WO2020073950A1 - 一种光收发器和光相干接收系统 - Google Patents

一种光收发器和光相干接收系统 Download PDF

Info

Publication number
WO2020073950A1
WO2020073950A1 PCT/CN2019/110333 CN2019110333W WO2020073950A1 WO 2020073950 A1 WO2020073950 A1 WO 2020073950A1 CN 2019110333 W CN2019110333 W CN 2019110333W WO 2020073950 A1 WO2020073950 A1 WO 2020073950A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
light
laser
local oscillator
signal
Prior art date
Application number
PCT/CN2019/110333
Other languages
English (en)
French (fr)
Inventor
赵平
李良川
肖新华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19871564.1A priority Critical patent/EP3852286A4/en
Publication of WO2020073950A1 publication Critical patent/WO2020073950A1/zh
Priority to US17/229,005 priority patent/US11387907B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/63Homodyne, i.e. coherent receivers where the local oscillator is locked in frequency and phase to the carrier signal

Definitions

  • the invention relates to the technical field of communication, and in particular to an optical transceiver and an optical coherent receiving system.
  • coherent optical signal transmission technology Due to its large bandwidth, long transmission distance, and strong flexibility, coherent optical signal transmission technology has been widely used in metropolitan, backbone, and marine optical communication networks.
  • the traditional coherent optical transmission technology the local oscillator light and the signal light have separate light sources.
  • a precision laser is used as the light source, and the cost of related optical components is high.
  • the phase noise is large, which increases the complexity of the signal processing module in the system and increases the power consumption of the module.
  • embodiments of the present invention provide an optical transceiver and an optical coherent transceiver system, which reduces cost while reducing phase noise.
  • an embodiment of the present invention provides an optical transceiver including an optical interface, an optical receiver, and a polarization-maintaining optical waveguide, wherein the optical receiver includes a mixer, an optical-to-electrical converter, an analog-to-digital converter, and digital signal processing
  • the optical interface is used to receive local oscillator light from a laser outside the transceiver
  • the mixer is used to receive the local oscillator light from the optical interface and receive modulation at the The signal light on the laser light emitted by the laser outside the transceiver mixes the local oscillator light and the signal light
  • the polarization-maintaining optical waveguide is used to connect the optical interface and the optical receiver, the When the local oscillation light is transmitted in the polarization-maintaining optical waveguide, the polarization state remains unchanged
  • the photoelectric converter is used to photoelectrically convert the mixed light to obtain an analog electrical signal carrying data
  • the modulus A converter is used to perform analog-to-digital conversion on the analog
  • a semiconductor optical amplifier-polarization controller SOA-PC is connected between the optical interface and the receiver, and the SOA-PC is used for receiving
  • the local oscillator light emitted by the laser is divided into a second local oscillator light of X polarization state and a third local oscillator light of Y polarization state, and the polarization state of the third local oscillator light is rotated by 90 degrees , Comparing the intensity of the second local oscillation light and the rotated third local oscillation light, and selecting a local oscillator light of higher intensity to output to the optical receiver.
  • the SOA-PC comparing the intensity of the second local oscillation light and the rotated third local oscillation light includes :
  • the SOA-PC uses a beam splitter to separate a portion of the second local oscillator light and the rotated third local oscillator light at a fixed ratio, by comparing the separated partial second local oscillator light and the separated third rotated local oscillator light Light to determine the intensity of the second local oscillator light and the rotated third local oscillator light.
  • the optical transceiver further includes a laser, an electro-optic modulator, and a transmitter, wherein: the laser is used to emit laser light, a part of the laser light emitted by the laser is used as a coherent receiving light for the opposite optical transceiver, and another part of the laser light emitted by the laser is used as an input of the electro-optic modulator Light; the electro-optic modulator is used to modulate data to another part of the laser light emitted by the laser to obtain signal light; and the transmitter is used to send the signal light to the opposite optical transceiver.
  • an embodiment of the present invention provides a coherent optical communication system, including a first optical transceiver and a second optical transceiver, characterized in that the first optical transceiver includes a first laser and a first electro-optic modulator And a first optical receiver, the second optical transceiver includes a second laser, a second electro-optic modulator, and a second optical receiver, wherein the first optical receiver includes a first mixer, and a first photoelectric device Converter, first analog-to-digital converter and first digital signal processor, the second optical receiver includes a second mixer, a second photoelectric converter, a second analog-to-digital converter and a second optical signal processor
  • the first laser is used to transmit part of the emitted laser light as the first local oscillator light to the second mixer through the polarization-maintaining optical waveguide, and to transmit the other part of the emitted laser light to the first electro-optic modulator, wherein the When the first local oscillation light is transmitted in the polarization-main
  • the second laser is used to transmit part of the emitted laser light as the second local oscillator light to the first optical transceiver through a polarization-maintaining optical waveguide In the first mixer, and transmits another part of the emitted laser to the second electro-optic modulator;
  • the second electro-optic modulator is used to load the second data on the laser received from the second laser to obtain the second An optical signal, transmitting the second optical signal to a first mixer in the first optical transceiver through a second single-mode optical waveguide;
  • the first mixer is used to convert the second The vibration light and the second optical signal are mixed to obtain a mixed optical signal;
  • the first photoelectric converter is used to convert the mixed optical signal of the first mixer into a second analog Electrical signal;
  • the first analog-to-digital converter is used to perform analog-to-digital conversion on the second analog electrical signal to obtain a second digital electrical signal;
  • the first digital signal processor is used to convert the second digital electrical signal The signal
  • the first laser is connected to the second receiver through a circulator or a wavelength division multiplexer connection.
  • a semiconductor optical amplifier-polarization is connected between the first laser and the second receiver A controller SOA-PC, the SOA-PC is configured to receive the first local oscillation light emitted by the first laser, and divide the first local oscillation light into a third local oscillation light of X polarization state and a third local oscillation light of Y polarization state; Four local oscillator lights, rotate the polarization state of the fourth local oscillator light by 90 degrees, compare the intensity of the third local oscillator light and the rotated fourth local oscillator light, and select a higher intensity local oscillator light output To the second optical receiver.
  • the SOA-PC comparing the intensity of the third local oscillator light with the rotated fourth local oscillator light includes :
  • the SOA-PC uses a beam splitter to separate a portion of the third local oscillator light and the rotated fourth local oscillator light at a fixed ratio, by comparing the separated third local oscillator light and the separated fourth rotated local oscillator light Light to determine the intensity of the third local oscillator light and the rotated fourth local oscillator light.
  • the light sources of the local oscillator light and the signal light are the same laser, and bidirectional coherent optical transmission is realized based on homologous coherent detection, and the polarization state of the local oscillator light is effectively maintained by the polarization-maintaining optical waveguide, avoiding the need to use
  • the high cost of a precision laser as a light source reduces phase noise and avoids interruption of digital signals during transmission.
  • FIG. 1 is a schematic structural diagram of a coherent optical communication system provided by this embodiment
  • FIG. 2 is a schematic structural diagram of another coherent optical communication system provided by this embodiment.
  • FIG. 3 is a schematic structural diagram of another coherent optical communication system provided by this embodiment.
  • FIG. 5 is a schematic structural diagram of an optical transceiver provided by this embodiment.
  • a coherent optical communication system includes a first optical transceiver 100 and a second optical transceiver 900.
  • the first optical transceiver 100 includes a first laser 101 and a first electro-optic modulator 102
  • the second optical transceiver 900 includes a second laser 901, a second electro-optic modulator 902, and a second optical receiver 903, wherein the first optical receiver 103 includes a first mixing frequency 104, a first photoelectric converter 105, a first analog-to-digital converter 111 and a first digital signal processor 106
  • the second optical receiver 903 includes a second mixer 904, a second photoelectric converter 905, the first Two analog-to-digital converters 911 and a second digital signal processor 906.
  • the first laser 101 is used to transmit a part of the emitted laser light as the first local oscillation light to the second mixer 904 through the polarization maintaining optical waveguide, and transmit another part of the emitted laser light to the first electro-optic modulator 102.
  • the first electro-optic modulator 102 is used to load the first data on the laser received from the first laser 101 to obtain a first optical signal, and transmit the first optical signal to the second through the first single-mode optical waveguide Mixer 904.
  • a second mixer 904 is used to mix the first local oscillator light and the first optical signal to obtain a mixed optical signal, and a second photoelectric converter 905 is used to convert the second The optical signal mixed by the mixer 904 is converted into a first analog electrical signal.
  • the second analog-to-digital converter 911 is used to perform analog-to-digital conversion on the first analog electrical signal to obtain a first digital electrical signal
  • the second digital signal processor 906 is used to process the first digital electrical signal to obtain Describe the first data.
  • the second laser 901 in this embodiment is used to transmit part of the emitted laser light as the second local oscillator light to the first mixer 104 in the first optical transceiver 100 through the polarization-maintaining optical waveguide, and to transmit the The other part of the laser light is transmitted to the second electro-optical modulator 902.
  • the second electro-optical modulator 902 is used to load the second data on the laser received from the second laser 901 to obtain a second optical signal, and transmit the second optical signal to the first through a second single-mode optical waveguide
  • the first mixer 104 is configured to mix the second local oscillator light and the second optical signal to obtain a mixed optical signal.
  • the first photoelectric converter 105 is configured to convert the optical signal mixed by the first mixer into a second analog electrical signal.
  • the first analog-to-digital converter 111 is used to perform analog-to-digital conversion on the second analog electrical signal to obtain a second digital electrical signal, and the first digital signal processor 106 is used to process the second digital electrical signal to obtain The second data.
  • the light emitted from the first laser 101 can be transmitted to the electro-optic modulator 102 and the circulator 110 through the coupler 108 as a part of the local oscillator light of the second optical receiver 903 transmitted to the circulator 110
  • the laser light can then pass through the circulator 910 to the second mixer 904.
  • the signal light output by the first electro-optical modulator 102 may be transmitted to the second mixer 904 through the first transmitter 107, the circulator 109, and the circulator 909.
  • the first transceiver 100 and the second transceiver 900 are symmetrical, for the same reason, the light emitted from the second laser 901 can pass through the coupler 908 to the electro-optic modulator 902 and the circulator 910, as the first optical receiver 103 Part of the laser light transmitted to the circulator 910 can pass through the circulator 110 to the first mixer 104.
  • the signal light output by the second electro-optical modulator 902 may pass through the second transmitter 907, the circulator 909, and the circulator 109 to the first mixer 104.
  • the polarization-maintaining optical waveguide may be a polarization-maintaining optical fiber
  • the single-mode optical waveguide may be a single-mode optical fiber.
  • the polarization-maintaining optical waveguide may also be a polarization-maintaining silica waveguide or a polarization-maintaining silicon waveguide.
  • a semiconductor optical amplifier-polarization controller SOA-PC may also be connected between the first laser and the second receiver in this embodiment, the SOA-PC is used to receive the first local oscillator emitted by the first laser Light, the first local oscillator light is divided into third local oscillator light of X polarization state and fourth local oscillator light of Y polarization state, the polarization state of the fourth local oscillator light is rotated by 90 degrees, and the The intensity of the third local oscillator light and the rotated fourth local oscillator light is selected and output to the second optical receiver with higher intensity local oscillator light.
  • the SOA-PC uses a beam splitter to separate a portion of the third local oscillator light and the rotated fourth local oscillator light at a fixed ratio, by comparing the separated third local oscillator light and the separated fourth rotated local oscillator light To determine the intensity of the third local oscillator light and the rotated fourth local oscillator light.
  • the fixed ratio may be 10% or other ratios.
  • the local oscillator optical path uses polarization-maintaining optical waveguide transmission. Before being passed to the receiver, the local oscillator light is processed by the SOA-PC module to lock the polarization state.
  • the SOA-PC module plays the role of the second heavy polarization state protection, which can further improve the system stability.
  • an optical circulator is used in this embodiment, and the optical transceiver 1 and the optical transceiver 2 of the coherent optical communication system are dual-port outputs, respectively.
  • the main structure inside the optical transceiver 1 is as follows: the output of the laser 1 and the input port of the coupler 202 are connected through a polarization maintaining fiber.
  • the coupler 202 is a polarization-maintaining optical splitter.
  • the two output ports of the coupler 202 are respectively connected to the input port of the optical transmitter (TX) 203 and the port 1 of the circulator 1 through polarization maintaining fibers.
  • the output optical port of the optical transmitter 203 is connected to the port 1 of the circulator 205.
  • the optical waveguide used for the connection may be a polarization-maintaining fiber or a non-polarization-maintaining fiber.
  • a single-mode fiber is a non-polarization-maintaining fiber that can be used.
  • the port 2 of the circulator 205 is connected to the single-mode optical fiber 208.
  • Port 3 of the circulator 205 is connected to the signal optical port of the receiver (Receiver, RX) 206.
  • Port 2 of the circulator 204 is connected to the polarization-maintaining fiber 207.
  • Port 3 of the circulator 204 is connected to the intrinsic optical port of the optical receiver 206 through a polarization-maintaining fiber.
  • the connection relationship of the components inside the optical transceiver 2 is similar to that of the optical transceiver 1.
  • the output of the laser 211 and the input port of the coupler 210 are connected through a polarization maintaining fiber.
  • the coupler 210 is a polarization-maintaining optical splitter.
  • the two output ports of the coupler 210 are respectively connected to the input port of the optical transmitter (Transmitter, TX) 209 and the port 1 of the circulator 213 through polarization maintaining fibers.
  • the output optical port of the optical transmitter 209 is connected to the port 1 of the circulator 214.
  • the optical waveguide used for the connection may be a polarization-maintaining fiber or a non-polarization-maintaining fiber.
  • a single-mode fiber is a non-polarization-maintaining fiber that can be used.
  • the circulator 214 port 2 is connected to the single-mode optical fiber 208.
  • the port 3 of the circulator 214 is connected to the signal optical port of the receiver (Receiver, RX) 212.
  • Port 2 of the circulator 213 is connected to the polarization-maintaining fiber 207.
  • Port 3 of the circulator 213 is connected to the intrinsic optical port of the optical receiver 212 through a polarization-maintaining fiber.
  • the signal light 1 and the signal light 2 propagate in the single-mode fiber, and the eigen light 1 and the eigen light 2 propagate in the polarization-maintaining fiber.
  • the output wavelengths of laser 1 and laser 2 may be the same or different.
  • the format of the optical signal output by the optical transmitter can be intensity modulation, phase modulation, or frequency modulation.
  • the signal recovery of the receiver corresponds to the modulation format of the transmitter.
  • the optical circulator in this embodiment can be replaced with a 2-wavelength wavelength division multiplexer.
  • a 2-wavelength wavelength division multiplexer is used to replace the optical circulator, the output wavelengths of laser 1 and laser 2 are different, and laser 1
  • the minimum interval of the wavelength difference from the output wavelength of the laser 2 is determined by the spectral bandwidth of the optical signal, which is mainly required to reduce the crosstalk between the signal light 1 and the signal light 2.
  • the LO light first passes through a semiconductor optical amplifier-polarization controller SOA-PC before entering the coherent receiver LO input port.
  • SOA-PC semiconductor optical amplifier-polarization controller
  • the input light is a continuous laser beam with unmodulated data, which is first divided into two paths of X and Y polarization through a polarization beam splitter 401.
  • the light of the X branch is first divided into two parts by a beam splitter 403: one part enters a photodetector (PD) 405 and is converted into electric current, and the other part is transmitted to a semiconductor optical amplifier (Semiconductor optical amplifier (SOA) 408) through an optical fiber.
  • PD photodetector
  • SOA semiconductor optical amplifier
  • the light of the Y branch first passes through the 90-degree polarization rotator 402 and is converted to the X polarization state, and then is connected to the other input port of the 2x1 coupler 412 through the beam splitter 404 and the SOA 410, respectively.
  • All optical devices in the figure and the connected optical waveguides are polarization-maintaining, that is, polarization-maintaining optical waveguides.
  • the splitting ratio of the beam splitter 403 is approximately equal to that of the beam splitter 404, and is typically 10:90.
  • the switch response time of SOA is short, such as ⁇ 1ns, can be selected according to the system specifications.
  • the role of SOA is to amplify the optical power.
  • the outputs of PD 405 and PD 408 are respectively connected to the two ports of the comparator through waveguides.
  • the comparator When the current of PD405 is greater than or equal to the current of PD408, the comparator outputs a high level (such as 5V); otherwise, it outputs a low level (such as 0V).
  • the working process of SOA-PC is as follows: when the comparator 407 outputs a high level, the selector 409 turns on the driving current of the SOA 408 and turns off the driving current of the SOA 410.
  • SOA408 works normally and outputs the light wave of X branch.
  • the comparator outputs a low level
  • the selector turns off the drive current of SOA408 and turns on the drive current of SOA410.
  • SOA410 works normally, outputting light wave of Y branch. This ensures that the polarization state of the output light of the SOA-PC is always the X polarization state.
  • the polarization state of the input light changes with time, and the optical power decomposed into the two polarization states of X and Y also changes alternately.
  • the output optical power maintains a high value for most of the time. During some instants when the SOA switch is switched, the output optical power will have power fluctuations.
  • the optical transceiver includes an optical interface 501, an optical receiver, and a polarization-maintaining optical waveguide, where the optical receiver includes a mixer 503, an optical-to-electrical converter 504, an analog-to-digital converter 513, and a digital signal processor DSP 505, where : Optical interface 501 for receiving local oscillator light from a laser outside the transceiver; mixer 503 for receiving the local oscillator light from the optical interface 501 and receiving laser light modulated by the laser outside the transceiver The signal light on the signal is mixed with the local oscillator light and the signal light; the polarization-maintaining optical waveguide is used to connect the optical interface and the optical receiver, and the polarization state of the local oscillator light remains unchanged when transmitted in the polarization-maintaining optical waveguide; the photoelectric converter 504 , Used to photoelectrically convert the mixed light to obtain an analog electrical signal carrying data; analog-to-digital converter 513, used for analog-to-digital
  • the signal light received by the mixer 503 may be received from the single-mode optical waveguide through the port 507, and the signal light received by the port 507 is transmitted to the mixer 503 through the wavelength division multiplexer 506.
  • the optical transceiver of this embodiment may further include a laser 511, an electro-optic modulator 510, a coupler 509, and a transmitter 508.
  • the light emitted by the laser 511 is transmitted to the wavelength division multiplexer 502 and the electro-optical modulator 509 through the coupler 510, and the data is loaded onto the light transmitted by the coupler 510 through the electro-optical modulator 509, and the light modulated by the electro-optical modulator is transmitted through
  • the machine 508, the wavelength division multiplexer 506 and the single-mode optical fiber are transmitted to the optical transceiver at the opposite end.
  • the light emitted by the laser 511 is transmitted to the wavelength division multiplexer 502, it is transmitted to the optical transceiver at the opposite end through the optical interface 501 and the polarization-maintaining optical waveguide, and serves as the optical transceiver at the opposite end to coherently receive the local oscillation light used.
  • the optical transceiver at the opposite end is symmetrical to the optical transceiver at the local end.
  • the light received from the single-mode optical waveguide is the signal light from the transmitter in the optical transceiver at the opposite end.
  • the light emitted by the laser at the end is obtained by loading data to the electro-optic modulator in the optical transceiver.
  • An SOA-PC 512 may also be connected between the wavelength division multiplexer 502 and the mixer 503, and the structure of the SOA-PC 512 may refer to FIG. 4.
  • SOA-PC 512 is used to receive the local oscillator light emitted by the laser, divide the local oscillator light into the second local oscillator light in the X polarization state and the third local oscillator light in the Y polarization state, and polarize the third local oscillator light Rotate 90 degrees, compare the intensity of the second local oscillator light and the rotated third local oscillator light, and select a higher intensity local oscillator light to output to the optical receiver.
  • SOA-PC 512 comparing the intensity of the second local oscillation light with the rotated third local oscillation light may include: SOA-PC 512 using a beam splitter to separate a portion of the second local oscillation light and the rotated third local light at a fixed ratio Oscillation light, by comparing the separated partial second local oscillation light with the separated third rotated local oscillation light, the intensity of the second local oscillation light and the rotated third local oscillation light is determined.
  • the waveguides connecting the optical interface 501, the wavelength division multiplexer 502, the SOA-PC 512, and the mixer 503 are all polarization-maintaining optical waveguides, such as polarization-maintaining optical fibers.
  • the light source of the local oscillator light and the signal light is the same laser, and bidirectional coherent optical transmission is realized based on homologous coherent detection, and the polarization state of the local oscillator light is effectively maintained by the polarization-maintaining optical waveguide, avoiding the need to use precision
  • the high cost of the laser as a light source reduces phase noise and avoids interruption of digital signals during transmission.
  • the local oscillator optical path uses polarization-maintaining optical waveguide transmission. Before being passed to the receiver, the local oscillator light can be processed by the SOA-PC module to lock the polarization state.
  • the SOA-PC module plays the role of the second heavy polarization state protection, which can further improve the system stability.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Optical Communication System (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明实施例提供一种光收发器和光相干接收系统,光收发器包括:光接口,光接收机,保偏光波导,其中光接收机包括混频器,光电转换器和数字信号处理器,其中:光接口,用于从收发器外的第一激光器接收第一本振光;混频器,用于从光接口接收所述第一本振光,以及接收调制在所述收发器外的第一激光器发射的激光上的第一信号光;保偏光波导,用于连接所述光接口和所述光接收机,第一本振光在所述保偏光波导中传输时偏振态保持不变;光电转换器和模数转换器,用于对所述混频后的光进行光电转换和模数转换,得到携带数据的数字信号;数字信号处理器,用于对所述数字信号进行处理,得到所述数据。本发明实施例的方案可以降低成本,减少相位噪声。

Description

一种光收发器和光相干接收系统 技术领域
本发明涉及通信技术领域,尤其涉及一种光收发器和光相干接收系统。
背景技术
随着互联网及第五代移动通信技术的快速发展,作为网络的基础管道,光通信网络的流量增长十分迅猛。随着云技术的发展,许多大型数据中心大规模扩容,形成局部的数据中心网络(Data Center Network,DCN)。此网络内对短距超大带宽光信号传输有着强烈的诉求。然而,常规的强调调制-直接探测的光传输技术传输距离有限,无法良好地支撑数据中心扩容。
由于具有带宽大、传输距离远、灵活性强等特点,相干光信号传输技术已经广泛应用于城域、骨干、海洋光通信网络中。传统的相干光传输技术,本振光和信号光分别有独立的光源,通常需要使用精密的激光器作为光源,其相关光组件的成本高昂。另外,常规的相干光传输系统中,相位噪声大,增加系统中的信号处理模块的繁杂度,增加模块功耗,这些不利因素较大地制约相干光传输技术在数据中心网络中的应用。
发明内容
有鉴于此,本发明实施例提供了一种光收发器和光相干收发系统,降低成本的同时减少了相位噪声。
第一方面,本发明实施例提供一种光收发器,包括光接口,光接收机,保偏光波导,其中所述光接收机包括混频器,光电转换器,模数转换器和数字信号处理器,其中:所述光接口,用于从所述收发器外的激光器接收本振光;所述混频器,用于从所述光接口接收所述本振光,以及接收调制在所述收发器外的激光器发射的激光上的信号光,对所述本振光和所述信号光进行混频;所述保偏光波导,用于连接所述光接口和所述光接收机,所述本振光在所述保偏光波导中传输时偏振态保持不变;所述光电转换器,用于对所述混频后的光进行光电转换,得到携带数据的模拟电信号;所述模数转换器,用于对所述模拟电信号进行模数转换,得到数字电信号;所述数字信号处理器,用于对所述数字电信号进行处理,得到所述数据。
结合第一方面,在第一方面的第一种可能实现方式中,所述光接口和所述接收机之间连接有半导体光放大器-偏振控制器SOA-PC,所述SOA-PC用于接收所述激光器发射的本振光,将本振光分为X偏振态的第二本振光和Y偏振态的第三本振光,将所述第三本振光的偏振态进行90度旋转,比较所述第二本振光和旋转后的第三本振光的强度,选择强度更高的本振光输出给所述光接收机。
结合第一方面的第一种可能实现方式,在第一方面的第二种可能实现方式中,所述SOA-PC比较所述第二本振光和旋转后的第三本振光的强度包括:所述SOA-PC利用分光器按固定比例分离部分第二本振光和旋转后的第三本振 光,通过比较分离的部分第二本振光和分离的部分旋转后的第三本振光,确定所述所述第二本振光和旋转后的第三本振光的强度。
结合第一方面的第一种可能实现方式或者第一方面的第二种可能实现方式,在第一方面的第三种可能实现方式中,光收发器还包括激光器,电光调制器和发射机,其中:所述激光器,用于发射激光,所述激光器发射的激光的一部分作为对端光收发器相干接收所用的本振光,所述激光器发射的激光的另一部分作为所述电光调制器的输入光;所述电光调制器,用于调制数据到所述激光器发射的另一部分激光,得到信号光;所述发射机,用于将所述信号光发送给所述对端光收发器。
第二方面,本发明实施例提供一种相干光通信系统,包括第一光收发器和第二光收发器,其特征在于:所述第一光收发器包括第一激光器,第一电光调制器和第一光接收机,所述第二光收发器包括第二激光器,第二电光调制器和第二光接收机,其中所述第一光接收机包括第一混频器,第一光电装换器,第一模数转换器和第一数字信号处理器,所述第二光接收机包括第二混频器,第二光电转换器,第二模数转换器和第二光信号处理器;所述第一激光器,用于通过保偏光波导将发射的一部分激光作为第一本振光传输给第二混频器,以及将发射的另一部分激光传输给第一电光调制器,其中所述第一本振光在所述保偏光波导中传输时偏振态保持不变;所述第一电光调制器,用于将第一数据加载在从第一激光器接收的激光上得到第一光信号,将所述第一光信号通过第一单模光波导传输给所述第二混频器;所述第二混频器,用于将所述第一本振光和所述第一光信号进行混频,得到混频后的光信号;所述第二光电转换器,用于将所述第二混频器混频后的光信号转换为第一模拟电信号;所述第二模数转换器,用于对所述第一模拟电信号进行模数转换,得到第一数字电信号;第二数字信号处理器,用于对所述第一数字电信号进行处理得到所述第一数据。
结合第二方面,在第二方面的第一种可能实现方式中,所述第二激光器,用于通过保偏光波导将发射的一部分激光作为第二本振光传输给所述第一光收发器中的第一混频器,以及将发射的另一部分激光传输给第二电光调制器;所述第二电光调制器,用于将第二数据加载在从第二激光器接收的激光上得到第二光信号,将所述第二光信号通过第二单模光波导传输给所述第一光收发器中的第一混频器;所述第一混频器,用于将所述第二本振光和所述第二光信号进行混频,得到混频后的光信号;所述第一光电转换器,用于将所述第一混频器混频后的光信号转换为第二模拟电信号;所述第一模数转换器,用于对所述第二模拟电信号进行模数转换,得到第二数字电信号;第一数字信号处理器,用于对所述第二数字电信号进行处理得到所述第二数据。
结合第二方面或者第二方面的第一种可能实现方式,在第二方面的第二种可能实现方式中,所述第一激光器通过环形器或者波分复用器与所述第二接收器连接。
结合第二方面或者第二方面的第一种可能实现方式,在第二方面的第三种可能实现方式中,所述第一激光器和所述第二接收器之间连接有半导体光 放大器-偏振控制器SOA-PC,所述SOA-PC用于接收所述第一激光器发射的第一本振光,将第一本振光分为X偏振态的第三本振光和Y偏振态的第四本振光,将所述第四本振光的偏振态进行90度旋转,比较所述第三本振光和旋转后的第四本振光的强度,选择强度更高的本振光输出给所述第二光接收机。
结合第二方面的第三种可能实现方式,在第二方面的第四种可能实现方式中,所述SOA-PC比较所述第三本振光和旋转后的第四本振光的强度包括:所述SOA-PC利用分光器按固定比例分离部分第三本振光和旋转后的第四本振光,通过比较分离的部分第三本振光和分离的部分旋转后的第四本振光,确定所述所述第三本振光和旋转后的第四本振光的强度。
本发明实施例的方案,本振光和信号光的光源为同一个激光器,基于同源相干探测实现双向相干光传输,同时本振光的偏振态通过保偏光波导得到有效保持,避免了需要使用精密的激光器作为光源所带来的高成本,减少了相位噪声,避免数字信号在传输过程中发生中断。
附图说明
为了更清楚地说明本发明的技术方案,下面将对实施方式中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本实施方式提供的一种相干光通信系统结构示意图;
图2为本实施方式提供的另一种相干光通信系统结构示意图;
图3为本实施方式提供的另一种相干光通信系统结构示意图;
图4为本实施方式提供的SOA-PC结构示意图;
图5为本实施方式提供的光收发器结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参见图1,为本实施方式提供的一种相干光通信系统,包括第一光收发器100和第二光收发器900,第一光收发器100包括第一激光器101,第一电光调制器102和第一光接收机103,所述第二光收发器900包括第二激光器901,第二电光调制器902和第二光接收机903,其中所述第一光接收机103包括第一混频器104,第一光电转换器105,第一模数转换器111和第一数字信号处理器106,所述第二光接收机903包括第二混频器904,第二光电转换器905,第二模数转换器911和第二数字信号处理器906。第一激光器101,用于通过保偏光波导将发射的一部分激光作为第一本振光传输给第二混频器904,以及将发射的另一部分激光传输给第一电光调制器102。第一电光调制器102,用于将第一数据加载在从第一激光器101接收的激光上得到第一光信号,将所 述第一光信号通过第一单模光波导传输给所述第二混频器904。第二混频器904,用于将所述第一本振光和所述第一光信号进行混频,得到混频后的光信号,第二光电转换器905,用于将所述第二混频器904混频后的光信号转换为第一模拟电信号。第二模数转换器911,用于对第一模拟电信号进行模数转换,得到第一数字电信号,第二数字信号处理器906,用于对所述第一数字电信号进行处理得到所述第一数据。
本实施方式中的第二激光器901,用于通过保偏光波导将发射的一部分激光作为第二本振光传输给所述第一光收发器100中的第一混频器104,以及将发射的另一部分激光传输给第二电光调制器902。第二电光调制器902,用于将第二数据加载在从第二激光器901接收的激光上得到第二光信号,将所述第二光信号通过第二单模光波导传输给所述第一光收发器100中的第一混频器104。第一混频器104,用于将所述第二本振光和所述第二光信号进行混频,得到混频后的光信号。第一光电转换器105,用于将所述第一混频器混频后的光信号转换为第二模拟电信号。第一模数转换器111,用于对第二模拟电信号进行模数转换,得到第二数字电信号,第一数字信号处理器106,用于对所述第二数字电信号进行处理得到所述第二数据。
在本实施方式中,从第一激光器101发射出来的光可以通过耦合器108传到电光调制器102和环形器110,作为第二光接收机903的本振光的传到环形器110的部分激光可以再经过环形器910传到第二混频器904。第一电光调制器102输出的信号光可以通过第一发射机107、环形器109和环形器909传到第二混频器904。由于第一收发器100和第二收发器900对称,同理,从第二激光器901发射出来的光可以通过耦合器908传到电光调制器902和环形器910,作为第一光接收机103的本振光的传到环形器910的部分激光可以再经过环形器110传到第一混频器104。第二电光调制器902输出的信号光可以通过第二发射机907、环形器909和环形器109传到第一混频器104。
在本实施方式中,保偏光波导可以是保偏光纤,单模光波导可以是单模光纤。保偏光波导也可以是保偏二氧化硅波导或保偏硅波导。
本实施方式的第一激光器和所述第二接收机之间还可以连接有半导体光放大器-偏振控制器SOA-PC,所述SOA-PC用于接收所述第一激光器发射的第一本振光,将第一本振光分为X偏振态的第三本振光和Y偏振态的第四本振光,将所述第四本振光的偏振态进行90度旋转,比较所述第三本振光和旋转后的第四本振光的强度,选择强度更高的本振光输出给所述第二光接收机。
所述SOA-PC利用分光器按固定比例分离部分第三本振光和旋转后的第四本振光,通过比较分离的部分第三本振光和分离的部分旋转后的第四本振光,确定所述所述第三本振光和旋转后的第四本振光的强度。该固定比例可以是10%,也可以是其他比例。在分光器按1:9的比例分光后,根据比较10%的第三本振光和10%的旋转后的第四本振光的强度,根据比较结果,将剩余的90%的第三本振光和旋转后的第四本振光中强度较强的光输出到第二接收机中的第二混频器904。
本振光路采用保偏光波导传输,在传入接收机之前,本振光被SOA-PC模 块处理,进行偏振态锁定。SOA-PC模块起到第二重偏振态保护的作用,可以进一步提高系统稳定性。
参考图2的相干光通信系统,本实施方式中采用光学环形器,该相干光通信系统的光收发器1与光收发器2分别是双端口输出。
光收发器1内部的主要构成如下:激光器1的输出与耦合器202的输入端口通过保偏光纤连接。耦合器202为偏振保持分光器,耦合器202的两个输出端口通过保偏光纤分别与光发射机(Transmitter,TX)203的输入端口、环形器1端口1相连。光发射机203的输出光端口与环形器205的端口1相连,该连接用的光波导可为保偏光纤或非保偏光纤,例如单模光纤就是一种可以用的非保偏光纤。环形器205端口2与单模光纤208连接。环形器205端口3与接收器(Receiver,RX)206的信号光端口连接。环形器204端口2与保偏光纤207连接。环形器204端口3通过保偏光纤,与光接收机206的本征光端口连接。
光收发器2内部的部件连接关系与光收发器1类似。激光器211的输出与耦合器210的输入端口通过保偏光纤连接。耦合器210为偏振保持分光器,耦合器210的两个输出端口通过保偏光纤分别与光发射机(Transmitter,TX)209的输入端口、环形器213端口1相连。光发射机209的输出光端口与环形器214的端口1相连,该连接用的光波导可为保偏光纤或非保偏光纤,例如单模光纤就是一种可以用的非保偏光纤。环形器214端口2与单模光纤208连接。环形器214端口3与接收器(Receiver,RX)212的信号光端口连接。环形器213端口2与保偏光纤207连接。环形器213端口3通过保偏光纤,与光接收机212的本征光端口连接。
通过上面提到的连接,信号光1与信号光2在单模光纤中传播,本征光1与本征光2在保偏光纤中传播。激光器1与激光器2的输出波长可以相同,也可以不同。光发射机输出光信号的格式,可以是强度调制、相位调制或者频率调制。接收机的信号恢复与发射机调制格式对应。
本实施方式的光环形器可以用2波长的波分复用器来替换,在使用2波长的波分复用器来替换光环形器的时候,激光器1和激光器2的输出波长不同,激光器1和激光器2输出波长的波长差的最小间隔由光信号的光谱带宽决定,主要是需要实现减少信号光1和信号光2之间的串扰的目的。
参考图3的相干光通信系统,在每个光收发器内的本振(Local Oscillator,LO)支路中,LO光先经过一个半导体光放大器-偏振控制器SOA-PC,再进入相干接收机的LO输入端口。SOA-PC的输出光偏振恒定,满足相干接收机的LO端口要求。SOA-PC的结构如图4所示。
图4中,输入光为未调制数据的连续激光,先经过偏振分光器401分为X,Y偏振两路。X支路的光先经过分光器403分为两份:一份进入光电探测器(Photodetector,PD)405转换为电流,另一份经过光纤传输到半导体光放大器(Semiconductor optical amplifier,SOA)408。SOA 408的输出与2x1耦合器412输入端口相连。Y支路的光先经过90度偏振旋转器402,转换为X偏振态,随后分别经过分光器404、SOA 410连到2x1耦合器412的 另一个输入端口。图中所有光学器件以及它们之间的连接光波导均为偏振保持型,即保偏光波导。分光器403的分光比与分光器404的分光比近似相等,典型为10:90。SOA的开关响应时间短,如<1ns,可根据系统规格来选择。SOA的作用是对光功率进行放大。PD 405与PD 408的输出通过波导分别连接到比较器的两个端口。当PD 405的电流大于或等于PD 408的电流,比较器输出高电平(如5V等);反之,输出低电平(如0V)。
SOA-PC的工作流程如下:当比较器407输出高电平时,选择器409打开SOA 408的驱动电流,关闭SOA 410的驱动电流。SOA 408正常工作,输出X支路的光波。当比较器输出低电平时,选择器关闭SOA 408的驱动电流,打开SOA 410的驱动电流。SOA 410正常工作,输出Y支路的光波。这样就保证了SOA-PC输出光的偏振态恒为X偏振态。输入光的偏振态随着时间变化,分解到X、Y两个偏振态的光功率也交替变化。经过SOA-PC后,输出光功率在大部分时间均保持高值,在一些SOA开关切换的瞬时段内,输出光功率会出现功率波动。
参考图5的光收发器,包括光接口501,光接收机,保偏光波导,其中光接收机包括混频器503,光电转换器504,模数转换器513和数字信号处理器DSP 505,其中:光接口501,用于从收发器外的激光器接收本振光;混频器503,用于从所述光接口501接收所述本振光,以及接收调制在收发器外的激光器发射的激光上的信号光,对本振光和信号光进行混频;保偏光波导,用于连接光接口和光接收机,本振光在所述保偏光波导中传输时偏振态保持不变;光电转换器504,用于对混频后的光进行光电转换,得到携带数据的模拟电信号;模数转换器513,用于对模拟电信号进行模数转换,得到数字电信号;数字信号处理器505,用于对所述数字电信号进行处理,得到所述数据。混频器503所接收的信号光可以是通过端口507从单模光波导接收的,端口507接收的信号光经过波分复用器506传到混频器503。本实施方式的光收发器还可以包括激光器511,电光调制器510,耦合器509和发送机508。激光器511发出的光经过耦合器510分别传到波分复用器502和电光调制器509,数据通过电光调制器509加载到耦合器510传来的光上,电光调制器调制后的光通过发射机508,波分复用器506和单模光纤传到对端的光收发器。激光器511发出的光传到波分复用器502后,通过光接口501和保偏光波导传到对端的光收发器,作为对端的光收发器相干接收所用的本振光。
在本实施方式中,对端的光收发器与本端的光收发器对称,光接收从单模光波导接收的光是对端光收发器中的发射机发过来的信号光,该信号光是对端的激光器发出的光经过对光收发器中的电光调制器加载数据后得到的。波分复用器502和混频器503之间还可以连接有SOA-PC 512,SOA-PC 512的结构可以参考图4。SOA-PC 512用于接收激光器发射的本振光,将本振光分为X偏振态的第二本振光和Y偏振态的第三本振光,将所述第三本振光的偏振态进行90度旋转,比较所述第二本振光和旋转后的第三本振光的强度,选择强度更高的本振光输出给所述光接收机。SOA-PC 512比较所述第二本振光和旋转后的第三本振光的强度可以包括:SOA-PC 512利用分光器按固定比例 分离部分第二本振光和旋转后的第三本振光,通过比较分离的部分第二本振光和分离的部分旋转后的第三本振光,确定所述所述第二本振光和旋转后的第三本振光的强度。
在本实施方式中,连接光接口501、波分复用器502、SOA-PC 512和混频器503之间的波导都是保偏光波导,例如保偏光纤。
本实施方式的方案,本振光和信号光的光源为同一个激光器,基于同源相干探测实现双向相干光传输,同时本振光的偏振态通过保偏光波导得到有效保持,避免了需要使用精密的激光器作为光源所带来的高成本,减少了相位噪声,避免数字信号在传输过程中发生中断。本振光路采用保偏光波导传输,在传入接收机之前,本振光可以经过SOA-PC模块处理,进行偏振态锁定。SOA-PC模块起到第二重偏振态保护的作用,可以进一步提高系统稳定性。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (9)

  1. 一种光收发器,其特征在于,包括光接口,光接收机,保偏光波导,其中所述光接收机包括混频器,光电转换器,模数转换器和数字信号处理器,其中:
    所述光接口,用于从所述收发器外的激光器接收本振光;
    所述混频器,用于从所述光接口接收所述本振光,以及接收调制在所述收发器外的激光器发射的激光上的信号光,对所述本振光和所述信号光进行混频;
    所述保偏光波导,用于连接所述光接口和所述光接收机,所述本振光在所述保偏光波导中传输时偏振态保持不变;
    所述光电转换器,用于对所述混频后的光进行光电转换,得到携带数据的模拟电信号;
    所述模数转换器,用于对所述模拟电信号进行模数转换,得到数字电信号;
    所述数字信号处理器,用于对所述数字电信号进行处理,得到所述数据。
  2. 如权利要求1所述的光收发器,其特征在于,所述光接口和所述接收机之间连接有半导体光放大器-偏振控制器SOA-PC,所述SOA-PC用于接收所述激光器发射的本振光,将本振光分为X偏振态的第二本振光和Y偏振态的第三本振光,将所述第三本振光的偏振态进行90度旋转,比较所述第二本振光和旋转后的第三本振光的强度,选择强度更高的本振光输出给所述光接收机。
  3. 如权利要求2所述的光收发器,其特征在于,其特征在于,所述SOA-PC比较所述第二本振光和旋转后的第三本振光的强度包括:
    所述SOA-PC利用分光器按固定比例分离部分第二本振光和旋转后的第三本振光,通过比较分离的部分第二本振光和分离的部分旋转后的第三本振光,确定所述所述第二本振光和旋转后的第三本振光的强度。
  4. 如权利要求2或3所示的光收发器,其特征在于,还包括激光器,电光调制器和发射机,其中:
    所述激光器,用于发射激光,所述激光器发射的激光的一部分作为对端光收发器相干接收所用的本振光,所述激光器发射的激光的另一部分作为所述电光调制器的输入光;
    所述电光调制器,用于调制数据到所述激光器发射的另一部分激光,得到信号光;
    所述发射机,用于将所述信号光发送给所述对端光收发器。
  5. 一种相干光通信系统,包括第一光收发器和第二光收发器,其特征在于:
    所述第一光收发器包括第一激光器,第一电光调制器和第一光接收机,所述第二光收发器包括第二激光器,第二电光调制器和第二光接收机,其中所述第一光接收机包括第一混频器,第一光电装换器,第一模数转换器和第一数字信号处理器,所述第二光接收机包括第二混频器,第二光电转换器,第二模数转换器和第二光信号处理器;
    所述第一激光器,用于通过保偏光波导将发射的一部分激光作为第一本振光传输给第二混频器,以及将发射的另一部分激光传输给第一电光调制器,其中所述第一本振光在所述保偏光波导中传输时偏振态保持不变;
    所述第一电光调制器,用于将第一数据加载在从第一激光器接收的激光上得到第一光信号,将所述第一光信号通过第一单模光波导传输给所述第二混频器;
    所述第二混频器,用于将所述第一本振光和所述第一光信号进行混频,得到混频后的光信号;
    所述第二光电转换器,用于将所述第二混频器混频后的光信号转换为第一模拟电信号;
    所述第二模数转换器,用于对所述第一模拟电信号进行模数转换,得到第一数字电信号;
    第二数字信号处理器,用于对所述第一数字电信号进行处理得到所述第一数据。
  6. 如权利要求5所述的相干光通信系统,其特征在于,
    所述第二激光器,用于通过保偏光波导将发射的一部分激光作为第二本振光传输给所述第一光收发器中的第一混频器,以及将发射的另一部分激光传输给第二电光调制器;
    所述第二电光调制器,用于将第二数据加载在从第二激光器接收的激光上得到第二光信号,将所述第二光信号通过第二单模光波导传输给所述第一光收发器中的第一混频器;
    所述第一混频器,用于将所述第二本振光和所述第二光信号进行混频,得到混频后的光信号;
    所述第一光电转换器,用于将所述第一混频器混频后的光信号转换为第二模拟电信号;
    所述第一模数转换器,用于对所述第二模拟电信号进行模数转换,得到第二数字电信号;
    第一数字信号处理器,用于对所述第二数字电信号进行处理得到所述第二数据。
  7. 如权利要求5或6所述的相干光通信系统,其特征在于:所述第一激光器通过环形器或者波分复用器与所述第二接收器连接。
  8. 如权利要求5或6所述的相干光通信系统,其特征在于,所述第一激 光器和所述第二接收器之间连接有半导体光放大器-偏振控制器SOA-PC,所述SOA-PC用于接收所述第一激光器发射的第一本振光,将第一本振光分为X偏振态的第三本振光和Y偏振态的第四本振光,将所述第四本振光的偏振态进行90度旋转,比较所述第三本振光和旋转后的第四本振光的强度,选择强度更高的本振光输出给所述第二光接收机。
  9. 如权利要求8所述的相干光通信系统,其特征在于,所述SOA-PC比较所述第三本振光和旋转后的第四本振光的强度包括:
    所述SOA-PC利用分光器按固定比例分离部分第三本振光和旋转后的第四本振光,通过比较分离的部分第三本振光和分离的部分旋转后的第四本振光,确定所述所述第三本振光和旋转后的第四本振光的强度。
PCT/CN2019/110333 2018-10-13 2019-10-10 一种光收发器和光相干接收系统 WO2020073950A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19871564.1A EP3852286A4 (en) 2018-10-13 2019-10-10 OPTICAL TRANSCEIVER AND COHERENT OPTICAL RECEIVING SYSTEM
US17/229,005 US11387907B2 (en) 2018-10-13 2021-04-13 Optical transceiver and optical coherent receiving system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811192395.4A CN111049585B (zh) 2018-10-13 2018-10-13 一种光收发器和光相干接收系统
CN201811192395.4 2018-10-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/229,005 Continuation US11387907B2 (en) 2018-10-13 2021-04-13 Optical transceiver and optical coherent receiving system

Publications (1)

Publication Number Publication Date
WO2020073950A1 true WO2020073950A1 (zh) 2020-04-16

Family

ID=70164156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/110333 WO2020073950A1 (zh) 2018-10-13 2019-10-10 一种光收发器和光相干接收系统

Country Status (4)

Country Link
US (1) US11387907B2 (zh)
EP (1) EP3852286A4 (zh)
CN (1) CN111049585B (zh)
WO (1) WO2020073950A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022195283A1 (en) * 2021-03-17 2022-09-22 Npl Management Limited Frequency and/or time transfer apparatus, system and method
EP4191899A4 (en) * 2020-08-26 2024-01-17 Huawei Technologies Co., Ltd. OPTICAL TRANSMITTER/RECEIVER AND OPTICAL SIGNAL PROCESSING METHOD

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11360190B2 (en) * 2019-04-20 2022-06-14 The United States Of America, As Represented By The Secretary Of The Navy Hardware in the loop simulation and test system that includes a phased array antenna simulation system providing dynamic range and angle of arrival signals simulation for input into a device under test (DUT) that includes a phased array signal processing system along with related methods
WO2022021237A1 (zh) * 2020-07-30 2022-02-03 华为技术有限公司 一种激光雷达和智能车辆
CN112764008A (zh) * 2020-12-28 2021-05-07 武汉光谷信息光电子创新中心有限公司 一种激光雷达芯片
CN114448519A (zh) * 2021-12-30 2022-05-06 华为技术有限公司 光传输方法及装置
CN114280463B (zh) * 2021-12-31 2023-08-08 武汉锐科光纤激光技术股份有限公司 一种芯片测试系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104062720A (zh) * 2013-03-22 2014-09-24 住友电气工业株式会社 光接收器以及制造光接收器的方法
CN104218992A (zh) * 2014-09-15 2014-12-17 中国科学院半导体研究所 一种零差检测型相干光传输系统
WO2015081501A1 (zh) * 2013-12-03 2015-06-11 华为技术有限公司 一种光收发器及处理光信号的方法
CN105093433A (zh) * 2014-05-08 2015-11-25 住友电气工业株式会社 具有用于安装马赫-曾德尔调制器的辅助区域的光收发器
WO2016164634A1 (en) * 2015-04-09 2016-10-13 Huawei Technologies Co., Ltd. Optical transceiving using self-homodyne detection (shd) and remote modulation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3183685B2 (ja) * 1991-09-13 2001-07-09 富士通株式会社 光通信システム
WO2015027903A1 (en) * 2013-08-27 2015-03-05 Zte Corporation Optical communication using super-nyquist signals

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104062720A (zh) * 2013-03-22 2014-09-24 住友电气工业株式会社 光接收器以及制造光接收器的方法
WO2015081501A1 (zh) * 2013-12-03 2015-06-11 华为技术有限公司 一种光收发器及处理光信号的方法
CN105093433A (zh) * 2014-05-08 2015-11-25 住友电气工业株式会社 具有用于安装马赫-曾德尔调制器的辅助区域的光收发器
CN104218992A (zh) * 2014-09-15 2014-12-17 中国科学院半导体研究所 一种零差检测型相干光传输系统
WO2016164634A1 (en) * 2015-04-09 2016-10-13 Huawei Technologies Co., Ltd. Optical transceiving using self-homodyne detection (shd) and remote modulation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3852286A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4191899A4 (en) * 2020-08-26 2024-01-17 Huawei Technologies Co., Ltd. OPTICAL TRANSMITTER/RECEIVER AND OPTICAL SIGNAL PROCESSING METHOD
WO2022195283A1 (en) * 2021-03-17 2022-09-22 Npl Management Limited Frequency and/or time transfer apparatus, system and method

Also Published As

Publication number Publication date
US11387907B2 (en) 2022-07-12
EP3852286A4 (en) 2021-11-10
CN111049585B (zh) 2022-06-14
EP3852286A1 (en) 2021-07-21
US20210234614A1 (en) 2021-07-29
CN111049585A (zh) 2020-04-21

Similar Documents

Publication Publication Date Title
WO2020073950A1 (zh) 一种光收发器和光相干接收系统
US10659162B2 (en) Photonic microwave down-conversion system and method
US11606144B2 (en) Pluggable optical module and optical communication system
US9791761B1 (en) Integrated chip
US6643417B2 (en) All optical image reject down-converter
US4817206A (en) Optical-fiber transmission system with polarization modulation and heterodyne coherent detection
CA2848687C (en) Integrated photonic frequency converter and mixer
CN106027152A (zh) 一种基于马赫增德尔调制器8倍频产生120GHz毫米波的方法
CN106027153A (zh) 基于新型双边带马赫增德尔调制器产生60GHz毫米波的方法
CN108736978A (zh) 一种反射式相干光通信系统发射端
US20230144555A1 (en) Apparatus for broadband wavelength conversion of dual-polarization phase-encoded signal
US20230275670A1 (en) Optical transmission device and system
WO2023174165A1 (zh) 相干接收装置、相干发送装置和相干通信系统
CN114866155B (zh) 波分相干接收装置、数据接收方法和收发系统
US11942995B2 (en) Up/down photonic frequency converter for incoming radio frequency (RF) signals built into the optoelectronic oscillator (OEO)
WO2022041875A1 (zh) 一种光收发装置和光信号处理方法
WO2022143323A1 (zh) 一种光模块、处理装置、插接装置、系统以及方法
Li et al. Dispersion-assisted scheme with optical self-interference cancellation and image rejection mixing
JPH0671232B2 (ja) 二重平衡偏波ダイバ−シティ受信装置
JPS63221726A (ja) 光通信方式
JPS63272131A (ja) 偏波ダイバシテイ光受信方法及びその装置
JPH05153095A (ja) データ伝送装置
JPH06303193A (ja) 光スイッチを用いた無瞬断切り替え装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19871564

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019871564

Country of ref document: EP

Effective date: 20210414