(ワーク)14を切削加工するようになっている。 Then, the ball end mill 12 held by the tool holding portion 33 of the spindle 11 rotates with the spindle 11 (rotates around the central axis C1 as a rotation center) to cut the workpiece (workpiece) 14 with a cutting edge. It is designed to be processed.
 次に、ボールエンドミル12で被加工物14を切削加工しているときにおける加工点について説明する。ボールエンドミル12の切れ刃で被加工物14を切削加工しているときに、ボールエンドミル12の切れ刃の先端47と被加工物14との接触点が加工点になる。 Next, processing points when the workpiece 14 is being cut by the ball end mill 12 will be described. When the workpiece 14 is being cut by the cutting edge of the ball end mill 12, the contact point between the tip 47 of the cutting edge of the ball end mill 12 and the workpiece 14 becomes the processing point.
 さらに説明すると、ボールエンドミル12を用いて被加工物14を所定の切り込み量で切削加工しているときに、被加工物14に対してボールエンドミル12がX方向やY方向やZ方向に移動している。この加工をしているときに、たとえば、ボールエンドミル12がこの移動方向の最も後端で、被加工物14に接している点(加工後に被加工物14の外形形状を決める箇所)が加工点になる。加工点は、ボールエンドミル12の切れ刃の先端47の一部に形成される。 More specifically, when the workpiece 14 is cut by the predetermined amount of cut using the ball end mill 12, the ball end mill 12 moves in the X direction, Y direction, and Z direction with respect to the workpiece 14. ing. During this processing, for example, the point at which the ball end mill 12 is in contact with the workpiece 14 at the rearmost end in this moving direction (the portion that determines the outer shape of the workpiece 14 after processing) is the processing point. become. The processing point is formed at a part of the tip 47 of the cutting edge of the ball end mill 12.
 次に、回転しているボールエンドミル12の切れ刃の先端47におけるボールエンドミル12の最大外形の静止画像について説明する。 Next, a still image of the maximum outer shape of the ball end mill 12 at the tip 47 of the cutting edge of the rotating ball end mill 12 will be described.
 回転していることでボールエンドミル12の切れ刃の位置は時刻の経過とともに変化する。たとえば、2枚刃のボールエンドミル12の場合、2つの切れ刃のうちの一方の切れ刃は、ボールエンドミル12が1回転する毎に1回転する。なお、2枚刃のボールエンドミル12をこの回転中心軸C1の延伸方向で見ると、回転中心軸C1に対して点対称になるように一対の切れ刃が形成されている(図3、図6、図7を参照)。 The position of the cutting edge of the ball end mill 12 changes with the passage of time due to the rotation. For example, in the case of the two-blade ball end mill 12, one of the two cutting edges makes one revolution every time the ball end mill 12 makes one revolution. When the two-blade ball end mill 12 is viewed in the extending direction of the rotation center axis C1, a pair of cutting edges are formed so as to be point-symmetric with respect to the rotation center axis C1 (FIGS. 3 and 6). , See FIG. 7).
 回転しているボールエンドミル12の一方の切れ刃をZ方向もしくはY方向で見ると、ボールエンドミル12の回転角度に応じて、切れ刃の先端47と回転中心軸C1との間の距離(たとえば、X方向の距離)が変化する。図6の(a)の参照符号La、図6の(b)の参照符号Lb、図6の(c)の参照符号Lc、図6の(a)の参照符号Ldで示すものが、上記X方向の距離である。また、工具12は、図6に矢印で示すように、反時計まわりに回転しており、時刻の経過とともに、図6の(a)で示す状態、図6の(b)で示す状態、図6の(c)で示す状態、図6の(d)で示す状態、図6の(a)で示す状態・・・をこの順に繰り返す。 When one of the cutting edges of the rotating ball end mill 12 is viewed in the Z direction or the Y direction, the distance between the tip 47 of the cutting edge and the rotation center axis C1 (for example, The distance in the X direction) changes. The reference numeral La of FIG. 6A, the reference numeral Lb of FIG. 6B, the reference numeral Lc of FIG. 6C, and the reference numeral Ld of FIG. The distance in the direction. Further, the tool 12 is rotating counterclockwise as shown by the arrow in FIG. 6, and with time, the state shown in FIG. 6A, the state shown in FIG. The state shown in FIG. 6C, the state shown in FIG. 6D, the state shown in FIG.
 そして、ある時刻(図6(b)、図6(d)で示す時刻)になったときにボールエンドミル12の一方の切れ刃の先端47と回転中心軸C1との間の距離の値が最大値Lb、Ldになる。この最大値Lb、Ldになった時におけるボールエンドミル12の静止画像が、回転しているボールエンドミル12の一方の切れ刃の先端47におけるボールエンドミル12の最大外形の静止画像になる。 Then, at a certain time (the time shown in FIGS. 6B and 6D), the value of the distance between the tip 47 of one of the cutting edges of the ball end mill 12 and the rotation center axis C1 becomes maximum. The values are Lb and Ld. The still image of the ball end mill 12 at the maximum values Lb and Ld becomes the still image of the maximum outer shape of the ball end mill 12 at the tip 47 of one cutting edge of the rotating ball end mill 12.
 また、2つの切れ刃のうちの他方の切れ刃の場合も、一方の切れ刃と同様に、ある時刻になったときに、ボールエンドミル12の他方の切れ刃の先端47と回転中心軸C1との間の距離の値が最大値になる。この最大値になった時におけるボールエンドミル12の静止画像が、回転しているボールエンドミル12の他方の切れ刃の先端におけるボールエンドミル12の最大外形の静止画像になる。 Further, also in the case of the other cutting edge of the two cutting edges, similarly to the one cutting edge, at a certain time, the tip 47 of the other cutting edge of the ball end mill 12 and the rotation center axis C1. The value of the distance between is the maximum value. The still image of the ball end mill 12 when it reaches this maximum value is a still image of the maximum outer shape of the ball end mill 12 at the tip of the other cutting edge of the rotating ball end mill 12.
 これらの最大外形の静止画像で得られたボールエンドミル12の切れ刃の外形(外周;線状の縁)は、ボールエンドミル12の切れ刃の先端47を示している。 The outer shape (outer periphery; linear edge) of the cutting edge of the ball end mill 12 obtained by still images of these maximum outer shapes shows the tip 47 of the cutting edge of the ball end mill 12.
 なお、実際には、図9(d)で示すように、回転中心軸C1に対して、ごく僅かではあるが、一方の切れ刃の先端47(47A)と他方の切れ刃の先端47(47B)とが非対称になっている場合が多い。この場合における切れ刃の先端47におけるボールエンドミル12の最大外形の静止画像は、一対の切れ刃の先端47のうち、回転中心軸C1との間の距離の値が大きいほうのものが採用される。 Actually, as shown in FIG. 9 (d), the tip 47 (47A) of one cutting edge and the tip 47 (47B) of the other cutting edge are slightly smaller than the rotation center axis C1. ) And are often asymmetric. In this case, as the still image of the maximum outer shape of the ball end mill 12 at the tip 47 of the cutting edge, the one having the larger value of the distance from the rotation center axis C1 of the tip 47 of the pair of cutting edges is adopted. ..
 なお、図9(d)の二点鎖線は、一方の切れ刃の先端47Aを回転中心軸C1に対して対称に配置したものである。図9(d)では、一方の切れ刃の先端47Aの内側に他方の切れ刃の先端47Bの総てが位置しているが、他方の切れ刃の先端47Bの一部が一方の切れ刃の先端47Aの外側に位置してもよい。この場合、切れ刃の先端47におけるボールエンドミル12の最大外形の静止画像は、一方の切れ刃の先端47Aの一部と他方の切れ刃の先端47Bの一部とで形成される。 The two-dot chain line in FIG. 9 (d) shows the tip 47A of one cutting edge arranged symmetrically with respect to the rotation center axis C1. In FIG. 9D, all the tips 47B of the other cutting edge are located inside the tip 47A of the one cutting edge, but a part of the tip 47B of the other cutting edge is It may be located outside the tip 47A. In this case, the still image of the maximum outer shape of the ball end mill 12 at the tip 47 of the cutting edge is formed by a part of the tip 47A of one cutting edge and a part of the tip 47B of the other cutting edge.
 また、2枚の切れ刃を備えたボールエンドミル12を撮影する場合、ボールエンドミル12が半回転(180°回転)する毎に、カメラ22で撮影してボールエンドミル12の最大外形の静止画像を得るようになっている。3枚の切れ刃を備えたボールエンドミル12を撮影する場合、ボールエンドミル12が1/3回転(120°回転)する毎に、カメラ22で撮影してボールエンドミル12の最大外形の静止画像を得るようになっている。さらに、n枚の切れ刃を備えたボールエンドミル12を撮影する場合、ボールエンドミル12が1/n回転(360°/n)する毎に、カメラ22で撮影してボールエンドミル12の最大外形の静止画像を得るようになっている。 Further, when photographing the ball end mill 12 having two cutting edges, every time the ball end mill 12 makes a half rotation (180 ° rotation), a photograph is taken by the camera 22 to obtain a still image of the maximum outer shape of the ball end mill 12. It is like this. When photographing the ball end mill 12 provided with three cutting edges, every time the ball end mill 12 makes 1/3 rotation (120 ° rotation), a photograph is taken by the camera 22 to obtain a still image of the maximum outer shape of the ball end mill 12. It is like this. Further, when photographing the ball end mill 12 having n cutting edges, every time the ball end mill 12 rotates 1 / n (360 ° / n), the camera 22 photographs and the maximum outer shape of the ball end mill 12 is stopped. Get the image.
 主軸回転角度センサ41は、主軸11の回転数(回転角速度)も検出するように構成されている。主軸回転角度センサ41は、上述したように、一定の回転数で回転している主軸11によってたとえば矩形波状の連続パルス信号を発するように構成されている。制御装置20は、主軸回転角度センサ41が発した連続パルス信号を受信し、所定の時間あたりの、オン・オフされる連続パルス信号の時間間隔(連続パルス信号の周期)を測定することで、主軸11の回転数を検出するようになっている。 The spindle rotation angle sensor 41 is also configured to detect the rotation speed (rotational angular velocity) of the spindle 11. As described above, the main shaft rotation angle sensor 41 is configured to emit a continuous pulse signal of, for example, a rectangular wave by the main shaft 11 rotating at a constant rotation speed. The control device 20 receives the continuous pulse signal emitted from the spindle rotation angle sensor 41, and measures the time interval (the cycle of the continuous pulse signal) of the continuous pulse signal that is turned on / off per predetermined time. The number of rotations of the main shaft 11 is detected.
