WO2020087261A1 - 光场显示方法、装置、设备和记录介质 - Google Patents

光场显示方法、装置、设备和记录介质 Download PDF

Info

Publication number
WO2020087261A1
WO2020087261A1 PCT/CN2018/112614 CN2018112614W WO2020087261A1 WO 2020087261 A1 WO2020087261 A1 WO 2020087261A1 CN 2018112614 W CN2018112614 W CN 2018112614W WO 2020087261 A1 WO2020087261 A1 WO 2020087261A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
light
areas
viewing
emitting
Prior art date
Application number
PCT/CN2018/112614
Other languages
English (en)
French (fr)
Inventor
刘佳尧
董学
陈小川
赵文卿
王维
杨明
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/622,983 priority Critical patent/US11375177B2/en
Priority to EP18922086.6A priority patent/EP3876220A4/en
Priority to CN201880001844.4A priority patent/CN111386565B/zh
Priority to PCT/CN2018/112614 priority patent/WO2020087261A1/zh
Publication of WO2020087261A1 publication Critical patent/WO2020087261A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/32Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using arrays of controllable light sources; using moving apertures or moving light sources
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2092Details of a display terminals using a flat panel, the details relating to the control arrangement of the display terminal and to the interfaces thereto
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/342Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/14Display of multiple viewports
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0404Matrix technologies
    • G09G2300/0408Integration of the drivers onto the display substrate
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0275Details of drivers for data electrodes, other than drivers for liquid crystal, plasma or OLED displays, not related to handling digital grey scale data or to communication of data to the pixels by means of a current
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/028Improving the quality of display appearance by changing the viewing angle properties, e.g. widening the viewing angle, adapting the viewing angle to the view direction

Definitions

  • the present disclosure relates to the field of light field display, and in particular, to a light field display method, device, equipment, and recording medium.
  • the amount of data may also be referred to as the amount of information, that is, the content displayed by the pixels in the light field display, for example.
  • the number of pixels in the display is difficult to increase by orders of magnitude due to the limitation of the driving circuit process. Therefore, when the traditional display is applied to light field display, due to the limitation of the number of pixels, the amount of data displayed by the display is much lower than that required by the light field display, so that the light field display system can only reproduce a very small range
  • the light field information inside has problems such that the viewing zone range is too small and it is difficult to put it into practical use.
  • the stereoscopic image displayed by the light field display also needs to include depth of field information, that is, images at different depths of field need to be displayed, and the display content at each depth of field position is a two-dimensional planar image.
  • depth of field information that is, images at different depths of field need to be displayed
  • the display content at each depth of field position is a two-dimensional planar image.
  • a large amount of image information at different depths of field is also required.
  • the display of the above depth information is also affected by the small number of pixels on the display screen and the insufficient amount of data.
  • a light field display method the light field display includes N viewing zones, the display screen includes N display zones, and the N display zones are one-to-one with the N viewing zones Correspondingly, each display area includes M light-emitting points, and the light-emitting points at corresponding positions in the N display areas are a light-emitting point group.
  • the method includes: using the same driving circuit to drive the N display areas to belong to the same The light-emitting points of the light-emitting point group, wherein the N viewing zones do not overlap each other, and N and M are both positive integers greater than 1.
  • each display area includes M pixels, and the N display areas have M light-emitting point groups.
  • the N display areas form the N viewing zones through the same lens, or form the N viewing zones through multiple lenses.
  • the pixels of the N display regions are arranged in the same manner.
  • the light field display method further includes: for at least one of the N display areas, connecting the display area to a driving circuit through a switch, the switch being used to turn on or off The driving circuit drives the display area.
  • connecting the display area to the driving circuit through the switch includes: connecting the M light-emitting points in the display area to the corresponding driving circuit through the M switches, respectively.
  • the display screens are k display screens
  • k is a positive integer greater than or equal to 1
  • each display screen of the k display screens includes N Display areas, the corresponding viewing areas of the N display areas of each of the k display screens overlap each other.
  • N light-emitting points belonging to the same light-emitting point group are formed by dividing one pixel into regions.
  • the M pixels respectively correspond to M lenses
  • the M lenses make the light-emitting points at corresponding positions in the M light-emitting point groups form a viewing area, so that the M The light-emitting point groups form N viewing zones.
  • N light-emitting points are formed on each pixel using a mask.
  • a light field display device including: a display screen, the display screen including N display areas, each of the N display areas including M light emitting points , The light-emitting point at the corresponding position in the N display areas is a light-emitting point group; a driving circuit is used to drive the light-emitting points to emit light; a lens, the light-emitting points in the N display areas are formed with the N by the lens One viewing area corresponding to each display area, wherein the same driving circuit is used to drive light-emitting points belonging to the same light-emitting point group in the N display areas, the N viewing areas do not overlap each other, and N and M are both greater than Positive integer of 1.
  • each display area includes M pixels, and the N display areas have M light-emitting point groups; the N display areas are formed by the same lens The N viewing zones, or the N viewing zones are formed by a plurality of lenses; the pixels of the N display areas are arranged in the same manner.
  • the light field display device further includes a switch
  • the switch is connected to at least one of the N display areas and a drive circuit of the display area for turning on or off the The driving circuit drives the display area.
  • connection includes: respectively connecting the M light-emitting points in the display area to their corresponding driving circuits through M switches.
  • the display screen includes M pixels
  • N light-emitting points belonging to the same light-emitting point group are formed by dividing one pixel into regions; the M pixels respectively correspond to M lenses, through The M lenses are used to make the light-emitting points at corresponding positions in the M light-emitting point groups form one viewing zone, so that the M light-emitting point groups form N viewing zones; the N light-emitting points use Mask formation.
  • a light field display device including: one or more processors; and one or more memories, wherein the memories store computer readable codes, the computers The readable code, when executed by the processor, executes the light field display method as described above.
  • a computer-readable recording medium wherein the computer-readable recording medium stores computer-readable code, and the computer-readable code is executed when executed by a processor The light field display method as described above.
  • FIG. 1 shows a schematic diagram of a display screen according to an embodiment of the present disclosure
  • FIG. 2A shows a schematic diagram of the correspondence between a display screen and a viewing zone according to an embodiment of the present disclosure
  • FIG. 2B is a schematic diagram showing the correspondence between multiple display screens and viewing zones according to an embodiment of the present disclosure
  • FIG. 3 shows a schematic diagram of the connection relationship between a display screen and a switch according to an embodiment of the present disclosure
  • FIG. 4 shows a schematic diagram of the correspondence between the display screen and the viewing zone shown in FIG. 3;
  • FIG. 5 shows a schematic diagram of a pixel opening according to an embodiment of the present disclosure
  • FIG. 6 shows a schematic diagram of a pixel forming a plurality of light-emitting points through a pixel opening
  • FIG. 7 shows a schematic diagram of the corresponding relationship between the light-emitting point and the lens according to an embodiment of the present disclosure
  • FIG. 8 shows a schematic diagram of a light field display device 800 according to an embodiment of the present disclosure.
  • first”, “second” and similar words used in this disclosure do not indicate any order, quantity or importance, but are only used to distinguish different components.
  • similar words such as “include” or “include” mean that the elements or objects appearing before the word cover the elements or objects listed after the word and their equivalents, but do not exclude other elements or objects.
  • Connected” or “connected” and similar words are not limited to physical or mechanical connections, but may include electrical connections, whether direct or indirect.
  • the amount of data required for light field display is much larger than the amount of data required for traditional planar display (only displaying information of a two-dimensional image).
  • the above data amount may also be referred to as information amount, that is, the content displayed by the light field display.
  • the displayed image information includes only the color and brightness information of the image points on the two-dimensional plane.
  • the displayed stereoscopic image also includes depth of field information, which can be simply understood as the display content of each depth of field position is a two-dimensional planar image.
  • depth of field information can be simply understood as the display content of each depth of field position is a two-dimensional planar image.
  • a large amount of image information at different depths of field is required, and dynamic display of parallax information is also required. Using the parallax information, when viewing from different angles, the viewer can see the display content at different depths of field, reflecting the depth information of the stereoscopic display.
  • the light field display adds a large amount of image content to be displayed in both the depth of field dimension and the parallax direction dimension. Therefore, in the light field display process, the larger the number of pixels used for display, the finer the image displayed by the light field, the larger the depth of field range that can be covered, the richer the details of the reproduced image, and the wider the viewing angle.
  • the present disclosure proposes a light field display method, which uses the same driving circuit to drive light-emitting points with the same display content in different viewing areas, so that the number of viewing areas for light field display is increased and increased without increasing the number of driving circuits
  • the visible range of the light field display thus realizing the practicality of the light field display.
  • the light-emitting point may correspond to one pixel, or may correspond to a part of one pixel.
  • the light field display includes N viewing areas, and the display screen includes N display areas, and the N display areas correspond to the N viewing areas in one-to-one correspondence
