WO2020070791A1 - Slide actuator - Google Patents

Slide actuator

Info

Publication number
WO2020070791A1
WO2020070791A1 PCT/JP2018/036830 JP2018036830W WO2020070791A1 WO 2020070791 A1 WO2020070791 A1 WO 2020070791A1 JP 2018036830 W JP2018036830 W JP 2018036830W WO 2020070791 A1 WO2020070791 A1 WO 2020070791A1
Authority
WO
WIPO (PCT)
Prior art keywords
retainer
movable
movable portion
spring
slide actuator
Prior art date
Application number
PCT/JP2018/036830
Other languages
French (fr)
Japanese (ja)
Inventor
謙 緒方
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2018/036830 priority Critical patent/WO2020070791A1/en
Publication of WO2020070791A1 publication Critical patent/WO2020070791A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/16Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with polarised armatures moving in alternate directions by reversal or energisation of a single coil system

Definitions

  • the present invention relates to a slide actuator that movably supports a movable portion with respect to a fixed portion via a ball and a retainer that keeps a constant distance between the balls.
  • a slide actuator that holds a moving object on a movable portion slidably disposed with respect to a fixed portion, and reciprocates and linearly moves the moving object while maintaining a posture orthogonal to a moving direction. And is employed in a well-known voice coil motor (VCM) and the like.
  • VCM voice coil motor
  • this type of slide actuator 101 includes a fixed portion 102 fixed to the apparatus main body, a movable portion 103 facing the fixed portion 102, a fixed portion 102 and a movable portion 103. And a linear guide 104 interposed between them to support the movable portion 103 so as to be able to linearly move along the fixed portion 102. Further, the linear guide 104 includes a plurality of balls 105 that allow the linear motion of the movable portion 103, and a retainer 106 that holds the balls 105 rotatably at predetermined intervals.
  • the stroke range Ls of the movable section 103 is set by the sine wave movable section instruction value (current) shown in FIG. 4A, and the movable section instruction current is supplied to the slide actuator. Then, the movable portion 103 slides in the plus (+) direction, for example, as shown in FIG. 8B from the state located at the center of the stroke range Ls shown in FIG. The reciprocating linear motion is repeated such that the wire is folded in the ⁇ ) direction and further folded in the plus direction at the end of the stroke range Ls as shown in FIG. 8C.
  • the slide actuator 101 When the movable portion 103 of the slide actuator 101 repeats reciprocating linear motion, the slide actuator 101 receives a strong disturbance such as an impact, vibration, or the like, and as shown in FIG. 9A, the urging force F generated by the disturbance.
  • the movable part 103 or the retainer 106 may be pressed to one side. As a result, the movable part 103 cannot stop at the end of the stroke range Ls and jumps out of the end, and the positional relationship between the movable part 103 and the retainer 106 is displaced.
  • the control deviation ⁇ Ls as shown occurs.
  • a grease pool G is generated near the wall portion 102a of the fixed portion 102 due to the reciprocating linear motion of the movable portion 103. Therefore, as shown in FIG. 9B, when the end of the retainer 106 contacts the wall 102a, the retainer 106 is immersed in the grease reservoir G. When the end of the retainer 106 is immersed in the grease reservoir G, the viscous resistance of the grease makes it difficult for the retainer 106 that reciprocates to follow the movable portion 103 to be separated from the wall portion 102a. In this case, there is a problem that the sliding friction generated between the movable portions 103 is promoted, and the control deviation when the movable portion 103 performs the folding operation increases.
  • the present invention minimizes the displacement between the retainer and the movable portion even when a strong urging force is applied to at least one of the retainer and the movable portion, and quickly restores the positional relationship. It is possible to suppress a decrease in wear durability, and even when a strong urging force is applied to at least one of the retainer and the movable portion, the end of the retainer is attached to the wall. It is an object of the present invention to provide a slide actuator that does not come into contact with the grease reservoir generated on the wall portion, so that the end of the retainer does not sink into the grease reservoir, and that can achieve high position control accuracy.
  • One embodiment of the present invention provides a fixed part, a movable part movable in a predetermined direction with respect to the fixed part, walls provided on both sides of the fixed part in a moving direction of the movable part, and the fixed part.
  • a plurality of balls interposed between the movable portion and movably supporting the movable portion, a retainer interposed between the respective balls and maintaining a constant interval between the balls, and both sides of the retainer;
  • a first structure having a spring property disposed between the wall and the wall; and a second structure having a spring property disposed between both sides of the movable portion and the wall.
  • FIG. 2 is a schematic side view of the slide actuator according to the first embodiment.
  • FIG. 6 is a schematic side view of the slide actuator showing a state where the movable section is at an initial position.
  • FIG. 4 is a schematic side view of the slide actuator showing a state where the movable section has reached a moving end of an outward path.
  • FIG. 5 is a schematic side view of the slide actuator showing a state where the movable section has reached a moving end of a return path.
  • FIG. 4 is a schematic side view of the slide actuator showing a state where the movable portion is strongly pressed to one side by an urging force.
  • FIG. 3B is a schematic side view of the slide actuator showing a state in which the movable unit is moving in the backward direction from the state of FIG.
  • FIG. 5 is a schematic side view of the slide actuator showing a state where the movable section has reached a moving end of a return path.
  • FIG. 4 is a schematic side view of the slide actuator showing a state where the movable unit passes an initial position.
  • FIG. 6 is a waveform chart showing a sine wave movable section instruction value for operating the movable section.
  • FIG. 9 is a waveform chart showing a control deviation between the movable-part instruction value and the actual position of the movable part. It is a schematic side view of the slide actuator by 2nd Embodiment. It is a schematic side view of the slide actuator by 3rd Embodiment. It is a schematic side view of the slide actuator by 4th Embodiment.
  • FIG. 5 is a schematic side view of the slide actuator showing a state where the movable section has reached a moving end of a return path.
  • FIG. 4 is a schematic side view of the slide actuator showing a state where the movable unit passes an initial
  • FIG. 7B is a schematic plan view of FIG. 7A.
  • Schematic side view of a slide actuator showing a conventional example and showing a state where a movable portion is at an initial position.
  • FIG. 4 is a schematic side view of the slide actuator showing a state where the movable section has reached a moving end of an outward path.
  • FIG. 7 is a schematic side view of the slide actuator showing a state where the movable section has reached a moving end of a return path.
  • FIG. 7 is a schematic side view of the slide actuator showing a state where the movable portion is urged in the outward direction by an urging force due to a disturbance.
  • FIG. 7 is a schematic side view of the slide actuator showing a state in which the retainer is in contact with a wall portion of a return path.
  • FIG. 4 is a schematic side view of the slide actuator showing a state where the movable part is slid to a moving end.
  • FIG. 4 is a schematic side view of the slide actuator showing a state where the movable unit passes an initial position.
  • FIG. 1 in the figure denotes an electromagnetic slide actuator represented by a voice coil motor, which includes a fixed portion 2 fixed to a device body (not shown), a movable portion 3 slidable on the fixed portion 2, A linear guide 4 is provided between the fixed part 2 and the movable part 3.
  • the linear guide 4 includes a plurality of balls 5 for linearly moving the movable portion 3 along the stage 2a of the fixed portion 2, and a retainer 6 for rotatably supporting each of the balls 5 at a predetermined interval.
  • a track groove for guiding the movement of the ball 5 in a straight line is formed on the stage 2a, and the ball 5 is disposed in the track groove.
  • the movable section 3 holds, for example, an optical element as a movable body, and a permanent magnet 7 is fixed on the upper surface. Further, a pair of flat coils 8a and 8b are disposed so as to face the permanent magnet 7, and the permanent magnet 7 is disposed so as to apply an appropriate magnetic field to the flat coils 8a and 8b. I have.
  • the flat coils 8a and 8b are attached to a coil support 9 fixed to a device main body (not shown).
  • the slide actuator 1 according to the present embodiment is a movable magnet type, but may be a movable coil type in which a flat coil is attached to the movable section 3 and a permanent magnet is opposed to the flat coil.
  • the output side of the actuator controller 11 is connected to the flat coils 8a and 8b via the actuator driver 12. Further, a position detection sensor 13 for detecting a moving position of the movable unit 3 is connected to an input side of the actuator control unit 11.
  • the actuator control unit 11 is mainly configured by a well-known microcomputer including a well-known CPU, a ROM, a RAM, and an interface.
  • the actuator control section 11 compares the position information of the movable section 3 detected by the position detection sensor 13 with the movable section indication position shown in FIG. 4A to obtain a control deviation ⁇ Ls shown in FIG. Is output to the actuator drive unit 12.
  • the actuator drive unit 12 outputs a drive current corresponding to the control signal to the flat coils 8a and 8b, and a Lorentz force is generated by the magnetic field of the permanent magnet 7, so that the movable unit 3 slides.
  • the moving direction of the movable section 3 is determined by the direction of the current supplied to the flat coils 8a and 8b, and the magnitude of the force changes according to the amount of the current.
  • the configuration of the permanent magnet 7, the flat coils 8a and 8b, the coil support unit 9, the actuator control unit 11, the actuator drive unit 12, the drive system of the position detection sensor 13, and the control system are shown in FIG. , FIGS. 2A to 3D and a second embodiment and later to be described later.
  • the actuator drive unit 12 supplies a sine wave movable unit instruction value (drive current) as shown in FIG. 4A to the flat coils 8a and 8b by the PWM signal output from the actuator control unit 11, the movable unit The unit 3 repeats reciprocating linear motion within the stroke range Ls.
  • the retainer 6 moves by a half of the moving amount of the movable portion 3 by the rotation of the ball 5. Amount.
  • the moving directions of the movable part 3 and the linear guide 4 will be described as a plus (+) direction on the right side of the drawing and a minus ( ⁇ ) direction on the left side for convenience.
  • a machine as a first structure having spring properties is provided between the ends 6a and 6b of the retainer 6 in the moving direction and the lower walls 2b and 2c of the fixed portion 2 facing the ends 6a and 6b.
  • Each type of retainer spring 14 is arranged.
  • a second structure having a spring property is provided between the ends 3a and 3b of the movable portion 3 in the moving direction and the upper walls 2d and 2e of the fixed portion 2 facing the ends 3a and 3b.
  • a mechanical movable part spring 15 is arranged.
  • the retainer spring 14 is set to have a spring constant 1/2 that of the movable portion spring 15.
  • Each of the springs 14 and 15 is formed of a compression spring such as a coil spring or a wire spring, a compression rubber spring using a rubber elastic body, or other members having compression spring properties.
  • One end of the retainer spring 14 is connected to the lower walls 2b, 2c of the fixed part 2, and the other end is a free end extending in the direction of the ends 6a, 6b of the retainer 6.
  • One end of the movable portion spring 15 is coupled to the upper wall portions 2 d and 2 e of the fixed portion 2, and the other end is a free end extending in the direction of the end portions 3 a and 3 b of the movable portion 3.
  • a retainer receiving surface 14 a is formed at a free end of the retainer spring 14.
  • a movable part receiving surface 15a is formed at a free end of the movable part spring 15.
  • the movable portion spring 15 has a free height set from the upper wall portions 2d and 2e to the end of the stroke range Ls of the movable portion 3. Therefore, when the movable part 3 reaches the end of the stroke range Ls, the movable part receiving surface 15a of the movable part spring 15 comes into contact with the ends 3a and 3b of the movable part 3.
  • the free height of the retainer spring 14 is set at a position where the retainer receiving surface 14a contacts the ends 6a and 6b of the retainer 6 when the movable portion 3 reaches the end of the stroke range Ls.
  • the movable portion 3 and the retainer 6 have the same length in the moving direction, and the ends 3a and 3b of the movable portion 3 and the end of the retainer 6 when stopped at the neutral position. Assuming that the portions 6a and 6b are aligned, the relative movement between the movable portion 3 and the retainer 6 is as shown in FIGS. 2B and 2C.
  • the free height of the retainer spring 14 is equal to the distance between the lower walls 2b, 2c and the end of the stroke range Ls, and the distance between the ends 6a, 6b at the neutral position and the end of the stroke range Ls. Is set to a value obtained by adding 1/2 of the distance.
  • the retainer spring 14 and the movable portion spring 15 disposed in the same direction need not be separate components, and may be integrated as long as they are functionally separated.
  • Reference symbol G in FIGS. 3A to 3D denotes a grease pool that is brought to a ridge between the lower walls 2b and 2c and the stage 2a.
  • the slide actuator 1 receives a strong disturbance such as an impact or a vibration, and the movable portion 3 is strongly pressed in, for example, a plus (+) direction by the urging force F generated thereby, and the movable portion 3 End portion 3a is about to be greatly displaced beyond the end portion of the stroke range Ls.
  • the movable portion spring 15 is pressed in the compression direction via the movable portion receiving surface 15a abutting on the end 3a. Further, the end 6a of the retainer 6, which moves linearly following the movable portion 3, also presses the retainer spring 14 in the compression direction via the retainer receiving surface 14a.
  • the bending (compression deformation) of the movable portion spring 15 generates a force (repulsive force) opposite to the moving direction of the movable portion 3.
  • the shock applied to the movable portion 3 is attenuated by the buffering action by the reverse force, and the displacement is suppressed.
  • the spring constant of the retainer spring 14 is set to half of that of the movable portion spring 15, the bending (compression deformation) of the retainer spring 14 causes a force (repulsive force) opposite to the moving direction of the retainer 6. ) Occurs.
  • the shock acting on the retainer 6 is attenuated in the same manner as the movable part 3 due to the buffering action by the reverse force. Therefore, the displacement of the retainer 6 is suppressed without being largely displaced with respect to the movable portion 3.
  • control deviation ⁇ Ls is greatly attenuated compared to the conventional control deviation ⁇ Ls indicated by the broken line. Further, the displacement between the movable part 3 and the retainer 6 is minimized, the sliding friction between the movable part 3 and the ball 5 can be greatly reduced, and a decrease in wear durability can be suppressed.
  • control deviation ⁇ Ls is greatly attenuated in the forward path, in the return path from FIG. 3B to FIG. 3C, when the end 3b of the movable section 3 reaches the end of the stroke range Ls in the minus ( ⁇ ) direction. As shown in FIG. 4B, the control deviation ⁇ Ls is corrected early. As a result, higher control accuracy can be obtained as compared with the conventional control deviation ⁇ Ls indicated by a broken line.
  • the retainer 6 can be turned back without being affected by the viscous resistance of the grease reservoir G, so that high position control accuracy can be obtained. Note that the above is also true when the retainer 6 or both the movable portion 3 and the retainer 6 are pressed by the strong urging force F.
  • FIG. 5 shows a second embodiment of the present invention.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted or simplified.
  • one ends of the retainer spring 14 and the movable part spring 15 are connected to the lower walls 2b, 2c and the upper walls 2d, 2e, respectively, and the other ends are free ends.
  • the other ends of the retainer spring 14 and the movable portion spring 15 are coupled to the ends 3a, 3b of the movable portion 3 and the ends 6a, 6b of the retainer 6, and one end of the movable portion receiving member.
  • the surface 15b and the retainer receiving surface 14b are formed respectively.
  • the movable section spring 15 and the retainer spring 14 have the same specifications as those of the first embodiment. Further, the retainer spring 14 and the movable portion spring 15 disposed in the same direction need not be separate components, and may be integrated as long as they are functionally separated.
  • ⁇ Circle around (1) ⁇ shows a state in which the flat coils 8a and 8b (see FIG. 1) are in a non-energized state, and the movable portion 3 and the linear guide 4 are stopped at the initial position (neutral position).
  • the movable part spring 15 When at least one of the movable part 3 and the linear guide 4 is pressed by the strong urging force F while the movable part 3 and the linear guide 4 are reciprocating and linearly moving, the movable part spring 15 The upper wall 2d (or the upper wall 2e) is pressed through the surface 15a. Further, the retainer spring 14 presses the lower wall 2b (or the lower wall 2c) via the retainer receiving surface 14a.
  • the sliding friction between the movable portion 3 and the ball 5 is reduced, and a decrease in wear durability is suppressed. Further, high position control accuracy can be obtained.
  • FIG. 6 shows a third embodiment of the present invention.
  • the retainer spring 14 is interposed between the ends 6 a and 6 b of the retainer 6 and the lower walls 2 b and 2 c opposed thereto, and the movable spring 15 is connected to the end of the movable 3. It is interposed between the portions 3a and 3b and the upper wall portions 2d and 2e opposed thereto.
  • the retainer spring 14 and the movable portion spring 15 have the same specifications as in the first embodiment.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and the description is omitted or simplified.
  • Both ends of the retainer spring 14 and the movable portion spring 15 are free ends, and retainer receiving surfaces 14a and 14b and movable portion receiving surfaces 15a and 15b are formed at both ends.
  • the support structure of the retainer spring 14 and the movable portion spring 15 includes, for example, slide support pins protruding from the retainer receiving surfaces 14a and 14b and the movable portion receiving surfaces 15a and 15b. Then, the slide support pins on the retainer spring 14 side are slidably inserted into the end portions 6a and 6b of the retainer 6 and the lower wall portions 2b and 2c opposed thereto. On the other hand, the slide support pin on the movable portion spring 15 side is slidably inserted into the end portions 3a and 3b of the movable portion 3 and the upper wall portions 2d and 2e opposed thereto.
  • the movable section 3 when the movable section 3 reaches the end of the stroke range Ls when the movable section 3 normally reciprocates and moves linearly in the stroke range Ls, it is formed at both ends of the movable section spring 15.
  • the movable portion receiving surfaces 15a and 15b abut on the end 3a (or the end 3b) of the movable portion 3 and the upper wall 2d (or the upper wall 2e) opposed thereto, and the position is regulated.
  • the retainer receiving surfaces 14a and 14b formed at both ends of the retainer spring 14 are attached to the end 6a (or the end 6b) of the retainer 6 and the lower wall 2b (or the lower wall 2c) opposed thereto. The position is regulated by contact.
  • the end 3a of the movable part 3 presses the movable portion spring 15 via the movable portion receiving surface 15a, and presses the movable portion receiving surface 15b against the upper wall 2d (or the upper wall 2e).
  • the end 6a (or the end 6b) of the retainer 6 presses the retainer spring 14 via the retainer receiving surface 14a, and presses the retainer receiving surface 14b against the lower wall 2b (or the lower wall 2c).
  • [Fourth embodiment] 7A and 7B show a fourth embodiment of the present invention.
  • the retainer spring 14 as the first structure and the movable portion spring 15 as the second structure are compression springs.
  • the first structure is not used.
  • a certain retainer spring 14 and a movable portion spring 15 as a second structure are leaf springs. Note that the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted or simplified.
  • the retainer spring 14 and the movable portion spring 15 according to the present embodiment are, for example, U-shaped leaf springs as shown in FIG. 7B, and the spring constant of the retainer spring 14 is the spring constant of the movable portion spring 15. Is set to ⁇ .
  • the fixed-side retainer receiving surface 14b of the retainer spring 14 is coupled to the lower walls 2b and 2c, and the fixed-side movable portion receiving surface 15b of the movable spring 15 is coupled to the upper walls 2d and 2e. Further, a retainer receiving surface 14a at a free end facing the ends 6a and 6b of the retainer 6 of the retainer spring 14, and a movable portion at a free end facing the ends 3a and 3b of the movable portion 3 of the movable portion spring 15.
  • the receiving surface 15a is arranged at the same position as in the first embodiment described above.
  • the end 3a (or the end 3b) is moved.
  • the position of the movable portion spring 15 is regulated by contacting the movable portion receiving surface 15a on the free end side.
  • the end 6 a (or the end 6 b) of the retainer 6 abuts on the retainer receiving surface 14 a on the free end side of the retainer spring 14 to restrict the position.
  • the movable part 3 and the linear guide 4 when at least one of the movable part 3 and the linear guide 4 is pressed by the strong urging force F while the movable part 3 and the linear guide 4 are reciprocating and linearly moving, the movable part 3 is moved via the movable part receiving surface 15a.
  • the movable part spring 15 is pressed.
  • the retainer spring 14 presses the retainer spring 14 via the retainer receiving surface 14a.
  • the movable portion spring 15 and the linear spring 14 bend, generating a force (repulsive force) in a direction opposite to the moving direction of the movable portion 3 and the retainer 6, and the shock is buffered by the force in the opposite direction. Displacement is suppressed. Therefore, the positional relationship between the movable part 3 and the retainer 6 does not significantly shift.
  • the retainer receiving surface 14a of the retainer spring 14 and the movable portion receiving surface 15a of the movable portion spring 15 are connected as fixed sides to be connected to the ends 6a and 6b of the retainer 6, and the other retainer receiving portion is connected.
  • the surface 14b and the movable portion receiving surface 15b may be free ends.

Abstract

The present invention comprises: a fixed part 2; a movable part 3 capable of moving in a predetermined direction with respect to the fixed part 2; wall parts 2b to 2e of the fixed part 2 disposed in a direction of movement of the movable part 3; a plurality of balls 5 which are disposed between the fixed part 2 and the movable part 3 and which movably support the movable part 3; a retainer 6 which is disposed between the balls 5 and which maintains the balls 5 at a constant interval; retainer springs 14 each disposed between one of the ends of the retainer 6 and a corresponding one of the wall parts 2b, 2c; and movable part springs 15 each disposed between one of the ends of the movable part 3 and a corresponding one of the wall parts 2d, 2e.

Description

スライドアクチュエータSlide actuator
 本発明は、固定部に対して可動部を、ボール及びボールの間隔を一定に保持するリテーナを介して移動可能に支持させたスライドアクチュエータに関する。 The present invention relates to a slide actuator that movably supports a movable portion with respect to a fixed portion via a ball and a retainer that keeps a constant distance between the balls.
 従来、固定部に対してスライド自在に配設された可動部に被移動体を保持し、この被移動体を移動方向に直交する姿勢を維持した状態で往復直動させるスライドアクチュエータが知られており、周知のボイスコイルモータ(VCM)等に採用されている。 2. Description of the Related Art Conventionally, there is known a slide actuator that holds a moving object on a movable portion slidably disposed with respect to a fixed portion, and reciprocates and linearly moves the moving object while maintaining a posture orthogonal to a moving direction. And is employed in a well-known voice coil motor (VCM) and the like.
 図8A~図8Cに示すように、この種のスライドアクチュエータ101は、装置本体に固定されている固定部102と、この固定部102に対峙する可動部103と、固定部102と可動部103との間に介装されて可動部103を固定部102に沿って直動自在に支持するリニアガイド104とを有している。更に、このリニアガイド104は、可動部103の直動運動を許容する複数のボール105と、この各ボール105を、一定間隔を開けて回動自在に保持するリテーナ106とを備えている。 As shown in FIGS. 8A to 8C, this type of slide actuator 101 includes a fixed portion 102 fixed to the apparatus main body, a movable portion 103 facing the fixed portion 102, a fixed portion 102 and a movable portion 103. And a linear guide 104 interposed between them to support the movable portion 103 so as to be able to linearly move along the fixed portion 102. Further, the linear guide 104 includes a plurality of balls 105 that allow the linear motion of the movable portion 103, and a retainer 106 that holds the balls 105 rotatably at predetermined intervals.
 そして、可動部103のストローク範囲Lsを、図4Aに示す正弦波の可動部指示値(電流)で設定し、この可動部指示電流をスライドアクチュエータに通電する。すると、可動部103は、図8Aに示すストローク範囲Lsの中央に位置している状態から、例えば、図8Bに示すようにプラス(+)方向へスライドし、ストローク範囲Lsの端部でマイナス(-)方向へ折返し、図8Cに示すようにストローク範囲Lsの端部で更にプラス方向へ折り返されるといった往復直動が繰り返される。 (4) Then, the stroke range Ls of the movable section 103 is set by the sine wave movable section instruction value (current) shown in FIG. 4A, and the movable section instruction current is supplied to the slide actuator. Then, the movable portion 103 slides in the plus (+) direction, for example, as shown in FIG. 8B from the state located at the center of the stroke range Ls shown in FIG. The reciprocating linear motion is repeated such that the wire is folded in the −) direction and further folded in the plus direction at the end of the stroke range Ls as shown in FIG. 8C.
 このスライドアクチュエータ101の可動部103が往復直動を繰り返している際に、このスライドアクチュエータ101が衝撃、振動等の強い外乱を受け、図9Aに示すように、その外乱により発生した付勢力Fで可動部103或いはリテーナ106が一方へ押圧される場合がある。その結果、この可動部103がストローク範囲Lsの端部で停止しきれず、その端部から飛び出してしまったりして、可動部103とリテーナ106との位置関係にずれが生じ、図4Bに破線で示すような制御偏差ΔLsが発生してしまう。 When the movable portion 103 of the slide actuator 101 repeats reciprocating linear motion, the slide actuator 101 receives a strong disturbance such as an impact, vibration, or the like, and as shown in FIG. 9A, the urging force F generated by the disturbance. The movable part 103 or the retainer 106 may be pressed to one side. As a result, the movable part 103 cannot stop at the end of the stroke range Ls and jumps out of the end, and the positional relationship between the movable part 103 and the retainer 106 is displaced. The control deviation ΔLs as shown occurs.
 そして、可動部103とリテーナ106との間にずれが生じている状態で、図9Bに示すように、可動部103が、マイナス方向へ折り返した場合には、リテーナ106の端部が、可動部103がストローク範囲Lsの端部に到達するよりも早く、固定部102の壁部102aに当接して移動が停止される。その結果、制御偏差ΔLsが修正されずに残り、制御性が悪化してしまう。 When the movable portion 103 is folded back in the minus direction as shown in FIG. 9B in a state where there is a shift between the movable portion 103 and the retainer 106, the end of the retainer 106 is Movement is stopped by abutment on the wall portion 102a of the fixed portion 102 earlier than when the 103 reaches the end of the stroke range Ls. As a result, the control deviation ΔLs remains without being corrected, and controllability deteriorates.
 この対策として、例えば、日本国特開2008-57679号公報には、可動部(スライドテーブル)とリテーナ(ケージ)との間にスライド方向のずれが生じた場合、先ず、リニアガイドのリテーナを移動端に押し当て、次いで、可動部を強制的にスライドさせて、ずれを修正する技術が開示されている。 As a countermeasure, for example, in Japanese Patent Application Laid-Open No. 2008-57679, when a displacement in the sliding direction occurs between a movable portion (slide table) and a retainer (cage), first, the linear guide retainer is moved. There is disclosed a technique for correcting displacement by pressing against an end and then forcibly sliding a movable portion.
 しかし、図9Bの状態から可動部103を強制的にスライドさせて、図9Cに示すように、リテーナ106と可動部103との間のずれを修正しようとした場合、可動部103をスライドさせている間は、ボール105との間に滑り摩擦が発生する。その結果、この摩擦増大により摩耗耐久性が低下する不都合がある。 However, when the movable section 103 is forcibly slid from the state of FIG. 9B to correct the displacement between the retainer 106 and the movable section 103 as shown in FIG. 9C, the movable section 103 is slid. During this time, sliding friction occurs between the ball 105 and the ball 105. As a result, there is a disadvantage that the wear durability is reduced due to the increase in friction.
 又、日本国特開2008-57679号公報に開示されている技術では、図9Aに示すように、一旦、可動部103とリテーナ106との間に制御偏差ΔLsによるずれが発生した場合、図9Dに示すように、正常な位置関係に復帰するまでに少なくとも1往復必要となり、その際、可動部103とボール105との間に滑り摩擦が、図4Bに破線で示すように少なくとも1回は発生してしまい、摩耗耐久性が一段と低下してしまう不具合がある。 Further, according to the technique disclosed in Japanese Patent Application Laid-Open No. 2008-57679, as shown in FIG. 9A, when a deviation due to the control deviation ΔLs occurs between the movable part 103 and the retainer 106 once, as shown in FIG. As shown in FIG. 4B, at least one reciprocation is required to return to the normal positional relationship. At this time, sliding friction occurs between the movable portion 103 and the ball 105 at least once as shown by a broken line in FIG. 4B. As a result, there is a problem that the wear durability is further reduced.
 更に、固定部102の壁部102a付近には可動部103の往復直動によりグリース溜りGが発生する。そのため、図9Bに示すように、リテーナ106の端部が壁部102aに当接する際に、グリース溜りGに没入される。リテーナ106の端部がグリース溜りGに没入されると、グリースの粘性抵抗により、可動部103に追従して往復動作するリテーナ106が壁部102aから離間し難くなり、可動部103とボール105との間に生じる滑り摩擦が助長され、可動部103が折返し動作する際の制御偏差が大きくなってしまう不具合がある。 Further, a grease pool G is generated near the wall portion 102a of the fixed portion 102 due to the reciprocating linear motion of the movable portion 103. Therefore, as shown in FIG. 9B, when the end of the retainer 106 contacts the wall 102a, the retainer 106 is immersed in the grease reservoir G. When the end of the retainer 106 is immersed in the grease reservoir G, the viscous resistance of the grease makes it difficult for the retainer 106 that reciprocates to follow the movable portion 103 to be separated from the wall portion 102a. In this case, there is a problem that the sliding friction generated between the movable portions 103 is promoted, and the control deviation when the movable portion 103 performs the folding operation increases.
 本発明は、上記事情に鑑み、リテーナと可動部との少なくとも一方に強い付勢力が加えられた場合であっても、リテーナと可動部との位置ずれを最小にして、位置関係を早期に修復させることが可能で、摩耗耐久性の低下を抑制することができ、更に、リテーナと可動部との少なくとも一方に強い付勢力が印加された場合であっても、リテーナの端部が壁部に接触することがなく、従って、この壁部に発生したグリース溜りにリテーナの端部が没入されることがなく、高い位置制御精度を得ることのできるスライドアクチュエータを提供することを目的とする。 In view of the above circumstances, the present invention minimizes the displacement between the retainer and the movable portion even when a strong urging force is applied to at least one of the retainer and the movable portion, and quickly restores the positional relationship. It is possible to suppress a decrease in wear durability, and even when a strong urging force is applied to at least one of the retainer and the movable portion, the end of the retainer is attached to the wall. It is an object of the present invention to provide a slide actuator that does not come into contact with the grease reservoir generated on the wall portion, so that the end of the retainer does not sink into the grease reservoir, and that can achieve high position control accuracy.
 本発明の一態様は、固定部と、前記固定部に対して所定方向に移動可能な可動部と、前記固定部の前記可動部の移動方向の両側に設けた壁部と、前記固定部と前記可動部との間に介在し、前記可動部を移動可能に支持する複数のボールと、前記各ボール間に介在し、該各ボールの間隔を一定に保持するリテーナと、前記リテーナの両側と前記壁部との間に配置されたばね性を有する第1構造体と、前記可動部の両側と前記壁部との間に配置されたばね性を有する第2構造体とを有する。 One embodiment of the present invention provides a fixed part, a movable part movable in a predetermined direction with respect to the fixed part, walls provided on both sides of the fixed part in a moving direction of the movable part, and the fixed part. A plurality of balls interposed between the movable portion and movably supporting the movable portion, a retainer interposed between the respective balls and maintaining a constant interval between the balls, and both sides of the retainer; A first structure having a spring property disposed between the wall and the wall; and a second structure having a spring property disposed between both sides of the movable portion and the wall.
第1実施形態によるスライドアクチュエータの概略側面図である。FIG. 2 is a schematic side view of the slide actuator according to the first embodiment. 同、可動部が初期位置にある状態を示すスライドアクチュエータの概略側面図である。FIG. 6 is a schematic side view of the slide actuator showing a state where the movable section is at an initial position. 同、可動部が往路の移動端に到達した状態を示すスライドアクチュエータの概略側面図である。FIG. 4 is a schematic side view of the slide actuator showing a state where the movable section has reached a moving end of an outward path. 同、可動部が復路の移動端に到達した状態を示すスライドアクチュエータの概略側面図である。FIG. 5 is a schematic side view of the slide actuator showing a state where the movable section has reached a moving end of a return path. 同、可動部が付勢力で一方へ強く押圧された状態を示すスライドアクチュエータの概略側面図である。FIG. 4 is a schematic side view of the slide actuator showing a state where the movable portion is strongly pressed to one side by an urging force. 同、図3Aの状態から可動部が復路方向へ移動する途上の状態を示すスライドアクチュエータの概略側面図である。FIG. 3B is a schematic side view of the slide actuator showing a state in which the movable unit is moving in the backward direction from the state of FIG. 3A. 同、可動部が復路の移動端に到達した状態を示すスライドアクチュエータの概略側面図である。FIG. 5 is a schematic side view of the slide actuator showing a state where the movable section has reached a moving end of a return path. 同、可動部が初期位置を通過する状態を示すスライドアクチュエータの概略側面図である。FIG. 4 is a schematic side view of the slide actuator showing a state where the movable unit passes an initial position. 同、可動部を動作させる正弦波の可動部指示値を示す波形図である。FIG. 6 is a waveform chart showing a sine wave movable section instruction value for operating the movable section. 同、可動部指示値と実際の可動部の位置との制御偏差を示す波形図である。FIG. 9 is a waveform chart showing a control deviation between the movable-part instruction value and the actual position of the movable part. 第2実施形態によるスライドアクチュエータの概略側面図である。It is a schematic side view of the slide actuator by 2nd Embodiment. 第3実施形態によるスライドアクチュエータの概略側面図である。It is a schematic side view of the slide actuator by 3rd Embodiment. 第4実施形態によるスライドアクチュエータの概略側面図である。It is a schematic side view of the slide actuator by 4th Embodiment. 同、図7Aの概略平面図である。FIG. 7B is a schematic plan view of FIG. 7A. 従来例を示し、可動部が初期位置にある状態を示すスライドアクチュエータの概略側面図Schematic side view of a slide actuator showing a conventional example and showing a state where a movable portion is at an initial position. 同、可動部が往路の移動端に到達した状態を示すスライドアクチュエータの概略側面図である。FIG. 4 is a schematic side view of the slide actuator showing a state where the movable section has reached a moving end of an outward path. 同、可動部が復路の移動端に到達した状態を示すスライドアクチュエータの概略側面図であるFIG. 7 is a schematic side view of the slide actuator showing a state where the movable section has reached a moving end of a return path. 同、可動部が往路方向へ外乱による付勢力で付勢された状態を示すスライドアクチュエータの概略側面図である。FIG. 7 is a schematic side view of the slide actuator showing a state where the movable portion is urged in the outward direction by an urging force due to a disturbance. 同、リテーナが復路の壁部に当接した状態を示すスライドアクチュエータの概略側面図である。FIG. 7 is a schematic side view of the slide actuator showing a state in which the retainer is in contact with a wall portion of a return path. 同、可動部を移動端にスライドさせた状態を示すスライドアクチュエータの概略側面図である。FIG. 4 is a schematic side view of the slide actuator showing a state where the movable part is slid to a moving end. 同、可動部が初期位置を通過する状態を示すスライドアクチュエータの概略側面図である。FIG. 4 is a schematic side view of the slide actuator showing a state where the movable unit passes an initial position.
 以下、図面に基づいて本発明の一実施形態を説明する。尚、図面は模式的なものであり、各部材の厚みと幅との関係、それぞれの部材が有する厚みの比率などは現実のものとは異なることに留意すべきであり、図面の相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. It should be noted that the drawings are schematic, and that the relationship between the thickness and the width of each member, the ratio of the thickness of each member, and the like are different from actual ones. It goes without saying that some portions have different dimensional relationships and ratios.
 [第1実施形態]
 図1~図4Bに本発明の第1実施形態を示す。図中の符号1は、ボイスコイルモータを代表とする電磁式のスライドアクチュエータであり、図示しない装置本体に固定される固定部2と、この固定部2の上をスライド自在な可動部3と、固定部2と可動部3との間に介装されたリニアガイド4とを備えている。リニアガイド4は、可動部3を固定部2のステージ2aに沿って直動運動させる複数のボール5と、この各ボール5を、所定間隔を開けて回動自在に支持するリテーナ6とで構成されている。尚、図示しないが、ステージ2aにはボール5の移動を直線状に導く軌道溝が形成されており、この軌道溝にボール5が配設されている。
[First Embodiment]
1 to 4B show a first embodiment of the present invention. Reference numeral 1 in the figure denotes an electromagnetic slide actuator represented by a voice coil motor, which includes a fixed portion 2 fixed to a device body (not shown), a movable portion 3 slidable on the fixed portion 2, A linear guide 4 is provided between the fixed part 2 and the movable part 3. The linear guide 4 includes a plurality of balls 5 for linearly moving the movable portion 3 along the stage 2a of the fixed portion 2, and a retainer 6 for rotatably supporting each of the balls 5 at a predetermined interval. Have been. Although not shown, a track groove for guiding the movement of the ball 5 in a straight line is formed on the stage 2a, and the ball 5 is disposed in the track groove.
 又、この可動部3は被移動体として、例えば光学素子を保持しており、上面には永久磁石7が固定されている。更に、この永久磁石7に対して、一対のフラットコイル8a,8bが対向した状態で配設されており、永久磁石7はフラットコイル8a,8bに対して適切な磁界を与えるように配置されている。又、この各フラットコイル8a,8bが、図示しない装置本体に固定されているコイル支持部9に取付けられている。尚、本実施形態によるスライドアクチュエータ1は可動磁石式であるが、可動部3にフラットコイルを取付け、このフラットコイルに永久磁石を対向させた可動コイル式であっても良い。 The movable section 3 holds, for example, an optical element as a movable body, and a permanent magnet 7 is fixed on the upper surface. Further, a pair of flat coils 8a and 8b are disposed so as to face the permanent magnet 7, and the permanent magnet 7 is disposed so as to apply an appropriate magnetic field to the flat coils 8a and 8b. I have. The flat coils 8a and 8b are attached to a coil support 9 fixed to a device main body (not shown). The slide actuator 1 according to the present embodiment is a movable magnet type, but may be a movable coil type in which a flat coil is attached to the movable section 3 and a permanent magnet is opposed to the flat coil.
 又、この各フラットコイル8a,8bには、アクチュエータ制御部11の出力側がアクチュエータ駆動部12を介して接続されている。更に、このアクチュエータ制御部11の入力側に可動部3の移動位置を検出する位置検出センサ13が接続されている。 The output side of the actuator controller 11 is connected to the flat coils 8a and 8b via the actuator driver 12. Further, a position detection sensor 13 for detecting a moving position of the movable unit 3 is connected to an input side of the actuator control unit 11.
 アクチュエータ制御部11は、周知のCPU、ROM、RAM、及びインターフェースを含む周知のマイクロコンピュータを主体に構成されている。このアクチュエータ制御部11は、位置検出センサ13で検出した可動部3の位置情報と、図4Aに示す可動部指示位置とを比較して、図4Bに示す制御偏差ΔLsを求め、この制御偏差ΔLsを修正する制御信号をアクチュエータ駆動部12へ出力する。 The actuator control unit 11 is mainly configured by a well-known microcomputer including a well-known CPU, a ROM, a RAM, and an interface. The actuator control section 11 compares the position information of the movable section 3 detected by the position detection sensor 13 with the movable section indication position shown in FIG. 4A to obtain a control deviation ΔLs shown in FIG. Is output to the actuator drive unit 12.
 すると、アクチュエータ駆動部12は制御信号に対応する駆動電流をフラットコイル8a,8bへ出力し、永久磁石7の磁界によってローレンツ力が生じて、可動部3がスライドする。可動部3は、フラットコイル8a,8bに通電される電流の方向によって移動方向が決定され、又、その電流量によって力の大きさが変化する。尚、永久磁石7、フラットコイル8a,8b、コイル支持部9、アクチュエータ制御部11、アクチュエータ駆動部12、位置検出センサ13の駆動系、及び制御系の構成は、図1に代表して記載し、図2A~図3D、及び後述する第2実施形態以降では省略する。 Then, the actuator drive unit 12 outputs a drive current corresponding to the control signal to the flat coils 8a and 8b, and a Lorentz force is generated by the magnetic field of the permanent magnet 7, so that the movable unit 3 slides. The moving direction of the movable section 3 is determined by the direction of the current supplied to the flat coils 8a and 8b, and the magnitude of the force changes according to the amount of the current. The configuration of the permanent magnet 7, the flat coils 8a and 8b, the coil support unit 9, the actuator control unit 11, the actuator drive unit 12, the drive system of the position detection sensor 13, and the control system are shown in FIG. , FIGS. 2A to 3D and a second embodiment and later to be described later.
 そして、例えば、アクチュエータ制御部11から出力されるPWM信号により、アクチュエータ駆動部12が、図4Aに示すような正弦波の可動部指示値(駆動電流)をフラットコイル8a,8bに通電すると、可動部3は、ストローク範囲Lsで往復直動を繰り返す。この場合、可動部3とボール5、及びボール5と軌道溝との間に滑りが生じないと仮定した場合、可動部3の移動量に対しリテーナ6はボール5の回転により1/2の移動量となる。尚、以下においては、便宜的に可動部3とリニアガイド4の移動方向を、図の右側をプラス(+)方向、左側をマイナス(-)方向として説明する。 When, for example, the actuator drive unit 12 supplies a sine wave movable unit instruction value (drive current) as shown in FIG. 4A to the flat coils 8a and 8b by the PWM signal output from the actuator control unit 11, the movable unit The unit 3 repeats reciprocating linear motion within the stroke range Ls. In this case, assuming that no sliding occurs between the movable portion 3 and the ball 5 and between the ball 5 and the raceway groove, the retainer 6 moves by a half of the moving amount of the movable portion 3 by the rotation of the ball 5. Amount. In the following, the moving directions of the movable part 3 and the linear guide 4 will be described as a plus (+) direction on the right side of the drawing and a minus (−) direction on the left side for convenience.
 又、リテーナ6の移動方向の端部6a,6bと、この端部6a,6bに対向する固定部2の下壁部2b,2cとの間に、ばね性を有する第1構造体としての機械式のリテーナばね14がそれぞれ配置されている。更に、可動部3の移動方向の端部3a,3bと、この端部3a,3bに対向する固定部2の上壁部2d,2eとの間に、ばね性を有する第2構造体としての機械式の可動部ばね15がそれぞれ配置されている。又、このリテーナばね14は可動部ばね15に対し、1/2のばね定数に設定されている。この各ばね14,15は、コイルばね、線バネ等の圧縮ばね、ゴム弾性体を用いた圧縮ゴムばね、その他圧縮ばね性を有する部材で形成されている。 A machine as a first structure having spring properties is provided between the ends 6a and 6b of the retainer 6 in the moving direction and the lower walls 2b and 2c of the fixed portion 2 facing the ends 6a and 6b. Each type of retainer spring 14 is arranged. Further, a second structure having a spring property is provided between the ends 3a and 3b of the movable portion 3 in the moving direction and the upper walls 2d and 2e of the fixed portion 2 facing the ends 3a and 3b. A mechanical movable part spring 15 is arranged. Further, the retainer spring 14 is set to have a spring constant 1/2 that of the movable portion spring 15. Each of the springs 14 and 15 is formed of a compression spring such as a coil spring or a wire spring, a compression rubber spring using a rubber elastic body, or other members having compression spring properties.
 リテーナばね14は一端が固定部2の下壁部2b,2cに結合されており、他端がリテーナ6の端部6a,6b方向へ延在する自由端となっている。又、可動部ばね15は一端が固定部2の上壁部2d,2eに結合されており、他端が可動部3の端部3a,3b方向へ延在する自由端となっている。このリテーナばね14の自由端にリテーナ受面14aが形成されている。又、可動部ばね15の自由端に可動部受面15aが形成されている。 One end of the retainer spring 14 is connected to the lower walls 2b, 2c of the fixed part 2, and the other end is a free end extending in the direction of the ends 6a, 6b of the retainer 6. One end of the movable portion spring 15 is coupled to the upper wall portions 2 d and 2 e of the fixed portion 2, and the other end is a free end extending in the direction of the end portions 3 a and 3 b of the movable portion 3. A retainer receiving surface 14 a is formed at a free end of the retainer spring 14. A movable part receiving surface 15a is formed at a free end of the movable part spring 15.
 可動部ばね15は上壁部2d,2eから、可動部3のストローク範囲Lsの端部までの距離を自由高さとして設定されている。従って、可動部3がストローク範囲Lsの端部に到達したとき、可動部ばね15の可動部受面15aが可動部3の端部3a,3bに当接される。 The movable portion spring 15 has a free height set from the upper wall portions 2d and 2e to the end of the stroke range Ls of the movable portion 3. Therefore, when the movable part 3 reaches the end of the stroke range Ls, the movable part receiving surface 15a of the movable part spring 15 comes into contact with the ends 3a and 3b of the movable part 3.
 一方、リテーナばね14の自由高さは、可動部3がストローク範囲Lsの端部に到達したときに、リテーナ受面14aがリテーナ6の端部6a,6bに当接する位置に設定されている。図2Aに示すように、可動部3とリテーナ6とは、移動方向の長さが同一で、且つ、中立位置で停止している状態では可動部3の端部3a,3bとリテーナ6の端部6a,6bとが揃っているとした場合、可動部3とリテーナ6との相対移動は図2B、図2Cのようになる。 On the other hand, the free height of the retainer spring 14 is set at a position where the retainer receiving surface 14a contacts the ends 6a and 6b of the retainer 6 when the movable portion 3 reaches the end of the stroke range Ls. As shown in FIG. 2A, the movable portion 3 and the retainer 6 have the same length in the moving direction, and the ends 3a and 3b of the movable portion 3 and the end of the retainer 6 when stopped at the neutral position. Assuming that the portions 6a and 6b are aligned, the relative movement between the movable portion 3 and the retainer 6 is as shown in FIGS. 2B and 2C.
 すなわち、リテーナ6は可動部3の1/2の移動量であるため、正常な動作では、可動部3の端部3a,3bがストローク範囲Lsの端部に達したとき、リテーナ6の端部6a,6bは、中立位置にある端部6a,6bとストローク範囲Lsとの間の距離の1/2に位置する。従って、リテーナばね14の自由高さは、下壁部2b,2cからストローク範囲Lsの端部までの距離に、中立位置にある端部6a,6bとストローク範囲Lsの端部との間の距離の1/2の距離を加算した値に設定される。 That is, since the amount of movement of the retainer 6 is 1 / of that of the movable part 3, in normal operation, when the ends 3a and 3b of the movable part 3 reach the ends of the stroke range Ls, the end of the retainer 6 is 6a and 6b are located at a half of the distance between the end portions 6a and 6b at the neutral position and the stroke range Ls. Therefore, the free height of the retainer spring 14 is equal to the distance between the lower walls 2b, 2c and the end of the stroke range Ls, and the distance between the ends 6a, 6b at the neutral position and the end of the stroke range Ls. Is set to a value obtained by adding 1/2 of the distance.
 尚、同一方向に配置されているリテーナばね14と可動部ばね15とは、別部品である必要はなく、機能的に分かれていれば一体であっても良い。又、図3A~図3Dの符号Gは、下壁部2b,2cとステージ2aとの稜部に寄せられたグリース溜りである。 The retainer spring 14 and the movable portion spring 15 disposed in the same direction need not be separate components, and may be integrated as long as they are functionally separated. Reference symbol G in FIGS. 3A to 3D denotes a grease pool that is brought to a ridge between the lower walls 2b and 2c and the stage 2a.
 次に、このような構成による本実施形態の作用について説明する。フラットコイル8a,8bが非通電の状態では、図1、図2Aに示すように両リテーナばね14と両可動部ばね15は、それぞれ自由高さの状態にあり、又、可動部3とリニアガイド4とは中立位置で停止している。 Next, the operation of the present embodiment having such a configuration will be described. When the flat coils 8a and 8b are not energized, the retainer springs 14 and the movable section springs 15 are at free heights, respectively, as shown in FIGS. 1 and 2A. 4 is stopped at the neutral position.
 このような状態で、アクチュエータ制御部11からのPWM信号にて、アクチュエータ駆動部12からフラットコイル8a,8bに、図4Aに示すような正弦波の可動部指示値(駆動電流)を通電すると、可動部3がストローク範囲Lsを往復直動する。 In this state, when a PWM signal from the actuator control unit 11 applies a sine wave movable unit instruction value (drive current) as shown in FIG. 4A to the flat coils 8a and 8b from the actuator drive unit 12, The movable portion 3 reciprocates linearly in the stroke range Ls.
 可動部3がストローク範囲Lsを正常に往復直動している状態では、リテーナ6の移動量はボール5の回転により可動部3の1/2となる。そのため、図2B(或いは図2C)に示すように、可動部3の端部3a(3b)がストローク範囲Lsの端部に達すると、可動部ばね15の自由端に形成した可動部受面15aに当接されて位置規制される。同時に、リテーナ6の端部6a(6b)がリテーナばね14の自由端に形成したリテーナ受面14aに当接されて位置規制される。従って、可動部3がストローク範囲Lsの範囲で往復直動している状態では、可動部3とリテーナ6との位置関係に大きなずれが生じることはない。 (4) In a state where the movable portion 3 is normally reciprocating and linearly moving within the stroke range Ls, the amount of movement of the retainer 6 becomes の of the movable portion 3 due to the rotation of the ball 5. Therefore, as shown in FIG. 2B (or FIG. 2C), when the end 3a (3b) of the movable part 3 reaches the end of the stroke range Ls, the movable part receiving surface 15a formed on the free end of the movable part spring 15 And the position is regulated. At the same time, the end 6a (6b) of the retainer 6 comes into contact with the retainer receiving surface 14a formed at the free end of the retainer spring 14 to regulate the position. Therefore, when the movable part 3 is reciprocating and linearly moving within the stroke range Ls, there is no large displacement in the positional relationship between the movable part 3 and the retainer 6.
 ところで、図3Aに示すように、スライドアクチュエータ1が衝撃、振動等の強い外乱を受け、それにより発生した付勢力Fで可動部3が、例えばプラス(+)方向へ強く押圧され、可動部3の端部3aがストローク範囲Lsの端部を超えて大きく変位しようとする。 By the way, as shown in FIG. 3A, the slide actuator 1 receives a strong disturbance such as an impact or a vibration, and the movable portion 3 is strongly pressed in, for example, a plus (+) direction by the urging force F generated thereby, and the movable portion 3 End portion 3a is about to be greatly displaced beyond the end portion of the stroke range Ls.
 可動部3の端部3aがストローク範囲Lsの端部を超えると、端部3aに当接されている可動部受面15aを介して可動部ばね15が圧縮方向へ押圧される。又、可動部3に追従して直動するリテーナ6の端部6aもリテーナ受面14aを介してリテーナばね14を圧縮方向へ押圧する。 When the end 3a of the movable portion 3 exceeds the end of the stroke range Ls, the movable portion spring 15 is pressed in the compression direction via the movable portion receiving surface 15a abutting on the end 3a. Further, the end 6a of the retainer 6, which moves linearly following the movable portion 3, also presses the retainer spring 14 in the compression direction via the retainer receiving surface 14a.
 すると、この可動部ばね15の撓み(圧縮変形)により、可動部3の移動方向に対して逆向きの力(反発力)が発生する。その結果、この逆向きの力による緩衝作用によって、可動部3に印加された衝撃が減衰され、その変位が抑制される。 Then, the bending (compression deformation) of the movable portion spring 15 generates a force (repulsive force) opposite to the moving direction of the movable portion 3. As a result, the shock applied to the movable portion 3 is attenuated by the buffering action by the reverse force, and the displacement is suppressed.
 又、リテーナばね14のばね定数は可動部ばね15の1/2に設定されているので、リテーナばね14の撓み(圧縮変形)により、リテーナ6の移動方向に対して逆向きの力(反発力)が発生する。その結果、この逆向きの力による緩衝作用によって、リテーナ6に作用する衝撃も、可動部3と同様に減衰される。従って、リテーナ6は可動部3に対して大きく位置ずれすることなく、その変位が抑制される。 Further, since the spring constant of the retainer spring 14 is set to half of that of the movable portion spring 15, the bending (compression deformation) of the retainer spring 14 causes a force (repulsive force) opposite to the moving direction of the retainer 6. ) Occurs. As a result, the shock acting on the retainer 6 is attenuated in the same manner as the movable part 3 due to the buffering action by the reverse force. Therefore, the displacement of the retainer 6 is suppressed without being largely displaced with respect to the movable portion 3.
 その結果、図4Bに実線で示すように制御偏差ΔLsは、破線で示す従来の制御偏差ΔLsに比し、大幅に減衰される。更に、可動部3とリテーナ6との位置ずれが最小となり、可動部3とボール5との間の滑り摩擦を大幅に低減させることができ、摩耗耐久性の低下を抑制させることができる。 As a result, as shown by the solid line in FIG. 4B, the control deviation ΔLs is greatly attenuated compared to the conventional control deviation ΔLs indicated by the broken line. Further, the displacement between the movable part 3 and the retainer 6 is minimized, the sliding friction between the movable part 3 and the ball 5 can be greatly reduced, and a decrease in wear durability can be suppressed.
 又、往路において制御偏差ΔLsが大幅に減衰されたため、図3Bから図3Cにかけての復路では、可動部3の端部3bがマイナス(-)方向のストローク範囲Lsの端部に到達する際には、図4Bに示すように、制御偏差ΔLsが早期に修正される。その結果、従来の破線で示す制御偏差ΔLsに比し、高い制御精度を得ることができる。 Further, since the control deviation ΔLs is greatly attenuated in the forward path, in the return path from FIG. 3B to FIG. 3C, when the end 3b of the movable section 3 reaches the end of the stroke range Ls in the minus (−) direction. As shown in FIG. 4B, the control deviation ΔLs is corrected early. As a result, higher control accuracy can be obtained as compared with the conventional control deviation ΔLs indicated by a broken line.
 又、図3Bに示すように、往路においてリテーナ6の端部6bが可動部3の端部3bから飛び出していても、端部6bがリテーナばね14のリテーナ受面14aに当接して、リテーナばね14を押圧する。そのため、リテーナばね14の撓みによる緩衝作用によって、その飛び出し量が抑制され、端部6bが下壁部2cとステージ2aとの稜部に寄せられたグリース溜りGに没入されることが無くなる。 3B, even if the end 6b of the retainer 6 protrudes from the end 3b of the movable portion 3 on the outward path, the end 6b abuts on the retainer receiving surface 14a of the retainer spring 14, and the retainer spring 14 is pressed. Therefore, the amount of protrusion of the retainer spring 14 is suppressed by the buffering action due to the bending of the retainer spring 14, and the end 6 b is not immersed in the grease pool G brought to the ridge between the lower wall 2 c and the stage 2 a.
 その結果、リテーナ6はグリース溜りGの粘性抵抗の影響を受けることなく折返させることができるため、高い位置制御精度を得ることができる。尚、以上のことは、リテーナ6、或いは可動部3とリテーナ6との双方が強い付勢力Fで押圧された場合も同様である As a result, the retainer 6 can be turned back without being affected by the viscous resistance of the grease reservoir G, so that high position control accuracy can be obtained. Note that the above is also true when the retainer 6 or both the movable portion 3 and the retainer 6 are pressed by the strong urging force F.
 [第2実施形態]
 図5に本発明の第2実施形態を示す。尚、第1実施形態と同一の構成部分については、同一の符号を付して説明を省略、或いは簡略する。
[Second embodiment]
FIG. 5 shows a second embodiment of the present invention. The same components as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted or simplified.
 上述した第1実施形態では、リテーナばね14、及び可動部ばね15の一端を下壁部2b,2cと上壁部2d,2eとに、それぞれ結合させ、他端を自由端としている。これに対し、本実施形態では、リテーナばね14と可動部ばね15との他端を、可動部3の端部3a,3bとリテーナ6の端部6a,6bに結合させ、一端に可動部受面15bとリテーナ受面14bとをそれぞれ形成したものである。 In the first embodiment described above, one ends of the retainer spring 14 and the movable part spring 15 are connected to the lower walls 2b, 2c and the upper walls 2d, 2e, respectively, and the other ends are free ends. On the other hand, in the present embodiment, the other ends of the retainer spring 14 and the movable portion spring 15 are coupled to the ends 3a, 3b of the movable portion 3 and the ends 6a, 6b of the retainer 6, and one end of the movable portion receiving member. The surface 15b and the retainer receiving surface 14b are formed respectively.
 尚、可動部ばね15とリテーナばね14とは、第1実施形態と同一の仕様を有している。又、同一方向に配置されているリテーナばね14と可動部ばね15とは、別部品である必要はなく、機能的に分かれていれば一体であっても良い。 The movable section spring 15 and the retainer spring 14 have the same specifications as those of the first embodiment. Further, the retainer spring 14 and the movable portion spring 15 disposed in the same direction need not be separate components, and may be integrated as long as they are functionally separated.
 又、図には、フラットコイル8a,8b(図1参照)が非通電状態にあり、可動部3とリニアガイド4とが初期位置(中立位置)で停止している状態が示されている。 {Circle around (1)} shows a state in which the flat coils 8a and 8b (see FIG. 1) are in a non-energized state, and the movable portion 3 and the linear guide 4 are stopped at the initial position (neutral position).
 このような構成では、可動部3がストローク範囲Lsで正常に往復直動している状態では、可動部3がストローク範囲Lsの端部に達すると、端部3a(或いは,端部3b)に結合されている可動部ばね15の自由端に形成されている可動部受面15bが上壁部2d(或いは、上壁部2e)に当接して、位置規制される。又、リテーナ6の端部6a(或いは、端部6b)に結合されているリテーナばね14の自由端に形成されているリテーナ受面14bが下壁部2b(或いは、下壁部2c)に当接して位置規制される。 In such a configuration, in a state where the movable portion 3 normally reciprocates and moves linearly in the stroke range Ls, when the movable portion 3 reaches the end of the stroke range Ls, the movable portion 3 moves to the end 3a (or the end 3b). The movable portion receiving surface 15b formed at the free end of the coupled movable portion spring 15 abuts on the upper wall portion 2d (or the upper wall portion 2e) to regulate the position. The retainer receiving surface 14b formed at the free end of the retainer spring 14 connected to the end 6a (or the end 6b) of the retainer 6 contacts the lower wall 2b (or the lower wall 2c). Contact is regulated.
 一方、可動部3とリニアガイド4とが往復直動している際に、可動部3とリニアガイド4との少なくとも一方が強い付勢力Fで押圧された場合、可動部ばね15が可動部受面15aを介して上壁部2d(或いは、上壁部2e)を押圧する。又、リテーナばね14がリテーナ受面14aを介して下壁部2b(或いは、下壁部2c)を押圧する。 On the other hand, when at least one of the movable part 3 and the linear guide 4 is pressed by the strong urging force F while the movable part 3 and the linear guide 4 are reciprocating and linearly moving, the movable part spring 15 The upper wall 2d (or the upper wall 2e) is pressed through the surface 15a. Further, the retainer spring 14 presses the lower wall 2b (or the lower wall 2c) via the retainer receiving surface 14a.
 すると、可動部ばね15とリニアばね14との撓み(圧縮変形)により、可動部3とリテーナ6との移動方向に対して逆向きの力(反発力)が発生し、この逆向きの力により、衝撃が緩衝されて変位が抑制される。そのため、可動部3とリテーナ6との位置関係が大きくずれることがない。 Then, due to the bending (compression deformation) between the movable portion spring 15 and the linear spring 14, a force (repulsive force) is generated in a direction opposite to the moving direction of the movable portion 3 and the retainer 6, and the force in the opposite direction is generated. The shock is buffered and the displacement is suppressed. Therefore, the positional relationship between the movable part 3 and the retainer 6 does not significantly shift.
 その結果、第1実施形態と同様、可動部3とボール5との間の滑り摩擦が低減され、摩耗耐久性の低下が抑制される。更に、高い位置制御精度を得ることができる。 As a result, as in the first embodiment, the sliding friction between the movable portion 3 and the ball 5 is reduced, and a decrease in wear durability is suppressed. Further, high position control accuracy can be obtained.
 [第3実施形態]
 図6に本発明の第3実施形態を示す。本実施形態では、リテーナばね14を、リテーナ6の端部6a,6bと、これに対向する下壁部2b,2cの間に介装し、又、可動部ばね15を、可動部3の端部3a,3bと、これに対向する上壁部2d,2eの間に介装したものである。尚、リテーナばね14と可動部ばね15とは、第1実施形態と同じ仕様を有している。又、第1実施形態と同様の構成部分については、同一の符号を付して説明を省略、或いは簡略する。
[Third embodiment]
FIG. 6 shows a third embodiment of the present invention. In the present embodiment, the retainer spring 14 is interposed between the ends 6 a and 6 b of the retainer 6 and the lower walls 2 b and 2 c opposed thereto, and the movable spring 15 is connected to the end of the movable 3. It is interposed between the portions 3a and 3b and the upper wall portions 2d and 2e opposed thereto. Note that the retainer spring 14 and the movable portion spring 15 have the same specifications as in the first embodiment. The same components as those in the first embodiment are denoted by the same reference numerals, and the description is omitted or simplified.
 リテーナばね14と可動部ばね15は両端が自由端となっており、その両端にリテーナ受面14a,14b、可動部受面15a,15bが形成されている。 Both ends of the retainer spring 14 and the movable portion spring 15 are free ends, and retainer receiving surfaces 14a and 14b and movable portion receiving surfaces 15a and 15b are formed at both ends.
 リテーナばね14と可動部ばね15との支持構造は、例えば、リテーナ受面14a,14bと可動部受面15a,15bにスライド支持ピンを突設する。そして、リテーナばね14側のスライド支持ピンを、リテーナ6の端部6a,6bと、それに対向する下壁部2b,2cとに、それぞれスライド自在に挿通する。一方、可動部ばね15側のスライド支持ピンを、可動部3の端部3a,3bと、それに対向する上壁部2d,2eとに、それぞれスライド自在に挿通する。 (4) The support structure of the retainer spring 14 and the movable portion spring 15 includes, for example, slide support pins protruding from the retainer receiving surfaces 14a and 14b and the movable portion receiving surfaces 15a and 15b. Then, the slide support pins on the retainer spring 14 side are slidably inserted into the end portions 6a and 6b of the retainer 6 and the lower wall portions 2b and 2c opposed thereto. On the other hand, the slide support pin on the movable portion spring 15 side is slidably inserted into the end portions 3a and 3b of the movable portion 3 and the upper wall portions 2d and 2e opposed thereto.
 このような構成では、可動部3がストローク範囲Lsで正常に往復直動している状態では、可動部3がストローク範囲Lsの端部に達すると、可動部ばね15の両端に形成されている可動部受面15a,15bが、可動部3の端部3a(或いは,端部3b)と、それに対向する上壁部2d(或いは上壁部2e)に当接して、位置規制される。又、リテーナばね14の両端に形成されているリテーナ受面14a,14bが、リテーナ6の端部6a(或いは,端部6b)と、それに対向する下壁部2b(或いは下壁部2c)に当接して、位置規制される。 In such a configuration, when the movable section 3 reaches the end of the stroke range Ls when the movable section 3 normally reciprocates and moves linearly in the stroke range Ls, it is formed at both ends of the movable section spring 15. The movable portion receiving surfaces 15a and 15b abut on the end 3a (or the end 3b) of the movable portion 3 and the upper wall 2d (or the upper wall 2e) opposed thereto, and the position is regulated. The retainer receiving surfaces 14a and 14b formed at both ends of the retainer spring 14 are attached to the end 6a (or the end 6b) of the retainer 6 and the lower wall 2b (or the lower wall 2c) opposed thereto. The position is regulated by contact.
 一方、可動部3とリニアガイド4とが往復直動している際に、可動部3とリニアガイド4との少なくとも一方が強い付勢力Fで押圧された場合、可動部3の端部3a(或いは端部3b)が、可動部受面15aを介して可動部ばね15を押圧し、可動部受面15bを上壁部2d(或いは、上壁部2e)に押圧させる。 On the other hand, when at least one of the movable part 3 and the linear guide 4 is pressed by the strong urging force F while the movable part 3 and the linear guide 4 are reciprocating and linearly moving, the end 3a of the movable part 3 ( Alternatively, the end 3b) presses the movable portion spring 15 via the movable portion receiving surface 15a, and presses the movable portion receiving surface 15b against the upper wall 2d (or the upper wall 2e).
 又、リテーナ6の端部6a(或いは端部6b)が、リテーナ受面14aを介してリテーナばね14を押圧し、リテーナ受面14bを下壁部2b(或いは、下壁部2c)に押圧させる。 Further, the end 6a (or the end 6b) of the retainer 6 presses the retainer spring 14 via the retainer receiving surface 14a, and presses the retainer receiving surface 14b against the lower wall 2b (or the lower wall 2c). .
 すると、可動部ばね15とリニアばね14との撓み(圧縮変形)により、可動部3とリテーナ6との移動方向に対して逆向きの力(反発力)が発生し、この逆向きの力により、衝撃が緩衝されて変位が抑制される。そのため、可動部3とリテーナ6との位置関係が大きくずれることがない。従って、可動部3とボール5との間の滑り摩擦が低減され、摩耗耐久性の低下が抑制され、更に、高い位置制御精度を得ることができる。 Then, due to the bending (compression deformation) between the movable portion spring 15 and the linear spring 14, a force (repulsive force) is generated in a direction opposite to the moving direction of the movable portion 3 and the retainer 6, and the force in the opposite direction is generated. The shock is buffered and the displacement is suppressed. Therefore, the positional relationship between the movable part 3 and the retainer 6 does not significantly shift. Therefore, the sliding friction between the movable portion 3 and the ball 5 is reduced, the decrease in wear durability is suppressed, and further, high position control accuracy can be obtained.
 [第4実施形態]
 図7A,図7Bに本発明の第4実施形態を示す。上述した第1~第3実施形態では、第1構造体であるリテーナばね14、及び、第2構造体である可動部ばね15を圧縮ばねとしたが、本実施形態では、第1構造体であるリテーナばね14,及び、第2構造体である可動部ばね15を板ばねとしたものである。尚、第1実施形態と同様の構成部分については、同一の符号を付して説明を省略、或いは簡略する。
[Fourth embodiment]
7A and 7B show a fourth embodiment of the present invention. In the above-described first to third embodiments, the retainer spring 14 as the first structure and the movable portion spring 15 as the second structure are compression springs. However, in the present embodiment, the first structure is not used. A certain retainer spring 14 and a movable portion spring 15 as a second structure are leaf springs. Note that the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted or simplified.
 本実施形態によるリテーナばね14と可動部ばね15とは、例えば図7Bに示すように、U字状に形成された板ばねであり、リテーナばね14のばね定数は、可動部ばね15のばね定数の1/2に設定されている。 The retainer spring 14 and the movable portion spring 15 according to the present embodiment are, for example, U-shaped leaf springs as shown in FIG. 7B, and the spring constant of the retainer spring 14 is the spring constant of the movable portion spring 15. Is set to の.
 このリテーナばね14の固定側のリテーナ受面14bが下壁部2b,2cに結合され、可動部ばね15の固定側の可動部受面15bが上壁部2d,2eに結合されている。又、リテーナばね14のリテーナ6の端部6a,6bに対峙する自由端側のリテーナ受面14aと、可動部ばね15の可動部3の端部3a,3bに対峙する自由端側の可動部受面15aとが、上述した第1実施形態と同一の位置に配置されている。 The fixed-side retainer receiving surface 14b of the retainer spring 14 is coupled to the lower walls 2b and 2c, and the fixed-side movable portion receiving surface 15b of the movable spring 15 is coupled to the upper walls 2d and 2e. Further, a retainer receiving surface 14a at a free end facing the ends 6a and 6b of the retainer 6 of the retainer spring 14, and a movable portion at a free end facing the ends 3a and 3b of the movable portion 3 of the movable portion spring 15. The receiving surface 15a is arranged at the same position as in the first embodiment described above.
 このような構成では、可動部3がストローク範囲Lsで正常に往復直動している状態では、可動部3がストローク範囲Lsの端部に達すると、端部3a(或いは,端部3b)が可動部ばね15の自由端側の可動部受面15aに当接して位置規制される。又、リテーナ6の端部6a(或いは、端部6b)がリテーナばね14の自由端側のリテーナ受面14aに当接して位置規制される。 In such a configuration, in a state where the movable portion 3 normally reciprocates and moves linearly in the stroke range Ls, when the movable portion 3 reaches the end of the stroke range Ls, the end 3a (or the end 3b) is moved. The position of the movable portion spring 15 is regulated by contacting the movable portion receiving surface 15a on the free end side. In addition, the end 6 a (or the end 6 b) of the retainer 6 abuts on the retainer receiving surface 14 a on the free end side of the retainer spring 14 to restrict the position.
 一方、可動部3とリニアガイド4とが往復直動している際に、可動部3とリニアガイド4との少なくとも一方が強い付勢力Fで押圧された場合、可動部受面15aを介して可動部ばね15を押圧する。又、リテーナばね14がリテーナ受面14aを介してリテーナばね14を押圧する。すると、可動部ばね15とリニアばね14とが撓み、可動部3とリテーナ6との移動方向に対して逆向きの力(反発力)が発生し、この逆向きの力により衝撃が緩衝されて変位が抑制される。そのため、可動部3とリテーナ6との位置関係が大きくずれることがない。 On the other hand, when at least one of the movable part 3 and the linear guide 4 is pressed by the strong urging force F while the movable part 3 and the linear guide 4 are reciprocating and linearly moving, the movable part 3 is moved via the movable part receiving surface 15a. The movable part spring 15 is pressed. In addition, the retainer spring 14 presses the retainer spring 14 via the retainer receiving surface 14a. Then, the movable portion spring 15 and the linear spring 14 bend, generating a force (repulsive force) in a direction opposite to the moving direction of the movable portion 3 and the retainer 6, and the shock is buffered by the force in the opposite direction. Displacement is suppressed. Therefore, the positional relationship between the movable part 3 and the retainer 6 does not significantly shift.
 その結果、この場合においても、第1実施形態と同様、可動部3とボール5との間の滑り摩擦が低減され、摩耗耐久性の低下が抑制される。更に、高い位置制御精度を得ることができる。 As a result, in this case, as in the first embodiment, the sliding friction between the movable portion 3 and the ball 5 is reduced, and a decrease in wear durability is suppressed. Further, high position control accuracy can be obtained.
 尚、本実施形態では、リテーナばね14のリテーナ受面14aと可動部ばね15の可動部受面15aとを、リテーナ6の端部6a,6bに結合する固定側として結合し、他方のリテーナ受面14bと可動部受面15bとを自由端としても良い。 In this embodiment, the retainer receiving surface 14a of the retainer spring 14 and the movable portion receiving surface 15a of the movable portion spring 15 are connected as fixed sides to be connected to the ends 6a and 6b of the retainer 6, and the other retainer receiving portion is connected. The surface 14b and the movable portion receiving surface 15b may be free ends.

Claims (8)

  1.  固定部と、
     前記固定部に対して所定方向に移動可能な可動部と、
     前記固定部の前記可動部の移動方向の両側に設けた壁部と、
     前記固定部と前記可動部との間に介在し、前記可動部を移動可能に支持する複数のボールと、
     前記各ボール間に介在し、該各ボールの間隔を一定に保持するリテーナと、
     前記リテーナの両側と前記壁部との間に配置されたばね性を有する第1構造体と、
     前記可動部の両側と前記壁部との間に配置されたばね性を有する第2構造体と
    を有する
    ことを特徴とするスライドアクチュエータ。
    A fixed part,
    A movable portion movable in a predetermined direction with respect to the fixed portion,
    Wall portions provided on both sides of the fixed portion in the moving direction of the movable portion,
    A plurality of balls interposed between the fixed part and the movable part, and movably supporting the movable part,
    A retainer interposed between the balls, for keeping a constant interval between the balls,
    A first structure having resiliency disposed between both sides of the retainer and the wall;
    A slide actuator, comprising: a second structure having a spring property disposed between both sides of the movable portion and the wall portion.
  2.  前記第1構造体のばね定数が、前記第2構造体のばね定数の1/2に設定されている
    ことを特徴とする請求項1に記載のスライドアクチュエータ。
    The slide actuator according to claim 1, wherein a spring constant of the first structure is set to a half of a spring constant of the second structure.
  3.  前記第1構造体の一端が前記壁部に結合されて他端が前記リテーナから離間されており、
     前記第2構造体の一端が前記壁部に結合されて他端が前記可動部から離間されている
    ことを特徴とする請求項1記載のスライドアクチュエータ。
    One end of the first structure is coupled to the wall and the other end is separated from the retainer;
    2. The slide actuator according to claim 1, wherein one end of the second structure is connected to the wall, and the other end is separated from the movable part.
  4.  前記第1構造体の一端が前記リテーナに結合されて他端が前記壁部から離間されており、
     前記第2構造体の一端が前記可動部に結合されて他端が前記壁部から離間されている
    ことを特徴とする請求項1記載のスライドアクチュエータ。
    One end of the first structure is coupled to the retainer, and the other end is separated from the wall;
    2. The slide actuator according to claim 1, wherein one end of the second structure is connected to the movable portion, and the other end is separated from the wall.
  5.  前記第1構造体の両端が前記リテーナと前記壁部とから離間されており、
     前記第2構造体の両端が前記可動部と前記壁部とから離間されている
    ことを特徴とする請求項1記載のスライドアクチュエータ。
    Both ends of the first structure are separated from the retainer and the wall,
    The slide actuator according to claim 1, wherein both ends of the second structure are separated from the movable portion and the wall portion.
  6.  前記第1構造体と前記第2構造体とは圧縮ばねである
    ことを特徴とする請求項1に記載のスライドアクチュエータ。
    The slide actuator according to claim 1, wherein the first structure and the second structure are compression springs.
  7.  前記第1構造体と前記第2構造体とは板ばねである
    ことを特徴とする請求項1に記載のスライドアクチュエータ。
    The slide actuator according to claim 1, wherein the first structure and the second structure are leaf springs.
  8.  前記第1構造体と前記第2構造体とは圧縮ゴムばねである
    ことを特徴とする請求項1に記載のスライドアクチュエータ。
    The slide actuator according to claim 1, wherein the first structure and the second structure are compression rubber springs.
PCT/JP2018/036830 2018-10-02 2018-10-02 Slide actuator WO2020070791A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/036830 WO2020070791A1 (en) 2018-10-02 2018-10-02 Slide actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/036830 WO2020070791A1 (en) 2018-10-02 2018-10-02 Slide actuator

Publications (1)

Publication Number Publication Date
WO2020070791A1 true WO2020070791A1 (en) 2020-04-09

Family

ID=70055711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036830 WO2020070791A1 (en) 2018-10-02 2018-10-02 Slide actuator

Country Status (1)

Country Link
WO (1) WO2020070791A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5551119A (en) * 1978-10-12 1980-04-14 Toshiba Corp Linear bearing device
JPS5560718A (en) * 1978-10-31 1980-05-08 Toshiba Corp Linear bearing
JPH01156311U (en) * 1988-04-20 1989-10-27
JP2003264207A (en) * 2002-03-11 2003-09-19 Matsushita Electric Ind Co Ltd Weighting method by voice coil motor, component mounting device thereby, and voice coil motor used therefor
JP2017093227A (en) * 2015-11-13 2017-05-25 ミツミ電機株式会社 Vibration actuator, wearable terminal and incoming-call notification function device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5551119A (en) * 1978-10-12 1980-04-14 Toshiba Corp Linear bearing device
JPS5560718A (en) * 1978-10-31 1980-05-08 Toshiba Corp Linear bearing
JPH01156311U (en) * 1988-04-20 1989-10-27
JP2003264207A (en) * 2002-03-11 2003-09-19 Matsushita Electric Ind Co Ltd Weighting method by voice coil motor, component mounting device thereby, and voice coil motor used therefor
JP2017093227A (en) * 2015-11-13 2017-05-25 ミツミ電機株式会社 Vibration actuator, wearable terminal and incoming-call notification function device

Similar Documents

Publication Publication Date Title
JP4700555B2 (en) Image blur correction device
KR102373994B1 (en) Operating unit for an electrical apparatus
KR100591939B1 (en) Stage apparatus
JP5175492B2 (en) Imaging device
JP5723356B2 (en) Exercise guidance device
US8890390B2 (en) Vibration-wave driving device, two-dimensional driving apparatus, and image-shake correcting apparatus
JP6571147B2 (en) Passive compliance mechanism
US7770700B2 (en) Brake apparatus for linear motor and method for positioning movable section of linear motor
WO2020070791A1 (en) Slide actuator
KR101232686B1 (en) Piezo-driven stage based on flexure hinges with multi-layer structure
US10930308B2 (en) Slide actuator
JP4417863B2 (en) Hardness testing machine
WO2019193759A1 (en) Slide actuator
CN110987689A (en) Hardness tester
KR20120085770A (en) Stylus-type measuring apparatus
WO2020179018A1 (en) Slide actuator
JP2019195233A (en) Vibration wave motor and driving unit with the vibration wave motor
JP4891562B2 (en) Drive device and drive / guide device
US7218480B1 (en) Magnetic detent for transducer positioning mechanism
KR100664493B1 (en) Apparatus for compensating straightness error of linear motor stage and sliding mode control method for the same
TWI362174B (en) A piezoelectric motor
US11448357B2 (en) Stage driving device, method for manufacturing stage driving device, and imaging apparatus
JP5546902B2 (en) Movement detector
JP6959023B2 (en) Linear actuator
KR101869013B1 (en) Moveable Table System

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18936158

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18936158

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP