WO2020082529A1 - 一种刚柔耦合仿生机械手及其手指的制备方法 - Google Patents

一种刚柔耦合仿生机械手及其手指的制备方法 Download PDF

Info

Publication number
WO2020082529A1
WO2020082529A1 PCT/CN2018/120252 CN2018120252W WO2020082529A1 WO 2020082529 A1 WO2020082529 A1 WO 2020082529A1 CN 2018120252 W CN2018120252 W CN 2018120252W WO 2020082529 A1 WO2020082529 A1 WO 2020082529A1
Authority
WO
WIPO (PCT)
Prior art keywords
finger
thumb
palm
ring
skeleton
Prior art date
Application number
PCT/CN2018/120252
Other languages
English (en)
French (fr)
Inventor
江励
刘乐章
唐黎明
张活俊
汤健华
黄辉
Original Assignee
五邑大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 五邑大学 filed Critical 五邑大学
Publication of WO2020082529A1 publication Critical patent/WO2020082529A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors

Definitions

  • the invention relates to the technical field of robots, in particular to a preparation method of a rigid-flexible bionic manipulator and its fingers.
  • rotary motors In a limited space, rotary motors have high speeds, low torques, and difficulty in production. To meet the grip requirements, the rotary motors used need to be equipped with speed reducers. Forming a unit to drive joints at low speed and high torque deflection, the overall structure is extremely complex. The structure of the traditional manipulator is more complicated when it realizes the movement of the double-freedom joint. Therefore, the traditional manipulator cannot achieve all degrees of freedom in a human-sized space. In addition, from the perspective of bionics, the human hand can change its shape under external force and adapt to the shape of the contacted object in the free state, and the traditional manipulator self-locks in the power-off state, which cannot achieve this function.
  • the present invention provides a method for preparing a rigid-flexible coupled bionic manipulator with high bionic degree, high flexibility, and strong adaptability, and its fingers.
  • a rigid-flexible coupled bionic manipulator including a manipulator palm, and a thumb, index finger, middle finger, ring finger, and little finger connected with the manipulator palm, the thumb, index finger, middle finger, ring finger, and little finger are all sleeved Equipped with a corresponding number of finger sleeves as finger joints;
  • the thumb, index finger, middle finger, ring finger, and little finger are made of flexible materials, and the inside of the thumb, index finger, middle finger, ring finger, and little finger are all hollow structures.
  • the hollow structure serves as an inflatable chamber.
  • the hollow inflation chambers of the thumb, index finger, middle finger, ring finger, and little finger are respectively connected to different inflation tubes provided on the palm of the manipulator, and the corresponding fingers are inflated through the corresponding inflation tubes, so that the curvature of the finger joints increases, so
  • the described thumb is also in drive connection with a thumb drive mechanism provided on the palm of the manipulator, and the thumb is driven to rotate toward or away from the palm of the manipulator by the thumb drive mechanism.
  • the palm of the robotic hand includes a palm skeleton.
  • the lower part of the front end of the palm skeleton is provided with four ring-shaped engaging portions for installing index fingers, middle fingers, ring fingers, and little fingers.
  • the right end of the palm skeleton is provided with a function Used to install the thumb slot.
  • the thumb includes a thumb body made of a flexible material, a thumb skeleton, and two thumb fingers, the thumb body is arranged on the thumb skeleton through a thumb clamp, and the thumb skeleton is stuck on
  • the card slot is connected with the thumb drive mechanism, and the thumb body is provided with two thumb finger sleeves, and the two thumb finger sleeves are used as thumb joints, and the thumb body is a hollow structure.
  • the inflation chamber of the thumb which is in communication with the corresponding inflation tube.
  • the index finger includes an index finger body made of a flexible material, and three index finger sleeves sleeved on the index finger body.
  • the index finger sleeve is used as the index finger joint, and the index finger body passes through the index finger clamp and the palm One of the ring-shaped clamping parts on the skeleton is connected, and the index finger body is a hollow structure, which serves as an inflation chamber of the index finger, and the inflation chamber is in communication with the corresponding inflation tube.
  • the middle finger includes a middle finger body made of flexible material, and three middle finger finger sleeves sleeved on the middle finger body.
  • the middle finger finger sleeve is used as a middle finger joint.
  • the middle finger body is a hollow structure, and the hollow structure serves as an inflation chamber of the middle finger, and the inflation chamber communicates with the corresponding inflation tube.
  • the ring finger includes a ring finger body made of a flexible material, and three ring finger sleeves sleeved on the ring finger body.
  • the ring finger finger sleeve is used as a ring finger joint.
  • the hollow structure is used as the ring finger inflation chamber, and the inflation chamber communicates with the corresponding inflation tube.
  • the small thumb includes a small thumb body made of a flexible material, and three small thumb finger sleeves sleeved on the small thumb body, and the small thumb finger sleeve is used as a small thumb joint, and the small thumb is arranged on the palm through the small thumb clamp
  • the small thumb body is a hollow structure, and the hollow structure serves as an inflation chamber of the little thumb, and the inflation chamber communicates with the corresponding inflation tube.
  • the thumb drive mechanism includes a thumb drive motor, a worm, a worm wheel, and a rotating shaft, the thumb drive motor is disposed on the palm skeleton through a motor base, and the thumb drive motor is engaged with the worm wheel through the worm, the The worm gear is arranged on the rotating shaft, one end of the rotating shaft is arranged on the palm skeleton through the bearing seat, and the other end of the rotating shaft is interference-connected with the thumb skeleton.
  • the palm of the mechanical hand further includes a palm protective layer provided on the palm skeleton, and a buffer layer provided on the palm protective layer.
  • the palm protective layer can also increase Flexible, while the palm protection layer also has a function of increasing friction and decompression buffering, the palm protection layer is provided with a plurality of convex points, and the buffer layer is provided with a plurality of projections for the palm protection layer Point-through holes, the buffer layer is installed on the palm protection layer through the cooperation of the bumps and the through holes.
