WO2020089972A1 - 風力発電システムおよび電力変換装置 - Google Patents

風力発電システムおよび電力変換装置 Download PDF

Info

Publication number
WO2020089972A1
WO2020089972A1 PCT/JP2018/040134 JP2018040134W WO2020089972A1 WO 2020089972 A1 WO2020089972 A1 WO 2020089972A1 JP 2018040134 W JP2018040134 W JP 2018040134W WO 2020089972 A1 WO2020089972 A1 WO 2020089972A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
conversion circuit
circuit
power conversion
storage element
Prior art date
Application number
PCT/JP2018/040134
Other languages
English (en)
French (fr)
Inventor
宏禎 小松
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to US16/976,629 priority Critical patent/US11764585B2/en
Priority to JP2019548344A priority patent/JP6721133B1/ja
Priority to EP18905895.1A priority patent/EP3672061B1/en
Priority to PCT/JP2018/040134 priority patent/WO2020089972A1/ja
Priority to CN201880033545.9A priority patent/CN111386654B/zh
Publication of WO2020089972A1 publication Critical patent/WO2020089972A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • H02J3/472For selectively connecting the AC sources in a particular order, e.g. sequential, alternating or subsets of sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems

Definitions

  • the present application relates to a wind power generation system and a power conversion device.
  • a FRT (Fault Ride Through) function is provided in the grid interconnection regulation of the wind power generation system.
  • FRT is a known technique, and the details thereof are specified in paragraph 0023 in Patent Document 2, for example.
  • the wind power generation systems according to Patent Documents 1 and 2 below include a chopper circuit for consuming excess power that cannot flow backward in the system during FRT implementation.
  • the wind power generation system is equipped with various auxiliary machines in addition to the generator itself that receives wind power to generate power.
  • An example of the auxiliary machine is a yaw motor for adjusting the direction of the nacelle accommodating the generator body.
  • the present application was made in order to solve the above problems, and an object thereof is to provide a wind power generation system capable of suppressing the extraction of electric power for auxiliary equipment from the electric power system.
  • Patent Documents 1 and 2 above conventionally, electric power was wasted by a resistor connected to a chopper circuit during FRT implementation. Therefore, the inventor of the present application also paid attention to such a problem of useless power loss.
  • Another object of the present application is to provide a power conversion device that can reduce the power loss that occurs when performing FRT.
  • the wind power generation system is A generator body that generates first AC power from wind power; An auxiliary device that assists the generator body, A power converter that converts the first AC power from the generator body into second AC power, and outputs the second AC power to a power grid, Equipped with The power conversion device, A first power conversion circuit for converting the first AC power to DC power, A second power conversion circuit for converting the DC power converted by the first power conversion circuit to the second AC power, By receiving the DC power from the first power conversion circuit via a first waypoint provided between the first power conversion circuit and the second power conversion circuit, a power storage element for storing power, A circuit breaker provided between the second power conversion circuit and the power system, A control unit that controls the second power conversion circuit and the circuit breaker; Equipped with During the power generation of the generator main body, the control unit sets the circuit breaker to a conductive state to be a grid-connected operation mode in which the second power conversion circuit and the power system cooperate, and in the grid-connected operation mode.
  • the control unit is in a disconnection mode in which the second power conversion circuit and the power system are separated by cutting off the circuit breaker during power generation standby, which is a period during which the generator main body waits for power generation, Controlling the second power conversion circuit so as to convert the power of the storage element received by the second power conversion circuit via the first waypoint to third AC power having a preset voltage;
  • the accessory is the second AC power or the third AC output from the second power conversion circuit via a second waypoint provided between the second power conversion circuit and the circuit breaker. It was built to receive power.
  • a chopper circuit that is connected to a first waypoint provided between the first power converter circuit and the second power converter circuit and that converts power received from the first waypoint, A resistor for consuming the power output by the chopper circuit, An electric storage element provided in parallel with the resistor on the output side of the chopper circuit, A switch that selectively connects the resistor and the storage element to the chopper circuit, Equipped with.
  • the wind power generation system of the present application it is possible to generate the third AC power from the power of the power storage element while the power generation standby of the wind power generation system and supply the third AC power to the auxiliary equipment. As a result, it is possible to suppress the extraction of the electric power for the auxiliary equipment from the electric power system during the power generation standby.
  • the output power of the chopper circuit can be given to the power storage element. This makes it possible to recover at least part of the electric power that cannot flow backward in the electric power system during the FRT. Since the electric power recovered by the power storage element can be reused as necessary, it is possible to reduce the electric power loss generated by performing the FRT.
  • FIG. 1 is a diagram showing a configuration of a wind power generation system 10 and a power conversion device 20 according to an embodiment and an operation in a power generation mode thereof.
  • a plurality of wind power generation systems 10 are operating in cooperation with the power system 1.
  • the plurality of wind power generation systems 10 and the power system 1 are connected via a power transmission line 6.
  • a transformer 2, an ammeter 3, an upper circuit breaker 4, and a WF (Wind Farm) control unit 5 are provided between the power system 1 and the power transmission line 6.
  • the wind turbine generator system 10 includes a generator main body 12, an auxiliary machine 13, an auxiliary machine 14, an auxiliary machine control power supply unit 15, a power converter 20, a transformer 40, and a transformer. 41 is provided.
  • the generator main body 12 generates electric power from wind power.
  • the electric power generated by the generator body 12 is the first AC power P1.
  • the auxiliary machine 13 and the auxiliary machine 14 include various devices that assist the power generation operation of the generator main body 12.
  • the auxiliary machine 13 is a wind turbine controller.
  • the wind power generation system 10 has a nacelle in which a generator body 12 is housed.
  • the generator body 12 and the power conversion device 20 are generally housed together inside the nacelle.