 なお、制御装置20の代わりに主軸回転角度センサ41がオン・オフされる連続パルス信号の時間間隔を測定することで、主軸回転角度センサ41が主軸11の回転数を検出するように構成されていてもよい。 The spindle rotation angle sensor 41 is configured to detect the rotation speed of the spindle 11 by measuring the time interval of the continuous pulse signal in which the spindle rotation angle sensor 41 is turned on / off instead of the control device 20. May be.
 制御装置20は、カメラ22に撮影指令を出力するタイミングを主軸11の回転数(回転角速度)に応じて変化させるようになっている。 The control device 20 changes the timing of outputting a shooting command to the camera 22 according to the rotation speed (rotational angular velocity) of the spindle 11.
 制御装置20によるカメラ22への撮影指令を出力するタイミングの変化(調整)は、回転している工具12の切れ刃の先端47における工具12の最大外形の静止画像を得るためにされる。すなわち、最大回転角度になる工具12の静止画像を得るためにされる。 The change (adjustment) in the timing of outputting the shooting command to the camera 22 by the control device 20 is performed in order to obtain a still image of the maximum outer shape of the tool 12 at the tip 47 of the cutting edge of the rotating tool 12. That is, it is performed to obtain a still image of the tool 12 having the maximum rotation angle.
 さらに説明すると、制御装置20がカメラ22に撮影指令を出力してから実際にカメラ22が撮影をするまで、僅かではあるが、ディレイ(撮影タイムラグ;ディレイ時間)が生じてしまう。たとえば、工具12の切れ刃の先端47における工具12の最大外形の静止画像を得ることができる回転角度に工具12がなった時に、制御装置20からカメラ22に撮影指令を出力しても、実際にカメラ22が工具12を撮影するまで、僅かな時間を要してしまう。この僅かな時間に工具12が僅かに回転してしまい、工具12の切れ刃の先端47における工具12の最大外形の静止画像を得ることができなくなってしまう。 To further explain, there is a slight delay (shooting time lag; delay time) from when the control device 20 outputs a shooting command to the camera 22 until the camera 22 actually shoots. For example, even if the control device 20 outputs a shooting command to the camera 22 when the tool 12 reaches a rotation angle at which a still image of the maximum outer shape of the tool 12 at the tip 47 of the cutting edge of the tool 12 can be obtained, In addition, it takes a short time until the camera 22 photographs the tool 12. The tool 12 slightly rotates during this short time, and it becomes impossible to obtain a still image of the maximum outer shape of the tool 12 at the tip 47 of the cutting edge of the tool 12.
 図6を参照して説明する。図6は2枚刃の工具12をZ方向で見た図である。図6で示す態様では、工具12は矢印で示す方向に1分間で6万回転しているものとする。上述したように、図6(a)~図6(d)に向かって時刻が経過している。 Explain with reference to FIG. FIG. 6 is a view of the two-blade tool 12 viewed in the Z direction. In the embodiment shown in FIG. 6, the tool 12 is assumed to rotate 60,000 times in one minute in the direction indicated by the arrow. As described above, the time has passed from FIG. 6A to FIG. 6D.
 図6(a)で示す状態1は、ディレイが「0μsec」である場合を示しており、図6(b)で示す状態2は、ディレイが「250μsec」である場合を示しており、図6(c)で示す状態3は、ディレイが「500μsec」である場合を示しており、図6(d)で示す状態4は、ディレイが「750μsec」である場合を示している。 State 1 shown in FIG. 6A shows a case where the delay is “0 μsec”, and State 2 shown in FIG. 6B shows a case where the delay is “250 μsec”. State 3 shown in (c) shows a case where the delay is "500 μsec", and state 4 shown in FIG. 6D shows a case where the delay is "750 μsec".
 たとえば、ディレイが「250μsec」である場合において、状態1の時に撮影指令を出力すると、状態2の回転角度になっている工具12が撮影されるようになっている。 For example, when the delay is “250 μsec” and the shooting command is output in the state 1, the tool 12 having the rotation angle of the state 2 is shot.
 なお、図6の「照明」は後述する発光装置61を示している。また、上述したように、図6(b)(d)の状態2、状態4で撮影することで、工具12の最大外形の静止画像を得ることができる。 Note that “lighting” in FIG. 6 indicates a light emitting device 61 described later. Further, as described above, a still image of the maximum outer shape of the tool 12 can be obtained by photographing in the states 2 and 4 of FIGS. 6B and 6D.
 撮影タイムラグがあると、工具12の切れ刃の先端47における工具12の最大外形の静止画像を得ることができなくなってしまう。 If there is a shooting time lag, it will not be possible to obtain a still image of the maximum outer shape of the tool 12 at the tip 47 of the cutting edge of the tool 12.
 そこで、予めもとめられた撮影タイムラグ(制御装置20のメモリに格納されている撮影タイムラグの時間)を用いて、カメラ22に撮影指令を出力するタイミングの調整をしている。たとえば、工具12の切れ刃の先端47における工具12の最大外形の静止画像を得ることができる回転角度が到来する時刻よりも撮影タイムラグの時間だけ遡った時刻にカメラ22に撮影指令を出力するようになっている。 Therefore, the timing of outputting the shooting command to the camera 22 is adjusted using the shooting time lag (the shooting time lag time stored in the memory of the control device 20) that is obtained in advance. For example, a shooting command is output to the camera 22 at a time point that is a shooting time lag back from the time when the rotation angle at which the maximum outer shape of the tool 12 at the tip 47 of the cutting edge of the tool 12 can be obtained is reached. It has become.
 ここで、カメラ22に撮影指令を出力するタイミングの調整について、図10を参照しつつ詳しく説明する。 Here, the adjustment of the timing of outputting the shooting command to the camera 22 will be described in detail with reference to FIG.
 図10の横軸は時刻tの経過を示しており、縦軸は主軸回転角度センサ41が発する連続パルス信号のオン・オフ状態を示している。 The horizontal axis of FIG. 10 shows the passage of time t, and the vertical axis shows the ON / OFF state of the continuous pulse signal generated by the spindle rotation angle sensor 41.
 図10(a)では、たとえば、時刻t1で主軸11や工具12が最大回転角度になっているものとする。時刻t1で主軸回転角度センサ41がオン信号を発し始め、時刻t2でオン信号を停止し、時刻t3で主軸回転角度センサ41がオン信号を発し始め時刻t4でオン信号を停止することを繰り返し行うようになっている。 In FIG. 10A, for example, it is assumed that the spindle 11 and the tool 12 are at the maximum rotation angle at time t1. The spindle rotation angle sensor 41 starts emitting an ON signal at time t1, the ON signal stops at time t2, the spindle rotation angle sensor 41 starts emitting an ON signal at time t3, and the ON signal stops at time t4. It is like this.
 図10(a)に参照符号TFで示すものは、連続パルス信号における1周期を示す時間である。図10(a)に参照符号TDで示すものは、撮影タイムラグの時間である。時刻t1で制御装置20がカメラ22に撮影指令を出力すると、カメラ22が工具12を撮影する時刻が参照符号TDで示す時刻になってしまう。これでは、工具12の最大外形の静止画像を得ることができない。 The reference numeral TF shown in FIG. 10A is the time indicating one cycle in the continuous pulse signal. Reference numeral TD in FIG. 10A indicates the time of the shooting time lag. When the control device 20 outputs a shooting command to the camera 22 at time t1, the time at which the camera 22 shoots the tool 12 becomes the time indicated by reference numeral TD. This makes it impossible to obtain a still image of the maximum outer shape of the tool 12.
 そこで、時刻t1よりも時間TDだけ遡った時刻td1で制御装置20がカメラ22に撮影指令を出力すると、カメラ22が工具12を撮影する時刻が時刻t1になり、工具12の最大外形の静止画像を得ることができる。 Therefore, when the control device 20 outputs a shooting command to the camera 22 at time td1 which is a time TD back from time t1, the time at which the camera 22 shoots the tool 12 becomes time t1, and a still image of the maximum outer shape of the tool 12 is obtained. Can be obtained.
 なお、時刻t1よりも時間(TF-TD)だけ経過した時刻td2で制御装置20がカメラ22に撮影指令を出力すると、カメラ22が工具12を撮影する時刻が時刻t3になり、これによっても、工具12の最大外形の静止画像を得ることができる。 Note that when the control device 20 outputs a shooting command to the camera 22 at time td2, which is a time (TF-TD) that has elapsed from time t1, the time at which the camera 22 shoots the tool 12 becomes time t3. It is possible to obtain a still image of the maximum outer shape of the tool 12.
 ところで、図10(a)では、撮影タイムラグの時間TDが連続パルス信号における1周期を示す時間TFよりも短くなっているが、時間TDが時間TFよりも長くなる場合がある。 By the way, in FIG. 10A, the time TD of the imaging time lag is shorter than the time TF indicating one cycle in the continuous pulse signal, but the time TD may be longer than the time TF.
 この場合について図10(b)を参照しつつ説明する。なお、図10(b)では、「TF<TD<2×TF」になっているが、上記「2」が「3」以上の自然数であっても同様に考えることができる。 This case will be described with reference to FIG. 10 (b). In addition, in FIG. 10B, “TF <TD <2 × TF” is set, but the same can be considered when “2” is a natural number of “3” or more.
 図10(b)では、時刻t1よりも時間(2×TF-TD)だけ経過した時刻td2で制御装置20がカメラ22に撮影指令を出力する。これにより、カメラ22が工具12を撮影する時刻が時刻t5になり、これによっても、工具12の最大外形の静止画像を得ることができる。 In FIG. 10B, the control device 20 outputs a shooting command to the camera 22 at time td2, which is a time (2 × TF-TD) elapsed after time t1. As a result, the time at which the camera 22 captures the tool 12 is time t5, which also makes it possible to obtain a still image of the maximum outer shape of the tool 12.
 なお、図10(b)で示す態様において、時刻t1よりも時間TDだけ遡った時刻(図10(b)では図示せず)で制御装置20がカメラ22に撮影指令を出力するようにしてもよい。この場合、カメラ22が工具12を撮影する時刻が時刻t3になる。 In the mode shown in FIG. 10B, the control device 20 may output a shooting command to the camera 22 at a time (not shown in FIG. 10B) that is traced back by time TD from time t1. Good. In this case, the time when the camera 22 photographs the tool 12 is time t3.
 また、図10(a)や図10(b)において、「TF-TD」や「2×TF-TD」を「n×TF-TD」に置き換えてもよい。ただし、「n」は任意の自然数である。 Also, in FIG. 10A and FIG. 10B, “TF-TD” and “2 × TF-TD” may be replaced with “n × TF-TD”. However, "n" is an arbitrary natural number.