  • Each display area includes M light-emitting points, and the light-emitting points at corresponding positions in the N display areas are a light-emitting point group.
  • the method includes: using the same driving circuit to drive the N display areas to belong to the same light-emitting The light emitting point of the point group, wherein the N viewing zones do not overlap each other, and N and M are both positive integers greater than 1.
  • FIG. 1 shows a schematic diagram of a display screen according to an embodiment of the present disclosure
  • FIG. 2A shows a schematic diagram of a correspondence relationship between a display screen and a viewing zone according to an embodiment of the present disclosure.
  • a light field display method according to an embodiment of the present disclosure will be described in detail with reference to FIGS. 1 and 2A.
  • the display screen may be a flat display, for example, on which light-emitting points are arranged.
  • the light-emitting point corresponds to one pixel.
  • the light-emitting point may also correspond to a part of a pixel, which will be described in detail below.
  • the pixels in each of the N display areas are arranged in the same manner.
  • the display content of pixels at the same position is the same.
  • the display content of the first pixel A 11 in each display area is the same. Therefore, the display content of each display area on the display screen is the same.
  • the light-emitting points at corresponding positions in the N display regions are a group of light-emitting points.
  • the display screen in FIG. 1 can be divided into M light-emitting point groups, where the light-emitting point group G 11 includes pixels A 11 in each display area shown in FIG. 1, and the light-emitting point group G 1m can include each Pixel A 1m in the display area.
  • the display content of the pixels included in each light-emitting point group is the same. Therefore, the same driving circuit can be used to drive the pixels belonging to the same light-emitting point group in the display screen.
  • one driving circuit may be used to drive the light-emitting point group G 11 including the pixel A 11
  • another driving circuit may be used to drive the light-emitting point group G 1 m including the pixel A 1 m .
  • the display screen can form N viewing zones in the image space through the lens, the N viewing zones do not overlap each other, and the N display areas correspond to the N viewing zones in one-to-one correspondence. Since the display contents of the pixels in the same position in each display area in FIG. 1 are the same, the display contents of each viewing zone at the corresponding positions formed by the respective display areas through the lens are the same.
  • the display area N corresponds to the viewing area N
  • the display area N-1 corresponds to the viewing area N-1
  • the display content of each viewing area is the same.
  • the N display regions form the N viewing zones through the same lens.
  • the N viewing zones may also be formed through multiple lenses.
  • the light exit direction of the pixels in the display area when imaging by the lens is determined by the positional relationship between the pixel and the lens and the focal length of the lens, so the positional relationship between the lens and the pixel can be designed according to actual parameters.
  • the display screen is composed of N display areas (n * n), and each display area is composed of M pixels (m * m), each The display contents of pixels in the same position in the same display area are the same.
  • These pixels in the same position and the same display content in the display area are called a group of light-emitting point groups, and the same light-emitting point group is driven by the same driving circuit, that is, a set of driving circuits simultaneously controls the pixels in the same position in each display area, Therefore, it is possible to realize driving of M * N pixels by using M driving circuits.
  • each display area forms a respective viewing area at a different position in the image space through a lens (as shown in FIG. 2A), and all viewing areas form a complete visual space.
  • the M driving circuits can only drive M pixels, and the data amount formed by the M pixels in the image space is equivalent to the data amount of one view zone as shown in FIG. 2A.
  • M * N pixels can be driven by M driving circuits, and the M * N pixels can form N viewing zones through a lens. It can be seen that the light field display method according to the present disclosure can increase the visible range of the light field display system from the original 1 viewing zone to N viewing zones without increasing the number of driving circuits, thus The light field of the field of view shows that the amount of data displayed by the light field has also increased by N times.
  • k display screens as shown in FIG. 2A may also be included, where k is a positive integer greater than or equal to 1.
  • FIG. 2B shows a schematic diagram of the correspondence between multiple display screens and viewing zones according to an embodiment of the present disclosure, where k is equal to 4.
  • Each of the k display screens includes N display areas, and the corresponding viewing areas of the N display areas of each of the k display screens overlap each other.
  • the respective display areas 1 in the display screens 1, 2, 3, and 4 form respective viewing areas N in the image space, and the respective viewing areas N overlap each other; the display screen 1,
  • the respective display areas N in 2, 3 and 4 form respective viewing zones 1 in the image space, and the respective viewing zones 1 also overlap each other.
  • the lens corresponding to the display screen may be in the form of a single lens, a micro lens, a liquid crystal lens, etc., and may be designed according to the parameters of the display screen size, pixel size, etc.
  • the parameters of the lens do not constitute a limitation on the present disclosure.
  • it can also be implemented in the form of a lens array or a micro lens array, which does not constitute a limitation to the present disclosure.
  • the amount of data displayed in the image space can be increased, that is, the depth of field and parallax information of the light field display can be increased, and the display effect of the light field display can be improved.
  • the problem of insufficient light field display data amount caused by the limited number of pixels.
  • the light field display method may further include: for at least one of the N display areas, connecting the display area to a driving circuit through a switch, the switch being used to turn on or off the driving circuit Driving the display area.
  • connecting the display area to the driving circuit through a switch includes: connecting the M light-emitting points in the display area to their corresponding driving circuits through M switches, respectively.
  • the above switch connected to the driving circuit can be used to control whether the light-emitting point connected thereto emits light, thereby controlling whether a corresponding viewing area is formed in the image space, and realizing the anti-peep function during the light field display process. For example, by cutting off the switch connecting the display area 1 and the drive circuit, the anti-peep function for the viewing area N is realized, that is, the viewer at the position of the viewing area N cannot see the display content.
  • the display screen is divided into N display areas, and pixels in the same position in each display area are controlled by the same drive circuit, that is, one drive circuit controls each display area at the same time
  • the display area corresponds to the viewing area one-to-one. Therefore, M pixels and M switches in each display area can be connected.
  • the M switches 1 can be used to control whether the M pixels in the display area 1 emit light. The closing and opening of the M switches connected to the display area 1 remain consistent.
  • the corresponding viewing area N is not formed in the image space, thereby realizing the anti-peeping effect for the viewing area N, that is, the viewer from the viewing area
  • the display content cannot be viewed at the position of N.
  • the switch may also control the display content (such as brightness, color, etc.) of the light-emitting point connected thereto, thereby implementing the anti-peep function.
  • the display content of the light-emitting point in the display area is controlled by a switch, so that the viewing area corresponding to the display area displays different content compared to other viewing areas, that is, the privacy effect is achieved by changing the display content.
  • FIG. 3 shows a schematic diagram of the connection relationship between the display screen and the switch according to an embodiment of the present disclosure
  • FIG. 4 shows a schematic diagram of the correspondence relationship between the display screen and the viewing zone shown in FIG. 3.
  • each display area shown in FIG. 1 is represented by a column of pixels.
  • the display area 1 includes a set of column pixels B 11 -B m1
  • the display area 2 includes a set of column pixels B 12 -B m2 , and so on.
  • Each display area forms a corresponding viewing area in the image space.
  • the pixels in each display area may be connected to respective signal lines through which driving signals of the pixels are transmitted.
  • the pixels in each display area can be connected to the corresponding switch, for example, the pixels in the display area 1 can be connected to the switch 1.
  • the driving circuit turns on the driving of the pixels in the display area 1, that is, the driving signal can be transmitted to each pixel in the display area 1 via the signal line, so that the pixels emit light, thereby forming a viewing area N;
  • driving of the pixels in the display area 1 by the driving circuit is cut off, that is, the transmission between the signal line and the pixels is cut off, and the pixels do not emit light, that is, the viewing area N is not formed.