  • the auxiliary machine 14 is a motor unit including a pitch motor and a yaw motor.
  • the pitch motor and the yaw motor are constantly operated depending on the wind conditions and operate intermittently. By driving the yaw motor included in the accessory 14, the direction of the nacelle can be adjusted.
  • the power conversion device 20 converts the first AC power P1 from the generator body 12 into the second AC power P2.
  • the power conversion device 20 outputs the second AC power P2 to the power grid 1.
  • the power conversion device 20 includes a first power conversion circuit 21, a second power conversion circuit 22, a PCS control unit 23, a PCS control power supply unit 24, a DC capacitor 25, an AC reactor 26, and an AC capacitor 27.
  • the circuit breaker 28 and the energy consumption circuit 30 are provided.
  • the first power conversion circuit 21 is a converter circuit that converts the first AC power P1 into DC power.
  • the second power conversion circuit 22 is an inverter circuit that converts the DC power converted by the first power conversion circuit 21 into the second AC power P2.
  • the output end of the second power conversion circuit 22 is connected to one end of the AC reactor 26.
  • the PCS control unit 23 controls the second power conversion circuit 22 and the circuit breaker 28.
  • the PCS control power supply unit 24 supplies control power to the PCS control unit 23.
  • One end of the DC capacitor 25 is connected to the first waypoint Q1.
  • the other end of the AC reactor 26 is connected to the circuit breaker 28.
  • One end of the AC capacitor 27 is connected to a connection point between the AC reactor 26 and the circuit breaker 28.
  • the circuit breaker 28 is provided between the second power conversion circuit 22 and the power system 1. By setting the circuit breaker 28 in the connected state, the second power conversion circuit 22 and the power system 1 can be interconnected. By setting the circuit breaker 28 in the cut-off state, it is possible to disconnect the second power conversion circuit 22 from the power system 1 and disconnect the wind power generation system 10 from the power system 1.
  • the energy consumption circuit 30 includes a chopper circuit 31, a resistor 32, and a first power storage element 33.
  • the energy consumption circuit 30 is a circuit for absorbing electric power that cannot flow backward to the electric power system 1 during FRT implementation.
  • the energy consumption circuit 30 is connected to the first waypoint Q1.
  • the first waypoint Q1 is provided on the electrical path between the first power conversion circuit 21 and the second power conversion circuit 22.
  • the first power storage element 33 can receive the DC power converted by the first power conversion circuit 21 via the first waypoint Q1. By receiving this DC power, the first power storage element 33 can store the power.
  • the detailed configuration and operation of the energy consumption circuit 30 will be described later with reference to FIG.
  • the second waypoint Q2 is shown in FIG.
  • the second waypoint Q2 is provided in the electric path between the second power conversion circuit 22 and the circuit breaker 28.
  • the second waypoint Q2 is connected to one end of the transformer 40.
  • the other end of the transformer 40 is connected to a connection point where the auxiliary machine 14, the auxiliary machine control power supply section 15 and the PCS control power supply section 24 are connected.
  • the auxiliary machine 14, the auxiliary machine control power supply section 15, and the PCS control power supply section 24 can be supplied with power from the second waypoint Q2 via the transformer 40.
  • the accessory control power supply unit 15 supplies control power to the accessory 13 and also supplies control power to a motor control circuit (not shown) of the accessory 14. Therefore, the auxiliary machine 13 can also be supplied with power from the second waypoint Q2 via the transformer 40 and the auxiliary machine control power supply section 15.
  • One end of the transformer 41 is connected to the circuit breaker 28.
  • the other end of the transformer 41 is connected to the power transmission line 6.
  • the PCS control unit 23 sets the wind power generation system 10 in the grid interconnection operation mode while the generator body 12 is generating power.
  • the grid interconnection operation mode is a mode in which the second power conversion circuit 22 and the power grid 1 cooperate by making the circuit breaker 28 conductive.
  • the PCS control unit 23 controls the second power conversion circuit 22 to convert the DC power from the first power conversion circuit 21 into the second AC power P2 in the grid interconnection operation mode.
  • FIG. 2 is a diagram showing the configurations of the wind power generation system 10 and the power conversion device 20 according to the embodiment, and showing the operation in the power generation standby mode. That is, the wind power generation system 10 includes a “power generation standby mode” in which the generator main body 12 is on standby for power generation. In the wind power generation system 10, the auxiliary machine 13, the auxiliary machine 14, and the like operate as necessary even in the power generation standby mode.
  • the PCS control unit 23 sets the wind power generation system 10 in the “disconnection mode”.
  • the “disconnection mode” is a mode in which the circuit breaker 28 is cut off and the second power conversion circuit 22 and the power system 1 are separated.
  • the disconnection mode is also a “stand-alone mode” in which the wind turbine generator system 10 operates independently.
  • the PCS control unit 23 uses the first power conversion circuit 21 as a gate block in the power generation standby mode.
  • the PCS control unit 23 controls the second power conversion circuit 22 to convert the power of the first power storage element 33 received via the first waypoint Q1 into the third AC power P3 in the power generation standby mode and the disconnection mode. Control.
  • the third AC power P3 has a preset voltage and a preset frequency. During the output of the third AC power P3, the second power conversion circuit 22 behaves as an AC voltage source.
  • the auxiliary machine 13, the auxiliary machine 14, the auxiliary machine control power supply unit 15, and the PCS control power supply unit 24 are connected to the second viapoint Q2.
  • AC power P2 can be received.
  • the auxiliary machine 13, the auxiliary machine 14, the auxiliary machine control power supply unit 15, and the PCS control power supply unit 24 pass through the second waypoint Q2.
  • the third AC power P3 can be received. That is, in the power generation standby mode of the wind power generation system 10, the third AC power P3 can be generated from the power of the first power storage element 33, and the third AC power P3 can be supplied to the auxiliary machines 13 and 14. As a result, it is possible to suppress the extraction of electric power for the auxiliary machines 13 and 14 from the electric power system 1.
  • FIG. 3 is a diagram showing a configuration of the energy consumption circuit 30 according to the embodiment.
  • the energy consumption circuit 30 includes a chopper circuit 31, a resistor 32, a switch 34, and a switch control circuit 35.
  • the chopper circuit 31 is connected to the first waypoint Q1 and converts the electric power received from the first waypoint Q1 during implementation of FRT (Fault Ride Through).
