WO2020071481A1 - イソプロピルアルコールの製造方法 - Google Patents

イソプロピルアルコールの製造方法

Info

Publication number
WO2020071481A1
WO2020071481A1 PCT/JP2019/039095 JP2019039095W WO2020071481A1 WO 2020071481 A1 WO2020071481 A1 WO 2020071481A1 JP 2019039095 W JP2019039095 W JP 2019039095W WO 2020071481 A1 WO2020071481 A1 WO 2020071481A1
Authority
WO
WIPO (PCT)
Prior art keywords
isopropyl alcohol
filter
filtration step
filtration
distillation
Prior art date
Application number
PCT/JP2019/039095
Other languages
English (en)
French (fr)
Inventor
彬 ▲瀬▼良
正志 品川
正成 石附
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to CN201980062035.9A priority Critical patent/CN112771015B/zh
Priority to JP2020550540A priority patent/JPWO2020071481A1/ja
Priority to US17/281,823 priority patent/US11560346B2/en
Priority to KR1020217007432A priority patent/KR20210070275A/ko
Publication of WO2020071481A1 publication Critical patent/WO2020071481A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/03Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by addition of hydroxy groups to unsaturated carbon-to-carbon bonds, e.g. with the aid of H2O2
    • C07C29/04Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by addition of hydroxy groups to unsaturated carbon-to-carbon bonds, e.g. with the aid of H2O2 by hydration of carbon-to-carbon double bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • C07C29/80Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/02Monohydroxylic acyclic alcohols
    • C07C31/10Monohydroxylic acyclic alcohols containing three carbon atoms

Definitions

  • the present invention relates to a method for producing isopropyl alcohol.
  • Metal impurities contained in various semiconductor processing liquids used in semiconductor manufacturing processes are considered to cause a decrease in semiconductor yield and the like. Therefore, in order to improve the yield, the amount of metal impurities contained in the semiconductor processing solution has been reduced by various methods. In recent years, along with miniaturization of semiconductor design rules, further reduction of metal impurities has been required. Particularly, in semiconductor design rules having a line width of 20 nm or less, it is required to manage the metal impurity amount at a ppt level.
  • the metal impurities contained in the processing solution for semiconductors are roughly classified into two types: metal impurities mixed in the manufacturing process of the semiconductor processing solution and metal impurities mixed in the storage, filling, or transporting process after manufacturing. For this reason, it is necessary to reduce not only the metal impurities mixed in the manufacturing process of the semiconductor processing solution but also the metal impurities newly mixed in the storage, filling, or transporting process.
  • Patent Literature 1 discloses a purification device including a filtering means provided with a filter having a particle diameter of 20 nm or less and a metal ion adsorbing means. I have.
  • metal impurities in the organic solvent can be reduced to the ppt level.
  • the inventors of the present invention have studied that even if isopropyl alcohol is filtered with a filter having a particle diameter of 20 nm or less, a relatively large amount of organic impurities (particularly, having a molecular weight of 100 to 140) are contained in the isopropyl alcohol after filtration. Organic impurities).
  • organic impurities when such organic impurities are contained in isopropyl alcohol, when isopropyl alcohol is used as a semiconductor processing liquid, it remains as particles or the like on a wafer, which may cause a reduction in semiconductor yield.
  • an object of the present invention is to provide a method for producing isopropyl alcohol which can further reduce the content of metal impurities and organic impurities.
  • a method for producing isopropyl alcohol by directly hydrating water with propylene to produce isopropyl alcohol A distillation step of distilling the crude isopropyl alcohol, A filtration step of filtering the isopropyl alcohol obtained in the distillation step with a filter having an ion exchange group, A method for producing isopropyl alcohol, comprising:
  • ⁇ 2> The method for producing isopropyl alcohol according to ⁇ 1>, wherein the contact time in the filtration step is 100 to 1000 seconds.
  • ⁇ 3> The method for producing isopropyl alcohol according to ⁇ 1> or ⁇ 2>, wherein the differential pressure in the filtration step is 100 kPa or less.
  • ⁇ 4> The method for producing isopropyl alcohol according to any one of ⁇ 1> to ⁇ 3>, wherein the filter having an ion-exchange group has a particle diameter of 1 nm or more and less than 20 nm.
  • ⁇ 5> The method according to any one of ⁇ 1> to ⁇ 4>, wherein the total content of organic impurities having a molecular weight of 100 or more and less than 140 contained in the isopropyl alcohol after the filtration step is less than 5 ppb on a mass basis.
  • ⁇ 6> The method according to any one of ⁇ 1> to ⁇ 5>, further including a pre-filtration step of filtering the isopropyl alcohol obtained in the distillation step with a filter having no ion-exchange group before the filtration step.
  • the present invention it is possible to provide a method for producing isopropyl alcohol which can further reduce the content of metal impurities and organic impurities.
  • the isopropyl alcohol obtained by the production method of the present invention can be suitably used as a processing solution for semiconductors.
  • the notation “AB” for numerical values A and B means “not less than A and not more than B”.
  • the unit is also applied to the numerical value A.
  • “%”, “ppm”, “ppb”, and “ppt” representing the content are all based on mass, including Examples.
  • the method for producing isopropyl alcohol according to the present embodiment includes a distillation step of distilling crude isopropyl alcohol, and a filtration step of filtering isopropyl alcohol obtained in the distillation step with a filter.
  • Crude isopropyl alcohol is a composition containing water, metal impurities, organic impurities, and the like in addition to isopropyl alcohol.
  • Water, metal impurities, organic impurities, and the like can be reduced by passing through a distillation step and a filtration step described below.
  • crude isopropyl alcohol is water, metal impurities, and organic impurities before passing through a distillation step and a filtration step. Etc. are not reduced.
  • the content of metal impurities (the amount of metal impurities) contained in the crude isopropyl alcohol is not particularly limited. Above all, according to the production method of the present embodiment, crude isopropyl alcohol having a total content of iron, chromium, and nickel of 1 to 1000 ppt can be suitably used as a purification target. In consideration of the purification efficiency and the like of the production method according to the present embodiment, crude isopropyl alcohol having a total content of iron, chromium, and nickel of 1 to 100 ppt can be more preferably used as a purification target.
  • the content (water content) of water contained in the crude isopropyl alcohol is not particularly limited. Above all, according to the production method of the present embodiment, a crude isopropyl alcohol composition having a water content of 50 to 95% can be suitably used as a purification target. In consideration of the purification efficiency and the like of the production method according to the present embodiment, crude isopropyl alcohol having a water content of 50 to 94% can be more preferably used as a purification target.
  • the total content of iron, chromium, and nickel is 1 to 1000 ppt (preferably 1 to 100 ppt), and the water content is 50 to 95% (preferably 50 to 95 ppt). It is preferable to use crude isopropyl alcohol (.about.94%) as a target for purification.
  • Methods for producing isopropyl alcohol include the acetone reduction method of reducing acetone, the Veba Chemie method which is a gas phase method of a fixed bed catalyst method, and the Deutsch Texaco method which is a gas-liquid mixed phase method of a fixed bed catalyst method.
  • the direct hydration method is a method for producing isopropyl alcohol by directly reacting propylene and water, and can be represented by the following formula. The following reaction is performed in a reactor to obtain crude isopropyl alcohol.
  • the reaction conditions of the direct hydration method are not particularly limited, but the reaction pressure is preferably 10 to 30 MPa and the reaction temperature is preferably 200 to 300 ° C.
  • the reaction condition satisfies this condition, it is possible to suppress the generation of by-products (organic impurities) due to the reaction, and at the same time, achieve both the yield that enables industrial production and the durability of the catalyst.
  • the reaction temperature exceeds 300 ° C., the reaction rate increases, but the reaction by-product tends to increase as the reaction rate increases.
  • the reaction temperature is lower than 200 ° C., the reaction rate tends to decrease, and the yield of isopropyl alcohol tends to decrease.
  • distillation process Since crude isopropyl alcohol contains water, metal impurities, and by-products (organic impurities) of the reaction, the crude isopropyl alcohol is first purified by distillation.
  • the distillation column used in the distillation step and the distillation conditions in the distillation step are not particularly limited.
  • distillation for removing low-boiling organic substances having a boiling point lower than isopropyl alcohol and distillation for removing high-boiling organic substances having a boiling point higher than isopropyl alcohol may be repeated. . By repeating the distillation, organic impurities can be further reduced.
  • an azeotropic distillation column for example, a distillation column for adding and distilling a relatively small amount of an aromatic solvent (benzene, toluene, xylene, etc.) azeotropic with water
  • an aromatic solvent benzene, toluene, xylene, etc.
  • azeotropic with water may be provided to further reduce the water content. preferable.
  • the isopropyl alcohol after the distillation step preferably has a water content of 0.1 to 1000 ppm.
  • the isopropyl alcohol after the distillation step preferably has a water content of 0.1 to 1000 ppm.
  • the isopropyl alcohol after the distillation step preferably has a water content of 0.1 to 100 ppm, more preferably 0.1 to 50 ppm.
  • the distillation step it is preferable to distill the crude isopropyl alcohol until the total content of iron, chromium, and nickel becomes 1 to 1000 ppt. That is, the isopropyl alcohol after the distillation step preferably has a total content of iron, chromium, and nickel of 1 to 1000 ppt.
  • the total content of iron, chromium, and nickel in the isopropyl alcohol after the distillation step is more preferably 1 to 500 ppt, further preferably 1 to 100 ppt.
  • the amount of metal impurities in isopropyl alcohol after the distillation step is, for example, at the ppb level, it is difficult to reduce the amount of metal impurities to the ppt level even if the filtration step and the pre-filtration step described below are repeated. . Therefore, it is preferable to control the amount of metal impurities after the distillation step to 1 to 100 ppt.
  • chromium is presumed to be present in isopropyl alcohol in a small proportion as chromium particles or chromium oxide, so that it is difficult to remove it in a filtration step or a pre-filtration step described later.
  • the distillation conditions such as the number of theoretical plates, the top temperature, the bottom temperature, and the reflux ratio are adjusted, and the crude isopropyl alcohol is distilled until the chromium content becomes 10 ppt or less, whereby the chromium content is 10 ppt or less. Can be stably produced.
  • the distillation step distills crude isopropyl alcohol until the content of fine particles having a particle size of 0.3 ⁇ m or less becomes 1 to 200 per 1 mL of isopropyl alcohol.
  • the content of the fine particles having a particle diameter of 0.3 ⁇ m or less contained in the isopropyl alcohol after the distillation step is preferably 1 to 200 per 1 mL of isopropyl alcohol.
  • the content of the fine particles in isopropyl alcohol can be measured by a particle counter.
  • Examples of the organic impurities contained in the isopropyl alcohol after the distillation step include organic impurities having a molecular weight of 100 or more and less than 140. This organic impurity is presumed to be mainly an oxygen-containing hydrocarbon compound. When such organic impurities are contained in isopropyl alcohol, when isopropyl alcohol is used as a semiconductor processing solution, it remains as particles on a wafer, which may cause a reduction in yield. Therefore, it is preferable to remove the organic impurities as much as possible. In the present embodiment, such organic impurities can be removed in a filtration step described later.
  • the total content of organic impurities having a molecular weight of 100 or more and less than 140 contained in the isopropyl alcohol after the distillation step is preferably 5 to 100 ppb, and more preferably 5 to 10 ppb. More preferred.
  • the content of the organic impurities can be measured by gas chromatography (GC) after concentrating isopropyl alcohol.
  • a filtration step is performed on the isopropyl alcohol obtained in the above distillation step.
  • isopropyl alcohol obtained from a distillation column or the like is directly transferred to a filtration device through a pipe or the like, and a filtration step is performed.
  • the isopropyl alcohol which is water-soluble and easily absorbs moisture, is not allowed to stand, and the isopropyl alcohol immediately after distillation is directly filtered, whereby an increase in the amount of metal impurities can be suppressed.
  • isopropyl alcohol obtained in the distillation step is filtered with a filter to remove metal impurities, organic impurities, and the like.
  • the filtration step can be performed, for example, by installing a filter in a transfer pipe that transfers the isopropyl alcohol purified in the distillation step to a storage tank.
  • a filter made of a resin such as 6-nylon, 6,6-nylon, polyethylene, polypropylene, polystyrene, or a fluororesin is preferable from the viewpoint of more efficiently reducing metal impurities.
  • a filter made of a fluororesin is more preferable, and a filter made of polytetrafluoroethylene (PTFE) is more preferable.
  • PTFE polytetrafluoroethylene
  • a filter in which an ion exchange membrane having an ion exchange group such as an acidic group or an alkaline group is formed on the surface of the resin is preferably used.
  • the ion exchange capacity of the filter surface of the filter having an ion exchange group is preferably from 0.1 to 10 meq, more preferably from 0.3 to 8 meq.
  • a commercially available filter can be used in the filtration step. Specifically, a filter manufactured by Entegris, a filter manufactured by Pall, or the like can be used. These filters may be appropriately selected according to the desired purity of isopropyl alcohol, one type of filter may be used alone, or one type of filter having a different particle size may be used in series. Good. Further, a plurality of types of filters may be used in combination. For example, a plurality of types of filters may be used in a line.
  • the contact time between the filter and isopropyl alcohol is preferably 100 to 1000 seconds, more preferably 150 to 1000 seconds, still more preferably 300 to 1000 seconds, and more preferably 500 to 1000 seconds. Is particularly preferred.
  • the contact time is a time defined by the following equation.
  • Contact time (sec) Filter volume (mL) / Flow rate of isopropyl alcohol (mL / sec)
  • the pressure difference between the filter inlet and the filter outlet is preferably 100 kPa or less. It is considered that the lower the pressure difference, the higher the collection efficiency of metal impurities and organic impurities. From the viewpoint of further reducing metal impurities and organic impurities and increasing productivity, the differential pressure is more preferably 1 to 50 kPa, further preferably 1 to 2 kPa.
  • the particle size of the filter in the filtration step is preferably 1 nm or more and less than 20 nm. If the particle size is too small, the differential pressure tends to increase and the filtration efficiency tends to decrease. On the other hand, if the particle size is too large, the effect of reducing metal impurities and organic impurities tends to decrease. In consideration of the effect of reducing metal impurities and organic impurities and industrial production, the particle size of the filter is more preferably 1 to 15 nm. In addition, that the particle diameter of a filter is "A (nm)" means that the collection efficiency of particles having a particle size of "A (nm)" or more is 99.9% or more.
  • the target isopropyl alcohol is produced by a direct hydration method, and the water content in the distillation step is 0.1 to 1000 ppm (more preferably 0.1 to 100 ppm, further preferably 0.1 to 50 ppm, particularly preferably 0.1 to 30 ppm) and the amount of metal impurities is 7 to 1000 ppt (more preferably 7 to 500 ppt, still more preferably 7 to 100 ppt, and particularly preferably 8 to 100 ppt).
  • the effect of filtering with a differential pressure becomes significant.
  • isopropyl alcohol after purification By producing isopropyl alcohol as described above, the chromium content is 0.001 to 5 ppt, the total content of iron, chromium, and nickel is 0.001 to 10 ppt, and the water content is 0%. It is possible to obtain isopropyl alcohol having a concentration of 0.1 to 100 ppm. Since isopropyl alcohol has high purity, it is suitably used as a processing solution for semiconductors.
  • isopropyl alcohol having a small content of organic impurities can be obtained.
  • the total content of organic impurities having a molecular weight of 100 or more and less than 140 contained in isopropyl alcohol can be less than 5 ppb.
  • water is not considered to have as bad an effect as metal impurities even if it is contained in the processing solution for semiconductors, if it is contained in isopropyl alcohol, it may act as a catalyst for the reaction of organic impurities. Depending on the member in contact with the alcohol, there is a possibility that metal impurities may increase. Therefore, the content of water is more preferably 50 ppm or less, and further preferably 10 ppm or less. On the other hand, considering industrial production, the content of water contained in isopropyl alcohol is generally 0.1 ppm or more.
  • the production method according to the present embodiment may further include a pre-filtration step of filtering the isopropyl alcohol obtained in the distillation step with a filter before the filtration step.
  • the number of times of filtering isopropyl alcohol with a filter is not particularly limited, but it is preferable to filter a plurality of times from the viewpoint of further reducing metal impurities and organic impurities. More specifically, it is preferable to circulate the isopropyl alcohol obtained in the distillation step, repeatedly pass through the filter, and perform circulating filtration.
  • isopropyl alcohol after the distillation step is transferred to a storage tank equipped with a circulation pump and piping, and at least one filter is installed in the circulation piping to circulate isopropyl alcohol. It can be implemented by doing.
  • the filter configuration in the circulation filtration is not particularly limited, but as the number of installed filters increases, the pressure loss increases and the productivity decreases. Therefore, it is usually preferable to use a three-stage filter configuration.
  • the first-stage filter preferably has a particle removal diameter of 500 to 2000 nm, more preferably 750 to 1250 nm.
  • the second-stage filter preferably has a particle diameter of 30 to 100 nm, more preferably 40 to 60 nm.
  • the third-stage filter preferably has a particle size of 1 to 20 nm, more preferably 5 to 15 nm. In this way, by installing the filter so that the particle removal diameter decreases stepwise, it is possible to achieve both the removal of impurities and the productivity.
  • the flow rate during the circulation filtration is not particularly limited, but a flow rate of 3 to 5 m 3 / hr is usually sufficient in consideration of the energy cost of the circulation pump.
  • the circulation period is not particularly limited, 0.5 to 7 days is usually sufficient in view of the risk of contamination such as elution from a tank or a filter due to long-term storage.
  • a filter having no ion exchange group is preferable.
  • the circulation filtration is performed as described above, since the filter and the isopropyl alcohol are repeatedly contacted, when a filter having an ion exchange group is used, isopropyl alcohol and organic impurities or organic impurities are separated by the ion exchange group. May react. For this reason, in the pre-filtration step, it is preferable to use a filter having no ion exchange group.
  • the pipe (transport pipe) for transferring isopropyl alcohol, the container for storing isopropyl alcohol, and the like are preferably those in which a liquid contact portion with isopropyl alcohol is subjected to a passivation treatment.
  • a passivation treatment By performing the passivation treatment on the liquid contact portion with isopropyl alcohol, it is possible to suppress an increase in the amount of metal impurities in isopropyl alcohol in the storage, filling, or transporting step.
  • a passivation layer having a thickness of 2 to 500 nm on the surface of the stainless steel material at the liquid contact portion with isopropyl alcohol it is preferable to form a passivation layer having a thickness of 2 to 100 nm. It is more preferable to form a passivation layer having a thickness of 2 to 20 nm.
  • the method for forming the passivation layer is not particularly limited, but a suitable passivation layer can be formed by performing an electropolishing step, a cleaning step using an inorganic acid, and a heating step.
  • a suitable passivation layer can be formed by performing an electropolishing step, a cleaning step using an inorganic acid, and a heating step.
  • the electrolytic polishing step is a polishing step in which an electrolytic solution is passed through the liquid contact portion to apply electricity, and a known method can be employed.
  • electricity may be applied to the liquid contact portion by passing phosphoric acid and sulfuric acid.
  • the oxide layer by heating the liquid contact portion, the oxide layer, particularly the chromium oxide layer, can be reduced in thickness from the surface of the passivation layer, and a dense iron oxide film can be grown.
  • the thickness of the chromium oxide layer can be adjusted, that is, the atomic concentration of chromium atoms on the outermost surface of the passivation layer or the atomic concentration of silicon atoms can be adjusted.
  • the thickness of the chromium oxide layer can be effectively adjusted.
  • the heating atmosphere is preferably an oxidizing atmosphere containing air. By heating in an oxidizing atmosphere, growth of an oxide film can be promoted.
  • the heating temperature is preferably from 300 to 450 ° C, more preferably from 300 to 400 ° C.
  • the heating time is not particularly limited, and may be determined so that the atomic concentration of chromium atoms on the outermost surface of the passivation layer is 0.1 to 10 atomic%. At that time, it is preferable to further determine a time at which the atomic concentration of silicon atoms becomes 0.1 to 10 atomic%. Usually, from the viewpoint of economy, 0.5 to 10 hours are preferable, and 1 to 3 hours are more preferable. Within the above range, a member in which an iron oxide film is sufficiently grown and metal elution is reduced can be manufactured.
  • the amount of metal impurities and the amount of water were measured by the following methods.
  • Metal impurities contained in isopropyl alcohol were quantified using ICP-MS (inductively coupled plasma mass spectrometer) as follows. About 500 mL of isopropyl alcohol purified under the conditions described in Examples and Comparative Examples was collected in an eggplant-shaped flask, concentrated and dried to dryness using a rotary evaporator, and then collected twice with about 25 mL of 0.1 N nitric acid. The metal elution amount of the collected 0.1N nitric acid solution was quantified by using ICP-MS.
  • ICP-MS inductively coupled plasma mass spectrometer
  • the concentration magnification was calculated from the ratio of the weight of the isopropyl alcohol before concentration to the weight of the 0.1N nitric acid solution after the recovery, and was converted into the amount of metal impurities per weight of isopropyl alcohol.
  • Isopropyl alcohol was concentrated according to the above-described concentration method, and when a peak was confirmed, a library was searched from the mass spectrum of the peak to identify the structure. It was confirmed that the substance whose structure could not be identified from the mass spectrum of the confirmed peak contained impurities at the corresponding retention time.
  • a standard substance of a compound having a specified structure is prepared according to the above-mentioned qualitative analysis method, and the concentration of the compound detected by the qualitative analysis is compared with the peak area of the standard substance which has been quantified in advance.
  • SIM selective ion detection
  • Compounds whose structures could not be specified and those for which standard materials could not be obtained were quantified based on the area of hexadecane on the total ion chromatograph.
  • Quantification of impurities in isopropyl alcohol was performed by adding a selective ion detection (SIM) mode to the same measurement conditions as the above (measurement method of organic impurities: qualitative analysis) without concentrating isopropyl alcohol. .
  • SIM monitor ions are as follows. -SIM monitor ion- Group 1 Start time: 12.7 minutes, m / Z: 69, 83, 85, 101, 115, 131 (dwell 30)
  • Example 1 (Production of crude isopropyl alcohol)
  • propylene one containing 39972 ppm of propane, 20 ppm of ethane, 8 ppm of butene, 0.1 ppm or less of pentene, and 0.1 ppm or less of hexene as impurities was prepared.
  • water a water whose pH was adjusted to 3.0 by adding phosphotungstic acid as an acid catalyst was prepared.
  • Water heated to 110 ° C. is supplied to a reactor having an internal volume of 10 L at a supply rate of 18.4 kg / h (20 L / h since the density is 920 kg / m 3 ), and 1.2 kg of propylene is supplied. / H feed rate.
  • Distillation process Distillation including dehydration was performed on the obtained crude isopropyl alcohol to obtain isopropyl alcohol with reduced impurities.
  • the water content in the isopropyl alcohol after the distillation step was 12 ppm.
  • Table 2 shows the respective contents of iron, chromium, and nickel in the isopropyl alcohol after the distillation step.
  • Pre-filtration step The isopropyl alcohol after the distillation step was transferred to a 200 L tank equipped with a circulation pump and piping. After being transferred to the tank, a PTFE filter having a particle diameter of 1000 nm, a PTFE filter having a particle diameter of 50 nm, and a PTFE filter having a particle diameter of 10 nm are installed in a circulation pipe, and the flow rate is 4 m 3 / hr.
  • Table 1 shows the filtration conditions in the pre-filtration step.
  • Table 2 shows the respective contents of iron, chromium, and nickel in isopropyl alcohol after the pre-filtration step.
  • the isopropyl alcohol after the pre-filtration step is filtered with a PTFE filter having an ion-exchange group and having a particle diameter of 5 nm (ion-exchange group: sulfone group, ion-exchange capacity: 0.48 to 4.3 meq) and an ion-exchange group.
  • a filter made of PTFE having no particle size and having a particle diameter of 2 nm (filtration step).
  • the flow rate was adjusted to 1 mL / sec so that the contact time between isopropyl alcohol and the filter having an ion exchange group was 720 seconds.
  • the differential pressure at the time of using a filter was 50 kPa.
  • Table 1 shows the filtration conditions in the filtration step.
  • Table 2 shows the respective contents of iron, chromium, and nickel in isopropyl alcohol after the filtration step.
  • Example 2 The same operation as in Example 1 was performed except that the filtration conditions in the filtration step were changed as shown in Table 1.
  • Table 2 shows the contents of iron, chromium, and nickel in isopropyl alcohol after the filtration step, and Table 3 shows the contents of the specific organic impurities.
  • Example 3 The same operation as in Example 1 was performed except that the pre-filtration step was not performed and the filtration conditions in the filtration step were changed as shown in Table 1.
  • Table 2 shows the contents of iron, chromium, and nickel in isopropyl alcohol after the filtration step, and Table 3 shows the contents of the specific organic impurities.
  • Example 1 The same operation as in Example 1 was performed except that the filtration conditions in the filtration step were changed as shown in Table 1.
  • Table 2 shows the contents of iron, chromium, and nickel in isopropyl alcohol after the filtration step, and Table 3 shows the contents of the specific organic impurities.
  • Example 2 The same operation as in Example 1 was performed except that the pre-filtration step was not performed and the filtration conditions in the filtration step were changed as shown in Table 1.
  • Table 2 shows the contents of iron, chromium, and nickel in isopropyl alcohol after the filtration step, and Table 3 shows the contents of the specific organic impurities.
  • the amount of metal impurities could be reduced by performing the filtration step after the distillation step.
  • organic impurities having a molecular weight of 100 or more and less than 140 could be efficiently removed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Steroid Compounds (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

プロピレンに水を直接水和させてイソプロピルアルコールを製造するイソプロピルアルコールの製造方法であって、粗イソプロピルアルコールを蒸留する蒸留工程と、前記蒸留工程で得られたイソプロピルアルコールを、イオン交換基を有するフィルターで濾過する濾過工程と、を含むイソプロピルアルコールの製造方法を提供する。

Description

イソプロピルアルコールの製造方法
 本発明は、イソプロピルアルコールの製造方法に関する。
 半導体の製造工程で使用される様々な半導体用処理液に含まれる金属不純物は、半導体の歩留まり低下等を引き起こすと考えられている。したがって、歩留まりを向上させるため、半導体用処理液に含まれる金属不純物は、様々な手法で低減されてきた。近年、半導体の設計ルールの微細化に伴って、さらなる金属不純物低減が要求されており、特に線幅20nm以下の半導体設計ルールでは、金属不純物量をpptレベルで管理することが求められている。
 半導体用処理液に含まれる金属不純物は、半導体用処理液の製造工程で混入する金属不純物と、製造後の貯蔵、充填、又は輸送工程で混入する金属不純物との2種類に大別される。このため、半導体用処理液の製造工程で混入する金属不純物を低減するだけでなく、貯蔵、充填、又は輸送工程で新たに混入する金属不純物についても低減する必要がある。
 有機溶剤中の金属不純物を低減する方法として、例えば、特許文献1には、除粒子径が20nm以下であるフィルターを備えた濾過手段と、金属イオン吸着手段とを具備する精製装置が記載されている。
特開2016-073922号公報
 特許文献1に記載の精製装置によれば、有機溶剤中の金属不純物をpptレベルに低減することができる。しかし、本発明者らが検討したところ、イソプロピルアルコールを除粒子径が20nm以下であるフィルターで濾過しても、濾過後のイソプロピルアルコールには、比較的多くの有機不純物(特に、分子量100以上140未満の有機不純物)が含まれることが判明した。イソプロピルアルコール中にこのような有機不純物が含まれると、イソプロピルアルコールを半導体用処理液として用いた場合に、ウェハー上にパーティクル等として残る結果、半導体の歩留まり低下の原因となる虞がある。
 そこで、本発明は、金属不純物及び有機不純物の含有量をより低減することが可能なイソプロピルアルコールの製造方法を提供することを課題とする。
 上記課題を解決するための具体的な手段には、以下の実施態様が含まれる。
<1> プロピレンに水を直接水和させてイソプロピルアルコールを製造するイソプロピルアルコールの製造方法であって、
 粗イソプロピルアルコールを蒸留する蒸留工程と、
 前記蒸留工程で得られたイソプロピルアルコールを、イオン交換基を有するフィルターで濾過する濾過工程と、
を含むイソプロピルアルコールの製造方法。
<2> 前記濾過工程における接触時間が100~1000秒である、<1>に記載のイソプロピルアルコールの製造方法。
<3> 前記濾過工程における差圧が100kPa以下である、<1>又は<2>に記載のイソプロピルアルコールの製造方法。
<4> 前記イオン交換基を有するフィルターの除粒子径が1nm以上20nm未満である、<1>~<3>のいずれか1項に記載のイソプロピルアルコールの製造方法。
<5> 前記濾過工程後のイソプロピルアルコール中に含まれる分子量100以上140未満の有機不純物の合計含有量が質量基準で5ppb未満である、<1>~<4>のいずれか1項に記載のイソプロピルアルコールの製造方法。
<6> 前記濾過工程前に、前記蒸留工程で得られたイソプロピルアルコールを、イオン交換基を有しないフィルターで濾過する前濾過工程をさらに含む、<1>~<5>のいずれか1項に記載のイソプロピルアルコールの製造方法。
<7> 前記前濾過工程では、前記蒸留工程で得られたイソプロピルアルコールを複数回濾過する、<6>に記載のイソプロピルアルコールの製造方法。
 本発明によれば、金属不純物及び有機不純物の含有量をより低減することが可能なイソプロピルアルコールの製造方法を提供することができる。本発明の製造方法で得られたイソプロピルアルコールは、半導体用処理液として好適に使用することができる。
 以下、本発明の実施形態について詳細に説明する。本明細書においては特に断らない限り、数値A及びBについて「A~B」という表記は「A以上B以下」を意味するものとする。かかる表記において数値Bのみに単位を付した場合には、当該単位が数値Aにも適用されるものとする。また、本明細書において、含有量を表す「%」、「ppm」、「ppb」、及び「ppt」は、実施例を含めていずれも質量基準である。
 本実施形態に係るイソプロピルアルコールの製造方法は、粗イソプロピルアルコールを蒸留する蒸留工程と、蒸留工程で得られたイソプロピルアルコールをフィルターで濾過する濾過工程と、を含んでなる。
(精製の対象となる粗イソプロピルアルコール)
 粗イソプロピルアルコールとは、イソプロピルアルコールの他に水、金属不純物、有機不純物等を含む組成物である。後述する蒸留工程及び濾過工程を経ることにより、水、金属不純物、有機不純物等を低減することができるが、粗イソプロピルアルコールは、蒸留工程及び濾過工程を経る前の、水、金属不純物、有機不純物等が低減されていないものを指す。
 粗イソプロピルアルコール中に含まれる金属不純物の含有量(金属不純物量)は、特に制限されない。中でも、本実施形態に係る製造方法によれば、鉄、クロム、及びニッケルの合計含有量が1~1000pptである粗イソプロピルアルコールを精製の対象として好適に用いることができる。本実施形態に係る製造方法の精製効率等を勘案すると、鉄、クロム、及びニッケルの合計含有量が1~100pptである粗イソプロピルアルコールを精製の対象としてより好適に用いることができる。
 また、粗イソプロピルアルコール中に含まれる水の含有量(水分量)は、特に制限されない。中でも、本実施形態に係る製造方法によれば、水の含有量が50~95%である粗イソプロピルアルコール組成物を精製の対象として好適に用いることができる。本実施形態に係る製造方法の精製効率等を勘案すると、水の含有量が50~94%である粗イソプロピルアルコールを精製の対象としてより好適に用いることができる。
 特に、本実施形態に係る製造方法では、鉄、クロム、及びニッケルの合計含有量が1~1000ppt(好ましくは1~100ppt)であり、且つ、水の含有量が50~95%(好ましくは50~94%)である粗イソプロピルアルコールを精製の対象として用いることが好適である。
 イソプロピルアルコールの製造方法には、アセトンを還元するアセトン還元法、固定床触媒法の気相法であるVeba Chemie法、固定床触媒法の気液混相法であるDeutsche Texaco法等があるが、本実施形態においては、直接水和法で得られた粗イソプロピルアルコールを精製の対象として用いることが好ましい。
 直接水和法は、プロピレンと水とを直接反応させてイソプロピルアルコールを製造する方法であり、次式で表すことができる。下記の反応を反応器内で行い、粗イソプロピルアルコールを得ることができる。
 C+HO→CHCH(OH)CH
 直接水和法の反応条件は特に制限されないが、反応圧力を10~30MPaとし、反応温度を200~300℃とすることが好ましい。反応条件がこの条件を満足することにより、反応による副生物(有機不純物)の発生を抑制しつつ、工業的な生産が可能な収率、及び触媒の耐久性を両立することができる。反応温度が300℃を超える場合には、反応速度は向上するが、反応速度の向上に伴って、反応副生物が増加する傾向にある。一方、反応温度が200℃未満の場合には、反応速度が低下し、イソプロピルアルコールの収率が低下する傾向にある。
 直接水和法によりイソプロピルアルコールを製造する場合、反応条件(反応圧力、反応温度等)がより過酷な条件となる傾向がある。また、直接水和法の場合は、プロピレン及び水からイソプロピルアルコールを合成するため、反応器内に存在する水分量が他の製造方法に比べて多くなる。このため、他の製造方法に比べて反応器等から混入する金属不純物が多くなる傾向にある。近年、半導体製造の微細化が進んでおり、半導体用処理液として用いるイソプロピルアルコールとしてより高純度のものが要求されている。これらの理由から、本実施形態においては、直接水和法で得られた粗イソプロピルアルコールを精製の対象として用いることが好ましい。
(蒸留工程)
 粗イソプロピルアルコールには、水、金属不純物、及び反応の副生物(有機不純物)が含まれているため、まず、蒸留で精製する。
 蒸留工程で使用する蒸留塔、及び蒸留工程における蒸留条件は特に制限されない。粗イソプロピルアルコールに含まれる有機不純物の沸点を勘案し、イソプロピルアルコールよりも沸点の低い低沸点有機物を除去する蒸留と、イソプロピルアルコールよりも沸点の高い高沸点有機物を除去する蒸留とを繰り返してもよい。蒸留を繰り返すことにより、有機不純物をより低減することができる。さらに、共沸蒸留塔(例えば、水と共沸する芳香族溶媒(ベンゼン、トルエン、キシレン等)を比較的少量加えて蒸留する蒸留塔)を設けて、水の含有量をより低減することも好ましい。
 蒸留工程では、水の含有量が0.1~1000ppmとなるまで粗イソプロピルアルコールを蒸留することが好ましい。すなわち、蒸留工程後のイソプロピルアルコールは、水の含有量が0.1~1000ppmであることが好ましい。水の含有量を上記範囲とすることで、後述する濾過工程において、金属不純物を効率的に除去することが可能となる。濾過工程における濾過効率等を考慮すると、蒸留工程後のイソプロピルアルコールは、水の含有量が0.1~100ppmであることがより好ましく、0.1~50ppmであることがさらに好ましい。
 また、蒸留工程では、鉄、クロム、及びニッケルの合計含有量が1~1000pptとなるまで粗イソプロピルアルコールを蒸留することが好ましい。すなわち、蒸留工程後のイソプロピルアルコールは、鉄、クロム、及びニッケルの合計含有量が1~1000pptであることが好ましい。鉄、クロム、及びニッケルの合計含有量を上記範囲とすることで、後述する濾過工程において、これらの金属不純物を効率的に除去することが可能となる。濾過工程における濾過効率等を考慮すると、蒸留工程後のイソプロピルアルコールは、鉄、クロム、及びニッケルの合計含有量が1~500pptであることがより好ましく、1~100pptであることがさらに好ましい。
 なお、蒸留工程後のイソプロピルアルコール中の金属不純物量が例えばppbレベルである場合、濾過工程や後述する前濾過工程を繰り返したとしても、金属不純物量をpptレベルにまで低減することは困難である。したがって、蒸留工程後の金属不純物量を1~100pptに管理することが好ましい。
 特にクロムは、イソプロピルアルコール中においてクロム粒子又はクロム酸化物として存在する割合が少ないと推定されるため、濾過工程や後述する前濾過工程では除去され難い。この点、理論段数、塔頂温度、塔底温度、還流比等の蒸留条件を調整し、クロムの含有量が10ppt以下となるまで粗イソプロピルアルコールを蒸留することで、クロムの含有量が10ppt以下であるイソプロピルアルコールを安定して製造することが可能となる。
 さらに、濾過工程における濾過効率、フィルターの可使時間等の観点から、蒸留工程では、粒径0.3μm以下の微粒子の含有量がイソプロピルアルコール1mL当たり1~200個となるまで粗イソプロピルアルコールを蒸留することが好ましい。すなわち、蒸留工程後のイソプロピルアルコール中に含まれる粒径0.3μm以下の微粒子の含有量は、イソプロピルアルコール1mL当たり1~200個であることが好ましい。なお、イソプロピルアルコール中の微粒子の含有量は、パーティクルカウンターにて測定することができる。
 蒸留工程後のイソプロピルアルコール中に含まれる有機不純物としては、分子量100以上140未満の有機不純物が挙げられる。この有機不純物は、主に酸素含有炭化水素化合物であると推測される。イソプロピルアルコール中にこのような有機不純物が含まれると、イソプロピルアルコールを半導体用処理液として用いた場合に、ウェハー上にパーティクル等として残る結果、歩留まり低下の原因となる虞がある。このため、この有機不純物は、可能な限り除去することが好ましい。本実施形態においては、後述する濾過工程において、かかる有機不純物を除去することが可能である。濾過工程における濾過効率等の観点から、蒸留工程後のイソプロピルアルコール中に含まれる分子量100以上140未満の有機不純物の合計含有量は、5~100ppbであることが好ましく、5~10ppbであることがより好ましい。なお、この有機不純物の含有量は、イソプロピルアルコールを濃縮し、ガスクロマトグラフィー(GC)にて測定することができる。
 以上の蒸留工程で得られたイソプロピルアルコールに対して、濾過工程を実施する。例えば、蒸留塔等から得られたイソプロピルアルコールを配管等によりそのまま濾過装置へ移送し、濾過工程を実施する。このように、水溶性であり吸湿し易いイソプロピルアルコールを放置することなく、蒸留直後のイソプロピルアルコールをそのまま濾過することにより、金属不純物量の増加を抑えることができる。
(濾過工程)
 濾過工程では、蒸留工程で得られたイソプロピルアルコールをフィルターで濾過し、金属不純物、有機不純物等を除去する。濾過工程は、例えば、蒸留工程で精製されたイソプロピルアルコールを貯蔵タンクに移送する移送管にフィルターを設置して実施することができる。
 濾過工程におけるフィルターとしては、金属不純物をより効率的に低減する観点から、6-ナイロン、6,6-ナイロン、ポリエチレン、ポリプロピレン、ポリスチレン、フッ素樹脂等の樹脂製のフィルターが好ましい。これらの中でも、フッ素樹脂製のフィルターがより好ましく、ポリテトラフルオロエチレン(PTFE)製のフィルターがさらに好ましい。特に、本実施形態では、有機不純物をより効率的に低減する観点から、樹脂の表面に酸性基、アルカリ性基等のイオン交換基を有するイオン交換膜が形成されたフィルターが好適に使用される。イオン交換基を有するフィルターにおけるフィルター表面のイオン交換容量は、0.1~10ミリ当量であることが好ましく、0.3~8ミリ当量であることがより好ましい。
 濾過工程におけるフィルターとしては、市販のものを使用することができる。具体的には、インテグリス社製のフィルター、ポール社製のフィルター等を使用することができる。これらのフィルターは、所望するイソプロピルアルコールの純度に合わせて適宜選択すればよく、1種類のフィルターを単独で使用してもよく、1種類の異なる除粒子径のフィルターを直列に並べて使用してもよい。また、複数種類のフィルターを組み合わせて使用してもよく、例えば、複数種類のフィルターを直列に並べて使用してもよい。
 濾過工程において、フィルターとイソプロピルアルコールとの接触時間は、100~1000秒であることが好ましく、150~1000秒であることがより好ましく、300~1000秒であることがさらに好ましく、500~1000秒であることが特に好ましい。接触時間を100秒以上とすることで、不純物、特に有機不純物の含有量をより低減することができる。また、接触時間を1000秒以下とすることで、濾過効率の低下をより抑えることができる。したがって、接触時間を上記範囲内とすることで、イソプロピルアルコール中に含まれている金属不純物、有機不純物等を効率的に除去することができる。なお、接触時間は、下記式で定義される時間である。
 接触時間(秒)=フィルターの体積(mL)÷イソプロピルアルコールの流量(mL/秒)
 イソプロピルアルコールをフィルターに通過させる際には、フィルター入口とフィルター出口との圧力差である差圧を、100kPa以下とすることが好ましい。差圧が低ければ低いほど、金属不純物及び有機不純物の捕集効率が高くなると考えられる。金属不純物及び有機不純物をより低減し、且つ、生産性を高める観点から、差圧は、1~50kPaとすることがより好ましく、1~2kPaとすることがさらに好ましい。
 また、濾過工程におけるフィルターの除粒子径は、1nm以上20nm未満であることが好ましい。除粒子径が小さすぎる場合には、上記差圧が上昇し、濾過効率が低下する傾向にある。一方、除粒子径が大きすぎる場合には、金属不純物及び有機不純物の低減効果が低下する傾向にある。金属不純物及び有機不純物の低減効果、並びに工業的な製造を考慮すると、フィルターの除粒子径は、1~15nmであることがより好ましい。なお、フィルターの除粒子径が「A(nm)」であるとは、「A(nm)」以上の粒径の粒子の捕集効率が99.9%以上であることを意味する。
 フィルターの除粒子径が1~15nmであり差圧が1~25kPaである場合、特に金属不純物及び有機不純物を除去する効果が高くなる。そして、対象となるイソプロピルアルコールが、直接水和法で製造され、蒸留工程で水分量が0.1~1000ppm(より好ましくは0.1~100ppm、さらに好ましくは0.1~50ppm、特に好ましくは0.1~30ppm)、金属不純物量が7~1000ppt(より好ましくは7~500ppt、さらに好ましくは7~100ppt、特に好ましくは8~100ppt)としたものである場合に、上記除粒子径及び上記差圧で濾過する効果が顕著となる。
(精製後のイソプロピルアルコール)
 以上のようにイソプロピルアルコールを製造することにより、クロムの含有量が0.001~5pptであり、鉄、クロム、及びニッケルの合計含有量が0.001~10pptであり、水の含有量が0.1~100ppmであるイソプロピルアルコールを得ることができる。このイソプロピルアルコールは純度が高いため、半導体用処理液として好適に使用される。
 また、濾過工程においてイオン交換基を有するフィルターを用いることで、有機不純物の含有量が少ないイソプロピルアルコールを得ることができる。具体的には、イソプロピルアルコール中に含まれる分子量100以上140未満の有機不純物の合計含有量を5ppb未満とすることができる。
 なお、水は、半導体用処理液に含まれたとしても金属不純物ほど悪影響を与えないと考えられるが、イソプロピルアルコール中に含まれると有機不純物の反応の触媒として作用する虞があり、さらにはイソプロピルアルコールが接する部材によっては金属不純物を増加させる虞がある。そのため、水の含有量は、50ppm以下であることがより好ましく、10ppm以下であることがさらに好ましい。一方、工業的な製造を考慮すると、イソプロピルアルコール中に含まれる水の含有量は、0.1ppm以上であることが一般的である。
(前濾過工程)
 本実施形態に係る製造方法は、濾過工程よりも前に、蒸留工程で得られたイソプロピルアルコールをフィルターで濾過する前濾過工程をさらに含んでいてもよい。前濾過工程において、イソプロピルアルコールをフィルターで濾過する回数は特に制限されないが、金属不純物及び有機不純物をより低減する観点から、複数回濾過することが好ましい。より具体的には、蒸留工程で得られたイソプロピルアルコールを循環させて繰り返しフィルターを通過させ、循環濾過を行うことが好ましい。
 このような循環濾過は、循環用のポンプ及び配管を備えた貯蔵タンクに、蒸留工程後のイソプロピルアルコールを移送し、循環用の配管に少なくとも1つのフィルターを設置して、イソプロプルアルコールを循環すれることにより実施することができる。
 循環濾過におけるフィルター構成は特に制限されないが、設置するフィルターの数が増加するほど圧力損失が上昇し、生産性が低下するため、通常は、3段階のフィルター構成とすることが好ましい。特に、第1段階目のフィルターは、除粒子径が500~2000nmであることが好ましく、750~1250nmであることがより好ましい。また、第2段階目のフィルターは、除粒子径が30~100nmであることが好ましく、40~60nmであることがより好ましい。また、第3段階目のフィルターは、除粒子径が1~20nmであることが好ましく、5~15nmであることがより好ましい。このように、段階的に除粒子径が小さくなるようにフィルターを設置することで、不純物の除去と生産性とを両立することができる。
 循環濾過を行う際の流量は特に制限されないが、循環用のポンプのエネルギーコストを考慮すると、通常、3~5m/hrの流量で十分である。また、循環させる期間は特に制限されないが、長期保存によるタンク又はフィルターからの溶出等の汚染のリスクを考慮すると、通常、0.5~7日間で十分である。
 なお、前濾過工程におけるフィルターとしては、イオン交換基を有しないフィルターが好ましい。上記のように循環濾過を行った場合、フィルターとイソプロピルアルコールとが繰り返し接触するため、イオン交換基を有するフィルターを使用した場合、このイオン交換基によって、イソプロピルアルコールと有機不純物、又は有機不純物同士が反応する可能性がある。このため、前濾過工程では、イオン交換基を有しないフィルターを使用することが好ましい。
(その他の好適な態様)
 本実施形態において、イソプロピルアルコールを移送する配管(輸送管)、イソプロピルアルコールを保存する容器等は、イソプロピルアルコールとの接液部に不動態化処理を施したものが好ましい。イソプロピルアルコールとの接液部に不動態化処理を施しておくことにより、貯蔵、充填、又は輸送工程においてイソプロピルアルコール中の金属不純物量が増加するのを抑制することができる。
 不動態化処理は、イソプロピルアルコールとの接液部におけるステンレス鋼材料の表面に、膜厚2~500nmの不動態層を形成するものが好ましく、膜厚2~100nmの不動態層を形成するものがより好ましく、膜厚2~20nmの不動態層を形成するものがさらに好ましい。
 不動態層の形成方法は特に制限されないが、電解研磨工程、無機酸による洗浄工程、及び加熱工程を行うことで、好適な不動態層を形成することができる。特に、電解研磨工程、無機酸による洗浄工程、及び加熱工程をこの順で実施することにより、不動態層の最表面のクロム原子及びケイ素原子の原子濃度を調整し易くなる。
 電解研磨工程は、接液部に電解液を通液して電気を印加して行う研磨工程であり、公知の方法を採用することができる。例えば、リン酸・硫酸を通液して、接液部に電気を印加すればよい。
 加熱工程では、接液部を加熱することにより、不動態層の表面から酸化層、特に酸化クロム層を減肉するとともに、緻密な鉄酸化膜を成長させることができる。この加熱工程により、酸化クロム層の膜厚を調整、すなわち、不動態層の最表面のクロム原子の原子濃度を調整したり、ケイ素原子の原子濃度を調整したりすることができる。特に、接液部を無機酸で洗浄した後、加熱工程を実施することで、効果的に酸化クロム層の膜厚を調整することができる。
 加熱雰囲気としては、空気を含む酸化性雰囲気が好ましい。酸化性雰囲気下で加熱することにより、酸化膜の成長を促進することができる。また、加熱温度としては、300~450℃が好ましく、300~400℃がより好ましい。
 加熱時間は特に制限されず、不動態層の最表面のクロム原子の原子濃度が0.1~10原子%となるように決定すればよい。その際、さらに、ケイ素原子の原子濃度が0.1~10原子%となるような時間を決定するのが好ましい。通常であれば、経済性の観点から、0.5~10時間が好ましく、1~3時間がより好ましい。上記の範囲であれば、十分に鉄酸化膜が成長し、金属溶出が低減された部材を製造することができる。
 イソプロピルアルコールの製造工程に蒸留工程を設け、蒸留工程で得られた蒸留物をそのままフィルターに通過させ、さらに貯蔵、充填、又は輸送工程での接液部に特定の不動態処理を施すことで、金属不純物の増加をより一層抑制することができる。
 以下、実施例によって本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 金属不純物量及び水分量は、以下の方法により測定した。
(金属不純物量の測定方法)
 イソプロピルアルコール中に含まれている金属不純物は、ICP-MS(誘導結合プラズマ質量分析計)を用いて以下のように定量した。実施例及び比較例に記載した条件で精製したイソプロピルアルコール約500mLをナス型フラスコに採取し、ロータリーエバポレータで濃縮及び乾固させた後、0.1N硝酸約25mLで2回に分けて回収した。回収した0.1N硝酸溶液について、ICP-MSを用いて金属溶出量を定量した。このとき、濃縮前のイソプロピルアルコールの重量と回収後の0.1N硝酸溶液の重量との比から濃縮倍率を算出し、イソプロピルアルコール重量当たりの金属不純物量に換算した。
(水分量の測定方法)
 機器:カールフィッシャー水分計 AQ-7(平沼産業株式会社製)
 方法:露点-80℃以下のグローボックス中で測定サンプル0.25g、脱水アセトニトリル0.75gを混合した。グローボックス中で充分乾燥したテルモシリンジ(商品名、2.5mL)で混合溶液0.5gを採取し、カールフィッシャー水分計にて水分量を測定した。
 また、有機不純物については、下記濃縮方法にて測定サンプルを調製した後、定性分析及び定量分析を行った。
(イソプロピルアルコールの濃縮方法)
 理論段数2~30段の充填物の入った減圧精密蒸留装置を用い、蒸留塔の塔頂温度を15~20℃として、イソプロピルアルコール2Lを12時間かけて蒸留し、7mL(濃縮倍率:約300倍)に濃縮した。得られた濃縮液をバイアルに入れ、液面上部に窒素を流通させることでさらに濃縮し、2mL(濃縮倍率:1000倍)の濃縮液を調製した。
(有機不純物の測定方法:定性分析)
 イソプロピルアルコール中に含まれる有機不純物は、GC-MS(ガスクロマトグラフ-質量分析計)を使用し、以下に示した測定条件で測定した。
 -測定条件-
 装置:7890B/5977B(アジレント・テクノロジー株式会社製)
 分析カラム:CP-Wax-57CB(50m×0.32mm、1.2μm)
 カラム温度:30℃(3分間保持)→5℃/分で昇温→100℃→10℃/分で昇温→200℃(5分間保持)
 キャリアガス:ヘリウム
 キャリアガス流量:3mL/分
 注入口温度:200℃
 試料注入法:パルスドスプリットレス法
 注入時パルス圧:90psi(2分)
 スプリットベント流量:50mL/分(2分)
 ガスセーバー使用:20mL/分(5分)
 トランスファーライン温度:200℃
 イオン源、四重極温度:230℃、150℃
 スキャンイオン:m/Z=20~400
 イソプロピルアルコールを上記に示す濃縮方法に従って濃縮し、ピークが確認された場合は、そのピークのマススペクトルよりライブラリ検索を行い、構造を特定した。確認されたピークのマススペクトルより構造が特定できない物質は、該当する保持時間に不純物が存在することを確認した。
(有機不純物の測定方法:定量分析)
 上記の定性分析の方法に従って構造の特定された化合物の標準物質を準備し、予め定量された標準物質のピーク面積と比較することで、定性分析で検出された化合物の濃度を選択イオン検出法(SIM)により定量した。構造を特定できない化合物及び標準物質を入手できない化合物については、トータルイオンクロマト上のヘキサデカンの面積を基準として定量した。イソプロピルアルコール中の不純物の定量は、イソプロピルアルコールを濃縮せずに上記(有機不純物の測定方法:定性分析)の測定条件と同様の測定条件に選択イオン検出法(SIM)モードを追加して行った。SIMモニターイオンは下記のとおりである。
 -SIMモニターイオン-
 グループ1 開始時間:12.7分、m/Z:69,83、85、101、115、131(ドゥエル30)
<実施例1>
(粗イソプロピルアルコールの製造)
 原料のプロピレンとしては、不純物として39972ppmのプロパン、20ppmのエタン、8ppmのブテン、0.1ppm以下のペンテン、0.1ppm以下のヘキセンが含まれているものを準備した。また、原料の水としては、酸触媒であるリンタングステン酸を添加してpHを3.0に調整したものを準備した。10Lの内容積を持つ反応器に、110℃に加温した水を18.4kg/h(密度920kg/mであるから、20L/h)の供給量で投入するとともに、プロピレンを1.2kg/hの供給量で投入した。
 反応器内での反応温度を280℃、反応圧力を250atmとして、プロピレンと水とを反応させてイソプロピルアルコールを得た。生成したイソプロピルアルコールを含む反応生成物を140℃まで冷却し、圧力を18atmへ減圧することにより、反応生成物に含まれる水に溶解しているプロピレンを気体として回収した。回収したプロピレンは、原料として再利用するために、プロピレンの回収ドラムに投入した。このとき、供給したプロピレンの転化率は84.0%、プロピレンのイソプロピルアルコールへの選択率は99.2%であり、得られた反応混合物中のイソプロピルアルコールの含有量は7.8%であった。また、得られた反応混合物中の水分量は92.2%であった。
(蒸留工程)
 得られた粗イソプロピルアルコールについて脱水を含む蒸留を行い、不純物を低減したイソプロピルアルコールを得た。蒸留工程後のイソプロピルアルコール中の水分量は12ppmであった。蒸留工程後のイソプロピルアルコールにおける鉄、クロム、及びニッケルの各含有量を表2に示す。
(前濾過工程)
 蒸留工程後のイソプロピルアルコールを、循環用のポンプ及び配管を備えた容積200Lのタンクに移送した。タンクに移送後、除粒子径が1000nmのPTFE製フィルター、除粒子径が50nmのPTFE製フィルター、及び除粒子径が10nmのPTFE製フィルターを循環用の配管に設置し、4m/hrの流量で1日間、循環濾過を行った(前濾過工程)。前濾過工程における濾過条件を表1に示す。また、前濾過工程後のイソプロピルアルコールにおける鉄、クロム、及びニッケルの各含有量を表2に示す。
(濾過工程)
 前濾過工程後のイソプロピルアルコールを、イオン交換基を有する除粒子径が5nmのPTFE製フィルター(イオン交換基:スルホン基、イオン交換容量:0.48~4.3ミリ当量)と、イオン交換基を有しない除粒子径が2nmのPTFE製フィルターとに通過させ、濾過を行った(濾過工程)。その際、イソプロピルアルコールとイオン交換基を有するフィルターとの接触時間が720秒間となるように、流量を1mL/秒に調整した。なお、フィルター使用時の差圧は50kPaであった。濾過工程における濾過条件を表1に示す。また、濾過工程後のイソプロピルアルコールにおける鉄、クロム、及びニッケルの各含有量を表2に示す。
 濾過工程後のイソプロピルアルコール中の有機不純物について、上述した定性分析を行ったところ、ガスクロマトグラフィー(GC)の保持時間23.6分及び25.0分の位置にピークが存在し、高濃度の不純物(以下、「特定有機不純物」ともいう。)が確認された。保持時間23.6分のピークに対応する有機不純物の分子量は116であり、保持時間25.0分のピークに対応する有機不純物の分子量は130であった。これらのピークについて定量分析を行い、特定有機不純物の含有量を求めた結果を表3に示す。
<実施例2>
 濾過工程における濾過条件を表1のように変更した以外は、実施例1と同様の操作を行った。濾過工程後のイソプロピルアルコールにおける鉄、クロム、ニッケルの各含有量を表2に示し、特定有機不純物の含有量を表3に示す。
<実施例3>
 前濾過工程を実施せず、濾過工程における濾過条件を表1のように変更した以外は、実施例1と同様の操作を行った。濾過工程後のイソプロピルアルコールにおける鉄、クロム、及びニッケルの各含有量を表2に示し、特定有機不純物の含有量を表3に示す。
<比較例1>
 濾過工程における濾過条件を表1のように変更した以外は、実施例1と同様の操作を行った。濾過工程後のイソプロピルアルコールにおける鉄、クロム、及びニッケルの各含有量を表2に示し、特定有機不純物の含有量を表3に示す。
<比較例2、3>
 前濾過工程を実施せず、濾過工程における濾過条件を表1のように変更した以外は、実施例1と同様の操作を行った。濾過工程後のイソプロピルアルコールにおける鉄、クロム、及びニッケルの各含有量を表2に示し、特定有機不純物の含有量を表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表2及び表3の結果から明らかなように、蒸留工程を実施した後に濾過工程を実施することで、金属不純物量を低減することができた。特に、濾過工程において、イオン交換基を有するフィルターを用いることで、分子量100以上140未満の有機不純物を効率的に除去することができた。
 2018年10月5日に出願された日本出願2018-189828及び2019年5月28日に出願された日本出願2019-99066の開示はその全体が参照により本明細書に取り込まれる。

Claims (7)

  1.  プロピレンに水を直接水和させてイソプロピルアルコールを製造するイソプロピルアルコールの製造方法であって、
     粗イソプロピルアルコールを蒸留する蒸留工程と、
     前記蒸留工程で得られたイソプロピルアルコールを、イオン交換基を有するフィルターで濾過する濾過工程と、
    を含むイソプロピルアルコールの製造方法。
  2.  前記濾過工程における接触時間が100~1000秒である、請求項1に記載のイソプロピルアルコールの製造方法。
  3.  前記濾過工程における差圧が100kPa以下である、請求項1又は2に記載のイソプロピルアルコールの製造方法。
  4.  前記イオン交換基を有するフィルターの除粒子径が1nm以上20nm未満である、請求項1~3のいずれか1項に記載のイソプロピルアルコールの製造方法。
  5.  前記濾過工程後のイソプロピルアルコール中に含まれる分子量100以上140未満の有機不純物の合計含有量が質量基準で5ppb未満である、請求項1~4のいずれか1項に記載のイソプロピルアルコールの製造方法。
  6.  前記濾過工程前に、前記蒸留工程で得られたイソプロピルアルコールを、イオン交換基を有しないフィルターで濾過する前濾過工程をさらに含む、請求項1~5のいずれか1項に記載のイソプロピルアルコールの製造方法。
  7.  前記前濾過工程では、前記蒸留工程で得られたイソプロピルアルコールを複数回濾過する、請求項6に記載のイソプロピルアルコールの製造方法。
PCT/JP2019/039095 2018-10-05 2019-10-03 イソプロピルアルコールの製造方法 WO2020071481A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980062035.9A CN112771015B (zh) 2018-10-05 2019-10-03 异丙醇的制造方法
JP2020550540A JPWO2020071481A1 (ja) 2018-10-05 2019-10-03 イソプロピルアルコールの製造方法
US17/281,823 US11560346B2 (en) 2018-10-05 2019-10-03 Method for producing isopropyl alcohol
KR1020217007432A KR20210070275A (ko) 2018-10-05 2019-10-03 이소프로필 알코올의 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-189828 2018-10-05
JP2018189828 2018-10-05
JP2019099066 2019-05-28
JP2019-099066 2019-05-28

Publications (1)

Publication Number Publication Date
WO2020071481A1 true WO2020071481A1 (ja) 2020-04-09

Family

ID=70055449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/039095 WO2020071481A1 (ja) 2018-10-05 2019-10-03 イソプロピルアルコールの製造方法

Country Status (6)

Country Link
US (1) US11560346B2 (ja)
JP (1) JPWO2020071481A1 (ja)
KR (1) KR20210070275A (ja)
CN (1) CN112771015B (ja)
TW (1) TWI801674B (ja)
WO (1) WO2020071481A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022018906A1 (ja) * 2020-07-20 2022-01-27 栗田工業株式会社 溶媒中の微粒子除去装置
JP2023505000A (ja) * 2020-11-09 2023-02-08 エルジー・ケム・リミテッド 石油化学製品中の金属成分の除去方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003535836A (ja) * 2000-06-02 2003-12-02 エクソンモービル・ケミカル・パテンツ・インク 超高純度イソプロパノールの製造方法
JP2014055120A (ja) * 2012-09-13 2014-03-27 Japan Organo Co Ltd アルコールの精製方法及び装置
WO2018135408A1 (ja) * 2017-01-23 2018-07-26 株式会社トクヤマ イソプロピルアルコール組成物及びイソプロピルアルコールの製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2628986A (en) * 1949-10-29 1953-02-17 Shell Dev Alcohol purification process
KR19990014837A (ko) * 1995-05-15 1999-02-25 존에스 홋슨 이소프로필 알코올의 탈수 및 정제방법
CN102452897A (zh) * 2010-12-06 2012-05-16 江苏达诺尔半导体超纯科技有限公司 超高纯异丙醇的生产工艺
KR101521764B1 (ko) * 2012-05-01 2015-05-19 엔테그리스, 아이엔씨. 유기 용제 정화기 및 사용 방법
CN102898275B (zh) * 2012-11-05 2014-06-11 苏州晶瑞化学有限公司 一种高纯异丙醇的制备方法
CN103848718B (zh) * 2012-12-06 2016-09-14 华东理工大学 离子交换纤维与微孔膜耦合柱制备电子级异丙醇的方法
JP2016073922A (ja) 2014-10-07 2016-05-12 信越化学工業株式会社 有機溶剤の精製装置
TWI604267B (zh) 2014-12-17 2017-11-01 Hoya股份有限公司 光罩之製造方法及顯示裝置之製造方法
WO2017217279A1 (ja) * 2016-06-17 2017-12-21 株式会社トクヤマ イソプロピルアルコールの製造方法及び不純物が低減されたイソプロピルアルコール
WO2019044871A1 (ja) * 2017-08-30 2019-03-07 富士フイルム株式会社 薬液の精製方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003535836A (ja) * 2000-06-02 2003-12-02 エクソンモービル・ケミカル・パテンツ・インク 超高純度イソプロパノールの製造方法
JP2014055120A (ja) * 2012-09-13 2014-03-27 Japan Organo Co Ltd アルコールの精製方法及び装置
WO2018135408A1 (ja) * 2017-01-23 2018-07-26 株式会社トクヤマ イソプロピルアルコール組成物及びイソプロピルアルコールの製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022018906A1 (ja) * 2020-07-20 2022-01-27 栗田工業株式会社 溶媒中の微粒子除去装置
JP2022020364A (ja) * 2020-07-20 2022-02-01 栗田工業株式会社 溶媒中の微粒子除去装置
JP7017169B2 (ja) 2020-07-20 2022-02-08 栗田工業株式会社 溶媒中の微粒子除去装置
JP2023505000A (ja) * 2020-11-09 2023-02-08 エルジー・ケム・リミテッド 石油化学製品中の金属成分の除去方法
JP7286209B2 (ja) 2020-11-09 2023-06-05 エルジー・ケム・リミテッド 石油化学製品中の金属成分の除去方法

Also Published As

Publication number Publication date
CN112771015A (zh) 2021-05-07
US11560346B2 (en) 2023-01-24
US20220017440A1 (en) 2022-01-20
KR20210070275A (ko) 2021-06-14
CN112771015B (zh) 2023-07-04
TWI801674B (zh) 2023-05-11
TW202033484A (zh) 2020-09-16
JPWO2020071481A1 (ja) 2021-09-02

Similar Documents

Publication Publication Date Title
TWI745381B (zh) 異丙醇的製造方法及雜質減少後的異丙醇
WO2018135408A1 (ja) イソプロピルアルコール組成物及びイソプロピルアルコールの製造方法
WO2020071481A1 (ja) イソプロピルアルコールの製造方法
JPH11506431A (ja) イソプロピルアルコールの無水化及び純粋化
JP2013533869A (ja) ギ酸の製造方法
CN107108440A (zh) 在羰基化方法中减少碘化氢含量
WO2020071307A1 (ja) 高純度イソプロピルアルコール及びその製造方法
CN115335966A (zh) 半导体处理液及其制造方法
TW200424157A (en) Process for separating 2-butanol from tert-butanol/water mixtures
WO2019229859A1 (ja) 酢酸の製造方法
CN108430965B (zh) (甲基)丙烯酸的制造方法
JP6481040B2 (ja) 酢酸の製造方法
EP3792244B1 (en) Method for producing acetic acid
KR102600551B1 (ko) 아세트산의 제조 방법
KR102676905B1 (ko) 아세트산의 제조 방법
EP3604266B1 (en) Acetic acid production method
KR102591297B1 (ko) 아세트산의 제조 방법
JPH06228127A (ja) トリオキサンの製造方法
CA3196318A1 (en) A method for the preparation of 1,2-propanediol
WO2018179457A1 (ja) 酢酸の製造方法
CA3195425A1 (en) A method for the preparation of 1,2-propanediol
JP2004345978A (ja) 無水マレイン酸の製造方法
Silveston et al. Low-temperature, carbon-catalyzed, solvent-washed, trickle-bed sulfuric acid process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19869027

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020550540

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19869027

Country of ref document: EP

Kind code of ref document: A1