  • thumb skeleton is also provided with a thumb skeleton protective sleeve made of flexible material.
  • the palm of the mechanical hand further includes a palm skeleton cover provided at the lower end of the palm skeleton.
  • the inflatable tube is a PU tube.
  • the thumb body, index finger body, middle finger body, ring finger body, and little finger body are all made of silica gel, and the thumb body, index finger body, middle finger body, ring finger body, and little finger body are from inside to outside. It includes an inner finger layer, a restriction layer, a fiber-reinforced thread, and an outer finger layer, and the outer pressure layer of the finger is also embedded with a flexible pressure sensor, wherein the restriction layer is used to restrict the expansion of the inner finger layer, and the fiber-reinforced thread is used In order to enhance the flexibility of the finger and avoid excessive expansion, the flexible pressure sensor is used to detect the pressure of the finger, thereby controlling the amount of inflation of the finger and the degree of bending of the finger.
  • the buffer layer is made of soft material, on the one hand, it can make the palm softer, and on the other hand, it supports the palm protective layer.
  • the present invention also provides a method for preparing a flexible rigid-flexibly coupled bionic manipulator finger, including the following steps:
  • the worm wheel is driven by the thumb drive motor to drive the worm wheel to rotate, and then the thumb skeleton is rotated in the direction of the palm, so that the thumb rotates around the rotation axis to the specified position, and then inflates each finger through the inflation tube.
  • the inflation chamber of the finger follows the air pressure. When it is raised, the flexibility of the joints of the fingers increases. When the fingers wrap the object, the objects will hinder the bending of the fingers to achieve gripping, and the pressure is detected by the flexible pressure sensor to ensure the air supply.
  • the number of fingers movement and the bending sequence can be controlled to achieve the optimal gripping effect.
  • the rigid-flexible bionic manipulator provided by the invention has good practicability, and has a shape and function very close to the human hand; in addition, the finger is made of silicone material, which is a soft material, has great flexibility, and bends to a certain extent The effect is more superior than manpower;
  • the control of the present invention is relatively simple, it can grab objects of various shapes and sizes without scratching the surface of the objects, especially grabbing fragile products has outstanding advantages.
  • the invention has simple structure and control, high safety, and the parts in contact with the objects are all silica gel, which not only avoids damage to the grasped objects but also increases friction, makes the grasping effect better, and has absolute advantages in grasping. The advantages.
  • the silicone is safe and non-toxic
  • the invention can be installed on a service robot to safely and reliably deliver tea and water, prepare food, and can bring no discomfort and harm to the human body in the field of medical rehabilitation. Helping patients with back massage and assisting rehabilitation training, installed on patients with physical disabilities can make it easier for them to return to normal life.
  • FIG. 1 is a schematic structural diagram 1 of the robot of the present invention.
  • FIG. 2 is a schematic structural view 2 of the manipulator of the present invention.
  • FIG. 3 is a schematic structural view of the palm of the robot hand of the present invention.
  • FIG. 4 is a schematic structural view of the palm protective layer of the present invention.
  • FIG. 5 is a schematic diagram of the structure of the buffer layer of the present invention.
  • FIG. 6 is a schematic structural view of the thumb skeleton of the present invention.
  • FIG. 7 is a schematic structural view of the thumb drive mechanism of the present invention.
  • FIG. 8 is a schematic cross-sectional view of a finger of the utility model
  • FIG. 9 is a schematic diagram of a robot grasping an object of the present invention.
  • a rigid-flexible bionic robot includes a robot palm 1, a thumb 2, an index finger 3, a middle finger 4, a ring finger 5, and a small thumb 6 connected to the robot palm 1.
  • the thumb 2 The index finger 3, the middle finger 4, the ring finger 5, and the little finger 6 are all covered with a corresponding number of finger sleeves as finger joints;
  • the thumb 2, index finger 3, middle finger 4, ring finger 5, and little finger 6 are made of flexible materials, preferably silicone, and the inside of the thumb 2, index finger 3, middle finger 4, ring finger 5, and little finger 6 are all It is a hollow structure, which serves as an inflation chamber.
  • the hollow inflation chambers of the thumb 2, index finger 3, middle finger 4, ring finger 5, and little finger 6 are respectively connected to different inflation tubes 8 provided on the palm 1 of the robot hand
  • the inflation tube 8 is preferably a PU tube, and the corresponding fingers are inflated through the corresponding inflation tube 8 to increase the curvature of the finger joints and realize the grip of the object.
  • the thumb 2 is also provided on the palm 1 of the robot hand
  • the thumb drive mechanism 7 is connected to the thumb drive mechanism, and the thumb drive mechanism 7 drives the thumb 2 to rotate toward or away from the palm 1 of the robot.
  • the mechanical palm 1 includes a palm skeleton 11, a palm protective layer 12, and a buffer layer 13 provided on the palm protective layer 12.
  • the lower part of the front end of the palm skeleton 11 is provided with four A ring-shaped engaging portion 14 for installing the index finger 3, the middle finger 4, the ring finger 5, and the little finger 6 is provided with a card slot 15 for accommodating the thumb 2 at the right end of the palm frame 11, and the palm protective layer 12 is provided on the palm On the frame 11, the palm protective layer 12 can increase the flexibility of the palm frame 11 in addition to protecting the product being grasped.
  • the palm protective layer 12 also has the effect of increasing friction and decompression buffering.
  • the palm protection layer 12 is provided with a plurality of bumps 16. As shown in FIG.
  • the buffer layer 13 is provided with a plurality of through holes 17 for connecting with the bumps 16 on the palm protection layer 12.
  • the buffer layer 13 is installed on the palm protection layer 12 through the cooperation of the bumps 16 and the through holes 17.
  • the buffer layer 13 is made of a soft material, on the one hand, it can make the palm softer, and on the other hand, the palm
  • the protective layer 12 plays a supporting role, and the palm skeleton 1 The lower end of 1 is also covered with a palm skeleton cover.