  • the first power storage element 33 is provided on the output side of the chopper circuit 31.
  • the first power storage element 33 may be a storage battery or a capacitor.
  • the resistor 32 is used to consume the electric power output from the chopper circuit 31 during the FRT.
  • the switch 34 selectively connects the resistor 32 and the first power storage element 33 to the chopper circuit 31.
  • the first power storage element 33 is charged by the following operation.
  • the switch control circuit 35 controls the switch 34 by transmitting the switch signal S1 to the switch 34.
  • the switch control circuit 35 controls the switch 34 to connect the chopper circuit 31 and the resistor 32 when the charge amount of the first power storage element 33 is equal to or more than a predetermined threshold value.
  • the switch control circuit 35 controls the switch 34 to connect the chopper circuit 31 and the first power storage element 33 when the charge amount of the first power storage element 33 is less than a predetermined threshold value.
  • the first power storage element 33 stores at least a part of the output power of the chopper circuit 31.
  • the power that cannot be reversely flown to the power system 1 during FRT can be recovered by the first power storage element 33. Since the electric power recovered by the first power storage element 33 can be reused as needed, it is possible to reduce the electric power loss generated by performing the FRT.
  • the electric power stored in the first power storage element 33 is used by the following operation.
  • the chopper circuit 31 transmits the power of the first power storage element 33 to the second power conversion circuit 22 in the power generation standby mode.
  • the PCS control unit 23 turns on the switching element of the chopper circuit 31, so that the first power storage element 33 and the first waypoint Q1 are electrically connected.
  • the third AC power P3 since the third AC power P3 is generated from the power of the first power storage element 33, the third AC power P3 can be supplied to the auxiliary machines 13 and 14.
  • the wind power generation system 10 is constructed to supply the third AC power P3 to at least the yaw motor of the auxiliary machine 14 in the power generation standby mode. At low wind speeds, it is preferable to drive the yaw motor to rotate the nacelle in the wind direction. However, when the wind power generation system 10 is in such a low wind speed that it waits for power generation, the power generated by the wind power generation system 10 cannot be supplied to the auxiliary machines 13 and 14. Therefore, the third AC power P3 generated from the power of the first power storage element 33 can be supplied to the yaw motor. As a result, the yaw motor can be driven even when the wind turbine generator system 10 is in the power generation standby mode.
  • FIG. 4 is a diagram showing the configurations of the wind power generation system 110 and the power conversion device 20 according to the modification of the embodiment, and also showing the operation in the power generation standby mode.
  • the wind power generation system 110 according to the modified example is different from the wind power generation system 10 described in FIGS. 1 and 2 in the following differences.
  • the difference according to the modification is that the energy consumption circuit 30 is replaced with the energy consumption circuit 130.
  • the energy consumption circuit 130 does not include the first power storage element 33, but otherwise has the same configuration as the energy consumption circuit 30.
  • the wind power generation system 110 is further provided with a second power storage element 133 connected in parallel with the DC capacitor 25.
  • second power storage element 133 is an external storage battery or capacitor provided outside power conversion device 20, so second power storage element 133 may be large.
  • the second power storage element 133 stores electric power by receiving the DC power converted by the first power conversion circuit 21 via the first waypoint Q1 during the power generation mode of the wind power generation system 10.
  • the PCS control unit 23 sets the breaker 28 to the cutoff state and sets the wind power generation system 110 to the disconnection mode.
  • the second power conversion circuit 22 receives the power of the second power storage element 133 via the first waypoint Q1.
  • the PCS control unit 23 controls the second power conversion circuit 22 so as to convert the power of the second power storage element 133 into the third AC power P3.
  • the third AC power P3 can be generated from the power stored in the second power storage element 133 and supplied to the auxiliary device 14 and the like.
  • FIG. 5 is a diagram showing the configurations of the wind power generation system 210 and the power conversion device 220 according to the comparative example, and also showing the operation in the power generation mode.
  • FIG. 6 is a diagram showing the configurations of the wind power generation system 210 and the power conversion device 220 according to the comparative example, and also showing the operation in the power generation standby mode.
  • the wind power generation system 210 according to the comparative example is different from the wind power generation system 10 described in FIGS. 1 and 2 in the following differences.
  • the first difference is that in the comparative example, the third AC power P3 is not output from the second power conversion circuit 22.
  • the second difference is that one end of the transformer 40 is connected not to the second waypoint Q2 but to another waypoint Qx.
  • the other waypoint Qx is provided in the electric path between the circuit breaker 28 and the transformer 41.
  • the third difference is that the energy consumption circuit 30 is replaced with the energy consumption circuit 130.
  • the energy consuming circuit 130 does not include the first power storage element 33, but otherwise has the same configuration as the energy consuming circuit 30.
  • the wind power generation system 210 according to the comparative example does not include the second power storage element 133 according to the modification of FIG. 4.
  • the second AC power P2 is supplied to the power system 1 and the auxiliary equipment 14 as in the embodiment.
  • the system AC power P4 from the power system 1 is supplied to the auxiliary equipment 14 and the like.
  • the amount of power consumed by the power system 1 increases.
  • the third AC power P3, not the system AC power P4 can supply power to the auxiliary machines 13, 14 and the like.
  • the power conversion device 20 in the embodiment may be used not in the wind power generation system 10 but in another power system.
  • the power conversion device 20 includes a first power conversion circuit 21, a second power conversion circuit 22, a chopper circuit 31, a resistor 32, a first power storage element 33, and a switch 34.
  • a switch 34 By supplying the output power of the chopper circuit 31 to the first power storage element 33 via the switch 34, at least a part of the power that cannot flow backward to the grid during the FRT can be recovered.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Control Of Eletrric Generators (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Wind Motors (AREA)

Abstract

風力発電システムは、風力から電力を生成する発電機本体と、発電機本体を補助する補機と、発電機本体で発電した第一交流電力を第二交流電力に変換して、第二交流電力を電力系統へと出力する電力変換装置と、を備える。電力変換装置は、第一電力変換回路と、第二電力変換回路と、第一経由点を介して第一電力変換回路からの直流電力を受け取る蓄電要素と、遮断器と、制御部と、を備える。制御部は、発電機本体が発電を待機する期間である発電待機中には、解列モードとし、第一経由点を介して第二電力変換回路が受け取った蓄電要素の電力を予め設定された電圧を持つ第三交流電力に変換するように第二電力変換回路を制御する。補機は、第二電力変換回路と遮断器との間に設けられた第二経由点を介して、第二交流電力または第三交流電力を受け取るように構築されたものである。

Description

風力発電システムおよび電力変換装置
 本出願は、風力発電システムおよび電力変換装置に関するものである。
 風力発電システムの技術開発が進められており、風力発電システムに関する文献として例えば下記の特許文献1、2が知られている。
 風力発電システムの系統連系規定に、FRT(Fault Ride Through)機能が設けられている。FRTは公知の技術であり、その詳細は例えば特許文献2における段落0023に明記されている。下記の特許文献1、2にかかる風力発電システムは、FRT実施時に系統に逆潮流できない余剰電力を消費させるためのチョッパ回路を備えている。
日本特開2012-231624号公報 国際公開第2015/186232号
 風力発電システムは、風力を受けて発電する発電機本体の他に、様々な補機を備えている。補機の一例は、発電機本体を収納したナセルの方向を調節するためのヨーモータである。
 補機に対しては、風力発電システムが風を受けて発電している最中のみならず、風力発電システムが発電をすることのできない発電待機中にも、電力を与える必要がある。従来の系統連系された風力発電システムでは、発電待機中の補機電力は電力系統から与えられていた。その結果、電力系統の電力を消費する量が多くなるという問題があった。
 本出願は、上述のような課題を解決するためになされたもので、電力系統から補機用の電力を取り出すことを抑制することができる風力発電システムを提供することを目的とする。
 また、上記の特許文献1、2に示されているように、従来は、FRT実施時にチョッパ回路に接続された抵抗で電力が無駄に消費されていた。そこで、本願発明者はこのような無駄な電力損失の問題にも着目した。
 本出願の他の目的は、FRTを実施するときに発生する電力損失を減らすことができる電力変換装置を提供することである。
 本出願にかかる風力発電システムは、
 風力から第一交流電力を生成する発電機本体と、
 前記発電機本体を補助する補機と、
 前記発電機本体からの前記第一交流電力を第二交流電力に変換して、前記第二交流電力を電力系統へと出力する電力変換装置と、
 を備え、
 前記電力変換装置は、
 前記第一交流電力を直流電力に変換する第一電力変換回路と、
 前記第一電力変換回路で変換された前記直流電力を前記第二交流電力に変換する第二電力変換回路と、
 前記第一電力変換回路と前記第二電力変換回路との間に設けられた第一経由点を介して前記第一電力変換回路からの前記直流電力を受け取ることで、電力を蓄える蓄電要素と、
 前記第二電力変換回路と前記電力系統との間に設けられた遮断器と、
 前記第二電力変換回路と前記遮断器とを制御する制御部と、
 を備え、
 前記制御部は、前記発電機本体の発電中には、前記遮断器を導通させて前記第二電力変換回路と前記電力系統とが連携する系統連系運転モードとし、前記系統連系運転モードにおいて前記第一電力変換回路からの前記直流電力を前記第二交流電力に変換するように前記第二電力変換回路を制御し、
 前記制御部は、前記発電機本体が発電を待機する期間である発電待機中には、前記遮断器を遮断させて前記第二電力変換回路と前記電力系統とが切り離された解列モードとし、前記第一経由点を介して前記第二電力変換回路が受け取った前記蓄電要素の電力を予め設定された電圧を持つ第三交流電力に変換するように前記第二電力変換回路を制御し、
 前記補機は、前記第二電力変換回路と前記遮断器との間に設けられた第二経由点を介して、前記第二電力変換回路から出力された前記第二交流電力または前記第三交流電力を受け取るように構築されたものである。
 本出願にかかる電力変換装置は、
 第一交流電力を直流電力に変換する第一電力変換回路と、
 前記第一電力変換回路で変換された前記直流電力を前記第二交流電力に変換し、前記第二交流電力を前記電力系統へと出力する第二電力変換回路と、
 前記第一電力変換回路と前記第二電力変換回路との間に設けられた第一経由点に接続され、前記第一経由点から受け取った電力を変換するチョッパ回路と、
 前記チョッパ回路が出力する電力を消費するための抵抗と、
 前記チョッパ回路の出力側において前記抵抗と並列に設けられた蓄電要素と、
 前記チョッパ回路に対して前記抵抗と前記蓄電要素とを選択的に接続するスイッチと、
 を備える。
 本出願にかかる風力発電システムによれば、風力発電システムの発電待機中に蓄電要素の電力から第三交流電力を生成し、この第三交流電力を補機へと与えることができる。その結果、発電待機中に電力系統から補機用の電力を取り出すことを抑制することができる。
 本出願にかかる電力変換装置によれば、FRT実施中にチョッパ回路が作動したときに、このチョッパ回路の出力電力を蓄電要素へと与えることができる。これにより、FRT実施中に電力系統に逆潮流できない電力の少なくとも一部を回収することができる。蓄電要素で回収した電力は必要に応じて再利用できるので、FRTを実施することで発生する電力損失を減らすことができる。
実施の形態にかかる風力発電システムおよび電力変換装置の構成を示すとともに、その発電モードの動作を示す図である。 実施の形態にかかる風力発電システムおよび電力変換装置の構成を示すとともに、その発電待機モードの動作を示す図である。 実施の形態にかかるエネルギ消費回路の構成を示す図である。 実施の形態の変形例にかかる風力発電システムおよび電力変換装置の構成を示すとともに、その発電待機モードの動作を示す図である。 比較例にかかる風力発電システムおよび電力変換装置の構成を示すとともに、その発電モードの動作を示す図である。 比較例にかかる風力発電システムおよび電力変換装置の構成を示すとともに、その発電待機モードの動作を示す図である。
 図1は、実施の形態にかかる風力発電システム10および電力変換装置20の構成を示すとともに、その発電モードの動作を示す図である。図1では、複数の風力発電システム10が、電力系統1と連携運転を行っている。
 複数の風力発電システム10および電力系統1は、送電線6を介して接続されている。電力系統1と送電線6との間には、変圧器2と、電流計3と、上位遮断器4と、WF(Wind Farm)制御部5と、が設けられている。
 図1に示すように、風力発電システム10は、発電機本体12と、補機13と、補機14と、補機制御電源部15と、電力変換装置20と、変圧器40と、変圧器41と、を備える。
 発電機本体12は、風力から電力を生成する。発電機本体12で発電された電力が、第一交流電力P1である。補機13および補機14は、発電機本体12の発電動作を補助する各種機器を含む。補機13は、風車制御部である。
 風力発電システム10は、発電機本体12が収納されたナセルを有する。実際の風力発電システム10では、ナセルの内部に発電機本体12および電力変換装置20がまとめて収納されているのが一般的である。
 補機14は、ピッチモータおよびヨーモータを含むモータ部である。ピッチモータ及びヨーモータは、風の状況に応じて常時運転されており、断続的に作動する。補機14に含まれるヨーモータを駆動することで、ナセルの方向を調整することができる。
 電力変換装置20は、発電機本体12からの第一交流電力P1を第二交流電力P2に変換する。電力変換装置20は、第二交流電力P2を電力系統1へと出力する。
 電力変換装置20は、第一電力変換回路21と、第二電力変換回路22と、PCS制御部23と、PCS制御電源部24と、直流コンデンサ25と、交流リアクトル26と、交流コンデンサ27と、遮断器28と、エネルギ消費回路30と、を備える。
 第一電力変換回路21は、第一交流電力P1を直流電力に変換するコンバータ回路である。第二電力変換回路22は、第一電力変換回路21で変換された直流電力を第二交流電力P2に変換するインバータ回路である。第二電力変換回路22の出力端が交流リアクトル26の一端に接続されている。
 PCS制御部23は、第二電力変換回路22と遮断器28とを制御する。PCS制御電源部24は、PCS制御部23に制御電源を供給する。
 直流コンデンサ25の一端は、第一経由点Q1に接続されている。交流リアクトル26の他端が遮断器28に接続されている。交流リアクトル26と遮断器28との接続点に、交流コンデンサ27の一端が接続されている。
 遮断器28は、第二電力変換回路22と電力系統1との間に設けられている。遮断器28を接続状態とすれば、第二電力変換回路22と電力系統1とを連系させることができる。遮断器28を遮断状態とすれば、第二電力変換回路22と電力系統1とを切り離して、風力発電システム10を電力系統1から解列することができる。
 図1に示すように、エネルギ消費回路30は、チョッパ回路31と、抵抗32と、第一蓄電要素33と、を含んでいる。エネルギ消費回路30は、FRT実施中に電力系統1に逆潮流できない電力を吸収するための回路である。
 エネルギ消費回路30は、第一経由点Q1と接続している。第一経由点Q1は、第一電力変換回路21と第二電力変換回路22との間の電気経路に設けられている。
 第一蓄電要素33は、第一経由点Q1を介して第一電力変換回路21で変換された直流電力を受け取ることができる。この直流電力を受け取ることで、第一蓄電要素33が電力を蓄えることができる。エネルギ消費回路30の詳細な構成および動作は、図3を用いて後ほど説明する。
 図2には、第二経由点Q2が図示されている。第二経由点Q2は、第二電力変換回路22と遮断器28との間の電気経路に設けられている。第二経由点Q2は、変圧器40の一端と接続されている。
 変圧器40の他端は、補機14と補機制御電源部15とPCS制御電源部24とが接続した接続点に接続されている。これにより、補機14、補機制御電源部15およびPCS制御電源部24が、変圧器40を介して第二経由点Q2からの電源供給を受けることができる。
 また、補機制御電源部15は、補機13に対して制御電源を供給するとともに、補機14が持つ図示しないモータ制御回路にも制御電源を供給する。したがって、補機13も、変圧器40と補機制御電源部15とを介して、第二経由点Q2からの電源供給を受けることができる。
 変圧器41の一端は、遮断器28に接続されている。変圧器41の他端は、送電線6に接続されている。
 PCS制御部23は、発電機本体12の発電中には、風力発電システム10を系統連系運転モードとする。系統連系運転モードは、遮断器28を導通させて第二電力変換回路22と電力系統1とが連携するモードである。PCS制御部23は、系統連系運転モードにおいて、第一電力変換回路21からの直流電力を第二交流電力P2に変換するように第二電力変換回路22を制御する。
 図2は、実施の形態にかかる風力発電システム10および電力変換装置20の構成を示すとともに、その発電待機モードの動作を示す図である。すなわち、風力発電システム10は、発電機本体12が発電を待機しているモードである「発電待機モード」を備えている。風力発電システム10では、この発電待機モードにおいても、必要に応じて補機13および補機14などが作動する。
 PCS制御部23は、発電待機モードにおいては、風力発電システム10を「解列モード」とする。「解列モード」は、遮断器28が遮断されて第二電力変換回路22と電力系統1とが切り離されたモードである。解列モードは、風力発電システム10が単独動作する「スタンドアロンモード」でもある。
 PCS制御部23は、発電待機モードでは、第一電力変換回路21をゲートブロックとする。PCS制御部23は、発電待機モード且つ解列モードにおいて、第一経由点Q1を介して受け取った第一蓄電要素33の電力を第三交流電力P3に変換するように第二電力変換回路22を制御する。
 第三交流電力P3は、予め設定された電圧および予め設定された周波数を持つ。第三交流電力P3の出力中には、第二電力変換回路22が交流電圧源として振る舞う。
 図1で説明したように、風力発電システム10の発電中には、補機13、補機14、補機制御電源部15およびPCS制御電源部24が、第二経由点Q2を介して第二交流電力P2を受け取ることができる。
 一方、図2で説明したように、風力発電システム10の発電待機モードでは、補機13、補機14、補機制御電源部15およびPCS制御電源部24が、第二経由点Q2を介して第三交流電力P3を受け取ることができる。つまり、風力発電システム10の発電待機モードにおいては第一蓄電要素33の電力から第三交流電力P3を生成し、この第三交流電力P3を補機13および補機14へと与えることができる。その結果、電力系統1から補機13および補機14用の電力を取り出すことを抑制することができる。
 図3は、実施の形態にかかるエネルギ消費回路30の構成を示す図である。図3に示すように、エネルギ消費回路30は、チョッパ回路31と、抵抗32と、スイッチ34と、スイッチ制御回路35と、を備える。
 チョッパ回路31は、第一経由点Q1に接続され、FRT(Fault Ride Through)の実施時に第一経由点Q1から受け取った電力を変換する。第一蓄電要素33は、チョッパ回路31の出力側に設けられている。第一蓄電要素33は、蓄電池であってもよいしキャパシタであってもよい。
 抵抗32は、FRTの実施時にチョッパ回路31が出力する電力を消費するために用いられる。スイッチ34は、チョッパ回路31に対して抵抗32と第一蓄電要素33を選択的に接続する。
 第一蓄電要素33は、次の動作により充電される。スイッチ制御回路35は、スイッチ信号S1をスイッチ34に伝達することでスイッチ34を制御する。スイッチ制御回路35は、第一蓄電要素33の充電量が予め定めた閾値以上であるときには、チョッパ回路31と抵抗32とを接続するようにスイッチ34を制御する。スイッチ制御回路35は、第一蓄電要素33の充電量が予め定めた閾値よりも少ないときには、チョッパ回路31と第一蓄電要素33とを接続するようにスイッチ34を制御する。
 FRT実施中にチョッパ回路31と第一蓄電要素33とが接続されることで、第一蓄電要素33がチョッパ回路31の出力電力の少なくとも一部を蓄える。
 チョッパ回路31に第一蓄電要素33を追加することで、FRT実施中に電力系統1に逆潮流できない電力を、第一蓄電要素33で回収することができる。第一蓄電要素33で回収した電力は必要に応じて再利用できるので、FRTを実施することで発生する電力損失を減らすことができる。
 第一蓄電要素33が蓄えた電力は、次の動作により使用される。チョッパ回路31は、発電待機モードにおいては、第一蓄電要素33の電力を第二電力変換回路22に伝達する。具体的には、発電待機モードにおいては、PCS制御部23がチョッパ回路31のスイッチング素子をターンオンとすることで、第一蓄電要素33と第一経由点Q1とが導通する。発電待機モードにおいては、第一蓄電要素33の電力から第三交流電力P3が生成されるので、この第三交流電力P3を補機13および補機14に供給することができる。
 風力発電システム10は、発電待機モードにおいては、第三交流電力P3を少なくとも補機14のヨーモータへ供給するように構築されている。低風速ではナセルを風方向に回転させるためにヨーモータを駆動させることが好ましい。しかしながら、風力発電システム10が発電を待機するほどの低風速時には、風力発電システム10の発電電力を補機13および補機14に与えることができない。そこで、第一蓄電要素33の電力から生成した第三交流電力P3をヨーモータに供給することができる。これにより、風力発電システム10が発電待機モード中であってもヨーモータを駆動させることができる。
 図4は、実施の形態の変形例にかかる風力発電システム110および電力変換装置20の構成を示すとともに、その発電待機モードの動作を示す図である。変形例にかかる風力発電システム110は、下記の相違点において、図1および図2に記載した風力発電システム10とは異なっている。
 変形例にかかる相違点は、エネルギ消費回路30がエネルギ消費回路130に置換されている点である。エネルギ消費回路130は、第一蓄電要素33を備えていないが、それ以外はエネルギ消費回路30と同様の構成を有する。
 変形例にかかる風力発電システム110には、直流コンデンサ25と並列に接続された第二蓄電要素133がさらに設けられている。実施の形態では、第二蓄電要素133が電力変換装置20の外部に設けられた外付型の蓄電池あるいはキャパシタとされているので、第二蓄電要素133が大型のものであってもよい。
 第二蓄電要素133は、風力発電システム10の発電モード中において、第一経由点Q1を介して第一電力変換回路21で変換された直流電力を受け取ることで電力を蓄える。
 PCS制御部23は、発電待機モードにおいては、遮断器28を遮断状態として風力発電システム110を解列モードとする。第二電力変換回路22は、第一経由点Q1を介して、第二蓄電要素133の電力を受け取る。PCS制御部23は、第二蓄電要素133の電力を第三交流電力P3に変換するように第二電力変換回路22を制御する。
 このように、変形例にかかる風力発電システム110においても、発電待機モードにおいて、第二蓄電要素133に蓄えた電力から第三交流電力P3を生成して補機14などに供給することができる。
 図5は、比較例にかかる風力発電システム210および電力変換装置220の構成を示すとともに、その発電モードの動作を示す図である。図6は、比較例にかかる風力発電システム210および電力変換装置220の構成を示すとともに、その発電待機モードの動作を示す図である。
 比較例にかかる風力発電システム210は、下記の相違点において、図1および図2に記載した風力発電システム10とは異なっている。第一相違点は、比較例では、第二電力変換回路22から第三交流電力P3が出力されないことである。
 第二相違点は、変圧器40の一端が、第二経由点Q2ではなく他の経由点Qxに接続していることである。他の経由点Qxは、遮断器28と変圧器41との間の電気経路に設けられている。
 第三相違点は、エネルギ消費回路30がエネルギ消費回路130に置換されている点である。エネルギ消費回路130は、第一蓄電要素33を備えていないが、他の点はエネルギ消費回路30と同様の構成を有する。
 また、比較例にかかる風力発電システム210には、図4の変形例にかかる第二蓄電要素133も備えられていない。
 比較例では、図5の発電中においては、実施の形態と同様に第二交流電力P2が電力系統1および補機14などに供給される。しかし、比較例では、図6に示す発電待機モードでは、電力系統1からの系統交流電力P4が補機14などに供給される。その結果、比較例では、電力系統1の電力を消費する量が多くなるという問題がある。
 この点、実施の形態では、系統交流電力P4ではなく、第三交流電力P3によって補機13および補機14などの電源供給を賄うことができるという利点がある。
 実施の形態における電力変換装置20は、風力発電システム10ではなく、別の電力システムにおいて使用されてもよい。電力変換装置20は、第一電力変換回路21と、第二電力変換回路22と、チョッパ回路31と、抵抗32と、第一蓄電要素33と、スイッチ34と、を備える。これにより、スイッチ34を介してチョッパ回路31の出力電力を第一蓄電要素33へと与えることで、FRT実施中に系統に逆潮流できない電力の少なくとも一部を回収することができる。
1 電力系統、2 変圧器、3 電流計、4 上位遮断器、5 WF制御部、6 送電線、10、110、210 風力発電システム、12 発電機本体、13 補機(風車制御部)、14 補機(モータ部)、15 補機制御電源部、20、220 電力変換装置、21 第一電力変換回路、22 第二電力変換回路、23 PCS制御部、24 PCS制御電源部、25 直流コンデンサ、26 交流リアクトル、27 交流コンデンサ、28 遮断器、30、130 エネルギ消費回路、31 チョッパ回路、32 抵抗、33 第一蓄電要素、34 スイッチ、35 スイッチ制御回路、40、41 変圧器、133 第二蓄電要素、P1 第一交流電力、P2 第二交流電力、P3 第三交流電力、P4 系統交流電力、Q1 第一経由点、Q2 第二経由点、Qx 他の経由点

Claims (5)

  1.  風力から第一交流電力を生成する発電機本体と、
     前記発電機本体を補助する補機と、
     前記発電機本体からの前記第一交流電力を第二交流電力に変換して、前記第二交流電力を電力系統へと出力する電力変換装置と、
     を備え、
     前記電力変換装置は、
     前記第一交流電力を直流電力に変換する第一電力変換回路と、
     前記第一電力変換回路で変換された前記直流電力を前記第二交流電力に変換する第二電力変換回路と、
     前記第一電力変換回路と前記第二電力変換回路との間に設けられた第一経由点を介して前記第一電力変換回路からの前記直流電力を受け取ることで、電力を蓄える蓄電要素と、
     前記第二電力変換回路と前記電力系統との間に設けられた遮断器と、
     前記第二電力変換回路と前記遮断器とを制御する制御部と、
     を備え、
     前記制御部は、前記発電機本体の発電中には、前記遮断器を導通させて前記第二電力変換回路と前記電力系統とが連携する系統連系運転モードとし、前記系統連系運転モードにおいて前記第一電力変換回路からの前記直流電力を前記第二交流電力に変換するように前記第二電力変換回路を制御し、
     前記制御部は、前記発電機本体が発電を待機する期間である発電待機中には、前記遮断器を遮断させて前記第二電力変換回路と前記電力系統とが切り離された解列モードとし、前記第一経由点を介して前記第二電力変換回路が受け取った前記蓄電要素の電力を予め設定された電圧を持つ第三交流電力に変換するように前記第二電力変換回路を制御し、
     前記補機は、前記第二電力変換回路と前記遮断器との間に設けられた第二経由点を介して、前記第二電力変換回路から出力された前記第二交流電力または前記第三交流電力を受け取るように構築された風力発電システム。
  2.  前記電力変換装置は、
     前記第一経由点に接続され、前記第一経由点から受け取った電力を変換するチョッパ回路と、
     前記チョッパ回路が出力する電力を消費するための抵抗と、
     をさらに備え、
     前記蓄電要素は、前記チョッパ回路の出力側に設けられ前記チョッパ回路の出力電力の少なくとも一部を蓄える第一蓄電要素を、含み、
     前記チョッパ回路は前記発電待機中に前記第一蓄電要素の電力を前記第二電力変換回路に伝達する請求項1に記載の風力発電システム。
  3.  前記電力変換装置は、前記第一電力変換回路と前記第二電力変換回路との間の前記第一経由点に接続された直流コンデンサをさらに備え、
     前記直流コンデンサと並列に接続された第二蓄電要素が、さらに設けられた請求項1に記載の風力発電システム。
  4.  前記発電機本体が収納されたナセルをさらに有し、
     前記補機は、前記ナセルの方向を調整するためのヨーモータを含み、
     前記発電待機中には、前記第三交流電力を前記ヨーモータへ供給するように構築された請求項1に記載の風力発電システム。
  5.  第一交流電力を直流電力に変換する第一電力変換回路と、
     前記第一電力変換回路で変換された前記直流電力を第二交流電力に変換し、前記第二交流電力を電力系統へと出力する第二電力変換回路と、
     前記第一電力変換回路と前記第二電力変換回路との間に設けられた第一経由点に接続され、前記第一経由点から受け取った電力を変換するチョッパ回路と、
     前記チョッパ回路が出力する電力を消費するための抵抗と、
     前記チョッパ回路の出力側において前記抵抗と並列に設けられた蓄電要素と、
     前記チョッパ回路に対して前記抵抗と前記蓄電要素とを選択的に接続するスイッチと、
     を備える電力変換装置。
PCT/JP2018/040134 2018-10-29 2018-10-29 風力発電システムおよび電力変換装置 WO2020089972A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/976,629 US11764585B2 (en) 2018-10-29 2018-10-29 Wind power generation system and power conversion apparatus
JP2019548344A JP6721133B1 (ja) 2018-10-29 2018-10-29 風力発電システムおよび電力変換装置
EP18905895.1A EP3672061B1 (en) 2018-10-29 2018-10-29 Wind power generation system
PCT/JP2018/040134 WO2020089972A1 (ja) 2018-10-29 2018-10-29 風力発電システムおよび電力変換装置
CN201880033545.9A CN111386654B (zh) 2018-10-29 2018-10-29 风力发电系统及电力转换装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/040134 WO2020089972A1 (ja) 2018-10-29 2018-10-29 風力発電システムおよび電力変換装置

Publications (1)

Publication Number Publication Date
WO2020089972A1 true WO2020089972A1 (ja) 2020-05-07

Family

ID=70461821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/040134 WO2020089972A1 (ja) 2018-10-29 2018-10-29 風力発電システムおよび電力変換装置

Country Status (5)

Country Link
US (1) US11764585B2 (ja)
EP (1) EP3672061B1 (ja)
JP (1) JP6721133B1 (ja)
CN (1) CN111386654B (ja)
WO (1) WO2020089972A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022054443A (ja) * 2020-09-25 2022-04-06 ヴォッベン プロパティーズ ゲーエムベーハー 風力発電設備の無停電電源

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116365570A (zh) * 2021-12-28 2023-06-30 北京金风科创风电设备有限公司 输变电系统和包括该输变电系统的风力发电机组

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006042548A (ja) * 2004-07-29 2006-02-09 Hitachi Ltd 系統連系装置
JP2012231624A (ja) 2011-04-27 2012-11-22 Fuji Electric Co Ltd 風力発電用電力変換装置
US20140229030A1 (en) * 2013-02-14 2014-08-14 Bradley Hardin Energy management system for multiple power inputs
WO2015186232A1 (ja) 2014-06-06 2015-12-10 株式会社日立製作所 回転電機システムまたは回転電機システムの制御方法
JP2016116305A (ja) * 2014-12-15 2016-06-23 株式会社日立製作所 発電システムまたは風力発電システム
US20160218511A1 (en) * 2013-10-17 2016-07-28 Zhangjiakou Wind And Solar Power Energy Demonstration A monitoring system and method for megawatt level battery energy storage power plant
JP2018007458A (ja) * 2016-07-05 2018-01-11 株式会社日立製作所 風力発電設備とその運転方法およびウィンドファーム

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6064122A (en) * 1998-11-05 2000-05-16 Alliedsignal Power Systems Inc. Microturbine power of generating system including a battery source for supplying startup power
JP4898230B2 (ja) 2006-01-18 2012-03-14 学校法人福岡工業大学 風力発電システムの運転制御方法及びその装置
CN101090207A (zh) * 2006-06-13 2007-12-19 宏锐电子股份有限公司 位移发电装置
US7391126B2 (en) * 2006-06-30 2008-06-24 General Electric Company Systems and methods for an integrated electrical sub-system powered by wind energy
JP5527497B2 (ja) * 2008-01-11 2014-06-18 富士電機株式会社 交流電動機駆動回路及び電気車駆動回路
US7952232B2 (en) * 2008-03-13 2011-05-31 General Electric Company Wind turbine energy storage and frequency control
EP2587609B1 (en) * 2010-05-28 2019-07-31 Mitsubishi Heavy Industries, Ltd. Power supply device and method
KR101174891B1 (ko) * 2010-06-01 2012-08-17 삼성에스디아이 주식회사 전력 저장 시스템 및 그 제어방법
KR101182431B1 (ko) * 2010-10-12 2012-09-12 삼성에스디아이 주식회사 배터리 팩, 이의 제어방법 및 이를 포함하는 전력 저장 시스템
US8344550B2 (en) * 2010-12-21 2013-01-01 General Electric Company Power conversion control with energy storage
EP2503146B1 (en) * 2011-03-21 2013-12-18 Siemens Aktiengesellschaft Method and arrangement for controlling an operation of an electric energy production facility during a disconnection to a utility grid.
US9077204B2 (en) * 2011-07-20 2015-07-07 Inventus Holdings, Llc Dispatchable renewable energy generation, control and storage facility
EP2565443A1 (en) 2011-09-05 2013-03-06 XEMC Darwind B.V. Generating auxiliary power for a wind turbine
US20150001848A1 (en) * 2012-01-18 2015-01-01 Hitachi, Ltd. Wind Turbine Generation System
JP6480096B2 (ja) * 2013-04-19 2019-03-06 京セラ株式会社 電力制御システム、電力制御装置、電力制御システムの制御方法
CN104718695B (zh) * 2013-04-22 2017-07-21 富士电机株式会社 电力转换装置及其控制方法
US9334749B2 (en) * 2013-10-18 2016-05-10 Abb Technology Ag Auxiliary power system for turbine-based energy generation system
ES2908952T3 (es) * 2013-10-31 2022-05-04 Gen Electric Sistema y método para controlar sistemas de generación de potencia eólica
CN106471704B (zh) * 2014-06-26 2019-10-01 东芝三菱电机产业系统株式会社 不间断电源装置
US10784713B2 (en) * 2016-11-11 2020-09-22 Toshiba Mitsubishi-Electric Industrial Systems Corporation Uninterruptible power supply device
US10587121B2 (en) * 2017-05-23 2020-03-10 General Electric Company Electrical power systems and subsystems
CN107658903A (zh) * 2017-10-30 2018-02-02 北方智能装备有限公司 一种嵌入式储能的风力发电系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006042548A (ja) * 2004-07-29 2006-02-09 Hitachi Ltd 系統連系装置
JP2012231624A (ja) 2011-04-27 2012-11-22 Fuji Electric Co Ltd 風力発電用電力変換装置
US20140229030A1 (en) * 2013-02-14 2014-08-14 Bradley Hardin Energy management system for multiple power inputs
US20160218511A1 (en) * 2013-10-17 2016-07-28 Zhangjiakou Wind And Solar Power Energy Demonstration A monitoring system and method for megawatt level battery energy storage power plant
WO2015186232A1 (ja) 2014-06-06 2015-12-10 株式会社日立製作所 回転電機システムまたは回転電機システムの制御方法
JP2016116305A (ja) * 2014-12-15 2016-06-23 株式会社日立製作所 発電システムまたは風力発電システム
JP2018007458A (ja) * 2016-07-05 2018-01-11 株式会社日立製作所 風力発電設備とその運転方法およびウィンドファーム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022054443A (ja) * 2020-09-25 2022-04-06 ヴォッベン プロパティーズ ゲーエムベーハー 風力発電設備の無停電電源
JP7526153B2 (ja) 2020-09-25 2024-07-31 ヴォッベン プロパティーズ ゲーエムベーハー 風力発電設備の無停電電源

Also Published As

Publication number Publication date
EP3672061A4 (en) 2021-04-07
JP6721133B1 (ja) 2020-07-08
JPWO2020089972A1 (ja) 2021-02-15
US20210006074A1 (en) 2021-01-07
EP3672061B1 (en) 2023-02-22
CN111386654B (zh) 2023-08-04
EP3672061A1 (en) 2020-06-24
CN111386654A (zh) 2020-07-07
US11764585B2 (en) 2023-09-19

Similar Documents

Publication Publication Date Title
CN108288853B (zh) 飞机直流供电系统及供电方法
KR101628592B1 (ko) 전기차의 추진 제어 장치 및 그 제어 방법
US10110000B2 (en) Power management and distribution architecture for a space vehicle
US20130234521A1 (en) Method and device for multifunctional power conversion employing a charging device and having reactive power control
KR20140074361A (ko) 파워 컨디셔너 시스템 및 축전 파워 컨디셔너
JP6262887B2 (ja) 電源バス回路
JP5357526B2 (ja) 船舶の電力設備及びその運用方法
US8853875B2 (en) Wind power generation system and method for controlling excitation synchronous generator thereof
JP2011250649A (ja) 電力システム
JP3243443U (ja) 火力発電高圧直掛けエネルギー貯蔵予備所内電源システム
KR102325843B1 (ko) 전력 어시스트 유닛 및 전력 어시스트 시스템
CN115085245A (zh) 光伏储能系统及其适用的控制方法
JP6721133B1 (ja) 風力発電システムおよび電力変換装置
JP2018098953A (ja) 給電システム
CN106160010A (zh) 电力推进船舶综合电力系统
JP2008148443A (ja) 蓄電部を備えた自然エネルギー利用発電システム
CN110350573B (zh) 一种自愈型供电系统和控制方法
CN205248900U (zh) 一种风力发电机组变桨距系统不间断控制电源
WO2015145748A1 (ja) クレーン装置、電力供給ユニットおよび改造方法
EP3890139A1 (en) Hybrid energy converting system
JP2004336933A (ja) 電力給電システム
CN209642328U (zh) 供电系统
CN206060230U (zh) 电力推进船舶综合电力系统
CN108590957A (zh) 一体化变桨控制器及变桨系统
KR101516278B1 (ko) 쓰러스터 구동을 위한 선박의 전력 시스템

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019548344

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018905895

Country of ref document: EP

Effective date: 20190820

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18905895

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE