WO2020088561A1 - 复合滤芯组件 - Google Patents
复合滤芯组件 Download PDFInfo
- Publication number
- WO2020088561A1 WO2020088561A1 PCT/CN2019/114559 CN2019114559W WO2020088561A1 WO 2020088561 A1 WO2020088561 A1 WO 2020088561A1 CN 2019114559 W CN2019114559 W CN 2019114559W WO 2020088561 A1 WO2020088561 A1 WO 2020088561A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water
- filter element
- inlet
- water stop
- element assembly
- Prior art date
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 79
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 341
- 230000007704 transition Effects 0.000 claims abstract description 192
- 239000012528 membrane Substances 0.000 claims description 109
- 238000001223 reverse osmosis Methods 0.000 claims description 87
- 239000002351 wastewater Substances 0.000 claims description 73
- 238000007789 sealing Methods 0.000 claims description 69
- 238000005192 partition Methods 0.000 claims description 61
- 238000001914 filtration Methods 0.000 claims description 60
- 238000003466 welding Methods 0.000 claims description 33
- 230000002093 peripheral effect Effects 0.000 claims description 24
- 230000013011 mating Effects 0.000 claims description 8
- 230000004323 axial length Effects 0.000 claims description 7
- 238000004891 communication Methods 0.000 claims description 2
- 230000000694 effects Effects 0.000 description 37
- 239000007788 liquid Substances 0.000 description 34
- 238000009434 installation Methods 0.000 description 24
- 238000009827 uniform distribution Methods 0.000 description 20
- 238000000034 method Methods 0.000 description 18
- 238000000746 purification Methods 0.000 description 18
- 230000008676 import Effects 0.000 description 16
- 238000003780 insertion Methods 0.000 description 15
- 230000037431 insertion Effects 0.000 description 15
- 238000010586 diagram Methods 0.000 description 13
- 239000012535 impurity Substances 0.000 description 13
- 239000008399 tap water Substances 0.000 description 13
- 235000020679 tap water Nutrition 0.000 description 13
- 230000008569 process Effects 0.000 description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 230000000903 blocking effect Effects 0.000 description 8
- 239000002699 waste material Substances 0.000 description 8
- 238000013461 design Methods 0.000 description 7
- 239000008213 purified water Substances 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000004831 Hot glue Substances 0.000 description 5
- 235000020188 drinking water Nutrition 0.000 description 5
- 239000003651 drinking water Substances 0.000 description 5
- 230000010354 integration Effects 0.000 description 5
- 230000007774 longterm Effects 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 4
- -1 salt ions Chemical class 0.000 description 4
- 238000009991 scouring Methods 0.000 description 4
- 229920000049 Carbon (fiber) Polymers 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 239000004917 carbon fiber Substances 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 238000011010 flushing procedure Methods 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 239000004745 nonwoven fabric Substances 0.000 description 3
- 230000000149 penetrating effect Effects 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000002893 slag Substances 0.000 description 3
- 125000006850 spacer group Chemical group 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000000108 ultra-filtration Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 230000035622 drinking Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 244000005700 microbiome Species 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000013049 sediment Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000002627 tracheal intubation Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/10—Spiral-wound membrane modules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D29/00—Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
- B01D29/50—Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with multiple filtering elements, characterised by their mutual disposition
- B01D29/56—Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with multiple filtering elements, characterised by their mutual disposition in series connection
- B01D29/58—Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with multiple filtering elements, characterised by their mutual disposition in series connection arranged concentrically or coaxially
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D36/00—Filter circuits or combinations of filters with other separating devices
- B01D36/02—Combinations of filters of different kinds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D63/00—Apparatus in general for separation processes using semi-permeable membranes
- B01D63/10—Spiral-wound membrane modules
- B01D63/12—Spiral-wound membrane modules comprising multiple spiral-wound assemblies
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
Definitions
- the present application belongs to the technical field of water purification, and particularly relates to a composite filter element assembly.
- the tap water transported from the city water plant to each user usually contains a certain amount of salt ions, metal substances, chlorides, microorganisms, sediment and other substances.
- a water purifier In order to improve the quality of drinking water, more and more families choose to install a water purifier on the tap of the tap water.
- the water purifier has multiple functional filter elements to remove different types of harmful substances in the tap water.
- the existing water purifier filter element is generally 3 to 4 grades, and some manufacturers of water purifier filter element are double core.
- a variety of filter element assemblies are usually arranged in the water purifier, and the inlet and outlet ports of each filter element assembly are connected in series in sequence, and the inlet and outlet chambers are formed on both sides of the different filter elements.
- a water stop valve is installed at the entrance and exit, the risk of water leakage can be reduced.
- the blocking part of the existing water stop valve structure and the water stop port part are not tight enough, the assembly structure of the water stop valve is relatively simple, water leakage is prone to occur, and the service life is reduced.
- This application aims to solve one of the technical problems in the related art at least to a certain extent.
- an object of the present application is to propose a composite filter element assembly, which reduces the pipeline connection, reduces the risk of water leakage, improves the purification filtration effect, has high reliability, and has a good purification filtration effect.
- a composite filter element assembly includes a housing, a first filter group and a second filter group, a first receiving cavity and a second receiving cavity are defined in the housing, the first receiving cavity and the first
- the two accommodating chambers are separated by a transition plate, the transition plate is provided with a transition port, the first accommodating chamber is a low-pressure chamber, the second accommodating chamber is a high-pressure chamber, and the water pressure in the first accommodating chamber is low
- the first filter group is disposed in the first accommodating cavity
- the second filter group is disposed in the second accommodating cavity
- the second accommodating cavity After being filtered by the second filter group, the water flows to the first receiving chamber through the transition port.
- the housing is divided into a first accommodating cavity and a second accommodating cavity by a transition plate, thereby separating the first filter group and the second filter group, and setting the first accommodating cavity as a low-pressure cavity
- the second accommodating chamber is set as a high-pressure chamber, which reduces the structural requirements of the low-pressure chamber, and also makes the first filter group that can purify filtered water at relatively low pressure in the low-pressure chamber, and the second filter assembly that requires a higher water pressure in the high-pressure chamber.
- the pipeline connection is reduced, the risk of water leakage is reduced, and the purification and filtering effect is improved.
- the design of the flow channel is simple, the reliability is high, and the purification and filtering effect is good.
- composite filter element assembly may also have the following additional technical features:
- the housing is provided with a first inlet, a second inlet, and a third inlet.
- the first filter group includes a first filter element, a second filter element, and a waterway partition plate.
- the waterway A partition plate is provided in the first accommodating chamber, the waterway partition plate separates the first accommodating chamber from a first low-pressure area and a second low-pressure area, and the first filter element is provided in the first low-pressure area Inside, the water flowing in from the first inlet and outlet flows out of the second inlet and outlet after passing through the first filter element, and the second filter element is set in the second low-pressure area and passes from the transition port The inflowing water flows out of the third inlet and outlet after passing through the second filter.
- the water pressure in the high-pressure chamber is 0.7-0.85 MPa.
- the water pressure in the low-pressure chamber is less than or equal to the water pressure of the municipal water supply.
- the water pressure in the first low-pressure area is 0.1-0.4 MPa.
- the waterway partition plate is cylindrical, the second filter element is located inside the waterway partition plate, and the first filter element is located outside the waterway partition plate;
- the first filter group includes A first outer end cap, the first outer end cap is sealingly connected with one end of the waterway partition plate, and the first outer end cap is provided with a first cannula that communicates with the second low-pressure area.
- the first cannula is connected to the transition plate, and a first seal is provided between the first cannula and the transition plate to avoid cross-flow between the high-pressure chamber and the first low-pressure area.
- the first filtration group includes a second middle end cover, the second middle end cover is sealingly connected to the other end of the waterway partition plate, and a second end cover is provided on the second middle end cover
- the second middle cannula is hermetically connected to the housing to avoid cross-flow between the second low-pressure area and the first low-pressure area.
- a first cannula inserted into the transition port is provided on the first filter group, and a first seal ring is provided between the first cannula and the inner wall of the transition port;
- the second filter group is provided with a third external through-tube inserted into the transition port, and a second sealing ring is provided between the third external through-tube and the inner wall of the transition port.
- one of the first cannula and the third outer cannula is inserted into the other, and the first seal ring and the second seal ring are arranged in a radial direction to form a double-layer seal .
- the transition plate is provided with a first inner convex ring around the transition port on the side facing the first accommodating cavity, and the transition plate surrounds the side on the side facing the second accommodating cavity
- the transition port is provided with a second inner convex ring to extend the axial length of the transition port.
- At least one of the first inner convex ring and the second inner convex ring has a non-circular outer contour.
- a second outer convex ring surrounding the second inner convex ring is provided on a side facing the second accommodating cavity, the second outer convex ring and the second inner convex ring are radially spaced apart Open, both the second inner convex ring and the second outer convex ring are in contact with the end face of the second filter group to form a labyrinth seal.
- At least one end of the transition port is provided with a chamfer of 30 degrees to 60 degrees to introduce the first sealing ring and / or the second sealing ring into the transition port.
- the housing includes: a bottle body with two ends open and two bottle caps, the two bottle caps are sealingly fitted at both ends of the bottle body, and the transition plate is connected to the bottle body on.
- the two bottle caps are respectively connected by screw welding or screw connection to the bottle body.
- the transition plate is integrally formed on the bottle body, or the transition plate is welded to the bottle body.
- a first accommodating cavity and a second accommodating cavity are separated in the longitudinal direction of the housing, and a water stop structure is provided on at least one inlet and outlet of the housing.
- the water stop structure includes: a water stop recess, the water stop recess is connected to the housing; a water stop core, the water stop core is movable between a cut-off position and a conducting position , The water stop structure blocks the inlet and outlet when in the cut-off position, and the inlet and outlet communicate with the inside of the housing when in the conducting position; a water stop spring, the water stop spring is connected to the water stop recess Between the table and the water stop core, the water stop spring often drives the water stop core to move toward the cutoff position.
- the water stop structure includes: a water stop seal ring, the water stop seal ring is sheathed on the water stop core, the water stop seal ring and the shell when the water stop core is in the cut-off position Body contact.
- the end of the inlet and outlet facing the water stop recess is provided with a chamfer.
- the water stop seal ring contacts the chamfer.
- a matching flange is provided in the housing around the entrance and exit, at least part of the water stop recess is located inside the matching flange, and the water stop recess is welded to the fitting protrusion Destiny.
- the inner circumferential surface of the fitting flange is formed as a multi-step matching step surface
- the outer circumferential surface of the water stop recess is provided with a water stop step surface matching the matching step surface
- the The convex angle of the mating step surface is directly opposite to the concave angle of the water stop step surface
- the concave angle of the mating step surface is directly opposite to the convex angle of the water stop step surface; wherein, at least one of the concave angle and the convex Interference bumps are provided between the corners, and the interference bumps are concentrated welding areas.
- an overflow groove is provided on the water stop step surface adjacent to the concentrated welding and melting area.
- the second accommodating cavity is located below the first accommodating cavity, and the inlet and outlet of the bottom of the second accommodating cavity are all provided with the water stop structure.
- a fourth inlet and a fifth inlet are provided on the housing
- the second filter group includes: a spiral wound reverse osmosis membrane element
- the spiral wound reverse osmosis membrane element includes: a central tube Group and a plurality of reverse osmosis membrane bag
- the central tube group includes a central tube and a plurality of spaced wastewater headers, the plurality of wastewater headers are arranged around the central tube, and the wall of the central tube
- the reverse osmosis membrane bag has a first part located inside the center pipe group and a part located outside the center pipe group In the second part, each of the wastewater header and the central pipe is separated by at least one first part of the reverse osmosis membrane bag, and the second parts of the plurality of reverse osmosis membrane bags are formed around A multi-layer membrane assembly around the central tube group; wherein, the water entering the high-pressure
- the second filtration group further includes: a third end cap and a fourth end cap, the third end cap and the fourth end cap are respectively connected to the shaft of the spiral wound reverse osmosis membrane element
- the third end cover is disposed toward the transition plate, the center pipe is connected to the transition hole through the third end cover, and the waste water pipe is connected to the first end cover through the fourth end cover Five imports and exports are connected.
- the axial ends of the circular cylinder rolled out of the reverse osmosis membrane bag are glued on the third end cover and the fourth end cover.
- FIG. 1 is a schematic diagram of an internal structure of a composite filter element assembly according to an embodiment of the present application.
- FIG. 2 is a bottom view of FIG. 1.
- FIG. 3 is a schematic structural diagram of a housing of a composite filter element assembly and a water stop assembly according to an embodiment of the present application.
- FIG. 4 is a schematic diagram of the internal structure of a composite filter element assembly according to an embodiment of the present application, omitting the first filter group and the second filter group.
- FIG. 5 is a schematic structural diagram of a cross section of a bottle body of a composite filter element assembly according to an embodiment of the present application.
- FIG. 6 is a schematic structural diagram of a bottle body of a composite filter element assembly according to an embodiment of the present application.
- FIG. 7 is a bottom view of a third end cap according to an embodiment of this application.
- FIG 8 is a bottom view of a fourth end cap according to an embodiment of the application.
- FIG. 9 is a schematic diagram of a three-dimensional structure of a center pipe and a waste water header according to an embodiment of the present application.
- FIG. 10 is a top view of a reverse osmosis membrane bag, a central tube, and a waste water header according to an embodiment of the present application.
- FIG. 11 is a top view of a spiral wound reverse osmosis membrane element in an embodiment of the present application.
- FIG. 12 is a partial enlarged view of the structure in the area A in FIG. 1.
- FIG. 13 is a partial enlarged view of the structure in the area B in FIG. 5.
- FIG. 14 is a schematic structural diagram of a lower end surface of a transition plate of a composite filter element assembly according to an embodiment of the present application.
- 15 is a schematic structural diagram of an upper end surface of a transition plate of a composite filter element assembly according to an embodiment of the present application.
- 16 is a schematic diagram of an internal structure of a composite filter element assembly according to an embodiment of the present application.
- Fig. 17 is a bottom view of Fig. 16.
- FIG. 18 is a schematic diagram of the internal structure of FIG. 16 with the first filter element, the second filter element, and the third filter element omitted.
- 19 is a schematic structural view of the composite filter element assembly of an embodiment of the invention omitting the internal filter group.
- FIG. 20 is a partially enlarged schematic view of the structure in the area I in FIG. 16.
- FIG. 21 is a partially enlarged schematic view of the structure in area II in FIG. 20.
- FIG. 21 is a partially enlarged schematic view of the structure in area II in FIG. 20.
- FIG. 22 is a schematic diagram of the ring seal in FIG. 20.
- FIG. 22 is a schematic diagram of the ring seal in FIG. 20.
- FIG. 23 is a schematic diagram of the sealing ring in FIG. 20 using a chamfered annular sealing ring.
- FIG. 24 is a schematic structural view of a matching flange on a second bottle cap according to an embodiment of the present application.
- FIG. 25 is a schematic cross-sectional view of a corresponding area of a water inlet, a matching flange, and a water stop recess of an embodiment of the present application.
- 26 is a top view of a third end cap with a first positioning protrusion according to an embodiment of the present application.
- FIG. 27 is a bottom view of a third end cap with a first positioning protrusion according to an embodiment of the present application.
- FIG. 28 is a bottom view of a fourth end cap with second positioning protrusions according to an embodiment of the present application.
- FIG. 29 is a top view of a fourth end cap with second positioning protrusions according to an embodiment of the present application.
- the third import and export 201 The third import and export 201;
- Second outer end cap 44 outer port 441; second outer cannula 442;
- Second middle end cap 45 middle port 451; second middle cannula 452;
- Second filter group 500 spiral wound reverse osmosis membrane element 3; central tube group 13;
- the third filter 30 The third filter 30; the fifth uniform flow channel 31; the reverse osmosis membrane bag 32; the central tube 33; the wastewater header 34;
- Water stop assembly 50 Water stop structure recess 51; Spring 52; Seal ring 53; Water stop structure 54; Restriction platform 541;
- Bottle cap 3001
- First bottle cap 310 first takeover 311; second takeover 312; third takeover 313; handle 314;
- Second bottle cap 320 fourth takeover 321; chamfer 322;
- Bottle 330 transition plate 331; transition port 332; first inner convex ring 333; second inner convex ring 334; first seal ring 335; second seal ring 336; second outer convex ring 337;
- Waterstop concave 610 waterstop step surface 611; interference bump 612; overflow groove 613;
- Water stop spring 630 Water stop seal ring 640.
- the composite filter element assembly 1000 according to an embodiment of the present application is described in detail below with reference to the drawings.
- a composite filter element assembly 1000 includes a housing 300, a first filter group 400 and a second filter group 500.
- the housing 300 defines a first accommodating cavity 100 and a second accommodating cavity 200.
- the first accommodating cavity 100 and the second accommodating cavity 200 are separated by a transition plate 331, and a transition port 332 is provided on the transition plate 331.
- the transition plate 331 makes the first accommodating cavity 100 and the second accommodating cavity 200 form two generally spaced cavities in the housing 300, and the two cavities can communicate through the transition port 332.
- the first accommodating chamber 100 is a low-pressure chamber
- the second accommodating chamber 200 is a high-pressure chamber.
- low pressure and high pressure are used for comparison, that is, the water pressure in the first accommodating chamber 100 is lower than the water pressure in the second accommodating chamber 200.
- the inner cavity of the housing 300 is divided into a first accommodating cavity 100 and a second accommodating cavity 200 by a transition plate 331, and its design can meet the requirements of different filtering structures for water pressure.
- the filtration flow resistance in the first accommodating cavity 100 is small, so the first accommodating cavity 100 is designed as a low-pressure cavity, so that the water purification system does not need to configure a booster pump for the first accommodating cavity 100, the internal parts of the first accommodating cavity 100 and corresponding joints
- the pressure is small, and the reliability of parts assembly sealing is low.
- the resistance to filtration and circulation in the second accommodating chamber 200 is large.
- a booster pump can be separately configured for the second accommodating chamber 200, and at the same time, the pressure-bearing capacity of the internal parts of the second accommodating chamber 200 and the corresponding nozzles must be guaranteed. Setting them separately in this way helps to reduce costs.
- the first filter group 400 is provided in the first accommodating chamber 100
- the second filter group 500 is provided in the second accommodating chamber 200.
- the water in the second accommodating chamber 200 flows to the first through the transition port 332 ⁇ ⁇ 100 ⁇ The holding cavity 100. That is to say, the first filter group 400 can fully perform the filtering function in the low-pressure chamber with relatively low water pressure, and the second filter group 500 needs the high-pressure chamber with relatively high water pressure to fully perform the filtering function.
- the water flow in the first accommodating chamber 100 may flow to the second accommodating chamber 200 through the transition port 332 after purification, or the water flow in the second accommodating chamber 200 may flow to the first accommodating chamber 100 through the transition port 332 after purification, here No restrictions.
- the first filter group 400 and the second filter group 500 are respectively distributed in different cavities, the first filter group 400 is in the first accommodating cavity 100, and the second filter group 500 is in the second accommodating cavity 200, compared with the prior art
- Each filter element shell is provided with a set of filter elements, and each filter element is connected by an external pipeline. This application reduces the installation of external connection pipelines to a certain extent, thereby reducing the installation time. The required external space saves the internal volume of the user's cabinet; at the same time, it enhances the overall aesthetic performance.
- the housing 300 is divided into the first accommodating cavity 100 and the second accommodating cavity 200 by the transition plate 331, thereby separating the first filter group 400 and the second filter group 500, and separating the first
- the accommodating chamber 100 is set as a low-pressure chamber
- the second accommodating chamber 200 is set as a high-pressure chamber, which reduces the structural requirements of the low-pressure chamber, and makes the first filter group 400 that can be purified at a relatively low pressure concentrated in the low-pressure chamber, which requires a higher water pressure
- the second filter group 500 is concentrated in the high-pressure chamber, which reduces the pipeline connection, reduces the risk of water leakage, and improves the purification and filtering effect.
- the flow channel design is simple, the reliability is high, and the purification and filtering effect is good.
- the housing 300 is provided with a first inlet 101, a second inlet 102, a third inlet 201, and a first filter group 400 It includes a first filter element 10, a second filter element 20, and a waterway partition plate 46.
- the waterway partition plate 46 is provided in the first accommodating chamber 100, and the waterway partition plate 46 separates the first accommodating chamber 100 from the first low-pressure area 1 and the first In the second low-pressure area 2, the first filter element 10 is provided in the first low-pressure area 1, the water flowing in from the first inlet 101 passes through the first filter element 10 and flows out from the second inlet 102, and the second filter element 20 is provided in In the second low-pressure region 2, the water flowing in from the transition port 332 flows out of the third inlet 201 after passing through the second filter 20.
- the water channel partition plate 46 separates the first filter element 10 and the second filter element 20 in the first accommodating chamber 100 to form two independent purified water channels.
- the provision of the transition port 332 makes the second accommodating chamber 200 and one of the purified water passages of the first accommodating chamber 100 in series.
- the waterway partition plate 46 divides the first accommodating chamber 100 into a first low-pressure zone 1 and a second low-pressure zone 2, the first low-pressure zone 1 communicates with the first inlet 101 and the second inlet 102, and the second low-pressure zone 2 communicates with the transition
- the port 332 and the third import and export 201 are connected.
- filter elements can be connected between the two sets of filter elements; the water inlet of the first filter element 10 and the water outlet of the second filter element 20 can also be directly connected; or the water outlet of the first filter element 10 can be directly connected It is connected to the water inlet of the second filter element 20 so that the purified water path between the first filter element 10 and the second filter element 20 forms a front-rear series relationship.
- a first uniform flow channel 11 is defined between the first filter element 10 and the inner wall of the first receiving cavity 100, and the first uniform flow channel 11 is connected to the first inlet 101.
- the liquid to be purified by the first filter element 10 may be evenly distributed in the first uniform flow channel 11, or the purified liquid of the first filter element 10 may be evenly distributed.
- a second uniform flow channel 12 is defined between the waterway partition plate 46 and the first filter 10.
- the liquid to be purified of the first filter 10 is uniformly distributed in the first uniform flow channel 11
- the liquid after the purification of the first filter 10 is uniformly distributed in the second uniform distribution channel 12; .
- the second uniform flow channel 12 is connected to the second inlet and outlet 102. That is, when the first import and export 101 is an import, the second import and export 102 is an export; when the first import and export 101 is an export, the second import and export 102 is an import.
- a third uniformly distributed flow channel 21 is defined between the waterway partition plate 46 and the second filter element 20.
- a fourth uniformly distributed flow channel 22 is provided on the side of the second filter element 20 away from the third uniformly distributed flow channel 21.
- One of the three uniform distribution channels 21 and the fourth uniform distribution channel 22 is connected to the third inlet and outlet 201, and the other of the third uniform distribution channel 21 and the fourth uniform distribution channel 22 is connected to the transition port 332.
- the fourth uniform distribution channel 22 is connected to the third inlet 201; when the third uniform distribution channel 21 is connected to the third inlet 201, the fourth The uniform flow channel 22 is connected to the transition port 332.
- the first accommodating chamber 100 and the second accommodating chamber 200 are spaced apart in the axial direction, and one of the uniform flow channels on both sides of the second filter element 20 passes through the transition plate 331
- the transition port 332 communicates with the second accommodating cavity 200, and the two accommodating cavities (100, 200) are compactly matched, saving the external connection pipe that the filtered water of the second filtering group 500 needs to lay when flowing to the second filtering element 20 for filtering; It may also be that saving the external connecting pipe that the filtered water of the second filter element 20 needs to be laid when flowing to the second filter group 500 is helpful for reducing the overall size of the composite filter element assembly 1000 and for simplifying the layout of the external pipeline .
- the water flow passes through the first filter 10 and the second
- the filter member 20 When the filter member 20 is used, most of it passes through in the radial direction of the first accommodating chamber 100, and the passing path is short and the flow volume is large. In addition, it has a flushing effect on the impurities on the surface of the filter when passing radially, and the water flow is more likely to wash away the impurities and then pass through the filter.
- each filter element Most of the water flow of each filter element flows in the axial direction when entering and leaving the water, which is not only conducive to the uniform distribution of the water flow, but also helps to bring the impurities under scouring to the axial end and avoid the impurities from being blocked on the surface of the filter element. It can be understood that, compared with the integration of two sets of filter elements in one filter element assembly in the prior art, the present application has higher integration and stronger functions.
- the filter element it is only necessary to disassemble the different ends of the housing 300 and the corresponding end caps of each filter element, and the corresponding filter element can be replaced. The replacement is simple and easy to operate, which provides the possibility for the customer to perform the replacement in person. Reduced maintenance costs.
- the composite filter element assembly 1000 needs only one set of positioning and installation structure for overall installation, which is simple and time-saving to assemble.
- the housing 300 includes: a bottle body 330 and two bottle caps 3001, both ends of the bottle body 330 are open, and the two bottle caps 3001 are fitted on both sides of the bottle body 330 At the end, each bottle cap 3001 can be detachably sealed and connected to the bottle body 330.
- a first bottle cap 310 one of the bottle caps 3001 is referred to as a first bottle cap 310
- the other bottle cap 3001 is referred to as a second bottle cap 320.
- the detachable connection may be a threaded connection, that is, one end of the bottle body 330 and the cap are provided with an external thread, and the other is provided with a matching internal thread, and a sealing ring may be provided between the internal thread and the external thread , Can strengthen the tightening effect, can also improve the sealing effect.
- the detachable connection can also be a snap connection.
- the end of the bottle body 330 is provided with a buckle, and the first bottle cap 310 and the second bottle cap 320 at both ends of the bottle body 330 are provided with locking holes so that the bottle body 330 and the first The bottle cap 310 and the second bottle cap 320 respectively form a clamping relationship.
- other easily detachable connection methods that can be thought of can also be used in this application, which is not limited here.
- the transition plate 331 is located between the first bottle cap 310 and the second bottle cap 320.
- the bottle body A second receiving cavity 200 is defined between 330 and the transition plate 331 and the second bottle cap 320.
- the second receiving cavity 200 is defined between the bottle body 330, the transition plate 331 and the first bottle cap 310.
- the bottle cap 3001 may not be limited to the detachable connection with the bottle body 330.
- a fixed connection may be formed between the bottle cap 3001 and the bottle body 330.
- the first bottle cap 310 and the bottle body 330 may be fixedly connected by a spin welding structure 700, or an openable connection may be formed in which a screw thread and a sealing ring are matched.
- the second bottle cap 320 and the bottle body 330 may be fixedly connected by a spin welding structure 700, or an openable connection may be formed in which a screw thread and a sealing ring are matched.
- the present application has a higher degree of integration and stronger functions.
- it is only necessary to disassemble the different ends of the housing 300 and the corresponding end caps of each filter element, and the corresponding filter element can be replaced.
- the replacement is simple and easy to operate, which provides the possibility for the customer to perform the replacement in person. Reduced maintenance costs.
- the composite filter element assembly 1000 needs only one set of positioning and installation structure for overall installation, which is simple and time-saving to assemble.
- a transition port 332 penetrating in the thickness direction is provided in the middle of the transition plate 331.
- the transition plate 331 and the bottle body 330 are integrally injection-molded, and the one-piece molding is convenient for manufacturing, and the sealed connection between the transition plate 331 and the bottle body 330 is very reliable, avoiding the impact of force Or when the pressure difference between the two sides is too large, the transition plate 331 deflects in the bottle body 330, leaks water, or the like.
- the transition plate 331 can also be welded to the bottle body 330, which is not limited here.
- the second accommodating cavity 200 can better withstand the pressure difference between the first accommodating cavity 100 and the second accommodating cavity 200, to prevent the high-pressure water in the second accommodating cavity 200 from penetrating the first cavity without the transition port 332 The receiving cavity 100.
- the water pressure of the second filter group 500 should be kept within a certain range during purification and filtration. Because if the water pressure is small, the water flow cannot pass through the second filter group 500 in a large amount, which will result in an excessively low purification amount. If the water pressure is large, the second filter group 500 may be easily damaged.
- the water pressure in the high-pressure chamber is 0.7-0.85Mpa, that is, the minimum water pressure in the high-pressure chamber is not lower than 0.7Mpa, and the highest is not higher than 0.85Mpa.
- the water pressure in this range, the higher water pressure here is conducive to the second filter group 500 to fully exert the filtering force, and accelerate the speed of the water flow through the membrane.
- the water pressure of the high-pressure chamber is greater than that of the municipal water supply. Therefore, when the water flows to the high-pressure chamber, a booster pump is required to boost pressure.
- the water pressure in the low-pressure chamber is less than or equal to the water pressure of the municipal water supply, and the water can be directly received from the municipal water supply when the first accommodating chamber 100 is filled with water.
- the water pressure in the first low-pressure zone 1 is 0.1-0.4 MPa, that is, the water pressure in the first low-pressure zone 1 is at least 0.1 Mpa and at most 0.4 Mpa. The water pressure in this range is low and no booster pump is required.
- the waterway partition plate 46 is cylindrical, the second filter 20 is located inside the waterway partition 46, and the first filter 10 is located on the waterway partition 46 outside.
- the first filter element 10 and the second filter element 20 are also cylindrical, and the first filter element 10, the waterway partition plate 46 and the second filter element 20 are sequentially sleeved, and the central cavity of the second filter element 20 is the first Four uniform flow channels 22.
- the fourth uniform flow channel 22 is at the center of the first filter group 400, which is cylindrical.
- the outer side of the fourth uniform flow channel 22 is arranged with a layer of second filter element 20, a layer of third uniform distribution channel 21, a layer of waterway partition plate 46, and a layer of second uniform distribution channel in the radial direction 12.
- a layer of the first filter element 10, a layer of the first uniform flow channel 11, the third uniform flow channel 21 and the second uniform flow channel 12 are separated from each other by a waterway partition plate 46 and do not circulate.
- the first accommodating cavity 100 has a compact overall arrangement, occupies less installation space, and has a high degree of integration. It is convenient to install the first filter element 10 and the second filter element 20.
- the first filter group 400 includes a first outer end cover 42 that is sealingly connected to one end of the waterway partition plate 46.
- the first outer end cover 42 cooperates with the first filter element 10 to close the bottoms of the first filter element 10 and the second uniform flow channel 12, and provides support for the first filter element 10, effectively preventing the first The liquid on both sides of the filter element 10 is connected at the bottom.
- the waterway partition plate 46 is connected to the first outer end cover 42, which is conducive to the first outer end cover 42 being firmly set at a specific position, so that the second uniformly distributed flow path 12 and the third uniformly distributed flow path 21 can be reliably separated, avoiding string Flow and water quality are reduced.
- the waterway partition plate 46 and the first outer end cover 42 are integrally formed pieces, which can be conveniently processed and manufactured. After the integral molding, the gap between the waterway partition plate 46 and the first outer end cover 42 is less likely to occur, and the position is more stable.
- the end face of the first filter element 10 is glued to the first outer end cover 42. This not only facilitates assembly, but also facilitates the installation of the integrated core.
- the first filter element 10 is sealingly connected to the first outer end cover 42 by a ring of hot melt adhesive.
- the first filter group 400 includes a second middle end cap 45 that is sealingly connected to the other end of the waterway partition plate 46 and the second middle end cap 45
- a second middle cannula 452 is provided on the top, and the second middle cannula 452 is sealedly connected to the housing 300 to avoid cross-flow between the second low-pressure area 2 and the first low-pressure area 1.
- the second middle end cap 45 fixes the top of the first filter 10, effectively preventing the water flow on both sides of the first filter 10 from being connected in series at the top.
- the waterway partition plate 46 is connected to the second middle end cover 45, so that the second filter element 20 can be conveniently inserted into the second low pressure 2 first.
- a fourth inlet 302 and a fifth inlet 301 are provided on the housing 300, and the second filter group 500 includes: a spiral wound reverse osmosis membrane element 3.
- the spiral wound reverse osmosis membrane element 3 includes: a central tube group 13 and a plurality of reverse osmosis membrane bag 32.
- the central tube group 13 includes a central tube 33 and a plurality of spaced-apart wastewater headers 34.
- the multiple wastewater headers 34 are arranged around the central tube 33.
- the wall of the central tube 33 is provided with filtered water inlet holes, and the wastewater header 34
- the wall of the tube is provided with a waste water inlet hole
- the reverse osmosis membrane bag 32 has a first part located inside the center tube group 13 and a second part located outside the center tube group 13, each waste water header 34 and center tube 33 are at least
- the first portion of one reverse osmosis membrane bag 32 is separated, and the second portions of the plurality of reverse osmosis membrane bags 32 form a multi-layer membrane assembly surrounding the central tube group 13;
- the water in the cavity is filtered by the reverse osmosis membrane bag 32 and flows to the filtered water inlet hole, the waste water header 34 is connected to the fifth inlet 301, and the central tube 33 is connected to the transition port 332.
- the reverse osmosis membrane bag 32 is rolled into a cylindrical shape, and a fifth uniform flow is defined between the reverse osmosis membrane bag 32 and the inner wall of the second receiving chamber 200 In the channel 31, the center of the reverse osmosis membrane bag 32 is directly opposite to the transition port 332. From the layout of the spiral wound reverse osmosis membrane element 3 and the fifth uniformly distributed flow channel 31, most of the water flows along the radial direction of the spiral wound reverse osmosis membrane element 3 when passing through the spiral wound reverse osmosis membrane element 3 Crossing, the crossing path is short and the circulation is large.
- the filter element has a flushing effect on the impurities on the surface of the filter when passing radially, and the water flow is more likely to wash away the impurities and then pass through the filter.
- most of the water flow basically flows in the axial direction, which is not only conducive to the uniform distribution of the water flow, but also helps to bring the impurities under scouring to the axial end, so as to avoid the impurities from being blocked on the surface of the filter element.
- the water flowing into the fifth uniform flow channel 31 passes through the reverse osmosis membrane bag 32 in the radial direction and flows toward the central tube 33, the water molecules continuously permeate the reverse osmosis membrane bag 32 Inside.
- the part of the purified water that has penetrated into the reverse osmosis membrane bag 32 continues to flow toward the center tube 33 in the radial direction, and partly flows toward the center tube 33 in the spiral direction under the influence of the membrane extension direction. Finally, the purified water enters the central tube 33 from the filtered water inlet hole, and then flows toward the transition port 332.
- the water that has not penetrated into the reverse osmosis membrane bag 32 is concentrated at the waste water header 34, and the remaining waste water flows to the waste water collector hole on the wall of the waste water header 34.
- water passes through the reverse osmosis membrane bag 32 it passes through in the radial direction, with a short path and a large circulation, which has a scouring effect on the impurities on the surface of the reverse osmosis membrane bag 32. ⁇ ⁇ ⁇ 32 ⁇ Permeable film bag 32.
- the second filter group 500 further includes: a third end cap 47 and a fourth end cap 48, the third end cap 47 and the fourth end cap 48 are respectively connected to the spiral
- the third end cap 47 is disposed toward the transition plate 331
- the central tube 33 is connected to the transition port 332 through the third end cap 47
- the wastewater header 34 is connected to the transition port 48
- the fifth import and export 301 is connected.
- a third outer through cannula 471 and a third inner through cannula 472 are provided at both ends of the third end cap 47.
- the third outer through cannula 471 is inserted in the transition port 332,
- the three-inlet cannula 472 is connected to the center tube 33.
- the third end cap 47 closes the top of the spiral wound reverse osmosis membrane element 3, and provides the top support connection for the spiral wound reverse osmosis membrane element 3, effectively preventing the liquid in the spiral wound reverse osmosis membrane element 3. Cross at the top.
- the fourth end cap 48 closes the bottom of the spiral wound reverse osmosis membrane element 3, and provides the bottom seal and support for the spiral wound reverse osmosis membrane element 3, effectively preventing the liquid in the spiral wound reverse osmosis membrane element 3.
- the waste water header 34 connects the waste discharge port 482 and the fifth inlet and outlet 301 so that the high-salinity waste water flows out of the housing 300 fast enough.
- the third end cap 47 is inserted into the transition port 332 through the third external through tube 471, on the one hand, it is easy to seal, and prevents the high-pressure water in the second accommodating chamber 200 from flowing without being filtered by the spiral wound reverse osmosis membrane element 3
- the third end cap 47 is inserted into the central tube 33 through the third internal through-tube 472.
- the surface contact between the third internal through-tube 472 and the wall of the central tube 33 is used to achieve sealing, on the other hand, it is convenient for the center
- the positioning and installation of the tube 33 prevent the center tube 33 from skewing and leaking after long-term use.
- the third end cap 47 is provided with a first positioning protrusion 473, which is corresponding to the waste water header 34, and one end of the waste water header 34 is inserted into the first positioning protrusion From the first 473, the first positioning protrusion 473 has a certain foolproof cooperation function, which facilitates the positioning and installation of the third end cap 47 and the waste water header 34, and prevents the waste water header 34 from skewing after long-term use.
- the axial ends of the circular cylinder rolled out by the reverse osmosis membrane bag 32 are glued on the third end cap 47 and the fourth end cap 48. This not only facilitates assembly, but also facilitates the installation of the integrated core.
- a sealing ring is provided between the third external through cannula 471 and the transition port 332.
- the reverse osmosis membrane element adopts a lateral flow water-saving membrane.
- the lateral flow enters the water to increase the flow rate of the membrane surface, ensure a higher recovery rate of pure water, and a longer service life of the membrane bag.
- the liquid needs to be pressurized in advance and then pumped into the fourth inlet 302.
- the reverse osmosis membrane bag 32 of the present application is a reverse osmosis membrane element (RO membrane element).
- the reverse osmosis membrane element adopts a lateral flow water-saving membrane, and the lateral flow into the water increases the surface velocity of the membrane to ensure a higher The recovery rate of pure water and the long service life of the membrane bag.
- the reverse osmosis membrane sheet bag 32 may also be an ultrafiltration membrane module, specifically, an ultrafiltration membrane cartridge existing on the market may be selected.
- an ultrafiltration membrane cartridge existing on the market may be selected.
- the principles and techniques of ultrafiltration filtration and reverse osmosis filtration are all well-known technologies known to those skilled in the art, and will not be repeated in this application.
- the reverse osmosis membrane bag 32 uses the above-mentioned filter, the liquid needs to be pressurized in advance and then pumped into the fourth inlet 302.
- the composite filter element assembly 1000 further includes: a first inner end cover 41 that is fitted in the axial direction of the second filter element 20 toward the transition port 332 On the end surface, the second filter element 20 and the fourth uniform flow channel 22 are blocked.
- the first inner end cover 41 blocks the second filter element 20 and the fourth uniform flow channel 22, which means that the first inner end cover 41 seals the second filter element 20 and the fourth uniform flow channel 22
- the axial end face of the second filter element 20 and the fourth uniform flow channel 22 cannot flow out or flow in from the axial end face toward the transition port 332.
- the first inner end cover 41 closes the bottoms of the second filter element 20 and the fourth uniform flow channel 22, and provides bottom support for the second filter element 20, effectively preventing the second filter element
- the liquid to be purified on both sides of 20 and the liquid after purification are connected in series at the bottom to ensure the filtering effect of the second filter 20.
- the first inner end cover 41 is provided with an inner flange extending into the fourth uniform flow channel 22, and the outer circumferential surface of the inner flange contacts the inner circumferential surface of the second filter element 20.
- the outer periphery of the first inner end cover 41 is provided with a flange, and the inner side of the flange is in contact with the outer surface of the second filter 20.
- the same arrangement of the inner flange and the outer flange can enhance the liquid blocking effect of the first inner end cover 41 on the end surfaces of the fourth uniform flow channel 22 and the second filter element 20;
- the end cover 41 and the second filter element 20 have a foolproof fit, and are easy to assemble.
- the axial end surface of the second filter 20 is glued to the first inner end cover 41, which not only facilitates assembly, but also facilitates the installation of the integrated core.
- the second filter element 20 is sealingly connected to the first inner end cover 41 by a ring of hot melt adhesive.
- the middle of the first outer end cover 42 protrudes upward to form a boss, and the first inner end cover 41 is suspended above the boss, that is, between the first inner end cover 41 and the boss There is a certain gap to keep the third uniform flow channel 21 and the transition port 332 in communication.
- the water filtered by the second filter element 20 can flow to the spiral wound reverse osmosis membrane element 3 through the transition port 332, and is filtered again by the spiral wound reverse osmosis membrane element 3; or, the spiral wound reverse osmosis membrane element 3 can filter After the water can flow to the second filter 20 through the transition port 332, the second filter 20 is filtered again.
- the outer periphery of the first outer end cover 42 is provided with a flange, and the inner side of the flange is in contact with the outer surface of the first filter 10.
- the outer burring jacket is on the outside of the middle boss of the first outer end cover 42. The outer burring blocks both sides of the middle boss, which can enhance the liquid blocking of the first outer end cover 42 from the end surface of the first filter 10 Effect; and can form a foolproof first filter 10, easy to assemble.
- the end surface of the first filter element 10 is glued to the first outer end cover 42, which not only facilitates assembly, but also facilitates the installation of the integrated core.
- the first filter element 10 is sealingly connected to the first outer end cover 42 by a ring of hot melt adhesive.
- a first cannula 421 is provided on the first outer end cover 42, the first cannula 421 is inserted into the transition port 332, and the first cannula 421 is connected to the transition The inner walls of the port 332 are tightly fitted.
- the first cannula 421 is inserted into the transition port 332.
- the transition port 332 is further closed to prevent unnecessary liquid flow between the first containing chamber 100 and the second containing chamber 200; on the other hand, the The flow channel connection between the second filter element 20 and the spiral wound reverse osmosis membrane element 3 is easier.
- the first cannula 421 and the first inner end cap 41 are coaxially disposed, the inner diameter of the first cannula 421 is smaller than the outer diameter of the first inner end cap 41, so that the first inner end cap 41 and the second filter 20 Blocked in the first outer end cover 42.
- the gap between the first inner end cover 41 and the first outer end cover 42 is small, and the first inner end cover 41 is in contact with the first outer end cover 42 when subjected to a force toward the first outer end cover 42 In contact, when the transition port 332 enters the water and squeezes the first inner end cover 41, the gap becomes larger, and the water channel is more smoothly circulated.
- the first inner end cover 41 is arranged in a suspension design at a small distance from the first outer end cover 42, so that the water pressure can reach a delicate balance when the water flows through the second filter 20. That is, when the water pressure in the fourth uniform flow channel 22 is greater than the water pressure at the transition port 332, the first inner end cover 41 can temporarily seal the transition port 332.
- a first cannula 421 inserted into the transition port 332 is provided on the first filter group 400.
- a first cannula 421 is provided between the first cannula 421 and the inner wall of the transition port 332 Seal ring 335.
- the second filter group 500 is provided with a third external through cannula 471 inserted into the transition port 332.
- the third external through cannula 471 and the transition port 332 A second seal ring 336 is provided between the inner walls.
- first sealing ring 335 can block the gap between the first cannula 421 and the transition port 332
- second sealing ring 336 can block the gap between the third outer through tube 471 and the transition port 332 to prevent water Seepage from the gap, so that the purified water and the unpurified water will not cross-flow, ensuring the filtration effect of the purified water.
- the first accommodating cavity 100 and the second accommodating cavity 200 can be connected, and the first sealing ring 335 and the second sealing ring 336 can prevent the first
- the flow is serial, the structure is simple, the sealing effect is good, and the reliability is high.
- the first end cap 401 includes the above-mentioned first inner end cap 41, and the other end face of the second filter 20 is glued on the first inner end cap 41.
- one of the first cannula 421 and the third outer through cannula 471 is inserted into the other, and the first sealing ring 335 and the second sealing ring 336 are arranged radially to form a double seal.
- the first sealing ring 335 is provided between the first cannula 421 and the third outer through cannula 471.
- the second seal ring 336 is provided between the first cannula 421 and the third outer cannula 471.
- the transition plate 331 is provided with a first inner protrusion around the transition port 332 on the side facing the first receiving cavity 100
- the ring 333 and the transition plate 331 are provided with a second inner convex ring 334 around the transition port 332 on the side facing the second receiving cavity 200 to extend the axial length of the transition port 332.
- the mounting surfaces of the first cannula 421 and the third outer cannula 471 are large in the axial direction, which can provide stronger bending resistance and contact strength.
- first sealing ring 335 and the second sealing ring 336 also helps the first sealing ring 335 and the second sealing ring 336 to seal the first cannula 421 and the third external through cannula 471 at the transition port 332, which is convenient for installation and operation and has good sealing performance.
- first inner convex ring 333 and the second inner convex ring 334 can block the water pressure in the radial direction, thereby reducing the pressure at which the first sealing ring 335 and the second sealing ring 336 block water. Further enhance the sealing effect.
- At least one of the first inner convex ring 333 and the second inner convex ring 334 has a non-circular outer ring. In this way, when the bottle body 330 needs to be fixed, the non-circular first inner convex ring 333 or the second inner convex ring 334 may be used to fix and prevent rotation.
- the first filter group 400 and the second filter group 500 may be installed in the housing 300 without being sequentially arranged.
- the outer contour of the first inner convex ring 333 on the transition plate 331 is hexagonal.
- a better method is to extend the fixing tool into the bottle body 330 and insert the first inner convex ring 333 into the fixing tool. Since the first inner convex ring 333 has a non-circular outline, a non-circular fixing hole is provided on the fixing tool, so that the bottle body 330 no longer rotates.
- the transition plate 331 is provided with a second outer convex ring 337 surrounding the second inner convex ring 334 on the side facing the second receiving cavity 200, the second outer convex ring 337 and the second inner convex ring 334 are radially At intervals, the second inner convex ring 334 and the second outer convex ring 337 are in contact with the end surface of the second filter group 500 to form a labyrinth seal. Both the first inner convex ring 333 and the second inner convex ring 334 abut on the end surface of the second filter group 500, which can block the water flow in the radial direction to the transition port 332, so that the water undergoes double blocking, which is beneficial to improve the sealing Sex.
- At least one end of the transition port 332 is provided with a chamfer of 30 degrees to 60 degrees, that is, one or both ends of the transition port 332 form a chamfer , Can facilitate at least one of the first sealing ring 335 and the second sealing ring 336 into the transition port 332.
- chamfering can remove burrs generated during processing, and chamfering can also increase the opening size of the transition port 332 to facilitate intubation.
- the chamfered design has guiding use, which is beneficial to The filter group is tightened in the direction coaxial with the transition port 332 to reduce the possibility of skew during assembly.
- the housing 300 includes a bottle body 330 with two ends open and two bottle caps 3001.
- the two bottle caps 3001 are sealed and fitted respectively At both ends of the bottle body 330, a transition plate 331 is connected to the bottle body 330.
- the two bottle caps 3001 may be detachably connected to the bottle body 330 to facilitate the installation of the first filter group 400 and the second filter group 500 into the bottle body 330.
- the two bottle caps 3001 can also be detachably connected to the bottle body 330.
- the two bottle caps 3001 are connected by screw welding or screw connection to the bottle body 330 respectively.
- the transition plate 331 is integrally formed on the bottle body 330, or the transition plate 331 is welded to the bottle body 330.
- the transition plate 331 and the bottle body 330 are integrally injection-molded, which is convenient for processing and manufacturing, and the sealed connection between the transition plate 331 and the bottle body 330 is very reliable, avoiding the impact or two
- the transition plate 331 deflects in the bottle body 330, leaks water, or the like.
- the transition plate 331 When the transition plate 331 is welded to the bottle body 330, the bottle body 330 and the transition plate 331 can be manufactured separately, which can reduce the processing difficulty and save the production cost. Whether it is integral injection molding or welding connection, it can better withstand the pressure difference between the first accommodating cavity 100 and the second accommodating cavity 200, to prevent the high-pressure water in the second accommodating cavity 200 from penetrating the first cavity without the transition port 332 The receiving cavity 100.
- the transition plate 331 and the bottle body 330 may also have other connection relationships, which is not limited here.
- a non-circular spin welding tool fixing boss 3005 is provided.
- the non-circular shape may be a polygonal structure such as hexagon, pentagon, and quadrilateral.
- the spin welding tool fixing boss 3005 can be positioned and connected with the external fixing tool, so that the bottle body 330 does not rotate relative to the fixed tooling, so that the bottle body is in the process of spin welding There is no rotation between 330 and the fixed tooling, and it is more stable during the spin welding process.
- both bottle caps 3001 are connected to the bottle body 330 by spin welding to form an integral disposable composite filter element assembly 1000.
- the bottle cap 3001 and the bottle body 330 can also be opened and closed by a screw connection and a seal ring, which is not specifically limited here.
- the first receiving cavity 100 and the second receiving cavity 200 are separated in the longitudinal direction in the housing 300, as shown in FIG. 16, at least A water stop 600 is provided at an entrance.
- the inlet and outlet here refer to the water inlet or outlet connected to the first filter group 400, and may also refer to the water inlet or outlet connected to the second filter group 500.