 次に、撮影タイムラグの時間TDのもとめ方について例を掲げて説明する。 Next, I will explain how to find the time TD of the shooting time lag with an example.
 主軸11の工具保持部33に、マーク(図示せず)が1つついているダミー工具(図示せず)を設置し、ダミー工具を一定の回転数で回転させておく。そして、主軸回転角度センサ41でダミー工具の回転角度が所定の回転角度(撮影をすべき回転角度)になったことを検出したときに、制御装置20がカメラ22に撮影指令を出力し、カメラ22がダミー工具を撮影したダミー工具の静止画像を得る。 Install a dummy tool (not shown) with a mark (not shown) on the tool holder 33 of the spindle 11, and rotate the dummy tool at a constant rotation speed. When the spindle rotation angle sensor 41 detects that the rotation angle of the dummy tool has reached a predetermined rotation angle (the rotation angle at which the image should be taken), the control device 20 outputs a shooting command to the camera 22, and the camera 22 obtains a still image of the dummy tool in which the dummy tool is photographed.
 この静止画像に写っている上記マーク(図示せず)の位置ずれ量を検出することで、撮影タイムラグの時間TDをもとめる。 Detect the time TD of the shooting time lag by detecting the position shift amount of the mark (not shown) shown in this still image.
 たとえば、6万回転/分でダミー工具が回転している状態で、ダミー工具のマークの回転角度が「0°」になったことを主軸回転角度センサ41が検出し、制御装置20がカメラ22に撮影指令を出力し、カメラ22がダミー工具を撮影したことでダミー工具の静止画像が得られる。この得られた静止画像に写っているマークの回転角度が「45°」になっていれば、撮影タイムラグの時間TDは、125μsecということになり、回転角度が「90°」になっていれば、撮影タイムラグの時間TDは、250μsecということになる。 For example, when the dummy tool is rotating at 60,000 rotations / minute, the spindle rotation angle sensor 41 detects that the rotation angle of the mark of the dummy tool has become “0 °”, and the control device 20 causes the camera 22 to rotate. A still image of the dummy tool is obtained by outputting a shooting command to the camera 22 and shooting the dummy tool by the camera 22. If the rotation angle of the mark shown in the obtained still image is "45 °", the time TD of the photographing time lag is 125 µsec, and if the rotation angle is "90 °". The time TD of the photographing time lag is 250 μsec.
 工具形状測定装置1aでは、たとえば、主軸11が一定回転数naで回転しているときのタイムラグ時間TDaを測定しておき、主軸11が他の一定回転数nbで回転しているときのタイムラグ時間TDbを上記タイムラグ時間TDaから計算で求めている。すなわち、「タイムラグ時間TDb=タイムラグ時間TDa×一定回転数nb/一定回転数na」としている。 In the tool shape measuring apparatus 1a, for example, the time lag time TDa when the main spindle 11 is rotating at a constant rotation speed na is measured, and the time lag time when the main spindle 11 is rotating at another constant rotation speed nb. TDb is calculated from the time lag time TDa. That is, “time lag time TDb = time lag time TDa × constant rotation speed nb / constant rotation speed na”.
 なお、工具形状測定装置1aにおいて、主軸11が複数の一定回転数na1、na2、na3・・・で回転しているときのそれぞれにおけるタイムラグ時間TDa1、TDa2、TDa3・・・を測定しておいておき、主軸11が他の一定回転数nbで回転しているときのタイムラグ時間TDbを次のようにしてもとめてもよい。ただし、na1<na2<na3・・・とし、TDa1>TDa2>TDa3・・・とする。 In the tool shape measuring apparatus 1a, the time lag times TDa1, TDa2, TDa3, ... When the main spindle 11 is rotating at a plurality of constant rotation speeds na1, na2, na3. Alternatively, the time lag time TDb when the spindle 11 is rotating at another constant rotation speed nb may be set as follows. However, na1 <na2 <na3 ... And TDa1> TDa2> TDa3.
 一定回転数nbが、一定回転数na1、na2、na3・・・のいずれかの回転数と一致しているときには、この一致している回転数におけるタイムラグ時間を、タイムラグ時間TDbとして採用する。 When the constant rotation speed nb matches any one of the constant rotation speeds na1, na2, na3 ..., the time lag time at this matching rotation speed is adopted as the time lag time TDb.
 また、一定回転数nbが、複数の一定回転数na1、na2、na3・・・のいずれかの回転数と一致していないときには、一定回転数nbの両隣の回転数からタイムラグ時間TDbをもとめる。たとえば、「TDb=TDa1+((nb-na1)/(na2-na1))×(TDa2-TDa1)」とする。 When the constant rotation speed nb does not match any one of the plurality of constant rotation speeds na1, na2, na3, ..., The time lag time TDb is obtained from the rotation speeds on both sides of the constant rotation speed nb. For example, “TDb = TDa1 + ((nb-na1) / (na2-na1)) × (TDa2-TDa1)”.
 なお、タイムラグ時間TDの値が大きくて、主軸11が1分間に6万回転していると、タイムラグ時間TD内に主軸11が360°以上回転している場合もある。この場合、主軸11をはじめは低い回転数で回転させておいてタイムラグ時間TDをもとめ、この後徐々に主軸11の回転数を上げながらタイムラグ時間TDをもとめれば、タイムラグ時間TD内に主軸11が360°以上回転してしまっていることを検出することができる。 Note that if the value of the time lag time TD is large and the spindle 11 rotates 60,000 times per minute, the spindle 11 may rotate 360 ° or more within the time lag TD. In this case, if the main spindle 11 is first rotated at a low rotational speed to find the time lag time TD, and then the rotational speed of the main spindle 11 is gradually increased to find the time lag time TD, the main spindle 11 is within the time lag time TD. Can be detected to have rotated by 360 ° or more.
 また、ダミー工具として図11で示すものを採用してもよい。図11で示すダミー工具63は、円柱状のダミー工具本体65の側面に複数のマーク67(67A、67B、67C、67D・・・)が設けられている。各マーク67は、円柱状のダミー工具本体65の円周方向(図11(b)の左右方向)では、一定の間隔をあけて配置されている。また、各マーク67(67A、67B、67C、67D・・・)は、円柱状のダミー工具本体65の高さ方向(図11(b)の上下方向)では、一定の間隔をあけて配置されているとともに、図11(b)の左から右に向かうにしたがって、Z方向下端からの距離が次第に大きくなっている。 Also, the dummy tool shown in FIG. 11 may be adopted. The dummy tool 63 shown in FIG. 11 is provided with a plurality of marks 67 (67A, 67B, 67C, 67D ...) On the side surface of a cylindrical dummy tool body 65. The marks 67 are arranged at regular intervals in the circumferential direction of the cylindrical dummy tool main body 65 (the left-right direction in FIG. 11B). Further, the respective marks 67 (67A, 67B, 67C, 67D ...) Are arranged at regular intervals in the height direction of the cylindrical dummy tool body 65 (vertical direction in FIG. 11B). At the same time, the distance from the lower end in the Z direction gradually increases from the left to the right in FIG.
 なお、上記説明では、主軸11が1回転する毎に主軸回転角度センサ41が1周期のパスル信号を発することとしているが、主軸回転角度センサ41を設けることに代えてもしくは加えてロータリエンコーダ(図示せず)を設けて、主軸11の回転角度を検出するようにしてもよい。ロータリエンコーダの分解能は主軸回転角度センサ41の分解能に比べて十分に小さくたとえば、1°程度もしくは0.1°~5°程度、あるいはそれ以下の分解能になっているものとする。このようなロータリエンコーダを用いれば、適切なロータリエンコーダの値を設置し、その値になった時に撮影指令を出力することで、適切な工具の画像を撮影することができる。 In the above description, the spindle rotation angle sensor 41 emits a pulse signal for one cycle every time the spindle 11 makes one rotation, but instead of or in addition to the spindle rotation angle sensor 41, a rotary encoder (Fig. (Not shown) may be provided to detect the rotation angle of the spindle 11. The resolution of the rotary encoder is sufficiently smaller than the resolution of the spindle rotation angle sensor 41, and is, for example, about 1 ° or about 0.1 ° to 5 °, or less. When such a rotary encoder is used, an appropriate rotary encoder value is set, and when the value is reached, a shooting command is output, so that an image of an appropriate tool can be shot.
 また、上記説明では、タイムラグの要因として、制御装置20がカメラ22に撮影指令を出力してからカメラ22が撮影をするまでの時間を掲げているが、主軸回転角度センサ41に起因して発生するタイムラグや制御装置20に起因して発生するタイムラグを、制御装置20がカメラ22に撮影指令を出力してからカメラ22が撮影をするまでのタイムラグに加えるようにしてもよい。 Further, in the above description, as the factor of the time lag, the time from when the control device 20 outputs the shooting command to the camera 22 to when the camera 22 shoots is described. However, it occurs due to the spindle rotation angle sensor 41. The time lag caused by the control device 20 or the time lag caused by the control device 20 may be added to the time lag from when the control device 20 outputs the shooting command to the camera 22 to when the camera 22 shoots.
 ところで、制御装置20による撮影指令の出力として、第1の出力と第2の出力とを掲げてもよい。 By the way, the first output and the second output may be listed as the output of the shooting command by the control device 20.
 第1の出力は、主軸11が所定の角度(たとえば1°)ずつ回転した状態における複数の画像(複数の工具12の静止画像)を得るためにされるものである。複数の工具12の静止画像は、主軸11の1回転分に相当する画像である。 The first output is for obtaining a plurality of images (still images of a plurality of tools 12) in a state in which the spindle 11 is rotated by a predetermined angle (for example, 1 °). The still images of the plurality of tools 12 are images corresponding to one rotation of the spindle 11.
 このような第1の出力がされることで、1回目の撮影(第1群の撮影)がされ、たとえば、工具12の1周分の360枚の画像がカメラ22で撮影され得られるようになっている。すなわち、ある所定の回転角度になっている主軸11の回転角度を基準角度(0°)とすると、基準角度から1°回転したときの工具12の画像、基準角度から2°回転したときの工具12の画像、基準角度から3°回転したときの工具12の画像・・・という具合で、工具12の1周分の360枚に画像が得られるようになっている。 By the first output as described above, the first image capturing (image capturing of the first group) is performed, and for example, 360 images for one rotation of the tool 12 can be captured by the camera 22. Is becoming That is, assuming that the rotation angle of the spindle 11 that has a predetermined rotation angle is the reference angle (0 °), an image of the tool 12 when rotated by 1 ° from the reference angle, a tool when rotated by 2 ° from the reference angle 12 images, an image of the tool 12 when rotated from the reference angle by 3 °, and the like, so that an image can be obtained on 360 sheets for one revolution of the tool 12.
