WO2020073963A1 - Novel wheat cenh3 alleles - Google Patents
Novel wheat cenh3 alleles Download PDFInfo
- Publication number
- WO2020073963A1 WO2020073963A1 PCT/CN2019/110404 CN2019110404W WO2020073963A1 WO 2020073963 A1 WO2020073963 A1 WO 2020073963A1 CN 2019110404 W CN2019110404 W CN 2019110404W WO 2020073963 A1 WO2020073963 A1 WO 2020073963A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wheat plant
- cenh3
- genome
- mutation
- gene
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01H—NEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
- A01H6/00—Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
- A01H6/46—Gramineae or Poaceae, e.g. ryegrass, rice, wheat or maize
- A01H6/4678—Triticum sp. [wheat]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8201—Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
- C12N15/8213—Targeted insertion of genes into the plant genome by homologous recombination
Definitions
- the disclosure relates to the field of agriculture.
- the disclosure relates to CenH3 proteins and polynucleotides encoding them, methods for the production of haploid as well as subsequent doubled haploid plants, and plants and seeds derived thereof, particularly in wheat species.
- a high degree of heterozygosity in breeding material can make plant breeding and selection for beneficial traits a very time consuming process.
- Extensive population screening, even with the latest molecular breeding tools, is both laborious and costly.
- the creation of haploid plants followed by chemical or spontaneous genome doubling has proven to be an efficient way to solve the problem of high heterozygosity and accelerate the breeding process.
- Such technology is also referred to as doubled haploid production system.
- the use of the doubled haploid production system has allowed breeders to achieve homozygosity at all loci in a single generation via whole-genome duplication. This effectively obviates the need for selfing or backcrossing, where normally at least 7 generations of selfing or backcrossing would be needed to reduce the heterozygosity to an acceptable level.
- Haploid plants can be generated according to different methodologies. For instance, haploid plants can be produced in some crops by using a method referred to as microspore culture. However, this method is costly, time-consuming, and does not work in all crops. In some crop species, (doubled) haploid plants can be obtained by parthenogenesis of the egg cell or by elimination of one of the parental genomes. However, such methods are not optimal as they only work in few selected crop species and yield rather low rates of (doubled) haploid plants.
- WO2011/044132 discloses a method for producing haploid plants consisting of inactivating or altering or knocking out the centromere-specific H3 (CenH3) protein in a plant.
- the method consists of eliminating or knocking down the endogenous CenH3 gene in plant.
- an expression cassette encoding a mutated or altered CenH3 protein is introduced in the plant.
- the mutated or altered CenH3 protein is generated by fusing an, optionally GFP-tagged, H3.3 N-terminal domain to the endogenous CenH3 histone-fold domain.
- GFP-tailswap or “tailswap” (also reviewed in Britt and Kuppu, Front Plant Sci. 2016; 7: 357) .
- the crossing of the plant harboring such tailswap with a wildtype plant i.e., having functional endogenous CenH3 protein without a tailswap
- a wildtype plant i.e., having functional endogenous CenH3 protein without a tailswap
- Some haploid induction though less frequent, was also found with N-terminal addition of GFP to endogenous CenH3 (no tailswap) .
- this methodology is not ideal as it laborious, time-consuming and requires generating a transgenic plant.
- WO2014/110274 describes a method for producing haploid plants consisting of crossing a first plant expressing an endogenous CenH3 gene to a second plant referred to as a haploid inducer plant having a genome from at least two species, wherein a majority of the genome is from a first species and the genome comprises a heterologous genomic region from a second species, wherein the heterologous genomic region encodes a CenH3 polypeptide different from the CenH3 of the first species (also described in Maheshwari et al, PLoS Genet. 2015 Jan 26; 11 (1) : e1004970) ) .
- this methodology is not optimal as it suffers from the same pitfall as above-it is laborious, time-consuming and requires generating a transgenic plant. Further, the method is associated with low yield of haploid plants.
- Triticum aestivum is a particularly complex organism for editing or mutating its genes, as it is a hexaploid organism. Evolved over thousands of years and several cross-breedings with ancestor wheat species, Triticum aestivum comprises three genomes: A (possibly from T. monoccum or Einkorn wheat) , B (possibly from T. searsii) , and D (possibly from T. Wilmingtonii) . Each genome has 7 chromosomes. Triticum aestivum has two copies of each genome, i.e., AA BB DD; thus it has 42 chromosomes total (6 complete genomes each with 7 chromosomes) .
- one embodiment of the invention is a wheat plant comprising at least an A genome, a B genome, and a D genome, wherein the B genome comprises a knock-out mutation in a CENH3 gene, and optionally wherein the D genome comprises a knock-out mutation in a CENH3 gene, and further wherein the A genome comprises a mutated CENH3 gene comprising at least one knock-down mutation at a 5’ splice site of an intron.
- the knock-down mutation is a restored frame shift mutation or a large deletion mutation.
- the wheat plant is homozygous for a knock-out mutation in a CENH3 gene in the B genome.
- the wheat plant is biallelic for a knock-out mutation in a CENH3 gene in the B genome. In another embodiment, the wheat plant is homozygous for a knock-out mutation in a CENH3 gene in the D genome. In an alternate embodiment, the wheat plant is biallelic for a knock-out mutation in a CENH3 gene in the D genome. In yet another embodiment, the wheat plant is homozygous, biallelic, or a combination thereof for a knock-out mutation in a CENH3 gene in the B genome and the D genome. In another embodiment, the wheat plant is homozygous for the restored frame shift CENH3 mutation; or it is heterozygous for the restored frame shift CENH3 mutation; or it is biallelic for the restored frame shift CENH3 mutation.
- Another aspect of the invention is a method of generating a haploid-inducing wheat plant, the method comprising: (a) obtaining at least a wheat plant cell comprising at least three genomes; (b) mutating two of the three genomes to obtain homozygous knock-out mutations in a CENH3 gene; (c) mutating the third genome to obtain a homozygous knock-down mutation in a CENH3 gene; and (d) generating a wheat plant therefrom comprising homozygous knock-out mutations in a CENH3 gene of two of the three genomes and further comprising a homozygous knock-down mutation in a CENH3 gene of the third genome; whereby the wheat plant generated from step (d) produces haploid progeny when crossed with a wildtype wheat plant.
- the three genomes comprise an A genome, a B genome, and a D genome.
- the knock-out mutations in a CENH3 gene occur in the B and D genomes.
- the knock-down mutation in a CENH3 gene occurs in the A genome.
- the knock-down mutations in a CENH3 gene in the A genome are restored frame shift mutations.
- the restored frame shift mutations are selected from the group consisting of SEQ ID NO: 56, a nucleic acid sequence 70%identical to SEQ ID NO: 56, SEQ ID NO: 63, a nucleic acid sequence 70%identical to SEQ ID NO: 63, SEQ ID NO: 69, and a nucleic acid sequence 70%identical to SEQ ID NO: 69.
- Another aspect of the invention is a wheat plant comprising a mutated CENH3 gene comprising at least one deletion mutation in the N-terminal domain resulting in a frame shift , a restored frame shift, or a large deletion.
- a wheat plant comprising a mutated CENH3 gene comprising at least one insertion mutation in the N-terminal domain resulting in a frame shift , a restored frame shift, or a large deletion.
- Another aspect of the invention is a method of generating an engineered restored frame shift in a gene of a cell, comprising: (a) contacting the genome with a site-directed nuclease ( “SDN” ) and at least two guide nucleic acids, wherein the at least two guide nucleic acids target at least two target sequences within the gene; (b) permitting the SDN to cut the gene at the at least two target sequences, thereby losing an intervening sequence between the at least two target sequences; and allowing endogenous DNA repairs to occur; whereby the endogenous DNA repairs results in a gene having an engineered restored frame shift.
- the lost intervening sequence of step (b) comprises (N) base pairs, where (N) is a multiple of 3.
- Yet another aspect of the invention is a method of generating a haploid wheat plant, comprising: (a) obtaining a wheat plant; (b) crossing the wheat plant to the wheat plant comprising a mutated CENH3 gene; and (c) selecting a progeny generated from the crossing step; wherein the progeny is a haploid wheat plant.
- the wheat plant of step (a) is the paternal parent.
- the wheat plant of step (a) is the maternal parent.
- the method comprises a further step of converting the progeny wheat plant into a doubled haploid wheat plant.