- a water stop structure 600 may be provided at each entrance and exit of the housing 300. Although the cost is slightly higher, the convenience of disassembly and assembly is very high. Of course, if the water stop structure 600 is provided on only part of the inlet and outlet of the housing 300, it can be selected according to the installation position of the housing 300. The preferred way is that except for the inlet and outlet on the top of the housing 300, all other inlets and outlets of the housing 300 can be Install the water stop structure 300.
- the working principle of the water stop structure 300 is a technology known in the art. Specifically, after a water stop structure 600 is installed at an entrance and exit, the water stop structure 600 automatically opens the entrance and exit when the entrance and exit are connected to an external pipe, and the water stop structure 600 automatically when the entrance and exit is not connected to an external pipe Block the import and export.
- the water stop structure 600 can effectively prevent the internal liquid from leaking out from the inlet and outlet to the outside, that is, to avoid wetting and disassembly personnel when the composite filter element assembly 1000 is removed, and to facilitate replacement of the filter group in the composite filter element assembly 1000 or replacement of the composite filter element assembly 1000.
- the inlet and outlet of the external pipeline are quickly blocked by the water stop structure 600, the internal liquid is not easy to leak, and the external air is not easy to enter, and less bubbles are generated in the housing 300
- the water stop structure 600 includes: a water stop recess 610, a water stop core 620, and a water stop spring 630.
- the water stop recess 610 is connected to the housing 300.
- the water-stop recess 610 provides a force point for the water-stop spring 630, and also provides a limiting and guiding function for the water-stop core 620 and the water-stop spring 630, making it difficult for the water-stop core 620 and the water-stop spring 630 to be in the process of telescopic movement Skewed and stuck.
- the water-stop core 620 is movable between the cut-off position and the conducting position. In the cut-off position, the water-stop structure 600 blocks the inlet and outlet, and the inlet and outlet communicate with the interior of the housing 300 when in the conducting position.
- the water stop 620 is equivalent to a plug that controls whether the inlet and outlet are opened or blocked.
- the water stop spring 630 is connected between the water stop recess 610 and the water stop core 620, and the water stop spring 630 often drives the water stop core 620 to move toward the cutoff position.
- this water stop structure 600 is that when the entrance and exit of the water stop structure 600 is connected to an external pipe, a pin is inserted into the entrance and exit of the external pipe, and the pin pushes the water stop core 620 to make the external pipe It communicates with the inside of the housing 300, that is, the inlet and outlet are in a conducting state.
- the pin exits the inlet and outlet, the water stop core 620 is blocked at the inlet and outlet under the action of the water stop spring 630, and the housing 300 cannot communicate with the outside through the inlet and outlet.
- the installation of the water-stop spring 630 makes all the above-mentioned actions automatically completed with the connection and disconnection of the external pipe.
- the water stop recess 610 is formed into a cylindrical shape that is open toward one end of the inlet and outlet, the open end of the water stop recess 610 is covered on the inlet and outlet, and circulation is provided on the peripheral wall of the water stop recess 610 hole.
- the water-stop core 620 and the water-stop spring 630 are located in the water-stop recess 610, and the water-stop spring 630 stops between the closed end of the water-stop recess 610 and the water-stop core 620, so as to press the water-stop core 620 at the entrance and exit The end face or the inner peripheral wall of the entrance and exit.
- the water stop core 620 includes a plugging connection section 622 and a guide post section 623.
- the guide column section 623 is arranged along the axial direction of the entrance and exit.
- the radial dimension of the guide column section 623 is smaller than the radial dimension of the entrance and exit.
- a section is inserted into the import and export.
- the shape of the cross section of the guide post 623 and the shape of the entrance and exit may be circular or non-circular, which is not limited here.
- the plugging connection section 622 extends from the outer periphery of the guide post section 623 toward the closed end of the water stop recess 610.
- the plugging connection section 622 may be cylindrical, and the plugging connection section 622 may also be composed of a plurality of Consists of extensions.
- the radial dimension of the plugging connection section 622 (or the radial dimension of the cylindrical shape formed by the enclosing of multiple extension bars) is larger than the radial dimension of the inlet and outlet, so as to prevent the water stop core 620 from running out of the inlet and outlet.
- the blocking connection section 622 surrounds the outer side of the water stop spring 630 to limit the position.
- the water stop structure 600 includes: a water stop seal ring 640, the water stop seal ring 640 is sheathed on the water stop core 620, and the water stop core 620 In the cut-off position, the water-stop sealing ring 640 is in contact with the housing 300.
- the water-stop sealing ring 640 enhances the sealing of the inlet and outlet of the water-stop core 620 at the cutoff position, and effectively guarantees the sealing of the inlet and outlet of the composite filter element assembly 1000 when it is not connected to an external pipe.
- a groove is formed on the outer periphery of the guide column section 623, and the water seal ring 640 is stuck in the groove.
- the water-stop sealing ring 640 can be prevented from falling off during the movement of the water-stop core 620, and the water-stop effect at the entrance and exit can be increased.
- the water-stop sealing ring 640 adopts an O-shaped sealing ring, and the O-shaped sealing ring forms an end surface fit with the end surface of the inlet and outlet.
- the end area of the O-ring seal is large, which effectively increases the sealing of the inlet and outlet.
- the cross-sectional shape of the O-ring may be various.
- the cross-section of the O-ring is circular in FIG. 20, and the cross-section of the O-ring is rectangular in FIG. 22, for example.
- the cross section of the O-ring can also have other shapes.
- the sealing ring is provided with a chamfer on the outer edge of the end away from the water stop spring 630. In this way, the sealing ring is easily inserted into the inlet and outlet, and has a good sealing effect.
- the chamfer of the O-ring seal ranges from 30 degrees to 60 degrees. Within this taper range, the water stopping effect is the best.
- the end of the inlet and outlet facing the water stop recess 610 is provided with a chamfer 322.
- the water stop seal ring 640 is opposite to the chamfer 322 contact.
- the arrangement of the chamfer 322 increases the matching area of the water stop seal ring 640 and the inlet and outlet end faces, and has a guiding effect, which is beneficial to improve the overall sealing effect.
- the angle range of the chamfer 322 is 30 to 60 degrees, and the water stopping effect is the best.
- a matching flange 3006 is provided around the inlet and outlet of the housing 300, and at least a portion of the water-stop recess 610 is located inside the matching flange 3006
- the water-stop recess 610 is welded to the mating flange 3006.
- the water-stop recess 610 is welded to the matching flange 3006 to enhance the connection stability of the water-stop recess 610 in the housing 300, so that the water-stop recess 610 can better limit and support the water-stop core 620.
- the inner circumferential surface of the fitting flange 3006 is formed as a multi-step matching step surface 30061, and the outer circumferential surface of the water stop recess 610 is provided with a matching step surface 30061
- the matching water stop step surface 611 matches the convex angle of the step surface 30061 to face the concave angle of the water stop step surface 611, and the concave angle of the matching step surface 30061 faces the convex angle of the water stop step surface 611.
- the convex angle of the mating step surface 30061 is shown as i1, and the concave angle of the mating step surface 30061 is shown as i2; the convex angle of the water stop step surface 611 is shown as j1, the water stop step surface The concave angle of 611 is shown by j2.
- the multi-step stepped surface is convenient for assembly and positioning on the one hand, and is conducive to the contact connection between the stepped surface 30061 and the water stop stepped surface 611 on the other hand, making the two stepped surfaces more reliable after being connected.
- an interference bump 612 is provided between at least one concave angle and convex angle facing each other, and the interference bump 612 is a concentrated welding zone.
- the interference bump 612 is preset at the concave corner, the corresponding convex corner is inserted into the concave corner, and the hot-melted interference bump 612 is squeezed, so that the solder melted by the interference bump 612 is squeezed to the adjacent surface, thereby Expand the final welded connection area.
- the interference bump 612 is preset at the convex corner, the convex corner inserted into the corresponding concave corner will also squeeze the hot-melted interference bump 612 and expand the final welding connection area.
- the interference bump 612 increases the material thickness of the welding zone. Combined with the cooperation of the concave corner and the convex corner at the interference bump 612, the resulting welding surface is not on the same plane, and the welding connection strength is very high.
- the interference bump 612 is disposed at the concave corner, and the outer surface of the interference bump 612 forms a certain inclination, so that the interference bump 612 flows along its own inclination toward other locations when melting .
- an overflow groove 613 is provided on the water stop step surface 611 adjacent to the concentrated welding zone.
- the overflow tank 613 can collect welding slag during the welding process, and the weld slag collected in the overflow tank 613 can increase the local strength after solidification; the overflow tank 613 can also prevent the welding slag from overflowing to the water inlet to prevent the formation of a sharp edge.
- the second accommodating chamber 200 is located below the first accommodating chamber 100, the water pressure in the second accommodating chamber 200 is greater than the water pressure in the first accommodating chamber 100, and the inlet and outlet at the bottom of the second accommodating chamber 200 Every place is equipped with a water stop structure 600.
- the water stop structure 600 is provided at the inlet and outlet of the second accommodating chamber 200 with higher water pressure, which can prevent the internal pressure of the second accommodating chamber 200 from being too large, and cause water leakage at the inlet and outlet, increasing the reliability of the system.
- the first end cap 401 includes: a first outer end cap 42 that is sealingly connected to one end of the waterway partition plate 46 along the periphery.
- the first outer end cover 42 closes the bottoms of the first filter element 10 and the second uniform flow channel 12, and provides support for the first filter element 10, effectively preventing the first filter element
- the liquid to be purified on both sides of 10 and the liquid after purification are connected in series at the bottom, ensuring the filtering effect of the first filter 10.
- the waterway partition plate 46 is connected to the first outer end cover 42, which is conducive to the first outer end cover 42 being securely arranged at a specific position, so that the second uniform distribution flow channel 12 and the third uniform distribution flow channel 21 can be reliably separated. Avoid cross-flow of the liquid in the first filter element 10 and the second filter element 20, and reduce the water quality in each uniformly distributed flow path.
- the second end cap 402 includes: a second outer end cap 44 and a second middle end cap 45.
- the second middle end cap 45 is hermetically connected to the peripheral wall of the waterway partition plate 46, and the second middle end cap 45 is inserted into the bottle cap 3001 (the first bottle cap 310 in FIG. 16).
- the second end cap 402 further includes: a second inner end cap 43, which is inserted into the bottle cap 3001 (the first bottle cap 310 in FIG. 16).
- the plug-and-fit form is convenient for assembly.
- the composite filter element assembly 1000 further includes: a second inner end cap 43 and a second outer end cap 44.
- the second inner end cap 43 is fitted on the axial end surface of the second filter element 20 away from the transition port 332 to block the second filter element 20, and the second inner end cap 43 is provided with a third inlet 201 The internal port 431.
- the second inner end cover 43 closes the top of the second filter element 20, and provides the top connection for the second filter element 20, provides a direction for the third inlet and outlet 201, and effectively prevents the second filter element 20
- the liquid to be purified on both sides is in series with the liquid after purification on the top, which further ensures the filtering effect of the second filter 20.
- the fluid filtered by the second filter group 500 collects in the fourth uniform flow channel 22 and is discharged outward through the inner port 431.
- the periphery of the second inner end cover 43 is provided with a downward burring, and the inner side of the burring is in contact with the outer peripheral surface of the second filter 20.
- the second inner end cover 43 is provided with an inner flange extending into the fourth uniform flow channel 22, and the outer peripheral surface of the inner flange contacts the inner peripheral surface of the second filter 20.
- the same arrangement of the inner flange and the outer flange makes the connection between the second inner end cap 43 and the second filter element 20 tighter and increases the reliability of the connection. Both of them can enhance the liquid blocking effect of the second inner end cover 43 on the end surface of the second filter 20, and can form a foolproof fit for the second inner end cover 43, which is easy to assemble.
- the second outer end cap 44 is fitted on the axial end surface of the first filter element 10 away from the transition port 332 to block the first filter element 10, and the second outer end cap 44 is provided with an outer port that covers the inner port 431 441.
- the second outer end cap 44 closes the tops of the first filter element 10 and the second uniform flow channel 12, and provides a connection for the first filter element 10, which is the first inlet 101 and the second inlet 102
- the separation is performed to effectively prevent the liquid to be purified on both sides of the first filter element 10 and the purified liquid from intersecting at the top, further ensuring the filtering effect of the first filter element 10.
- the periphery of the second outer end cover 44 is provided with a downward burring edge, and the inner side of the burring edge is in contact with the outer circumferential surface of the first filter 10.
- the setting of the outer flange makes the connection between the second outer end cover 44 and the first filter element 10 tighter, and increases the reliability of the connection.
- the liquid sealing effect of the second outer end cap 44 on the end surface of the first filter 10 can be enhanced, and a foolproof fit for the first filter 10 can be formed, which is easy to assemble.
- the axial end surface of the first filter element 10 is glued to the second outer end cover 44, which not only facilitates assembly, but also facilitates the installation of the integrated core.
- the first filter element 10 is sealingly connected to the second outer end cover 44 by a ring of hot melt adhesive.
- the inner peripheral wall of the housing 300 is provided with a first connection tube 311 and a second connection tube 312, and the inner port 431 of the second inner end cover 43 is plug-connected with the first connection tube 311.
- the outer port 441 of the second outer end cap 44 is plug-in connected with the second connecting tube 312.
- first filter element 10 is inserted into the transition port 332 through the first outer end cover 42, and the other end of the first filter element 10 is inserted into the second connection tube 312 through the second outer end cover 44
- the position of the first filter element 10 is basically fixed, and the step of assembling is only the process of inserting at both ends, which shows that the assembly is very simple and time-saving.
- both ends of the first filter 10 will not come out, which shows that the assembly reliability of the first filter 10 is high.
- One end of the second filter element 20 is inserted into the first connecting tube 311 through the second inner end cap 43, the other end of the second filter element 20 is sealed by the first inner end cap 41, and the first inner end cap 41 and The interval between the first outer end caps 42 is very small, which is equivalent to that the other end of the second filter element 20 is held by the first outer end cap 42.
- the position of the second filter element 20 is also substantially fixed, and the step of assembling is only the process of inserting at one end, which shows that its assembly is very simple and time-saving.
- both ends of the second filter 20 will not come out, which shows that the assembly reliability of the second filter 20 is high.
- one end surface of the second filter element 20 is glued to the second inner end cover 43, which not only facilitates assembly, but also facilitates the installation of the integrated core.
- the second filter element 20 is sealingly connected to the second inner end cover 43 by a ring of hot melt adhesive.
- a second inner cannula 432 is formed on the second inner end cap 43, and the nozzle of the second inner cannula 432 forms the inner port 431 described above.
- the second inner cannula 432 can be inserted into the first connecting tube 311, and the second inner cannula 432 can also be inserted outside the first connecting tube 311.
- a sealing ring is provided between the second inner insertion tube 432 and the first connecting tube 311.
- a second outer cannula 442 is formed on the second outer end cap 44, and the nozzle of the second outer cannula 442 forms the above-mentioned outer port 441.
- the second outer cannula 442 can be inserted into the second connecting tube 312, and the second outer cannula 442 can also be inserted outside the second connecting tube 312.
- a sealing ring is provided between the second outer cannula 442 and the second connecting tube 312.
- a third connecting tube 313 is provided on the inner peripheral wall of the housing 300, and the middle port 451 of the second middle end cap 45 is plug-connected with the third connecting tube 313.
- the second middle end cap 45 may not be provided, so that the waterway partition plate 46 may be directly connected to the third connecting pipe 313, which saves the number of parts.
- the second filter 20 since the second filter 20 is to be assembled inside the waterway partition 46, the opening of the waterway partition 46 is too small to fit in, and the large opening of the waterway partition 46 will affect the second outer end cap 44 and the first filter The assembly of 10 makes the overall assembly more difficult.
- a second middle end cover 45 When assembling, first install the second filter 20 and other parts into the waterway partition plate 46, and then connect the second middle end cover 45 to the waterway partition plate 46, then the assembly is satisfied Need to improve the reliability of the overall assembly.
- the waterway partition plate 46 is integrally formed with the first outer end cover 42, it can be manufactured by an integral injection method. In this case, it is not convenient to integrally inject the second middle end cover 42 in order to facilitate mold opening.
- a third connecting tube 313 is provided on the housing 300, and the third connecting tube 313 is plug-connected to the middle port 451.
- the step of fixing the end of the waterway partition 46 is only a plug-in process.
- the assembly is very simple, saves time, and has high reliability.
- a second middle cannula 452 is formed on the second middle end cap 45, and the nozzle of the second middle cannula 452 forms the above-mentioned middle port 451.
- the second middle cannula 452 can be inserted into the third connecting tube 313, and the second middle cannula 452 can also be inserted outside the third connecting tube 313.
- a sealing ring is provided between the second middle insertion tube 452 and the third connecting tube 313, and a sealing ring is also provided between the second middle end cover 45 and the waterway partition plate 46.
- the distance between the second middle end cap 45 and the second outer end cap 44 is relatively small, so that the water pressure when the water flows through the first filter 10 can reach a delicate balance. That is, when the inner water pressure of the waterway partition plate 46 is greater than the outer water pressure, the second middle end cap 45 may be squeezed on the second outer end cap 44 to slow down the filtering speed of the first filter 10. During normal operation, the water flow squeezes away the second middle end cap 45 and normally flows toward the second inlet and outlet 102.
- all the parts in the first accommodating cavity 100 are pre-assembled into an integral piece, that is, the first filter element 10, the second filter element 20, the first inner end cap 41, the first outer end cap 42, the second inner The end cap 43, the second outer end cap 44, and the second middle end cap 45 are pre-connected to be integrated into a front and rear integrated filter element.
- Even the sealing rings at the first connecting tube 311, the second connecting tube 312, and the third connecting tube 313 can be pre-assembled to the second inner cannula 432, the second outer cannula 442, and the second middle cannula 452.
- Such a front-rear integrated filter element can be directly inserted between the transition plate 331 and the first bottle cap 310 during assembly, and the assembly process of the whole machine is greatly simplified. Moreover, if the first bottle cap 310 is detachably connected to the bottle body 330, the user can also replace the front and rear integrated filter elements after use, and the operation steps when the user replaces it are also very easy, which improves the user's Core replacement experience and core replacement cost.
- the tops of the second middle end cap 45, the second inner end cap 43, and the second outer end cap 44 are flush, which facilitates the first bottle cap 310 to the first receiving cavity 100 top cover seal.
- the inner peripheral wall of the housing 300 is provided with a fourth connecting pipe 321, and the second bottle cap 320 in FIG. 5 is provided with the above
- the fourth connection pipe 321 is connected to the fifth inlet and outlet 301
- the fourth end cap 48 is provided with a fourth insertion pipe 481
- the fourth insertion pipe 481 is connected to the fourth connection pipe 321.
- the fourth insertion tube 481 is connected to the fourth connection tube 321 to ensure that there is no cross-flow between the high-concentration waste liquid and the liquid to be purified.
- the fourth end cap 48 is stably connected to the bottom of the housing 300 to prevent the spiral wound reverse osmosis membrane element 3 from changing its position during the filtration process.
- a sealing ring is provided between the fourth insertion tube 481 and the fourth connecting tube 321 to improve the sealing degree.
- all the parts in the second containing chamber 200 are pre-assembled into an integral piece, that is, the spiral wound reverse osmosis membrane element 3, the wastewater header 34, the filter membrane 32, the third end cap 47, and the fourth end cap 48 Pre-connected into an integrated RO membrane filter element.
- the sealing ring at the transition port 332 and the fourth connecting pipe 321 can be pre-assembled to the third external through cannula 471 and the fourth cannula 481.
- Such an integrated RO membrane filter element can be directly inserted between the transition plate 331 and the second bottle cap 320 during assembly, and the assembly process of the whole machine is greatly simplified. Moreover, if the second bottle cap 320 is detachably connected to the bottle body 330, the user can also replace the integrated RO membrane filter element after use, and the operation procedure when the user replaces it is also very easy, which improves the user's Core replacement experience reduces core replacement cost.
- the first filter element 10 is a roll made of non-woven fabric, polypropylene layer, and carbon fiber, and has a long service life. When used in the filtration of tap water, it can initially remove sediment, rust and residual chlorine.
- the first filter element 10 may also be formed by rolling only one or two materials of the filter layer, which is not specifically limited here.
- the second filter 20 is a hollow carbon rod. It can be used for the final filtration of tap water.
- the carbon rod can filter out the odor, organic matter, colloid, iron and residual chlorine in the water body, so that the second filter 20 controls the drinking water quality conditions after the water is discharged, and improves the taste.
- the second filter 20 can also be formed by a combination of activated carbon particles, filter screens and frames, and is not limited to the arrangement of carbon rods.
- the carbon filter medium can also be replaced with KDF55 treatment medium (high purity copper / zinc alloy medium) to remove residual chlorine in water through electrochemical reaction, reduce mineral scaling, reduce suspended solids such as ferrous oxide, and inhibit microorganisms, Remove heavy metals.
- the third filter element 30 is provided in the second receiving chamber 200 as a part of the second filter group 500, that is, the third filter element 30 is located in the high pressure area In 2002.
- the third filter element 30 can further increase the overall filtering function of the composite filter element assembly 1000 to improve the quality of the water.
- the water pressure in the high-pressure area 2002 is 0.7-0.85Mpa.
- the higher water pressure here is conducive to the filtration of the third filter element 30, and accelerates the speed of the water flow through the membrane, and provides more possibilities for the material selection of the third filter element 10, enhancing the filtration of the third filter element 30 ability.
- the housing 300 is provided with a fourth inlet 302 and a fifth inlet 301.
- the fourth inlet 302 is the inlet of the third filter 30
- the fifth inlet 301 is the outlet of the third filter 30; conversely, when the fourth inlet 302 is the outlet of the third filter 30 At this time, the fifth inlet 301 is the water inlet of the third filter 30.
- the third filter 30 is formed into a cylindrical shape, a fifth uniform distribution channel 31 is defined between the third filter 30 and the inner wall of the second receiving chamber 200, and the fourth inlet and outlet 302 communicate with the fifth uniform distribution flow In the passage 31, the center of the third filter 30 is directly opposite to the transition port 332.
- the inner and outer sides of the cylindrical third filter element 30 form different uniformly distributed flow channels, one is the fluid to be purified by the third filter element 30, and the other is the fluid after purification by the third filter element 30, of which The circulation cavity in the middle of the three filter elements 30 communicates with the transition port 332.
- the composite filter element assembly 1000 further includes a central tube 33.
- the central tube 33 is provided in the center of the third filter 30, and the tube wall of the central tube 33 is provided The filtered water enters the hole, and the central tube 33 may be pure water filtered by the third filter 30.
- the aforementioned multi-layer membrane module is a cylinder rolled from a plurality of reverse osmosis membrane bag 32, and the cylinder constitutes the third filter 30 described above.
- the outer periphery of the first filter group 400 and the second filter group 500 are provided with at least one circle of fixed-axis protrusions, and the multiple fixed-axis protrusions of each circle respectively stop against the housing 300 On the inner wall.
- the fixed-bump diagram of the first filter group 400 is not shown.
- the fixed shaft protrusions of the second filter group 500 are respectively provided on the third end cover 47 and the fourth end cover 48.
- the fixed shaft protrusions on the third end cover 47 are described as the first fixed shaft in the following
- the projection 474 describes the fixed-axis projection on the fourth end cap 48 as the second fixed-axis projection 484.
- the setting of the fixed-axis projections causes the cap 3001 to rotate relative to the bottle body 330, and the fixed-axis projections have a self-aligning effect on the filter group to ensure the coaxiality of the filter group and the bottle body 330.
- the axial ends of the reverse osmosis membrane element are connected to the third end cap 47 and the fourth end cap 48, respectively.
- the third end cap 47 and the fourth end cap 48 are inserted into the transition plate 331 and the bottle cap 3001, respectively.
- the third end cap 47 and the fourth end cap 48 close the two ends of the reverse osmosis membrane element, so that the water between the different channels of the reverse osmosis membrane element does not cross-flow and does not interfere, ensuring the filtration effect of the reverse osmosis membrane element .
- the third end cap 47 is fitted on the end surface of the third filter element 30 facing the transition port 332, and both ends of the third end cap 47 are provided with a third outer plug
- the tube 471 and the third inner through cannula 472 are inserted into the transition port 332, and the third inner through cannula 472 is connected to the central tube 33.
- the third end cap 47 closes the top of the third filter 30 and provides a top support connection for the third filter 30, effectively preventing the liquid to be purified on both sides of the third filter 30 and the Liquids are tandem at the top.
- the third end cap 47 is inserted into the transition port 332 through the third external insertion tube 471, on the one hand, it is convenient to seal, and prevents the high-pressure water in the second accommodating chamber 200 from flowing to the transition port without filtering by the reverse osmosis membrane bag 32 332, on the other hand, using the transition port 332 positioning, improve positioning accuracy while reducing assembly difficulty.
- the third end cap 47 is inserted into the central tube 33 through the third internal through-tube 472.
- the surface contact between the third internal through-tube 472 and the wall of the central tube 33 is used to achieve sealing, on the other hand, it is convenient for the center
- the positioning and installation of the tube 33 prevent the center tube 33 from skewing and leaking after long-term use.
- the third end cap 47 is provided with a first positioning protrusion 473.
- the first positioning protrusion 473 is provided corresponding to the wastewater header 34, and one end of the wastewater header 34 is inserted in the first positioning protrusion On the 473, the first positioning protrusion 473 has a certain foolproof coordination function, which is convenient for the positioning and installation of the third end cap 47 and the waste water header 34, and prevents the waste water header 34 from skewing after long-term use.
- a first fixed-axis projection 474 is provided on the peripheral wall of the third end cap 47, and a plurality of first fixed-axis projections 474 are spaced apart in the circumferential direction.
- the fixed shaft protrusion 474 abuts against the inner wall of the housing 300 to increase the centering degree of the third filter 30 in the second accommodating chamber 200, so as to prevent the third filter 30 from being skewed as a whole and failing to be good at the transition port 332 Cooperate.
- a sealing ring is provided between the third external through cannula 471 and the transition port 332.
- the fourth end cap 48 of the composite filter element assembly 1000 is fitted on the end surface of the third filter element 30 away from the transition port 332,
- the fourth end cap 48 is provided with waste discharge ports 482 connected to the wastewater header 34 and the fifth inlet 301 respectively.
- a second positioning protrusion 483 is protruded from the middle of the fourth end cap 48, and the second positioning protrusion 483 is corresponding to the central tube 33, and one end of the central tube 33 is inserted into the second positioning protrusion From 483, the second positioning protrusion 483 has a blocking function, and also has a certain foolproof coordination function, which facilitates the positioning and installation of the fourth end cap 48 and the central tube 33, prevents the central tube 33 from skewing and can be closed during long-term use The lower portion of the center tube 33 prevents the liquid in the center tube 33 from flowing out.
- a second fixed shaft protrusion 484 is provided on the peripheral wall of the fourth end cap 48, and a plurality of second fixed shaft protrusions 484 are circumferentially spaced apart.
- the two fixed-axis protrusions 484 stop against the inner wall of the housing 300 to increase the centering degree of the third filter 30 in the second accommodating cavity 200, to prevent the third filter 30 from being skewed as a whole Good coordination.
- the fourth end cap 48 closes the bottoms of the third filter 30 and the central tube 33, and provides bottom sealing and support for the third filter 30, effectively preventing both sides of the third filter 30
- the liquid to be purified and the liquid that has been purified are connected in series at the bottom, ensuring the filtering effect of the third filter 30.
- the waste water header 34 connects the waste discharge port 482 and the fifth inlet and outlet 301 so that the high-salinity waste water flows out of the housing 300 fast enough.
- a fourth nozzle 321 is provided on the inner peripheral wall of the housing 300, and the fourth nozzle 321 and the fourth nozzle 321 are provided on the second bottle cap 320 in FIG. 20.
- a fourth insertion tube 481 is provided on the fourth end cap 48, and the fourth insertion tube 481 is connected to the fourth connection tube 321 in a plug connection.
- the fourth insertion tube 481 is connected to the fourth connection tube 321 to ensure that there is no cross-flow between the high-concentration waste liquid and the liquid to be purified.
- the fourth end cap 48 is stably connected to the bottom of the housing 300 to prevent the position of the third filter 30 from changing during the filtering process.
- a sealing ring is provided between the fourth insertion tube 481 and the fourth connecting tube 321 to improve the sealing degree.
- the following specific embodiments use purified tap water as an example to describe the three-stage filtration function of the composite filter element assembly 1000, and explain the highly integrated integrated design structure of the composite filter element assembly 1000.
- the first filter element 10 will be described as an example of a roll-type primary filter element rolled by a nonwoven fabric, a polypropylene layer, carbon fiber, and a spacer 49;
- the water-saving membrane will be described as an example of intermediate filtration.
- the second filter 20 will be described by using a cylindrical hollow carbon rod as a final filtration.
- a composite filter element assembly 1000 is placed vertically, and it includes a housing 300, which includes a bottle body 330, a first bottle cap 310, and a second bottle cap 320 Each bottle cap forms a threaded seal connection with the bottle body 330, and a seal is provided at the seal.
- the first bottle cap 310 is provided with a first inlet and outlet 101 for tap water, a second inlet and outlet 102 for pre-water outlet, and a third inlet 201 for drinking water outlet.
- the second bottle cap 320 is provided with a fourth inlet 302 for reverse osmosis pre-water intake and a fifth inlet 301 for reverse osmosis high-salinity wastewater drainage.
- the fourth inlet 302 and the fifth inlet 301 are provided with water stop assemblies 50.
- the water stop assembly 50 includes a water stop structure recess 51, a spring 52, a seal ring 53, and a water stop structure 54.
- the water stop structure recess 51 is fixed in the second bottle cap 320, the water stop structure recess 51 is open toward the fourth inlet 302, and the water stop structure recess 51 is provided with a through hole for passing water.
- the water stop structure 54 is telescopically arranged in the recess 51 of the water stop structure, a part of the water stop structure 54 extends to the fourth inlet 302, the water stop structure 54 is provided with a restriction table 541, which restricts the diameter of the table 541 It is larger than the diameter of the fourth inlet 302.
- the spring 52 is located in the recess 51 of the water stop structure and stops against the water stop structure 54, so that the restriction table 541 has a tendency to protrude toward the fourth inlet 302.
- the water-stop structure 54 is provided with a ring of sealing rings 53. When the spring 52 can overcome the pressure of the water flow, the spring 52 stops the sealing ring 53 at the end surface of the fourth inlet 302 to block the fourth inlet 302.
- the fourth inlet 302 can be automatically closed by the water stop assembly 50.
- the setting of the water stop assembly 50 can facilitate the insertion of the composite filter element assembly 1000 to the external connecting pipe.
- the interior of the housing 300 is integrally formed with a transition plate 331 that is perpendicular to the wall of the cylinder, and the transition plate 331 separates the housing 300 in the axial direction to form a first receiving cavity 100 and a second receiving cavity 200 .
- a transition port 332 is provided in the middle of the transition plate 331 in the axial direction.
- the first filter element 10 disposed on the outer side serves as the primary filter unit, and the second filter element disposed in the center of the first accommodating cavity 100 20 as the final filtering unit.
- the axial length of the first filter element 10 is greater than the axial length of the second filter element 20, and the first filter element 10 and the second filter element 20 are separated by a cylindrical waterway partition plate 46.
- An annular first uniform flow channel 11 is defined between the first filter element 10 and the inner wall of the first accommodating cavity 100. The first uniform flow channel 11 is connected to the first inlet 101.
- An annular second uniform flow channel 12 is defined between the waterway partition plate 46 and the first filter element 10, and the second uniform flow channel 12 is connected to the second inlet and outlet 102.
- An annular third uniform flow channel 21 is defined between the waterway partition plate 46 and the second filter 20, and a cylindrical fourth uniform distribution is provided on the side of the second filter 20 away from the third uniform flow channel 21 ⁇ ⁇ 22.
- the third uniform flow channel 21 is connected to the transition port 332, and the fourth uniform flow channel 22 is connected to the third inlet 201.
- a second inner end cap 43 is provided at the upper end of the second filter element 20, and a first inner end cap 41 is provided at the lower end of the second filter element 20; The axial end surface of the second filter element 20 away from the transition port 332.
- a second outer end cap 44 is provided on the upper end of the first filter element 10, and a first outer end cap 42 is provided on the axial end surface of the first filter element 10 facing the transition port 332, and the first outer end cap 42 is integrally formed with Waterway partition 46.
- a second middle end cap 45 is sleeved between the second outer end cap 44 and the second inner end cap 43, and the second middle end cap 45 is fitted on the peripheral wall of the waterway partition plate 46.
- a seal is added between the second middle end cap 45 and the third connection pipe 313, and a seal is added between the second inner end cover 43 and the first connection pipe 311.
- the first connection tube 311, the second connection tube 312, and the third connection tube 313, the second middle end cap 45 are plug-connected to the third connection tube 313, and the third connection tube 313
- a channel connecting the second inlet 102 and the second outer end cover 44 is formed.
- the cylindrical third filter 30 is provided in the second receiving chamber 200.
- a fifth uniform flow channel 31 is defined between the third filter element 30 and the inner wall of the second receiving chamber 200, and the central central tube 33 of the third filter element 30 is directly opposite to the transition port 332.
- the tube wall of the center tube 33 is provided with a filtered water inlet, and the tube wall of the center tube 33 is provided with a filter membrane 32.
- the filtration membrane is a reverse osmosis membrane bag 32.
- the reverse osmosis membrane bag 32 has a first part and a second part.
- Each wastewater header 34 and central tube 33 are separated by at least one first part of the reverse osmosis membrane bag 32.
- the second part of each reverse osmosis membrane bag 32 is formed around the central tube 33 and a plurality of wastewater headers 34 to form a multilayer spirally wound membrane module.
- the central pipe 33 is formed in a ring shape and is provided with five waste water collecting pipes 34, and each waste water collecting pipe 34 is connected to the fifth inlet 301 through the second end cover 320, and each waste water is collected
- the tube 34 corresponds to a film bag.
- the pure water in the membrane bag enters the central pipe 33 through the filtered water inlet hole, and the waste water outside the membrane bag enters the waste water header 34 through the waste water inlet hole.
- the spiral wound reverse osmosis membrane element 3 is provided with a third end cap 47 and a fourth end cap 48 at both ends.
- the cover 47 is sealed at the end of the third filter element 30 and the waste water circulation cavity facing the first filter group 400
- the fourth end cap 48 is sealed at the end of the third filter element 30 and the filtered water circulation cavity away from the first filter group 400.
- Both ends of the third end cap 47 are provided with a third outer through cannula 471 and a third inner through cannula 472, the third outer through cannula 471 is inserted into the transition port 332, and the third inner through cannula 472 Connected to the central tube 33.
- the third end cover 47 is provided with a first positioning protrusion 473 which is in a foolproof cooperation with the waste water pipe 34.
- the first positioning protrusion 473 may be inserted into the upper end of the waste water header 34 to block the upper end of the waste water header 34 so that waste water flows out from the lower end of the waste water header 34.
- the fourth end cap 48 is provided with a waste discharge port 482 connected to the wastewater header 34.
- the housing 300 is provided with a fourth connection tube 321 which communicates with the fifth inlet 301 and a fourth insertion tube 481 which is connected to the fourth connection tube 321 on the fourth end cover 48.
- the fourth end cap 48 is provided with a blocking block (not shown in the figure) which is blocked and matched with the central tube 33.
- a sealing ring is added between the third end cover 47 and the first outer end cover 42, and a sealing ring is added between the first outer end cover 42 and the transition port 332.
- the third end cap 47 and the fourth end cap 48 are provided with fixed-axis protrusions on the outer peripheral edges.
- the fixed-axis protrusions can cooperate with the inner wall of the bottle body 330 to restrict the third and fourth end caps 47, 48 and the bottle body 330 The relative sliding between them restricts the relative sliding between the spiral wound reverse osmosis membrane element 3 and the bottle body 330.
- the entire tap water filtration process is that tap water enters the first uniform flow channel 11 from the first inlet and outlet 101 and flows radially inward, and after filtering by the first filter 10, flows to the second uniform flow channel 12 and from The upper second inlet / outlet 102 flows out as pre-water.
- the outgoing pre-water is pressurized and pumped into the fourth inlet and outlet 302, and is evenly distributed in the fifth uniform flow channel 31, flowing in from the side of the lateral flow reverse osmosis water-saving membrane and passed by the third filter 30
- the high-salinity wastewater is collected by the wastewater header 34 and discharged from the fifth inlet and outlet 301, and the pure water is collected by the central tube 33 and passes through the transition port 332. Pure water enters the third uniform flow channel 21 from the transition port 332, is filtered by the second filter 20, enters the fourth uniform flow channel 22, and flows out of the third inlet 201 for drinking.
- the following specific embodiments use purified tap water as an example to describe the three-stage filtration function of the composite filter element assembly 1000, and explain the highly integrated integrated design structure of the composite filter element assembly 1000.
- the first filter element 10 in the first filter group 400 will be described by taking a roll-type primary filter element rolled by a nonwoven fabric, a polypropylene layer, carbon fiber, and a spacer 49 as an example; the second filter group 500
- the third filter element 30 in the description uses a high-water-saving lateral flow reverse osmosis water-saving membrane as an example of intermediate filtration.
- the second filter element 20 in the first filter group 400 will be described by using a cylindrical hollow carbon rod as a final filtration.
- a composite filter element assembly 1000 As shown in FIG. 16, FIG. 17, FIG. 18, and FIG. 19, a composite filter element assembly 1000, the entire composite filter element assembly 1000 is normally installed in a vertical state.
- the case 300 includes a bottle body 330 with open ends and a first bottle cap 310 and a second bottle cap 320 closed at both ends.
- Each bottle cap 3001 and the bottle body 330 are formed by a spin welding structure 700 Sealed connection.
- the first bottle cap 310 is provided with a first inlet and outlet 101 for tap water, a second inlet and outlet 102 for pre-water outlet, and a third inlet 201 for drinking water outlet.
- the first bottle cap 310 extends laterally to form a handle 314, the first inlet 101, the second inlet 102, and the third inlet 201 are all disposed on one side near the handle 314, and the second bottle cap 320 is provided with a reverse
- the end where the first accommodating chamber 100 is located is the top
- the end where the second accommodating chamber 200 is located is the bottom. Therefore, water stops are provided at the fourth inlet 302 and the fifth inlet 301 Structure 600.
- the water stop structure 600 includes a water stop recess 610, a water stop core 620, a water stop spring 630, and a water stop seal ring 640.
- a matching flange 3006 is provided around the entrance and exit of the housing 300, and the water stop recess 610 is welded to the matching flange 3006.
- a water stop step surface 611 adapted to the matching step surface 30061 is provided on the surface.
- the water stop step surface 611 is provided with interference bumps 612 and flash tanks 613 that are intensively welded.
- the interior of the housing 300 is integrally formed with a transition plate 331 that is perpendicular to the wall of the cylinder, and the transition plate 331 axially separates the housing 300 to form a first receiving cavity 100 and a second receiving cavity 200 .
- a transition port 332 is provided in the middle of the transition plate 331 in the axial direction.
- the first accommodating chamber 100 and the second accommodating chamber 200 communicate through a transition port 332.
- the transition port 332 protrudes outward to form a non-circular spin welding tool fixing boss 3005, and the transition port 332 is a circular via hole.
- the first filter group 400 includes a first filter element 10, a second filter element 20, and a water channel partition plate 46.
- the water channel partition plate 46 is connected to the first end cap 401 and the second end cap 402, respectively, to
- the first accommodating chamber 100 is spaced apart from the first low-pressure area 1 and the second low-pressure area 2
- the first filter element 10 is provided in the first low-pressure area 1
- the water flowing in from the first inlet and outlet 101 passes through the first filter element 10
- the second inlet and outlet 102 flow out
- the second filter element 20 is provided in the second low-pressure region 2
- the water flowing in from the transition port 332 passes through the second filter element 20 and flows out from the third inlet and outlet 201.
- first filter element 10 with a cylindrical shape provided in the center of the first receiving chamber 100 as a primary filtering unit is provided outside the first receiving chamber 100
- the second filter element 20 serves as a final filter unit.
- the axial length of the first filter 10 is greater than the axial length of the second filter 20.
- the first filter 10 and the second filter 20 are separated by a cylindrical waterway partition 46.
- An annular first uniform flow channel 11 is defined between the first filter element 10 and the inner wall of the first accommodating cavity 100. As shown in FIG. 16, the first uniform flow channel 11 is connected to the first inlet 101.
- An annular second uniform flow channel 12 is defined between the waterway partition plate 46 and the first filter element 10, and the second uniform flow channel 12 is connected to the second inlet and outlet 102.
- An annular third uniform flow channel 21 is defined between the waterway partition plate 46 and the second filter 20, and a cylindrical fourth uniform distribution is provided on the side of the second filter 20 away from the third uniform flow channel 21 ⁇ ⁇ 22.
- the third uniform flow channel 21 is connected to the transition port 332, and the fourth uniform flow channel 22 is connected to the third inlet 201.
- a second inner end cap 43 is provided at the upper end of the second filter element 20, and a first inner end cap 41 is provided at the lower end of the second filter element 20.
- the second inner end cover 43 is provided with an inner port 431 communicating with the third inlet 201.
- the upper end of the first filter element 10 is provided with a second outer end cap 44, and the second outer end cap 44 is provided with an outer port 441 that covers the inner port 431; the axial end surface of the first filter element 10 facing the transition port 332 With the first outer end cover 42.
- a water channel partition plate 46 is integrally formed on the first outer end cover 42.
- the first outer end cover 42 blocks the lower portion of the first filter element 10 and the third uniformly distributed flow channel 21.
- a second middle end cap 45 is sleeved between the second outer end cap 44 and the second inner end cap 43, the second middle end cap 45 is fitted on the peripheral wall of the waterway partition plate 46, and the second middle end cap 45 is formed with a middle Port 451.
- a seal is added between the second middle end cap 45 and the third connection pipe 313, and a seal is added between the second inner end cover 43 and the first connection pipe 311.
- the inner peripheral wall of the housing 300 is provided with a first connecting pipe 311 toward the second inner end cover 43, and the inner peripheral wall of the housing 300 is provided with a second connecting pipe 312 toward the second outer end cover 44.
- a third connecting pipe 313 is provided on the inner peripheral wall of 300 toward the second middle end cover 45, and the middle port 451 of the second middle end cover 45 is plug-connected with the third connecting pipe 313.
- a channel connecting the second inlet and outlet 102 is formed between the third connecting tube 313 and the second outer end cover 44.
- the second filter group 500 is provided in the second accommodating chamber 200.
- the second filter group 500 includes a third filter 30 and a cylindrical third filter 30 is provided in the second accommodating chamber 200.
- a fifth uniform flow channel 31 is defined between the third filter element 30 and the inner wall of the second receiving chamber 200, and the central central tube 33 of the third filter element 30 is directly opposite to the transition port 332.
- the wall of the central pipe 33 is provided with filtered water inlet holes.
- the third filter element 30 is composed of a plurality of reverse osmosis membrane bag 32, and the reverse osmosis membrane bag 32 has a first part and a second part, and each waste water collection pipe 34 It is separated from the central tube 33 by at least one first part of the reverse osmosis membrane bag 32, and the second part of the plurality of reverse osmosis membrane bags 32 is formed around the central tube 33 and a plurality of wastewater headers 34 , To form a multi-layer spiral wound film module.
- the central pipe 33 has a ring shape and is provided with five wastewater headers 34.
- Each wastewater header 34 is connected to the fifth inlet 301 through the second end cover 320.
- Each wastewater header 34 corresponds to a reverse osmosis membrane bag 32.
- the third filter element 30 is provided with a third end cap 47 and a fourth end cap 48 at both ends, and the third end cap 47 is sealed between the third filter element 30 and the waste water circulation At the end of the cavity facing the first accommodating cavity 100, the fourth end cap 48 is sealed at the end of the third filter 30 and the filtered water circulation cavity away from the first accommodating cavity 100.
- Both ends of the third end cap 47 are provided with a third outer through cannula 471 and a third inner through cannula 472, the third outer through cannula 471 is inserted into the transition port 332, and the third inner through cannula 472 Connected to the central tube 33.
- the third end cover 47 is provided with a first positioning protrusion 473 which is in a foolproof cooperation with the waste water pipe 34.
- the peripheral wall of the third end cap 47 is provided with a first fixed-axis projection 474 to be fitted with the top of the third filter 30.
- the fourth end cap 48 is provided with a waste discharge port 482 connected to the wastewater header 34.
- a fourth connecting tube 321 is provided on the inner peripheral wall of the housing 300 toward the fourth end cover 48, and the fourth connecting tube 321 communicates with the fifth inlet and outlet 301, and a fourth insertion tube 481 and a fourth insertion tube 481 are provided on the fourth end cover 48 Plug-in connection with the fourth connection 321.
- the fourth end cap 48 is provided with a second positioning protrusion 483 which is blocked and matched with the central tube 33.
- a second fixed shaft protrusion 484 is provided to cooperate with the bottom of the third filter 30.
- a sealing ring is added between the third end cover 47 and the first outer end cover 42.
- a sealing ring is added between the first outer end cover 42 and the transition port 332.
- the entire tap water filtration process is that tap water enters the first uniform flow channel 11 from the first inlet and outlet 101 and flows radially inward, and after filtering by the first filter 10, flows to the second uniform flow channel 12 and from The upper second inlet / outlet 102 flows out as pre-water.
- the outgoing pre-water is pressurized and pumped into the fourth inlet and outlet 302, and is evenly distributed in the fifth uniform flow channel 31, flowing in from the side of the lateral flow reverse osmosis water-saving membrane and passed by the third filter 30
- the high-salinity wastewater is collected by the wastewater header 34 and discharged from the fifth inlet and outlet 301, and the pure water is collected by the central tube 33 and passes through the transition port 332. Pure water enters the third uniform flow channel 21 from the transition port 332, and is filtered by the second filter 20 in the radial direction, enters the fourth uniform distribution channel 22, and flows out of the third inlet 201 for drinking.
- connection should be understood in a broad sense, for example, it can be fixed connection or detachable Connected, or connected integrally; either mechanically or electrically; directly connected, or indirectly connected through an intermediary, or internally connected between two components.