  • the thumb 2 includes a thumb body 21 made of a flexible material, a thumb skeleton 22, and two thumb finger sleeves 23, wherein the structure of the thumb skeleton 22 is shown in FIG. 6, and the thumb
  • the body 21 is arranged on the thumb skeleton 22 through a thumb clamp.
  • the thumb skeleton 22 is caught in the slot 15 and is in drive connection with the thumb drive mechanism 7.
  • the thumb skeleton 22 is also provided with a silicone material
  • the thumb skeleton protective sleeve 24, the thumb body 21 is provided with two thumb finger sleeves 23, the distance between the two thumb finger sleeves is 5mm, and the two thumb finger sleeves 23 are used as thumb joints, and the The thumb body 21 has a hollow structure.
  • the hollow structure serves as an inflation chamber of the thumb 2, and the inflation chamber communicates with a corresponding inflation tube 8, wherein the inflation tube 8 is a PU tube.
  • the index finger 3 includes an index finger body 31 made of a flexible material, and three index finger sleeves 32 sleeved on the index finger body 31.
  • the distance between the three index finger sleeves 32 is 5 mm .
  • the index finger sleeve 32 is used as the index finger joint, the index finger body 31 is connected to one of the annular clamping portions 14 on the palm skeleton 11 through the index finger clamp 33, and the index finger body 31 is a hollow structure, which is a hollow structure
  • the inflation chamber of the index finger 3 the inflation chamber is in communication with the corresponding inflation tube 8, wherein the inflation tube 8 is a PU tube.
  • the middle finger 4 includes a middle finger body 41 made of a flexible material, and three middle finger finger sleeves 42 sleeved on the middle finger body 41.
  • the middle finger finger sleeve 42 serves as a middle finger joint, and the middle finger body 41 passes the middle finger card.
  • the hoop 43 is disposed in one of the annular engaging portions 14 on the palm frame 11, and the middle finger body 41 is a hollow structure, which serves as the inflation chamber of the middle finger 4.
  • the inflation chamber and the corresponding inflation tube 8 Communicate, wherein the inflation tube 8 is a PU tube.
  • the ring finger 5 includes a ring finger body 51 made of a flexible material, and three ring finger sleeves 52 sleeved on the ring finger body 51.
  • the ring finger fingers 52 are used as ring finger joints.
  • the ring finger body 51 passes through the ring finger card.
  • the hoop 53 is disposed in one of the ring-shaped engaging portions 14 on the palm frame 11, and the ring finger body 51 is a hollow structure.
  • the hollow structure serves as an inflation chamber of the ring finger 5.
  • the inflation chamber and the corresponding inflation tube 8 Communicate, wherein the inflation tube 8 is a PU tube.
  • the small thumb 6 includes a small thumb body 61 made of a flexible material, and three small thumb finger sleeves 62 sleeved on the small thumb body 61.
  • the small finger thumb sleeve 62 serves as a small thumb joint.
  • the small thumb body 61 is disposed in one of the ring-shaped engaging portions 14 on the palm frame 11 through the small thumb clamp 63, and the small thumb body 61 is a hollow structure, which serves as an inflation chamber of the small thumb 6, and the inflation chamber Communicate with the corresponding inflation tube 8, wherein the inflation tube 8 is a PU tube.
  • the thumb drive mechanism 7 includes a thumb drive motor 71, a worm 72, a worm wheel 73, and a rotating shaft 74.
  • the thumb drive motor 71 is disposed on the palm frame 11 through a motor base, and the thumb
  • the driving motor 71 is meshed with the worm wheel 73 through the worm 72, the worm wheel 73 is disposed on the rotating shaft 74, one end of the rotating shaft 74 is disposed on the palm frame 11 through the bearing housing 75, and the other end of the rotating shaft 74 is connected with the thumb frame 22 Interference connection.
  • the thumb body 21, the index finger body 31, the middle finger body 41, the ring finger body 51, and the little thumb body 61 are all made of silica gel.
  • the thumb body 21, index finger body 31, middle finger body 41, The ring finger body 51 and the little finger body 61 include an inner finger layer 81, a restriction layer 82, a fiber-reinforced wire 83, and an outer finger layer 84 from inside to outside, and a flexible pressure sensor 85 is also embedded on the outer finger layer 84, wherein , The limiting layer 82 is used to limit the expansion of the inner layer 81 of the finger, the fiber-reinforced wire 83 is used to enhance the flexibility of the finger to avoid excessive expansion, and the flexible pressure sensor 85 is used to detect the pressure of the finger, thereby controlling the amount of inflation to the finger To control the degree of bending of the finger.
  • the preparation of flexible fingers includes the following steps:
  • the flexible pressure sensor 85 is placed in the groove reserved on the outer layer 84 of the finger, and the finger sleeve is set on the finger at a distance of 5 mm as the joint of the finger, and the corresponding inflation tube is installed on the finger.
  • the thumb drive motor 7 drives the worm 72 to drive the worm wheel 73 to rotate, which in turn drives the thumb skeleton 22 to rotate in the palm direction, so that the thumb 2 rotates around the rotating shaft 74 to a specified position, and then inflate each finger through the inflation tube 8
  • the flexibility of the joint of the finger increases.
  • the object will hinder the bending of the finger to achieve gripping, and the pressure is detected by the flexible pressure sensor 85 to ensure the air supply.
  • the number of fingers movement and the bending sequence can be controlled to achieve the optimal gripping effect.
  • the thumb skeleton 22 rotates by a certain angle with the rotation shaft 74 driven by the thumb drive motor 71, and then inflates the middle finger 4, the index finger 3, and the thumb 2 in turn, because the middle finger 4
  • the thumb 2 independently bears the support function in one direction, so it is finally bent; these three fingers are driven by the air to bend, wrap the object, and then pass the flexible pressure sensor 85 Feedback to control the degree of grip and prevent objects from slipping;
  • Each finger has the same bending movement principle, and it can grasp objects of different shapes like human hands. This is because the bending degree of the fingers is not fixed. It can be passively changed according to the grasped object. Only three fingers are needed when grabbing some objects Working together, according to the actual situation, you can selectively control the bending of the air supply of the finger. In addition, adjusting the angle of the thumb can make various gestures like humans.