 なお、上記1°の角度は、工具12の実際の形状に対する撮影画像(カメラ22の撮影で得られた画像)の誤差が許容範囲内に収まる角度である。 Note that the above-mentioned angle of 1 ° is an angle within which the error of the photographed image (the image obtained by photographing with the camera 22) with respect to the actual shape of the tool 12 falls within the allowable range.
 また、主軸11が極めて速く回転しているので、工具12が1回転する間に360回の撮影をするのではなく、工具12が複数回転する間に360回の撮影がされるようになっている。 Further, since the spindle 11 rotates extremely fast, 360 shots are not taken while the tool 12 makes one revolution, but 360 shots are made while the tool 12 makes a plurality of revolutions. There is.
 例を掲げて説明する。主軸の基準角度(0°)とすると、1枚目の画像は、主軸11が基準角度から360°×m+1°回転した状態の画像になる。2枚目の画像は、主軸11が基準角度から360°×m+2°回転した状態の画像になる。以下、p枚目の画像は、主軸11が基準角度から360°×m+p°回転した状態の画像になる。ただし、m、m2・・・p・・・、pは自然数であり、m<m<・・・mp・・・である。 An example will be explained. If the reference angle of the main axis is 0 °, the first image is an image in which the main axis 11 is rotated by 360 ° × m 1 + 1 ° from the reference angle. The second image is an image in which the main shaft 11 is rotated 360 ° × m 2 + 2 ° from the reference angle. Hereinafter, the p-th image is an image in which the main shaft 11 is rotated by 360 ° × m p + p ° from the reference angle. However, m 1, m 2 ··· m p ···, p is a natural number, which is m 1 <m 2 <··· m p ···.
 なお、上記説明では、m<m<・・・mp・・・としたことで、1°の撮影の後に2°の撮影をしている。すなわち、上記説明では、工具12の基準角度からの回転角度が小さい状態から順に撮影している。しかし、必ずしも、このようにする必要はない。工具12の基準角度からの回転角度の大小にかかわらない撮影順序で撮影をしてもよい。たとえば、350°の撮影の後に10°の撮影をし、10°の撮影の後に、121°の撮影をする・・・ようにしてもよい。 In the above description, m 1 <m 2 <... m p ... Therefore, 2 ° is photographed after 1 ° is photographed. That is, in the above description, the images are taken in order from the state where the rotation angle of the tool 12 from the reference angle is small. However, this does not necessarily have to be the case. The images may be taken in a shooting order irrespective of the size of the rotation angle of the tool 12 from the reference angle. For example, shooting may be performed at 10 ° after shooting at 350 °, and shooting at 121 ° may be performed after shooting at 10 °.
 また、1回目の撮影信号が出力された時から360°×m+1°回転した状態の工具12を撮影して1枚目の工具12の画像を得るようにし、1枚目の画像撮影終了後であって、2回目の撮影信号が出力された時から360°×m+2°回転した状態の工具12を撮影して2枚目の工具12の画像を得るようにし、・・・p-1枚目の画像撮影終了後であって、p回目の撮影信号が出力された時から360°×m+p°回転した状態の工具12を撮影してp枚目の工具12の画像を得るようにし、・・・359枚目の画像撮影終了後であって、360回目の撮影信号が出力された時から360°×m+360°回転した状態の工具12を撮影して360枚目の工具12の画像を得るようにしてもよい。撮影と撮影の間の時間は工具形状測定装置1aが工具12の撮影が終了し、次の撮影の用意ができる状態となるまでの十分な時間を取る必要がある。ただしmは自然数である。 Further, the tool 12 in the state of being rotated by 360 ° × m 0 + 1 ° from the time when the first photographing signal is output is photographed to obtain the image of the first tool 12, and the photographing of the first image is completed. After that, the tool 12 in a state of being rotated by 360 ° × m 0 + 2 ° from the time when the second photographing signal is output is photographed to obtain an image of the second tool 12, ... p -After the image capturing of the first image is completed, and the image of the p-th tool 12 is captured by capturing an image of the tool 12 rotated 360 ° × m 0 + p ° from when the p-th image capturing signal was output. After the 359th image is captured, the tool 12 is rotated 360 ° × m 0 + 360 ° after the 360th image signal is output, and the 360th image is captured. The image of the tool 12 may be obtained. The time between shootings needs to be long enough until the tool shape measuring device 1a finishes shooting the tool 12 and is ready for the next shooting. However, m 0 is a natural number.
 また、工具形状測定装置1aには、工具12の回転角度を入力する工具回転角度入力部(図示せず)が設けられている。工具回転角度入力部は、たとえば、制御装置20のところに設けられている。 Further, the tool shape measuring device 1a is provided with a tool rotation angle input unit (not shown) for inputting the rotation angle of the tool 12. The tool rotation angle input unit is provided, for example, at the control device 20.
 そして、第1の出力によって得られた画像のうちで、撮影したい回転角度になっている工具12の回転角度が、工具回転角度入力部から制御装置20に入力されるようになっている。 Then, in the image obtained by the first output, the rotation angle of the tool 12 at the rotation angle desired to be photographed is input to the control device 20 from the tool rotation angle input unit.
 さらに説明すると、1回目に撮影した画像を見て撮影が必要な工具12の角度(1回目の撮影によって得られた複数の画像のうちの必要な画像)をオペレータが選択する。そして、この選択された角度のみで撮影を行いたい場合は、工具回転角度入力部から、撮影したい工具12の回転角度を入力するようになっている。たとえば、1°と2°の回転角度になっている工具を撮影した場合には、1°と2°を、工具回転角度入力部を用いて入力するのである。 Describing further, the operator selects the angle of the tool 12 that needs to be photographed by looking at the image photographed the first time (the necessary image of the plurality of images obtained by the first photographing). Then, when it is desired to shoot only with the selected angle, the rotation angle of the tool 12 to be shot is input from the tool rotation angle input unit. For example, when a tool having a rotation angle of 1 ° and 2 ° is photographed, 1 ° and 2 ° are input using the tool rotation angle input unit.
 制御装置20は、第1の出力をした後、工具回転角度入力部で入力された回転角度における工具12の撮影するために、第2の出力をするように構成されている。 The control device 20 is configured to output the first output and then output the second output in order to capture an image of the tool 12 at the rotation angle input by the tool rotation angle input unit.
 このような撮影指令の第2の出力がされることで、2回目の撮影(第2群の撮影)がされ、撮影したい回転角度になっている工具12の画像のみを得ることができる。 With the second output of such a shooting command, the second shooting (shooting of the second group) is performed, and only the image of the tool 12 at the rotation angle desired to be shot can be obtained.
 制御装置20が、第1の出力をした後、工具回転角度入力部で入力された回転角度における工具12の撮影するために、第2の出力をするように構成されているので、画像データを保存するメモリの節約になる。 Since the control device 20 is configured to output the first output and then output the second output in order to capture the image of the tool 12 at the rotation angle input by the tool rotation angle input unit, the image data is output. Saves memory savings.
 また、工具形状測定装置1aには、カメラ22の撮影に同期して発光する発光装置(照明装置;たとえばストロボ)61が設けられている。そして、制御装置20によるカメラ22への撮影指令の出力によって、ストロボ61が工具12に向けて光を発するように構成されている。なお、ストロボ61の発光体(発光源)として、たとえばLEDが採用されている。 Further, the tool shape measuring device 1a is provided with a light emitting device (illuminating device; for example, a strobe) 61 that emits light in synchronization with the photographing of the camera 22. Then, the strobe 61 emits light toward the tool 12 in response to the output of the photographing command to the camera 22 by the control device 20. Note that, for example, an LED is adopted as the light emitting body (light emitting source) of the strobe 61.
 ストロボ61の発光は、より鮮明な工具12の静止画像を得るために、また、より短時間で工具12を撮影するためになされる。カメラ22のシャッターが開いている時間よりもストロボ61が発光している時間のほうが短く、カメラ22のシャッターが開いている時間内にストロボ61が発光するようになっている。 The strobe 61 emits light in order to obtain a clearer still image of the tool 12 and to photograph the tool 12 in a shorter time. The strobe 61 emits light for a shorter time than the shutter of the camera 22 is open, and the strobe 61 emits light within the period of time when the shutter of the camera 22 is open.
 すなわち、制御装置20によるカメラ22への撮影指令の出力によって、カメラ22のシャッターが開いている時間内(カメラ22のシャッターが全開している時間内)に、ストロボ61が発光するように構成されている。 That is, the strobe 61 is configured to emit light within the time when the shutter of the camera 22 is open (the time when the shutter of the camera 22 is fully open) by the output of the shooting command to the camera 22 by the control device 20. ing.
 換言すれば、制御装置20によるカメラ22への撮影指令の出力がされたときに、カメラ22がただちにシャッターを開く動作を開始するようになっている。ストロボ61は、カメラ22がシャッターを開く動作を開始した時刻よりもわずかな時間が経過した時刻であって、しかも、カメラ22がシャッターを閉じる動作を開始する前に、発光するように構成されている。 In other words, when the control device 20 outputs a shooting command to the camera 22, the camera 22 immediately starts the operation of opening the shutter. The strobe 61 is configured to emit light at a time slightly after the time when the camera 22 starts the operation of opening the shutter and before the camera 22 starts the operation of closing the shutter. There is.
 さらに説明すると、主軸回転角度センサ41の測定によるトリガーでカメラ22のシャッターとストロボ61に指示(撮影指令)を与えてもよいが、カメラ22のシャッターが開ききらないうちにストロボ61が発光してしまうこともある。これを回避するために、ストロボ61の発光のタイミングを遅らせる(ディレイを入れる)。そして、十分にシャッターが開ききったタイミングでストロボ61を発光させるようになっている。 More specifically, a command (photographing command) may be given to the shutter of the camera 22 and the strobe 61 by a trigger measured by the spindle rotation angle sensor 41, but the strobe 61 emits light before the shutter of the camera 22 is fully opened. It may be lost. In order to avoid this, the timing of light emission of the strobe 61 is delayed (delay is inserted). The strobe 61 is made to emit light when the shutter is fully opened.
 これにより、カメラ22のシャッターが開ききらないうちに発光装置61が発光しないようになっている。また、カメラ22のシャッターが閉じてしまっている状態、もしくは、閉じている途中の状態で、ストロボ61が発光しないようになっている。 With this, the light emitting device 61 does not emit light before the shutter of the camera 22 is fully opened. Further, the strobe 61 does not emit light when the shutter of the camera 22 is closed or in the middle of being closed.
 ストロボ61を使用して(ストロボ61の瞬間的な発光によって)工具12の静止画を得る場合には、上述したように、遅いシャッタースピードでカメラ22が工具12を撮影する。なお、ストロボ61の発光体としてLEDが採用されている場合においては、LEDの輝度が高く非常に明るいので、撮影環境をそれ程暗くする必要はない。 When using the strobe 61 to obtain a still image of the tool 12 (due to the instantaneous flash of the strobe 61), the camera 22 shoots the tool 12 at a slow shutter speed as described above. When an LED is used as the light emitting body of the strobe 61, the brightness of the LED is high and it is very bright, so it is not necessary to make the shooting environment so dark.
 また、ストロボ61を設けた場合、図7で示すように、回転している工具12を間にして一方の側にカメラ22が設置されており他方の側にストロボ61が設置されている。そして、ストロボ61が工具12とカメラ22とに向けて光を発することで、カメラ22での工具12の撮影がされる構成にされている。このとき、ストロボ61は、工具12に向けて平行光79を発するように構成されている。 When the strobe 61 is provided, as shown in FIG. 7, the camera 22 is installed on one side and the strobe 61 is installed on the other side with the rotating tool 12 in between. Then, the strobe 61 emits light toward the tool 12 and the camera 22, so that the camera 12 takes an image of the tool 12. At this time, the strobe 61 is configured to emit parallel light 79 toward the tool 12.
 これによって、カメラ22で工具12を撮影する際に、ストロボ61はバックライトとして機能し、カメラ22によって工具12のシルエットが撮影されるようになっている。 With this, when shooting the tool 12 with the camera 22, the strobe 61 functions as a backlight and the camera 22 shoots the silhouette of the tool 12.
 さらに説明すると、ストロボ61が発する平行光79の進行方向はたとえばX方向になっており工具12の回転中心軸C1に対して直交しており、カメラ22のレンズ69の光軸71もX方向に延びている。 More specifically, the traveling direction of the parallel light 79 emitted from the strobe 61 is, for example, the X direction and is orthogonal to the rotation center axis C1 of the tool 12, and the optical axis 71 of the lens 69 of the camera 22 is also in the X direction. It is extended.
 なお、図7で示すように、工具12に対するストロボ61、カメラ22のアライメントを調整するためのアライメント調整装置73を設けてもよい。図7で示すアライメント調整装置73は、Z方向に延びている所定の軸回りにおけるストロボ61の回動角度と、Y方向に延びている所定の軸回りにおけるストロボ61の回動角度とを調整し、ストロボ61を回動位置決めすることができるようになっている。また、カメラ22にも同様のアライメント調整装置が設けられているものとする。 Note that, as shown in FIG. 7, an alignment adjusting device 73 for adjusting the alignment of the strobe 61 and the camera 22 with respect to the tool 12 may be provided. The alignment adjusting device 73 shown in FIG. 7 adjusts the rotation angle of the strobe 61 around a predetermined axis extending in the Z direction and the rotation angle of the strobe 61 around a predetermined axis extending in the Y direction. The strobe 61 can be rotationally positioned. Further, it is assumed that the camera 22 is also provided with a similar alignment adjusting device.
 アライメント調整装置73が設けられていることで、ストロボ61が発する平行光79の進行方向とカメラ22のレンズ69の光軸71とをお互いが平行になるように調整することが容易になる。また、ストロボ61が発する平行光79の進行方向がカメラ22の撮像素子75の平面に対して直交させることが容易になる。 By providing the alignment adjustment device 73, it becomes easy to adjust the traveling direction of the parallel light 79 emitted from the strobe 61 and the optical axis 71 of the lens 69 of the camera 22 so as to be parallel to each other. Further, it becomes easy to make the traveling direction of the parallel light 79 emitted from the strobe 61 orthogonal to the plane of the image pickup element 75 of the camera 22.
 次に、ストロボ61を使用した工具形状測定装置1aの動作について説明する。 Next, the operation of the tool shape measuring device 1a using the strobe 61 will be described.
 初期状態では、工具12が一定の回転速度で回転しており、タイムラグ時間TDは予めもとめられている。また、図7で示すようにストロボ61とカメラ22との間に工具12が位置しており、工具12に対するストロボ61とカメラ22のアライメントの調整もされているものとする。 In the initial state, the tool 12 is rotating at a constant rotation speed, and the time lag time TD is calculated in advance. Further, it is assumed that the tool 12 is located between the strobe 61 and the camera 22 as shown in FIG. 7, and the alignment of the strobe 61 and the camera 22 with respect to the tool 12 is also adjusted.
 上記初期状態で、タイムラグ時間TDを用いて制御装置20がカメラ22に撮影指令を出すと、カメラ22のシャッターが開きストロボ61が発光しカメラ22のシャッターが閉じられる。そして、工具12の最大外形の静止画像が得られる。 In the above initial state, when the control device 20 issues a shooting command to the camera 22 using the time lag time TD, the shutter of the camera 22 opens and the strobe 61 emits light to close the shutter of the camera 22. Then, a still image of the maximum outer shape of the tool 12 is obtained.
 この得られた工具12の最大外形の静止画像から、工具12の実際の形状をもとめる。そして、たとえば、制御装置20に設けられている表示画面(図示せず)に、工具12の理想形状(目標形状)と工具12の最大外形の静止画像(ワーク14を実際に加工する工具12の形状)とを重ね合わせて表示する。 Find the actual shape of the tool 12 from the obtained still image of the maximum outer shape of the tool 12. Then, for example, on a display screen (not shown) provided in the control device 20, a static image of the ideal shape (target shape) of the tool 12 and the maximum outer shape of the tool 12 (for the tool 12 that actually processes the workpiece 14). (Shape) is overlaid and displayed.
 工作機械2では、制御装置20の制御の下、工具12の実際の形状に応じて工具12の位置の補正をしつつ、ワーク14の加工をする。加工は数十時間かかることもある。そのような加工中に、工具12の形状を工具形状測定装置1、1aで時々測定して、工具12の補正に使用したり工具12の交換が必要か否かのチェックをしたりする。 In the machine tool 2, under the control of the control device 20, the workpiece 14 is machined while correcting the position of the tool 12 according to the actual shape of the tool 12. Processing can take tens of hours. During such machining, the shape of the tool 12 is sometimes measured by the tool shape measuring devices 1 and 1a to be used for correction of the tool 12 or to check whether the tool 12 needs to be replaced.
 なお、加工時の主軸11の回転数はNC(Numerical Control)装置(制御装置20)でセットする。主軸11を回転させ加工する回転数になったら、工具形状測定装置1、1aで工具12の形状を測定する(加工前)。測定(工具12の撮影)のトリガーは主軸の回転センサ(エンコーダ)の所定の値、または主軸回転角度センサ41とする。トリガーと同期して同じタイミングでストロボ61を発光させると、その回転数で回転中の場合は常に同じ角度の工具12の画像が撮影できることになる。工具12を主軸11から取り外さない限りは回転を停止させ、また元の回転数に戻した場合にも同じタイミングで同じ角度の工具12の画像を撮影することができる。 Note that the number of rotations of the spindle 11 during processing is set by an NC (Numerical Control) device (control device 20). When the number of rotations for rotating the spindle 11 is reached, the tool shape measuring device 1, 1a measures the shape of the tool 12 (before processing). The trigger for the measurement (imaging of the tool 12) is the predetermined value of the spindle rotation sensor (encoder) or the spindle rotation angle sensor 41. When the strobe 61 is caused to emit light at the same timing in synchronization with the trigger, an image of the tool 12 at the same angle can be taken at all times while rotating at that rotation speed. The rotation of the tool 12 is stopped unless the tool 12 is removed from the spindle 11, and even when the rotation speed is returned to the original value, the image of the tool 12 at the same angle can be taken at the same timing.
 工具形状測定装置1aによれば、主軸回転角度センサ41が検出した主軸11の回転角度に応じてカメラ22で工具12を撮影するように構成されているので、工具12の撮影にかける時間を極力短くすることができる。すなわち、上述した最大回転角度になっているに工具12の静止画像を1回の撮影で得ることができるので、工具12を多数回にわたって撮影しこれらの撮影で得られた静止画像をお互いに比較する必要が無い。 According to the tool shape measuring device 1a, the tool 12 is configured to be photographed by the camera 22 according to the rotation angle of the spindle 11 detected by the spindle rotation angle sensor 41, so that the time taken to photograph the tool 12 is minimized. Can be shortened. That is, since the still image of the tool 12 can be obtained by one shot at the maximum rotation angle described above, the tool 12 is shot many times and the still images obtained by these shots are compared with each other. You don't have to.
 なお、カメラ22のシャッター速度を遅くして(たとえば、工具12が1回転する時間よりも長い時間シャッターを開いておいて)工具12を撮影すると、図8(a)で示すように、被写体ブレを起こし工具12の外周側で工具12の写り込みが悪くなり、工具12の輪郭77がぼやけてしまい、工具12の形状を正確に得ることができない。 When the shutter speed of the camera 22 is slowed (for example, the shutter is opened for a time longer than one rotation of the tool 12) and the tool 12 is photographed, as shown in FIG. The reflection of the tool 12 is deteriorated on the outer peripheral side of the tool 12, the contour 77 of the tool 12 is blurred, and the shape of the tool 12 cannot be accurately obtained.
 これに対して、工具形状測定装置1aを用いれば、図8(b)で示すように、被写体ブレが無くなり、工具12の輪郭77がはっきりする。そして、工具12の正確な形状を得ることができる。 On the other hand, when the tool shape measuring apparatus 1a is used, the blurring of the subject disappears and the contour 77 of the tool 12 becomes clear as shown in FIG. 8 (b). Then, the accurate shape of the tool 12 can be obtained.