- the wheat plant comprises at least one copy of the mutated CENH3 allele; in another embodiment, the wheat plant comprises at least two copies of the mutated CENH3 allele; in yet another embodiment, the wheat plant comprises at least three copies of the mutated CENH3 allele.
- the mutated CENH3 allele comprises a nucleic acid sequence 80, 90, 95, or 100%identical to SEQ ID NO: 53–73.
- Figure 1 shows the TaCenH3 ⁇ gene structure and relative gRNA locations. Exons are numbered and represented by thick bars. Introns are represented by thin lines. Length of both is represented by width.
- the term “about” is used herein to mean approximately, roughly, around, or in the region of. When the term “about” is used in conjunction with a numerical range, it modifies that range by extending the boundaries above and below the numerical values set forth. In general, the term “about” is used herein to modify a numerical value above and below the stated value by a variance of 20 percent, preferably 10 percent up or down (higher or lower) . With regard to a temperature the term “about” means ⁇ 1 °C, preferably ⁇ 0.5°C. Where the term “about” is used in the context of this invention (e.g., in combinations with temperature or molecular weight values) the exact value (i.e., without “about” ) is preferred.
- the term “amplified” means the construction of multiple copies of a nucleic acid molecule or multiple copies complementary to the nucleic acid molecule using at least one of the nucleic acid molecules as a template.
- Amplification systems include the polymerase chain reaction (PCR) system, ligase chain reaction (LCR) system, nucleic acid sequence based amplification (NASBA, Cangene, Mississauga, Ontario) , Q-Beta Replicase systems, transcription-based amplification system (TAS) , and strand displacement amplification (SDA) .
- PCR polymerase chain reaction
- LCR ligase chain reaction
- NASBA nucleic acid sequence based amplification
- TAS transcription-based amplification system
- SDA strand displacement amplification
- biaselic refers to a gene pair that is neither homozygous (AA or aa) nor heterozygous (Aa) . Rather, both genes in the pair have been edited but not identically.
- the CenH3 gene pair on the A chromosome in this invention may comprise one RFS mutation in one allele resulting in a knock-down of the gene upon expression, while the other allele comprises a knock-out mutation. This may be indicated symbolically as “A*a” and is indicative of a biallelic mutation.
- specific DNA sequence indicates a polynucleotide sequence having a nucleotide sequence homology of more than 80%, preferably more than 85%, more preferably more than 90%, even more preferably more than 95%, still more preferably more than 97%, most preferably more than 99%with another named sequence.
- cDNA refers to a single-stranded or a double-stranded DNA that is complementary to and derived from mRNA.
- centromere-specific variant of histone H3 protein refers to a protein that is a member of the kinetochore complex.
- CenH3 protein is also known as CENP-Aprotein.
- the kinetochore complex is located on chromatids where the spindle fibers attach during cell division to pull sister chromatids apart.
- CenH3 proteins belong to a well-characterized class of proteins that are variants of H3 histone proteins.
- CenH3 proteins are essential for proper formation and function of the kinetochore, and help the kinetochore associate with DNA.
- Cells that are deficient in CenH3 fail to localize kinetochore proteins on chromatids and show strong chromosome segregation defects (i.e., all chromosomes from the plant expressing the deficient CenH3 protein are eliminated or lost, leading to a change in the ploidy of somatic cells (e.g., reduction in the number of chromosome set such as diploid to haploid) ) . Therefore, CenH3 proteins have been subject to intensive research for their potential use in doubled haploid production system.
- CenH3 proteins are characterized by a variable tail domain (also referred to as “N-terminal domain” or “N-terminal tail domain” ) and a conserved histone fold domain (also referred to as “C-terminal domain” ) made up of three alpha-helical regions connected by loop sections.
- the CenH3 histone fold domain is relatively well conserved between CenH3 proteins from different species.
- the histone fold domain is located at the carboxyl terminus of an endogenous CenH3 protein.
- the N-terminal tail domain of CenH3 is highly variable even between closely related species.
- CenH3-encoding polynucleotide having one or more active mutations refers to a non-endogenous or endogenous mutated CenH3-encoding polynucleotide that encodes a CenH3 protein having one or more active mutations, which when present in a plant in the absence of its endogenous CenH3-encoding polynucleotide and/or endogenous CenH3 protein, allows the plant to be viable, and allows generation of haploid progeny, or progeny with aberrant ploidy, when the plant is crossed with a wild-type plant.
- the plant comprising a CenH3-encoding polynucleotide having one or more active mutations may be referred to as a “modified plant. ”
- the percentage of haploid progeny or progeny with aberrant ploidy that is generated upon crossing with a wild-type plant can, for instance, be at least 0.1, 0.5, 1, 5, 10, 20 percent or more.
- a mutation that causes a transition from the endogenous CenH3-encoding polynucleotide to a CenH3-encoding polynucleotide having one or more active mutations is herein referred to as an active mutation.
- An active mutation in a CenH3 protein context may result, among other things, in reduced centromere loading, a less functional CenH3 protein and/or a reduced functionality in the separation of chromosomes during cell division.
- One or more active mutations may be introduced into the CenH3-encoding polynucleotide by any of several methods well-known to the skilled person, for example, by random mutagenesis, such as induced by treatment of seeds or plant cells with chemicals or radiation, targeted mutagenesis, the application of endonucleases, by generation of partial or complete protein domain deletions, or by fusion with heterologous sequences.
- a plant may be made to lack the endogenous CenH3-encoding polynucleotide by knocking out or inactivating the endogenous CenH3-encoding polynucleotide.
- the endogenous CenH3-encoding polynucleotide may be modified to encode an inactive or non-functional CenH3 protein.
- the modified plant comprising the CenH3-encoding polynucleotide having one or more active mutations as taught herein may be crossed to a wild-type plant either as a pollen parent or as an ovule parent.
- a CenH3 protein having one or more active mutations may comprise 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20 or more amino acid changes relative to the endogenous CenH3 protein.
- a CenH3-encoding polynucleotide having one or more active mutations has 70, 75, 80, 85, 90, 95, 96, 97, 98, 99, 99.5 percent sequence identity to the endogenous CenH3-encoding polynucleotide, preferably over the full length.
- a modified plant as taught herein comprises one or more active mutations.
- the skilled person may make use of predictive tools such as SIFT (Kumar P, Henikoff S, Ng PC. (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc; 4 (7) : 1073-81. doi: 10.1038/nprot. 2009.86) to propose such active mutation.
- the one or more active mutations may then be made in a plant, and expression of endogenous CenH3 protein in the plant should be knocked out.
- the plant may be considered to comprise one or more active mutations when the percentage of haploid progeny or progeny with aberrant ploidy that is generated upon crossing with a wild-type plant is at least 0.1, 0.5, 1, 5, 10, 20 percent or more.
- a plant comprises only chromosomes of the parent that expresses the endogenous CenH3 protein, and no chromosomes of the plant expressing the CenH3 protein having one or more active mutation.
- aberrant ploidy refers to a situation where a cell comprises an aberrant or abnormal number of sets of chromosomes. For instance, a cell having one or three sets of chromosomes per cell when the usual number is two is a cell having aberrant ploidy.
- the active mutant CenH3 proteins and methods using them can be used to generate mutant plants having aberrant ploidy, e.g., to generate haploid plants while the non-mutant plant is diploid.
- the haploid plants can be used to accelerate breeding programs to create homozygous lines and obviate the need for inbreeding.
- chimeric construct refers to a construct or molecule comprising two or more polynucleotides of different origin assembled into a single nucleic acid molecule.
- chimeric construct refers to any construct or molecule that contains (1) polynucleotides (e.g., DNA) , including regulatory and coding polynucleotides that are not found together in nature (i.e., at least one of polynucleotides is heterologous with respect to at least one of its other polynucleotides) , or (2) polynucleotides encoding parts of proteins not naturally adjoined, or (3) parts of promoters that are not naturally adjoined.
- polynucleotides e.g., DNA
- regulatory and coding polynucleotides that are not found together in nature (i.e., at least one of polynucleotides is heterologous with respect to at least one of its other polynucleotides)
- polynucleotides e.g., DNA
- regulatory and coding polynucleotides that are not found together in nature (i.e., at least one of polynucleotides
- a chimeric construct, chimeric gene, chimeric polynucleotide or chimeric nucleic acid may comprise regulatory polynucleotides and coding polynucleotides that are derived from different sources, or comprise regulatory polynucleotides and coding polynucleotides derived from the same source, but arranged in a manner different from that found in nature.