Abstract

一种刚柔耦合仿生机械手及其手指的制备方法,包括机械手手掌(1)、以及与机械手手掌(1)连接的拇指(2)、食指(3)、中指(4)、无名指(5)、小拇指(6),拇指(2)、食指(3)、中指(4)、无名指(5)、小拇指(6)上均套设有相应数量的指套(23,32,42,52,62)作为手指关节;拇指(2)、食指(3)、中指(4)、无名指(5)、小拇指(6)均采用柔性材料浇注制成,并且拇指(2)、食指(3)、中指(4)、无名指(5)、小拇指(6)的内部均为中空结构,拇指(2)还与设置在机械手手掌(1)上的拇指驱动机构(7)传动连接,所提供的刚柔耦合仿生机械手实用性好,而且有着非常接近人手的形状与功能;另外手指是采用硅胶材料制成,属于软材料,具有很大的灵活性,在一定程度上弯曲效果比人手更优越;特别是抓取易碎品具有突出的优势,安全性高,实用性强。

Description

一种刚柔耦合仿生机械手及其手指的制备方法 技术领域
本发明涉及机器人技术领域,尤其是一种刚柔耦合仿生机械手及其手指的制备方法。
背景技术
随着技术的快速发展,机器人也得到了快速的发展,机械手作为机器人的执行末端,直接决定了现有机器人的工作质量,现有机械手存在结构复杂、灵活度差、安全性和适应性差的缺点,这些缺点使得现有的机械手在一些领域的使用受到限制。
现有的机械手一般都是采用旋转电机驱动关节旋转实现动作,在有限的空间内,旋转电机转速高、转矩小、制作难度大,为达到握力要求,所采用的旋转电机还需加配减速器形成机组以驱动关节低转速、大扭矩偏转,整体结构极为复杂。传统机械手在实现双自由度关节的动作时,结构更为复杂。因此传统机械手在人手大小的空间内无法实现全部自由度的动作。另外从仿生学角度来看,人手在自由状态下能够在外力作用下改变形状并适应所接触的物体形状,而传统的机械手在断电状态下自锁,无法实现这一功能。
由于仿生软体机械手具有较高的安全性,受到科研人员的重点研究,这种软体机械手可以根据物体的形状和大小主动改变或者被动改变自己的形态从而很好地包覆物体,因此在形状不规则物体,特别是易碎物品抓持上具有很好的优势,但是,现有的软体机械手存在功能相对较单一,灵活性较低,无法实现复杂的动作的缺点,不能抓取不同形状的物体,与人手的仿生程度非常低。
发明内容
针对现有技术的不足,本发明提供一种仿生程度高、灵活性高、适应性强的刚柔耦合仿生机械手及其手指的制备方法。
本发明的技术方案为:一种刚柔耦合仿生机械手,包括机械手手掌、以及与机械手手掌连接的拇指、食指、中指、无名指、小拇指,所述的拇指、食指、中指、无名指、小拇指上均套设有相应数量的指套作为手指关节;
所述的拇指、食指、中指、无名指、小拇指均采用柔性材料浇注制成,并且所述的拇指、食指、中指、无名指、小拇指的内部均为中空结构,该中空结构作为充气腔室,所述拇指、食指、中指、无名指、小拇指的中空的充气腔室分别与设置在机械手手掌上的不同的充气管相连通,通过相应的充气管给相应的手指充气,使得手指关节处弯曲度增加,所述的拇指还 与设置在机械手手掌上的拇指驱动机构传动连接,通过拇指驱动机构驱动拇指向机械手手掌方向或远离机械手手掌方向转动。
进一步的,所述的机械手手掌包括手掌骨架,所述的手掌骨架的前端下部设置有4个用于安装食指、中指、无名指、小拇指的环形卡接部,所述的手掌骨架的右端开设有一用于安装拇指的卡槽。
进一步的,所述的拇指包括由柔性材料制成的拇指本体、拇指骨架、以及2个拇指指套,所述的拇指本体通过拇指卡箍设置在拇指骨架上,所述的拇指骨架卡设在卡槽内并与拇指驱动机构传动连接,所述的拇指本体上套设有2个拇指指套,通过2个拇指指套作为拇指关节,并且所述的拇指本体为中空结构,该中空结构作为拇指的充气腔室,所述的充气腔室与相应的充气管相连通。
进一步的,所述的食指包括由柔性材料制成的食指本体、以及套设在食指本体上的3个食指指套,以食指指套作为食指关节,所述的食指本体通过食指卡箍与手掌骨架上的其中一个环形卡接部连接,并且所述的食指本体为中空结构,该中空结构作为食指的充气腔室,所述的充气腔室与相应的充气管相连通。
进一步的,所述的中指包括由柔性材料制成的中指本体,以及套设在中指本体上的3个中指指套,通过中指指套作为中指关节,所述的中指本体通过中指卡箍设置在手掌骨架上的其中一个环形卡接部内,并且所述的中指本体为中空结构,该中空结构作为中指的充气腔室,该充气腔室与相应的充气管相连通。
进一步的,所述的无名指包括由柔性材料制成的无名指本体,以及套设在无名指本体上的3个无名指指套,通过无名指指套作为无名指关节,所述的无名指本体通过无名指卡箍设置在手掌骨架上的其中一个环形卡接部内,并且所述的无名指本体为中空结构,该中空结构作为无名指的充气腔室,该充气腔室与相应的充气管相连通。
进一步的,所述的小拇指包括由柔性材料制成的小拇指本体,以及套设在小拇指本体上的3个小拇指指套,通过小拇指指套作为小拇指关节,所述的小拇指通过小拇指卡箍设置在手掌骨架上的其中一个环形卡接部内,并且所述的小拇指本体为中空结构,该中空结构作为小拇指的充气腔室,该充气腔室与相应的充气管相连通。
进一步的,所述的拇指驱动机构包括拇指驱动电机、蜗杆、蜗轮、转轴,所述的拇指驱动电机通过电机座设置在手掌骨架上,并且所述的拇指驱动电机通过蜗杆与蜗轮啮合,所述的蜗轮设置在转轴上,所述转轴的一端通过轴承座设置在手掌骨架上,所述的转轴的另一端与拇指骨架过盈连接。
进一步的,所述的机械手手掌还包括设置在手掌骨架上的手掌保护层、以及设置在手掌 保护层上的缓冲层,该手掌保护层除了保护被抓取的产品外,还可以增加手掌骨架的柔性,同时手掌保护层还具有增加摩擦力和减压缓冲作用,所述的手掌保护层上设置有多个凸点,所述的缓冲层上开设有多个用于与手掌保护层上的凸点连接的通孔,所述的缓冲层通过凸点和通孔的相互配合安装在手掌保护层上。
进一步的,所述的拇指骨架上还设置有由柔性材料制成的拇指骨架保护套。
进一步的,所述的机械手手掌还包括设置在手掌骨架下端的手掌骨架盖。
进一步的,所述的充气管为PU管。
进一步的,所述的拇指本体、食指本体、中指本体、无名指本体、小拇指本体均采用硅胶浇注而成,并且所述的拇指本体、食指本体、中指本体、无名指本体、小拇指本体从内至外均包括手指内层、限制层、纤维增强线、手指外层,并且所述的手指外层上还镶嵌有柔性压力传感器,其中,限制层用于限制手指内层膨胀,所述的纤维增强线用于增强手指的弯曲性,避免过度膨胀,柔性压力传感器用于检测手指的压力,从而控制给手指的充气量,控制手指的弯曲程度。
进一步的,所述的缓冲层采用软材料制成,一方面可以让掌心更柔软,另一方面对手掌保护层起到支撑作用。
其中,本发明还提供一种柔刚柔耦合仿生机械手手指的制备方法,包括以下步骤:
S1)、将硅胶材料浇注到相应的模具中,制备出一个半圆环形的手指内层;
S2)、待手指内层凝固后在其上铺设一层限制层,然后在手指内层外表面以3mm的间隙缠绕一圈纤维增强线;
S3)、然后再浇注一层手指外层进行包裹,并采用硅胶对其进行封口处理;
S4)、将柔性压力传感器放置在手指外层预留的凹槽内,以及在手指上以5mm的间距套设指套作为手指的关节,并在手指上安装相应的充气管。
工作原理:通过拇指驱动电机驱动蜗杆带动蜗轮旋转,进而带动拇指骨架向手掌方向旋转,使得拇指绕转轴转动到指定位置后,然后通过充气管给各个手指充气,手指的充气腔室随着气压的升高,手指的关节处弯曲性增加,当手指包裹住物体时,物体会阻碍手指的弯曲而实现握紧,并通过柔性压力传感器检测压力,保证供气量。另外,可根据抓取物体的形状、尺寸来控制手指的运动数量和弯曲的先后顺序,实现最优抓取效果。
本发明的有益效果为:
1、本发明提供的刚柔耦合仿生机械手实用性好,而且有着非常接近人手的形状与功能;另外手指是采用硅胶材料制成,属于软材料,具有很大的灵活性,在一定程度上弯曲效果比人手更优越;
2、本发明控制相对简单,它能抓取各种形状和大小的物体而不会刮伤物体表面,特别是抓取易碎品具有突出的优势。
3、本发明结构和控制简单,安全性高,与物体接触的部位皆为硅胶,既避免了对抓取物体的损害又增加了摩擦力,使得抓取效果更好,在抓取方面有着绝对的优势。
4、适用范围广,由于硅胶安全无毒害,此发明安装在服务型机器人上可以安全可靠地端茶递水,准备食物,在医疗康复领域可以在不给人体带来任何不适和伤害的前提下帮病人捶背按摩,辅助康复训练,安装在肢体残缺患者身上可以让他们更容易恢复正常生活。
附图说明
图1为本发明机械手的结构示意图一;
图2为本发明机械手的结构示意图二;
图3为本发明机械手手掌的结构示意图;
图4为本发明手掌保护层的结构示意图;
图5为本发明缓冲层的结构示意图;
图6为本发明拇指骨架的结构示意图;
图7为本发明的拇指驱动机构的结构示意图;
图8为本实用新型手指的截面示意图;
图9为本发明机械手抓取物体的示意图。
图中,1-机械手手掌,2-拇指,3-食指,4-中指,5-无名指,6-小拇指,7-拇指驱动机构,8-充气管,11-手掌骨架,12-手掌保护层,13-缓冲层,14-环形卡接部,15-卡槽,16-凸点,17-通孔,21-拇指本体,22-拇指骨架,23-拇指指套,24-拇指骨架保护套,31-食指本体,32-食指指套,33-食指卡箍,41-中指本体,42-中指指套,43-中指卡箍,51-无名指本体,52-无名指指套,53-无名指卡箍,61-小拇指本体,62-小拇指指套,63-小拇指卡箍,71-拇指驱动电机,72-蜗杆,73-蜗轮,74-转轴,75-轴承座,81-手指内层,82-限制层,83-纤维增强线,84-手指外层,85-柔性压力传感器。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步说明:
如图1和图2所示,一种刚柔耦合仿生机械手,包括机械手手掌1、以及与机械手手掌1连接的拇指2、食指3、中指4、无名指5、小拇指6,所述的拇指2、食指3、中指4、无名指5、小拇指6上均套设有相应数量的指套作为手指关节;
所述的拇指2、食指3、中指4、无名指5、小拇指6均采用柔性材料浇注制成,优选为硅胶,并且所述的拇指2、食指3、中指4、无名指5、小拇指6的内部均为中空结构,该中空结构作为充气腔室,所述拇指2、食指3、中指4、无名指5、小拇指6的中空的充气腔室分别与设置在机械手手掌1上的不同的充气管8相连通,所述的充气管8优选为PU管,通过相应的充气管8给相应的手指充气,使得手指关节处弯曲度增加,实现物体的抓握,所述的拇指2还与设置在机械手手掌1上的拇指驱动机构7传动连接,通过拇指驱动机构7驱动拇指2向机械手手掌1方向或远离机械手手掌1方向转动。
如图3所示,所述的机械手手掌1包括手掌骨架11、手掌保护层12、以及设置在手掌保护层12上的缓冲层13,所述的手掌骨架11的前端的下部设置有4个用于安装食指3、中指4、无名指5、小拇指6的环形卡接部14,所述的手掌骨架11的右端开设有一用于容纳拇指2的卡槽15,所述的手掌保护层12设置在手掌骨架11上,该手掌保护层12除了保护被抓取的产品外,还可以增加手掌骨架11的柔性,同时手掌保护层12还具有增加摩擦力和减压缓冲作用,如图4所示,所述的手掌保护层12上设置有多个凸点16,如图5所示,所述的缓冲层13上开设有多个用于与手掌保护层12上的凸点16连接的通孔17,所述的缓冲层13通过凸点16和通孔17的相互配合安装在手掌保护层12上,所述的缓冲层13采用软材料制成,一方面可以让掌心更柔软,另一方面对手掌保护层12起到支撑作用,所述的手掌骨架11的下端还盖设有手掌骨架盖。