- installation should be understood in a broad sense, for example, it can be fixed connection or detachable Connected, or connected integrally; either mechanically or electrically; directly connected, or indirectly connected through an intermediary, or internally connected between two components.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
一种复合滤芯组件(1000),包括:壳体(300)、第一过滤组(400)和第二过滤组(500),壳体内限定出高压腔和低压腔,两容纳腔之间通过过渡板(331)间隔开,过渡板上设有过渡口(332),第一过滤组设在低压腔内,第二过滤组设在高压腔内,第二容纳腔(200)内水经第二过滤组过滤后,经过渡口流向第一容纳腔(100)。
Description
相关申请的交叉引用
本申请基于申请号为201811290840.0、申请日为2018年10月31日的中国专利申请“复合滤芯组件”,申请号为201821790008.2、申请日为2018年10月31日的中国专利申请“复合滤芯组件”,申请号为201811289176.8、申请日为2018年10月31日的中国专利申请“复合滤芯组件”,申请号为201821790053.8、申请日为2018年10月31日的中国专利申请“复合滤芯组件”,申请号为201811288603.0、申请日为2018年10月31日的中国专利申请“复合滤芯组件”,以及申请号为201821795364.3、申请日为2018年10月31日的中国专利申请“复合滤芯组件”提出,并要求上述中国专利申请的优先权,上述中国专利申请的全部内容在此引入本申请作为参考。
本申请属于净水技术领域,尤其是涉及一种复合滤芯组件。
从城市自来水厂输送到各用户的自来水中,通常会含有一定量的盐离子、金属物质、氯化物、微生物、泥沙等物质。为了提高饮水质量,越来越多的家庭选择在自来水的出水管上安装净水机,净水机内带有多种功能滤芯,以去除自来水中不同种类的有害物质。
通常,现有的净水机滤芯一般为3~4级,部分厂家净水机滤芯为双芯。为了改善复合滤芯组件的过滤效果,通常在净水机内布置多种滤芯组件,各个滤芯组件之间的进、出水口依次串联,不同的滤芯两侧分别形成进水腔体、出水腔体,为了达到高品质的饮用水,往往需要串联三级、四级滤芯组件,不同滤芯组件之间的出水口和进水口之间均需要外部管道进行连接,使复合滤芯组件管道系统庞杂,净水机整机占用空间较大,不方便安装和更换滤芯。
在进出口处若设置止水阀,可以降低漏水的风险。已有的止水阀结构的封堵部分和止水口部分配合不够紧密,止水阀的装配结构较为简单,容易出现漏水现象,使用寿命降低。
发明内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本申请的一个目的在于提出一种复合滤芯组件,所述复合滤芯组件减少了管路连接,降低了漏水风险、提高了净化过滤效果,可靠性高、净化过滤效果好。
根据本申请实施例的复合滤芯组件,包括壳体、第一过滤组和第二过滤组,所述壳体内限定出第一容纳腔和第二容纳腔,所述第一容纳腔和所述第二容纳腔之间通过过渡板间隔开,所述过渡板上设有过渡口,所述第一容纳腔为低压腔,所述第二容纳腔为高压腔,所述第一容纳腔内水压低于所述第二容纳腔内水压,所述第一过滤组设在所述第一容纳腔内,所述第二过滤组设在所述第二容纳腔内,所述第二容纳腔内水经所述第二过滤组过滤后,经所述过渡口流向所述第一容纳腔。
根据本申请实施例的复合滤芯组件,通过过渡板将壳体分成第一容纳腔和第二容纳腔,从而将第一过滤组和第二过滤组分离,将第一容纳腔设为低压腔,第二容纳腔设为高压腔,降低了低压腔的结构要求,还使得在相对低压就可以净化过滤水的第一过滤组在低压腔,需要较高水压的第二过滤组件在高压腔,减少了管路连接,降低了漏水风险、提高了净化过滤效果,流道设计简单,可靠性高、净化过滤效果好。
另外,根据本申请的复合滤芯组件还可以具有如下附加的技术特征:
可选的,所述壳体上设有第一进出口、第二进出口、第三进出口,所述第一过滤组包括第一过滤件、第二过滤件和水路间隔板,所述水路间隔板设在所述第一容纳腔内,所述水路间隔板将所述第一容纳腔间隔出第一低压区和第二低压区,所述第一过滤件设在所述第一低压区内,由所述第一进出口流入的水经所述第一过滤件后从所述第二进出口流出,所述第二过滤件设在所述第二低压区内,从所述过渡口流入的水经所述第二过滤件后从所述第三进出口流出。
可选的,所述高压腔内水压为0.7-0.85MPa。
可选的,所述低压腔内水压小于等于市政供水水压。
可选的,所述第一低压区内水压为0.1-0.4MPa。
可选的,所述水路间隔板为筒形,所述第二过滤件位于所述水路间隔板的内侧,所述第一过滤件位于所述水路间隔板的外侧;所述第一过滤组包括第一外端盖,所述第一外端盖与所述水路间隔板的一端周沿密封连接,所述第一外端盖上设有连通所述第二低压区的第一插管,所述第一插管与所述过渡板相连,所述第一插管与所述过渡板之间设有第一密封件,以避免所述高压腔与所述第一低压区串流。
可选的,所述第一过滤组包括第二中端盖,所述第二中端盖与所述水路间隔板的另一端周沿密封连接,所述第二中端盖上设有第二中插管,所述第二中插管与所述壳体密封连接,以避免所述第二低压区与所述第一低压区串流。
可选的,所述第一过滤组上设有插入到所述过渡口内的第一插管,所述第一插管与所述过渡口的内壁之间设有第一密封圈;所述第二过滤组上设有插入到所述过渡口内的第三外通插管,所述第三外通插管与所述过渡口的内壁之间设有第二密封圈。
可选的,所述第一插管和所述第三外通插管中的一个插到另一个内,所述第一密封圈和所述第二密封圈沿径向排布形成双层密封。
可选的,所述过渡板在朝向所述第一容纳腔的一侧环绕所述过渡口设有第一内凸环,所述过渡板在朝向所述第二容纳腔的一侧环绕所述过渡口设有第二内凸环,以延长所述过渡口的轴向长度。
可选的,所述第一内凸环和所述第二内凸环中的至少一个,其外轮廓为非圆形。
可选的,朝向所述第二容纳腔的一侧设有环绕所述第二内凸环的第二外凸环,所述第二外凸环与所述第二内凸环在径向上间隔开,所述第二内凸环、所述第二外凸环均与所述第二过滤组的端面相接触以形成迷宫密封。
可选的,所述过渡口的至少一端设有30度至60度的倒角,以将所述第一密封圈和/或所述第二密封圈导入所述过渡口。
可选的,所述壳体包括:两端敞开的瓶体和两个瓶盖,两个所述瓶盖分别密封配合在所述瓶体的两端,所述过渡板连接在所述瓶体上。
可选的,两个所述瓶盖分别旋焊连接或者螺旋连接在所述瓶体上。
可选的,所述过渡板一体形成在所述瓶体上,或者所述过渡板焊接连接在所述瓶体上。
可选的,所述壳体内沿长度方向分隔出第一容纳腔和第二容纳腔,所述壳体上至少一个进出口处设有止水结构。
可选的,所述止水结构包括:止水凹台,所述止水凹台连接在所述壳体上;止水芯,所述止水芯在截断位置和导通位置之间可活动,在截断位置时所述止水结构堵住所述进出口,在导通位置时所述进出口与所述壳体内部连通;止水弹簧,所述止水弹簧连接在所述止水凹台和所述止水芯之间,所述止水弹簧常驱动所述止水芯朝向截断位置活动。
可选的,所述止水结构包括:止水密封圈,所述止水密封圈外套在所述止水芯上,所述止水芯在截断位置时所述止水密封圈与所述壳体相接触。
可选的,所述进出口的朝向所述止水凹台的一端设有倒角,所述止水芯在截断位置时,所述止水密封圈与所述倒角相接触。
可选的,所述壳体内环绕所述进出口设有配合凸缘,所述止水凹台的至少部分位于所述配合凸缘的内侧,所述止水凹台焊接连接在所述配合凸缘上。
可选的,所述配合凸缘的内周面形成为多级的配合台阶面,所述止水凹台的外周面上设有与所述配合台阶面相适配的止水台阶面,所述配合台阶面的凸角正对所述止水台阶面的凹角,所述配合台阶面的凹角正对所述止水台阶面的凸角;其中,至少一个正对的所述凹角与所述凸角之间设置有干涉凸块,所述干涉凸块为集中焊融区。
可选的,所述止水台阶面上临近所述集中焊融区设有溢料槽。
可选的,所述第二容纳腔位于所述第一容纳腔的下方,所述第二容纳腔的底部的进出口处均设有所述止水结构。
可选的,所述壳体上设有第四进出口和第五进出口,所述第二过滤组包括:螺旋卷式反渗透膜元件,所述螺旋卷式反渗透膜元件包括:中心管组和多个反渗透膜片袋,所述中心管组包括中心管和多个间隔开设置的废水集管,多个所述废水集管环绕所述中心管设置,所述中心管的管壁上设有过滤水入孔,所述废水集管的管壁上设有废水入孔;所述反渗透膜片袋具有位于所述中心管组内部的第一部分和位于所述中心管组外部的第二部分,每一所述废水集管和所述中心管被至少一个所述反渗透膜片袋的第一部分隔开,多个所述反渗透膜片袋的所述第二部分形成围绕在所述中心管组的周围的多层薄膜组件;其中,从所述第四进出口进入所述高压腔的水经所述反渗透膜片袋过滤后流向所述过滤水入孔,所述废水集管与所述第五进出口相连,所述中心管与所述过渡口相连。
可选的,所述第二过滤组还包括:第三端盖和第四端盖,所述第三端盖和所述第四端盖分别连接在所述螺旋卷式反渗透膜元件的轴向两端,所述第三端盖朝向所述过渡板设置,所述中心管通过所述第三端盖与所述过渡孔相连,所述废水管通过所述第四端盖与所述第五进出口相连。
可选的,所述反渗透膜片袋卷出的圆形筒的轴向两端胶粘在所述第三端盖和所述第四端盖上。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
图1为本申请一个实施例的复合滤芯组件的内部结构示意图。
图2为图1的仰视图。
图3为本申请一个实施例的复合滤芯组件的壳体和止水组件的结构示意图。
图4为本申请一个实施例的复合滤芯组件的省去第一过滤组和第二过滤组的内部结构示意图。
图5为本申请一个实施例的复合滤芯组件的瓶体的剖面的结构示意图。
图6为本申请一个实施例的复合滤芯组件的瓶体的结构示意图。
图7为本申请一个实施例的第三端盖的仰视图。
图8为本申请一个实施例的第四端盖的仰视图。
图9为本申请一个实施例的中心管和废水集管的立体结构示意图。
图10为本申请一个实施例的一片反渗透膜片袋和中心管、一个废水集管配合的俯视图。
图11为本申请一个实施例中螺旋卷式反渗透膜元件的俯视图。
图12为图1中区域A中结构的局部放大图。
图13为图5中区域B中结构的局部放大图。
图14为本申请一个实施例的复合滤芯组件的过渡板的下端面的结构示意图。
图15为本申请一个实施例的复合滤芯组件的过渡板的上端面的结构示意图。
图16为本申请一个实施例的复合滤芯组件的内部结构示意图。
图17为图16的仰视图。
图18为图16省去第一过滤件、第二过滤件、第三过滤件的内部结构示意图。
图19为发明一个实施例的复合滤芯组件省去内部过滤组的结构示意图。
图20为图16中区域I中结构的局部放大示意图。
图21为图20中区域Ⅱ中结构的局部放大示意图。
图22为图20中密封圈采用环形密封圈的示意图。
图23为图20中密封圈采用带倒角的环形密封圈的示意图。
图24为本申请一个实施例的第二瓶盖上配合凸缘的结构示意图。
图25为本申请一个实施例的进水口、配合凸缘及止水凹台的对应区剖面示意图。
图26为本申请一个实施例的带有第一定位凸起的第三端盖的俯视图。
图27为本申请一个实施例的带有第一定位凸起的第三端盖的仰视图。
图28为本申请一个实施例的带有第二定位凸起的第四端盖的仰视图。
图29为本申请一个实施例的带有第二定位凸起的第四端盖的俯视图。
附图标记:
复合滤芯组件1000;
第一容纳腔100;第一过滤组400;第一低压区1;第二低压区2;
第一过滤件10;第一均布流道11;第二均布流道12;
第一进出口101;第二进出口102;
第二过滤件20;第三均布流道21;第四均布流道22;
第三进出口201;
第一端盖401;第二端盖402;
第一内端盖41;
第一外端盖42;第一插管421;
第二内端盖43;内端口431;第二内插管432;
第二外端盖44;外端口441;第二外插管442;
第二中端盖45;中端口451;第二中插管452;
水路间隔板46;
间隔支架49;
第二容纳腔200;高压区2002;
第二过滤组500;螺旋卷式反渗透膜元件3;中心管组13;
第三过滤件30;第五均布流道31;反渗透膜片袋32;中心管33;废水集管34;
第五进出口301;第四进出口302;
第三端盖47;第三外通插管471;第三内通插管472;第一定位凸起473;第一定轴凸块474;
第四端盖48;第四插管481;排废口482;第二定位凸起483;第二定轴凸块484;
止水组件50;止水结构凹台51;弹簧52;密封圈53;止水结构件54;限制台541;
壳体300;
瓶盖3001;
第一瓶盖310;第一接管311;第二接管312;第三接管313;提手314;
第二瓶盖320;第四接管321;倒角322;
瓶体330;过渡板331;过渡口332;第一内凸环333;第二内凸环334;第一密封圈335;第二密封圈336;第二外凸环337;
旋焊工装固定凸台3005;
配合凸缘3006;配合台阶面30061;
旋焊结构700;
止水结构600;
止水凹台610;止水台阶面611;干涉凸块612;溢料槽613;
止水芯620;封堵连接段622;导柱段623;
止水弹簧630;止水密封圈640。
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下面参考附图来详细描述根据本申请实施例的复合滤芯组件1000。
如图1和图3所示,根据本申请实施例的复合滤芯组件1000,包括壳体300、第一过滤组400和第二过滤组500。
其中,壳体300内限定出第一容纳腔100和第二容纳腔200,第一容纳腔100和第二容纳腔200之间通过过渡板331间隔开,过渡板331上设有过渡口332,这里,过渡板331使第一容纳腔100和第二容纳腔200在壳体300内形成两个总体相隔的腔体,两腔体之间可以通过过渡口332连通。
第一容纳腔100为低压腔,第二容纳腔200为高压腔,这里的低压和高压用于对比区分,即第一容纳腔100内水压低于第二容纳腔200内水压。将壳体300内腔通过过渡板331分隔成第一容纳腔100和第二容纳腔200,其设计能满足不同过滤结构对水压的要求。例如,第一容纳腔100内过滤流通阻力小,因而第一容纳腔100设计为低压腔,这样净水系统无需为第一容纳腔100配置增压泵,第一容纳腔100内部零件及相应接头承压小,零件装配密封可靠性要求低。而第二容纳腔200内过滤流通阻力大,此时可单独为第二容纳腔200配置增压泵,同时要保证第二容纳腔200内部零件及相应接管的承压能力。这样分开设置,有利于降低成本。
第一过滤组400设在第一容纳腔100内,第二过滤组500设在第二容纳腔200内,第二容纳腔200内水经第二过滤组500过滤后,经过渡口332流向第一容纳腔100。也就是说,第一过滤组400在水压相对较低的低压腔内就能充分发挥过滤作用,第二过滤组500需要水压相对较高的高压腔内才能充分发挥过滤作用。这里,可以是第一容纳腔100内水流在净化后通过过渡口332流向第二容纳腔200,也可以是第二容纳腔200内水流在净化后通过过渡口332流向第一容纳腔100,这里不作限制。
第一过滤组400和第二过滤组500分别分布在不同的腔体内,第一过滤组400在第一容纳腔100,第二过滤组500在第二容纳腔200,相比于现有技术中每个滤芯壳体中设置一组过滤件,各过滤滤芯再通过外部的管路相连接而成的方式,本申请在一定程度上减少了外部连接管路的设置,进而减小了安装时所需的外部空间,节省用户的橱柜内部体积;同时,增强了整体的美观性能。
根据本申请实施例的复合滤芯组件1000,通过过渡板331将壳体300分成第一容纳腔100和第二容纳腔200,从而将第一过滤组400和第二过滤组500分离,将第一容纳腔100设为低压腔,第二容纳腔200设为高压腔,降低了低压腔的结构要求,还使得在相对低压就可以净化的第一过滤组400集中在低压腔,需要较高水压的第二过滤组500集中在高压腔,减少了管路连接,降低了漏水风险、提高了净化过滤效果,流道设计简单,可靠性高、净化过滤效果好。
在本申请的一些实施例中,如图1、图2和图4所示,壳体300上设有第一进出口101、第二进出口102、第三进出口201,第一过滤组400包括第一过滤件10、第二过滤件20和水路间隔板46,水路间隔板46设在第一容纳腔100内,水路间隔板46将第一容纳腔100间隔出第一低压区1和第二低压区2,第一过滤件10设在第一低压区1内,由第一进出口101流入的水经第一过滤件10后从第二进出口102流出,第二过滤件20设在第二低压区2内,从过渡口332流入的水经第二过滤件20后从第三进出口201流出。也就是说,水路间隔板46使同在第一容纳腔100中的第一过滤件10和第二过滤件20分隔开来,形成两个独立的净化水路。而过渡口332的设置,使第二容纳腔200与第一容纳腔100的其中一个净化水路串联。水路间隔板46将第一容纳腔100分为第一低压区1和第二低压区2,第一低压区1与第一进出口101和第二进出口102联通,第二低压区2与过渡口332和第三进出口201联通。
可选地,两组过滤件之间可连接其他过滤件;也可以直接将第一过滤件10的进水口和第二过滤件20的出水口相连;或直接将第一过滤件10的出水口和第二过滤件20的进水口相连,使得第一过滤件10和第二过滤件20之间的净化水路形成前、后串联的关系。
可选地,如图1所示,第一过滤件10与第一容纳腔100的内壁之间限定出第一均布流道11,第一均布流道11与第一进出口101相连。此处,第一均布流道11中可均布第一过滤件10待净化的液体,也可以均布第一过滤件10已净化后的液体。
水路间隔板46与第一过滤件10之间限定出第二均布流道12。此处,当第一均布流道11内均布第一过滤件10待净化的液体,则第二均布流道12内均布第一过滤件10已净化后的液体;反之,亦可。第二均布流道12连接第二进出口102。即,当第一进 出口101为进口时,第二进出口102则为出口;当第一进出口101为出口时,第二进出口102则为进口。
水路间隔板46与第二过滤件20之间限定出第三均布流道21,第二过滤件20的远离第三均布流道21的一侧设有第四均布流道22,第三均布流道21和第四均布流道22中的一个连接第三进出口201,第三均布流道21和第四均布流道22中的另一个连接过渡口332。此处,当第三均布流道21连接过渡口332时,第四均布流道22则连接第三进出口201;当第三均布流道21连接第三进出口201时,第四均布流道22则连接过渡口332。
可选地,如图1和图3所示,第一容纳腔100和第二容纳腔200在轴向间隔开设置,第二过滤件20两侧的其中一个均布流道通过过渡板331上的过渡口332连通第二容纳腔200,两容纳腔(100,200)配合紧凑,节省了第二过滤组500过滤后的水在流向第二过滤件20过滤时所需要铺设的外部连接管道;也可以是,节省第二过滤件20过滤后的水在流向第二过滤组500过滤时所需要铺设的外部连接管道,有利于复合滤芯组件1000减小整体尺寸,有利于简化外部管路的布置。
从第一均布流道11、第二均布流道12、第三均布流道21和第四均布流道22的布局位置来看,水流在穿过第一过滤件10和第二过滤件20时,大部分沿第一容纳腔100的径向穿过,穿过路径短、流通量大。而且径向穿过时对过滤件表面的杂质具有冲刷作用,水流更易冲开杂质后穿过过滤件。而每个过滤件在进出水时大部分水流基本沿轴向流动,这样不仅有利于水流均布,也有利于将冲刷下的杂质带到轴向端部,避免杂质堵在过滤件表面。可以理解的是,相比于现有技术中一个滤芯组件中集成两组过滤件,本申请的集成度更高,功能更强。更换滤芯时,仅需要拆卸壳体300不同的端部,以及各个过滤件对应的封端,便可以实施相应的过滤件的更换,更换简单、操作容易,为客户亲自进行更换提供了可能性,降低了维护成本。
即使容纳腔内过滤件安装好后不能再拆出,但是由于所有过滤件均设置在壳体300内,复合滤芯组件1000整体安装时只需要一套定位、安装结构,装配简单、省时。
在本申请的一些实施例中,如图3所示,壳体300包括:瓶体330和两个瓶盖3001,瓶体330的两端敞开,两个瓶盖3001配合在瓶体330的两端,每个瓶盖3001均可拆卸地密封连接在瓶体330上。为方便描述,下文中将其中一个瓶盖3001记为第一瓶盖310,另一个瓶盖3001则记为第二瓶盖320。此处,可拆卸地连接可以为螺纹连接,即瓶体330的端部和瓶盖上一个设置外螺纹,另一个设置相配合的内螺纹,在内螺纹和外螺纹之间可设有密封圈,可以加强紧固效果,也可以提高密封效果。可拆卸地连接也可以为卡接连接,例如瓶体330的端部设置卡扣,瓶体330两端的第一瓶盖310和第二瓶盖320上设置卡孔,使得瓶体330和第一瓶盖310、第二瓶盖320分别形成卡接关系。当然,其他容易想到的可拆卸的连接方式,也可以用于本申请中,这里不做限制。
在本申请中,过渡板331位于第一瓶盖310和第二瓶盖320之间,当瓶体330与过渡板331、第一瓶盖310之间限定出第一容纳腔100时,瓶体330与过渡板331、第二瓶盖320之间限定出第二容纳腔200。当瓶体330与过渡板331、第二瓶盖320之间限 定出第一容纳腔100时,瓶体330与过渡板331、第一瓶盖310之间限定出第二容纳腔200。
瓶盖3001也可以不局限于与瓶体330可拆卸连接,在可选的示例中,瓶盖3001与瓶体330之间可形成固定连接。例如,在具体示例中,第一瓶盖310和瓶体330之间可以采用旋焊结构700固定密封连接,也可以形成螺纹和密封圈相配合的可开合的连接。同样,第二瓶盖320与瓶体330之间可以采用旋焊结构700固定密封连接,也可以形成螺纹和密封圈相配合的可开合的连接。
相比于现有技术中一个滤芯组件中集成两组过滤件,本申请的集成度更高,功能更强。更换滤芯时,仅需要拆卸壳体300不同的端部,以及各个过滤件对应的封端,便可以实施相应的过滤件的更换,更换简单、操作容易,为客户亲自进行更换提供了可能性,降低了维护成本。
即使容纳腔内过滤件安装好后不能再拆出,但是由于所有过滤件均设置在壳体300内,复合滤芯组件1000整体安装时只需要一套定位、安装结构,装配简单、省时。
如图1和图3所示,过渡板331的中部设有在厚度方向上贯通的过渡口332。可选地,当瓶体330为塑胶件时,过渡板331与瓶体330一体注塑成型,一体成型方便加工制造,且过渡板331与瓶体330之间密封连接非常可靠,避免在受力冲击或者两侧压差过大时,过渡板331在瓶体330内偏斜、漏水等。当然,过渡板331也可以焊接连接在瓶体330,这里不作限制。无论一体注塑成型,还是焊接连接,均能较好地承受第一容纳腔100与第二容纳腔200之间的压差,避免第二容纳腔200内高压水未经过渡口332而渗透到第一容纳腔100中。
需要说明的是,第二过滤组500在净化过滤的过程中水压要保持在一定范围内。因为如果水压较小,水流无法大量通过第二过滤组500,会导致净化量过低,如果水压较大则容易损伤第二过滤组500。在本申请的一些实施例中,高压腔内水压为0.7-0.85Mpa,即高压腔内的水压最低不低于0.7Mpa,最高不高过0.85Mpa。在这个范围内的水压,此处较高的水压有利于第二过滤组500充分发挥过滤通力,加快水流的过膜速度。高压腔的水压大于市政供水水压,因此,当水流向高压腔时需要增压泵增压。
在本申请的一些实施例中,低压腔内水压小于等于市政供水水压,第一容纳腔100内进水时可以直接从市政供水接水。在本申请的一些实施例中,第一低压区1内水压为0.1-0.4MPa,即,第一低压区1内的水压最低为0.1Mpa,最高为0.4Mpa。在这个范围内的水压较低,不需要增压泵增压。
在本申请的一些示例中,如图1、图5、图7所示,水路间隔板46为筒形,第二过滤件20位于水路间隔板46的内侧,第一过滤件10位于水路间隔板46的外侧。可选地,第一过滤件10和第二过滤件20也为筒形,第一过滤件10、水路间隔板46和第二过滤件20依次套设,第二过滤件20的中心腔为第四均布流道22。此处,第四均布流道22处于第一过滤组400的中心,其为柱形。第四均布流道22的外侧在径向方向上分别紧凑布置一层第二过滤件20、一层第三均布流道21、一层水路间隔板46、一层第二均布流道12、一层第一过滤件10、一层第一均布流道11,第三均布流道21和第二均布流 道12之间通过水路间隔板46隔绝不流通。第一容纳腔100整体布置紧凑、占用的安装空间少、集成度高。方便安装第一过滤件10和第二过滤件20。
在一些实施例中,第一过滤组400包括第一外端盖42,第一外端盖42与水路间隔板46的一端周沿密封连接。具体地,第一外端盖42与第一过滤件10配合,封闭了第一过滤件10、第二均布流道12的底部,且为第一过滤件10提供了支撑,有效防止第一过滤件10两侧液体在底部相串。水路间隔板46连接在第一外端盖42上,有利于第一外端盖42牢固地设置在特定位置,使第二均布流道12和第三均布流道21可靠分隔,避免串流、水质降低。
可选地,水路间隔板46与第一外端盖42为一体成型件,可方便加工制造。一体成型后水路间隔板46与第一外端盖42之间不易出现间隙,位置更加稳定。
第一过滤件10的端面胶粘在第一外端盖42上。这样不仅装配方便,而且便于一体芯的安装。可选地,第一过滤件10通过一圈热熔胶密封连接在第一外端盖42上。
在一些实施例中,如图1所示,第一过滤组400包括第二中端盖45,第二中端盖45与水路间隔板46的另一端周沿密封连接,第二中端盖45上设有第二中插管452,第二中插管452与壳体300密封连接,以避免第二低压区2与第一低压区1串流。
具体地,第二中端盖45固定第一过滤件10的顶部,有效防止第一过滤件10两侧水流在顶部串联。水路间隔板46连接在第二中端盖45,这样能方便第二过滤件20先装入第二低压2内。
在本申请的一些实施例中,如图1和图2所示,壳体300上设有第四进出口302和第五进出口301,第二过滤组500包括:螺旋卷式反渗透膜元件3,螺旋卷式反渗透膜元件3包括:中心管组13和多个反渗透膜片袋32。中心管组13包括中心管33和多个间隔开设置的废水集管34,多个废水集管34环绕中心管33设置,中心管33的管壁上设有过滤水入孔,废水集管34的管壁上设有废水入孔,反渗透膜片袋32具有位于中心管组13内部的第一部分和位于中心管组13外部的第二部分,每一废水集管34和中心管33被至少一个反渗透膜片袋32的第一部分隔开,多个反渗透膜片袋32的第二部分形成围绕在中心管组13的周围的多层薄膜组件;其中,从第四进出口302进入高压腔的水经反渗透膜片袋32过滤后流向过滤水入孔,废水集管34与第五进出口301相连,中心管33与过渡口332相连。
在本申请的一些实施例中,如图1所示,反渗透膜片袋32卷制成筒形,反渗透膜片袋32与第二容纳腔200的内壁之间限定出第五均布流道31,反渗透膜片袋32的中心正对过渡口332设置。从螺旋卷式反渗透膜元件3、第五均布流道31的布局来看,水流在穿过螺旋卷式反渗透膜元件3时,大部分沿螺旋卷式反渗透膜元件3的径向穿过,穿过路径短、流通量大。而且径向穿过时对过滤件表面的杂质具有冲刷作用,水流更易冲开杂质后穿过过滤件。而过滤件在进水时大部分水流基本沿轴向流动,这样不仅有利于水流均布,也有利于将冲刷下的杂质带到轴向一端,避免杂质堵在过滤件表面。
流到第五均布流道31内的水,在沿径向穿过反渗透膜片袋32并朝着中心管33的 方向流动的过程中,水分子不断地渗透到反渗透膜片袋32内。渗透到反渗透膜片袋32内的纯净水部分沿径向继续朝向中心管33流动,部分受膜延伸方向影响沿螺旋方向朝向中心管33流动。最终纯净水从过滤水入孔进入中心管33,然后朝向过渡口332流动。而未渗透进反渗透膜片袋32的水则集中到废水集管34处,剩下的废水则流向废水集管34的管壁上的废水集孔,废水集管34与第五进出口301相连,从第五进出口301处排出废水。水在穿过反渗透膜片袋32时,沿径向穿过,穿过路径短、流通量大,对反渗透膜片袋32表面的杂质具有冲刷作用,水流更易冲开杂质后穿过反渗透膜片袋32。
在本申请的一些实施例中,如图1所示,第二过滤组500还包括:第三端盖47和第四端盖48,第三端盖47和第四端盖48分别连接在螺旋卷式反渗透膜元件3的轴向两端,第三端盖47朝向过渡板331设置,中心管33通过第三端盖47与过渡口332相连,废水集管34通过第四端盖48与第五进出口301相连。如图1所示,第三端盖47的两端设有相通的第三外通插管471和第三内通插管472,第三外通插管471插接在过渡口332内,第三内通插管472与中心管33相连。这里,第三端盖47封闭了螺旋卷式反渗透膜元件3的顶部,且为螺旋卷式反渗透膜元件3提供了顶部的支撑连接,有效防止了螺旋卷式反渗透膜元件3内液体在顶部相串。
第四端盖48封闭了螺旋卷式反渗透膜元件3的底部,且为螺旋卷式反渗透膜元件3提供了底部的密封和支撑,有效地防止了螺旋卷式反渗透膜元件3内液体在底部相串。废水集管34连通了排废口482和第五进出口301,使高盐度的废水足够快地流出壳体300。
其中,第三端盖47通过第三外通插管471插接在过渡口332内,一方面便于密封,防止第二容纳腔200内高压水未经螺旋卷式反渗透膜元件3过滤就流向过渡口332,另一方面利用过渡口332定位,提高定位精度的同时还能降低装配难度。
第三端盖47通过第三内通插管472插接在中心管33上,一方面利用第三内通插管472与中心管33管壁之间的面接触实现密封,另一方面方便中心管33的定位与安装,防止长期使用后中心管33歪斜、漏水。
另外,如图1和图8,第三端盖47上设有第一定位凸起473,第一定位凸起473与废水集管34对应设置,废水集管34的一端插在第一定位凸起473上,此第一定位凸起473具有一定的防呆配合功能,方便第三端盖47与废水集管34定位安装,防止长期使用后废水集管34歪斜。
可选地,反渗透膜片袋32卷出的圆形筒的轴向两端胶粘在第三端盖47和第四端盖48上。这样不仅装配方便,而且便于一体芯的安装。
有利地,第三外通插管471与过渡口332之间设有密封圈。
反渗透膜元件采用侧流节水膜,通过侧流进水,提高膜表面流速,保证较高的纯水回收率,以及膜袋较长的使用寿命。需要对液体提前进行加压再泵入第四进出口302中。
可选地,本申请的反渗透膜片袋32为反渗透膜元件(RO膜元件),反渗透膜元件采用侧流节水膜,通过侧流进水,提高膜表面流速,保证较高的纯水回收率,以及膜袋较长的使用寿命。
可选地,反渗透膜片袋32也可为超滤膜组件,具体可选用市场上已有的超滤膜滤芯。超滤过滤以及反渗透过滤的原理和技术均为本领域技术人员所熟知的现有技术,在本申请中不再赘述。另外,当反渗透膜片袋32采用上述过滤件时,需要对液体提前进行加压再泵入第四进出口302中。
本申请限定有“第一”、“第二”、“第三”、“第四”、“第五”的特征可以明示或者隐含地包括一个或者更多个该特征,用于区别描述特征,无顺序之分,无轻重之分。
在本申请的一些实施例中,如图1所示,复合滤芯组件1000还包括:第一内端盖41,第一内端盖41配合在第二过滤件20的朝向过渡口332的轴向端面上,以堵住第二过滤件20及第四均布流道22。这里说的第一内端盖41堵住第二过滤件20及第四均布流道22,指的是第一内端盖41封住了第二过滤件20及第四均布流道22的轴向端面,使第二过滤件20及第四均布流道22内的水不能从朝向过渡口332的轴向端面流出或者流入。下文提及到的某端盖堵住某过滤件和某均布流道时,其含义也均是如此,后文将不再赘述。
在图1中,第一内端盖41封闭了第二过滤件20和第四均布流道22的底部,且为第二过滤件20提供了底部的支撑,有效地防止了第二过滤件20两侧的待净化的液体,和已经净化后的液体在底部相串,保证了第二过滤件20的过滤效果。
可选地,第一内端盖41上设有伸入到第四均布流道22中的内凸缘,内凸缘的外周面与第二过滤件20的内周面接触。可选地,第一内端盖41的外周边设有外翻边,外翻边的内侧面与第二过滤件20的外周面接触。内凸缘和外翻边每一样的设置,都可增强第一内端盖41对第四均布流道22和第二过滤件20的端面的液体封挡效果;且能够形成对第一内端盖41和第二过滤件20的防呆配合,容易装配。
具体地,第二过滤件20的轴端端面胶粘在第一内端盖41上,这样不仅装配方便,而且便于一体芯的安装。可选地,第二过滤件20通过一圈热熔胶密封连接在第一内端盖41上。
可选地,如图1所示,第一外端盖42中部向上凸出形成凸台,第一内端盖41悬置于凸台上方,即,第一内端盖41与凸台之间有一定间隙,使第三均布流道21与过渡口332保持连通。也就是说,第二过滤件20过滤后的水可经过渡口332流向螺旋卷式反渗透膜元件3,由螺旋卷式反渗透膜元件3再次过滤;或者,螺旋卷式反渗透膜元件3过滤后的水可经过渡口332流向第二过滤件20,由第二过滤件20再次过滤。
可选地,第一外端盖42的外周边设有外翻边,外翻边的内侧面与第一过滤件10的外周面接触。外翻边外套在第一外端盖42的中部凸台的外侧,外翻边与中部凸台的两侧阻挡,可增强第一外端盖42对第一过滤件10的端面的液体封挡效果;且能够形成对第一过滤件10的防呆配合,容易装配。
具体地,第一过滤件10的轴端端面胶粘在第一外端盖42上,这样不仅装配方便,而且便于一体芯的安装。可选地,第一过滤件10通过一圈热熔胶密封连接在第一外端盖42上。
在本申请的一些实施例中,如图1所示,第一外端盖42上设有第一插管421,第一 插管421插接在过渡口332内,第一插管421与过渡口332的内壁之间密封配合。第一插管421插接在过渡口332中,一方面进一步封闭了过渡口332,防止第一容纳腔100和第二容纳腔200之间的液体发生不必要的串流;另一方面,使第二过滤件20和螺旋卷式反渗透膜元件3之间的流道连接更为容易。
具体地,第一插管421与第一内端盖41同轴设置,第一插管421的内径小于第一内端盖41的外径,这样第一内端盖41、第二过滤件20挡在第一外端盖42内。
可选地,第一内端盖41与第一外端盖42之间的缝隙较小,第一内端盖41在受到朝向第一外端盖42的作用力时与第一外端盖42相接触,当过渡口332进水挤开第一内端盖41时,缝隙变大,水路流通更加畅通。将第一内端盖41设置成与第一外端盖42小距离的悬置设计,能使水流在经第二过滤件20时水压能达到微妙的平衡。即当第四均布流道22内水压大于过渡口332处水压时,第一内端盖41能够暂时封住过渡口332。
如图1所示,第一过滤组400上设有插入到过渡口332内的第一插管421,如图12所示,第一插管421与过渡口332的内壁之间设有第一密封圈335。如图1所示,第二过滤组500上设有插入到过渡口332内的第三外通插管471,如图1和图12所示,第三外通插管471与过渡口332的内壁之间设有第二密封圈336。第二容纳腔200内水经第二过滤组500过滤后,经过渡口332流向第一容纳腔100。水被第二过滤组500和第一过滤组400净化过滤,净化过滤效果好。
另外,第一密封圈335可封阻第一插管421与过渡口332之间的间隙,第二密封圈336可封阻第三外通插管471与过渡口332之间的间隙,防止水从间隙内渗流,使得净化后的水和未被净化的水不发生串流,保证净化后的水的过滤效果。
通过第一插管421、第三外通插管471和过渡口332,可以将第一容纳腔100和第二容纳腔200联通,通过第一密封圈335和第二密封圈336可以防止第一容纳腔100和第二容纳腔200联通时串流,结构简单,封闭效果好,可靠性高。
可选的,第一端盖401包括:上述第一内端盖41,而第二过滤件20的另一端端面胶粘在第一内端盖41上。
在本申请的一些实施例中,如图1和图12所示,第一插管421和第三外通插管471中的一个插到另一个内,第一密封圈335和第二密封圈336沿径向排布形成双层密封。当第一插管421插入第三外通插管471内,第一密封圈335设在第一插管421和第三外通插管471之间。当第三外通插管471插入第一插管421内,则第二密封圈336设在第一插管421和第三外通插管471之间。
在本申请的一些实施例中,如图1、图5和图12、图14、图15所示,过渡板331在朝向第一容纳腔100的一侧环绕过渡口332设有第一内凸环333,过渡板331在朝向第二容纳腔200的一侧环绕过渡口332设有第二内凸环334,以延长过渡口332的轴向长度。第一插管421、第三外通插管471装配面在轴向上尺寸大,能提供更强的抗弯能力及接触强度。同时也有利于第一密封圈335和第二密封圈336在过渡口332密封第一插管421和第三外通插管471,便于安装操作,密封性较好。另外,如图12所示,第 一内凸环333和第二内凸环334可以阻挡径向方向的水流压力,从而减小第一密封圈335和第二密封圈336封阻水的压力,进一步增强密封效果。
在一些具体实施例中,第一内凸环333和第二内凸环334中的至少一个,其外轮郭是非圆形。这样当瓶体330需要固定时,可能通过非圆形的第一内凸环333或第二内凸环334进行固定、防转。第一过滤组400和第二过滤组500可以不用分先后顺序地安装在壳体300内。
例如在图3和图15的示例中,过渡板331上的第一内凸环333,其外轮廓为六角形。当要将第二过滤组500安装到第二容纳腔200内时,先将瓶体330倒置,使第二容纳腔200的开口向上,然后例用固定工装来固定住瓶体330,将第二过滤组500从上方装入。装好后在将第二瓶盖320固定到瓶体330时,通常要向下拧动第二瓶盖320,使第二瓶盖320在瓶体330上盖紧。要保证瓶体330能被完全固定住,较好的方法是,将固定工装伸到瓶体330内,利用第一内凸环333插到固定工装上。由于第一内凸环333是非圆形轮廓,固定工装上设置非圆形的固定孔,这样瓶体330不再转动。
可选地,过渡板331在朝向第二容纳腔200的一侧设有环绕第二内凸环334的第二外凸环337,第二外凸环337与第二内凸环334在径向上间隔开,第二内凸环334、第二外凸环337均与第二过滤组500的端面相接触以形成迷宫密封。第一内凸环333和第二内凸环334均抵接在第二过滤组500的端面上,可以阻挡径向方向的水流向过渡口332,使得水经历两重封阻,有利于提高密封性。
在本申请的一些实施例中,如图1、图5和图13所示,过渡口332的至少一端设有30度至60度的倒角,即过渡口332的一端或者两端形成倒角,能方便第一密封圈335和第二密封圈336中至少一个导入过渡口332。这里倒角可以去除加工成产时产生的毛刺,倒角还可以增加过渡口332开口尺寸,方便插管。另外,在将第一过滤组400通过第一插管421插入过渡口332,或者将第二过滤组500通过第三外通插管471插入过渡口332,倒角的设计具有导向使用,有利于过滤组朝向与过渡口332同轴的方向旋紧,减少装配过程中歪斜可能。
在本申请的一些实施例中,如图3、图5、图14和图15所示,壳体300包括两端敞开的瓶体330和两个瓶盖3001,两个瓶盖3001分别密封配合在瓶体330的两端,过渡板331连接在瓶体330上。
这里,两个瓶盖3001可以是可拆卸地连接在瓶体330上,以方便第一过滤组400和第二过滤组500安装进瓶体330内。当然,两个瓶盖3001也能不可拆地连接在瓶体330上。
可选地,两个瓶盖3001分别旋焊连接或者螺旋连接在瓶体330上。
可选地,过渡板331一体形成在瓶体330上,或者过渡板331焊接连接在瓶体330上。例如,当瓶体330为塑胶件时,过渡板331与瓶体330一体注塑成型,一体成型方便加工制造,且过渡板331与瓶体330之间密封连接非常可靠,避免在受力冲击或者两侧压差过大时,过渡板331在瓶体330内偏斜、漏水等。
当过渡板331焊接连接在瓶体330上时,可以将瓶体330与过渡板331分开制造, 可以降低加工难度,节约生产成本。无论一体注塑成型,还是焊接连接,均能较好地承受第一容纳腔100与第二容纳腔200之间的压差,避免第二容纳腔200内高压水未经过渡口332而渗透到第一容纳腔100中。当然,过渡板331和瓶体330也可以是其他的连接关系,这里不作限制。
在本申请的一些实施例中,如图15、图19所示,当一个瓶盖3001通过旋焊结构700连接在瓶体330上时,另一个瓶盖3001正对一侧的过渡板331表面上,设有非圆形的旋焊工装固定凸台3005。例如,非圆形可以为六边形、五边形、四边形等多角形结构。当需要瓶盖3001旋焊连接于瓶体330上时,此旋焊工装固定凸台3005与外部的固定工装可定位连接,使瓶体330相对于固定工装不转动,使旋焊过程中瓶体330与固定工装之间不发生转动,旋焊过程中较为稳定。
如图14、图15、图16、图18、图19所示,当两个瓶盖3001均通过旋焊结构700连接在瓶体330上时,过渡板331的至少一侧表面上设有非圆形的旋焊工装固定凸台3005。方便在焊接一端的端盖3001于瓶体330时,将瓶体330保持在固定位置,防止瓶体330旋转。
在一些实施例中,如图16、图18、图19所示,两个瓶盖3001均旋焊连接在瓶体330上,形成整体可抛弃式复合滤芯组件1000。当然,瓶盖3001与瓶体330之间也可以通过螺纹连接和密封圈的设置形成可开合的密封连接方式,在此不做具体限制。
在本申请的一些实施例中,如图18和图19所示,壳体300内沿长度方向分隔出第一容纳腔100和第二容纳腔200,如图16所示,壳体300上至少一个进出口处设有止水结构600。此处的进出口指与第一过滤组400连通的进水口或出水口,也可以指与第二过滤组500连通的进水口或出水口。
具体地可以在壳体300的每个进出口处均设置止水结构600,虽然成本略高,但是拆装的便利性非常高。当然,如果壳体300仅部分进出口上设置止水结构600,可以根据壳体300的安装位置选择,较佳方式为,除了壳体300顶部的进出口外,壳体300其他进出口均可以安装上止水结构300。
需要说明的是,止水结构300的工作原理为本领域所公知的技术。具体而言,某一进出口处设置止水结构600后,当该进出口连接外部管道时止水结构600自动打开该进出口,当该进出口处没有连接外部管道时,止水结构600自动封堵该进出口。
这样止水结构600可有效防止内部的液体从进出口向外部漏出,即避免拆下复合滤芯组件1000时浇湿拆装人员,方便更换复合滤芯组件1000内的过滤组或更换复合滤芯组件1000。当需要检修、更换外部管道时,拔出外部管道的瞬间进出口便很快被止水结构600封堵,内部的液体不易漏出,同时外部的空气不易进入,壳体300内产生的气泡较少,有利于保持复合滤芯组件1000整体的过滤作用,提高过滤过程的连贯性,减少因更换部分过滤组或维修时对正常过滤工作的影响时耗。
在本申请的一些实施例中,如图16、图18、图20、图21、图22、图23所示,止水结构600包括:止水凹台610、止水芯620、止水弹簧630。
其中,如图19、图20所示,止水凹台610连接在壳体300上。止水凹台610为止水弹簧630提供受力点,而且还能为止水芯620、止水弹簧630提供限位、导向作用,使止水芯620和止水弹簧630在伸缩运动的过程中不易歪斜、卡死。
如图20所示,止水芯620在截断位置和导通位置之间可活动,在截断位置时止水结构600堵住进出口,在导通位置时进出口与壳体300内部连通。止水芯620相当于控制进出口是打开还是堵住的塞子。
止水弹簧630连接在止水凹台610和止水芯620之间,止水弹簧630常驱动止水芯620朝向截断位置活动。
这种止水结构600的用法是,当设有止水结构600的进出口处连接外部管道时,外部管道上有插针插入该进出口处,插针顶开止水芯620,使外部管道与壳体300内部连通,即该进出口为导通状态。而当外部管道从复合滤芯组件1000上拆下时,插针退出进出口,止水芯620在止水弹簧630作用下堵在进出口处,壳体300不能通过该进出口连通外部。止水弹簧630的设置,使上述动作都是伴随外部管道的连接与拆下而自动完成的。
可选地,如图19所示,止水凹台610形成为朝向进出口一端敞开的筒形,止水凹台610敞开端罩在进出口上,止水凹台610的周壁上设有流通孔。止水芯620和止水弹簧630位于止水凹台610内,止水弹簧630止抵在止水凹台610的封闭端和止水芯620之间,以将止水芯620顶在进出口的端面或者进出口的内周壁上。
可选地,如图20所示,止水芯620包括封堵连接段622和导柱段623。导柱段623沿进出口的轴向设置,导柱段623的径向尺寸小于进出口的径向尺寸,导柱段623的至少部分伸入到进出口内,即导柱段623总会有一段是插到进出口内的。其中,导柱段623的断面形状、进出口的形状可以是圆形也可以是非圆形,这里不限。
封堵连接段622从导柱段623的外周沿朝向止水凹台610的封闭端延伸,封堵连接段622可以是筒形,封堵连接段622也可以由如图20所示的多个延伸条组成。封堵连接段622的径向尺寸(或者多个延伸条合围形成的筒形的径向尺寸)大于进出口的径向尺寸,避免止水芯620跑出进出口。封堵连接段622围在止水弹簧630外侧以限位。
在本申请的一些实施例中,如图20、图22、图23所示,止水结构600包括:止水密封圈640,止水密封圈640外套在止水芯620上,止水芯620在截断位置时止水密封圈640与壳体300相接触。止水密封圈640增强了止水芯620在截断位置时对进出口的封堵,有力地保障了复合滤芯组件1000在不接外部管道时,进出口处的密封性。
可选地,如图20所示,导柱段623的外周上形成有凹槽,止水密封圈640卡在凹槽中。如此,可避免止水密封圈640在止水芯620运动的过程中脱落,且增加了进出口处的止水效果。
可选地,如图22所示,止水密封圈640采用O型密封圈,O型密封圈与进出口的端面形成端面配合。O型密封圈的端面面积较大,有效地增加了对进出口的封闭。其中,O型密封圈的断面形状可以有多种,例如在图20中O型密封圈的断面为圆形,例如在图22中O型密封圈的断面为矩形。当然,O型密封圈的断面还可以是其他形状,如图23中密封圈在远离止水弹簧630的一端外边缘设置有倒角。这样,密封圈容易塞入进 出口中,具有良好的密封效果。有利地,O型密封圈的倒角范围在30度~60度。在此锥度范围内,止水效果最佳。
进一步可选地,如图24和图25所示,进出口的朝向止水凹台610的一端设有倒角322,止水芯620在截断位置时,止水密封圈640与倒角322相接触。此倒角322的设置,增大了止水密封圈640与进出口端面的配合面积,且有导引作用,有利于提高整体的密封效果。
有利地,倒角322的角度范围为30~60度,止水效果最佳。
在图23的示例中,止水密封圈640封堵进出口时,止水密封圈640倒角与进出口的端面倒角之间形成锥面接触配合,这样止水弹簧630对止水密封圈640于锥面上的压紧力,不仅产生轴向压紧分力,还会产生径向压紧分力,从而提高密封效果。
在本申请的一些实施例中,如图22、图23、图24所示,壳体300内环绕进出口设有配合凸缘3006,止水凹台610的至少部分位于配合凸缘3006的内侧,止水凹台610焊接连接在配合凸缘3006上。止水凹台610与配合凸缘3006焊接连接,可增强止水凹台610在壳体300内的连接稳固性,使止水凸台610更好地限位、支撑止水芯620。
可选地,如图21、图24、图25所示,配合凸缘3006的内周面形成为多级的配合台阶面30061,止水凹台610的外周面上设有与配合台阶面30061相适配的止水台阶面611,配合台阶面30061的凸角正对止水台阶面611的凹角,配合台阶面30061的凹角正对止水台阶面611的凸角。为便于理解,在图25中将配合台阶面30061的凸角以i1示出,配合台阶面30061的凹角以i2示出;将止水台阶面611的凸角以j1示出,止水台阶面611的凹角以j2示出。多级配合的台阶面,一方面方便装配定位,另一方面有利于配合台阶面30061和止水台阶面611的接触连接,使两台阶面连接后更加牢靠。
其中,如图21所示,至少一个正对的凹角与凸角之间设置有干涉凸块612,干涉凸块612为集中焊融区。当干涉凸块612预置在凹角处时,对应的凸角插入到凹角内,挤压热熔后的干涉凸块612,使干涉凸块612熔化成的焊料挤到相邻的面上,从而扩大最终形成的焊接连接面积。同样的,当干涉凸块612预置在凸角处时,该凸角插到对应的凹角内,也会挤压热熔后的干涉凸块612,扩大最终形成的焊接连接面积。干涉凸块612增加了焊融区的料厚,结合干涉凸块612处凹角与凸角的配合,最终形成的焊接面不在同一平面上,焊接连接强度非常高。
可选地,如图25所示,干涉凸块612设置在凹角处,干涉凸块612的外表面形成一定的倾斜度,使得干涉凸块612在熔融时顺着自身的倾斜面向其他位于处流动。
进一步可选地,如图21所示,止水台阶面611上临近集中焊融区设有溢料槽613。溢料槽613可在焊接过程中收集焊渣,溢料槽613中收集的焊渣凝固后可增加局部的强度;溢料槽613还可防止焊渣溢出到进水口处以防止形成披锋。
在本申请一些实施例中,第二容纳腔200位于第一容纳腔100的下方,第二容纳腔200内水压大于第一容纳腔100内水压,第二容纳腔200的底部的进出口处均设有止水结构600。在水压更大的第二容纳腔200的进出口处均设置止水结构600,可防止第二 容纳腔200的内压太大,而使进出口处漏水,增加了系统的可靠性。
在本申请的一些实施例中,如图16、图18所示,第一端盖401包括:第一外端盖42,第一外端盖42与水路间隔板46的一端周沿密封连接。如图16中所示,第一外端盖42封闭了第一过滤件10、第二均布流道12的底部,且为第一过滤件10提供了支撑,有效地防止了第一过滤件10两侧的待净化的液体和已经净化后的液体在底部相串,保证了第一过滤件10的过滤效果。水路间隔板46连接在第一外端盖42上,有利于第一外端盖42牢靠地设置在特定位置,使得第二均布流道12和第三均布流道21产生可靠的分隔,避免第一过滤件10和第二过滤件20内的液体发生串流、避免各均布流道中的水质降低。如图16、图18所示,第二端盖402包括:第二外端盖44、第二中端盖45。第二中端盖45与水路间隔板46的周壁密封连接,第二中端盖45插接在瓶盖3001上(图16中为第一瓶盖310)。如图16、图18所示,第二端盖402还包括:第二内端盖43,第二内端盖43插接在瓶盖3001上(图16中为第一瓶盖310)。插接配合的形式方便装配。