- the chimeric construct, chimeric gene, chimeric polynucleotide or chimeric nucleic acid comprises an expression cassette comprising a polynucleotides of the present invention under the control of regulatory polynucleotides, particularly under the control of regulatory polynucleotides functional in plants.
- chromosome is used herein as recognized in the art as meaning the self-replicating genetic structure in the cellular nucleus containing the cellular DNA and bearing the linear array of genes.
- a “coding polynucleotide” is a polynucleotide that is transcribed into RNA, such as mRNA, rRNA, tRNA, snRNA, sense RNA or antisense RNA. Preferably the RNA is then translated in an organism to produce a protein. It may constitute an “uninterrupted coding polynucleotide” , i.e., lacking an intron, such as in a cDNA, or it may include one or more introns bounded by appropriate splice junctions.
- An “intron” is a poly (ribo) nucleotide which is contained in the primary transcript but which is removed through cleavage and religation of the RNA within the cell to create the mature mRNA that can be translated into a protein.
- doubled haploid plant refers to a genotype formed when haploid cells undergo chromosome doubling. Artificial production of doubled haploids is important in plant breeding. Doubled haploids can be produced in vivo or in vitro. Haploid embryos are produced in vivo by parthenogenesis, pseudogamy, or chromosome elimination. A wide variety of in vitro methods are known for generating doubled haploid organisms from haploid organisms. A non-limiting example of a method for generating doubled haploid in vitro consist of treating somatic haploid cells, haploid embryos, haploid seeds, or haploid plants produced from haploid seeds with a chromosome doubling agent such as colchicine.
- homozygous double haploid plants can be regenerated from haploid cells by contacting the haploid cells with chromosome doubling agents, such as colchicine, anti-microtubule herbicides, or nitrous oxide to create homozygous doubled haploid cells.
- chromosome doubling agents such as colchicine, anti-microtubule herbicides, or nitrous oxide.
- Double haploid plants can be further crossed to other plants to generate Fl, F2, or subsequent generations of plants with desired traits. Conventional inbreeding procedures take seven generations to achieve approximately complete homozygosity, whereas doubled haploidy achieves it in one generation.
- E0 refers to the edited plant in the first instance. That is, a plant cell which is edited by, e.g., CRISPR, and then allowed to mature into a plant has become the E0 plant.
- An E1 plant is the edit-comprising progeny (usually but not necessarily self-fertilized) of the E0.
- an E2 plant is the edit-comprising progeny (usually but not necessarily self-fertilized) of the E1 plant.
- An E3, E4, E5, etc., plant is likewise generationally removed from the E0 plant.
- gene editing refers to site-specific mutations made at a target sequence. This may also be referred to as “targeted mutagenesis. ”
- targeted mutagenesis refers to any method of mutagenesis that results in the intentional mutagenesis of a chosen gene. Targeted mutagenesis includes the methods CRISPR, TILLING, TALEN, and other methods not yet discovered but which may be used to achieve the same outcome.
- Mutagenesis may be performed in accordance with any of the techniques known in the art, such as, and not limited to, synthesizing an oligonucleotide having one or more mutations within the sequence of a particular regulatory sequence.
- site-specific mutagenesis is a technique useful in the preparation of promoter mutants, through specific mutagenesis of the underlying DNA.
- RNA-guided endonucleases “RGEN, ” e.g., CRISPR/Cas9) may also be used.
- RGEN RNA-guided endonucleases
- the technique further provides a ready ability to prepare and test sequence variants, for example, incorporating one or more of the foregoing considerations, by introducing one or more nucleotide sequence changes into the DNA.
- Site-specific mutagenesis allows the production of mutants through the use of specific oligonucleotide sequences which encode the DNA sequence of the desired mutation, as well as a sufficient number of adjacent nucleotides, to provide a primer sequence of sufficient size and sequence complexity to form a stable duplex on both sides of the deletion junction being traversed.
- a primer of about 17 to about 75 nucleotides or more in length is preferred, with about 10 to about 25 or more residues on both sides of the junction of the sequence being altered. See generally, U. S. Patent No. 10, 285, 348, incorporated by reference herein in its entirety.
- endogenous as used in the context of the present invention in combination with protein or gene means that said protein or gene originates from the plant in which it is still contained. Often an endogenous gene will be present in its normal genetic context in the plant. In another context, the term “endogenous” can refer to normal functions of a cell. For example and not by way of limitation, “endogenous DNA repair” refers to a cell’s normal DNA repair mechanisms, enzymes, and processes.
- RNA e.g., mRNA, rRNA, tRNA, or snRNA
- transcription i.e., via the enzymatic action of an RNA polymerase
- protein e.g. if a gene encodes a protein
- translation e.g. if a gene encodes a protein
- expression may refer to the transcription of the antisense RNA only or the dsRNA only.
- expression refers to the transcription and stable accumulation of sense (mRNA) or functional RNA.
- Expression may also refer to the production of protein.
- sequence similarity or “sequence identity” of nucleotide or amino acid sequences mean a degree of identity or similarity of two or more sequences and may be determined conventionally by using known software or computer programs such as the Best-Fit or Gap pairwise comparison programs (GCG Wisconsin Package, Genetics Computer Group, 575 Science Drive, Madison, Wis. 53711) . BestFit uses the local homology algorithm of Smith and Waterman, Advances in Applied Mathematics 2: 482-489 (1981) , to find the best segment of identity or similarity between two sequences.
- Sequence comparison between two or more polynucleotides or polypeptides is generally performed by comparing portions of the two sequences over a comparison window to identify and compare local regions of sequence similarity.
- the comparison window is generally from about 20 to 200 contiguous nucleotides.
- Gap performs global alignments: all of one sequence with all of another similar sequence using the method of Needleman and Wunsch, J. Mol. Biol. 48: 443-453 (1970) .
- BestFit BestFit to determine the degree of DNA sequence homology, similarity or identity
- the default setting may be used, or an appropriate scoring matrix may be selected to optimize identity, similarity or homology scores.
- a program such as BestFit to determine sequence identity, similarity or homology between two different amino acid sequences
- the default settings may be used, or an appropriate scoring matrix, such as blosum45 or blosum80, may be selected to optimize identity, similarity or homology scores.
- locus refers to a position (e.g., of a gene, a genetic marker, or the like) on a chromosome of a given species.
- primer refers to an oligonucleotide which is capable of annealing to the amplification target allowing a DNA polymerase to attach, thereby serving as a point of initiation of DNA synthesis when placed under conditions in which synthesis of primer extension product is induced, e.g., in the presence of nucleotides and an agent for polymerization such as DNA polymerase and at a suitable temperature and pH.
- the (amplification) primer is preferably single stranded for maximum efficiency in amplification.
- the primer is an oligodeoxyribonucleotide.
- the primer is generally sufficiently long to prime the synthesis of extension products in the presence of the agent for polymerization.
- primers The exact lengths of the primers will depend on many factors, including temperature and composition (A/T and G/C content) of primer.
- a pair of bi-directional primers consists of one forward and one reverse primer as commonly used in the art of DNA amplification such as in PCR amplification.
- primer, may refer to more than one primer, particularly in the case where there is some ambiguity in the information regarding the terminal sequence (s) of the target region to be amplified.
- a “primer” includes a collection of primer oligonucleotides containing sequences representing the possible variations in the sequence or includes nucleotides which allow a typical base pairing.
- the oligonucleotide primers may be prepared by any suitable method.
- oligonucleotides of specific sequence include, for example, cloning and restriction of appropriate sequences, and direct chemical synthesis.
- Chemical synthesis methods may include, for example, the phospho di-or tri-ester method, the diethylphosphoramidate method and the solid support method disclosed in, for example, US 4, 458, 066.
- the primers may be labeled, if desired, by incorporating means detectable by, for instance, spectroscopic, fluorescence, photochemical, biochemical, immunochemical, or chemical means.
- Template-dependent extension of the oligonucleotide primer (s) is catalyzed by a polymerizing agent in the presence of adequate amounts of the four deoxyribonucleotide triphosphates (dATP, dGTP, dCTP and dTTP, i.e. dNTPs) or analogues, in a reaction medium which is comprised of the appropriate salts, metal cations, and pH buffering system.
- Suitable polymerizing agents are enzymes known to catalyze primer-and template-dependent DNA synthesis.
- Known DNA polymerases include, for example, E. coli DNA polymerase I or its Klenow fragment, T4 DNA polymerase, and Taq DNA polymerase.
- the reaction conditions for catalyzing DNA synthesis with these DNA polymerases are known in the art.
- the products of the synthesis are duplex molecules consisting of the template strands and the primer extension strands, which include the target sequence. These products, in turn, serve as template for another round of replication.
- the primer extension strand of the first cycle is annealed with its complementary primer; synthesis yields a “short” product which is bound on both the 5'-and the 3'-ends by primer sequences or their complements. Repeated cycles of denaturation, primer annealing, and extension result in the exponential accumulation of the target region defined by the primers.
- the target polynucleotides may be detected by hybridization with a probe polynucleotide which forms a stable hybrid with that of the target sequence under low, moderate or even highly stringent hybridization and wash conditions. If it is expected that the probes will be essentially completely complementary (i.e., about 99%or greater) to the target sequence, highly stringent conditions may be used.
- PCR primer is preferably understood within the scope of the present invention to refer to relatively short fragments of single-stranded DNA used in the PCR amplification of specific regions of DNA.
- protein protein, peptide and polypeptide are used interchangeably herein.
- promoter refers to a polynucleotide, usually upstream (5') of its coding polynucleotide, which controls the expression of the coding polynucleotide by providing the recognition for RNA polymerase and other factors required for proper transcription.
- site-directed nuclease refers to any enzyme guided by a nucleotide sequence to a target sequence within a strand of DNA.
- the site-directed nuclease is preferably CRISPR-based, but could also be a meganuclease, a transcription-activator like effector nuclease (TALEN) , or a zinc finger nuclease.
- Site-directed nuclease (s) may be referred to by the acronym “SDN.
- SDNs include but are not limited to meganucleases (MNs) , zinc-finger nucleases (ZFNs) , transcription-activator like effector nucleases (TALENs) , Cas9 nuclease, Cpf1 (Cas12a) nuclease, dCas9-FokI, dCpf1-FokI, chimeric Cas9-cytidine deaminase, chimeric Cas9-adenine deaminase, chimeric FEN1-FokI, and Mega-TALs, a nickase Cas9 (nCas9) , chimeric dCas9 non-FokI nuclease and dCpf1 non-FokI nuclease; and further wherein the guide nucleic acid is a guide RNA.
- MNs meganucleases
- ZFNs zinc-finger nucleases
- stringent conditions or “stringent hybridization conditions” include reference to conditions under which a polynucleotide will hybridize to its target sequence to a detectably greater degree than other sequences (e.g., at least 2-fold over background) .
- Stringent conditions are sequence-dependent and will be different in different circumstances. By controlling the stringency of the hybridization and/or washing conditions, target polynucleotides can be identified which are 100%complementary to the probe (homologous probing) . Alternatively, stringency conditions can be adjusted to allow some mismatching in sequences so that lower degrees of similarity are detected (heterologous probing) .
- stringent conditions will be those in which the salt concentration is less than approximately 1.5 M Na ion, typically about 0.01 to 1.0 M Na ion (or other salts) at pH 7.0 to 8.3 and the temperature is at least about 30°C for short probes (e.g., 10 to 50 nucleotides) and at least about 60°C for long probes (e.g., greater than 50 nucleotides) .
- Stringent conditions also may be achieved with the addition of destabilizing agents such as formamide.
- Exemplary moderate stringency conditions include hybridization in 40 to 45%formamide, 1 M NaCl, 1%SDS at 37°C, and a wash in 0.5 ⁇ to 1 ⁇ SSC at 55 to 60°C.
- Exemplary high stringency conditions include hybridization in 50%formamide, 1 M NaCl, 1%SDS at 37°C, and a wash in 0.1 ⁇ SSC at 60 to 65°C.
- the Tm is the temperature (under defined ionic strength and pH) at which 50%of a complementary target sequence hybridizes to a perfectly matched probe. Tm is reduced by about 1°C for each 1%of mismatching; thus, Tm, hybridization and/or wash conditions can be adjusted to hybridize to sequences of the desired identity. For example, if sequences with approximately 90%identity are sought, the Tm can be decreased 10°C. Generally, stringent conditions are selected to be about 5°C lower than the thermal melting point (Tm) for the specific sequence and its complement at a defined ionic strength and pH.
- the term “restored frame shift” refers to a mutation or series of mutations in a gene which, individually or in combination, interrupts the coding sequence of a gene yet does not alter the frame of the coding sequence. This may also be referred to as “restoring frame synchronization. ”
- a DNA coding sequence comprises a series of codons. Each codon comprises three nucleotides, and each codon-when transcribed into RNA-codes for one amino acid upon translation.
- An insertion/deletion mutation ( “indel” ) of one or two nucleotides into the coding sequence will cause a shift in the coding frame (a “frame shift” ) .
- insertions or deletions whether individually or in combination, which occur cumulatively as a multiple of three will restore the codons to its original frame, even if the coding sequence itself is altered. See, e.g., B.N. Ames and H.J. Whitfield, Jr., Frameshift Mutagenesis in Salmonella, COLD SPRING HARB. SYMP. QUANT. BIOL. 31: 221–225 (1966) .
- a sequence comprising at least two indel mutation deletions-whether consecutive or not-and in which the indel mutations cause the reading frame to be restored to its original frame is a sequence comprising a restored frameshift mutation.
- engineered restored frame shift may also be used to describe a RFS mutation which has been created by genome editing or genome modification.
- LD large deletion
- a large deletion refers to a mutation which causes the loss of several consecutive nucleotides.
- a large deletion refers to the loss of 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 40, 50, 60, 70, 80, 90, or 100 or more nucleotides.
- the sequence lost in an LD will be a multiple of 3 (i.e., 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, etc. )
- an LD mutation may also occur in conjunction with an indel mutation elsewhere in the same sequence, thereby causing a restored frame shift mutation.
- wildtype or wildtype plant refers to a plant which does not carry a mutant CenH3 protein or gene (i.e., does not comprise one or more active mutations taught here) and which endogenously expresses or produces functional CenH3 genes and proteins.
- Separase Cleaves the N-Tail of the CENP-ARelated Protein CPAR-1 at the Meiosis I Metaphase-Anaphase Transition in C. elegans, PLOS ONE 10: e0125382 (2015) .
- Directed or natural modification of the tail triggers compensatory changes in the kinetochore, which may enable CENH3 to drive speciation through impairing meiosis or inhibiting zygotic chromosome segregation.
- I. Lermontova, et al. Knockdown of CENH3 in Arabidopsis reduces mitotic divisions and causes sterility by disturbed meiotic chromosome segregation, PLANT J 68: 40-50 (2011) and M. Ravi and R.
- Haploid induction is an aberrant reproductive process that leads to ploidy reduction from one generation to the next. Haploids can be doubled to produce inbred lines, saving six generations of self-pollination normally required to generate new pure-bred stocks. Delivering the tail-swap approach to crops requires multiple generations to assemble the native allele knockout and stable insertion of transgenes. We were able to induce AS by directly editing N-terminal sequences in wheat CenH3. These novel CenH3 sequences were studied to determine whether and in what combination mutant CENH3 proteins might cause haploid induction in wheat. Under the circumstances we describe, it does.
- one embodiment of the invention is a wheat plant comprising at least an A genome, a B genome, and a D genome, wherein the B genome comprises a knock-out mutation in a CENH3 gene, and optionally wherein the D genome comprises a knock-out mutation in a CENH3 gene, and further wherein the A genome comprises a mutated CENH3 gene comprising at least one knock-down mutation at a 5’ splice site of an intron.
- the knock-down mutation is a restored frame shift mutation or a large deletion mutation.
- the wheat plant is homozygous for a knock-out mutation in a CENH3 gene in the B genome.
- the wheat plant is biallelic for a knock-out mutation in a CENH3 gene in the B genome. In another embodiment, the wheat plant is homozygous for a knock-out mutation in a CENH3 gene in the D genome. In an alternate embodiment, the wheat plant is biallelic for a knock-out mutation in a CENH3 gene in the D genome. In yet another embodiment, the wheat plant is homozygous, biallelic, or a combination thereof for a knock-out mutation in a CENH3 gene in the B genome and the D genome. In another embodiment, the wheat plant is homozygous for the restored frame shift CENH3 mutation; or it is heterozygous for the restored frame shift CENH3 mutation; or it is biallelic for the restored frame shift CENH3 mutation.