 また、工具形状測定装置1aによれば、制御装置20がカメラ22に撮影指令を出力するタイミングを主軸11の回転数に応じて変化させるように構成されているので、主軸11の回転数が変化した場合であっても、工具12の最大外形の静止画像を容易に得ることができる。 Further, according to the tool shape measuring device 1a, the control device 20 is configured to change the timing of outputting the photographing command to the camera 22 according to the rotation speed of the spindle 11, so that the rotation speed of the spindle 11 changes. Even in such a case, the still image of the maximum outer shape of the tool 12 can be easily obtained.
 また、工具形状測定装置1aによれば、制御装置20によるカメラ22への撮影指令の出力によって、ストロボ61が工具12に向けて光を発するように構成されているので、カメラ22のシャッターの開閉で撮影する場合に比べてより短時間で工具12を撮影することができ、回転している工具12の鮮明な画像を安価にしかも容易に得ることができる。すなわち、カメラ22のシャッター速度を早く(シャッターを開いている時間を短く)することに比べて、ストロボ61の発光時間を短くすることは、安価でしかも容易にすることができるのである。 Further, according to the tool shape measuring apparatus 1a, the strobe 61 emits light toward the tool 12 according to the output of the photographing command to the camera 22 by the control device 20, so that the shutter of the camera 22 is opened and closed. The tool 12 can be imaged in a shorter time than in the case of the image capturing, and a clear image of the rotating tool 12 can be obtained easily at low cost. That is, it is cheap and easy to reduce the light emission time of the strobe 61 as compared with the case of increasing the shutter speed of the camera 22 (shortening the time when the shutter is open).
 また、ストロボ61を使用しないと、カメラ22のシャッターの制御では追従できなく、できたとしても非常に高価なカメラとなってしまう。しかし、立ち上がり時間は早くて短い時間の発光が可能であるストロボ61を使用することで、高速シャッターが可能なカメラに比べて安価なカメラを使用しても、回転している工具12の鮮明な画像を得ることができる。 Also, if the strobe 61 is not used, it will not be possible to follow the shutter control of the camera 22, and even if it is possible, it will be a very expensive camera. However, by using the strobe 61, which has a fast rise time and is capable of emitting light for a short period of time, even if an inexpensive camera is used as compared to a camera capable of high-speed shutter, the sharpness of the rotating tool 12 can be sharpened. Images can be obtained.
 また、工具形状測定装置1aによれば、回転している工具12を間にして一方の側にカメラ22が設置されており他方の側にストロボ61が設置されており、ストロボ61が工具12とカメラ22とに向けて平行光79を発することで、カメラ22での工具12の撮影がされるので、実際の工具12の外形と差異が無い、工具12のシルエットを撮影することができる。 Further, according to the tool shape measuring apparatus 1a, the camera 22 is installed on one side of the rotating tool 12 and the strobe 61 is installed on the other side. Since the parallel light 79 is emitted toward the camera 22, the tool 12 is photographed by the camera 22, so that the silhouette of the tool 12 having no difference from the actual outer shape of the tool 12 can be photographed.
 工具12のシルエットが静止画像として得られることで、工具12の外周(縁;輪郭)77が鮮明になり、工具12の正確な外形を容易に得ることができる。 By obtaining the silhouette of the tool 12 as a still image, the outer periphery (edge; contour) 77 of the tool 12 becomes clear, and the accurate outer shape of the tool 12 can be easily obtained.
 また、工具形状測定装置1aによれば、主軸回転角度センサ41が、主軸11が回転しているときに連続パルス信号を出力するとともに、主軸11が1回転する毎に1周期のパルス信号を発するように構成されているので、簡素な構成で高速回転している主軸11の回転速度を容易に検出することができる。 Further, according to the tool shape measuring device 1a, the spindle rotation angle sensor 41 outputs a continuous pulse signal when the spindle 11 is rotating, and also emits a pulse signal of one cycle every rotation of the spindle 11. With such a configuration, it is possible to easily detect the rotation speed of the spindle 11 that is rotating at a high speed with a simple structure.
 ところで、工具12としてエンドミルを掲げているが、エンドミルとして、図9(a)で示すボールエンドミルの他に、図9(b)で示すスクエアエンドミルや図9(c)で示すラジアスエンドミルを掲げることができる。 By the way, although an end mill is used as the tool 12, other than the ball end mill shown in FIG. 9 (a), a square end mill shown in FIG. 9 (b) and a radius end mill shown in FIG. 9 (c) are used as the end mills. You can
 また、上記説明では、主軸回転角度センサ41やロータリエンコーダを用いて、主軸11や工具12の回転角度や回転速度を検出するようになっているが、ファンクションジェネレータ等の他の機器から、主軸回転角度センサ41やロータリエンコーダと同様の信号を発して、カメラ22での撮影をするように構成されていてもよい。 Further, in the above description, the spindle rotation angle sensor 41 and the rotary encoder are used to detect the rotation angle and the rotation speed of the spindle 11 and the tool 12, but the spindle rotation is detected from another device such as a function generator. It may be configured to emit a signal similar to that of the angle sensor 41 or the rotary encoder to take a picture with the camera 22.
 また、撮影で得られた総ての画像を合成し、工具12の最大外形の静止画像を得るようにしてもよい。そして、工具12の最大外形に基づいて工具補正を行うようにしてもよい。 Alternatively, all the images obtained by shooting may be combined to obtain a still image of the maximum outer shape of the tool 12. Then, the tool correction may be performed based on the maximum outer shape of the tool 12.
 なお、上記記載内容を工具形状測定方法の発明として把握してもよい。 The above description may be understood as an invention of the tool shape measuring method.
 すなわち、工作機械の主軸(スピンドル)に設置された工具(たとえばエンドミル)の形状を測定する工具形状測定方法であって、前記主軸の回転角度を検出する主軸回転角度検出工程と、前記主軸回転角度検出工程で検出した前記主軸の回転角度に応じて前記工具をカメラで撮影する撮影工程とを有する工具形状測定方法として把握してもよい。 That is, a tool shape measuring method for measuring a shape of a tool (for example, an end mill) installed on a spindle (spindle) of a machine tool, the spindle rotation angle detecting step of detecting a rotation angle of the spindle, and the spindle rotation angle. It may be grasped as a tool shape measuring method having a photographing step of photographing the tool with a camera according to the rotation angle of the spindle detected in the detecting step.
 この場合において、主軸回転角度検出工程が、前記主軸の回転数(回転角速度)も検出する工程であり、前記撮影工程では、前記撮影をするタイミングを前記主軸の回転数に応じて変化させるようにしてもよい。 In this case, the spindle rotation angle detecting step is a step of detecting the rotation number (rotational angular velocity) of the spindle, and in the photographing step, the timing of the photographing is changed according to the rotation number of the spindle. May be.
 また、前記撮影工程で前記撮影をするときに、発光装置が前記工具に向けて光を発するようにしてもよい。 Also, the light emitting device may emit light toward the tool when the image is captured in the image capturing step.
 また、前記撮影工程で、前記カメラのシャッターが開いている時間内に、前記発光装置が発光するようにしてもよい。 Also, in the photographing step, the light emitting device may emit light during the time when the shutter of the camera is open.
 また、前記回転している工具を間にして一方の側に前記撮影工程での撮影をするカメラが設置されており他方の側に前記発光装置が設置されており、前記発光装置が前記工具(とカメラと)に向けて光を発することで、前記撮影工程での前記カメラによる前記工具の撮影がされるとともに、前記発光装置は、前記工具に向けて平行光を発してもよい。 In addition, a camera for photographing in the photographing step is installed on one side with the rotating tool in between, and the light emitting device is installed on the other side, and the light emitting device is the tool ( By emitting light toward the camera, the image of the tool is captured by the camera in the image capturing step, and the light emitting device may emit parallel light toward the tool.
 また、前記主軸回転角度検出工程が、前記主軸が(一定速度で)回転しているときに連続パルス信号が出力されるとともに、前記主軸が1回転する毎に1周期のパルス信号が出力される工程になっていてもよい。 Further, in the spindle rotation angle detecting step, a continuous pulse signal is output while the spindle is rotating (at a constant speed), and a pulse signal of one cycle is output each time the spindle rotates once. It may be a process.
 また、前記撮影工程として、第1の工程と第2の工程とを設け、前記第1の工程では、前記主軸が所定の角度ずつ回転した状態における複数の画像を撮影し、前記第1の工程での撮影をした後、前記第2の工程で、所定の回転角度になっている前記工具の画像のみを撮影するようにしてもよい。 Further, as the photographing step, a first step and a second step are provided, and in the first step, a plurality of images in a state where the main shaft is rotated by a predetermined angle are photographed, and the first step is performed. It is also possible to capture only the image of the tool at a predetermined rotation angle in the second step after capturing the image in.
 特願2018-203386号(出願日:2018年10月30日) の全内容は、ここに援用される。 The entire contents of Japanese Patent Application No. 2018-203386 (filing date: October 30, 2018) are incorporated herein by reference.
 以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described above, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and modifications thereof are included in the scope and the gist of the invention, and are also included in the invention described in the claims and the scope equivalent thereto.
 1、1a 工具形状測定装置
 2 工作機械
 11 主軸(スピンドル)
 12 工具(エンドミル)
 20 制御装置
 22 カメラ
 41 主軸回転角度センサ
 61 発光装置(ストロボ)
1, 1a Tool shape measuring device 2 Machine tool 11 Spindle
12 tools (end mill)
20 Control Device 22 Camera 41 Spindle Rotation Angle Sensor 61 Light Emitting Device (Strobe)