  • the switch connected to the pixel included in the column 1 (corresponding to the display area 1) is turned on, the pixel of the column 1 emits light under the drive of the driving circuit, and forms a viewing zone 3 in the image space through the lens , The viewer in the viewing zone 3 position can see the corresponding display content.
  • the switch connected to the pixel included in the column 1 is turned off, the connection between the pixel in the column 1 and the driving circuit is cut off, the pixel in the column 1 does not emit light, and no display content is displayed at the position of the viewing zone 3 in the image space. Therefore, in this case, the viewer at the position of the viewing zone 3 cannot view the display content, and the viewers at the viewing zone 1 and the viewing zone 2 can view the display content, thereby realizing anti-spy to the viewing zone 3 effect.
  • the function of cutting off or conducting between the driving circuit and the pixel can be realized by the switch, thereby realizing the anti-peep function of the light field display.
  • the function of the switch may also be realized by controlling the driving signal. For example, when the position of the viewing zone 3 shown in FIG. 6 needs to be protected against peeping, even if the display zone 1 corresponding to the viewing zone 3 is not displayed, the corresponding driving signal can be controlled to make the pixels in the display zone 1 No light is emitted, thereby achieving a peep-proof effect on the viewing zone 3.
  • the light-emitting point in the display screen also corresponds to a part of one pixel.
  • the display screen includes M pixels, and N light-emitting points belonging to the same light-emitting point group are formed by dividing one pixel into regions.
  • the pixel area can be divided by pixel opening technology.
  • the opening can be realized based on the existing manufacturing process of the display screen.
  • Traditional pixels only have one light emitting port, so a light emitting point can be formed.
  • N light-emitting points can be formed on each pixel by adding a light-shielding mask to the conventional light-emitting port.
  • FIG. 6 shows a schematic diagram of a pixel forming a plurality of light-emitting points through a pixel opening.
  • a conventional pixel includes only one light-emitting port, so only one light-emitting point is formed when light is emitted.
  • a plurality of openings can be formed on a conventional pixel, and when the pixel emits light, a plurality of light-emitting points can be formed through the opening. Therefore, as shown in FIG. 6, the number of light-emitting points of the pixel on the left is increased from one to 30 through the pixel opening.
  • the above-mentioned light-emitting points formed at different positions on one pixel may be referred to as a group of light-emitting point groups.
  • each light-emitting point displays the same content.
  • M pixels on the display screen may respectively correspond to M lenses, and the M lenses make the light-emitting points at the corresponding positions in the M light-emitting point groups form a viewing area, thereby making the The M light-emitting point groups form N viewing zones.
  • FIG. 7 is a schematic diagram showing the correspondence between the light-emitting point and the lens according to an embodiment of the present disclosure.
  • the positions of the light-emitting points at different positions are different from the lens, and light rays in different directions are formed after passing through the lens.
  • the display content of the N light-emitting points in each pixel is the same. After passing through the lens, the same display content can be formed in the N viewing zones in the image space.
  • the M pixels in the display screen form a complete display content of N viewing zones in the image space through the M lenses.
  • the light emitting area is divided into N pixel openings through a mask, and the N pixel openings may form N light emitting points.
  • the light-emitting points at the corresponding positions among the M pixels will form a viewing area in the image space, and the light-emitting points at different positions in each pixel correspond to different viewing areas in the image space.
  • the M pixels can be controlled by M driving circuits. Therefore, according to an embodiment of the present disclosure, it is possible to drive M pixels with M driving circuits and form N viewing zones in the image space. The N viewing zones are combined together to significantly increase the visible range of the light field display.
  • the light emitting area of the pixel is divided into several small openings (N), so that the light emitting point of the display screen can be multiplied (N times) Number (as shown in Figure 6).
  • N small openings
  • Each pixel corresponds to a lens, and light-emitting points formed by different openings in the pixel form display content in different viewing zones in the image space through the lens.
  • the light rays of different light-emitting points of the M pixels will form a viewing area equivalent to the number of light-emitting points (N) in the image space that displays the same content.
  • the human eye can see the same display content in different viewing zones, thereby increasing the visible range of the light field display system from one viewing zone to N viewing zones, and realizing a large visible range of light field display.
  • the display screen including pixel openings may also be k display screens, and k is a positive integer greater than or equal to 1.
  • the display area in each of the k display screens passes through the lens to form respective viewing zones in the image space.
  • Each of the k display screens includes N display areas, and the corresponding viewing areas of the N display areas of each of the k display screens overlap each other.
  • the respective display areas 1 in the display screen 1-k form respective viewing areas N in the image space, and the respective view areas N overlap each other; the respective display areas N in the display screen 1-k are formed in the image space
  • the amount of data displayed in the image space can be increased, that is, the depth of field display and parallax information can be increased, the display effect of the light field display can be improved, and the pixels in the prior art can be solved The problem of insufficient light field display data volume caused by the limited number.
  • a light field display device including: a display screen, the display screen includes N display areas, each of the N display areas includes M light-emitting points, so The light-emitting points at corresponding positions in the N display areas are a light-emitting point group; a driving circuit is used to drive the light-emitting points to emit light; a lens, and the light-emitting points in the N display areas are formed with the N displays through the lens Viewing areas corresponding to areas one-to-one, wherein the same driving circuit is used to drive the light emitting points belonging to the same light emitting point group in the N display areas, the N view areas do not overlap each other, and N and M are both greater than 1. Positive integer.
  • the light-emitting point may be a pixel or a part of a pixel.
  • each light-emitting point is a pixel, and each display area includes M pixels, and the N display areas have M light-emitting point groups; the N display areas pass through the same lens
  • the N viewing zones are formed, or the N viewing zones are formed by multiple lenses; the arrangement of pixels in the N display areas is the same.
  • FIG. 1 shows a schematic diagram of the display screen
  • FIGS. 2A and 2B show schematic diagrams of the display screen passing through a lens to form a viewing area.
  • M * N pixels can be driven by M driving circuits. Specifically, the light field display method using the light field display device will not be repeated here.
  • the light field display device further includes a switch that connects at least one display area of the N display areas and a drive circuit of the display area for turning on or off the drive circuit to the display area drive.
  • the M light-emitting points in the display area can be connected to their corresponding driving circuits through M switches, respectively. For example, by cutting off the switch connecting the display area 1 and the drive circuit, the anti-peep function for the viewing area N is realized, that is, the viewer at the position of the viewing area N cannot see the display content.
  • the display screen may include M pixels, N light-emitting points belonging to the same light-emitting point group are formed by dividing one pixel into regions; the M pixels respectively correspond to M Lenses, the M lenses are used to make the light-emitting points at the corresponding positions in the M light-emitting point groups form a viewing zone, so that the M light-emitting point groups form N viewing zones; the N The light-emitting point is formed using a mask.
  • the light field display device 800 may include one or more processors 802 and one or more memories 804.
  • the memory 804 stores computer readable code, and when the computer readable code is executed by the processor 802, it can execute the light field display method provided according to the embodiment of the present disclosure.
  • the processor may be implemented as a chip or module having a specific light field processing algorithm function, for example, an FPGA.
  • a computer-readable recording medium wherein the computer-readable recording medium stores computer-readable code, and when the computer-readable code is executed by a processor, it can execute A light field display method provided by an embodiment of the present disclosure.
  • a light field display method, device, device, and recording medium are provided, and the same driving circuit is used to drive light-emitting points with the same display content in different viewing areas, so that the number of driving circuits is not increased Increasing the number of viewing areas of the light field display and increasing the visible range of the light field display, thereby realizing the practicality of the light field display.
  • the light-emitting point may correspond to one pixel, or may correspond to a part of one pixel.

Abstract

本公开提供了一种光场显示方法,所述光场显示包括N个视区,显示屏幕包括N个显示区域,所述N个显示区域与所述N个视区一一对应,每个显示区域包括M个发光点,所述N个显示区域中对应位置的发光点为一个发光点组,所述方法包括:利用同一驱动电路来驱动所述N个显示区域中属于同一发光点组的发光点,其中,所述N个视区彼此不重叠,N和M均为大于1的正整数。

Description

光场显示方法、装置、设备和记录介质 技术领域
本公开涉及光场显示领域,具体的涉及一种光场显示方法、装置、设备和记录介质。
背景技术
在光场显示过程中,需要显示位于不同视区的图像,因此光场显示所需的数据量远远大于传统的平面显示所需的数据量。所述数据量也可以称为信息量,即光场显示中例如通过像素所显示出来的内容。
在相关技术中,显示器中的像素数目由于受到驱动电路工艺的限制而难以实现数量级的提升。因此,在将传统的显示器应用于光场显示时,由于受到像素数目的限制,显示器显示的数据量远远低于光场显示所需的数据量,使得光场显示系统只能再现极小范围内的光场信息,存在视区范围过小,难以实用化等方面的问题。
此外,光场显示所显示的立体图像中还需包括景深信息,即需要显示处于不同景深的图像,每个景深位置的显示内容即为一个二维平面图像。为了实现良好的光场显示效果,也需要大量的处于不同景深的图像信息,上述景深信息的显示同样受到显示屏幕像素数目较少、数据量不足的影响。
发明内容
根据本公开的一方面,提供了一种光场显示方法,所述光场显示包括N个视区,显示屏幕包括N个显示区域,所述N个显示区域与所述N个视区一一对应,每个显示区域包括M个发光点,所述N个显示区域中对应位置的发光点为一个发光点组,所述方法包括:利用同一驱动电路来驱动所述N个显示区域中属于同一发光点组的发光点,其中,所述N个视区彼此不重叠,N和M均为大于1的正整数。
根据本公开实施例,其中,每个发光点为一个像素,每个显示区域包括M个像素,所述N个显示区域具有M个发光点组。
根据本公开实施例,其中,所述N个显示区域通过同一个透镜形成所述N个视区,或者通过多个透镜形成所述N个视区。
根据本公开实施例,其中,所述N个显示区域的像素排列方式相同。
根据本公开实施例,所述光场显示方法还包括:对于所述N个显示区域中的至少一个显示区域,通过开关将该显示区域与驱动电路连接,所述开关用于导通或切断所述驱动电路对所述显示区域的驱动。
根据本公开实施例,其中,通过开关将该显示区域与驱动电路连接包括:通过M个开关分别将该显示区域中的M个发光点与其对应的驱动电路连接。
根据本公开实施例,其中,所述显示屏幕为k个显示屏幕,k为大于等于1的正整数,在k大于1的情况下,所述k个显示屏幕中的每一个显示屏幕包括N个显示区域,所述k个显示屏幕中的每一个显示屏幕的N个显示区域的对应的视区彼此重叠。
根据本公开实施例,其中,所述显示屏幕包括M个像素,通过对一个像素进行区域划分来形成属于同一发光点组的N个发光点。
根据本公开实施例,其中,所述M个像素分别对应于M个透镜,通过所述M个透镜使得所述M个发光点组中对应位置的发光点形成一个视区,从而使得所述M个发光点组形成N个视区。
根据本公开实施例,其中,利用掩模在每个像素上形成N个所述发光点。
根据本公开的另一方面,还提供了一种光场显示装置,包括:显示屏幕,所述显示屏幕包括N个显示区域,所述N个显示区域中的每一个显示区域包括M个发光点,所述N个显示区域中对应位置的发光点为一个发光点组;驱动电路,用于驱动发光点发光;透镜,所述N个显示区域中的发光点通过所述透镜形成与所述N个显示区域一一对应的视区,其中,利用同一驱动电路来驱动所述N个显示区域中属于同一发光点组的发光点,所述N个视区彼此不重叠,N和M均为大于1的正整数。
根据本公开实施例,其中,每个发光点为一个像素,每个显示区域包括M个像素,所述N个显示区域具有M个发光点组;所述N个显示区域通过同一个透镜形成所述N个视区,或者通过多个透镜形成所述N个视区;所述N个显示区域的像素的排列方式相同。
根据本公开实施例,其中,所述光场显示装置还包括开关,所述开关连 接所述N个显示区域中的至少一个显示区域和该显示区域的驱动电路,用于导通或切断所述驱动电路对所述显示区域的驱动。
根据本公开实施例,其中,所述连接包括:通过M个开关分别将该显示区域中的M个发光点与其对应的驱动电路连接。
根据本公开实施例,其中,所述显示屏幕包括M个像素,通过对一个像素进行区域划分来形成属于同一发光点组的N个发光点;所述M个像素分别对应于M个透镜,通过所述M个透镜用于使得所述M个发光点组中对应位置的发光点形成一个视区,从而使得所述M个发光点组形成N个视区;所述N个所述发光点利用掩模形成。
根据本公开的又一方面,还提供了一种光场显示设备,包括:一个或多个处理器;和一个或多个存储器,其中,所述存储器中存储有计算机可读代码,所述计算机可读代码在由所述处理器运行时,执行如上所述的光场显示方法。
根据本公开的又一方面,还提供了一种计算机可读记录介质,其中,所述计算机可读记录介质中存储有计算机可读代码,所述计算机可读代码在由处理器运行时,执行如上所述的光场显示方法。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了根据本公开实施例的显示屏幕的示意图;
图2A示出了根据本公开实施例的一个显示屏幕与视区对应关系的示意图;
图2B示出了根据本公开实施例的多个显示屏幕与视区对应关系的示意图;
图3示出了根据本公开实施例的显示屏幕与开关连接关系的示意图;
图4示出了图3中示出的显示屏幕与视区对应关系的示意图;
图5示出了根据本公开实施例的像素开口的示意图;
图6中示出了经过像素开口形成多个发光点的像素的示意图;
图7示出了根据本公开实施例的发光点与透镜的对应关系的示意图;
图8示出了根据本公开实施例的光场显示设备800的示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本公开一部分的实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。
在进行光场显示的过程中,需要显示处于不同景深的图像信息,每个景深的图像信息相当于一幅二维图像。因此,光场显示所需的数据量远远大于传统的平面显示(仅显示一幅二维图像的信息)所需的数据量。
具体的,上述数据量也可以称为信息量,即光场显示所显示的内容。例如,在二维平面显示过程中,显示的图像信息仅包括在二维平面上的像点的颜色和亮度信息等。而在光场显示中,所显示的立体图像中还包括了景深信息,这可以简单理解为每个景深位置的显示内容即为一个二维平面图像。为了实现较好的光场显示效果,需要大量的处于不同景深的图像信息,同时还需要实现动态显示视差信息。利用所述视差信息,观看者在从不同角度观看时,可以看到处于不同景深的显示内容,体现出立体显示的深度信息。
由此可知,所述光场显示相对于二维平面显示来说,在景深维度和视差方向维度都增加了大量需要显示的图像内容。因此,在光场显示过程中,用于显示的像素数目越多,光场显示的图像越细腻,能覆盖的景深范围越大,再现出的图像细节越丰富,观看的角度越宽。
然而,在相关的平面显示器中,像素数目受到控制电路工艺的限制,难 以实现数量级的提升。在此种情况下,对进行光场显示的显示器的像素结构进行优化,从而提高显示的数据量和光场显示系统的视区范围,成为光场显示实用化的关键。
本公开提出了一种光场显示方法,对于不同视区中显示内容相同的发光点采用同一驱动电路进行驱动,使得在不增加驱动电路数目的基础上提高光场显示的视区数目,增大光场显示的可视范围,从而实现光场显示的实用化。其中,所述发光点可以对应于一个像素,也可以对应于一个像素的一部分。
根据本公开实施例,在所述光场显示方法中,所述光场显示包括N个视区,显示屏幕包括N个显示区域,所述N个显示区域与所述N个视区一一对应,每个显示区域包括M个发光点,所述N个显示区域中对应位置的发光点为一个发光点组,所述方法包括:利用同一驱动电路来驱动所述N个显示区域中属于同一发光点组的发光点,其中,所述N个视区彼此不重叠,N和M均为大于1的正整数。
图1示出了根据本公开实施例的显示屏幕的示意图,图2A示出了根据本公开实施例的一个显示屏幕与视区对应关系的示意图。以下将结合图1和图2A详细描述根据本公开实施例的光场显示方法。
如图1所示,所述显示屏幕例如可以是平面显示器,其上配置有发光点。在图1中示出的显示屏幕上,所述发光点对应于一个像素。在根据本公开的其它实施例中,所述发光点也可以对应于一个像素的一部分,将在下文详细介绍。
根据本公开实施例,可以将如图1所示出的显示屏幕上布置的像素划分为n*n=N个显示区域,每个显示区域可以包括m*m=M个像素(如虚线框所示出的)。其中,所述N个显示区域中的每个显示区域的像素的排列方式相同。
如图1所示,对于所述N个显示区域中的每一个显示区域,处于相同位置处的像素的显示内容相同。例如,每个显示区域中的第一个像素A 11的显示内容均相同。因此,显示屏幕上的每个显示区域的显示内容相同。
在根据本公开的实施例中,所述N个显示区域中对应位置的发光点为一个发光点组。例如可以将图1中的显示屏幕分为M个发光点组,其中,发光点组G 11包括图1中示出的每个显示区域中的像素A 11,发光点组G 1m可以包 括每个显示区域中的像素A 1m。每个发光点组包括的像素的显示内容相同,因此,可以采用同一驱动电路来驱动所述显示屏幕中属于同一发光点组的像素。例如,可以利用一个驱动电路来驱动包括像素A 11的发光点组G 11,利用另一个驱动电路来驱动包括像素A 1m的发光点组G 1m
如图2A所示,所述显示屏幕经过透镜在像空间可以形成N个视区,所述N个视区彼此不重叠,所述N个显示区域与所述N个视区一一对应。由于图1中每个显示区域中处于相同位置的像素的显示内容相同,使得各个显示区域经过透镜形成的对应位置处的每个视区的显示内容相同。例如,显示区域N对应于视区N,显示区域N-1对应于视区N-1,以此类推,并且,每个视区的显示内容相同。
如图2A所示,所述N个显示区域通过同一个透镜形成所述N个视区,根据本公开的另一实施例,还可以通过多个透镜形成所述N个视区。所述显示区域中的像素经过透镜成像时的出光方向由像素与透镜位置关系以及透镜的焦距决定,因此可以根据实际参数来设计透镜和像素的位置关系。
在根据本公开实施例提供的光场显示方法中,如图1所示,显示屏幕由N个显示区域(n*n)组成,每个显示区域由M个像素(m*m)组成,每个显示区域内处于相同位置处的像素的显示内容相同。将显示区域中这些处于相同位置且显示内容相同的像素称为一组发光点组,通过同一驱动电路来驱动同一发光点组,即一套驱动电路同时控制各个显示区域中处于同一位置的像素,从而可以实现利用M个驱动电路来实现对于M*N个像素的驱动。在利用上述显示屏幕来进行光场显示时,每个显示区域通过透镜在像空间的不同位置处形成各自的视区(如图2A所示),所有的视区组成完整的可视空间。
在不进行显示区域划分的光场显示中,M个驱动电路仅能驱动M个像素,所述M个像素在像空间形成的数据量相当于如图2A示出的一个视区的数据量。而根据本公开实施例的光场显示方法,可以实现利用M个驱动电路来驱动M*N个像素,所述M*N个像素经过透镜可以形成N个视区。由此可知,根据本公开的光场显示方法可以在不增加驱动电路的数目的条件下,将光场显示系统的可视范围由原来的1个视区增加到N个视区,实现大可视范围的光场显示,光场显示的数据量也增加了N倍。
根据本公开的实施例,还可以包括k个如图2A所示的显示屏幕,k为大于等于1的正整数。图2B示出了根据本公开实施例的多个显示屏幕与视区对应关系的示意图,其中,k等于4。所述k个显示屏幕中的每一个显示屏幕包括N个显示区域,所述k个显示屏幕中的每一个显示屏幕的N个显示区域的对应的视区彼此重叠。
例如,如图2B中所示出的,显示屏幕1、2、3和4中各自的显示区域1在像空间形成各自的视区N,所述各自的视区N彼此重叠;显示屏幕1、2、3和4中各自的显示区域N在像空间形成各自的视区1,所述各自的视区1也彼此重叠。
根据本公开实施例,如图2A所示出的,与所述显示屏幕相对应的透镜可以是单透镜、微透镜、液晶透镜等的形式,可以根据显示屏幕的尺寸、像素尺寸等参数来设计透镜的参数,这并不构成对于本公开的限制。在如图2B中所示出的多个显示屏幕的情形中,还可以采用透镜阵列、微透镜阵列的形式来实现,这也不构成对于本公开的限制。
通过图2B中示出的多个显示屏幕经过透镜形成彼此重叠的视区,可以增加像空间显示内容的数据量,即增加光场显示的景深和视差信息,提高光场显示的显示效果,解决现有技术中像素数目有限导致的光场显示数据量不足的问题。
根据本公开的光场显示方法还可以包括:对于所述N个显示区域中的至少一个显示区域,通过开关将该显示区域与驱动电路连接,所述开关用于导通或切断所述驱动电路对所述显示区域的驱动。其中,通过开关将该显示区域与驱动电路连接包括:通过M个开关分别将该显示区域中的M个发光点与其对应的驱动电路连接。
根据本公开实施例,利用上述与驱动电路连接的开关可以控制与其连接的发光点是否发光,从而控制是否在像空间中形成对应的视区,实现光场显示过程中的防窥功能。例如,通过切断连接显示区域1与驱动电路的开关,来实现对于视区N的防窥功能,即处于视区N位置处的观看者不能看到显示内容。
在根据本公开的上述光场显示的方法中,将显示屏幕划分为N个显示区域,每个显示区域中处于相同位置的像素由同一驱动电路进行控制,即一个 驱动电路同时控制各个显示区域中处于同一位置的像素,所述显示区域与视区一一对应。因此,可以将每个显示区域中的M个像素与M个开关连接。例如,可以通过M个开关1来控制显示区域1中的M个像素是否发光,所述与显示区域1连接的M个开关的闭合和断开保持一致。在由M个所述开关1控制显示区域1的像素不发光的情况下,则在像空间不形成对应的视区N,从而实现针对于视区N的防窥效果,即观看者从视区N的位置无法观看到显示内容。
根据本公开的另一实施例,所述开关还可以控制与其连接的发光点的显示内容(诸如亮度、颜色等),从而实现所述防窥功能。例如,通过开关控制显示区域中发光点的显示内容,从而使得与该显示区域对应的视区与其他视区相比,显示不同的内容,即通过显示内容的改变来实现防窥效果。
图3示出了根据本公开实施例的显示屏幕与开关连接关系的示意图,图4示出了图3中示出的显示屏幕与视区对应关系的示意图。以下将结合图3和图4来详细描述根据本公开实施例的利用开关实现防窥功能的过程。
如图3所示,为便于描述,将图1中示出的每个显示区域由一列像素表示。例如,显示区域1包括一组列像素B 11-B m1,显示区域2包括一组列像素B 12-B m2,以此类推。每个显示区域在像空间形成对应的视区。根据本公开实施例,每个显示区域内的像素可以与各自的信号线连接,通过所述信号线来传输像素的驱动信号。由此,可以将各个显示区域内的像素与对应的开关连接,例如,将显示区域1中的像素与开关1连接起来。在开关1闭合时,导通驱动电路对于显示区域1内的像素的驱动,即,驱动信号可以经由信号线传输到显示区域1内的各个像素,使得所述像素发光,从而形成视区N;在开关1断开时,切断驱动电路对于显示区域1内的像素的驱动,即断开信号线与像素之间的传输,所述像素不发光,即不形成视区N。
如图4所示出的,当与列1(对应于显示区域1)包括的像素连接的开关导通时,列1像素在驱动电路的驱动下发光,并通过透镜在像空间形成视区3,处于视区3位置的观看者可以看到对应的显示内容。而当与列1包括的像素连接的开关断开时,即切断了列1像素与驱动电路的连接,列1像素不发光,在像空间视区3的位置处不呈现显示内容。因此,在此种情况下,处于视区3位置处的观看者不能观看到显示内容,而处于视区1和视区2的观看 者可以观看到显示内容,从而实现对于视区3的防窥效果。
根据本公开的实施例,可以通过所述开关来实现驱动电路与像素之间的切断或导通的功能,从而实现光场显示防窥功能。根据本公开的其他实施例,还可以通过控制驱动信号的方式来实现所述开关的功能。例如,当需要对图6中示出的视区3的位置进行防窥时,即使得与视区3对应的显示区域1不显示,则可以控制对应的驱动信号来使得显示区域1内的像素不发光,从而实现对于视区3的防窥效果。
根据本公开的另一实施例,所述显示屏幕中的发光点还对应于一个像素的一部分。其中,所述显示屏幕包括M个像素,通过对一个像素进行区域划分来形成属于同一发光点组的N个发光点。
例如,如图5所示出的,可以通过像素开口技术来实现像素区域的划分。所述开口可以基于现有的显示屏制造工艺来实现。传统的像素只存在一个发光口,因此可以形成一个发光点。例如,可以通过在传统的发光口上增加遮光掩模的方式来在每个像素上形成N个发光点。
图6中示出了经过像素开口形成多个发光点的像素的示意图。常规的像素仅包括一个发光口,因此在发光时仅形成一个发光点。根据如图5所示出的像素开口技术处理之后,可以在常规的像素上形成多个开口,当该像素发光时,则可以经过开口形成多个发光点。因此,如图6中所示出的,经过像素开口将左侧的像素的发光点的数目由一个增加至30个。
根据本公开实施例,可以将上述在一个像素上形成的不同位置处的发光点称为一组发光点组。当利用驱动电路来驱动该像素发光时,每个发光点显示的内容相同。
根据本公开实施例,显示屏幕上的M个像素可以分别对应于M个透镜,通过所述M个透镜使得所述M个发光点组中对应位置的发光点形成一个视区,从而使得所述M个发光点组形成N个视区。
图7示出了根据本公开实施例的发光点与透镜的对应关系的示意图。如图7所示出的,在一个像素内,不同位置处的发光点相对于透镜的位置不同,经过透镜后形成不同方向的光线。其中,每个像素中的N个发光点的显示内容相同,经过透镜后,可以在像空间中的N个视区中形成相同的显示内容。显示屏幕中的M个像素经过M个透镜在像空间形成完整的N个视区的显示 内容。
根据上述实施例,对于显示屏幕上的M个像素的每一个,将其发光区通过掩模的方式划分为N个像素开口,所述N个像素开口可以形成N个发光点。M个像素的中处于对应位置处的发光点将在像空间形成一个视区,每个像素中不同位置处的发光点对应于像空间中的不同的视区。所述M个像素可以通过M个驱动电路来控制,因此,根据本公开实施例,可以实现利用M个驱动电路驱动M个像素,并在像空间形成N个视区。所述N个视区组合在一起,显著提高光场显示的可视范围。
根据本公开提出的上述光场显示方法,在不改变驱动电路的条件下,将像素的发光区划分为若干小开口(N个),从而能成倍(N倍)提高显示屏幕的发光点的数目(如图6所示)。每个像素对应于一个透镜,该像素中的不同开口形成的发光点经过透镜在像空间形成不同视区内的显示内容。所述M个像素的不同发光点的光线将在像空间形成等同于发光点数目(N个)的显示相同内容的视区。人眼在不同的视区均能观看到相同的显示内容,从而将光场显示系统的可视范围由原本的一个视区提高到N个视区,实现了大可视范围的光场显示。
根据本公开实施例,在进行光场显示过程中,所述包括像素开口的显示屏幕还可以为k个显示屏幕,k为大于等于1的正整数。所述k个显示屏幕中的每一个显示屏幕中的显示区域经过透镜,在像空间形成各自的视区。
所述k个显示屏幕中的每一个显示屏幕包括N个显示区域,所述k个显示屏幕中的每一个显示屏幕的N个显示区域的对应的视区彼此重叠。
例如,显示屏幕1-k中的各自的显示区域1在像空间形成各自的视区N,所述各自的视区N彼此重叠;显示屏幕1-k中的各自的显示区域N在像空间形成各自的视区1,所述各自的视区1也彼此重叠。
通过上述k个显示屏幕经过透镜形成彼此重叠的视区,可以增加像空间显示内容的数据量,即增加光场显示的景深和视差信息,提高光场显示的显示效果,解决现有技术中像素数目有限导致的光场显示数据量不足的问题。
根据本公开实施例,还提供了一种光场显示装置,包括:显示屏幕,所述显示屏幕包括N个显示区域,所述N个显示区域中的每一个显示区域包括M个发光点,所述N个显示区域中对应位置的发光点为一个发光点组;驱动 电路,用于驱动发光点发光;透镜,所述N个显示区域中的发光点通过所述透镜形成与所述N个显示区域一一对应的视区,其中,利用同一驱动电路来驱动所述N个显示区域中属于同一发光点组的发光点,所述N个视区彼此不重叠,N和M均为大于1的正整数。其中,所述发光点可以为一个像素,也可以为一个像素的一部分。
根据本公开的一个实施例,所述每个发光点为一个像素,每个显示区域包括M个像素,所述N个显示区域具有M个发光点组;所述N个显示区域通过同一个透镜形成所述N个视区,或者通过多个透镜形成所述N个视区;所述N个显示区域的像素的排列方式相同。例如上文中所描述的,图1示出了所述显示屏幕的示意图,图2A和图2B示出了显示屏幕经过透镜形成视区的示意图。利用上述光场显示装置,可以实现通过M个驱动电路来驱动M*N个像素。具体的,利用所述光场显示装置进行光场显示的方法在此不再赘述。
所述光场显示装置还包括开关,所述开关连接所述N个显示区域中的至少一个显示区域和该显示区域的驱动电路,用于导通或切断所述驱动电路对所述显示区域的驱动。其中,可以通过M个开关分别将该显示区域中的M个发光点与其对应的驱动电路连接。例如,通过切断连接显示区域1与驱动电路的开关,来实现对于视区N的防窥功能,即处于视区N位置处的观看者不能看到显示内容。
根据本公开的另一实施例,其中,所述显示屏幕可以包括M个像素,通过对一个像素进行区域划分来形成属于同一发光点组的N个发光点;所述M个像素分别对应于M个透镜,通过所述M个透镜用于使得所述M个发光点组中对应位置的发光点形成一个视区,从而使得所述M个发光点组形成N个视区;所述N个所述发光点利用掩模形成。
根据本公开实施例,还提供了一种光场显示设备。如图8所示所述光场显示设备800可以包括一个或多个处理器802和一个或多个存储器804。其中,所述存储器804中存储有计算机可读代码,所述计算机可读代码在由所述处理器802运行时,可以执行根据本公开实施例提供的光场显示方法。根据本公开实施例,所述处理器可以实施为具有特定光场处理算法功能的芯片或模组,例如,FPGA。
根据本公开实施例,还提供了一种计算机可读记录介质,其中,所述计 算机可读记录介质中存储有计算机可读代码,所述计算机可读代码在由处理器运行时,可以执行根据本公开实施例提供的光场显示方法。
根据本公开实施例,提供了一种光场显示方法、装置、设备和记录介质,对于不同视区中显示内容相同的发光点采用同一驱动电路进行驱动,使得在不增加驱动电路数目的基础上提高光场显示的视区数目,增大光场显示的可视范围,从而实现光场显示的实用化。所述发光点可以对应于一个像素,也可以对应于一个像素的一部分。
此外,本领域技术人员可以理解,本申请的各方面可以通过若干具有可专利性的种类或情况进行说明和描述,包括任何新的和有用的工序、机器、产品或物质的组合,或对他们的任何新的和有用的改进。相应地,本申请的各个方面可以完全由硬件执行、可以完全由软件(包括固件、常驻软件、微码等)执行、也可以由硬件和软件组合执行。以上硬件或软件均可被称为“数据块”、“模块”、“引擎”、“单元”、“组件”或“系统”。此外,本申请的各方面可能表现为位于一个或多个计算机可读介质中的计算机产品,该产品包括计算机可读程序编码。
除非另有定义,这里使用的所有术语(包括技术和科学术语)具有与本公开所属领域的普通技术人员共同理解的相同含义。还应当理解,诸如在通常字典里定义的那些术语应当被解释为具有与它们在相关技术的上下文中的含义相一致的含义,而不应用理想化或极度形式化的意义来解释,除非这里明确地这样定义。
以上是对本公开的说明,而不应被认为是对其的限制。尽管描述了本公开的若干示例性实施例,但本领域技术人员将容易地理解,在不背离本公开的新颖教学和优点的前提下可以对示例性实施例进行许多修改。因此,所有这些修改都意图包含在权利要求书所限定的本公开范围内。应当理解,上面是对本公开的说明,而不应被认为是限于所公开的特定实施例,并且对所公开的实施例以及其他实施例的修改意图包含在所附权利要求书的范围内。本公开由权利要求书及其等效物限定。

Claims (18)

  1. 一种光场显示方法,所述光场显示包括N个视区,显示屏幕包括N个显示区域,所述N个显示区域与所述N个视区一一对应,每个显示区域包括M个发光点,所述N个显示区域中对应位置的发光点为一个发光点组,所述方法包括:
    利用同一驱动电路来驱动所述N个显示区域中属于同一发光点组的发光点,
    其中,所述N个视区彼此不重叠,N和M均为大于1的正整数。
  2. 根据权利要求1所述的方法,其中,每个发光点为一个像素,每个显示区域包括M个像素,所述N个显示区域具有M个发光点组。
  3. 根据权利要求1或2所述的方法,其中,所述N个显示区域通过同一个透镜形成所述N个视区,或者通过多个透镜形成所述N个视区。
  4. 根据权利要求1-3中任一项所述的方法,其中,所述N个显示区域的像素的排列方式相同。
  5. 根据权利要求1-4中任一项所述的方法,还包括:
    对于所述N个显示区域中的至少一个显示区域,通过开关将该显示区域与驱动电路连接,所述开关用于导通或切断所述驱动电路对所述显示区域的驱动。
  6. 根据权利要求1-5中任一项所述的方法,其中,通过开关将该显示区域与驱动电路连接包括:
    通过M个开关分别将该显示区域中的M个发光点与其对应的驱动电路连接。
  7. 根据权利要求1-6中任一项所述的方法,其中,所述显示屏幕为k个显示屏幕,k为大于等于1的正整数,在k大于1的情况下,所述k个显示屏幕中的每一个显示屏幕包括N个显示区域,所述k个显示屏幕中的每一个显示屏幕的N个显示区域的对应的视区彼此重叠。
  8. 根据权利要求1-7中任一项所述的方法,其中,所述显示屏幕包括M个像素,通过对一个像素进行区域划分来形成属于同一发光点组的N个发光点。
  9. 根据权利要求1-8中任一项所述的方法,其中,所述M个像素分别对应于M个透镜,通过所述M个透镜使得所述M个发光点组中对应位置的发光点形成一个视区,从而使得所述M个发光点组形成N个视区。
  10. 根据权利要求1-9中任一项所述的方法,其中,利用掩模在每个像素上形成N个所述发光点。
  11. 一种光场显示装置,包括:
    显示屏幕,所述显示屏幕包括N个显示区域,所述N个显示区域中的每一个显示区域包括M个发光点,所述N个显示区域中对应位置的发光点为一个发光点组;
    驱动电路,用于驱动发光点发光;
    透镜,所述N个显示区域中的发光点通过所述透镜形成与所述N个显示区域一一对应的视区,
    其中,利用同一驱动电路来驱动所述N个显示区域中属于同一发光点组的发光点,所述N个视区彼此不重叠,N和M均为大于1的正整数。
  12. 根据权利要求11所述的光场显示装置,其中,
    每个发光点为一个像素,每个显示区域包括M个像素,所述N个显示区域具有M个发光点组;
    所述N个显示区域通过同一个透镜形成所述N个视区,或者通过多个透镜形成所述N个视区;
    所述N个显示区域的像素的排列方式相同。
  13. 根据权利要求11或12所述的光场显示装置,还包括开关,所述开关连接所述N个显示区域中的至少一个显示区域和该显示区域的驱动电路,用于导通或切断所述驱动电路对所述显示区域的驱动。
  14. 根据权利要求11-13中任一项所述的光场显示装置,其中,所述连接包括:
    通过M个开关分别将该显示区域中的M个发光点与其对应的驱动电路连接。
  15. 根据权利要求11-14中任一项所述的光场显示装置,其中,所述显示屏幕为k个显示屏幕,k为大于等于1的正整数,在k大于1的情况下,所述k个显示屏幕中的每一个显示屏幕包括N个显示区域,所述k个显示屏 幕中的每一个显示屏幕的N个显示区域的对应的视区彼此重叠。
  16. 根据权利要求11-15中任一项所述的光场显示装置,其中,所述显示屏幕包括M个像素,通过对一个像素进行区域划分来形成属于同一发光点组的N个发光点;
    所述M个像素分别对应于M个透镜,通过所述M个透镜用于使得所述M个发光点组中对应位置的发光点形成一个视区,从而使得所述M个发光点组形成N个视区;
    所述N个所述发光点利用掩模形成。
  17. 一种光场显示设备,包括:
    一个或多个处理器;和
    一个或多个存储器,
    其中,所述存储器中存储有计算机可读代码,所述计算机可读代码在由所述处理器运行时,执行如权利要求1-10中任一项所述的光场显示方法。
  18. 一种计算机可读记录介质,其中,所述计算机可读记录介质中存储有计算机可读代码,所述计算机可读代码在由处理器运行时,执行如权利要求1-10中任一项所述的光场显示方法。
PCT/CN2018/112614 2018-10-30 2018-10-30 光场显示方法、装置、设备和记录介质 WO2020087261A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/622,983 US11375177B2 (en) 2018-10-30 2018-10-30 Method, apparatus, device for light-field display, and recording medium
EP18922086.6A EP3876220A4 (en) 2018-10-30 2018-10-30 METHOD AND DEVICE FOR OPTICAL FIELD DISPLAY, AS WELL AS DEVICE AND RECORDING MEDIA
CN201880001844.4A CN111386565B (zh) 2018-10-30 光场显示方法、装置、设备和记录介质
PCT/CN2018/112614 WO2020087261A1 (zh) 2018-10-30 2018-10-30 光场显示方法、装置、设备和记录介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/112614 WO2020087261A1 (zh) 2018-10-30 2018-10-30 光场显示方法、装置、设备和记录介质

Publications (1)

Publication Number Publication Date
WO2020087261A1 true WO2020087261A1 (zh) 2020-05-07

Family

ID=70463314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112614 WO2020087261A1 (zh) 2018-10-30 2018-10-30 光场显示方法、装置、设备和记录介质

Country Status (3)

Country Link
US (1) US11375177B2 (zh)
EP (1) EP3876220A4 (zh)
WO (1) WO2020087261A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204904760U (zh) * 2015-08-28 2015-12-23 山东翔里光电科技有限公司 一种室内双基色显示屏
CN106297610A (zh) * 2015-06-05 2017-01-04 北京智谷睿拓技术服务有限公司 显示控制方法和装置
CN207676061U (zh) * 2017-12-29 2018-07-31 张家港康得新光电材料有限公司 光场显示系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2297876A (en) * 1995-02-09 1996-08-14 Sharp Kk Observer tracking autostereoscopic display
US20090058845A1 (en) * 2004-10-20 2009-03-05 Yasuhiro Fukuda Display device
TWI399719B (zh) * 2008-08-07 2013-06-21 Innolux Corp 顯示裝置與其顯示方法
CN103918257B (zh) * 2011-11-09 2018-05-11 皇家飞利浦有限公司 显示设备和方法
JP2014199393A (ja) * 2013-03-13 2014-10-23 株式会社東芝 画像表示装置
KR20180107193A (ko) * 2016-01-29 2018-10-01 매직 립, 인코포레이티드 3차원 이미지용 디스플레이
US10560689B2 (en) * 2017-11-28 2020-02-11 Paul Lapstun Viewpoint-optimized light field display

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106297610A (zh) * 2015-06-05 2017-01-04 北京智谷睿拓技术服务有限公司 显示控制方法和装置
CN204904760U (zh) * 2015-08-28 2015-12-23 山东翔里光电科技有限公司 一种室内双基色显示屏
CN207676061U (zh) * 2017-12-29 2018-07-31 张家港康得新光电材料有限公司 光场显示系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3876220A4 *

Also Published As

Publication number Publication date
EP3876220A4 (en) 2022-06-22
US20210360222A1 (en) 2021-11-18
EP3876220A1 (en) 2021-09-08
US11375177B2 (en) 2022-06-28
CN111386565A (zh) 2020-07-07

Similar Documents

Publication Publication Date Title
US8711062B2 (en) Display unit and display method
US7773160B2 (en) Image display system and method
KR101222975B1 (ko) 입체영상 표시장치
US5850269A (en) Liquid crystal display device wherein each scanning electrode includes three gate lines corresponding separate pixels for displaying three dimensional image
US20130335538A1 (en) Multiple viewpoint image display device
CN105892138B (zh) 透明液晶显示器
WO2011043100A1 (ja) 表示パネル、表示システム、携帯端末、電子機器
KR20040111041A (ko) 표시 유닛
KR100696926B1 (ko) 표시 장치 및 표시 장치를 제어하기 위한 방법
JP2007017768A (ja) 表示装置
TW201341915A (zh) 可切換二維與三維顯示模式之顯示裝置
JP4200056B2 (ja) 表示装置
US20100302136A1 (en) Method and apparatus for displaying three-dimensional stereo images viewable from different angles
JP3753763B2 (ja) 3次元画像を認識させる装置及びその方法
CN107742492A (zh) 透明显示系统及其显示方法
US20160291339A1 (en) Backlight apparatus and three-dimensional (3d) display apparatus including the same
KR20080060950A (ko) 입체영상표시장치와 이를 구동하는 방법
WO2020087261A1 (zh) 光场显示方法、装置、设备和记录介质
JP2011150363A (ja) 装置
US20220299770A1 (en) Display device and electronic apparatus
JP3853722B2 (ja) 表示装置
JP4407176B2 (ja) 表示装置
JP5674887B2 (ja) 装置
TWI427325B (zh) 三維影像的顯示方法及其顯示系統
KR101857370B1 (ko) 투명 3d 디스플레이 시스템 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18922086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018922086

Country of ref document: EP

Effective date: 20210531