如图2所示,所述的拇指2包括由柔性材料制成的拇指本体21、拇指骨架22、以及2个拇指指套23,其中拇指骨架22的结构如图6所示,所述的拇指本体21通过拇指卡箍设置在拇指骨架22上,所述的拇指骨架22卡设在卡槽15内并与拇指驱动机构7传动连接,所述的拇指骨架22上还设置有由硅胶材料制成的拇指骨架保护套24,所述的拇指本体21上套设有2个拇指指套23,2个拇指指套之间的间距为5mm,通过2个拇指指套23作为拇指关节,并且所述的拇指本体21为中空结构,该中空结构作为拇指2的充气腔室,所述的充气腔室与相应的充气管8相连通,其中,所述的充气管8为PU管。
如图2所示,所述的食指3包括由柔性材料制成的食指本体31、以及套设在食指本体31上的3个食指指套32,3个食指指套32之间的间距为5mm,以食指指套32作为食指关节,所述的食指本体31通过食指卡箍33与手掌骨架11上的其中一个环形卡接部14连接,并且所述的食指本体31为中空结构,该中空结构作为食指3的充气腔室,所述的充气腔室与相应的充气管8相连通,其中,所述的充气管8为PU管。
所述的中指4包括由柔性材料制成的中指本体41,以及套设在中指本体41上的3个中指指套42,通过中指指套42作为中指关节,所述的中指本体41通过中指卡箍43设置在手 掌骨架11上的其中一个环形卡接部14内,并且所述的中指本体41为中空结构,该中空结构作为中指4的充气腔室,该充气腔室与相应的充气管8相连通,其中,所述的充气管8为PU管。
所述的无名指5包括由柔性材料制成的无名指本体51,以及套设在无名指本体51上的3个无名指指套52,通过无名指指52套作为无名指关节,所述的无名指本体51通过无名指卡箍53设置在手掌骨架11上的其中一个环形卡接部14内,并且所述的无名指本体51为中空结构,该中空结构作为无名指5的充气腔室,该充气腔室与相应的充气管8相连通,其中,所述的充气管8为PU管。
如图2所示,所述的小拇指6包括由柔性材料制成的小拇指本体61,以及套设在小拇指本体61上的3个小拇指指套62,通过小拇指指套62作为小拇指关节,所述的小拇指本体61通过小拇指卡箍63设置在手掌骨架11上的其中一个环形卡接部14内,并且所述的小拇指本体61为中空结构,该中空结构作为小拇指6的充气腔室,该充气腔室与相应的充气管8相连通,其中,所述的充气管8为PU管。
如图7所示,所述的拇指驱动机构7包括拇指驱动电机71、蜗杆72、蜗轮73、转轴74,所述的拇指驱动电机71通过电机座设置在手掌骨架11上,并且所述的拇指驱动电机71通过蜗杆72与蜗轮73啮合,所述的蜗轮73设置在转轴74上,所述转轴74的一端通过轴承座75设置在手掌骨架11上,所述的转轴74的另一端与拇指骨架22过盈连接。
所述的拇指本体21、食指本体31、中指本体41、无名指本体51、小拇指本体61均采用硅胶浇注而成,如图8所示,所述的拇指本体21、食指本体31、中指本体41、无名指本体51、小拇指本体61从内至外均包括手指内层81、限制层82、纤维增强线83、手指外层84,并且所述的手指外层84上还镶嵌有柔性压力传感器85,其中,限制层82用于限制手指内层81膨胀,所述的纤维增强线83用于增强手指的弯曲性,避免过度膨胀,柔性压力传感器85用于检测手指的压力,从而控制给手指的充气量,控制手指的弯曲程度。
其中柔性手指的制备包括以下步骤:
S1)、将硅胶材料浇注到相应的模具中,制备出一个半圆环形的手指内层81;
S2)、待手指内层81凝固后在其上铺设一层限制层82,然后在手指内层81外表面以3mm的间隙缠绕一圈纤维增强线83;
S3)、然后再浇注一层手指外层84进行包裹,并采用硅胶对其进行封口处理;
S4)、将柔性压力传感器85放置在手指外层84预留的凹槽内,以及在手指上以5mm的间距套设指套作为手指的关节,并在手指上安装相应的充气管。
工作原理:通过拇指驱动电机7驱动蜗杆72带动蜗轮73旋转,进而带动拇指骨架22向 手掌方向旋转,使得拇指2绕转轴74转动到指定位置后,然后通过充气管8给各个手指充气,手指的充气腔室随着气压的升高,手指的关节处弯曲性增加,当手指包裹住物体时,物体会阻碍手指的弯曲而实现握紧,并通过柔性压力传感器85检测压力,保证供气量。另外,可根据抓取物体的形状、尺寸来控制手指的运动数量和弯曲的先后顺序,实现最优抓取效果。
如图所示9,当机械手需要抓取这个物体时,拇指骨架22随转轴74在拇指驱动电机71的带动下转动一定角度,然后依次对中指4、食指3、拇指2进行充气,由于中指4最长,优先弯曲包裹物体拉近手掌和物体的距离,拇指2独立承担一个方向上的支持作用,所以最后弯曲;这三根手指在气的驱动下弯曲、包裹住物体,然后通过柔性压力传感器85反馈来控制握紧程度,防止物体滑落;
各根手指弯曲运动原理相同,和人手一样可以抓取不同的形状的物体,这是因为手指的弯曲程度不是一成不变的,可以根据抓取的物体被动改变,在抓取一些物体时只需要三根手指一起工作,针对不同物体可以根据实际情况有选择的对手指供气进行控制弯曲,另外,调整拇指角度可以和人一样做出各种手势动作。
上述实施例和说明书中描述的只是说明本发明的原理和最佳实施例,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。

Claims (11)

  1. 一种刚柔耦合仿生机械手,包括机械手手掌、以及与机械手手掌连接的拇指、食指、中指、无名指、小拇指,其特征在于:所述的拇指、食指、中指、无名指、小拇指上均套设有相应数量的指套作为手指关节;
    所述的拇指、食指、中指、无名指、小拇指均采用柔性材料浇注制成,并且所述的拇指、食指、中指、无名指、小拇指的内部均为中空结构,该中空结构作为充气腔室,所述拇指、食指、中指、无名指、小拇指的中空的充气腔室分别与设置在机械手手掌上的不同的充气管相连通,通过相应的充气管给相应的手指充气,使得手指关节处弯曲度增加,所述的拇指还与设置在机械手手掌上的拇指驱动机构传动连接。
  2. 根据权利要求1所述的一种刚柔耦合仿生机械手,其特征在于:所述的机械手手掌包括手掌骨架,所述的手掌骨架的前端下部设置有4个用于安装食指、中指、无名指、小拇指的环形卡接部,所述的手掌骨架的右端开设有一用于安装拇指的卡槽。
  3. 根据权利要求1所述的一种刚柔耦合仿生机械手,其特征在于:所述的拇指包括由柔性材料制成的拇指本体、拇指骨架、以及2个拇指指套,所述的拇指本体通过拇指卡箍设置在拇指骨架上,所述的拇指骨架卡设在卡槽内并与拇指驱动机构传动连接,所述的拇指本体上套设有2个拇指指套,通过2个拇指指套作为拇指关节,并且所述的拇指本体为中空结构,该中空结构作为拇指的充气腔室,所述的充气腔室与相应的充气管相连通。
  4. 根据权利要求1所述的一种刚柔耦合仿生机械手,其特征在于:所述的食指包括由柔性材料制成的食指本体、以及套设在食指本体上的3个食指指套,以食指指套作为食指关节,所述的食指本体通过食指卡箍与手掌骨架上的其中一个环形卡接部连接,并且所述的食指本体为中空结构,该中空结构作为食指的充气腔室,所述的充气腔室与相应的充气管相连通;
    所述的中指包括由柔性材料制成的中指本体,以及套设在中指本体上的3个中指指套,通过中指指套作为中指关节,所述的中指本体通过中指卡箍设置在手掌骨架上的其中一个环形卡接部内,并且所述的中指本体为中空结构,该中空结构作为中指的充气腔室,该充气腔室与相应的充气管相连通;
    所述的无名指包括由柔性材料制成的无名指本体,以及套设在无名指本体上的3个无名指指套,通过无名指指套作为无名指关节,所述的无名指本体通过无名指卡箍设置在手掌骨架上的其中一个环形卡接部内,并且所述的无名指本体为中空结构,该中空结构作为无名指的充气腔室,该充气腔室与相应的充气管相连通;
    所述的小拇指包括由柔性材料制成的小拇指本体,以及套设在小拇指本体上的3个小拇指指套,通过小拇指指套作为小拇指关节,所述的小拇指通过小拇指卡箍设置在手掌骨架上的其中一个环形卡接部内,并且所述的小拇指本体为中空结构,该中空结构作为小拇指的充 气腔室,该充气腔室与相应的充气管相连通。
  5. 根据权利要求1所述的一种刚柔耦合仿生机械手,其特征在于:所述的拇指驱动机构包括拇指驱动电机、蜗杆、蜗轮、转轴,所述的拇指驱动电机通过电机座设置在手掌骨架上,并且所述的拇指驱动电机通过蜗杆与蜗轮啮合,所述的蜗轮设置在转轴上,所述转轴的一端通过轴承座设置在手掌骨架上,所述的转轴的另一端与拇指骨架过盈连接。
  6. 根据权利要求2所述的一种刚柔耦合仿生机械手,其特征在于:所述的机械手手掌还包括设置在手掌骨架上的手掌保护层、以及设置在手掌保护层上的缓冲层,所述的手掌保护层上设置有多个凸点,所述的缓冲层上开设有多个用于与手掌保护层上的凸点连接的通孔,所述的缓冲层通过凸点和通孔的相互配合安装在手掌保护层上。
  7. 根据权利要求6所述的一种刚柔耦合仿生机械手,其特征在于:所述的机械手手掌还包括设置在手掌骨架下端的手掌骨架盖。
  8. 根据权利要求3或5所述的一种刚柔耦合仿生机械手,其特征在于:所述的拇指骨架上还设置有由柔性材料制成的拇指骨架保护套。
  9. 根据权利要求3所述的一种刚柔耦合仿生机械手,其特征在于:所述的拇指本体采用硅胶浇注而成,并且所述的从内至外均包括手指内层、限制层、纤维增强线、手指外层,并且所述的手指外层上还镶嵌有柔性压力传感器,其中,限制层用于限制手指内层膨胀,所述的纤维增强线用于增强手指的弯曲性,避免过度膨胀,柔性压力传感器用于检测手指的压力。
  10. 根据权利要求4所述的一种刚柔耦合仿生机械手,其特征在于:
    所述的食指本体、中指本体、无名指本体、小拇指本体均采用硅胶浇注而成,并且所述的食指本体、中指本体、无名指本体、小拇指本体从内至外均包括手指内层、限制层、纤维增强线、手指外层,并且所述的手指外层上还镶嵌有柔性压力传感器,其中,限制层用于限制手指内层膨胀,所述的纤维增强线用于增强手指的弯曲性,避免过度膨胀,柔性压力传感器用于检测手指的压力。
  11. 一种刚柔耦合仿生机械手手指的制备方法,包括以下步骤:S1)、将硅胶材料浇注到相应的模具中,制备出一个半圆环形的手指内层;
    S2)、待手指内层凝固后在其上铺设一层限制层,然后在手指内层外表面以3mm的间隙缠绕一圈纤维增强线;
    S3)、然后再浇注一层手指外层进行包裹,并采用硅胶对其进行封口处理;
    S4)、将柔性压力传感器放置在手指外层预留的凹槽内,以及在手指上以5mm的间距套设指套作为手指的关节,并在手指上安装相应的充气管。
PCT/CN2018/120252 2018-10-24 2018-12-11 一种刚柔耦合仿生机械手及其手指的制备方法 WO2020082529A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811240562.8 2018-10-24
CN201811240562 2018-10-24

Publications (1)

Publication Number Publication Date
WO2020082529A1 true WO2020082529A1 (zh) 2020-04-30

Family

ID=70330265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/120252 WO2020082529A1 (zh) 2018-10-24 2018-12-11 一种刚柔耦合仿生机械手及其手指的制备方法

Country Status (1)

Country Link
WO (1) WO2020082529A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2769584C1 (ru) * 2020-12-26 2022-04-04 Зиновенко Егор Владимирович Манипуляционный модуль экзоскелета, захватное устройство манипуляционного модуля экзоскелета, палец захватного устройства манипуляционного модуля экзоскелета

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08323676A (ja) * 1995-05-30 1996-12-10 Kubota Corp ロボットハンド
CN103372865A (zh) * 2012-04-18 2013-10-30 马来西亚敦胡先翁大学 机械手
CN103538077A (zh) * 2013-10-12 2014-01-29 华南理工大学 一种多自由度机器仿生手
CN104959992A (zh) * 2015-06-30 2015-10-07 北京航空航天大学 一种气动的软体抓持装置
CN106092388A (zh) * 2016-06-21 2016-11-09 合肥联宝信息技术有限公司 一种压力感应材料
CN108247926A (zh) * 2017-12-21 2018-07-06 天津大学 一种气压驱动软柔混合仿生机械手模具及制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08323676A (ja) * 1995-05-30 1996-12-10 Kubota Corp ロボットハンド
CN103372865A (zh) * 2012-04-18 2013-10-30 马来西亚敦胡先翁大学 机械手
CN103538077A (zh) * 2013-10-12 2014-01-29 华南理工大学 一种多自由度机器仿生手
CN104959992A (zh) * 2015-06-30 2015-10-07 北京航空航天大学 一种气动的软体抓持装置
CN106092388A (zh) * 2016-06-21 2016-11-09 合肥联宝信息技术有限公司 一种压力感应材料
CN108247926A (zh) * 2017-12-21 2018-07-06 天津大学 一种气压驱动软柔混合仿生机械手模具及制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2769584C1 (ru) * 2020-12-26 2022-04-04 Зиновенко Егор Владимирович Манипуляционный модуль экзоскелета, захватное устройство манипуляционного модуля экзоскелета, палец захватного устройства манипуляционного модуля экзоскелета

Similar Documents

Publication Publication Date Title
CN209140908U (zh) 一种刚柔耦合仿生机械手
WO2020248557A1 (zh) 一种软体仿生足式机器人
WO2020056807A1 (zh) 一种多功能手部康复训练装置
CN104015197B (zh) 波纹型双内腔气驱动柔性微型手指、控制方法及抓取系统
CN201182660Y (zh) 多关节伺服控制的康复、助残仿生手
JP5265635B2 (ja) 腱駆動型指作動システム
JP2017534475A (ja) ソフトロボットアクチュエータの向上
CN101670581A (zh) 机器人手和具有该机器人手的人形机器人
JPH07114789B2 (ja) 上肢動作補助機構
JPH0512116B2 (zh)
CN104608140B (zh) 一种气动柔软手指
CN108500965B (zh) 一种软体机械手臂
CN107309887B (zh) 一种耦合与自适应的欠驱动仿生灵巧手指
CN109483574A (zh) 变刚度内骨骼刚软耦合机械手指
KR101370375B1 (ko) 줄의 꼬임으로 몸체의 움직임을 보조하는 외골격형 글로브
WO2020082529A1 (zh) 一种刚柔耦合仿生机械手及其手指的制备方法
JP2006000294A (ja) 装着型パワーアシスト装置
CN109176565B (zh) 末端沿直线运动的耦合自适应机器人手指装置
Wang et al. Design and development of a glove for post-stroke hand rehabilitation
CN110420107A (zh) 一种绳索驱动三自由度的训练机器人
TW201345676A (zh) 機械手機構
CN110509267B (zh) 一种基于吞食效应的软体机械手
CN106113024A (zh) 一种腱‑连杆混合传动的三自由度机械手指及控制方法
Wang et al. Design and development of a skinny bidirectional soft glove for post-stroke hand rehabilitation
CN209954685U (zh) 一种仿人手气动软体手爪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18938055

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18938055

Country of ref document: EP

Kind code of ref document: A1