Claims (16)

  1.  工作機械の主軸に設置された工具の形状を測定する工具形状測定装置であって、
     前記工具を撮影するカメラと、
     前記主軸の回転角度を検出する主軸回転角度センサと、
     前記主軸回転角度センサが検出した前記主軸の回転角度に応じて前記カメラに撮影指令を出力する制御装置と、
     を有することを特徴とする工具形状測定装置。
    A tool shape measuring device for measuring the shape of a tool installed on a spindle of a machine tool,
    A camera for photographing the tool,
    A spindle rotation angle sensor for detecting the rotation angle of the spindle,
    A control device that outputs a shooting command to the camera according to the rotation angle of the spindle detected by the spindle rotation angle sensor,
    A tool shape measuring device having:
  2.  請求項1に記載の工具形状測定装置であって、
     前記主軸回転角度センサは、前記主軸の回転数も検出するように構成されており、
     前記制御装置は、前記カメラに撮影指令を出力するタイミングを前記主軸の回転数に応じて変化させることを特徴とする工具形状測定装置。
    The tool shape measuring device according to claim 1,
    The spindle rotation angle sensor is configured to also detect the rotation speed of the spindle,
    The tool shape measuring device, wherein the control device changes a timing of outputting a photographing command to the camera according to a rotation speed of the spindle.
  3.  請求項1または請求項2に記載の工具形状測定装置であって、
     発光装置を備え、
     前記制御装置による前記カメラへの撮影指令の出力によって、前記発光装置が前記工具に向けて光を発するように構成されていることを特徴とする工具形状測定装置。
    The tool shape measuring device according to claim 1 or 2, wherein
    Equipped with a light emitting device,
    The tool shape measuring device, wherein the light emitting device emits light toward the tool in response to an output of a shooting command to the camera by the control device.
  4.  請求項3に記載の工具形状測定装置であって、
     前記制御装置による前記カメラへの撮影指令の出力によって、前記カメラのシャッターが開いている時間内に、前記発光装置が発光するように構成されていることを特徴とする工具形状測定装置。
    The tool shape measuring device according to claim 3,
    A tool shape measuring device, characterized in that the light emitting device is configured to emit light within a time period during which a shutter of the camera is open in response to an image capturing command output to the camera by the control device.
  5.  請求項3または請求項4に記載の工具形状測定装置であって、
     前記工具を間にして一方の側に前記カメラが設置されており他方の側に前記発光装置が設置されており、前記発光装置が前記工具に向けて光を発することで、前記カメラでの前記工具の撮影がされるように構成されており、
     前記発光装置は、前記工具に向けて平行光を発するように構成されていることを特徴とする工具形状測定装置。
    The tool shape measuring device according to claim 3 or 4, wherein
    The camera is installed on one side across the tool and the light emitting device is installed on the other side, and the light emitting device emits light toward the tool, so that the It is configured to take a picture of the tool,
    The tool shape measuring device, wherein the light emitting device is configured to emit parallel light toward the tool.
  6.  請求項1~請求項5のいずれか1項に記載の工具形状測定装置であって、
     前記主軸回転角度センサは、前記主軸が回転しているときに連続パルス信号を出力するとともに、前記主軸が1回転する毎に1周期のパルス信号を発するように構成されていることを特徴とする工具形状測定装置。
    The tool shape measuring device according to any one of claims 1 to 5,
    The main spindle rotation angle sensor is configured to output a continuous pulse signal when the main spindle is rotating and to emit a pulse signal of one cycle every one rotation of the main spindle. Tool shape measuring device.
  7.  請求項1~請求項6のいずれか1項に記載の工具形状測定装置であって、
     前記制御装置による撮影指令の出力として、第1の出力があり、
     前記第1の出力によって、前記主軸が所定の角度ずつ回転した状態における複数の画像を得るように構成されていることを特徴とする工具形状測定装置。
    The tool shape measuring device according to any one of claims 1 to 6,
    There is a first output as the output of the photographing command by the control device,
    A tool shape measuring device characterized by being configured to obtain a plurality of images in a state in which the spindle is rotated by a predetermined angle by the first output.
  8.  請求項7に記載の工具形状測定装置であって、
     前記制御装置による撮影指令の出力として、さらに第2の出力があり、
     前記工具の回転角度を入力する工具回転角度入力部を備え、
     前記制御装置は、前記第1の出力をした後、前記工具回転角度入力部で入力された回転角度における前記工具の撮影をするために、前記第2の出力をするように構成されていることを特徴とする工具形状測定装置。
    The tool shape measuring device according to claim 7,
    There is a second output as the output of the photographing command by the control device,
    A tool rotation angle input unit for inputting the rotation angle of the tool,
    After the first output, the control device is configured to output the second output in order to capture an image of the tool at the rotation angle input by the tool rotation angle input unit. Tool shape measuring device characterized by.
  9.  工作機械の主軸に設置された工具の形状を測定する工具形状測定方法であって、
     前記主軸の回転角度を検出する主軸回転角度検出工程と、
     前記主軸回転角度検出工程で検出した前記主軸の回転角度に応じて前記工具を撮影する撮影工程と、
     を有することを特徴とする工具形状測定方法。
    A tool shape measuring method for measuring the shape of a tool installed on a spindle of a machine tool,
    A spindle rotation angle detecting step of detecting a rotation angle of the spindle,
    A photographing step of photographing the tool according to the rotation angle of the spindle detected in the spindle rotation angle detecting step,
    A tool shape measuring method comprising:
  10.  請求項9に記載の工具形状測定方法であって、
     前記主軸回転角度検出工程は、前記主軸の回転数も検出する工程であり、
     前記撮影工程では、前記撮影をするタイミングを前記主軸の回転数に応じて変化させることを特徴とする工具形状測定方法。
    The tool shape measuring method according to claim 9, wherein
    The spindle rotation angle detection step is a step of detecting the rotation speed of the spindle,
    The tool shape measuring method, wherein in the photographing step, the timing of the photographing is changed according to the rotation speed of the spindle.
  11.  請求項9または請求項10に記載の工具形状測定方法であって、
     前記撮影工程では、前記撮影をするときに、発光装置が前記工具に向けて光を発することを特徴とする工具形状測定方法。
    The tool shape measuring method according to claim 9 or 10, wherein
    In the photographing step, the light emitting device emits light toward the tool when the photographing is performed, the tool shape measuring method.
  12.  請求項11に記載の工具形状測定方法であって、
     前記撮影工程では、カメラのシャッターが開いている時間内に、前記発光装置が発光することを特徴とする工具形状測定方法。
    The tool shape measuring method according to claim 11,
    The tool shape measuring method, wherein in the photographing step, the light emitting device emits light during a time period when the shutter of the camera is open.
  13.  請求項12に記載の工具形状測定方法であって、
     前記工具を間にして一方の側に前記撮影工程での撮影をするカメラが設置されており他方の側に前記発光装置が設置されており、前記発光装置が前記工具に向けて光を発することで、前記撮影工程での前記カメラによる前記工具の撮影がされるとともに、前記発光装置は、前記工具に向けて平行光を発することを特徴とする工具形状測定方法。
    The tool shape measuring method according to claim 12, wherein
    A camera for shooting in the shooting step is installed on one side with the tool in between, and the light emitting device is installed on the other side, and the light emitting device emits light toward the tool. Then, the tool is photographed by the camera in the photographing step, and the light emitting device emits parallel light toward the tool.
  14.  請求項9~請求項13のいずれか1項に記載の工具形状測定方法であって、
     前記主軸回転角度検出工程では、前記主軸が回転しているときに連続パルス信号が出力されるとともに、前記主軸が1回転する毎に1周期のパルス信号が出力される工程であることを特徴とする工具形状測定方法。
    The tool shape measuring method according to any one of claims 9 to 13,
    In the spindle rotation angle detecting step, a continuous pulse signal is output while the spindle is rotating, and a pulse signal of one cycle is output each time the spindle rotates once. Tool shape measuring method.
  15.  請求項9~請求項14のいずれか1項に記載の工具形状測定方法であって、
     前記撮影工程として、第1の工程があり、
     前記第1の工程は、前記主軸が所定の角度ずつ回転した状態における複数の画像を撮影する工程であることを特徴とする工具形状測定方法。
    The tool shape measuring method according to any one of claims 9 to 14,
    There is a first step as the photographing step,
    The tool shape measuring method, wherein the first step is a step of capturing a plurality of images in a state where the spindle is rotated by a predetermined angle.
  16.  請求項15に記載の工具形状測定方法であって、
     前記撮影工程として、さらに第2の工程があり、
     前記第2の工程は、前記第1の工程での撮影をした後、所定の回転角度になっている前記工具の画像のみを撮影する工程であることを特徴とする工具形状測定方法。
    The tool shape measuring method according to claim 15,
    There is a second step as the photographing step,
    The tool shape measuring method, wherein the second step is a step of shooting only an image of the tool at a predetermined rotation angle after the shooting in the first step.
PCT/JP2019/042460 2018-10-30 2019-10-30 Tool shape measurement device and tool shape measurement method WO2020090844A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217016306A KR102579691B1 (en) 2018-10-30 2019-10-30 Tool shape measuring device and tool shape measuring method
CN201980070989.4A CN112969900B (en) 2018-10-30 2019-10-30 Tool shape measuring device and tool shape measuring method
JP2020553953A JP7132349B2 (en) 2018-10-30 2019-10-30 Tool shape measuring device and tool shape measuring method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-203386 2018-10-30
JP2018203386 2018-10-30