在本申请的一些实施例中,如图1所示,复合滤芯组件1000还包括:第二内端盖43和第二外端盖44。其中,第二内端盖43配合在第二过滤件20的远离过渡口332的轴向端面上,以堵住第二过滤件20,第二内端盖43上设有连通第三进出口201的内端口431。这里,第二内端盖43封闭了第二过滤件20的顶部,且为第二过滤件20提供了顶部的连接,为第三进出口201提供了走向,有效地防止了第二过滤件20两侧的待净化的液体,和已经净化后的液体在顶部相串,进一步保证了第二过滤件20的过滤效果。经第二过滤组500过滤后的流体聚集在第四均布流道22中,经由内端口431向外排出。
可选地,第二内端盖43的周边设有向下的外翻边,外翻边的内侧面与第二过滤件20的外周面接触。第二内端盖43上设有伸入到第四均布流道22中的内凸缘,内凸缘的外周面与第二过滤件20的内周面接触。内凸缘和外翻边每一样的设置,使第二内端盖43与第二过滤件20之间的连接更为紧密,增加连接的可靠性。且都可增强第二内端盖43对第二过滤件20的端面的液体封挡效果,且能够形成对第二内端盖43的防呆配合,容易装配。
第二外端盖44配合在第一过滤件10的远离过渡口332的轴向端面上,以堵住第一过滤件10,第二外端盖44上设有外套在内端口431的外端口441。相应地,第二外端盖44封闭了第一过滤件10、第二均布流道12的顶部,且为第一过滤件10提供了连接,为第一进出口101、第二进出口102进行了分隔,有效地防止了第一过滤件10两侧的待净化的液体和已经净化后的液体在顶部相串,进一步保证了第一过滤件10的过滤效果。
可选地,第二外端盖44的周边设有向下的外翻边,外翻边的内侧面与第一过滤件10的外周面接触。外翻边的设置,使第二外端盖44与第一过滤件10之间的连接更为紧密,增加连接的可靠性。且都可增强第二外端盖44对第一过滤件10的端面的液体封 挡效果,且能够形成对第一过滤件10的防呆配合,容易装配。
具体地,第一过滤件10的轴端端面胶粘在第二外端盖44上,这样不仅装配方便,而且便于一体芯的安装。可选地,第一过滤件10通过一圈热熔胶密封连接在第二外端盖44上。
在一些示例中,如图1所示,壳体300的内周壁上设有第一接管311、第二接管312,第二内端盖43的内端口431与第一接管311插接连接,第二外端盖44的外端口441与第二接管312插接连接。这种插接连接的装配方式,使第一滤芯、第二滤芯在壳体300内的固定变得非常容易。
从这里可以看出,第一过滤件10的一端通过第一外端盖42插接在过渡口332上,第一过滤件10的另一端通过第二外端盖44插接在第二接管312上,这样第一过滤件10的位置得到基本固定,且装配的步骤只有两端插接的过程,由此可见其装配非常简单、省时。而且只要壳体300不变形,第一过滤件10的两端就不会脱出,由此可见第一过滤件10的装配可靠性较高。
而第二过滤件20的一端通过第二内端盖43插接在第一接管311上,第二过滤件20的另一端由第一内端盖41封住,且第一内端盖41与第一外端盖42间隔非常小,相当于第二过滤件20的另一端由第一外端盖42托住。这样第二过滤件20的位置也得到基本固定,且装配的步骤只有一端插接的过程,由此可见其装配非常简单、省时。而且只要壳体300不变形,第二过滤件20的两端就不会脱出,由此可见第二过滤件20的装配可靠性较高。
具体地,第二过滤件20的一端端面胶粘在第二内端盖43上,这样不仅装配方便,而且便于一体芯的安装。可选地,第二过滤件20通过一圈热熔胶密封连接在第二内端盖43上。
在图1和图4的示例中,第二内端盖43上形成有第二内插管432,第二内插管432的管口形成上述内端口431。第二内插管432可以插在第一接管311内,第二内插管432也可以插在第一接管311外。为提高密封效果,第二内插管432与第一接管311之间设有密封圈。
在如图1和图4所示的示例中,第二外端盖44上形成有第二外插管442,第二外插管442的管口形成上述外端口441。第二外插管442可以插在第二接管312内,第二外插管442也可以插在第二接管312外。为提高密封效果,第二外插管442与第二接管312之间设有密封圈。
在一些示例中,如图1和图4所示,壳体300的内周壁上设有第三接管313,第二中端盖45的中端口451与第三接管313插接连接。
在本申请实施例中,也可以不设置第二中端盖45,这样水路间隔板46可以直接与第三接管313相连,这样节省零件数量。但是由于第二过滤件20要装配到水路间隔板46的内侧,水路间隔板46开口小了则装不进去,水路间隔板46开口大了则会影响第二外端盖44与第一过滤件10的装配,整体装配难度加大。
因此这里提出设置第二中端盖45,装配时先将第二过滤件20等零件装入水路间隔板46内,然后再将第二中端盖45连接在水路间隔板46上,则满足装配需要,提高整 体装配的可靠性。另一方面,当水路间隔板46与第一外端盖42一体成型时,可利用一体注塑方式制造,此时为方便开模,不宜一体注塑出第二中端盖42。
在壳体300上设置第三接管313,第三接管313与中端口451插接连接,水路间隔板46端部固定的步骤只有插接的过程,装配非常简单、省时,可靠性较高。在图1的示例中,第二中端盖45上形成有第二中插管452,第二中插管452的管口形成上述中端口451。第二中插管452可以插在第三接管313内,第二中插管452也可以插在第三接管313外。为提高密封效果,第二中插管452与第三接管313之间设有密封圈,第二中端盖45与水路间隔板46之间也设有密封圈。
在图1、图16的示例中,第二中端盖45与第二外端盖44之间的距离较小,能使水流在经第一过滤件10时水压能达到微妙的平衡。即当水路间隔板46内侧水压大于外侧水压时,第二中端盖45可能被挤在第二外端盖44上,减缓第一过滤件10的过滤速度。当正常运转时,水流挤开第二中端盖45,正常朝向第二进出口102流动。
在一些具体示例中,第一容纳腔100内所有零件预先装配成一体件,即将第一过滤件10、第二过滤件20、第一内端盖41、第一外端盖42、第二内端盖43、第二外端盖44、第二中端盖45预先连接成一体成前后置一体化滤芯。甚至第一接管311、第二接管312、第三接管313处的密封圈,也可以预先装配到第二内插管432、第二外插管442、第二中插管452上。
这样的前后置一体化滤芯,在装配时可直接插在过渡板331和第一瓶盖310之间,整机装配过程得到了大大简化。而且如果第一瓶盖310是可拆卸连接在瓶体330上的,那用户在使用后,也可以自行更换前后置一体化滤芯,而且用户自己更换时的操作步骤也非常容易,提高了用户的换芯体验及换芯成本。
可选地,如图1和图4所示,第二中端盖45、第二内端盖43、第二外端盖44的顶部平齐,有利于第一瓶盖310对第一容纳腔100顶部的盖封。
在本申请的一些示例中,如图1、图4、图16和图18所示,壳体300的内周壁上设有第四接管321,在图5中第二瓶盖320上设有上述第四接管321,第四接管321连通第五进出口301,第四端盖48上设有第四插管481,第四插管481与第四接管321插接相连。第四插管481与第四接管321插接相连保证了高浓度的废液和待净化的液体之间不发生串流。另外,保证了第四端盖48稳定地连接在壳体300的底部,防止螺旋卷式反渗透膜元件3在过滤过程中位置发生变化。
可选地,第四插管481和第四接管321之间设有密封圈,以提高密封度。
在一些具体示例中,第二容纳腔200内所有零件预先装配成一体件,即螺旋卷式反渗透膜元件3、废水集管34、过滤膜32、第三端盖47、第四端盖48预先连接成一体化RO膜滤芯。甚至过渡口332、第四接管321处的密封圈,也可以预先装配到第三外通插管471、第四插管481上。
这样的一体化RO膜滤芯,在装配时可直接插在过渡板331和第二瓶盖320之间,整机装配过程得到了大大简化。而且如果第二瓶盖320是可拆卸连接在瓶体330上的, 那用户在使用后,也可以自行更换一体化RO膜滤芯,而且用户自己更换时的操作步骤也非常容易,提高了用户的换芯体验,降低了换芯成本。
在本申请一些示例中,第一过滤件10为由无纺布、聚丙烯层、碳纤维卷制而成的卷筒,使用寿命较长。当用于自来水的过滤时,可初步去除泥沙、铁锈及余氯。当然,第一过滤件10也可以仅由其中一种或两种材料的滤层卷制而成,这里不做具体限制。
在本申请一些示例中,第二过滤件20为中空的碳棒。可用于自来水的终滤,碳棒可滤除水体中异味、有机物、胶体、铁及余氯等,使第二过滤件20控制出水后的饮用水水质条件,改善口感。当然,第二过滤件20也可由活性炭颗粒、滤网及框架组合而成,不局限于碳棒的设置形式。另外,碳过滤介质,也可以更换成KDF55处理介质(高纯铜/锌合金介质),通过电化学反应去除水中的余氯、减少矿物结垢、减少氧化亚铁等悬浮固体物质、抑制微生物、去除重金属。
在本申请的一些实施例中,如图16、图18所示,第三过滤件30设在第二容纳腔200内,作为第二过滤组500的一部分,即第三过滤件30位于高压区2002内。此处,第三过滤件30可进一步增加复合滤芯组件1000整体的过滤功能,提升出水的品质。
可选地,高压区2002(如图18、图19所示)内水压为0.7-0.85Mpa。此处较高的水压有利于第三过滤件30的过滤,加快水流的过膜速度,且为第三过滤件10的用材选择提供了更多的可能性,增强第三过滤件30的过滤能力。
在本申请的一些实施例中,如图16所示,壳体300上设有第四进出口302和第五进出口301。当第四进出口302为第三过滤件30的进水口时,第五进出口301则为第三过滤件30的出水口;反之,当第四进出口302为第三过滤件30的出水口时,第五进出口301则为第三过滤件30的进水口。
可选地,第三过滤件30形成为筒形,第三过滤件30与第二容纳腔200的内壁之间限定出第五均布流道31,第四进出口302连通第五均布流道31,第三过滤件30的中心正对过渡口332设置。筒形的第三过滤件30的内、外两侧分别形成不同的均布流道,一个为第三过滤件30待净化的流体,另一个为第三过滤件30净化后的流体,其中第三过滤件30中间的流通腔与过渡口332连通。
从第三过滤件30、第五均布流道31的布局来看,水流在穿过第三过滤件30时,大部分沿第三过滤件30的径向穿过,穿过路径短、流通量大。而且径向穿过时对过滤件表面的杂质具有冲刷作用,水流更易冲开杂质后穿过过滤件。而过滤件在进水时大部分水流基本沿轴向流动,这样不仅有利于水流均布,也有利于将冲刷下的杂质带到轴向一端,避免杂质堵在过滤件表面。
在本申请的一些示例中,如图16、图18所示,复合滤芯组件1000还包括中心管33,中心管33设在第三过滤件30的中心内,中心管33的管壁上设有过滤水入孔,中心管33内可为经第三过滤件30过滤后的纯水。
在一些示例中,前述的多层薄膜组件为多个反渗透膜片袋32卷制出的圆筒,该圆筒构成上述第三过滤件30。
在本申请的一些实施例中,第一过滤组400和第二过滤组500的外周上均设有至少一圈定轴凸块,每一圈的多个定轴凸块分别止抵在壳体300的内壁上。其中,第一过滤组400的定轴凸块图未示出。第二过滤组500的定轴凸块分别设在第三端盖47和第四端盖48上,为方便描述,下文中将第三端盖47上的定轴凸块描述为第一定轴凸块474,将第四端盖48上的定轴凸块描述为第二定轴凸块484。
定轴凸块的设置使瓶盖3001相对瓶体330转动时,定轴凸块对过滤组产生调心的作用,保证过滤组与瓶体330的同轴度。
在本申请的一些实施例中,反渗透膜元件的轴向两端分别连接在第三端盖47和第四端盖48上。第三端盖47和第四端盖48分别插接在过渡板331和瓶盖3001上。第三端盖47和第四端盖48封闭了反渗透膜元件的两端,使反渗透膜元件不同的流道之间的水不发生串流,不干扰,保证反渗透膜元件的过滤效果。通过分别插接在过渡板331和瓶盖3001(如图16、图17中的第二瓶盖320)上,使反渗透膜元件装配容易,且装配结构稳定,防止在长时间使用的过程中出现歪斜。
具体地,如图16、图18所示,第三端盖47配合在第三过滤件30的朝向过渡口332的端面上,第三端盖47的两端设有相通的第三外通插管471和第三内通插管472,第三外通插管471插接在过渡口332内,第三内通插管472与中心管33相连。这里,第三端盖47封闭了第三过滤件30的顶部,且为第三过滤件30提供了顶部的支撑连接,有效防止了第三过滤件30两侧的待净化的液体和已经净化后的液体在顶部相串。
其中,第三端盖47通过第三外通插管471插接在过渡口332内,一方面便于密封,防止第二容纳腔200内高压水未经反渗透膜片袋32过滤就流向过渡口332,另一方面利用过渡口332定位,提高定位精度的同时还能降低装配难度。
第三端盖47通过第三内通插管472插接在中心管33上,一方面利用第三内通插管472与中心管33管壁之间的面接触实现密封,另一方面方便中心管33的定位与安装,防止长期使用后中心管33歪斜、漏水。
另外,如图27所示,第三端盖47上设有第一定位凸起473,第一定位凸起473与废水集管34对应设置,废水集管34的一端插在第一定位凸起473上,此第一定位凸起473具有一定的防呆配合功能,方便第三端盖47与废水集管34定位安装,防止长期使用后废水集管34歪斜。
可选地,如图26、图27所示,第三端盖47的周壁上设有第一定轴凸块474,多个第一定轴凸块474沿周向间隔开设置,多个第一定轴凸块474止抵在壳体300的内壁上,提高第三过滤件30在第二容纳腔200内的对中度,避免第三过滤件30整体歪斜导致无法在过渡口332处良好配合。
有利地,第三外通插管471与过渡口332之间设有密封圈。
在本申请的一些实施例中,如图16、图18、图28、图29所示,复合滤芯组件1000的第四端盖48配合在第三过滤件30的远离过渡口332的端面上,第四端盖48上设有分别与废水集管34、第五进出口301相连的排废口482。
另外,如图29所示,第四端盖48的中部凸出设有第二定位凸起483,第二定位凸 起483与中心管33对应设置,中心管33的一端插在第二定位凸起483上,此第二定位凸起483具有封堵功能,也具有一定的防呆配合功能,方便第四端盖48与中心管33定位安装,防止长期使用时中心管33歪斜,且可封闭中心管33下部,防止中心管33中的液体流出。
可选地,如图28、图29所示,第四端盖48的周壁上设有第二定轴凸块484,多个第二定轴凸块484沿周向间隔开设置,多个第二定轴凸块484止抵在壳体300的内壁上,提高第三过滤件30在第二容纳腔200内的对中度,避免第三过滤件30整体歪斜导致无法在第五进出口301处良好配合。
在图16中,第四端盖48封闭了第三过滤件30和中心管33的底部,且为第三过滤件30提供了底部的密封和支撑,有效地防止了第三过滤件30两侧的待净化的液体和已经净化后的液体在底部相串,保证了第三过滤件30的过滤效果。废水集管34连通了排废口482和第五进出口301,使高盐度的废水足够快地流出壳体300。
在本申请的一些示例中,如图16所示,壳体300的内周壁上设有第四接管321,在图20中第二瓶盖320上设有上述第四接管321,第四接管321连通第五进出口301,第四端盖48上设有第四插管481,第四插管481与第四接管321插接相连。第四插管481与第四接管321插接相连保证了高浓度的废液和待净化的液体之间不发生串流。另外,保证了第四端盖48稳定地连接在壳体300的底部,防止第三过滤件30在过滤过程中位置发生变化。
可选地,第四插管481和第四接管321之间设有密封圈,以提高密封度。
为更好理解本申请实施例的方案,下面结合图1-图29描述本申请的几个具体实施例中的复合滤芯组件1000的结构。
实施例1
下述具体实施例以净化自来水为例来讲述复合滤芯组件1000的三级过滤功能,并说明复合滤芯组件1000的高度集成化一体设计结构。另外,第一过滤件10以无纺布、聚丙烯层、碳纤维和间隔支架49卷制而成的卷筒型的初级过滤件为例进行说明;过滤膜32以高节水的侧流反渗透节水膜作为中间过滤为例进行说明。第二过滤件20以圆筒形的中空碳棒作为终级过滤为例进行说明。
如图1、图2、图3、图4所示,一种复合滤芯组件1000竖向放置,它包括壳体300,壳体300包括瓶体330和第一瓶盖310、第二瓶盖320,每个瓶盖均与瓶体330形成螺纹密封连接,密封处设密封件。第一瓶盖310上设有进自来水的第一进出口101,前置水出水的第二进出口102,以及饮用水出水的第三进出口201。第二瓶盖320上设有反渗透的前置水进水的第四进出口302,以及反渗透的高盐度废水排水的第五进出口301。
如图1所示,第四进出口302和第五进出口301处均设有止水组件50。以图3中第四进出口302处的止水组件50为例,止水组件50包括止水结构凹台51、弹簧52、密封圈53和止水结构件54。止水结构凹台51固定在第二瓶盖320内,止水结构凹台51朝向第四进出口302开口,止水结构凹台51上设有用于过水的通孔。止水结构件54可伸缩地设置在止水结构凹台51内,止水结构件54的一部分伸到第四进出口302,止 水结构件54上设有限制台541,限制台541的直径大于第四进出口302的直径。弹簧52位于止水结构凹台51内且止抵在止水结构件54上,使限制台541具有朝向第四进出口302伸出的趋势。止水结构件54上设有一圈的密封圈53,当弹簧52能克服水流压力时,弹簧52将密封圈53止抵在第四进出口302的端面处,使第四进出口302封堵。当在第四进出口302处连接外部连管时,外部连管上设有插针插到第四进出口302,使第四进出口302打开。一旦外部接管从第四进出口302处拔下,则第四进出口302就能被止水组件50自动封闭。止水组件50的设置,可方便复合滤芯组件1000插接外部连管。
如图1所示,壳体300的内部一体成型设有与筒壁垂直设置的过渡板331,过渡板331将壳体300沿轴向间隔开,形成第一容纳腔100和第二容纳腔200。过渡板331的中部沿轴向设有贯通的过渡口332。
如图1所示,在第一容纳腔100中设有两组相套的过滤单元,设在外侧的第一过滤件10作为初级过滤单元,设在第一容纳腔100中心的第二过滤件20作为终级过滤单元。第一过滤件10的轴向长度大于第二过滤件20的轴向长度,第一过滤件10和第二过滤件20之间通过设置筒形的水路间隔板46分隔。第一过滤件10与第一容纳腔100的内壁之间限定出环形的第一均布流道11,第一均布流道11与第一进出口101相连。水路间隔板46与第一过滤件10之间限定出环形的第二均布流道12,第二均布流道12连接第二进出口102。水路间隔板46与第二过滤件20之间限定出环形的第三均布流道21,第二过滤件20的远离第三均布流道21的一侧设有柱形的第四均布流道22。第三均布流道21连接过渡口332,第四均布流道22连接第三进出口201。
如图1、图4所示,第二过滤件20的上端设有第二内端盖43,第二过滤件20的下端设有第一内端盖41;第二内端盖43配合在第二过滤件20的远离过渡口332的轴向端面上。第一过滤件10的上端设有第二外端盖44,第一过滤件10的朝向过渡口332的轴向端面上设有第一外端盖42,第一外端盖42上一体成型有水路间隔板46。第二外端盖44和第二内端盖43之间套有第二中端盖45,第二中端盖45配合在水路间隔板46的周壁上。第二中端盖45与第三接管313之间加设密封件,第二内端盖43和第一接管311之间加设密封件。
如图1和图4所示,壳体300的内周壁上第一接管311、第二接管312、第三接管313,第二中端盖45与第三接管313插接连接,第三接管313和第二外端盖44之间形成连接第二进出口102的通道。
如图1所示,筒形的第三过滤件30设在第二容纳腔200内。第三过滤件30与第二容纳腔200的内壁之间限定出第五均布流道31,第三过滤件30的中心的中心管33正对过渡口332设置。中心管33的管壁上设有过滤水入孔,中心管33的管壁上设有过滤膜32。过滤膜为反渗透膜片袋32,反渗透膜片袋32具有第一部分和第二部分,每一废水集管34和中心管33被至少一个反渗透膜片袋32的第一部分隔开,多个反渗透膜片袋32的第二部分形成围绕在中心管33及多个废水集管34组成的管组的周围,形成多层螺旋卷式薄膜组件。
如图9和图11所示,中心管33的周围呈环形并设有五根废水集管34,各废水集管 34穿过第二端盖320与第五进出口301相连,每根废水集管34对应一个膜袋。膜袋内的纯水通过过滤水入孔进入中心管33,膜袋外废水通过废水入孔进入废水集管34。
如图1、图4、图5、图8、图9、图10所示,螺旋卷式反渗透膜元件3的两端分别设有第三端盖47和第四端盖48,第三端盖47封在第三过滤件30和废水流通腔的朝向第一过滤组400的一端,第四端盖48封在第三过滤件30和过滤水流通腔的远离第一过滤组400的一端。第三端盖47的两端设有相通的第三外通插管471和第三内通插管472,第三外通插管471插接在过渡口332内,第三内通插管472与中心管33相连。第三端盖47上设有与废水管34防呆配合的第一定位凸起473。第一定位凸起473可插入废水集管34的上端,以封堵废水集管34的上端,使得废水从废水集管34的下端流出。第四端盖48上设有与废水集管34相连的排废口482。壳体300上设有第四接管321,第四接管321连通第五进出口301,第四端盖48上设有第四插管481,第四插管481与第四接管321插接相连。第四端盖48上设有与中心管33封堵配合的堵块(图中未示出)。第三端盖47与第一外端盖42之间加设密封圈,第一外端盖42与过渡口332之间加设密封圈。第三端盖47与第四端盖48的外周沿上设有定轴凸起,定轴凸起可与瓶体330内壁配合,限制第三端盖47和第四端盖48与瓶体330之间的相对滑动,从而限制螺旋卷式反渗透膜元件3与瓶体330之间的相对滑动。
整个自来水的过滤过程为,自来水从第一进出口101进入第一均布流道11,并向径向内侧流动,经过第一过滤件10的过滤后流向第二均布流道12,并从上部的第二进出口102作为前置水流出。流出后的前置水经过加压并泵入第四进出口302,并在第五均布流道31中均布,从侧流反渗透节水膜的侧向流入并由第三过滤件30过滤,高盐度的废水由废水集管34收集并从第五进出口301排出,纯水则由中心管33向上收集穿过过渡口332。纯水从过渡口332进入第三均布流道21,并经第二过滤件20过滤,进入第四均布流道22,并从第三进出口201流出饮用。
实施例2
下述具体实施例以净化自来水为例来讲述复合滤芯组件1000的三级过滤功能,并说明复合滤芯组件1000的高度集成化一体设计结构。另外,第一过滤组400中的第一过滤件10以无纺布、聚丙烯层、碳纤维和间隔支架49卷制而成的卷筒型的初级过滤件为例进行说明;第二过滤组500中的第三过滤件30以高节水的侧流反渗透节水膜作为中间过滤为例进行说明。第一过滤组400中的第二过滤件20以圆筒形的中空碳棒作为终级过滤为例进行说明。
如图16、图17、图18、图19所示,一种复合滤芯组件1000,整个复合滤芯组件1000常态下呈竖直状态装设。包括壳体300,壳体300包括两端敞口的瓶体330和封闭在两端的第一瓶盖310以及第二瓶盖320,每个瓶盖3001均与瓶体330通过旋焊结构700形成密封连接。
第一瓶盖310上设有进自来水的第一进出口101,前置水出水的第二进出口102,以及饮用水出水的第三进出口201。第一瓶盖310向侧边延伸形成提手314,第一进出口101、第二进出口102、第三进出口201均靠近提手314设置在一侧,第二瓶盖320 上设有反渗透的前置水进水的第四进出口302,以及反渗透的高盐度废水排水的第五进出口301。如图16所示,在实际安装时,第一容纳腔100所在一端为顶部,第二容纳腔200所在一端为底部,因此在第四进出口302、第五进出口301处均设有止水结构600。
如图20~图24所示,止水结构600包括止水凹台610、止水芯620、止水弹簧630以及止水密封圈640。壳体300内环绕进出口设有配合凸缘3006,止水凹台610焊接连接在配合凸缘3006上,配合凸缘3006上设有多级的配合台阶面30061,止水凹台610的外周面上设有与配合台阶面30061相适配的止水台阶面611。止水台阶面611上设有集中融焊的干涉凸块612以及溢料槽613。
如图16所示,壳体300的内部一体成型设有与筒壁垂直设置的过渡板331,过渡板331将壳体300沿轴向间隔开,形成第一容纳腔100和第二容纳腔200。过渡板331的中部沿轴向设有过渡口332。第一容纳腔100和第二容纳腔200之间通过过渡口332连通。如图14、图26所示,过渡口332向外凸出形成非圆形的旋焊工装固定凸台3005,过渡口332为圆形过孔。