- Another aspect of the invention is a method of generating a haploid-inducing wheat plant, the method comprising: (a) obtaining at least a wheat plant cell comprising at least three genomes; (b) mutating two of the three genomes to obtain homozygous knock-out mutations in a CENH3 gene; (c) mutating the third genome to obtain a homozygous knock-down mutation in a CENH3 gene; and (d) generating a wheat plant therefrom comprising homozygous knock-out mutations in a CENH3 gene of two of the three genomes and further comprising a homozygous knock-down mutation in a CENH3 gene of the third genome; whereby the wheat plant generated from step (d) produces haploid progeny when crossed with a wildtype wheat plant.
- the three genomes comprise an A genome, a B genome, and a D genome.
- the knock-out mutations in a CENH3 gene occur in the B and D genomes.
- the knock-down mutation in a CENH3 gene occurs in the A genome.
- the knock-down mutations in a CENH3 gene in the A genome are restored frame shift mutations.
- the restored frame shift mutations are selected from the group consisting of SEQ ID NO: 56, a nucleic acid sequence 70%identical to SEQ ID NO: 56, SEQ ID NO: 63, a nucleic acid sequence 70%identical to SEQ ID NO: 63, SEQ ID NO: 69, and a nucleic acid sequence 70%identical to SEQ ID NO: 69.
- Another aspect of the invention is a wheat plant comprising a mutated CENH3 gene comprising at least one deletion mutation in the N-terminal domain resulting in a frame shift , a restored frame shift, or a large deletion.
- a wheat plant comprising a mutated CENH3 gene comprising at least one insertion mutation in the N-terminal domain resulting in a frame shift , a restored frame shift, or a large deletion.
- Another aspect of the invention is a method of generating an engineered restored frame shift in a gene of a cell, comprising: (a) contacting the genome with a site-directed nuclease ( “SDN” ) and at least two guide nucleic acids, wherein the at least two guide nucleic acids target at least two target sequences within the gene; (b) permitting the SDN to cut the gene at the at least two target sequences, thereby losing an intervening sequence between the at least two target sequences; and allowing endogenous DNA repairs to occur; whereby the endogenous DNA repairs results in a gene having an engineered restored frame shift.
- the lost intervening sequence of step (b) comprises (N) base pairs, where (N) is a multiple of 3.
- Yet another aspect of the invention is a method of generating a haploid wheat plant, comprising: (a) obtaining a wheat plant; (b) crossing the wheat plant to the wheat plant comprising a mutated CENH3 gene; and (c) selecting a progeny generated from the crossing step; wherein the progeny is a haploid wheat plant.
- the wheat plant of step (a) is the paternal parent.
- the wheat plant of step (a) is the maternal parent.
- the method comprises a further step of converting the progeny wheat plant into a doubled haploid wheat plant.
- the wheat plant comprises at least one copy of the mutated CENH3 allele; in another embodiment, the wheat plant comprises at least two copies of the mutated CENH3 allele; in yet another embodiment, the wheat plant comprises at least three copies of the mutated CENH3 allele.
- the mutated CENH3 allele comprises a nucleic acid sequence 80, 90, 95, or 100%identical to SEQ ID NO: 56–73.
- Example 1 The theory behind using two N-terminal guide RNAs
- CENH3-tailswap transgenes when expressed heterologously in a line where the native CENH3 genes are knocked out, leads to haploid induction. See, e.g., U. S. Patent Application Publication No. 2019/0136250, incorporated herein by reference. This is called the tailswap approach. Importantly, there are no wildtype alleles in tailswap haploid inducer lines.
- the transgenes are inferred to have partial function and are capable of generating centromeres that are stable enough to get a normally-developing plant when homozygous.
- tailswap transgenes are heterologous with wildtype CENH3 in a cell
- the tailswap transgenes are unstable and lead to successful haploid induction during outcross. It is critical in these designs of tailswap plants that the native CENH3 genes are knocked out and that the tailswap transgenes have significant alterations of the N-terminal domain combined with only minor, or preferably zero, alterations to the C-terminal domain. Haploid induction will not occur even if the mutant CENH3 genes encode CENH3 proteins that retain normal or near-normal functionality.
- CENH3 ⁇ genes In order to achieve haploid induction in wheat, we directly edited the six CENH3 ⁇ genes to knock out several copies and create modifications to the N-terminal domain (leaving the C-terminal domain intact) in still other copies. Based on our experiments measuring the gene expression of the A, B, &D genomes’s CENH3 ⁇ genes, we particularly focused on creating N-terminal modifications in the A genome, and knockouts in the B and D genome. If our edits were successful, we would leave zero copies of CENH3 ⁇ normal (intact) : All genes would be edited, but the outcomes of the editing would differ. Importantly, our editing design did not include any CENH3 transgenes-we simply wanted to create the partial function, N-terminal modified version of the A genome CENH3 ⁇ through direct editing.
- CRISPR SDN II genome editing also called allele replacement ( “AR” ) or homologous recombination ( “HR” )
- AR allele replacement
- HR homologous recombination
- simultaneous or near-simultaneous cutting at both guide RNA target sites could result in a deletion of the intervening nucleic acid sequence.
- deletion would produce a frameshift in the downstream sequence, but in some cases such a deletion could happen to leave the 3’ sequence of the transcript in the normal frame, such that a significant part of the N-terminal domain amino acid sequence is absent from the resulting protein product, but again the C-terminal domain is left intact.
- LD large deletion
- Example 2 Determining the gRNA sequences to edit the Fielder genome’s CENH3 ⁇ genes.
- TaCenH3 ⁇ -Aand -B were expressed at high levels in anthers, pollen and ovaries while the TaCenH3 ⁇ -D expression transcript was nearly absent (Table 2) .
- TaCenH3 ⁇ -A was the predominant transcript, which may indicate that loss of function of this gene contributes to the dwarf phenotype after TaCenH3 ⁇ silencing.
- Guide RNA1 (ACGTCGGCGACACCG GT GCG; SEQ ID NO: 25) (underlined is the approximate site of double stranded break cut induced by the CRISPR-Cas9 complex) is located at the exon 2–intron 2 junction region. This gRNA1 was driven by the TaU6 promoter.
- Guide RNA2 targets just after the intron 3–exon 4 junction, driven by TaU6.
- Guide RNA2 will not edit the 3’ splice acceptor site of intron 3 in most cases.
- the choice to use two guide RNAs was made so that we could produce significant alterations, e.g., RFS, LDs, or AS alleles, in the N-terminal domain while still leaving the C-terminal domain in frame. For instance, in some plants and edited alleles, both gRNAs will cut at the same time, resulting in a deletion of the intervening sequence. In some cases, the resulting repair will produce a frameshift which will knockout the protein.
- a non-simultaneous cut at both sites could generate a frameshift at gRNA1 (for instance, any indel that hits the coding sequence and is not a multiple of 3) which is restored at the gRNA2 site by a complimentary indel, thus putting the coding sequence back in its normal frame.
- gRNA1 for instance, any indel that hits the coding sequence and is not a multiple of 3
- a complimentary indel thus putting the coding sequence back in its normal frame.
- nt 1 nucleotide
- a 1 nt insertion at gRNA2 would restore the coding frame, leading to an RFS allele. This allele would likely not be a loss of function, assuming there are no stop codons generated in the intervening frameshifted sequence.
- the two guide RNAs could generate alternatively spliced ( “AS” ) alleles that also have the capacity to act as RFS or large insertion alleles.
- Guide RNA1 will cut between the GT (SEQ ID NO: 25; underlined above) . That is the 5’ splice donor site at the end of exon 2.
- AS alleles could be generated if the GT is modified such that intron 2 is not correctly spliced, leading to the retention of intron 2 in the coding sequence.
- the ribosome Upon translation, the ribosome would read through this intron and generate a novel insertion of 44–47 amino acids, depending on the nature of the indels at gRNA1 and gRNA2.