Publications (1)

Publication Number Publication Date
WO2020090844A1 true WO2020090844A1 (en) 2020-05-07

Family

ID=70463699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042460 WO2020090844A1 (en) 2018-10-30 2019-10-30 Tool shape measurement device and tool shape measurement method

Country Status (5)

Country Link
JP (1) JP7132349B2 (en)
KR (1) KR102579691B1 (en)
CN (1) CN112969900B (en)
TW (1) TWI735061B (en)
WO (1) WO2020090844A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220130027A (en) 2021-03-17 2022-09-26 시바우라 기카이 가부시키가이샤 Apparatus for detecting tool shape abnormality and method for detecting tool shape abnormality
CN115338690A (en) * 2021-05-13 2022-11-15 芝浦机械株式会社 Apparatus for detecting shape of tool and method for detecting shape of tool
JP7419164B2 (en) 2020-05-29 2024-01-22 株式会社キーエンス Image dimension measuring device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6574915B1 (en) * 2018-05-15 2019-09-11 東芝機械株式会社 Workpiece processing method and work piece processing machine

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735574A (en) * 1993-07-19 1995-02-07 Matsushita Electric Ind Co Ltd Magnetic encoder
US20010017699A1 (en) * 2000-01-08 2001-08-30 Joachim Egelhof Method and measuring device for measuring a rotary tool
JP2005052910A (en) * 2003-08-07 2005-03-03 Makino Fraes Seiki Kk Tool measuring device and method
JP2009031091A (en) * 2007-07-26 2009-02-12 Ko Yamagishi Device for measuring rotary body
WO2012053645A1 (en) * 2010-10-22 2012-04-26 株式会社牧野フライス製作所 Method for measuring tool dimensions and measurement device
WO2017002186A1 (en) * 2015-06-30 2017-01-05 大昭和精機株式会社 Tool-shape measurement device
JP2018079548A (en) * 2016-11-17 2018-05-24 トヨタ自動車株式会社 Drill blade phase measurement device and drill blade phase measurement method
WO2018220776A1 (en) * 2017-05-31 2018-12-06 株式会社牧野フライス製作所 Machine tool and tool defect determination method
WO2019167242A1 (en) * 2018-03-02 2019-09-06 Big Daishowa株式会社 Balance and oscillation adjustment system for rotary tool, balance and oscillation measurement device, balance and oscillation adjustment method, and tool holder

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3792812B2 (en) * 1996-11-11 2006-07-05 オークマ株式会社 Ball end mill sphericity measurement method
JP2005217139A (en) * 2004-01-29 2005-08-11 Dainippon Screen Mfg Co Ltd Image acquiring device and image acquisition method
JP2007049489A (en) 2005-08-10 2007-02-22 Daishowa Seiki Co Ltd Imaging apparatus
TW200949472A (en) * 2008-05-28 2009-12-01 Univ Chung Yuan Christian On-board two-dimension contour detection method and system
JP5307462B2 (en) 2008-07-08 2013-10-02 株式会社 ジェイネット measuring device
CN101758423A (en) * 2008-12-23 2010-06-30 上海诚测电子科技发展有限公司 Rotational cutting tool state multiple parameter overall assessment method based on image identification
TWI346595B (en) * 2009-01-13 2011-08-11 Univ Chung Yuan Christian System for positioning micro tool of micro machine and method thereof
JP5759003B2 (en) * 2010-09-02 2015-08-05 エーファウ・グループ・ゲーエムベーハー Stamping tool, device and method for manufacturing lens wafers
JP5383624B2 (en) * 2010-10-26 2014-01-08 株式会社牧野フライス製作所 Imaging tool measuring apparatus and measuring method
TWI407242B (en) * 2010-12-21 2013-09-01 Top Work Industry Co Ltd Multi - axis tool grinding machine tool grinding image detection system
JP6008487B2 (en) * 2011-06-16 2016-10-19 三菱重工工作機械株式会社 Machine Tools
JP6037891B2 (en) * 2013-02-26 2016-12-07 三菱重工工作機械株式会社 Tool shape measuring method and tool shape measuring device
TWI603288B (en) * 2013-10-15 2017-10-21 萬里科技股份有限公司 Method using 3d geometry data for virtual reality image presentation and control in 3d space
CN105934310B (en) * 2014-01-24 2017-10-27 三菱电机株式会社 The shape of tool determines device and shape of tool assay method
TWI592252B (en) * 2015-09-25 2017-07-21 國立虎尾科技大學 Angular error correction device and method for machine tools
CN105666246B (en) * 2016-04-12 2017-11-10 山东大学 Cutter parameter measuring device and its measuring method based on CCD
CN106840028A (en) * 2016-12-23 2017-06-13 湖北文理学院 The on-position measure method and apparatus of tool wear
JP6608006B1 (en) 2018-07-12 2019-11-20 Dmg森精機株式会社 Machine Tools

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735574A (en) * 1993-07-19 1995-02-07 Matsushita Electric Ind Co Ltd Magnetic encoder
US20010017699A1 (en) * 2000-01-08 2001-08-30 Joachim Egelhof Method and measuring device for measuring a rotary tool
JP2005052910A (en) * 2003-08-07 2005-03-03 Makino Fraes Seiki Kk Tool measuring device and method
JP2009031091A (en) * 2007-07-26 2009-02-12 Ko Yamagishi Device for measuring rotary body
WO2012053645A1 (en) * 2010-10-22 2012-04-26 株式会社牧野フライス製作所 Method for measuring tool dimensions and measurement device
WO2017002186A1 (en) * 2015-06-30 2017-01-05 大昭和精機株式会社 Tool-shape measurement device
JP2018079548A (en) * 2016-11-17 2018-05-24 トヨタ自動車株式会社 Drill blade phase measurement device and drill blade phase measurement method
WO2018220776A1 (en) * 2017-05-31 2018-12-06 株式会社牧野フライス製作所 Machine tool and tool defect determination method
WO2019167242A1 (en) * 2018-03-02 2019-09-06 Big Daishowa株式会社 Balance and oscillation adjustment system for rotary tool, balance and oscillation measurement device, balance and oscillation adjustment method, and tool holder

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7419164B2 (en) 2020-05-29 2024-01-22 株式会社キーエンス Image dimension measuring device
KR20220130027A (en) 2021-03-17 2022-09-26 시바우라 기카이 가부시키가이샤 Apparatus for detecting tool shape abnormality and method for detecting tool shape abnormality
CN115106840A (en) * 2021-03-17 2022-09-27 芝浦机械株式会社 Tool shape abnormality detection device and tool shape abnormality detection method
CN115106840B (en) * 2021-03-17 2023-12-08 芝浦机械株式会社 Tool shape abnormality detection device and tool shape abnormality detection method
CN115338690A (en) * 2021-05-13 2022-11-15 芝浦机械株式会社 Apparatus for detecting shape of tool and method for detecting shape of tool
KR20220154624A (en) 2021-05-13 2022-11-22 시바우라 기카이 가부시키가이샤 Apparatus for detecting tool shape and method for detecting tool shape

Also Published As

Publication number Publication date
TWI735061B (en) 2021-08-01
KR20210083320A (en) 2021-07-06
CN112969900B (en) 2023-01-06
JPWO2020090844A1 (en) 2021-09-16
CN112969900A (en) 2021-06-15
KR102579691B1 (en) 2023-09-19
JP7132349B2 (en) 2022-09-06
TW202024565A (en) 2020-07-01

Similar Documents

Publication Publication Date Title
WO2020090844A1 (en) Tool shape measurement device and tool shape measurement method
KR101458991B1 (en) Optical measurement method and measurement system for determining 3D coordinates on a measurement object surface
JP6504274B2 (en) Three-dimensional shape data and texture information generation system, imaging control program, three-dimensional shape data and texture information generation method, and information recording medium
JP2010256828A (en) Imaging device and cutting machine having the same
JP2012093262A (en) Method and device for measuring tool dimensions, and machine tool
JPH04254706A (en) Method for measuring surface of object without contact and coordinate-measuring machine performing this method
JP2009509778A (en) Camera calibration method and system in production machine
JP2009139139A (en) Calibrating method of image measuring instrument
JP2016040531A (en) Working tool measuring method and measuring device
JP5146180B2 (en) Oil well pipe thread shape all-around measuring device
JP5351552B2 (en) Measuring device and measuring method thereof, machining position correcting device of cutting machine, and machining position correcting method thereof
JP5337330B2 (en) Cutting machine and machining position correction method thereof
JP6313687B2 (en) Machine Tools
JP3768918B2 (en) 3D shape measurement method
JP6731409B2 (en) Deployment mechanism for optical measurement system
KR100950535B1 (en) Set-up error measuring system for micro tool on machine
KR20230056599A (en) Tool measuring device and tool measuring method
JP5591025B2 (en) Centering method and centering device, lens centering method, lens centering device, frame cutting method and frame cutting device
JP2004066365A (en) Device for measuring apparent outer diameter of cutter
JP2011183494A (en) Working position correcting device and working position correcting method of cutting tool
CN101245996A (en) Rotating division plate optical amplifying and measuring apparatus
JP2023166253A (en) Tool measurement device and method for measuring tool
JP2019194525A (en) Angle measurement system
TW202300273A (en) Tool shape abnormality detection device and tool shape abnormality detection method
JP2017138485A (en) Optical apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19880657

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020553953

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217016306

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19880657

Country of ref document: EP

Kind code of ref document: A1