如图16所示,第一过滤组400包括第一过滤件10、第二过滤件20和水路间隔板46,水路间隔板46分别与第一端盖401和第二端盖402相连,以将第一容纳腔100间隔出第一低压区1和第二低压区2,第一过滤件10设在第一低压区1内,由第一进出口101流入的水经第一过滤件10后从第二进出口102流出,第二过滤件20设在第二低压区2内,从过渡口332流入的水经第二过滤件20后从第三进出口201流出。进而,第一容纳腔100中形成两组相套的过滤单元,即设在第一容纳腔100中心的带有筒形的第一过滤件10作为初级过滤单元,设在第一容纳腔100外侧的第二过滤件20作为终级过滤单元。第一过滤件10的轴向长度大于第二过滤件20的轴向长度。第一过滤件10和第二过滤件20之间通过设置筒形的水路间隔板46分隔。第一过滤件10与第一容纳腔100的内壁之间限定出环形的第一均布流道11,如图16所示,第一均布流道11与第一进出口101相连。水路间隔板46与第一过滤件10之间限定出环形的第二均布流道12,第二均布流道12连接第二进出口102。水路间隔板46与第二过滤件20之间限定出环形的第三均布流道21,第二过滤件20的远离第三均布流道21的一侧设有柱形的第四均布流道22。第三均布流道21连接过渡口332,第四均布流道22连接第三进出口201。
如图16、图18所示,第二过滤件20的上端设有第二内端盖43,第二过滤件20的下端设有第一内端盖41,第一内端盖41配合在第二过滤件20的朝向过渡口332的轴向端面上,以堵住第二过滤件20及第四均布流道22;第二内端盖43配合在第二过滤件20的远离过渡口332的轴向端面上,以堵住第二过滤件20,第二内端盖43上设有连通第三进出口201的内端口431。第一过滤件10的上端设有第二外端盖44,第二外端盖44上设有外套在内端口431的外端口441;第一过滤件10的朝向过渡口332的轴向端面上设有第一外端盖42。第一外端盖42上一体成型有水路间隔板46,第一外端盖42堵住第一过滤件10及第三均布流道21的下部。第二外端盖44和第二内端盖43之间套有第二中端盖45,第二中端盖45配合在水路间隔板46的周壁上,第二中端盖45上形成有中端口451。第二中端盖45与第三接管313之间加设密封件,第二内端盖43 和第一接管311之间加设密封件。
如图18所示,壳体300的内周壁上朝向第二内端盖43设有第一接管311,壳体300的内周壁上朝向第二外端盖44设有第二接管312,壳体300的内周壁上朝向第二中端盖45设有第三接管313,第二中端盖45的中端口451与第三接管313插接连接。第三接管313和第二外端盖44之间形成连接第二进出口102的通道。
如图9、图10、图11、图16所示,第二过滤组500设在所述第二容纳腔200内,第二过滤组500包括第三过滤件30,筒形的第三过滤件30设在第二容纳腔200内。第三过滤件30与第二容纳腔200的内壁之间限定出第五均布流道31,第三过滤件30的中心的中心管33正对过渡口332设置。中心管33的管壁上设有过滤水入孔,第三过滤件30由多个反渗透膜片袋32组成,反渗透膜片袋32具有第一部分和第二部分,每一废水集管34和中心管33被至少一个反渗透膜片袋32的第一部分隔开,多个反渗透膜片袋32的第二部分形成围绕在中心管33及多个废水集管34组成的管组的周围,形成多层螺旋卷式薄膜组件。
如图9、图10、图18所示,中心管33的周围呈环形并设有五根废水集管34,各废水集管34穿过第二端盖320与第五进出口301相连。每根废水集管34对应一个反渗透膜片袋32。
如图16、图18、图26所示,第三过滤件30的两端分别设有第三端盖47和第四端盖48,第三端盖47封在第三过滤件30和废水流通腔的朝向第一容纳腔100的一端,第四端盖48封在第三过滤件30和过滤水流通腔的远离第一容纳腔100的一端。第三端盖47的两端设有相通的第三外通插管471和第三内通插管472,第三外通插管471插接在过渡口332内,第三内通插管472与中心管33相连。第三端盖47上设有与废水管34防呆配合的第一定位凸起473。第三端盖47的周壁设有第一定轴凸块474与第三过滤件30的顶部配合装配。第四端盖48上设有与废水集管34相连的排废口482。壳体300的内周壁上朝向第四端盖48设有第四接管321,第四接管321连通第五进出口301,第四端盖48上设有第四插管481,第四插管481与第四接管321插接相连。第四端盖48上设有与中心管33封堵配合的第二定位凸起483。第四端盖48的周壁上设有第二定轴凸块484与第三过滤件30的底部配合装配。第三端盖47与第一外端盖42之间加设密封圈。第一外端盖42与过渡口332之间加设密封圈。
整个自来水的过滤过程为,自来水从第一进出口101进入第一均布流道11,并向径向内侧流动,经过第一过滤件10的过滤后流向第二均布流道12,并从上部的第二进出口102作为前置水流出。流出后的前置水经过加压并泵入第四进出口302,并在第五均布流道31中均布,从侧流反渗透节水膜的侧向流入并由第三过滤件30过滤,高盐度的废水由废水集管34收集并从第五进出口301排出,纯水则由中心管33向上收集穿过过渡口332。纯水从过渡口332进入第三均布流道21,并沿径向经第二过滤件20过滤,进入第四均布流道22,并从第三进出口201流出饮用。
在本申请的描述中,需要理解的是,术语“中心”、“长度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“顶”、“底”、“内”、“外”、“轴 向”、“径向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
根据本申请实施例的复合滤芯组件1000的其他构成例如各个过滤组件的过滤功能、各过滤组件的材质的选择对于本领域普通技术人员而言都是已知的,这里不再详细描述。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。
Claims (27)
- 一种复合滤芯组件,其特征在于,包括:壳体,所述壳体内限定出第一容纳腔和第二容纳腔,所述第一容纳腔和所述第二容纳腔之间通过过渡板间隔开,所述过渡板上设有过渡口,所述第一容纳腔为低压腔,所述第二容纳腔为高压腔,所述第一容纳腔内水压低于所述第二容纳腔内水压;第一过滤组,所述第一过滤组设在所述第一容纳腔内;第二过滤组,所述第二过滤组设在所述第二容纳腔内,所述第二容纳腔内水经所述第二过滤组过滤后,经所述过渡口流向所述第一容纳腔。
- 根据权利要求1所述的复合滤芯组件,其特征在于,所述壳体上设有第一进出口、第二进出口、第三进出口,所述第一过滤组包括第一过滤件、第二过滤件和水路间隔板,所述水路间隔板设在所述第一容纳腔内,所述水路间隔板将所述第一容纳腔间隔出第一低压区和第二低压区,所述第一过滤件设在所述第一低压区内,由所述第一进出口流入的水经所述第一过滤件后从所述第二进出口流出,所述第二过滤件设在所述第二低压区内,从所述过渡口流入的水经所述第二过滤件后从所述第三进出口流出。
- 根据权利要求1或2所述的复合滤芯组件,其特征在于,所述高压腔内水压为0.7-0.85MPa。
- 根据权利要求1或2或3所述的复合滤芯组件,其特征在于,所述低压腔内水压小于等于市政供水水压。
- 根据权利要求2所述的复合滤芯组件,其特征在于,所述第一低压区内水压为0.1-0.4MPa。
- 根据权利要求2或5所述的复合滤芯组件,其特征在于,所述水路间隔板为筒形,所述第二过滤件位于所述水路间隔板的内侧,所述第一过滤件位于所述水路间隔板的外侧;所述第一过滤组包括第一外端盖,所述第一外端盖与所述水路间隔板的一端周沿密封连接,所述第一外端盖上设有连通所述第二低压区的第一插管,所述第一插管与所述过渡板相连,所述第一插管与所述过渡板之间设有第一密封件,以避免所述高压腔与所述第一低压区串流。
- 根据权利要求6所述的复合滤芯组件,其特征在于,所述第一过滤组包括第二中端盖,所述第二中端盖与所述水路间隔板的另一端周沿密封连接,所述第二中端盖上设有第二中插管,所述第二中插管与所述壳体密封连接,以避免所述第二低压区与所述第一低压区串流。
- 根据权利要求6或7所述的复合滤芯组件,其特征在于,所述第一过滤组上设有插 入到所述过渡口内的第一插管,所述第一插管与所述过渡口的内壁之间设有第一密封圈;所述第二过滤组上设有插入到所述过渡口内的第三外通插管,所述第三外通插管与所述过渡口的内壁之间设有第二密封圈。
- 根据权利要求8所述的复合滤芯组件,其特征在于,所述第一插管和所述第三外通插管中的一个插到另一个内,所述第一密封圈和所述第二密封圈沿径向排布形成双层密封。
- 根据权利要求1-9中任一项所述的复合滤芯组件,其特征在于,所述过渡板在朝向所述第一容纳腔的一侧环绕所述过渡口设有第一内凸环,所述过渡板在朝向所述第二容纳腔的一侧环绕所述过渡口设有第二内凸环,以延长所述过渡口的轴向长度。
- 根据权利要求10所述的复合滤芯组件,其特征在于,所述第一内凸环和所述第二内凸环中的至少一个,其外轮廓为非圆形。
- 根据权利要求10或11所述的复合滤芯组件,其特征在于,朝向所述第二容纳腔的一侧设有环绕所述第二内凸环的第二外凸环,所述第二外凸环与所述第二内凸环在径向上间隔开,所述第二内凸环、所述第二外凸环均与所述第二过滤组的端面相接触以形成迷宫密封。
- 根据权利要求8或9所述的复合滤芯组件,其特征在于,所述过渡口的至少一端设有30度至60度的倒角,以将所述第一密封圈和/或所述第二密封圈导入所述过渡口。
- 根据权利要求1-13中任一项所述的复合滤芯组件,其特征在于,所述壳体包括:两端敞开的瓶体和两个瓶盖,两个所述瓶盖分别密封配合在所述瓶体的两端,所述过渡板连接在所述瓶体上。
- 根据权利要求14所述的复合滤芯组件,其特征在于,两个所述瓶盖分别旋焊连接或者螺旋连接在所述瓶体上。
- 根据权利要求14或15所述的复合滤芯组件,其特征在于,所述过渡板一体形成在所述瓶体上,或者所述过渡板焊接连接在所述瓶体上。
- 根据权利要求1-16中任一项所述的复合滤芯组件,其特征在于,所述壳体内沿长度方向分隔出第一容纳腔和第二容纳腔,所述壳体上至少一个进出口处设有止水结构。
- 根据权利要求17所述的复合滤芯组件,其特征在于,所述止水结构包括:止水凹台,所述止水凹台连接在所述壳体上;止水芯,所述止水芯在截断位置和导通位置之间可活动,在截断位置时所述止水结构堵住所述进出口,在导通位置时所述进出口与所述壳体内部连通;止水弹簧,所述止水弹簧连接在所述止水凹台和所述止水芯之间,所述止水弹簧常驱动所述止水芯朝向截断位置活动。
- 根据权利要求18所述的复合滤芯组件,其特征在于,所述止水结构包括:止水密 封圈,所述止水密封圈外套在所述止水芯上,所述止水芯在截断位置时所述止水密封圈与所述壳体相接触。
- 根据权利要求19所述的复合滤芯组件,其特征在于,所述进出口的朝向所述止水凹台的一端设有倒角,所述止水芯在截断位置时,所述止水密封圈与所述倒角相接触。
- 根据权利要求18、19或20所述的复合滤芯组件,其特征在于,所述壳体内环绕所述进出口设有配合凸缘,所述止水凹台的至少部分位于所述配合凸缘的内侧,所述止水凹台焊接连接在所述配合凸缘上。
- 根据权利要求21所述的复合滤芯组件,其特征在于,所述配合凸缘的内周面形成为多级的配合台阶面,所述止水凹台的外周面上设有与所述配合台阶面相适配的止水台阶面,所述配合台阶面的凸角正对所述止水台阶面的凹角,所述配合台阶面的凹角正对所述止水台阶面的凸角;其中,至少一个正对的所述凹角与所述凸角之间设置有干涉凸块,所述干涉凸块为集中焊融区。
- 根据权利要求22所述的复合滤芯组件,其特征在于,所述止水台阶面上临近所述集中焊融区设有溢料槽。
- 根据权利要求17-23中任一项所述的复合滤芯组件,其特征在于,所述第二容纳腔位于所述第一容纳腔的下方,所述第二容纳腔的底部的进出口处均设有所述止水结构。
- 根据权利要求1-24中任一项所述的复合滤芯组件,其特征在于,所述壳体上设有第四进出口和第五进出口,所述第二过滤组包括:螺旋卷式反渗透膜元件,所述螺旋卷式反渗透膜元件包括:中心管组和多个反渗透膜片袋,所述中心管组包括中心管和多个间隔开设置的废水集管,多个所述废水集管环绕所述中心管设置,所述中心管的管壁上设有过滤水入孔,所述废水集管的管壁上设有废水入孔;所述反渗透膜片袋具有位于所述中心管组内部的第一部分和位于所述中心管组外部的第二部分,每一所述废水集管和所述中心管被至少一个所述反渗透膜片袋的第一部分隔开,多个所述反渗透膜片袋的所述第二部分形成围绕在所述中心管组的周围的多层薄膜组件;其中,从所述第四进出口进入所述高压腔的水经所述反渗透膜片袋过滤后流向所述过滤水入孔,所述废水集管与所述第五进出口相连,所述中心管与所述过渡口相连。
- 根据权利要求25所述的复合滤芯组件,其特征在于,所述第二过滤组还包括:第三端盖和第四端盖,所述第三端盖和所述第四端盖分别连接在所述螺旋卷式反渗透膜元件的轴向两端,所述第三端盖朝向所述过渡板设置,所述中心管通过所述第三端盖与所述过 渡孔相连,所述废水管通过所述第四端盖与所述第五进出口相连。
- 根据权利要求26所述的复合滤芯组件,其特征在于,所述反渗透膜片袋卷出的圆形筒的轴向两端胶粘在所述第三端盖和所述第四端盖上。
Applications Claiming Priority (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201821790053.8 | 2018-10-31 | ||
CN201811290840.0A CN111115876B (zh) | 2018-10-31 | 2018-10-31 | 复合滤芯组件 |
CN201821795364.3 | 2018-10-31 | ||
CN201821795364.3U CN209352650U (zh) | 2018-10-31 | 2018-10-31 | 复合滤芯组件 |
CN201811288603.0A CN111115866B (zh) | 2018-10-31 | 2018-10-31 | 复合滤芯组件 |
CN201821790008.2 | 2018-10-31 | ||
CN201811290840.0 | 2018-10-31 | ||
CN201821790053.8U CN209307049U (zh) | 2018-10-31 | 2018-10-31 | 复合滤芯组件 |
CN201811289176.8A CN111115869A (zh) | 2018-10-31 | 2018-10-31 | 复合滤芯组件 |
CN201811288603.0 | 2018-10-31 | ||
CN201811289176.8 | 2018-10-31 | ||
CN201821790008.2U CN209522671U (zh) | 2018-10-31 | 2018-10-31 | 复合滤芯组件 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020088561A1 true WO2020088561A1 (zh) | 2020-05-07 |
Family
ID=70463014
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/114559 WO2020088561A1 (zh) | 2018-10-31 | 2019-10-31 | 复合滤芯组件 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020088561A1 (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111908643A (zh) * | 2020-08-24 | 2020-11-10 | 佛山市麦克罗美的滤芯设备制造有限公司 | 复合滤芯及净水器 |
CN112125428A (zh) * | 2020-10-19 | 2020-12-25 | 珠海格力电器股份有限公司 | 复合滤芯和净水机 |
CN112479409A (zh) * | 2020-12-18 | 2021-03-12 | 上海纯米电子科技有限公司 | 反渗透复合滤芯 |
CN117985795A (zh) * | 2024-04-03 | 2024-05-07 | 深圳市钠谱金属制品有限公司 | 一种金属制品的电镀废水处理设备 |
CN118479606A (zh) * | 2024-07-12 | 2024-08-13 | 山东探源科技有限责任公司 | 直饮水纳滤设备及方法 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5766468A (en) * | 1997-01-06 | 1998-06-16 | Baldwin Filters, Inc. | Dual media primary/secondary fuel filter |
KR20100125866A (ko) * | 2009-05-22 | 2010-12-01 | 앨트웰텍 주식회사 | 기능성 복합 필터 |
CN207498155U (zh) * | 2017-10-30 | 2018-06-15 | 佛山市顺德区美的饮水机制造有限公司 | 复合滤芯组件和净水系统 |
CN108654392A (zh) * | 2017-03-30 | 2018-10-16 | 佛山市顺德区美的饮水机制造有限公司 | 螺旋卷式反渗透膜元件和净水器 |
CN209307053U (zh) * | 2018-10-31 | 2019-08-27 | 佛山市顺德区美的饮水机制造有限公司 | 复合滤芯组件 |
CN209307049U (zh) * | 2018-10-31 | 2019-08-27 | 佛山市顺德区美的饮水机制造有限公司 | 复合滤芯组件 |
CN209307045U (zh) * | 2018-10-31 | 2019-08-27 | 佛山市顺德区美的饮水机制造有限公司 | 复合滤芯组件 |
CN209307047U (zh) * | 2018-10-31 | 2019-08-27 | 佛山市顺德区美的饮水机制造有限公司 | 复合滤芯组件 |
CN209352650U (zh) * | 2018-10-31 | 2019-09-06 | 佛山市顺德区美的饮水机制造有限公司 | 复合滤芯组件 |
CN209367960U (zh) * | 2018-10-31 | 2019-09-10 | 佛山市顺德区美的饮水机制造有限公司 | 净水系统 |
CN209397002U (zh) * | 2018-10-31 | 2019-09-17 | 佛山市顺德区美的饮水机制造有限公司 | 复合滤芯组件 |
CN209522671U (zh) * | 2018-10-31 | 2019-10-22 | 佛山市顺德区美的饮水机制造有限公司 | 复合滤芯组件 |
-
2019
- 2019-10-31 WO PCT/CN2019/114559 patent/WO2020088561A1/zh active Application Filing
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5766468A (en) * | 1997-01-06 | 1998-06-16 | Baldwin Filters, Inc. | Dual media primary/secondary fuel filter |
KR20100125866A (ko) * | 2009-05-22 | 2010-12-01 | 앨트웰텍 주식회사 | 기능성 복합 필터 |
CN108654392A (zh) * | 2017-03-30 | 2018-10-16 | 佛山市顺德区美的饮水机制造有限公司 | 螺旋卷式反渗透膜元件和净水器 |
CN207498155U (zh) * | 2017-10-30 | 2018-06-15 | 佛山市顺德区美的饮水机制造有限公司 | 复合滤芯组件和净水系统 |
CN209307053U (zh) * | 2018-10-31 | 2019-08-27 | 佛山市顺德区美的饮水机制造有限公司 | 复合滤芯组件 |
CN209307049U (zh) * | 2018-10-31 | 2019-08-27 | 佛山市顺德区美的饮水机制造有限公司 | 复合滤芯组件 |
CN209307045U (zh) * | 2018-10-31 | 2019-08-27 | 佛山市顺德区美的饮水机制造有限公司 | 复合滤芯组件 |
CN209307047U (zh) * | 2018-10-31 | 2019-08-27 | 佛山市顺德区美的饮水机制造有限公司 | 复合滤芯组件 |
CN209352650U (zh) * | 2018-10-31 | 2019-09-06 | 佛山市顺德区美的饮水机制造有限公司 | 复合滤芯组件 |
CN209367960U (zh) * | 2018-10-31 | 2019-09-10 | 佛山市顺德区美的饮水机制造有限公司 | 净水系统 |
CN209397002U (zh) * | 2018-10-31 | 2019-09-17 | 佛山市顺德区美的饮水机制造有限公司 | 复合滤芯组件 |
CN209522671U (zh) * | 2018-10-31 | 2019-10-22 | 佛山市顺德区美的饮水机制造有限公司 | 复合滤芯组件 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111908643A (zh) * | 2020-08-24 | 2020-11-10 | 佛山市麦克罗美的滤芯设备制造有限公司 | 复合滤芯及净水器 |
CN111908643B (zh) * | 2020-08-24 | 2024-12-24 | 佛山市麦克罗美的滤芯设备制造有限公司 | 复合滤芯及净水器 |
CN112125428A (zh) * | 2020-10-19 | 2020-12-25 | 珠海格力电器股份有限公司 | 复合滤芯和净水机 |
CN112479409A (zh) * | 2020-12-18 | 2021-03-12 | 上海纯米电子科技有限公司 | 反渗透复合滤芯 |
CN117985795A (zh) * | 2024-04-03 | 2024-05-07 | 深圳市钠谱金属制品有限公司 | 一种金属制品的电镀废水处理设备 |
CN118479606A (zh) * | 2024-07-12 | 2024-08-13 | 山东探源科技有限责任公司 | 直饮水纳滤设备及方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020088561A1 (zh) | 复合滤芯组件 | |
CN209397002U (zh) | 复合滤芯组件 | |
CN209307053U (zh) | 复合滤芯组件 | |
CN209352650U (zh) | 复合滤芯组件 | |
CN107986393A (zh) | 滤芯及反渗透净水器 | |
CN209522671U (zh) | 复合滤芯组件 | |
CN111115869A (zh) | 复合滤芯组件 | |
CN209307047U (zh) | 复合滤芯组件 | |
CN105498337A (zh) | 滤芯、过滤装置和净水器 | |
WO2020088562A1 (zh) | 复合滤芯和净水器 | |
CN110723833A (zh) | 一种新型大通量四合一滤芯结构 | |
CN209307045U (zh) | 复合滤芯组件 | |
CN209307049U (zh) | 复合滤芯组件 | |
CN209481320U (zh) | 净水系统 | |
CN209367960U (zh) | 净水系统 | |
CN211339044U (zh) | 一种新型大通量四合一滤芯结构 | |
WO2020088563A1 (zh) | 复合滤芯组件 | |
CN111115876B (zh) | 复合滤芯组件 | |
CN111115868B (zh) | 复合滤芯组件的流道结构 | |
CN111115874B (zh) | 复合滤芯组件 | |
WO2020088559A1 (zh) | 复合滤芯组件、前后置复合滤芯和净水机 | |
CN205367923U (zh) | 复合滤芯及具有其的复合滤芯组件 | |
CN111115879B (zh) | 净水系统 | |
CN111115866B (zh) | 复合滤芯组件 | |
WO2020088557A1 (zh) | 复合滤芯组件的流道结构及净水系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19878637 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/09/2021). |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19878637 Country of ref document: EP Kind code of ref document: A1 |