- This novel insertion can be predicted by reading the new coding frame after factoring in the indels and the translation of the new mature mRNA. For instance, if gRNA1 and gRNA2 generate insertions of a single A nucleotide at both sites of TaCENH3 ⁇ -A, the transcript may be alternatively spliced leading to an insertion of the amino acid sequence “VARDLPGSLPFRFVLFSVFWSDLLVTCSTECRGEPGGRRPQGGLKGQ” (SEQ ID NO: 77) with removal of the WT sequence “RRAGRAAAPGGAQGA” (SEQ ID NO: 76) from exon 3 before the normal sequence is restored by the gRNA mutation.
- gRNA1 for example, the deletion of GTG
- gRNA2 deletion of a C
- GTFPGRFLFVSSCFLFFGLTCSSPVRRNAEASRAGGGPRGGSRG SEQ ID NO: 78
- RAGRAAAPGGAQGA native sequence
- the gRNAs can be selected specifically for their capacity to generate large changes in the N-terminal domain while leaving the C-terminal domain intact and translated normally.
- Example 3 Construct design and plant transformation.
- gRNA1 ACGTCGGCGACACCG GT GCG; SEQ ID NO: 25
- gRNA2 CTGTGGGAGCAGGGGCAAC; SEQ ID NO: 26
- SpCas9 gene was wheat codon-optimized with two NLSs at both ends and driven by sugarcane Ubi promoter with two enhancers.
- the gRNA cassettes including the wheat U6 promoter and gRNA scaffolds was synthesized by GenScript (www. genscript. com) and cloned into a binary vector, Construct 24194 (SEQ ID NO: 74) .
- Fielder was used for transformation, a spring wheat inbred. Immature embryos about 2.0-2.5mm in diameter were harvested, sterilized with 70 %ethanol for 1 min and 1 %sodium hypochlorite for 10 min. After sterilization, immature embryos were isolated by scalpel and spatula into a small tube and centrifuged at 20,000 ⁇ g at 4 °C for 10 min in inoculation medium. The isolated embryos were infected with Agrobacterium for 5 min, then transferred to co-cultivation medium at 23 °C in the dark for 2 days.
- the embryo axis was excised from the immature embryos before transferring to resting medium, cultured at 25 °C in the dark for 5 days, then transferred to selection medium containing mannose 15g/L. See Y. Ishida, et al., Wheat (Triticum aestivum L. ) Transformation Using Immature Embryos, METHODS IN MOLECULAR BIOLOGY 1223: 189-198 (2015) . After 4 weeks, the vigorously grown calli were transferred to regeneration media to generate green plants. Surviving plants went through Taqman check, which analyzed the presence or absence of DNA segments from the transgenic DNA insertion; of these, only plants positive for 35S and PMI Taqman assays were sent to the greenhouse.
- Genomic DNA was isolated from juvenile leaves of Taqman positive E0 plants. Sequencing was performed with high fidelity DNA polymerase, namely KOD-Plus-Neo (source: TOYOBO Life Science) . TaCenH3 ⁇ -Aallele specific primers were used (FA, SEQ ID NO: 50; R3, SEQ ID NO: 51) . PCR was performed as follows: 95°C 5min; 35 cycles of 95°C 30 sec, 65°C 30 sec, 68°C 1min; 68°C 10min.
- PCR reaction mixture comprises 11.5 ⁇ l distilled water, 2.5 ⁇ l 10X PCR buffer for KOD-Plus-Neo, 1 ⁇ l 2mM dNTPs, 1 ⁇ l 25mM MgSO 4 , 1 ⁇ l KOD-Plus-Neo DNA polymerase, 1 ⁇ l forward primer FA (10 ⁇ M) , 1 ⁇ l reverse primer R3 (10 ⁇ M) , and 1 ⁇ l genomic DNA.
- PCR products were sequenced directly via SQ-1 primer (SEQ ID NO: 79) or cloned into pEASY-Blunt Zero cloning vector (Transgen Biotech) .
- M13R (SEQ ID NO: 52) and M13F (SEQ ID NO: 53) were used for colony sequencing.
- the wheat event A004A exhibited haploid induction.
- the event number A004A is one of hundreds of transgenic plants that were produced via transformation of construct 24194.
- Taqman assay followed by direct sequencing indicated that the genotype for the TaCENH3 ⁇ genes were AA*BBdd at E0 seedling stage.
- a capital letter indicates a wild-type TaCENH3 ⁇ allele without editing
- a lower-case letter indicates a loss-of-function of allele
- a capital letter with an asterisk (*) indicates a restored frame shift (RFS) , large deletion (LD) or alternatively spliced (AS) allele, which means a putative haploid inducer allele.
- RFS restored frame shift
- LD large deletion
- AS alternatively spliced
- the A004A plant A*allele contains an adenine insertion at the target site for gRNA 1, and another adenine insertion at the target site of gRNA2 (SEQ ID NO: 56) .
- the adenine insertion at gRNA1 is actually in the intron, 3 bp downstream from the end of Exon 2, and right after the 5’ splice junction. It does not itself disrupt the coding sequence, but it may alter the splicing pattern in some instances.
- the adenine insertion at gRNA2 is in Exon 3, and shifts the frame of the coding sequence.
- Prediction of the splicing pattern induced by the insertion of an Adenine at the gRNA1 target site indicates that this may be an AS allele that exhibits intron retention (IR) of intron number 2, because having an extra adenine after the 5’ splice donor site can alter the initiation of intron removal, triggering alternative splicing.
- Alternative splicing in this case would to an insertion of many amino acids leading into exon 3. If there were alternative splicing, analysis of the outcome indicates that the sequences in exon 3 would be out of frame until the gRNA2 edit, which is another insertion of an adenine, restores the normal frame and amino acid code for the C-terminal domain.
- RNA sequences of the CENH3 ⁇ -Agene in A004A juvenile stage E0 leaf were extracted using INVITROGEN TRIzol following manufacturer’s instructions.
- cDNA was synthesized from 1mg of total RNA via Superscript III first-strand synthesis system (Invitrogen) with oligo-dT primer.
- KOD-Plus-Neo was used to amplify TaCenH3 ⁇ -Atranscripts with primers F1 (SEQ ID NO: 54) and R1 (SEQ ID NO: 55) .
- PCR reaction mixture comprises 11.5 ⁇ l distilled water, 2.5 ⁇ l 10X PCR buffer for KOD-Plus-Neo, 1 ⁇ l 2mM dNTPs, 1 ⁇ l 25mM MgSO 4 , 1 ⁇ l KOD-Plus-Neo, 1 ⁇ l F1 primer (10 ⁇ M) , 1 ⁇ l R1 primer (10 ⁇ M) , and 1 ⁇ l cDNA.
- PCR product was purified by GeneJET PCR Purification Kit (Thermo Scientific) and cloned into pEASY-Blunt Zero cloning vector (Transgen Biotech) . Primers M13R and M13F were used for colony sequencing. Several clones per PCR product were sequenced and analyzed by Vector NTI software (Invitrogen) . Relative expression of splicing variants were calculated by number of clones. Analysis of the PCR sequencing of the colonies indicated the TaCENH3 ⁇ -AmRNA in A004A has two transcripts, indicative of alternative splicing.
- transcripts SEQ ID NO: 58
- SEQ ID NO: 58 One of the transcripts (SEQ ID NO: 58) , found in 8 out of 18 (44%) of colonies, was spliced using the canonical 5’ splice site.
- normal splicing of Intron 2 means that the gRNA1 edit did not impact the amino acid translation of the mature mRNA; however, the gRNA2 edit caused a frame-shift. So, in this instance the constitutively spliced mature mRNAs are actually knockout transcripts.
- these plants either did not have both copies of the “B” allele knocked out, or did not have a restored frameshift induced by a mutation at gRNA2 target site. This suggests that only the right combination of edits at both the target sites at gRNA1 and gRNA2 in the CENH3 ⁇ -Agene, when paired with a knockout of both copies of the “B” allele, is sufficient to trigger haploid induction.
- Twin embryos may be caused by a disruption of ovule development, which may be triggered in part by the edits in CENH3 ⁇ , although more experimental work is needed to confirm this.
- the continuous capacity for editing the E0 plants mean that the male and female sex cells may inherit different sequences (edits) and thus have different centromere binding and kinetochore construction than each other, leading to haploidy after selfing.
- Example 6 Wheat Event C003A.
- Plant C003A is edited such that the TaCenH3 ⁇ genotype is A*abbdd at E0 plant stage.
- A* is introduced by deleting a guanine in gRNA1 and inserting an adenine in gRNA2.
- SEQ ID NOs: 63–65 show the A*genomic CenH3 sequence, the A* CDS sequence, and the A*protein sequence, respectively, for C003A.
- E1 seeds were produced by selfing C003A E0 plant. E1 plants with A*A*bbdd genotype were grown in the greenhouse to determine its ability to induce haploids upon outcross. A wildtype plant (Tester 03S0352-22) was selected as pollen donor. E1 C003A was manually emasculated, and pollinated with the wildtype pollen. Haploids were detected by SNP markers (SEQ ID #29-43) , which can tell difference between Fielder and 03S0352-22, then confirmed by flow cytometry check. In 208 F1 plants, we obtained one haploid. This showed paternal-only genotypes for four markers but maternal genotype for one marker (KW11091) .
- Example 7 Wheat Event A073A.
- Plant A073A had the genotype AA*B*bdd for TaCENH3 ⁇ at the E0 seedling stage.
- the A073A A*allele has an adenine insertion, caused by gRNA 3, and a guanine deletion, caused by gRNA4 in the genomic DNA. This triggers a restored frameshift at the protein level, with a thirty-one amino acid difference between the wild type and edited versions in the N-terminal domain.
- SEQ ID NOs: 69–71 show the A*genomic CenH3 sequence, the A*CDS sequence, and the A*protein sequence, respectively, for A073A.
- E1 seeds were produced by allowing self-pollination of the A073A E0 plant. E1 plants were sequenced and those with the genotypic combination AA*bbdd were selected to be grown further in the greenhouse for determining haploid induction potential upon outcrossing. Using the tester line 03S0352-22 selected as the pollen donor, E1 edited plants were manually emasculated and hand pollinated. Haploids were detected by SNP markers that can distinguish Fielder and 03S0352-22 genotypically. The putative haploids, as identified by homozygousity for these markers, were then confirmed by flow cytometry check of total DNA content.
- E1 plants with AA*bbdd also led to E2 haploids during sefling (Table 3) .
- Table 3 Ploidy level of selfed E2 plants derived from A073A.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Organic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical & Material Sciences (AREA)
- Developmental Biology & Embryology (AREA)
- Botany (AREA)
- Environmental Sciences (AREA)
- Physiology (AREA)
- Natural Medicines & Medicinal Plants (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
Abstract
Description
F1 plant ID | Ploidy |
001-11 | 1n + X (Aneuploidy) |
001-13 | 1n + X (Aneuploidy) |
001-14 | 1n + X (Aneuploidy) |
001-17 | 1n + X (Aneuploidy) |
001-18 | 1n + X (Aneuploidy) |
001-19 | 2n (Diploid) |
001-22 | 1n + X (Aneuploidy) |
001-23 | 1n + X (Aneuploidy) |
001-24 | 2n (Diploid) |
001-26 | 1n + X (Aneuploidy) |
001-27 | 2n (Diploid) |
001-28 | 1n (Haploid) |
001-30 | 2n (Diploid) |
Claims (29)
- A wheat plant comprising at least an A genome, a B genome, and a D genome, wherein the B genome comprises a knock-out mutation in a CENH3 gene, and optionally wherein the D genome comprises a knock-out mutation in a CENH3 gene, and further wherein the A genome comprises a mutated CENH3 gene comprising at least one knock-down mutation at a 5’ splice site of an intron.
- The wheat plant of claim 1, wherein the knock-down mutation is a restored frame shift mutation or a large deletion mutation.
- The wheat plant of claim 1, wherein the wheat plant is homozygous for a knock-out mutation in a CENH3 gene in the B genome.
- The wheat plant of claim 1, wherein the wheat plant is biallelic for a knock-out mutation in a CENH3 gene in the B genome.
- The wheat plant of claim 1, wherein the wheat plant is homozygous for a knock-out mutation in a CENH3 gene in the D genome.
- The wheat plant of claim 1, wherein the wheat plant is biallelic for a knock-out mutation in a CENH3 gene in the D genome.
- The wheat plant of claim 1, wherein the wheat plant is homozygous, biallelic, or a combination thereof for a knock-out mutation in a CENH3 gene in the B genome and the D genome.
- The wheat plant of claim 2, wherein the wheat plant is homozygous for the restored frame shift CENH3 mutation.
- The wheat plant of claim 2, wherein the wheat plant is heterozygous for the restored frame shift CENH3 mutation.
- The wheat plant of claims 1–9, wherein the wheat plant is homozygous for a knock-down mutation in a CENH3 gene of the A genome and homozygous for a knock-out mutation in a CENH3 gene in the B genome and the D genome.
- A method of generating a haploid-inducing wheat plant, the method comprising:a. obtaining at least a wheat plant cell comprising at least three genomes;b. mutating two of the three genomes to obtain homozygous knock-out mutations in a CENH3 gene;c. mutating the third genome to obtain a homozygous knock-down mutation in a CENH3 gene; andd. generating a wheat plant therefrom comprising homozygous knock-out mutations in a CENH3 gene of two of the three genomes and further comprising a homozygous knock-down mutation in a CENH3 gene of the third genome;whereby the wheat plant generated from step (d) produces haploid progeny when crossed with a wildtype wheat plant.
- The method of claim 11, wherein the three genomes comprise an A genome, a B genome, and a D genome.
- The method of claim 11, wherein the knock-out mutations in a CENH3 gene occur in the B and D genomes.
- The method of claim 11, wherein the knock-down mutation in a CENH3 gene occurs in the A genome.
- The method of claim 14, wherein the knock-down mutations in a CENH3 gene are restored frame shift mutations.
- The method of claim 15, wherein the restored frame shift mutations are selected from the group consisting of SEQ ID NO: 56, a nucleic acid sequence 70%identical to SEQ ID NO: 56, SEQ ID NO: 63, a nucleic acid sequence 70%identical to SEQ ID NO: 63, SEQ ID NO: 69, and a nucleic acid sequence 70%identical to SEQ ID NO: 69.
- A wheat plant comprising a mutated CENH3 gene comprising at least one deletion mutation in the N-terminal domain resulting in a frame shift , a restored frame shift, or a large deletion.
- A wheat plant comprising a mutated CENH3 gene comprising at least one insertion mutation in the N-terminal domain resulting in a frame shift , a restored frame shift, or a large deletion.
- A method of generating an engineered restored frame shift in a gene of a cell, comprising:a. contacting the genome with a site-directed nuclease ( “SDN” ) and at least two guide nucleic acids, wherein the at least two guide nucleic acids target at least two target sequences within the gene;b. permitting the SDN to cut the gene at the at least two target sequences, thereby losing an intervening sequence between the at least two target sequences; andc. allowing endogenous DNA repairs to occur;whereby the endogenous DNA repairs results in a gene having an engineered restored frame shift.
- The method of claim 19, wherein the lost intervening sequence of step (b) comprises (N) base pairs, where (N) is a multiple of 3.
- A method of generating a haploid wheat plant , comprising:a. obtaining a wheat plant;b. crossing the wheat plant to the wheat plant of claims 1–10 and 17–18; andc. selecting a progeny generated from the crossing step;wherein the progeny is a haploid wheat plant.
- The method of claim 20, wherein the wheat plant of step (a) is the paternal parent.
- The method of claim 20, wherein the wheat plant of step (a) is the maternal parent.
- The method of claim 20, further comprising converting the progeny wheat plant into a doubled haploid wheat plant.
- A wheat plant comprising a mutated CENH3 allele comprising a nucleic acid sequence at least 70%identical to a sequence selected from the group consisting of SEQ ID NO: 56–73, wherein the mutation is an restored frame shift mutation, and wherein the wheat plant generates haploid progeny when crossed with a wildtype diploid wheat plant.
- The wheat plant of claim 25, wherein the wheat plant comprises at least one copy of the mutated CENH3 allele.
- The wheat plant of claim 25, wherein the wheat plant comprises at least two copies of the mutated CENH3 allele.
- The wheat plant of claim 25, wherein the wheat plant comprises at least three copies of the mutated CENH3 allele.
- The wheat plant of claim 25, wherein the mutated CENH3 allele comprises a nucleic acid sequence 80, 90, 95, or 100%identical to SEQ ID NO: 56–73.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA3112005A CA3112005A1 (en) | 2018-10-12 | 2019-10-10 | Novel wheat cenh3 alleles |
BR112021006948-8A BR112021006948A2 (en) | 2018-10-12 | 2019-10-10 | NEW CENH3 WHEAT ALLELES |
EA202190980A EA202190980A1 (en) | 2018-10-12 | 2019-10-10 | NEW ALLELS OF CENH3 WHEAT |
EP19870975.0A EP3864155A4 (en) | 2018-10-12 | 2019-10-10 | Novel wheat cenh3 alleles |
US17/286,950 US12016286B2 (en) | 2018-10-12 | 2019-10-10 | Wheat CENH3 alleles |
CN201980063899.2A CN113631715A (en) | 2018-10-12 | 2019-10-10 | Novel wheat CENH3 allele |
AU2019357440A AU2019357440A1 (en) | 2018-10-12 | 2019-10-10 | Novel wheat CENH3 alleles |
US18/426,902 US20240334892A1 (en) | 2018-10-12 | 2024-01-30 | Novel wheat cenh3 alleles |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2018110063 | 2018-10-12 | ||
CNPCT/CN2018/110063 | 2018-10-12 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/286,950 A-371-Of-International US12016286B2 (en) | 2018-10-12 | 2019-10-10 | Wheat CENH3 alleles |
US18/426,902 Division US20240334892A1 (en) | 2018-10-12 | 2024-01-30 | Novel wheat cenh3 alleles |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020073963A1 true WO2020073963A1 (en) | 2020-04-16 |
Family
ID=70164085
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/110404 WO2020073963A1 (en) | 2018-10-12 | 2019-10-10 | Novel wheat cenh3 alleles |
Country Status (8)
Country | Link |
---|---|
US (2) | US12016286B2 (en) |
EP (1) | EP3864155A4 (en) |
CN (1) | CN113631715A (en) |
AU (1) | AU2019357440A1 (en) |
BR (1) | BR112021006948A2 (en) |
CA (1) | CA3112005A1 (en) |
EA (1) | EA202190980A1 (en) |
WO (1) | WO2020073963A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021252619A1 (en) * | 2020-06-09 | 2021-12-16 | University Of Georgia Research Foundation, Inc. | Heterozygous cenh3 monocots and methods of use thereof for haploid induction and simultaneous genome editing |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117305326B (en) * | 2023-11-29 | 2024-02-09 | 中国农业科学院蔬菜花卉研究所 | Broccoli BoCENH3 gene and application thereof in haploid induction |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016138021A1 (en) * | 2015-02-24 | 2016-09-01 | CHAN, Bee Yong | Haploid induction |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009088313A1 (en) | 2007-12-28 | 2009-07-16 | Yury Valerevich Strelnikov | Mobile system for washing transportation means |
AU2009277239B2 (en) | 2008-07-31 | 2015-08-06 | Nidera Seeds Holding B.V. | Herbicide resistant sunflower plants |
BR112018006569A2 (en) * | 2015-10-02 | 2018-12-11 | Keygene Nv | method for the production of haploid plants and subsequent duplicate haploids |
MX2018003973A (en) * | 2015-10-02 | 2018-09-06 | Keygene Nv | Method for the production of haploid and subsequent doubled haploid plants. |
-
2019
- 2019-10-10 EA EA202190980A patent/EA202190980A1/en unknown
- 2019-10-10 EP EP19870975.0A patent/EP3864155A4/en active Pending
- 2019-10-10 WO PCT/CN2019/110404 patent/WO2020073963A1/en unknown
- 2019-10-10 US US17/286,950 patent/US12016286B2/en active Active
- 2019-10-10 AU AU2019357440A patent/AU2019357440A1/en active Pending
- 2019-10-10 CA CA3112005A patent/CA3112005A1/en active Pending
- 2019-10-10 BR BR112021006948-8A patent/BR112021006948A2/en unknown
- 2019-10-10 CN CN201980063899.2A patent/CN113631715A/en active Pending
-
2024
- 2024-01-30 US US18/426,902 patent/US20240334892A1/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016138021A1 (en) * | 2015-02-24 | 2016-09-01 | CHAN, Bee Yong | Haploid induction |
Non-Patent Citations (3)
Title |
---|
DUAN MINXIAO;LUO MEIJIE;ZHAO JIURAN;LIU XINXIANG;WANG YUANDONG;XING JINFENG;ZHANG XUEYUAN;ZHANG CHUNYUAN: "Progress of CENH3-mediated Haploid Induction Technology", MOLECULAR PLANT BREEDING, vol. 15, no. 10, 25 August 2017 (2017-08-25), pages 4127 - 4132, XP055789349, ISSN: 1672-416X, DOI: 10.13271/j.mpb.015.004127 * |
MARUTHACHALAM RAVI , SIMON W. L. CHAN: "Haploid plants produced by centromere-mediated genome elimination", NATURE, vol. 464, no. 7288, 25 March 2010 (2010-03-25), pages 615 - 620, XP002677783, ISSN: 0028-0836, DOI: 10.1038/NATURE08842 * |
See also references of EP3864155A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021252619A1 (en) * | 2020-06-09 | 2021-12-16 | University Of Georgia Research Foundation, Inc. | Heterozygous cenh3 monocots and methods of use thereof for haploid induction and simultaneous genome editing |
CN115811937A (en) * | 2020-06-09 | 2023-03-17 | 佐治亚大学研究基金会股份有限公司 | Heterozygous CENH3 monocots and methods for haploid induction and simultaneous genome editing thereof |
Also Published As
Publication number | Publication date |
---|---|
US20210378192A1 (en) | 2021-12-09 |
CN113631715A (en) | 2021-11-09 |
AU2019357440A1 (en) | 2021-03-18 |
CA3112005A1 (en) | 2020-04-16 |
EP3864155A4 (en) | 2022-07-06 |
US12016286B2 (en) | 2024-06-25 |
BR112021006948A2 (en) | 2021-10-26 |
EP3864155A1 (en) | 2021-08-18 |
US20240334892A1 (en) | 2024-10-10 |
EA202190980A1 (en) | 2021-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Cai et al. | CRISPR/Cas9‐mediated targeted mutagenesis of GmFT2a delays flowering time in soya bean | |
US11820990B2 (en) | Method for base editing in plants | |
US11371104B2 (en) | Gene controlling shell phenotype in palm | |
US20240334892A1 (en) | Novel wheat cenh3 alleles | |
US20220186238A1 (en) | Diplospory gene | |
US20220356481A1 (en) | Wox genes | |
EA022877B1 (en) | Polynucleotide of bolting b gene in sugar beet and use thereof | |
US20220267386A1 (en) | Self-compatibility in cultivated potato | |
WO2021123396A1 (en) | Enhanced disease resistance of maize to northern corn leaf blight by a qtl on chromosome 4 | |
CN110791525A (en) | Method for knocking out rice tillering number regulation gene OsFWL4 to increase rice tillering number and yield | |
WO2017188321A1 (en) | Virus-resistant tobacco and method for producing same | |
CN112567041A (en) | Methods and compositions for increasing harvestable yield by editing GA20 oxidase gene to produce dwarf plants | |
US20230183725A1 (en) | Method for obtaining mutant plants by targeted mutagenesis | |
CN113544277A (en) | Compositions and methods for driving T1 event diversity | |
WO2024079157A1 (en) | Virus and insect resistance and markers in barley | |
Cai et al. | CRISPR/Cas9-mediated targeted mutagenesis of GmFT2a delays flowering time in |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19870975 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3112005 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2019357440 Country of ref document: AU Date of ref document: 20191010 Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112021006948 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 2019870975 Country of ref document: EP Effective date: 20210512 |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01E Ref document number: 112021006948 Country of ref document: BR Free format text: COM BASE NA PORTARIA 405 DE 21/12/2020, SOLICITA-SE QUE SEJA APRESENTADO, EM ATE 60 (SESSENTA) DIAS, NOVO CONTEUDO DE LISTAGEM DE SEQUENCIA POIS O CONTEUDO APRESENTADO NA PETICAO NO 870210033154 DE 12/04/2021 POSSUI INFORMACOES DIVERGENTES AO PEDIDO EM QUESTAO.(DIVERGENCIA NO NOME DO DEPOSITANTE) |
|
ENP | Entry into the national phase |
Ref document number: 112021006948 Country of ref document: BR Kind code of ref document: A2 Effective date: 20210412 |