WO2020069130A2 - Chemotherapeutic remodeling of gut microbiome - Google Patents
Chemotherapeutic remodeling of gut microbiome Download PDFInfo
- Publication number
- WO2020069130A2 WO2020069130A2 PCT/US2019/053155 US2019053155W WO2020069130A2 WO 2020069130 A2 WO2020069130 A2 WO 2020069130A2 US 2019053155 W US2019053155 W US 2019053155W WO 2020069130 A2 WO2020069130 A2 WO 2020069130A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- seq
- peptide
- amino acid
- trp
- microbiota
- Prior art date
Links
- 244000005709 gut microbiome Species 0.000 title claims abstract description 69
- 238000007634 remodeling Methods 0.000 title claims abstract description 63
- 230000000973 chemotherapeutic Effects 0.000 title description 3
- 241000736262 Microbiota Species 0.000 claims description 93
- 150000001875 compounds Chemical class 0.000 claims description 76
- 108010069514 Cyclic Peptides Proteins 0.000 claims description 72
- 102000001189 Cyclic Peptides Human genes 0.000 claims description 72
- 210000001035 Gastrointestinal Tract Anatomy 0.000 claims description 69
- 125000000539 amino acid group Chemical group 0.000 claims description 44
- 230000001580 bacterial Effects 0.000 claims description 43
- 230000000694 effects Effects 0.000 claims description 42
- 239000003795 chemical substances by application Substances 0.000 claims description 35
- 201000010099 disease Diseases 0.000 claims description 30
- 239000008194 pharmaceutical composition Substances 0.000 claims description 18
- 230000002209 hydrophobic Effects 0.000 claims description 16
- 241000605059 Bacteroidetes Species 0.000 claims description 15
- 241000192125 Firmicutes Species 0.000 claims description 14
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 claims description 10
- AHLPHDHHMVZTML-BYPYZUCNSA-N L-ornithine Chemical compound NCCC[C@H](N)C(O)=O AHLPHDHHMVZTML-BYPYZUCNSA-N 0.000 claims description 10
- 229960003104 Ornithine Drugs 0.000 claims description 10
- 108020004465 16S Ribosomal RNA Proteins 0.000 claims description 9
- BLCJBICVQSYOIF-UHFFFAOYSA-N 2,2-diaminobutanoic acid Chemical compound CCC(N)(N)C(O)=O BLCJBICVQSYOIF-UHFFFAOYSA-N 0.000 claims description 9
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 claims description 9
- 230000003143 atherosclerotic Effects 0.000 claims description 8
- 239000001963 growth media Substances 0.000 claims description 7
- 230000002411 adverse Effects 0.000 claims description 6
- 230000036961 partial Effects 0.000 claims description 6
- 208000008787 Cardiovascular Disease Diseases 0.000 claims description 5
- 125000001710 D-serine group Chemical group [H]N([H])[C@@]([H])(C(=O)[*])C(O[H])([H])[H] 0.000 claims description 5
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical group OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 claims description 5
- 238000007481 next generation sequencing Methods 0.000 claims description 5
- PECYZEOJVXMISF-UHFFFAOYSA-N 3-aminoalanine zwitterion Chemical compound [NH3+]CC(N)C([O-])=O PECYZEOJVXMISF-UHFFFAOYSA-N 0.000 claims description 4
- 229920002287 Amplicon Polymers 0.000 claims description 4
- 208000009576 Hypercholesterolemia Diseases 0.000 claims description 4
- BQVUABVGYYSDCJ-ZFWWWQNUSA-N Leu-Trp Chemical compound C1=CC=C2C(C[C@H](NC(=O)[C@@H](N)CC(C)C)C(O)=O)=CNC2=C1 BQVUABVGYYSDCJ-ZFWWWQNUSA-N 0.000 claims description 4
- 230000004075 alteration Effects 0.000 claims description 4
- FMUMEWVNYMUECA-LURJTMIESA-N (2S)-2-azaniumyl-5-methylhexanoate Chemical compound CC(C)CC[C@H](N)C(O)=O FMUMEWVNYMUECA-LURJTMIESA-N 0.000 claims description 3
- AKVBCGQVQXPRLD-UHFFFAOYSA-N 2-aminooctanoic acid Chemical compound CCCCCCC(N)C(O)=O AKVBCGQVQXPRLD-UHFFFAOYSA-N 0.000 claims description 3
- 125000004077 D-glutamic acid group Chemical group [H]N([H])[C@@]([H])(C(=O)[*])C([H])([H])C([H])([H])C(N([H])[H])=O 0.000 claims description 3
- 125000000010 L-asparaginyl group Chemical group O=C([*])[C@](N([H])[H])([H])C([H])([H])C(=O)N([H])[H] 0.000 claims description 3
- 108020004999 Messenger RNA Proteins 0.000 claims description 3
- 229920002106 messenger RNA Polymers 0.000 claims description 3
- 206010002329 Aneurysm Diseases 0.000 claims description 2
- 206010022562 Intermittent claudication Diseases 0.000 claims description 2
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 claims description 2
- LHSGPCFBGJHPCY-STQMWFEESA-N Leu-Tyr Chemical compound CC(C)C[C@H](N)C(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 LHSGPCFBGJHPCY-STQMWFEESA-N 0.000 claims description 2
- 206010034636 Peripheral vascular disease Diseases 0.000 claims description 2
- 201000001084 cerebrovascular disease Diseases 0.000 claims description 2
- 108010012058 leucyltyrosine Proteins 0.000 claims description 2
- 201000011528 vascular disease Diseases 0.000 claims description 2
- 125000000534 N(2)-L-lysino group Chemical group [H]OC(=O)[C@@]([H])(N([H])[*])C([H])([H])C([H])([H])C(C([H])([H])N([H])[H])([H])[H] 0.000 claims 2
- 125000000510 L-tryptophano group Chemical group [H]C1=C([H])C([H])=C2N([H])C([H])=C(C([H])([H])[C@@]([H])(C(O[H])=O)N([H])[*])C2=C1[H] 0.000 claims 1
- 238000000338 in vitro Methods 0.000 abstract description 28
- 235000021068 Western diet Nutrition 0.000 description 59
- 102000004196 processed proteins & peptides Human genes 0.000 description 48
- 108090000765 processed proteins & peptides Proteins 0.000 description 48
- HVYWMOMLDIMFJA-DPAQBDIFSA-N (3β)-Cholest-5-en-3-ol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 38
- 239000000203 mixture Substances 0.000 description 38
- 235000001014 amino acid Nutrition 0.000 description 37
- 150000001413 amino acids Chemical class 0.000 description 37
- 244000005700 microbiome Species 0.000 description 36
- 210000002381 Plasma Anatomy 0.000 description 33
- 239000003613 bile acid Substances 0.000 description 29
- 241001465754 Metazoa Species 0.000 description 27
- 238000004166 bioassay Methods 0.000 description 27
- 230000001965 increased Effects 0.000 description 24
- 108060004326 LDLR Proteins 0.000 description 22
- 230000014509 gene expression Effects 0.000 description 21
- 210000003608 Feces Anatomy 0.000 description 20
- 238000004458 analytical method Methods 0.000 description 20
- 210000004027 cells Anatomy 0.000 description 20
- 229940107161 Cholesterol Drugs 0.000 description 19
- 241000894007 species Species 0.000 description 18
- 230000003902 lesions Effects 0.000 description 17
- 206010003210 Arteriosclerosis Diseases 0.000 description 14
- 241000699666 Mus <mouse, genus> Species 0.000 description 14
- 201000001320 atherosclerosis Diseases 0.000 description 14
- 125000004122 cyclic group Chemical group 0.000 description 14
- 235000018102 proteins Nutrition 0.000 description 14
- 102000004169 proteins and genes Human genes 0.000 description 14
- 108090000623 proteins and genes Proteins 0.000 description 14
- 241000894006 Bacteria Species 0.000 description 13
- 235000012000 cholesterol Nutrition 0.000 description 13
- 239000003981 vehicle Substances 0.000 description 13
- WEVYAHXRMPXWCK-UHFFFAOYSA-N acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 12
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 12
- 239000003814 drug Substances 0.000 description 12
- BDAGIHXWWSANSR-UHFFFAOYSA-N formic acid Chemical compound OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 12
- CZMRCDWAGMRECN-UGDNZRGBSA-N D-sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 11
- CZMRCDWAGMRECN-GDQSFJPYSA-N Sucrose Natural products O([C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](CO)O1)[C@@]1(CO)[C@H](O)[C@@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-GDQSFJPYSA-N 0.000 description 11
- 235000005911 diet Nutrition 0.000 description 11
- 230000037213 diet Effects 0.000 description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 11
- 230000002550 fecal Effects 0.000 description 11
- 230000012010 growth Effects 0.000 description 11
- 239000000243 solution Substances 0.000 description 11
- 239000005720 sucrose Substances 0.000 description 11
- -1 y- carboxyglutamate Chemical compound 0.000 description 11
- 210000004534 Cecum Anatomy 0.000 description 10
- 229920001186 RNA-Seq Polymers 0.000 description 10
- 238000011161 development Methods 0.000 description 10
- 230000018109 developmental process Effects 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 150000004666 short chain fatty acids Chemical class 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 238000002360 preparation method Methods 0.000 description 9
- 230000002829 reduced Effects 0.000 description 9
- 210000003289 regulatory T cell Anatomy 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- OKKJLVBELUTLKV-UHFFFAOYSA-N methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 8
- 229920001184 polypeptide Polymers 0.000 description 8
- 230000001603 reducing Effects 0.000 description 8
- 210000001519 tissues Anatomy 0.000 description 8
- 229920000160 (ribonucleotides)n+m Polymers 0.000 description 7
- 210000004369 Blood Anatomy 0.000 description 7
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 7
- 210000004185 Liver Anatomy 0.000 description 7
- 210000004400 Mucous Membrane Anatomy 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 239000008280 blood Substances 0.000 description 7
- 229920003013 deoxyribonucleic acid Polymers 0.000 description 7
- 230000000968 intestinal Effects 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 238000006722 reduction reaction Methods 0.000 description 7
- 235000021391 short chain fatty acids Nutrition 0.000 description 7
- 239000006228 supernatant Substances 0.000 description 7
- 108010082126 Alanine Transaminase Proteins 0.000 description 6
- 108010003415 Aspartate Aminotransferases Proteins 0.000 description 6
- 102000004625 Aspartate Aminotransferases Human genes 0.000 description 6
- 210000003405 Ileum Anatomy 0.000 description 6
- 230000036740 Metabolism Effects 0.000 description 6
- 208000008589 Obesity Diseases 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 230000002596 correlated Effects 0.000 description 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 6
- 238000004128 high performance liquid chromatography Methods 0.000 description 6
- 230000004060 metabolic process Effects 0.000 description 6
- 230000035786 metabolism Effects 0.000 description 6
- 230000000051 modifying Effects 0.000 description 6
- 235000020824 obesity Nutrition 0.000 description 6
- 238000011160 research Methods 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 230000001225 therapeutic Effects 0.000 description 6
- 230000001988 toxicity Effects 0.000 description 6
- 231100000419 toxicity Toxicity 0.000 description 6
- DTQVDTLACAAQTR-UHFFFAOYSA-N trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 6
- 102000004127 Cytokines Human genes 0.000 description 5
- 108090000695 Cytokines Proteins 0.000 description 5
- 102100010966 GPT Human genes 0.000 description 5
- 206010061218 Inflammation Diseases 0.000 description 5
- 230000001684 chronic Effects 0.000 description 5
- 230000003247 decreasing Effects 0.000 description 5
- 239000003651 drinking water Substances 0.000 description 5
- 235000020188 drinking water Nutrition 0.000 description 5
- 239000003937 drug carrier Substances 0.000 description 5
- 230000001976 improved Effects 0.000 description 5
- 230000004054 inflammatory process Effects 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000001404 mediated Effects 0.000 description 5
- 238000002705 metabolomic Methods 0.000 description 5
- 230000001431 metabolomic Effects 0.000 description 5
- 230000000813 microbial Effects 0.000 description 5
- 108020004707 nucleic acids Proteins 0.000 description 5
- 150000007523 nucleic acids Chemical class 0.000 description 5
- 238000010647 peptide synthesis reaction Methods 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- 230000000770 pro-inflamatory Effects 0.000 description 5
- 238000003753 real-time PCR Methods 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 230000002194 synthesizing Effects 0.000 description 5
- 210000000709 Aorta Anatomy 0.000 description 4
- 229920002676 Complementary DNA Polymers 0.000 description 4
- 206010061818 Disease progression Diseases 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 4
- 108090000790 Enzymes Proteins 0.000 description 4
- 101700003482 Fgf15 Proteins 0.000 description 4
- 241000282412 Homo Species 0.000 description 4
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 4
- 108090001030 Lipoproteins Proteins 0.000 description 4
- 102000004895 Lipoproteins Human genes 0.000 description 4
- RUDATBOHQWOJDD-UZVSRGJWSA-N Ursodeoxycholic acid Chemical compound C([C@H]1C[C@@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)CC1 RUDATBOHQWOJDD-UZVSRGJWSA-N 0.000 description 4
- 239000008351 acetate buffer Substances 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 239000003242 anti bacterial agent Substances 0.000 description 4
- 244000052616 bacterial pathogens Species 0.000 description 4
- 150000001720 carbohydrates Chemical class 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 239000002299 complementary DNA Substances 0.000 description 4
- 230000004064 dysfunction Effects 0.000 description 4
- 235000019253 formic acid Nutrition 0.000 description 4
- DHMQDGOQFOQNFH-UHFFFAOYSA-N glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000007912 intraperitoneal administration Methods 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- 210000004962 mammalian cells Anatomy 0.000 description 4
- 230000002503 metabolic Effects 0.000 description 4
- 238000002552 multiple reaction monitoring Methods 0.000 description 4
- 230000001717 pathogenic Effects 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 238000004007 reversed phase HPLC Methods 0.000 description 4
- 229920002973 ribosomal RNA Polymers 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 125000005931 tert-butyloxycarbonyl group Chemical group [H]C([H])([H])C(OC(*)=O)(C([H])([H])[H])C([H])([H])[H] 0.000 description 4
- 229940064005 Antibiotic throat preparations Drugs 0.000 description 3
- 229940083879 Antibiotics FOR TREATMENT OF HEMORRHOIDS AND ANAL FISSURES FOR TOPICAL USE Drugs 0.000 description 3
- 229940042052 Antibiotics for systemic use Drugs 0.000 description 3
- 229940042786 Antitubercular Antibiotics Drugs 0.000 description 3
- 101710027538 Aper1 Proteins 0.000 description 3
- 108020004513 Bacterial RNA Proteins 0.000 description 3
- 102000019034 Chemokines Human genes 0.000 description 3
- 108010012236 Chemokines Proteins 0.000 description 3
- 150000008574 D-amino acids Chemical class 0.000 description 3
- QIVBCDIJIAJPQS-SECBINFHSA-N D-tryptophane Chemical compound C1=CC=C2C(C[C@@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-SECBINFHSA-N 0.000 description 3
- 206010012601 Diabetes mellitus Diseases 0.000 description 3
- 101700064140 FOXP3 Proteins 0.000 description 3
- BTCSSZJGUNDROE-UHFFFAOYSA-N GABA Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 3
- 229940093922 Gynecological Antibiotics Drugs 0.000 description 3
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 3
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 3
- MTCFGRXMJLQNBG-REOHCLBHSA-N L-serine Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 3
- 241001112724 Lactobacillales Species 0.000 description 3
- 201000003533 Leber congenital amaurosis Diseases 0.000 description 3
- UIIMBOGNXHQVGW-UHFFFAOYSA-M NaHCO3 Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 3
- 229960005190 Phenylalanine Drugs 0.000 description 3
- 210000003291 Sinus of Valsalva Anatomy 0.000 description 3
- 229940024982 Topical Antifungal Antibiotics Drugs 0.000 description 3
- 229960003692 aminobutyric acid Drugs 0.000 description 3
- 239000012491 analyte Substances 0.000 description 3
- 230000000844 anti-bacterial Effects 0.000 description 3
- 230000003110 anti-inflammatory Effects 0.000 description 3
- 102000004965 antibodies Human genes 0.000 description 3
- 108090001123 antibodies Proteins 0.000 description 3
- 230000027455 binding Effects 0.000 description 3
- 230000003115 biocidal Effects 0.000 description 3
- FERIUCNNQQJTOY-UHFFFAOYSA-M butyrate Chemical compound CCCC([O-])=O FERIUCNNQQJTOY-UHFFFAOYSA-M 0.000 description 3
- 235000014633 carbohydrates Nutrition 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 230000035569 catabolism Effects 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 230000001906 cholesterol absorption Effects 0.000 description 3
- 230000002354 daily Effects 0.000 description 3
- 238000007405 data analysis Methods 0.000 description 3
- 229940079593 drugs Drugs 0.000 description 3
- 239000002158 endotoxin Substances 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 229940013945 gamma-Aminobutyric Acid Drugs 0.000 description 3
- 230000002068 genetic Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 125000000404 glutamine group Chemical group N[C@@H](CCC(N)=O)C(=O)* 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 230000001771 impaired Effects 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 229940079866 intestinal antibiotics Drugs 0.000 description 3
- 150000002632 lipids Chemical class 0.000 description 3
- 239000006166 lysate Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000004949 mass spectrometry Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000006011 modification reaction Methods 0.000 description 3
- SECXISVLQFMRJM-UHFFFAOYSA-N n-methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 3
- 239000005445 natural product Substances 0.000 description 3
- 230000001264 neutralization Effects 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 229940005935 ophthalmologic Antibiotics Drugs 0.000 description 3
- 238000003305 oral gavage Methods 0.000 description 3
- 230000037361 pathway Effects 0.000 description 3
- 230000000275 pharmacokinetic Effects 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 238000011002 quantification Methods 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 238000002098 selective ion monitoring Methods 0.000 description 3
- 210000000813 small intestine Anatomy 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- 239000007790 solid phase Substances 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- 230000002103 transcriptional Effects 0.000 description 3
- 238000004450 types of analysis Methods 0.000 description 3
- 239000005695 Ammonium acetate Substances 0.000 description 2
- 241000186000 Bifidobacterium Species 0.000 description 2
- 210000001736 Capillaries Anatomy 0.000 description 2
- 229960005091 Chloramphenicol Drugs 0.000 description 2
- WIIZWVCIJKGZOK-RKDXNWHRSA-N Chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 2
- BHQCQFFYRZLCQQ-OELDTZBJSA-N Cholic acid Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 BHQCQFFYRZLCQQ-OELDTZBJSA-N 0.000 description 2
- 239000004380 Cholic acid Substances 0.000 description 2
- 230000037242 Cmax Effects 0.000 description 2
- 206010009900 Colitis ulcerative Diseases 0.000 description 2
- MTCFGRXMJLQNBG-UWTATZPHSA-N D-serine Chemical compound OC[C@@H](N)C(O)=O MTCFGRXMJLQNBG-UWTATZPHSA-N 0.000 description 2
- 238000007399 DNA isolation Methods 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 241000206602 Eukaryota Species 0.000 description 2
- 102100009142 FANCC Human genes 0.000 description 2
- 101700023762 FANCC Proteins 0.000 description 2
- IRXSLJNXXZKURP-UHFFFAOYSA-N Fluorenylmethyloxycarbonyl chloride Chemical compound C1=CC=C2C(COC(=O)Cl)C3=CC=CC=C3C2=C1 IRXSLJNXXZKURP-UHFFFAOYSA-N 0.000 description 2
- 239000004471 Glycine Substances 0.000 description 2
- 229960002591 Hydroxyproline Drugs 0.000 description 2
- LRQKBLKVPFOOQJ-YFKPBYRVSA-N L-2-aminohexanoic acid zwitterion Chemical group CCCC[C@H]([NH3+])C([O-])=O LRQKBLKVPFOOQJ-YFKPBYRVSA-N 0.000 description 2
- 150000008575 L-amino acids Chemical class 0.000 description 2
- ODKSFYDXXFIFQN-BYPYZUCNSA-N L-arginine Chemical compound OC(=O)[C@@H](N)CCCN=C(N)N ODKSFYDXXFIFQN-BYPYZUCNSA-N 0.000 description 2
- 125000000773 L-serino group Chemical group [H]OC(=O)[C@@]([H])(N([H])*)C([H])([H])O[H] 0.000 description 2
- 125000002707 L-tryptophyl group Chemical group [H]C1=C([H])C([H])=C2C(C([C@](N([H])[H])(C(=O)[*])[H])([H])[H])=C([H])N([H])C2=C1[H] 0.000 description 2
- 241001112693 Lachnospiraceae Species 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 210000004379 Membranes Anatomy 0.000 description 2
- 208000008466 Metabolic Disease Diseases 0.000 description 2
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 2
- 241000785902 Odoribacter Species 0.000 description 2
- 241000425347 Phyla <beetle> Species 0.000 description 2
- 230000036823 Plasma Levels Effects 0.000 description 2
- 108091008002 RAR-related orphan receptors Proteins 0.000 description 2
- 108020004418 Ribosomal RNA Proteins 0.000 description 2
- 241000095588 Ruminococcaceae Species 0.000 description 2
- FDKWRPBBCBCIGA-UWTATZPHSA-N Selenocysteine Natural products [Se]C[C@@H](N)C(O)=O FDKWRPBBCBCIGA-UWTATZPHSA-N 0.000 description 2
- 101710040537 TNF Proteins 0.000 description 2
- XOAAWQZATWQOTB-UHFFFAOYSA-N Taurine Chemical compound NCCS(O)(=O)=O XOAAWQZATWQOTB-UHFFFAOYSA-N 0.000 description 2
- 210000001578 Tight Junctions Anatomy 0.000 description 2
- 230000035852 Tmax Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000002378 acidificating Effects 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 241001148470 aerobic bacillus Species 0.000 description 2
- 238000005804 alkylation reaction Methods 0.000 description 2
- 150000003862 amino acid derivatives Chemical class 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- USFZMSVCRYTOJT-UHFFFAOYSA-N ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 2
- 235000019257 ammonium acetate Nutrition 0.000 description 2
- 229940043376 ammonium acetate Drugs 0.000 description 2
- 238000000540 analysis of variance Methods 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 230000000845 anti-microbial Effects 0.000 description 2
- 238000003149 assay kit Methods 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 230000037348 biosynthesis Effects 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- CYKRMWNZYOIJCH-UHFFFAOYSA-N bromo(tripyrrolidin-1-yl)phosphanium;hexafluorophosphate Chemical compound F[P-](F)(F)(F)(F)F.C1CCCN1[P+](N1CCCC1)(Br)N1CCCC1 CYKRMWNZYOIJCH-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 230000000271 cardiovascular Effects 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 201000008779 central nervous system disease Diseases 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000005712 crystallization Effects 0.000 description 2
- 230000001351 cycling Effects 0.000 description 2
- 235000018417 cysteine Nutrition 0.000 description 2
- 230000001419 dependent Effects 0.000 description 2
- 238000010511 deprotection reaction Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- JJTUDXZGHPGLLC-UHFFFAOYSA-N dilactide Chemical compound CC1OC(=O)C(C)OC1=O JJTUDXZGHPGLLC-UHFFFAOYSA-N 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 230000002124 endocrine Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000002255 enzymatic Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 238000010230 functional analysis Methods 0.000 description 2
- 150000004676 glycans Polymers 0.000 description 2
- 230000002440 hepatic Effects 0.000 description 2
- 235000009200 high fat diet Nutrition 0.000 description 2
- 235000014304 histidine Nutrition 0.000 description 2
- 230000003054 hormonal Effects 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 125000001165 hydrophobic group Chemical group 0.000 description 2
- 210000002865 immune cell Anatomy 0.000 description 2
- 238000000099 in vitro assay Methods 0.000 description 2
- 200000000018 inflammatory disease Diseases 0.000 description 2
- 230000028709 inflammatory response Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 235000013372 meat Nutrition 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 230000037353 metabolic pathway Effects 0.000 description 2
- 239000002207 metabolite Substances 0.000 description 2
- 238000010172 mouse model Methods 0.000 description 2
- 239000002858 neurotransmitter agent Substances 0.000 description 2
- 239000012454 non-polar solvent Substances 0.000 description 2
- 239000002773 nucleotide Substances 0.000 description 2
- 125000003729 nucleotide group Chemical group 0.000 description 2
- 238000003068 pathway analysis Methods 0.000 description 2
- 230000035479 physiological effects, processes and functions Effects 0.000 description 2
- 229920000023 polynucleotide Polymers 0.000 description 2
- 239000002157 polynucleotide Substances 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 150000004804 polysaccharides Polymers 0.000 description 2
- 230000004481 post-translational protein modification Effects 0.000 description 2
- 235000013930 proline Nutrition 0.000 description 2
- 150000003212 purines Chemical class 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000010839 reverse transcription Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000007423 screening assay Methods 0.000 description 2
- 235000004400 serine Nutrition 0.000 description 2
- 125000003616 serine group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C(O[H])([H])[H] 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 150000003431 steroids Chemical class 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 238000010189 synthetic method Methods 0.000 description 2
- 235000008521 threonine Nutrition 0.000 description 2
- PMMYEEVYMWASQN-DMTCNVIQSA-N trans-L-hydroxyproline Chemical compound O[C@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-DMTCNVIQSA-N 0.000 description 2
- ZMANZCXQSJIPKH-UHFFFAOYSA-N triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 2
- 235000002374 tyrosine Nutrition 0.000 description 2
- 201000006704 ulcerative colitis Diseases 0.000 description 2
- 238000010200 validation analysis Methods 0.000 description 2
- 239000011534 wash buffer Substances 0.000 description 2
- VVQIIIAZJXTLRE-QMMMGPOBSA-N (2S)-2-amino-6-[(2-methylpropan-2-yl)oxycarbonylamino]hexanoic acid Chemical compound CC(C)(C)OC(=O)NCCCC[C@H](N)C(O)=O VVQIIIAZJXTLRE-QMMMGPOBSA-N 0.000 description 1
- JFILLLZWNHOVHV-UHFFFAOYSA-N (3-nitrophenyl)hydrazine Chemical compound NNC1=CC=CC([N+]([O-])=O)=C1 JFILLLZWNHOVHV-UHFFFAOYSA-N 0.000 description 1
- ORKKMGRINLTBPC-FQEVSTJZSA-N (4S)-4-(9H-fluoren-9-ylmethoxycarbonylamino)-5-oxo-5-prop-2-enoxypentanoic acid Chemical compound C1=CC=C2C(COC(=O)N[C@@H](CCC(=O)O)C(=O)OCC=C)C3=CC=CC=C3C2=C1 ORKKMGRINLTBPC-FQEVSTJZSA-N 0.000 description 1
- UCONUSSAWGCZMV-OEMAIJDKSA-M (6aR)-2-carboxy-6,6,9-trimethyl-3-pentyl-6a,7,8,10a-tetrahydrobenzo[c]chromen-1-olate Chemical compound C([C@H]1C(C)(C)O2)CC(C)=CC1C1=C2C=C(CCCCC)C(C([O-])=O)=C1O UCONUSSAWGCZMV-OEMAIJDKSA-M 0.000 description 1
- GUAHPAJOXVYFON-ZETCQYMHSA-N (8S)-8-azaniumyl-7-oxononanoate Chemical compound C[C@H](N)C(=O)CCCCCC(O)=O GUAHPAJOXVYFON-ZETCQYMHSA-N 0.000 description 1
- PHIQHXFUZVPYII-ZCFIWIBFSA-N (R)-carnitine Chemical compound C[N+](C)(C)C[C@H](O)CC([O-])=O PHIQHXFUZVPYII-ZCFIWIBFSA-N 0.000 description 1
- 125000003088 (fluoren-9-ylmethoxy)carbonyl group Chemical group 0.000 description 1
- WWIYQJITPCEFGT-UHFFFAOYSA-N 1,4-bis(ethenyl)benzene;(4-methylphenyl)-phenylmethanamine;styrene;hydrochloride Chemical compound Cl.C=CC1=CC=CC=C1.C=CC1=CC=C(C=C)C=C1.C1=CC(C)=CC=C1C(N)C1=CC=CC=C1 WWIYQJITPCEFGT-UHFFFAOYSA-N 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- UQBOJOOOTLPNST-UHFFFAOYSA-N 2-aminoprop-2-enoic acid Chemical compound NC(=C)C(O)=O UQBOJOOOTLPNST-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- 101700036695 ABCC3 Proteins 0.000 description 1
- 102100006006 ACADS Human genes 0.000 description 1
- 101700063671 ACOX2 Proteins 0.000 description 1
- 230000035533 AUC Effects 0.000 description 1
- 241001156739 Actinobacteria <phylum> Species 0.000 description 1
- 241000702460 Akkermansia Species 0.000 description 1
- 241000521092 Alloprevotella Species 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N Ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N Ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 241000079561 Anaerofustis Species 0.000 description 1
- 241000203069 Archaea Species 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 229960001230 Asparagine Drugs 0.000 description 1
- 229960005261 Aspartic Acid Drugs 0.000 description 1
- 206010003805 Autism Diseases 0.000 description 1
- 108020000946 Bacterial DNA Proteins 0.000 description 1
- 241000692822 Bacteroidales Species 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- 241001495171 Bilophila Species 0.000 description 1
- 241001202853 Blautia Species 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 210000004556 Brain Anatomy 0.000 description 1
- 108010068197 Butyryl-CoA Dehydrogenase Proteins 0.000 description 1
- 102100019487 CCL11 Human genes 0.000 description 1
- 101700074178 CCL11 Proteins 0.000 description 1
- 102100016449 CCL5 Human genes 0.000 description 1
- 210000003996 CFU-GM Anatomy 0.000 description 1
- 102100006400 CSF2 Human genes 0.000 description 1
- 102100009641 CXCL10 Human genes 0.000 description 1
- 101710032181 CXCL10 Proteins 0.000 description 1
- 102100018442 CYP7A1 Human genes 0.000 description 1
- 101710008851 CYP7A1 Proteins 0.000 description 1
- 241000614438 Candidatus Gastranaerophilales Species 0.000 description 1
- 241000071140 Candidatus Saccharimonas Species 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate dianion Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229960004203 Carnitine Drugs 0.000 description 1
- 210000002421 Cell Wall Anatomy 0.000 description 1
- 108010055166 Chemokine CCL5 Proteins 0.000 description 1
- 108090000943 Cholesterol 7-alpha-monooxygenases Proteins 0.000 description 1
- 102000004410 Cholesterol 7-alpha-monooxygenases Human genes 0.000 description 1
- 238000008620 Cholesterol Assay Methods 0.000 description 1
- 241001112696 Clostridia Species 0.000 description 1
- 241001638933 Cochlicella barbara Species 0.000 description 1
- 206010009839 Coeliac disease Diseases 0.000 description 1
- 241001657523 Coriobacteriaceae Species 0.000 description 1
- 201000008260 Crohn's colitis Diseases 0.000 description 1
- 206010011401 Crohn's disease Diseases 0.000 description 1
- 238000007400 DNA extraction Methods 0.000 description 1
- 241000500134 Dehalobacterium Species 0.000 description 1
- 229940009976 Deoxycholate Drugs 0.000 description 1
- KXGVEGMKQFWNSR-LLQZFEROSA-N Deoxycholic acid Chemical compound C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 KXGVEGMKQFWNSR-LLQZFEROSA-N 0.000 description 1
- 241001467894 Desulfovibrionaceae Species 0.000 description 1
- 230000035695 Efflux Effects 0.000 description 1
- 210000002472 Endoplasmic Reticulum Anatomy 0.000 description 1
- 241001560646 Enterorhabdus Species 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241000609971 Erysipelotrichaceae Species 0.000 description 1
- 210000003743 Erythrocytes Anatomy 0.000 description 1
- 206010015548 Euthanasia Diseases 0.000 description 1
- 230000036826 Excretion Effects 0.000 description 1
- OLNTVTPDXPETLC-XPWALMASSA-N Ezetimibe Chemical compound N1([C@@H]([C@H](C1=O)CC[C@H](O)C=1C=CC(F)=CC=1)C=1C=CC(O)=CC=1)C1=CC=C(F)C=C1 OLNTVTPDXPETLC-XPWALMASSA-N 0.000 description 1
- 101700047578 FGF19 Proteins 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 241001453172 Fusobacteria Species 0.000 description 1
- 210000002816 Gills Anatomy 0.000 description 1
- 229960002989 Glutamic Acid Drugs 0.000 description 1
- RFDAIACWWDREDC-FRVQLJSFSA-N Glycocholic acid Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(=O)NCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 RFDAIACWWDREDC-FRVQLJSFSA-N 0.000 description 1
- 102000004269 Granulocyte Colony-Stimulating Factor Human genes 0.000 description 1
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 1
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- RQFCJASXJCIDSX-UUOKFMHZSA-N Guanosine monophosphate Chemical compound C1=2NC(N)=NC(=O)C=2N=CN1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@H]1O RQFCJASXJCIDSX-UUOKFMHZSA-N 0.000 description 1
- 108010023302 HDL Cholesterol Proteins 0.000 description 1
- WZUVPPKBWHMQCE-VYIIXAMBSA-N Haematoxylin Chemical compound C12=CC(O)=C(O)C=C2C[C@@]2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-VYIIXAMBSA-N 0.000 description 1
- 206010018910 Haemolysis Diseases 0.000 description 1
- 229940088597 Hormone Drugs 0.000 description 1
- DKPMWHFRUGMUKF-KWXDGCAGSA-N Hyocholate Chemical compound C([C@H]1[C@@H](O)[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)CC1 DKPMWHFRUGMUKF-KWXDGCAGSA-N 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 101700086956 IFNG Proteins 0.000 description 1
- 229940072221 IMMUNOGLOBULINS Drugs 0.000 description 1
- 229960000310 ISOLEUCINE Drugs 0.000 description 1
- 210000003090 Iliac Artery Anatomy 0.000 description 1
- 102000018358 Immunoglobulins Human genes 0.000 description 1
- 108060003951 Immunoglobulins Proteins 0.000 description 1
- 206010021972 Inflammatory bowel disease Diseases 0.000 description 1
- 102000003814 Interleukin-10 Human genes 0.000 description 1
- 108090000174 Interleukin-10 Proteins 0.000 description 1
- 102000003816 Interleukin-13 Human genes 0.000 description 1
- 108090000176 Interleukin-13 Proteins 0.000 description 1
- 210000000936 Intestines Anatomy 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- RHGKLRLOHDJJDR-BYPYZUCNSA-N L-citrulline zwitterion Chemical compound NC(=O)NCCC[C@H]([NH3+])C([O-])=O RHGKLRLOHDJJDR-BYPYZUCNSA-N 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- UKAUYVFTDYCKQA-VKHMYHEASA-N L-homoserine zwitterion Chemical group OC(=O)[C@@H](N)CCO UKAUYVFTDYCKQA-VKHMYHEASA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- QEFRNWWLZKMPFJ-YGVKFDHGSA-N L-methionine S-oxide Chemical group CS(=O)CC[C@H](N)C(O)=O QEFRNWWLZKMPFJ-YGVKFDHGSA-N 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- 238000008214 LDL Cholesterol Methods 0.000 description 1
- 102000000853 LDL receptors Human genes 0.000 description 1
- 108010001831 LDL receptors Proteins 0.000 description 1
- 241000186660 Lactobacillus Species 0.000 description 1
- 229940039696 Lactobacillus Drugs 0.000 description 1
- GUBGYTABKSRVRQ-UUNJERMWSA-N Lactose Natural products O([C@@H]1[C@H](O)[C@H](O)[C@H](O)O[C@@H]1CO)[C@H]1[C@@H](O)[C@@H](O)[C@H](O)[C@H](CO)O1 GUBGYTABKSRVRQ-UUNJERMWSA-N 0.000 description 1
- DWPCPZJAHOETAG-IMJSIDKUSA-N Lanthionine Chemical compound OC(=O)[C@@H](N)CSC[C@H](N)C(O)=O DWPCPZJAHOETAG-IMJSIDKUSA-N 0.000 description 1
- SMEROWZSTRWXGI-HVATVPOCSA-N Lithocholic acid Chemical compound C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)CC1 SMEROWZSTRWXGI-HVATVPOCSA-N 0.000 description 1
- OXROWJKCGCOJDO-JLHYYAGUSA-N Lornoxicam Chemical compound O=C1C=2SC(Cl)=CC=2S(=O)(=O)N(C)\C1=C(\O)NC1=CC=CC=N1 OXROWJKCGCOJDO-JLHYYAGUSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 102000007651 Macrophage Colony-Stimulating Factor Human genes 0.000 description 1
- 108010046938 Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- LSDPWZHWYPCBBB-UHFFFAOYSA-O Methylsulfide anion Chemical compound [SH2+]C LSDPWZHWYPCBBB-UHFFFAOYSA-O 0.000 description 1
- 241001050506 Mucispirillum Species 0.000 description 1
- 241000699660 Mus musculus Species 0.000 description 1
- PYUSHNKNPOHWEZ-YFKPBYRVSA-N N-formyl-L-methionine Chemical compound CSCC[C@@H](C(O)=O)NC=O PYUSHNKNPOHWEZ-YFKPBYRVSA-N 0.000 description 1
- 108010049175 N-substituted Glycines Proteins 0.000 description 1
- 229940100662 Nasal Drops Drugs 0.000 description 1
- 208000009025 Nervous System Disease Diseases 0.000 description 1
- 206010029305 Neurological disorder Diseases 0.000 description 1
- 208000008338 Non-alcoholic Fatty Liver Disease Diseases 0.000 description 1
- 108009000135 Nonalcoholic fatty liver disease Proteins 0.000 description 1
- 101700053741 OCLN Proteins 0.000 description 1
- 101700060139 OCT2 Proteins 0.000 description 1
- 241000927544 Olsenella Species 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 241000843248 Oscillibacter Species 0.000 description 1
- 241000266824 Oscillospira Species 0.000 description 1
- 241000283898 Ovis Species 0.000 description 1
- 241000160321 Parabacteroides Species 0.000 description 1
- 241001109789 Parvibacter Species 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N Pd(PPh3)4 Substances [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- 108010067902 Peptide Library Proteins 0.000 description 1
- 108010013639 Peptidoglycan Proteins 0.000 description 1
- 229940067631 Phospholipids Drugs 0.000 description 1
- BZQFBWGGLXLEPQ-REOHCLBHSA-N Phosphoserine Chemical compound OC(=O)[C@@H](N)COP(O)(O)=O BZQFBWGGLXLEPQ-REOHCLBHSA-N 0.000 description 1
- 230000037289 Plasma half life Effects 0.000 description 1
- 230000037240 Plasma half-life Effects 0.000 description 1
- 239000004698 Polyethylene (PE) Substances 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 235000017284 Pometia pinnata Nutrition 0.000 description 1
- 241000605861 Prevotella Species 0.000 description 1
- 241000692844 Prevotellaceae Species 0.000 description 1
- 101710008502 Prl2c3 Proteins 0.000 description 1
- 229940082622 Prostaglandin cardiac therapy preparations Drugs 0.000 description 1
- 229940077717 Prostaglandin drugs for peptic ulcer and gastro-oesophageal reflux disease (GORD) Drugs 0.000 description 1
- 241000280572 Pseudoflavonifractor Species 0.000 description 1
- ZFOMKMMPBOQKMC-KXUCPTDWSA-N Pyrrolysine Chemical compound C[C@@H]1CC=N[C@H]1C(=O)NCCCC[C@H]([NH3+])C([O-])=O ZFOMKMMPBOQKMC-KXUCPTDWSA-N 0.000 description 1
- 238000002123 RNA extraction Methods 0.000 description 1
- 230000004570 RNA-binding Effects 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 241001135259 Rikenella Species 0.000 description 1
- 241000692845 Rikenellaceae Species 0.000 description 1
- 241000605947 Roseburia Species 0.000 description 1
- RJFAYQIBOAGBLC-BYPYZUCNSA-N Selenium-L-methionine Chemical compound C[Se]CC[C@H](N)C(O)=O RJFAYQIBOAGBLC-BYPYZUCNSA-N 0.000 description 1
- 229940055619 Selenocysteine Drugs 0.000 description 1
- 229960002718 Selenomethionine Drugs 0.000 description 1
- 229920005654 Sephadex Polymers 0.000 description 1
- 239000012507 Sephadex™ Substances 0.000 description 1
- 210000003491 Skin Anatomy 0.000 description 1
- 210000000952 Spleen Anatomy 0.000 description 1
- 238000000692 Student's t-test Methods 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 239000012505 Superdex™ Substances 0.000 description 1
- 210000001744 T-Lymphocytes Anatomy 0.000 description 1
- 102100009534 TNF Human genes 0.000 description 1
- 229960003080 Taurine Drugs 0.000 description 1
- 241000425108 Thalassospira Species 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- DAXBISKSIDBYEU-UHFFFAOYSA-N Tidiacic Chemical compound OC(=O)C1CSC(C(O)=O)N1 DAXBISKSIDBYEU-UHFFFAOYSA-N 0.000 description 1
- 108090000992 Transferases Proteins 0.000 description 1
- 102000004357 Transferases Human genes 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Tris Chemical compound OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 238000010162 Tukey test Methods 0.000 description 1
- 241000202898 Ureaplasma Species 0.000 description 1
- 229960001661 Ursodiol Drugs 0.000 description 1
- 102100015249 VEGFA Human genes 0.000 description 1
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 1
- 206010047116 Vascular inflammations Diseases 0.000 description 1
- 241001261005 Verrucomicrobia Species 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 239000003070 absorption delaying agent Substances 0.000 description 1
- IZQZNLBFNMTRMF-UHFFFAOYSA-N acetic acid;phosphoric acid Chemical compound CC(O)=O.OP(O)(O)=O IZQZNLBFNMTRMF-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 239000000556 agonist Substances 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- 238000004164 analytical calibration Methods 0.000 description 1
- 239000003957 anion exchange resin Substances 0.000 description 1
- 230000003042 antagnostic Effects 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 230000000489 anti-atherogenic Effects 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 102000038129 antigens Human genes 0.000 description 1
- 108091007172 antigens Proteins 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 201000002055 autistic disease Diseases 0.000 description 1
- 230000001363 autoimmune Effects 0.000 description 1
- 101700032575 baiG Proteins 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 125000003310 benzodiazepinyl group Chemical class N1N=C(C=CC2=C1C=CC=C2)* 0.000 description 1
- 238000006065 biodegradation reaction Methods 0.000 description 1
- 239000007975 buffered saline Substances 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 125000004432 carbon atoms Chemical group C* 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 230000024881 catalytic activity Effects 0.000 description 1
- 230000001364 causal effect Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 230000001413 cellular Effects 0.000 description 1
- 150000001793 charged compounds Chemical class 0.000 description 1
- 108091006028 chimera Proteins 0.000 description 1
- 229940099352 cholate Drugs 0.000 description 1
- 229960002471 cholic acid Drugs 0.000 description 1
- 235000019416 cholic acid Nutrition 0.000 description 1
- 238000011098 chromatofocusing Methods 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 229960002173 citrulline Drugs 0.000 description 1
- 235000013477 citrulline Nutrition 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000001143 conditioned Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000000875 corresponding Effects 0.000 description 1
- 230000001808 coupling Effects 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 150000001945 cysteines Chemical class 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000002939 deleterious Effects 0.000 description 1
- KXGVEGMKQFWNSR-LLQZFEROSA-M deoxycholate Chemical compound C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC([O-])=O)C)[C@@]2(C)[C@@H](O)C1 KXGVEGMKQFWNSR-LLQZFEROSA-M 0.000 description 1
- 229960003964 deoxycholic acid Drugs 0.000 description 1
- 230000001809 detectable Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 230000003467 diminishing Effects 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000002612 dispersion media Substances 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 230000003828 downregulation Effects 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N edta Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 238000000132 electrospray ionisation Methods 0.000 description 1
- 238000002330 electrospray ionisation mass spectrometry Methods 0.000 description 1
- 230000002708 enhancing Effects 0.000 description 1
- 230000001973 epigenetic Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 238000000105 evaporative light scattering detection Methods 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229960000815 ezetimibe Drugs 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 235000012631 food intake Nutrition 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 230000002538 fungal Effects 0.000 description 1
- 230000002496 gastric Effects 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 235000004554 glutamine Nutrition 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 235000013928 guanylic acid Nutrition 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 230000002949 hemolytic Effects 0.000 description 1
- 150000002391 heterocyclic compounds Chemical class 0.000 description 1
- 150000002411 histidines Chemical class 0.000 description 1
- 230000013632 homeostatic process Effects 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 125000004435 hydrogen atoms Chemical group [H]* 0.000 description 1
- NPZTUJOABDZTLV-UHFFFAOYSA-N hydroxybenzotriazole Substances O=C1C=CC=C2NNN=C12 NPZTUJOABDZTLV-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxyl anion Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 230000002519 immonomodulatory Effects 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 238000010874 in vitro model Methods 0.000 description 1
- 238000005462 in vivo assay Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 239000002054 inoculum Substances 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 230000031891 intestinal absorption Effects 0.000 description 1
- 238000007917 intracranial administration Methods 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 238000007914 intraventricular administration Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 229960001518 levocarnitine Drugs 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 230000037356 lipid metabolism Effects 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 238000009630 liquid culture Methods 0.000 description 1
- 238000011068 load Methods 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- 239000002609 media Substances 0.000 description 1
- 230000004066 metabolic change Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000000696 methanogenic Effects 0.000 description 1
- 239000011325 microbead Substances 0.000 description 1
- 108091005593 modified peptides Proteins 0.000 description 1
- 239000007923 nasal drop Substances 0.000 description 1
- 229930014626 natural products Natural products 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000003204 osmotic Effects 0.000 description 1
- 229940094443 oxytocics Prostaglandins Drugs 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000001575 pathological Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000002823 phage display Methods 0.000 description 1
- 230000036231 pharmacokinetics Effects 0.000 description 1
- 239000002831 pharmacologic agent Substances 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 230000000865 phosphorylative Effects 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- NQRYJNQNLNOLGT-UHFFFAOYSA-N piperidine Chemical compound C1CCNCC1 NQRYJNQNLNOLGT-UHFFFAOYSA-N 0.000 description 1
- 230000036470 plasma concentration Effects 0.000 description 1
- 230000004983 pleiotropic Effects 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 229920002503 polyoxyethylene-polyoxypropylene Polymers 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 150000003148 prolines Chemical class 0.000 description 1
- 230000001737 promoting Effects 0.000 description 1
- 150000003180 prostaglandins Chemical class 0.000 description 1
- 230000002633 protecting Effects 0.000 description 1
- 125000006239 protecting group Chemical group 0.000 description 1
- 230000001681 protective Effects 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- 150000003230 pyrimidines Chemical class 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000000306 recurrent Effects 0.000 description 1
- 235000021067 refined food Nutrition 0.000 description 1
- 230000001105 regulatory Effects 0.000 description 1
- 230000000979 retarding Effects 0.000 description 1
- 238000010242 retro-orbital bleeding Methods 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- 238000003559 rna-seq method Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000003345 scintillation counting Methods 0.000 description 1
- 235000016491 selenocysteine Nutrition 0.000 description 1
- 150000003355 serines Chemical class 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- JAJWGJBVLPIOOH-IZYKLYLVSA-M sodium taurocholate Chemical compound [Na+].C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(=O)NCCS([O-])(=O)=O)C)[C@@]2(C)[C@@H](O)C1 JAJWGJBVLPIOOH-IZYKLYLVSA-M 0.000 description 1
- POECFFCNUXZPJT-UHFFFAOYSA-M sodium;carbonic acid;hydrogen carbonate Chemical compound [Na+].OC(O)=O.OC([O-])=O POECFFCNUXZPJT-UHFFFAOYSA-M 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000002459 sustained Effects 0.000 description 1
- 230000002195 synergetic Effects 0.000 description 1
- AWDRATDZQPNJFN-VAYUFCLWSA-N taurodeoxycholic acid Chemical compound C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(=O)NCCS(O)(=O)=O)C)[C@@]2(C)[C@@H](O)C1 AWDRATDZQPNJFN-VAYUFCLWSA-N 0.000 description 1
- XSOLDPYUICCHJX-QZEPYOAJSA-N taurohyocholic acid Chemical compound C([C@H]1[C@@H](O)[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(=O)NCCS(O)(=O)=O)C)[C@@]2(C)CC1 XSOLDPYUICCHJX-QZEPYOAJSA-N 0.000 description 1
- 125000004213 tert-butoxy group Chemical group [H]C([H])([H])C(O*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 230000004797 therapeutic response Effects 0.000 description 1
- 150000003588 threonines Chemical class 0.000 description 1
- 230000002992 thymic Effects 0.000 description 1
- 229950005578 tidiacic Drugs 0.000 description 1
- 230000002588 toxic Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 108090000464 transcription factors Proteins 0.000 description 1
- 102000003995 transcription factors Human genes 0.000 description 1
- 238000002700 transcriptomic Methods 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- ZGYICYBLPGRURT-UHFFFAOYSA-N tri(propan-2-yl)silicon Chemical compound CC(C)[Si](C(C)C)C(C)C ZGYICYBLPGRURT-UHFFFAOYSA-N 0.000 description 1
- 150000003668 tyrosines Chemical class 0.000 description 1
- 230000004143 urea cycle Effects 0.000 description 1
- 229940115889 ursodeoxycholic acid Drugs 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 239000006200 vaporizer Substances 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- DKPMWHFRUGMUKF-LPMPYYIQSA-N α-Muricholic acid Chemical compound C([C@H]1[C@H](O)[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CCC([C@@H](CCC(O)=O)C)[C@@]2(C)CC1 DKPMWHFRUGMUKF-LPMPYYIQSA-N 0.000 description 1
- FUOOLUPWFVMBKG-UHFFFAOYSA-N α-aminoisobutanoic acid Chemical compound CC(C)(N)C(O)=O FUOOLUPWFVMBKG-UHFFFAOYSA-N 0.000 description 1
- DKPMWHFRUGMUKF-CRKPLTDNSA-N β-Muricholate Chemical compound C([C@H]1[C@H](O)[C@@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)CC1 DKPMWHFRUGMUKF-CRKPLTDNSA-N 0.000 description 1
- DKPMWHFRUGMUKF-NTPBNISXSA-N ω-Muricholate Chemical compound C([C@H]1[C@@H](O)[C@@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)CC1 DKPMWHFRUGMUKF-NTPBNISXSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/04—Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
- A61K38/12—Cyclic peptides, e.g. bacitracins; Polymyxins; Gramicidins S, C; Tyrocidins A, B or C
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/64—Cyclic peptides containing only normal peptide links
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/02—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
- C12Q1/025—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6888—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
- C12Q1/689—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6869—Methods for sequencing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/136—Screening for pharmacological compounds
Abstract
The present invention provides methods for remodeling gut microbiome to a desired state. The invention also provides in vitro screening platform for identifying novel agents that can remodel dysfunctional gut microbiome.
Description
CHEMOTHERAPEUTIC REMODELING OF GUT MICROBIOME
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] The subject patent application claims the benefit of priority to U.S. Provisional Patent Application Numbers 62/737,547 (filed September 27, 2018). The full disclosure of the priority application is incorporated herein by reference in its entirety and for all purposes.
STATEMENT OF GOVERNMENT SUPPORT
[0002] This invention was made with government support under grant numbers HL104462, GM052190, and CA108304 awarded by the National Institutes of Health and grant numbers N00014-94-1-0365, and N00014-94-1-0362 awarded by the Office of Naval Research. The government has certain rights in the invention.
BACKGROUND OF THE INVENTION
[0003] The microbial community colonizing the mammalian gut plays a fundamental role in the host physiology and health. In humans and animals, dysfunctional gut microbiomes have been associated with the development of several chronic diseases such as cardiovascular disease, obesity, diabetes, and central nervous system disorders importantly, consumption of the calorically rich Western diet (WD) can transform the gut microbiome into a dysfunctional state, promoting systemic inflammation and progression of chronic diseases.
[0004] Remodeling an existing dysfunctional gut microbiome within a living human or animal, esp., in a targeted fashion, represents valuable tools for treating and preventing disease progression. The present invention is directed to novel means for meeting such unmet needs in the art.
SUMMARY OF THE INVENTION
[0005] In one aspect, the invention provides methods for identifying agents that remodel gut microbiome of a subject. These methods entail (a) obtaining a gut microbiota sample from the subject, (b) inoculating and incubating the gut microbiota sample in a growth media in the presence of a plurality of test compounds, (c) assessing effect of the test compounds on remodeling the microbiota, and (d) identifying from the test compounds one or more compounds that remodel the gut microbiome. In some embodiments, effect of the test
compounds on remodeling the microbiota is assessed by determining activity and selectivity of each test compound for remodeling the microbiota. Some methods of the invention are directed to identifying agents that can remodel dysfunctional gut microbiome that is associated with a disease afflicted by the subject.
[0006] In some methods, assessing effect of the test compounds on remodeling the microbiota involves detecting an alteration in gut microbiota transcriptome. For example, alteration in gut microbiota transcriptome can be detected en masse by next-generation sequencing of bacterial mRNA transcripts. In some methods, assessing effect of the test compounds on remodeling the microbiota involves determining the ratio of Bacteroidetes to Firmicutes in the microbiome or the relative abundances of gut microbiota taxa. The relative bacterial abundances, which can be used for determining the ratio of Bacteroidetes to Firmicutes, can in turn be determined by sequencing of the 16S rRNA amplicon. In some preferred embodiments, the identified agents remodel the microbiota to a desired alternative state without adversely affecting its diversity. In some methods, the employed test compounds are a library of cyclic peptide having a sequence of from four to about sixteen amino acid residues or analogs thereof, which are alternating D- and L-residues along partial or entire sequence of the peptide.
[0007] In another aspect, the invention provides methods for remodeling imbalanced or dysfunctional gut microbiota in a subject. These methods involve administering to the subject a pharmaceutical composition that contains a therapeutically effective amount of a cyclic peptide having a sequence of from four to about sixteen amino acid residues or analogs thereof, which are alternating D- and L-residues along partial or entire sequence of the peptide. In some embodiments, the methods are directed to remodeling microbiome in subjects that are afflicted with or at risk of developing hypercholesterolemia, a cardiovascular disorder, an atherosclerotic vascular disease, a cerebrovascular disease, aneurysm, a peripheral vascular disease or intermittent claudication. Preferably, the employed cyclic peptide remodels the gut microbiota in the subject to a functional state without adversely affecting its diversity. In various embodiments, the pharmaceutical composition can be administered to the subject orally, intravenously, subcutaneously or intraperitoneally.
[0008] In some embodiments, the employed cyclic peptide contains alternating D- and L- a-amino acid residues along its entire sequence. In some of these embodiments, the cyclic peptide compound has a sequence formula of c[B-J-Ul-X-U2-Z], wherein B is a peptide segment containing at least 2 hydrophobic amino acid residues or analogs thereof; J contains
a positively charged amino acid residue, a polar uncharged amino acid residue, or an analog thereof; one or both of Ul and U2 contain a negatively charged amino acid residue, a polar uncharged amino acid residue or analog thereof; X contains a polar uncharged amino acid residue, a His residue or an analog thereof; and Z contains Asn, Gln, a charged amino acid residue, or an analog thereof. In various embodiments, the B motif in the sequence of the employed cyclic peptide can contain 2, 3, 4, 5, 6, or 7 hydrophobic amino acid residues or analogs thereof. In some of these methods, the B motif contains 3 hydrophobic amino acid residues or analogs thereof. For example, the B motif can be DTrp-Leu-DTrp, DTyr-Leu-DTyr, DTrp- Trp-DTrp, DPhe- Leu-°Trp, Trp-°Leu-Trp, Tyr-°Leu-Tyr, Trp-DTrp-Trp, or Phe- °Leu- Trp. In some embodiments, the J residue in the sequence of the employed cyclic peptide can be Lys, Arg, Ser, His, Om (ornithine), diaminobutyric acid or diaminopropionic acid. In some other embodiments, the J residue can be naphthylalanine (Nal), homoleucine (Hml), or 2-amino-octanoic acid (Aoc). In some embodiments, the Ul and U2 residues in the sequence of the employed cyclic peptide can be each independently a °Asp, °Glu or DSer residue. In some embodiments, the X residue in the sequence of the employed cyclic peptide can be Asn or Gln. In some embodiments, the Z residue in the sequence of the employed cyclic peptide can be a positively charged residue, e.g., Lys, Arg, His, Om (ornithine) or diaminobutyric acid.
[0009] In some preferred embodiments, the employed cyclic peptide has a B motif of DTrp-Leu-DTrp or DTyr-Leu-DTyr; a J residue of Lys, Arg, or Ser; Ul and U2 residues each independently being °Asp, °Glu or DSer; a X residue of Asn or Gln; and a Z residue of Lys, Arg, Om (ornithine) or diaminobutyric acid. In some embodiments of the invention, the specific cyclic peptide administered to the subject is any one of c[wLwReQeR] (SEQ ID NO: ll), c[wLwKhShK] (SEQ ID NO: l), c[wLwKkKr] (SEQ ID NO: l7), c[WlWlKhKr] (SEQ ID NO: 18), c[wLff wKkK] (SEQ ID NO:2), c[WlWwKkKk] (SEQ ID NO:20), c[wLhLwKrK] (SEQ ID NO:2l), c[WlWlKrFr] (SEQ ID NO: 19), c[FwHlYoHq] (SEQ ID NO: 12), c[WlLlKkKs] (SEQ ID NO:7), c[wLlWkKkS] (SEQ ID NO:5), c[wWwKsKsK] (SEQ ID NO: 8), c[lLwHoK] (SEQ ID NO:24), c[wLyKkK] (SEQ ID NO:22), c[wFkSkSkS] (SEQ ID NO:3), and c[lFlAlKhK] (SEQ ID NO: 10), c[WwLlHsKk (SEQ ID NO:4), c[YlYlYkSo] (SEQ ID NO: 14), c[fWwYqHhQ] (SEQ ID NO: 15), c[fVwYkK] (SEQ ID NO:23), c[LlWhQk] (SEQ ID NO:6), c[WwQoHdKt] (SEQ ID NO:27), c[WlWlWkSk]
(SEQ ID NO:9), c[wLeLwKsK] (SEQ ID NO: 16), c[wLwSeQhK] (SEQ ID NO:25),
c[YlWyKhAe] (SEQ ID NO: 13), c[YwElYsKq] (SEQ ID NO:26), c[wLwSeQeO] (SEQ ID NO:28), and c[wLlEeKkN] (SEQ ID NO:29).
[0010] A further understanding of the nature and advantages of the present invention may be realized by reference to the remaining portions of the specification and claims.
DESCRIPTION OF THE DRAWINGS
[0011] Figure 1. Peptide treatment reduced WD-induced inflammation in LDLr mice via several gut microbiota-dependent mechanisms (a ) Expression of tight junction markers Tjpl and Ocln in small intestine of vehicle- or peptide cfwLwReQeR] (SEQ ID NO: 11)- treated WD-fed animals, as determined by rtPCR (n=3 per group) (b) Representative images of ileum sections showing the recovery in intestinal villi width after cyclic peptide treatment (scale bars, 300 pm) (c) Quantification of intestinal villi width in the ileum from vehicle or peptide treated animals on CHD or WD (n= 6-8 per group) (d) Composition of regulatory T cell population in lamina propria from vehicle or peptide treated animals, as indicated by the ratio of Helios+Treg cells to Thl7 cells and RORyt 1 Treg cells in wild type (WT) or LDLr 1 mice. The graphs are shown as the mean ± SD, n =3-5 mice per group (e) Peptide treatment reduced the levels of certain hepatic cytokines/chemokines, as indicated by luminex analysis (n=4-5 per group). Results for the complete panel of 32 cytokines/chemokines are shown in Table 6.
[0012] Figure 2. Changes in gut microbiota composition and biodiversity due to WD feeding in vivo and peptide treatment in vitro (a) The alpha diversity (biodiversity) of gut microbiota from cecum of LDLr 1 mice cultured in vitro for 24 h with the indicated cyclic peptides 1-29 (SEQ ID NOs: 1-29) (25 mM). Two broad-spectrum antibiotics, 4 pg/mL ampicillin (Amp) and 8 pg/mL chloramphenicol (Chm), were used as positive controls in this assay. The dashed line indicates the biodiversity in the cultured, untreated control sample (b) The ratio of bacteroidetes to firmi cutes in the in vitro cultured microbiota samples after cyclic peptide treatment. The dashed line indicates the ratio of bacteroidetes to firmi cutes in the cultured, untreated control sample.
DETAILED DESCRIPTION OF THE INVENTION
[0013] In humans and mammals, a Western diet (WD) can induce imbalances in gut microbiota, in terms of species composition and function, which strongly correlate with the development of several chronic diseases. The present invention is derived in part from the
discoveries by the inventors that self-assembling cyclic D,L-a-peptides selected by using an in vitro en masse screening protocol function as bacterial growth modulators to remodel a Western diet-induced imbalance in the gut microbiome and thus prevent atherosclerosis development in LDLrA mice. Specifically, daily oral administration of selected peptides to mice remodeled the gut microbiome and caused diverse biological effects in the host, including marked reductions in plasma total cholesterol levels and atherosclerotic plaques. There was extensive reprogramming of the microbiome transcriptome and host gene expression levels, suppressed production of several pro-inflammatory cytokines, improved gut barrier integrity, increased populations of intestinal Helios positive regulatory T cells (Helios+ Treg) and rebalanced levels of disease-relevant metabolites, such as short-chain fatty acids (SCFAs) and bile acids. The ability to chemically manipulate the gut microbiome in a targeted fashion within a living organism provides not only an additional tool for deciphering the chemical biology of the gut microbiome, but also an avenue for advancing personalized therapeutic agents.
[0014] In accordance with these discoveries, the present invention provides screening platforms that can be used to identify novel agents that are effective to remodel the gut microbiome to a desired alternative state, e.g., a functional state as seen in mice fed with a Chow diet (CHD). Also provided in the invention are therapeutic uses or methods for employing the various cyclic D,L-a-peptides described herein to provide beneficial microbiome remodeling effects in various subjects with imbalances in gut microbiota. The following description provides a more detailed guidance for practicing the various methods of the invention.
[0015] Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by those of ordinary skill in the art to which this invention pertains. The following references provide one of skill with a general definition of many of the terms used in this invention: Academic Press Dictionary of Science and
Technology, Morris (Ed.), Academic Press (Ist ed., 1992); Oxford Dictionary of
Biochemistry and Molecular Biology, Smith et al. (Eds.), Oxford University Press (revised ed., 2000); Encyclopaedic Dictionary of Chemistry, Kumar (Ed.), Anmol Publications Pvt.
Ltd. (2002); Dictionary of Microbiology and Molecular Biology, Singleton et al. (Eds.), John Wiley & Sons (3rd ed., 2002); Dictionary of Chemistry, Hunt (Ed.), Routledge (Ist ed., 1999); Dictionary of Pharmaceutical Medicine , Nahler (Ed.), Springer-Verlag Telos (1994);
Dictionary of Organic Chemistry, Kumar and Anandand (Eds.), Anmol Publications Pvt. Ltd.
(2002); and A Dictionary of Biology (Oxford Paperback Reference) , Martin and Hine (Eds.), Oxford University Press (4th ed., 2000). In addition, the following definitions are provided to assist the reader in the practice of the invention.
[0016] The term "agent" includes any substance, molecule, element, compound, entity, or a combination thereof. It includes, but is not limited to, e.g., protein, polypeptide, small organic molecule, polysaccharide, polynucleotide, and the like. It can be a natural product, a synthetic compound, or a chemical compound, or a combination of two or more substances. Unless otherwise specified, the terms“agent”,“substance”, and“compound” are used interchangeably herein.
[0017] Amino acids having both the amine and carboxylic acid groups attached to the first (a-) carbon atom have particular importance in biochemistry. They include the 23 “proteinogenic” ("protein-building") amino acids which combine into peptide chains to form the building blocks of a vast array of proteins. These are all L-stereoisomers ("left-handed" isomers) although a few D-amino acids ("right-handed") occur in bacterial envelopes and some antibiotics. 20 of the 23 proteinogenic amino acids are encoded directly by triplet codons in the genetic code and are known as "standard" amino acids. The other three ("non standard" or "non-canonical") are pyrrolysine (found in methanogenic organisms and other eukaryotes), selenocysteine (present in many noneukaryotes as well as most eukaryotes), and N-Formylmethionine.
[0018] Of the standard a-amino acids, all but glycine can exist in either of two enantiomers, called L or D amino acids, which are mirror images of each other. While L- amino acids represent all of the amino acids found in proteins during translation in the ribosome, D-amino acids are found in some proteins produced by enzyme posttranslational modifications after translation and translocation to the endoplasmic reticulum, as in exotic sea-dwelling organisms such as cone snails. They are also abundant components of the peptidoglycan cell walls of bacteria, and D-serine may act as a neurotransmitter in the brain.
[0019] Aside from the 23 proteinogenic amino acids, there are many other amino acids that are called non-proteinogenic or non-standard. Those either are not found in proteins (for example carnitine and gamma-aminobutyric acid), or are not produced directly and in isolation by standard cellular machinery (for example, hydroxyproline and
selenomethionine). Non-standard amino acids that are found in proteins are formed by post translational modification, which is modification after translation during protein synthesis. Some nonstandard amino acids are not found in proteins. Examples include lanthionine, 2-
aminoisobutyric acid, dehydroalanine, and the neurotransmitter gamma-aminobutyric acid (GABA). Non-standard amino acids often occur as intermediates in the metabolic pathways for standard amino acids - for example, ornithine and citrulline occur in the urea cycle, part of amino acid catabolism.
[0020] The side-chain of an amino acid can make it a weak acid or a weak base, and a hydrophile if the side-chain is polar or a hydrophobe if it is nonpolar. Amino acids can be classified by the properties of their side-chain into non-polar hydrophobic residues, polar but uncharged hydrophilic residues, and polar charged residues. Among the 20 standard proteinogenic amino acids, non-polar hydrophobic residues include alanine, glycine, valine, leucine, isoleucine, proline, phenylalanine, and methionine. Polar uncharged residues include asparagine, glutamine, serine, threonine, tyrosine, cysteine and tryptophan. Polar and charged amino acids include positively charged basic residues (lysine, arginine and histidine) and negatively charged acidic residues (aspartic acid and glutamic acid).
[0021] As used herein,“amino acid residues or analogs thereof’ encompass naturally occurring amino acids, including both proteinogenic and non-proteinogenic amino acids. Naturally occurring amino acids are those encoded by the genetic code, as well as those amino acids that are later posttranslationally modified (e.g., hydroxyproline, y- carboxyglutamate, and O-phosphoserine) or otherwise naturally existing in nature. In addition to natural amino acid residues, amino acid residues or analogs present in the cyclic peptides of the invention also encompass non-naturally existing amino acid analogs or derivatives, e.g., synthetic amino acid derivatives and amino acid mimetics that function in a manner similar to the naturally occurring amino acids. The term“amino acid residues or analogs” specifically encompasses both L-form and D-form of amino acid residues. Amino acid analogs refer to compounds that have the same basic chemical structure as a naturally occurring amino acid, i.e., a carbon that is bound to a hydrogen, a carboxyl group, an amino group, and an R group, e.g., homoserine, norleucine, methionine sulfoxide, methionine methyl sulfonium. Such analogs can have modified R groups (e.g., norleucine) or modified peptide backbones, but retain the same basic chemical structure as a naturally occurring amino acid. Typically, the cyclic peptides of the invention harbor both L-form and D-form of proteinogenic or non-proteinogenic residues, as well as other amino acid derivative or analogs.
[0022] The term "analog" or“derivative” is used herein to refer to a molecule that structurally resembles a reference molecule but which has been modified in a targeted and
controlled manner, by replacing a specific substituent of the reference molecule with an alternate substituent. Compared to the reference molecule, an analog would be expected, by one skilled in the art, to exhibit the same, similar, or improved utility. Synthesis and screening of analogs to identify variants of known compounds having improved traits (such as higher binding affinity for a target molecule) is an approach that is well known in pharmaceutical chemistry.
[0023] The Bacteroidetes to Firmicutes ratio refers to the relative proportions of two organisms present in the gut microbiota. Commonly present in the gut microbiota are members of the gram-positive Firmicutes and the gram-negative Bacteroidetes phyla, with several other phyla, including the Actinobacteria, Fusobacteria and Verrucomicrobia, present at subdominant levels. The Bacteroidetes to Firmicutes ratio (B/F ratio) has been extensively examined for human and mouse gut microbiota. It has been shown by multiple studies that the B/F ratio is correlated with obesity and other diseases.
[0024] Administration "in conjunction with" one or more other therapeutic agents includes simultaneous (concurrent) and consecutive administration in any order.
[0025] The term“contacting” has its normal meaning and refers to combining two or more agents (e.g., polypeptides or small molecule compounds) or combining agents and cells. Contacting can occur in vitro, e.g., combining two or more agents or combining an agent and a cell or a cell lysate in a test tube or other container. Contacting can also occur in a cell or in situ, e.g., contacting two polypeptides in a cell by coexpression in the cell of recombinant polynucleotides encoding the two polypeptides, or in a cell lysate. Contacting can also occur inside the body of a subject, e.g., by administering to the subject an agent which then interacts with the intended target (e.g., a tissue or a cell).
[0026] As used herein, microbiota refers to the ecological community of commensal, symbiotic and pathogenic microorganisms found in and on all multicellular organisms, including plants and animals. A microbiota includes bacteria, archaea, protists, fungi and viruses which are predominantly found in the gastrointestinal tract, hut also in other exposed tissues, such as the skin, upper respirator} and urogenital tracts. Microbiota have been found to be crucial for immunologic, hormonal and metabolic homeostasis of their host. The synonymous term microbiome describes either the collective genomes of the
microorganisms that reside in an environmental niche or the microorganisms themselves.
The microbiome and host emerged during evolution as a synergistic unit from epigenetics and genetic characteristics, sometimes collectively referred to as a holobiont.
[0027] Functional microbiome state (or functional microbiome) refers to healthy microbiome that has normal functions of the microbiome ecosystem, including the production of important resources, bioconversion of nutrients, and protection against pathogenic microbes. Dysfunctional or imbalanced microbiome state refers to a state of microbiome that has impaired beneficial functions of the microbiome ecosystem. The dysfunction is due to the microorganisms in the gut (including bacteria) not living in mutual accord, disturbed balance between‘“protective” versus‘“harmful” intestinal microorganisms, and/or overgrowth of“pathobionts” (i.e , normally good bacteria). The dysfunction or imbalance can he caused by (i) loss of beneficial microbial organisms perhaps through the use of antibiotics (ii) expansion of pafhobionfs or potentially harmful microorganisms because of too much processed foods and/or (hi) loss of overall microbial diversity. A number of hitman diseases are associated with dysfunctional microbiome, including autoimmune and auto inflammatory disorders such as allergies, cardio vascular, metabolic disorders (diabetes, obesity and nonalcoholic fatty liver disease), various cancers and inflammatory bowel disease such as Crohn's and ulcerative colitis (UC), celiac disease, and neurological disorders including autism.
[0028] Remodeling of the gut microbiome refers to any process that can alter the composition of the bacterial species and/or reprogram its transcriptome in a deliberate fashion. In some embodiments, the gut microbiome to be remodeled is dysfunctional, e.g., associated with a disease or disorder. The remodeling is intended to change the dysfunctional state of the microbiome into a healthy and functional state.
[0029] The term "subject" for purposes of treatment refers to any animal classified as a mammal, e.g., human and non-human mammals. Examples of non-human animals include dogs, cats, cattle, horses, sheep, pigs, goats, rabbits, and etc. Unless otherwise noted, the terms“patient” or“subject” are used herein interchangeably. Preferably, the subject is human.
[0030] The term“treating” or“alleviating” includes the administration of compounds or agents to a subject to prevent or delay the onset of the symptoms, complications, or biochemical indicia of a disease or condition (e.g., imbalanced gut microbiota), alleviating the symptoms or arresting or inhibiting further development of the disease or condition. Subjects in need of treatment include those already suffering from the disease or disorder. They also encompass ones who are at risk of developing the disorder, e.g., one at risk of developing dysfunctional microbiome. Treatment may be prophylactic (to prevent or delay
the onset of the disease, or to prevent the manifestation of clinical or subclinical symptoms thereof) or therapeutic suppression or alleviation of symptoms after the manifestation of the disease. In the treatment of a disease or disorder associated with or mediated by
dysfunctional microbiome, a therapeutic agent may directly decrease the pathology of the disease, or render the disease more susceptible to treatment by other therapeutic agents.
[0031] A "therapeutically effective amount" is intended for a minimal amount of active agent which is necessary to impart therapeutic benefit to a subject. Thus, a "therapeutically effective amount" administered to a subject is such an amount which induces, ameliorates or otherwise causes an improvement in the pathological symptoms, disease progression or physiological conditions associated with a disorder or resistance to succumbing to a disorder.
[0032] Disorders mediated by or associated with dysfunctional gut microbiome refer to any or diseases or conditions that implicate imbalanced gut microbiome as a cause or contributing factor in their development. Examples include, e.g., chronic diseases such as cardiovascular disease, obesity, diabetes, and central nervous system disorders.
[0033] In one aspect, the invention provides methods of employing an in vitro model of gut microbiome described herein to identify novel agents that can effectively remodel a gut microbiome to a desired alternative state. In some embodiments as exemplified herein, the screening methods of the invention employ fresh gut microbiome sample obtained from a subject (e.g., a mouse with distinct functional and dysfunctional gut microbiome states), and utilize an en masse screening format to assess effects of candidate compounds on the community of commensal bacteria species present in the microbiome all at once. It was found that this screening format is more data rich, internally consistent, and can account for potential indirect growth-modulating effects that might exist within the bacterial community (vide infra).
[0034] Some screening methods of the invention are directed to identifying novel compounds that are capable of remodeling dysfunctional gut microbiome associated with a disease or condition. The dysfunctional gut microbiome can be present in a subject suffering from a number of inflammatory disorders, chronic diseases, metabolic disorders such as obesity, and cardiovascular diseases. Typically, the screening methods require isolation of a gut microbiota sample from a subject afflicted or at risk of developing any of these diseases or conditions. In some embodiments, the gut microbiota sample can be an optimized fecal sample that is collected from the subject. Collection and optimization of fecal samples for microbiome study can be readily performed in accordance with the protocols exemplified
herein or well known in the art. See, e.g., Thomas et al, Future Microbiol. 10: 1485-1504, 2015; Vandeputte et al. Gut 65:57-62, 2016; Abrahamson et al, Contemporary Clinical Trials Communications 7: 158-162, 2017; and Wu et al, J. Formos. Med. Assoc. 17:30857-4, 2018. The subject can be a human patient suffering from dysfunctional gut microbiota or a non human animal with dysfunctional gut microbiota. Alternatively, as exemplified herein, the subject can also be a non-human animal model (e.g., mouse model) for a human disorder with manifested dysfunctional gut microbiota. For example, dysfunction gut microbiota sample can be obtained from Western diet (WD) fed LDLr mice as exemplified herein or WD fed wildtype mice as reported in the art, e.g., Carmody et al., Cell Host Microbe 17, 72-84, 2015. After isolating the gut microbiota sample from the subject, the sample is inoculated and incubated in a growth media (e.g., 96-well plates) in the presence of candidate compounds under appropriate experimental condition to allow interaction of the compounds with organisms in the microbiome sample. This is followed by examining effects, if any, of the candidate compounds on remodeling the microbiome. Positive agents are identified from the candidate compounds if they are able to remodel the microbiota sample to a desired alternative state, e.g., similar to gut microbiome of a healthy human subject or a functional microbiome state as in CHD fed mice. Preferably, the identified compound remodels the microbiota sample to a desired alternative state without adversely affecting its diversity. Remodeling effects of candidate compounds can be determined via any of the various assays described below.
[0035] In the screening methods of the invention, candidate agents can be screened for one or more activities that evidence their ability to remodel gut microbiome to a desired alternate state. In some embodiments, effect of the candidate compounds on remodeling the microbiota is determined by examining the microbiota transcriptome of bacteria from a plurality of microbiota samples (e.g., from WD fed mice) that have been treated with different candidate compounds. The compound treated microbiota transcriptome can be compared to that of negative control microbiota (e.g., from untreated WD fed mice) and/or that of positive control (e.g., functional gut microbiota from CHD fed mice). Examination and comparison of the microbiota transcriptome can be readily performed by standard protocols or techniques well known and routinely practiced in the art. These include, e.g., next-generation sequencing of bacterial mRNA transcripts as exemplified herein. In some other embodiments, remodeling effect of a given candidate compound can be correlated with an altered composition of microorganism species in the microbiome sample. For example,
effect of the test compounds on remodeling the microbiota can be monitored by determining the ratio of Bacteroidetes to Firmicutes. The ratio of Bacteroidetes to Firmicutes in the microbiome sample can be determined by, e.g., sequencing of 16S rRNA amplicon as exemplified herein. In some preferred embodiments, the identified compound remodels the microbiota sample to a desired alternative state without adversely affecting its diversity.
[0036] In some other embodiments, the candidate compounds can be examined for ability to reduce plasma total cholesterol levels and atherosclerotic plaques. In still some other embodiments, the candidate compounds can be assessed for ability to suppress production of several pro-inflammatory cytokines. In some embodiments, the candidate compounds are monitored for ability to improve gut barrier integrity. In some other embodiments, the candidate compounds can be examined for activity in increasing populations of intestinal Helios positive regulatory T cells (Hebos+ Treg). In still some other embodiments, the candidate compounds can be screened for activity in achieving rebalanced levels of disease relevant metabolites, such as short-chain fatty acids (SCFAs) and bile acids. These assays can all be readily performed in accordance with experimental procedures well known in the art or the specific protocols exemplified herein.
[0037] Candidate compounds suitable for the screening methods of the invention can be of any chemical nature. They can include any substance, molecule, element, compound, entity, or a combination thereof. Unless otherwise specified, the terms“agent”,“substance”, and“compound” are used interchangeably herein. In various embodiments, candidate agents or compounds that can be screened with methods of the present invention include
polypeptides, beta-turn mimetics, polysaccharides, phospholipids, hormones, prostaglandins, steroids, aromatic compounds, heterocyclic compounds, benzodiazepines, oligomeric N- substituted glycines, oligocarbamates, polypeptides, saccharides, fatty acids, steroids, purines, pyrimidines, derivatives, structural analogs or combinations thereof. Some candidate agents are synthetic molecules, and others natural molecules. Candidate agents can be obtained from a wide variety of sources including libraries of synthetic or natural compounds.
[0038] In some preferred embodiments, the candidate agents are small molecule organic compounds, e.g., chemical compounds with a molecular weight of not more than about 1,000 or 500. Preferably, high throughput assays can be adapted and used to screen such small molecules in accordance with methods routinely practiced in the art.
[0039] In some embodiments, the candidate agents are naturally occurring proteins or their fragments. Such candidate agents can be obtained from a natural source, e.g., a cell or
tissue lysate. Libraries of polypeptide agents can also be prepared, e.g., from a cDNA library commercially available or generated with routine methods. The candidate agents can also be peptides, e.g., peptides of from about 5 to about 30 amino acids, with from about 5 to about 20 amino acids being preferred, and from about 7 to about 15 being particularly preferred.
The peptides can be digests of naturally occurring proteins, random peptides, or“biased” random peptides. In some methods, the candidate agents are polypeptides or proteins. The candidate agents can also be nucleic acids. Nucleic acid candidate agents can be naturally occurring nucleic acids, random nucleic acids, or“biased” random nucleic acids. For example, digests of prokaryotic or eukaryotic genomes can be similarly used as described above for proteins.
[0040] In some other embodiments, the candidate agents are a library of cyclic peptide having a sequence of from four to about sixteen amino acid residues or analogs thereof, which are alternating D- and L-residues along partial or entire sequence of the peptide. In some embodiments, the candidate agents can be analog compounds or derivatives that can be generated from one or more of the cyclic peptides exemplified herein.
[0041] To identify microbiome-remodeling cyclic peptides that have little or no undesired toxicity for mammalian cells, individual cyclic peptides, or libraries of cyclic peptides can be made, followed by screening for microbiota-remodeling activity and toxicity using assays and techniques as exemplified herein and/or that are well known in the art. For example, libraries of peptides can be made using a one-bead-one-compound strategy provided by Lam et al. (97 Chem. Rev. 411-448 (1997) or synthesized on microbeads by a split and pool method of Furka, et al. (37 Int. J. Pept. Prot. Res. 487-493(1991)). Mass spectrometric sequence analysis techniques enable rapid identification of every peptide within a given library. See, Biemann, K. 193 Methods Enzymol. 455 (1990). In general, synthetic operations, including peptide cyclization, are performed on solid support to avoid laborious and difficult to automate solution-phase operations. Moreover, the final product of the synthesis regimen is generally sufficiently pure for biological assays without laborious purification procedures. Peptide yields from each synthesis can be sufficient for performing 50 to 100 assays. Rapid, automatic mass-spectrometry -based peptide sequence analysis can be performed to identify peptide sequences that have high activity and to discard peptide sequences with low activity.
[0042] In some embodiments, the candidate agents to be screened are a combinatorial library of compounds. Combinatorial libraries can be produced for many types of compound that can be synthesized in a step-by-step fashion. Large combinatorial libraries of
compounds can be constructed by the encoded synthetic libraries (ESL) method described in WO 95/12608, WO 93/06121, WO 94/08051, WO 95/35503 and WO 95/30642. Peptide libraries can also be generated by phage display methods (see, e.g., WO 91/18980). Libraries of natural compounds in the form of bacterial, fungal, plant and animal extracts can be obtained from commercial sources or collected in the field. Known pharmacological agents can be subject to directed or random chemical modifications, such as acylation, alkylation, esterification, amidification to produce structural analogs.
[0043] Combinatorial libraries of peptides or other compounds can be fully randomized, with no sequence preferences or constants at any position. Alternatively, the library can be biased, i.e., some positions within the sequence are either held constant, or are selected from a limited number of possibilities. For example, in some cases, the nucleotides or amino acid residues are randomized within a defined class, for example, of hydrophobic amino acids, hydrophilic residues, sterically biased (either small or large) residues, towards the creation of cysteines, for cross-linking, prolines for SH-3 domains, serines, threonines, tyrosines or histidines for phosphorylation sites, or to purines.
[0044] In another aspect, the invention provides therapeutic methods of using cyclic peptides to remodel dysfunction gut microbiome. Typically, the cyclic peptides employed in the invention are self-assembling D,L-a-peptides and comprise a sequence of from four to about sixteen amino acid residues or analogs thereof (including pharmaceutically acceptable salt derivatives). Typically, the amino acid residues or analogs thereof present in the cyclic peptides are alternating D- and L-residues along partial or entire sequence of the peptide. In some embodiments, the cyclic peptides have from about six to about ten or twelve alternating D- and L-a-amino acids. In other embodiments, the cyclic peptides having about six or eight alternating D- and L-a-amino acids are employed. Preferably, amino acid residues of the cyclic peptide are alternating D- and L-residues as present in the entire sequence of the peptide. Examples of such peptides are described herein in the Examples below. Additional cyclic peptides that may be used in the invention are described, e.g., in PCT publications WO 95/10535, WO 03/092631, WO 03/092632 and WO 14/165563. Preferably, the cyclic peptides employed in the invention have minimum or no undesired toxicity against normal mammalian cells as noted above, which can be determined, e.g., by hemolysis of
erythrocytes.
[0045] Cyclic peptides with gut microbiome remodeling activities can be examined by the in vivo and in vitro assay formats described herein. In some embodiments, the employed
cyclic peptides can be selected based on their activities to remodel gut microbiota in vivo, e.g., by inducing metabolic changes and transcriptional reprogramming of the gut microbiota in WD fed mice as exemplified herein. In some embodiments, the employed peptides are those that are shown to be able to alter microbiota composition in vitro, e.g., cause species level changes in bacterial abundance as deterred by transcriptome analysis. In some embodiments, peptides with ability to remodel the microbiota community most completely from the dysfunctional state toward the functional state are preferably employed in the practice of the therapeutic methods of the invention. In some embodiments, the employed peptides can reduce the levels of specific bacterial species (lowest summed differences in relative abundance) that were increased in dysfunctional state (e.g., as induced in mice by WD feeding) to levels that are similar to their levels in a functional state of gut microbiome (e.g., in CHD-fed mice).
[0046] In some preferred embodiments, the cyclic peptides employed in the therapeutic methods of the invention are cyclic D,L-a-peptide sequences active against pathogenic aerobic bacteria. In general, the cyclic D,L-a-peptides do not possess mammalian cell toxicity, and also do not diminish microbiota alpha diversity (the number and evenness of bacterial taxa within the community) as exemplified in Fig. 2a. Preferably, the peptides should not possess broad-spectrum antibacterial activity (, e.g., inhibit >95% of growth of >25% of species in the community). In some preferred embodiments, the peptides should significantly alter the Bacteroidetes/Firmicutes ratio as determined via in vitro culture.
[0047] In some preferred embodiments, cyclic peptides employed in the methods of the invention fall under a sequence formula of c[B-J-Ul-X-U2-Z] In this sequence formula, B is a hydrophobic peptide segment containing at least 2 hydrophobic amino acid residues or analogs thereof. J is moiety containing a positively charged amino acid residue, a polar uncharged amino acid residue, or an analog thereof. In addition, one or both of Ul and U2 contains a negatively charged amino acid residue, a polar uncharged amino acid residue or analog thereof. Flanked by Ul and U2, X moiety or segment represents the center of a polar face or segment of the cyclic peptide and typically contains a polar uncharged amino acid residue, a His residue or an analog thereof. Finally, at the end of the sequence formula of the cyclic peptide, Z moiety or segment contains Asn, Gln, a charged amino acid residue, or an analog thereof.
[0048] In some embodiments, the hydrophobic peptide segment B consists of 2, 3, 4, 5, 6 or 7 hydrophobic amino acid residues or analogs thereof. In some preferred embodiments,
hydrophobic peptide segment consists of 3 hydrophobic amino acid residues or analogs thereof. Specific examples of the cyclic peptides of the invention are shown in Figure 2, e.g., Peptide 1 - c[wLwKhShK] (SEQ ID NO: l) and Peptide 11 - c[wLwReQeR] (SEQ ID NO: 11). Other peptides exemplified herein include cfwLwKkKr] (SEQ ID NO: 17), c[WlWlKhKr] (SEQ ID NO: 18), c[wLff wKkK] (SEQ ID NO:2), c[WlWwKkKk] (SEQ ID NO:20), c[wLhLwKrK] (SEQ ID NO:2l), c[WlWlKrFr] (SEQ ID NO: 19), c[FwHlYoHq] (SEQ ID NO: 12), c[WlLlKkKs] (SEQ ID NO:7), c[wLlWkKkS] (SEQ ID NO:5), c[wWwKsKsK] (SEQ ID NO:8), c[lLwHoK] (SEQ ID NO:24), c[wLyKkK] (SEQ ID NO:22), c[wFkSkSkS] (SEQ ID NO:3), and c[lFlAlKhK] (SEQ ID NO: 10), c[WwLlHsKk (SEQ ID NO:4), c[YlYlYkSo] (SEQ ID NO: 14), c[fWwYqHhQ] (SEQ ID NO: 15), cffVwYkK] (SEQ ID NO:23), c[LlWhQk] (SEQ ID NO:6), c[WwQoHdKt] (SEQ ID NO:27), c[WlWlWkSk] (SEQ ID NO:9), c[wLeLwKsK] (SEQ ID NO: 16), c[wLwSeQhK] (SEQ ID NO:25), c[YlWyKhAe] (SEQ ID NO: 13), c[YwElYsKq] (SEQ ID NO:26), c[wLwSeQeO] (SEQ ID NO:28), and c[wLlEeKkN] (SEQ ID NO:29).
[0049] In addition to these specific peptides shown in Figure 2, derivative peptides which have conservative amino acid substitutions relative to the sequence of the exemplified peptides are also encompassed by the invention. In some embodiments, the cyclic peptides described herein (e.g., compounds shown in SEQ ID NOs: l-29) can be modified via backbone alkylation to identify derivative or analog compounds with similar or improved properties. In some embodiments, salts of carboxyl groups of a peptide or peptide variant of the invention may be prepared in the usual manner by contacting the peptide with one or more equivalents of a desired base such as, for example, a metallic hydroxide base, e.g., sodium hydroxide; a metal carbonate or bicarbonate base such as, for example, sodium carbonate or sodium bicarbonate; or an amine base such as, for example, triethylamine, triethanolamine, and the like.
[0050] Some cyclic peptides suitable for use in the therapeutic applications of the invention contain a hydrophobic peptide segment DTrp-Leu-DTrp, DTyr-Leu-DTyr, DTrp- DTrp-DTrp, or DPhe- Leu-DTrp. In some other peptides, the hydrophobic segment contains an enantiomeric tripeptide, e.g., Trp-DLeu-Trp, Tyr-DLeu-Tyr, Trp-DTrp-Trp, or Phe-DLeu-Trp. In some cyclic peptides of the invention, the peptide moiety or segment J, which is adjacent to the hydrophobic segment B, is a single serine residue or a single positively charged residue such as Lys, Arg, His, Om (ornithine), diaminobutyric acid or diaminopropionic acid. In some other embodiments, J is an amino acid analog or derivative such as naphthylalanine
(Nal), homoleucine (Hml), or 2-amino-octanoic acid (Aoc). In some preferred cyclic peptides of the invention, Ul and U2 are each independently a DAsp, DGlu or DSer residue.
In some embodiments, these two acidic or neutral Ser residues are separated by an Asn or Gln residue (X) located in the center of a polar segment of the cyclic peptide. In some preferred embodiments, a positively charged natural or unnatural residue (Z) is present at the end of the sequence of the cyclic peptides, e.g., Lys, Arg, His, Om (ornithine) or
diaminobutyric acid.
[0051] Some preferred cyclic peptide compounds of the invention are comprised of about 8 alternating D- and L-form of amino acid residues or (unnatural) amino acid analogs. These peptides have a sequence that falls under the formula c[wLw-J-ul-X-u2-Z] In this sequence formula,“wLw” denotes a tripeptide segment consisting of DTrp-Leu-DTrp; J is a positively charged amino acid residue or amino acid analog, or serine residue; ul and u2 are each independently a DAsp, DGlu, °His or Dserine residue; X is Ser residue, Gln residue or Asn residue; and Z is Lys, Arg, His, Om (ornithine) or diaminobutyric acid.
[0052] The gut microbiome remodeling cyclic peptides suitable for the invention may be produced by any conventional automated or manual peptide synthesis methods. General principles and techniques for automated peptide synthesis are well known to those of skill in the art. In some embodiments, the isolated, purified peptides or variants of the invention can be synthesized in vitro, e.g., by the solid phase peptide synthetic method or by enzyme catalyzed peptide synthesis or with the aid of recombinant DNA technology. Solid phase peptide synthetic method is an established and widely used method, which is described in references such as the following: Stewart et al, Solid Phase Peptide Synthesis, W. H.
Freeman Co., San Francisco (1969); Merrifield, J. Am. Chem. Soc. 85 2149 (1963);
Meienhofer in "Hormonal Proteins and Peptides," ed.; C.H. Li, Vol.2 (Academic Press,
1973), pp.48-267; and Bavaay and Merrifield, "The Peptides," eds. E. Gross and F.
Meienhofer, Vol.2 (Academic Press, 1980) pp.3-285. Various automatic synthesizers are commercially available and can be used in accordance with known protocols. The synthesized peptides can be further purified by fractionation on immunoaffmity or ion- exchange columns; ethanol precipitation; reverse phase HPLC; chromatography on silica or on an anion-exchange resin such as DEAE; chromatofocusing; SDS-PAGE; ammonium sulfate precipitation; gel filtration using, for example, Sephadex G-75; ligand affinity chromatography; or crystallization or precipitation from non-polar solvent or nonpolar/polar solvent mixtures. Purification by crystallization or precipitation is preferred.
[0053] To remodel a dysfunctional gut microbiome in a subject, the cyclic peptides described herein may be administered in the form of a pharmaceutical composition. As detailed below, a pharmaceutical composition contains a therapeutically effective amount of a microbiome-remodeling cyclic peptide (e.g., Peptide 1 or 11) along with a pharmaceutically acceptable carrier, diluent or excipient in unit dosage form. The invention accordingly also provides pharmaceutical compositions comprising one or more of the microbiome- remodeling cyclic peptides disclosed herein. The invention further provides a use of these cyclic peptides in the preparation of pharmaceutical compositions or medicaments for remodeling gut microbiome in subjects with dysfunctional gut microbiome.
[0054] Pharmaceutically acceptable carriers are agents which are not biologically or otherwise undesirable. These agents can be administered to a subject along with a microbiome-remodeling cyclic peptide without causing any undesirable biological effects or interacting in a deleterious manner with any of the components of the pharmaceutical composition. The compositions can additionally contain other therapeutic agents that are suitable for remodeling gut microbiome (e.g., oxidents). Pharmaceutically carriers enhance or stabilize the composition or facilitate preparation of the composition. Pharmaceutically acceptable carriers include solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like that are physiologically compatible. The pharmaceutically acceptable carrier employed should be suitable for various routes of administration described herein. Additional guidance for selecting appropriate pharmaceutically acceptable carriers is provided in the art, e.g., Remington: The Science and Practice of Pharmacy, Mack Publishing Co., 20th ed., 2000.
[0055] A pharmaceutical composition containing a microbiome-remodeling cyclic peptide described herein and/or other therapeutic agents can be administered by a variety of methods known in the art, e.g., oral administration as exemplified in the Examples below.
The routes and/or modes of administration vary depending upon the desired results.
Depending on the route of administration, the active therapeutic agent may be coated in a material to protect the compound from the action of acids and other natural conditions that may inactivate the agent. Conventional pharmaceutical practice may be employed to provide suitable formulations to administer such compositions to subjects. Any appropriate route of administration may be employed. These include, but are not limited to, oral, intravenous, parenteral, transcutaneous, subcutaneous, intraperitoneal, intramuscular, intracranial, intraorbital, intraventricular, intracapsular, and intraspinal administration. Depending on the
specific conditions of the subject to be treated, either systemic or localized delivery of the therapeutic agents may be used in the treatment.
[0056] Pharmaceutical compositions of the invention can be prepared in accordance with methods well known and routinely practiced in the art. See, e.g., Remington: The Science and Practice of Pharmacy, Mack Publishing Co., 20th ed., 2000; and Sustained and
Controlled Release Drug Delivery Systems, J.R. Robinson, ed., Marcel Dekker, Inc., New York, 1978. Pharmaceutical compositions are preferably manufactured under GMP conditions. Formulations for parenteral administration may, for example, contain excipients, sterile water, or saline, polyalkylene glycols such as polyethylene glycol, oils of vegetable origin, or hydrogenated napthalenes. Biocompatible, biodegradable lactide polymer, lactide/glycolide copolymer, or polyoxyethylene-poly oxypropylene copolymers may be used to control the release of the compounds. Other potentially useful parenteral delivery systems for molecules of the invention include ethylene-vinyl acetate copolymer particles, osmotic pumps, implantable infusion systems, and liposomes. Formulations for inhalation may contain excipients, for example, lactose, or may be aqueous solutions containing, e.g., polyoxyethylene-9-lauryl ether, glycocholate and deoxycholate, or may be oily solutions for administration in the form of nasal drops, or as a gel.
[0057] The cyclic peptides for use in the methods of the invention should be administered to a subject in an amount that is sufficient to achieve the desired therapeutic effect (e.g., achieving a healthy and functional microbiome state) in a subject in need thereof. Typically, a therapeutically effective dose or efficacious dose of the cyclic peptide is employed in the pharmaceutical compositions of the invention. Actual dosage levels of the active ingredients in the pharmaceutical compositions of the present invention can be varied so as to obtain an amount of the active ingredient which is effective to achieve the desired therapeutic response for a particular subject, composition, and mode of administration, without being toxic to the subject. The selected dosage level depends upon a variety of pharmacokinetic factors including the activity of the particular compositions of the present invention employed, the route of administration, the time of administration, and the rate of excretion of the particular compound being employed. It also depends on the duration of the treatment, other drugs, compounds and/or materials used in combination with the particular composition employed, the age, gender, weight, condition, general health and prior medical history of the subject being treated, and like factors. Methods for determining optimal dosages are described in the art, e.g., Remington: The Science and Practice of Pharmacy, Mack Publishing Co., 20th ed.,
2000. Typically, a pharmaceutically effective dosage would be between about 0.001 and 100 mg/kg body weight of the subject to be treated.
[0058] In some embodiments, the present invention provides a packaged pharmaceutical composition for remodeling dysfunctional gut microbiome such as a kit or other container. The kit or container holds a therapeutically effective amount of a pharmaceutical composition for remodeling gut microbiome and optionally also an instruction sheet detailing how to use the pharmaceutical composition. In addition to the pharmaceutical composition containing the microbiome-remodeling cyclic peptide and optional carriers described herein, the kit can additionally contain other reagents for administering the composition.
EXAMPLES
[0059] The following examples are provided to further illustrate the invention but not to limit its scope. Other variants of the invention will be readily apparent to one of ordinary skill in the art and are encompassed by the appended claims.
Example 1 Cyclic D.L-a-peptides as synthetic growth modulators of commensal bacteria
[0060] We examined the utility of self-assembling cyclic D,L-a-peptides— a manmade class of membrane-active supramolecular antimicrobial agents— for use in the directed chemotherapeutic remodeling of a dysfunctional gut microbiome into a functional state. Cyclic peptides with an even number of alternating D-, and L-a-amino acid configuration (typically 6 or 8 residues) can self-assemble under conditions that favor hydrogen bonding (such as in a lipid membrane environment) into extended b-sheet-like hollow tubular structures. By appropriate choice of the sequence, cyclic D,L-a-peptides can selectively partition into bacterial membranes, interrupt transmembrane potential and/or ion gradients, and impair cell growth. Accordingly, we envisioned that the remodeling of a dysfunctional gut microbiome could involve oral administration of a given cyclic D,L-a-peptide sequence that was selected beforehand to possess differential bacterial growth modulating activities against certain members of the gut microbiota. By retarding the growth of certain bacteria in the gut, other unaffected species arise to shift the overall composition of the microbiome over time toward an alternate and potentially beneficial state (vide infra).
Example 2 Atherosclerosis model of functional vs. dysfunctional gut microbiome
[0061] Mice are commonly used for the study of the gut microbiome as they bear similarities to humans in terms of microbiome composition, gastrointestinal phylogenetics, and metabolism. Low-density lipoprotein receptor null (LDLr ^) mice have a human-like lipoprotein profile and have been widely used as an animal model for diet-induced atherosclerosis. LDLr^ mice develop hypercholesterolemia and arterial plaques after several weeks on a WD, but not on a Chow diet (CHD). Importantly, feeding a WD to LDLr mice for two weeks caused a widespread remodeling of their gut microbiome as compared to mice fed a CHD (Table 1), consistent with the observed impacts of a WD on the gut microbiome of wild-type mice (Carmody et al., Cell Host Microbe 17, 72-84, 2015). Thus, depending on the diet, LDLr mice exhibit two distinct gut microbiome states (functional and dysfunctional) that are associated with different phenotypic outcomes. We hypothesized that if the WD- induced gut microbiome is causal in the onset and progression of atherosclerosis in LDLr^ mice, then remodeling the microbiota in vivo (even under the influence of WD) toward a functional CHD state should ameliorate disease progression, thereby testing the therapeutic potential of gut microbiome remodeling.
Table 1. List of bacterial taxa in cecum samples of LDLr mice for which abundance significantly changed between CHD feeding and WD feeding.
g_Intestmimonas 0.29
g_Candidatus_Saccharimonas 0.31
g_Enterorhabdus 0.31
g_Anaerotruncus 0.32
f_Defluviitaleaceae,g_Incertae_Sedis 0.32
o_Lactobacillales, f_unclassified 0.32
c_Betaproteobacteria, o_unclassified 0.34
g_Coprococcus 0.35
f_Ruminococcaceae, g_unclassified 0.38
f_Coriobacteriaceae, g_unclassified 0.39
g_RC9_gut_group 0.42
g_Oscillibacter 0.44
o_Clostridiales, f_unclassified 0.48
g_Acetatifactor 0.50
g_Lactobacillus 0.51
f_Desulfovibrionaceae, g_unclassified 0.53
f_Lachnospiraceae, g_unclassified 0.53
f Family XIII, g Incertae Sedis_ 0.59
Example 3 In vitro screening approach to select gut microbiome remodeling peptides
[0062] Any approach for identifying chemical compounds with potentially useful gut microbiome remodeling profiles, would in practice require an informative in vitro screening process to select compounds that possess the desired range of differential bacterial growth modulating activities. In principle, this goal might be accomplished by in vitro screening of each compound separately against individual cultured commensal bacteria (MIC-type assays) or against the community of species present in the microbiome all at once (en masse screening). The typical MIC assay is used to screen compounds against one bacterial species at a time, which would entail not only a large number of bacterial screens for each assayed compound, but also subsequent comparative data analyses that would be complicated by the differences in growth media and individual bacterial growth profiles. On the other hand, assessing the effects of each compound against the whole gut microbiome in vitro ( en masse ) would be a more direct approach, but would entail considerable challenges, such as how the gut microbiome is resourced (or assembled) and maintained in vitro to give a reasonable representation of the in vivo community.
[0063] We investigated both methods in the present study, but our data show the en masse approach to be superior, as it is more data rich, internally consistent, and can account for potential indirect growth-modulating effects that might exist within the bacterial community ( vide infra). We have established the following in vitro compound screening
protocol for en masse gut microbiome remodeling. We obtain fresh gut microbiome content from LDLrf mice conditioned for at least two weeks on WD by surgically removing cecum under anaerobic conditions. These samples are then mixed with growth media, distributed in 96-well plates, and incubated overnight in the presence of the test peptides. The activity and selectivity of each peptide for remodeling the gut microbiota community was assessed en masse by 16S rRNA sequencing of each well. A number of challenges had to be addressed in developing this protocol, including inoculum handling, choice of growth media, assay
duration, etc. Our current assay culture condition maintains 50 bacterial genera (overnight culture), which is fairly representative of the 67 genera found in the uncultured community (Table 2).
Table 2. List of bacterial taxa observed in uncultured cecum samples of LDLr mice and in the in vitro en masse screening assay.
Present
Present within in within in vitro taxon vitro culture? taxon culture? g Candidatus Saccharimonas
g_Staphylococcus o Bacteroidales, f unclassified
g_Lactococcus p Bacteroidetes, c unclassified
g Anaerofustis o Gastranaerophilales, f unclassified
f Family XIII, g unclassified g Mucispirillum
possible_genus_SkO 18 g Lactobacillus
g_Peptococcus g_Streptococcus
g Oscillospira o Lactobacillales, f unclassified
g Pseudoflavonifractor o Lactobacillales, f lncertae Sedis
g_Sporobacter o Lactobacillales, f unclassified
f_vadinBB60, g unclassified f Family XIII, g lncertae Sedis
c Clostridia, o unclassified g_Acetatifactor
g Thalassospira g Blautia
g Bilophila g_Coprococcus
f Desulfovibrionaceae, g unclassified f Lachnospiraceae, g lncertae Sedis
g Ureaplasma g_Marvinbryantia
g Akkermansia g Roseburia
g Bifidobacterium
f Lachnospiraceae, g unclassified
g Enterorhabdus
g Dehalobacterium
g Olsenella
f Coriobacteriaceae, g unclassified f Ruminococcaceae, g lncertae Sedis
g_Bacteroides g lntestinimonas
g Odoribacter g Oscillibacter
g Parabacteroides ' Ruminococcaceae, g unclassified
g Alloprevotella )_Clostridiales, f unclassified
g Prevotella
[0064] Our laboratory maintains a library of approximately 1,500 diverse cyclic D,L-a- peptide sequences (pure and spectroscopically characterized) that possess a range of antimicrobial activity and species selectivity. This library was constructed in the course of screening -200,000 cyclic D,L-a-peptides as part of a previous research program aimed at the discovery of cyclic D,L-a-peptide sequences active against pathogenic aerobic bacteria. For the present study we selected 29 cyclic D,L-a-peptides from this library based on sequence diversity and lack of mammalian cell toxicity. Gratifyingly, we observed a range of microbiota remodeling effects in the en masse screen, largely without diminishing microbiota alpha diversity (the number and evenness of bacterial taxa within the community) (Fig. 2a). Sixteen of the peptides significantly increased the Bacteroidetes/Firmicutes ratio in the culture, while three peptides significantly decreased the ratio (Fig. 2b). From a pairwise comparison of the activities of the different cyclic peptides, we found six distinct peptide clusters, each of which affected the microbiota differently from the other clusters. We next carried out in vitro MIC assays against nine representative gut bacterial strains (ranging from high to low abundance in the gut) to determine the effects of the peptides on the growth of bacteria in isolation. The goal of these MIC assays was (i) to validate the effects of the peptides on bacterial growth observed in the en masse assay, (ii) to assess the usefulness of the MIC assays against a panel of representative commensal strains (as compared to our en masse community-based screening) for identifying microbiota remodeling compounds, and (iii) to help inform our selection of lead peptides for in vivo validation. As expected, the peptides showed distinct antibacterial activity profiles against isolated species in the MIC assay, but the growth modulating activities and pairwise clustering of peptide activities did not correlate with those from the en masse screen. This suggests that the tactic of combining data from multiple isolated MIC assays might not suffice for modeling growth-modulating effects in the context of the overall community.
[0065] We used a distance scoring algorithm for a more refined compound selection, in which peptides that remodel the microbiota community most completely from the dysfunctional state (WD fed) toward the functional state (CHD fed) are scored higher. Briefly, we first eliminate cyclic D,L-a-peptides that have broad-spectrum antibacterial activity (inhibit >95% of growth of >25% of species in the community). The remaining compounds are then ranked based on how well they suppressed the bacterial species that grew in abundance in WD-fed mice. We found that the abundance of 54 bacterial genera significantly changed in LDLrA mice fed CHD vs. WD (Table 1). Among these, 40 genera decreased while 14 genera increased in abundance by WD feeding. Within the increased 11 genera, there were 19 bacterial species that were also present in our in vitro culture system. Accordingly, compounds were scored highly when they reduced the levels of 19 bacterial species (lowest summed differences in relative abundance) that were increased by WD feeding to be more similar to their levels in a CHD-fed microbiome (see Table 3 for peptide ranking). Based on these analyses, we chose two peptides for further in vivo validation and efficacy studies: the cationic peptide 1, c[wLwKhShK] (SEQ ID NO: l), and the neutral peptide 11, c[wLwReQeR] (SEQ ID NO: 11), which ranked high within their respective peptide clusters.
Table 3. Ranking of peptides in remodeling WD gut microbiota toward CHD microbiota composition determined by the in vitro en masse screening assay.
peptide ranked
activity distance to
peptide SEQ ID NO group chow
“Peptide activity group” refers to the six groups (clusters) of peptides that were observed in a pairwise comparison of peptide activity in remodeling gut microbiota composition as described in Example 3. Chm, chloramphenicol.
Example 4 In vivo remodeling of the gut microbiome
[0066] We carried out a lO-week study of cyclic peptides c[wLwKhShK] (SEQ ID NO: 1) and c[wLwReQeR] (SEQ ID NO: 11) vs. vehicle-treated WD and CHD controls in LDLrf mice to determine the safety and effects of the peptides on the gut microbiota and on atherosclerosis. The abiotic structures of cyclic D,L-a-peptides renders them proteolytically stable, allowing oral administration (ad libitum in the drinking water, ~35 mg/kg/day peptide dose). Importantly, there were no signs of discomfort or toxicity (body weight, liver and spleen weight, AST and ALT enzyme levels), even after a lO-week daily-dosing regimen. As
predicted from the in vitro screen, the Bacteroidetes/Firmicutes ratio increased (within 2 weeks by peptide cfwLwKhShK] (SEQ ID NO: l) and within 6 weeks by peptide
cfwLwReQeR] (SEQ ID NO: 11)) in treated animals relative to the vehicle WD-fed group. The two lead peptides initially targeted different bacterial genera, but over the course of the 10-week study, the remodeled gut microbiome induced by the peptides became more similar. Although the overall microbiota alpha diversity was unchanged by peptide treatment, the microbiota populations in treated animals were distinct from untreated animals. At the species level, the changes in microbiota abundance were also generally similar in vitro and in vivo - 9 of the 14 species identified in both the in vitro assay and in vivo study were affected in the same way. Consistent with the in vitro screen, neutral peptide cfwLwReQeR] (SEQ ID NO: 11) acted more selectively in vivo against WD-remodeled gut bacteria than the cationic peptide cfwLwKhShK] (SEQ ID NO: l). We conducted a pharmacokinetic study involving i.p. and p.o. administration to support the gut being the site of action. A l6-mg/kg dose of cfwLwReQeR] (SEQ ID NO: 11) in mice ( BALB/c , n = 3) via i.p. administration showed a plasma half-life of ~6 h and peak plasma concentration of 13 mM, whereas the peptide was not detectable in the plasma of mice (n = 3) after oral gavage (limit of detection = 3 nM) (Table 4), indicating that the peptides are not absorbed from the digestive tract and act directly within the gut.
Table 4. Pharmacokinetic data for c[wLwReQeR] (SEQ ID NO: 11) via different routes of administration.
Route
intraperitoneal intraperitoneal subcutaneous_ oral Ravage
95% 50 mM 95% 50 mM 95% 50 mM acetate buffer phosphate- acetate buffer acetate buffer
Vehicle containing 10% buffered saline containing 10% containing 10% sucrose, 5% containing 10% sucrose, 5% sucrose, 5% DMSO, pH=4 sucrose DMSO, pH=4 DMSO, pH=4
Mouse strain C57B1/6 Balb/C C57B1/6 C57B1/6
Dose (mg/kg) 7.5 16 7.5 15 Cmax (nM) 1,133 12,800 530 <3 Tmax (h) 0.5 0.5 0.5 <3
AUC 0-24h (nM h) 3,469 51,751 1,810 <3
Cmax = maximum observed concentration, Tmax = timepoint at which maximum concentration was observed. n=3 animals per timepoint. The lower limit of quantitation was 3 nM.
Table 5. Observed levels of bile acids in feces and plasma of LDLr1 mice (n = 7-8 per group) following 2-wk of treatment, as determined by targeted metabolomics.
WD ±
bile acid CHD WD + vehicle c|wLwRcQcR | _ classification
CA 2300 ± 3000 640 ± 570 440 ± 490 primary a-MCA 20 ± 30 38 ± 13 21 ± 8.9 primary P-MCA 34 ± 22 110 ± 30 65 ± 12 primary w-MCA 160 ± 91 240 ± 63 170 ± 100 primary HCA 0.82 ± 0.39 2.9 ± 1.1 1.6 ± 1.1 primary LCA 160 ± 65 560 ± 280 400 ± 170 secondary
Feces UDCA 24 ± 14 79 ± 29 43 ± 16 secondary
(pmol/mg
DC A 4800 ± 1700 5000 ± 820 4900 ± 2400 secondary feces)
T-CA 15 ± 11 4.1 ± 1.1 8.3 ± 3.3 conjugated primary T-a-MCA 3.8 ± 3.2 2.8 ± 0.61 17 ± 8.7 conjugated primary T-P-MCA 4.3 ± 3.6 3.2 ± 0.71 20 ± 11 conjugated primary T-w-MCA 2.6 ± 2.2 0.95 ± 0.21 3 ± 1.4 conjugated primary T-HCA 0.080 ± 0.03 0.078 ± 0.02 0.097 ± 0.03 conjugated primary conjugated
T-DCA 6.3 ± 7.5 0.67 ± 0.18 2.6 ± 1.2 _ secondary
CA 12000 ± 13000 2200 ± 1400 6300 ± 8300 primary a-MCA 12 ± 9 8.6 ± 3.1 10 ± 5.8 primary
P-MCA 74 ± 51 42 ± 25 76 ± 75 primary w-MCA 63 ± 27 37 ± 12 33 ± 11 primary
HCA 1.5 ± 1.3 2.4 ± 2.2 1.0 ± 0.84 primary
LCA 81 ± 30 96 ± 36 100 ± 48 secondary
Plasma UDCA 160 ± 84 100 ± 37 120 ± 92 secondary
(pmol/mL DCA 2600 ± 1600 1200 ± 470 2100 ± 2100 secondary plasma)
T-CA 29000 ± 49000 1800 ± 780 16000 ± 31000 conjugated primary
T-a-MCA 1200 ± 2000 330 ± 230 1900 ± 3900 conjugated primary
T-P-MCA 6600 ± 12000 900 ± 590 9800 ± 22000 conjugated primary
T-w-MCA 2400 ± 3900 500 ± 360 2400 ± 4900 conjugated primary
T-HCA 32 ± 44 13 ± 6.2 62 ± 110 conjugated primary conjugated
T-DCA 1200 ± 1700 290 ± 110 830 ± 1100 secondary
Example 5 Transcriptional reprogramming of gut microbiota and metabolic effects
[0067] We undertook a comparative analysis in the CHD, WD, and c[wLwReQeR] (SEQ ID NO: 1 l)-treated WD mice of microbiota gene expression level changes to gain insight into the functional consequences of WD-induced and peptide-treated gut microbiome remodeling. Peptide treatment induced widespread reprogramming of the microbiota transcriptome, as determined by RNA-Seq of bacterial RNA from the feces following a 2-week treatment period. The observed gene expression differences (out of -53,800 total annotated bacterial genes) could be grouped into three main clusters. Two clusters contained bacterial genes for which expression was increased (Cluster 1) or decreased (Cluster 2) by peptide treatment.
Cluster 3 contained genes that were altered by the WD, but not affected by peptide treatment. The majority of bacterial species in the feces sample contained genes present in all three clusters, indicative of pervasive changes not only to the structure, but also the transcriptional activities of the microbiota. Interestingly, overall gene expression from Firmicutes was reduced and overall gene expression from Bacteroidetes was increased by c[wLwReQeR] (SEQ ID NO: 11) treatment (Clusters 1 compared to Cluster 2 and 3). These data support the notion that it is not only the relative ratio of bacterial species in the microbiome, but also their overall gene expression levels that govern the function of the gut microbiota.
[0068] At the metabolic level, peptide treatment restored important functions of the gut microbiota that were impaired by WD, as determined by functional pathway analysis of metatranscriptomics data and targeted metabolomics. Metabolism of short-chain fatty acids (SCFAs) and amino acids were notable. SCFAs are generated by bacterial fermentation of carbohydrates in the gut and are involved in several microbiota-mediated effects on host metabolism and physiology. Functional metagenomics analyses suggested that peptide treatment induced changes in enzyme expression levels that would lead to increased butyrate biosynthesis. Treatment with c[wLwReQeR] (SEQ ID NO: 11) led to higher acetoacetate- CoA transferase levels and lower butyryl-CoA dehydrogenase levels compared to vehicle, both of which would cause a build-up of butyrate. Indeed, targeted metabolomics analysis of fecal samples taken after a two-week treatment period confirmed that animals treated with peptide c[wLwReQeR] (SEQ ID NO: 11) had increased levels of fatty acids containing 4-6 carbons, including butyrate. In addition, functional pathway analysis predicted more active catabolism of tryptophan and phenylalanine in WD vehicle animals compared to CHD or WD peptide-treated animals. Indeed, targeted metabolomics revealed higher levels of tryptophan and phenylalanine in the feces of peptide-treated animals after a two-week course.
Altogether, our studies highlight the pleiotropic impact of peptide-induced remodeling on transcriptomic and metabolic reprograming of the gut microbiome.
Example 6 Anti-atherogenic effects of peptide treatment in WD-fed LDLr mice
[0069] Plasma cholesterol levels and atherosclerotic lesions were strikingly reduced in the mice on WD following peptide treatment. By the two-week time point, oral
administration of peptides cfwLwKhShK] (SEQ ID NO: 1) and cfwLwReQeR] (SEQ ID NO: 11) had reduced the mouse plasma total cholesterol by 37% and 36%, respectively, compared to the untreated WD group. There was no analogous peptide-mediated reduction in
cholesterol in the CHD mice. The reductions in total cholesterol stemmed from marked reduction in the levels of VLDL and LDL, while HDL-cholesterol levels were higher in the peptide-treated animals. We confirmed that peptide treatment did not reduce absorption of dietary cholesterol by carrying out a fecal dual-isotope cholesterol absorption assay. Eight microbiota taxa showed a significant positive correlation with plasma cholesterol levels, while five taxa were negatively correlated. Intriguingly, the peptides generally decreased the abundance of the positively correlated taxa and increased the abundance of negatively correlated taxa. For example, peptide treatment increased the abundance of Bifidobacterium, which was negatively correlated with plasma cholesterol, consistent with previous report of Bordoni et al, Appl. Microbiol. Biotechnol. 97, 8273-8281, 2013. At the completion of the 10-week study, analysis of the whole aorta lesion area indicated striking reductions in atherosclerotic lesions of 37% and 48% by peptides c[wLwKhShK] (SEQ ID NO: 1) and c[wLwReQeR] (SEQ ID NO: 11), respectively. Similarly, the aortic sinus lesion volume was significantly reduced by 44% and 37%, respectively. Altogether, these studies substantiate a direct link between the state of gut microbiome and development of atherosclerosis and strongly support the viewpoint that directed in vivo remodeling of a dysfunctional gut microbiome can be an effective approach for reducing disease progression.
Example 7 Gut microbiota remodeling induced changes in host gene expression
[0070] A central question is how remodeling of the gut microbiome induced such significant phenotypic changes in the host. Analysis of mouse liver and ileum (small intestine) samples by RNA-seq revealed that c[wLwReQeR] (SEQ ID NO: 11) treatment restored expression of many genes that were downregulated or upregulated in the WD-fed group compared to CHD-fed animals. Most notably, gene ontology analysis indicated that lipid metabolism was upregulated and inflammation- and immune-related responses were downregulated following peptide treatment. Expression of cholesterol 7 alpha-hydroxylase (Cyp7al), the rate-limiting enzyme in the bile acid (BA) biosynthesis pathway, was significantly increased in peptide-treated WD animals, suggesting increased conversion of dietary cholesterol to bile acids as a possible mechanism for the reduced plasma LDL cholesterol levels. Indeed, we found that the total bile acid in the peptide-treated vs. control WD-fed mice was two-fold higher in the feces and three-fold lower in the plasma. This is consistent with CYP7A1 transgenic mice having a ~2-3 fold increase in total bile acid pool
due to increased hepatic cholesterol catabolism, with associated resistance to diet-induced hypercholesterolemia and atherosclerosis.
[0071] Cyp7al expression is tightly regulated through a feedback control system, in which high levels of dietary cholesterol induce Cyp7al expression, while high plasma levels of bile acids act as signaling molecules to inhibit Cyp7al expression and bile acid metabolism by activating the famesoid X receptor (FXR) and the FGF15/19 endocrine axis. Importantly, the gut microbiota modulates FXR signaling in the gut via bile acid metabolism and processing. FXR-deficient mice on an LDLr background were found to have an improved lipid profile when fed a high-fat diet and were protected against diet-induced obesity and atherosclerosis. Consistent with higher expression of Cyp7al, we observed that the intestinal expression of FXR and its targets, including fibroblast growth factor 15 (FGF15), were downregulated in peptide-treated animals. Furthermore, not only did peptide- mediated remodeling of the gut microbiota alter the total bile acid pool size, it also significantly impacted the relative composition and abundance of certain bile acids in fecal and plasma samples. For example, the levels of taurine-conjugated muricholic acids (T-a,b- MCAs), known FXR antagonists, were increased by peptide treatment, as revealed by targeted metabolomics. Likewise, the expression of intestinal bile acid transporters Asbt, Mrp2, and Mrp3 were significantly altered by the peptide treatment. Together, these data suggest that downregulation of the FGF15 endocrine axis (resulting from the altered processing of bile acids by the remodeled gut microbiota), along with decreased absorption of primary bile acids in the ileum, is likely responsible for maintaining an upregulated bile acid metabolism in the liver, resulting in increased conversion of cholesterol to bile acids that contributes to lower plasma cholesterol levels.
Example 8 Anti-inflammatory and immunomodulatory effects
[0072] Inflammation plays a critical role in the development of atherosclerosis. We found that peptide-induced remodeling of the gut microbiome reduced the inflammation caused by WD via several gut microbiota-dependent mechanisms. Some commensal gut bacteria play key roles in the maintenance of gut integrity. Impaired gut integrity can lead to increased leakage of microbiota-derived lipopolysaccharide (LPS) from the gut, causing systemic inflammation that intensifies atherosclerosis pathogenesis. We found that several genes related to tight junctions in the ileum were upregulated by peptide treatment (Fig. la), and LPS-lipopolysaccharide response pathways were downregulated, suggesting that the
defects in gut integrity caused by a WD regimen had been largely mitigated. Indeed, the villi width in the ileum (although not the length) was significantly increased in peptide-treated animals compared to vehicle controls (Fig. lb,c).
[0073] We found that peptide-induced gut microbiome remodeling also impacted the immune cell composition in the gut. Helios+ thymic derived regulatory T cells (tTregs) regulate key pathways for preventing uncontrolled inflammatory responses and play important role in inhibiting the development of atherosclerosis in multiple mouse models. Furthermore, the differentiation and maintenance of different subsets of Tregs in the intestine are driven by signals from the gut microbiota. We found that the composition of Foxp3+ regulatory T cell (Treg) population was significantly altered by c[wLwReQeR] (SEQ ID NO: 11) treatment (Fig. ld). We isolated cells from the lamina propria tissue and measured the relative populations of Helios+ Foxp3+ Tregs to two other subsets of T cells: RAR-related orphan receptor yt (RORyt1 Foxp3+) Tregs and to proinflammatory RORyt 1 T helper 17 (Thl7) cells. Peptide treatment increased the population of anti-inflammatory Helios+ Tregs in both wild-type and LDLr 1 mice fed a WD, as indicated by increased Helios+/Thl7 ratio and increased Helios+/ RORyt1 Treg ratio (Fig. ld). It is interesting to speculate that since a number of oxysterols serve as natural endogenous RORyt agonists, the observed reduction in proinflammatory RORyt1 Th 17 cells could be related to the altered profile of oxysterols and bile acids resulting from the peptide-induced remodeling of the gut microbiota.
[0074] Interleukin- 1b (IE-1b) is a proinflammatory cytokine central to the inflammatory response driven by the interlukin-6 (IL-6) signaling pathway. Inhibition of IE-1b has been shown to reduce the development of atherosclerotic plaques in mice and significantly lower the incidence of recurrent cardiovascular events in humans. In addition to IE-1b, a pathogenic role of IL-la in vascular inflammation and atherosclerosis has been described. Analysis of liver tissue from WD animals (peptide cfwLwReQeR] (SEQ ID NO: 11) treated vs vehicle) using a Luminex assay showed significant reductions in several cytokine and chemokine levels, including IE-1b, IL-la, IL-6, and TNF-a (Fig. le, Table 6), providing further support for the systemic anti-inflammatory effects of peptide-induced remodeling of a dysfunctional gut microbiome.
Table 6. Observed levels of cytokines/chemokines in liver tissue of WD-fed LDLr 1 mice following 4 weeks of treatment with cfwLwReQeR] (SEQ ID NO: 11) or vehicle, as determined by Luminex assay.
WD + vehicle WD +
CCL2 (MCP-l) 1100 ± 350 470 ± 150 0.02
CCL2 (MIP-2) 1000 ±290 460 ±110 0.01
CCL3 (MIP-la) 2200 ± 1900 200 ±130 NS
CCL4 (MIP-lb) 17000 ± 9400 3000 ± 1800 0.02
CXCL10 (IP- 10) 2100 ± 590 1200 ± 380 0.04
Eotaxin 1700 ± 1100 1200 ± 390 NS G-CSF 380 ±55 380 ±150 NS GM-CSF 140 ± 88 86 ± 37 NS IFNg 56 ±25 37 ±16 NS IL-l2p40 270 ± 100 200 ± 78 NS
IL-l2p70 270 ± 42 270 ±140 NS
IL-15 840 ± 140 960 ± 370 NS IL-17 67 ± 12 55 ±16 NS IL10 170 ±44 160 ±58 NS IL13 5.9 ±4.2 7.3 ±5.9 NS ILla 2900 ± 540 1100 ± 190 0.0004 ILlb 610 ± 130 430 ± 100 0.05 IL2 120 ± 32 80 ± 24 NS
IL3 34 ± 8 31 ±15 NS
IL4 13 ±2.3 13 ±8.4 NS
IL5 40 ±9.1 39 ±25 NS
IL6 410 ± 120 260 ± 55 0.04
IL7 220 ± 52 230 ±110 NS
IL9 1100 ±240 670 ± 160 0.01
KC 450 ± 200 190 ±20 0.04
LIF 8.6 ±2.8 7.1 ±4 NS
LIX 320 ± 370 290 ± 240 NS M-CSF 260 ± 50 200 ± 70 NS MIG 1800 ±660 1200 ± 650 NS RANTES 170 ± 110 71 ±61 NS
TNFa 110 ± 20 77 ±21 0.03 VEGF 13 ±4.2 8.2 ±3.4 NS n = 4-5/group
Example 9 Materials and methods
[0075] Animals and diets. LDL receptor-null ( LDLr _/) mice on a C57BL/6J background were initially purchased from Jackson Laboratories (Bar Harbor, ME) and were bred in house. Unless otherwise noted, all experiments were performed with 8-12 weeks old LDLr1 female mice. For studies involving analysis of the gut microbiome, the mice were rotated between cages and co-housed with the mice from different groups for at least one week
before the beginning of each study to reduce the variation in the composition of gut microbiome caused by the housing environment. The mice were weaned at 4 weeks of age and were fed ad libitum a standard chow diet (Harlan Teklad 7019) until they were lO-weeks old, when they were switched to a high-fat diet (WD) containing 15.8% (wt/wt) fat, 1.25% (wt/wt) cholesterol, and no cholate (Harlan Teklad 94059). At the time that the WD was started, the cyclic peptide was added to the drinking water at a dose of 180 mM and the mice (female, n = 8 per dosing group) were continued on WD for 10 weeks. The lyophilized peptide was dissolved in PBS (pH 7.4) containing 1% sucrose, resulting in a clear solution. The drinking water solution was replaced with fresh solution daily for cfwLwReQeR] (SEQ ID NO: 11) or every other day for cfwLwKhShK] (SEQ ID NO: 1). A control group of eight mice (female, n = 8) was fed WD and provided vehicle (PBS with 1% sucrose) drinking water. The mice consumed approximately 4.0 mL of water per day per mouse, and there was no significant difference in water or food consumption between groups. All procedures involving live animals were approved by the Scripps Research Institute Institutional Animal Care and Use Committee.
[0076] Cyclic peptide synthesis and preparation. Peptides were synthesized by using standard Fmoc chemistry with an Advanced Chemtech Apex 396 peptide synthesizer. A typical synthesis was performed on 0.09-mmol scale using 0.6 mmol/g Rink amide MBHA resin loaded with Fmoc-Glu-OAll via the side chain to yield a Gln residue after cleavage from the resin, or loaded with Fmoc-Lys-OAll via the side chain. Standard side chain protecting groups included Gln(Trt), Asn(Trt), Lys(Boc), Om(Boc), diaminopropionic acid(Boc), diaminobutyric acid(Boc), His(Trt), Ser(tBu), Trp(Boc), Glu(OtBu). Chain elongations were achieved using l,3-diisopropylcarbodiimide (DIC) and HOBt in N- methylpyrrolidin-2-one (NMP) with 90-min couplings. Fmoc deprotection was achieved using 25% piperidine in NMP. After full elongation of the peptide, the terminal Fmoc was removed, and then the allyl group was cleaved using 0.5 mol-equiv of Pd(PPh3)4 with 10 mol-equiv of PhSiH3 in CH2CI2 (2 x 1.5 h). The peptides were cyclized on resin using bromotripyrrolidinophosphonium hexafluorophosphate (PyBroP) (5 mol-equiv) and /-PnNEt (12 mol-equiv) in DMF for 2 h. Peptides were cleaved from the resin with concomitant side chain deprotection by agitation in a solution of 95:2.5:2.5 TFA:triisopropylsilane (TIS):water for 3 h. The peptide was precipitated with ether, centrifuged, and washed three additional times with ether. The crude peptides were purified by preparative reverse-phase (RP)-HPLC on a Vydac 218TP C18 or Thermo BioBasic C18 column. Purity was confirmed by analytical
RP-HPLC. Purified peptides were characterized by analytical HPLC and LC-mass spectrometry. Analytical RP-HPLC was performed using a Zorbax 300-SB C-18 column connected to a Hitachi D-7000 HPLC system. Binary gradients of solvent A (99% H2O, 0.9% acetonitrile, 0.1% TFA) and solvent B (90% acetonitrile, 9.9% H2O, 0.07% TFA) were employed for HPLC.
[0077] In vitro cecum culture and peptide screening. We screened a number of parameters to optimize the in vitro culture condition for maximal bacterial diversity in liquid culture, including a survey of several different growth media, dilution factors for plate inoculation, and incubation times; further details of the development of this in vitro screen will be reported elsewhere. Female LDLr1 mice (8-10 weeks of age) were fed a WD for two weeks. Cecum harvest and all assay steps were performed under anaerobic conditions (Coy Laboratory anaerobic chamber). Cecum contents from three mice were pooled for the assay to provide enough material and to minimize the individual variation in gut microbiome. Cecum contents were suspended in PBS (1.5 ml PBS per 100 mg of cecum content). The mixture was vortexed for 5 min and the supernatant was transferred to a new tube. The cecum content mixture was further diluted in Chopped Meat Carbohydrate Broth (BD 297307) for in vitro peptide screening. We found that Chopped Meat Carbohydrate broth maintained higher bacterial diversity during a 48-hour in vitro culture compared to other media that were examined. The concentration of peptide stock in DMSO was calculated based on A280 measurement. For each peptide, an initial 20 mM stock was made in DMSO and diluted to 1 mM in 10% sucrose. From that, a 0.64 mM peptide dilution in 10% sucrose was prepared, and each peptide was further diluted into the assay for peptide screening at two
concentrations (64 mM and 16 pM). Bacterial DNA was harvested after 24-hour peptide treatment and isolated with Microbial DNA isolation kit (Mo Bio) following the
manufacturer’s instructions.
[0078] Feces sample collection and DNA extraction. The feces samples were freshly collected after 2, 6, and 10 weeks of treatment, snap-frozen, and stored at -80°C. Microbial genomic DNA was isolated with PowerSoil DNA isolation kit by following manufacturer’s instructions (Mo Bio).
[0079] 16S rRNA gene sequencing and processing. PCR amplicons of the V3-V4 16S rRNA region were amplified and sequenced using an Illumina MiSeq platform. For each sample, duplicate 25 pl PCR reactions were performed, each containing 50 ng of purified DNA, 12.5 pl 2X KAPA HiFi HotStart Ready Mix (Kapa biosystem), and 0.15 pM of each
primer designed to amplify the V3-V4 region: forward primer (5’- AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACG CTCTTCCGATCTNNNNNNNNNNNNACTCCTACGGGAGGCAGCAG-3 ) (SEQ ID NO:30) and reverse primer (5’-
CAAGCAGAAGACGGCATACGAGATNNNNNNNNNNNNGTGACTGGA GTTCAGACGTGTGCTCTTCCGATCTnnnnnnnnnnGGACTACHVGGGTWTCTAAT-3’) (SEQ ID NO:3l). A unique l2-base sequence (N’s) was included for sample identification. We also included unique molecular identifiers (n’s) to correct PCR duplication artifacts during the library preparation. Cycling conditions were 98°C for 2 min, followed by 20 cycles of 98°C for 10 s, 60°C for 30 s, and 72°C for 45 s. A condition of 72°C for 5 min was used for the final elongation step. Replicate PCR samples were pooled, and ampbcons were qualified with Quant-iT dsDNA Assay kit (ThermoFisher). Each sample was combined at an equimolar amount before DNA purification with Agencourt AMPure XP (Beckman Coulter). The completed library was sequenced on an Illumina MiSeq platform following the procedures recommended by Illumina.
[0080] 16S rRNA gene sequencing data analysis. We used custom python scripts to demultiplex sequencing reads based on the second barcode index and remove PCR duplication artifacts found using unique molecular identifiers prior to analyzing sequences using MOTHUR (version 1.36.1). We developed a custom analysis pipeline based on the MiSeq SOP published by the curators of MOTHUR. Briefly, contigs were generated by combining forward and reverse paired-end reads. The contigs were filtered based on their length (440-480bp for V3-V4 region), and any contigs with ambiguous bases were removed. The unique contigs were then aligned to a reference database (SILVA non-redundant dataset vl l9). The contigs that didn't align properly based on position of alignment and those with homopolymers of length > 8 were removed before the downstream analysis. We performed a pre-clustering step to cluster reads up to 2 bp apart and removed all chimeric sequences. Finally, we used a k-mer based method to classify the sequences to individual taxonomic groups to get counts per group.
[0081] Measurement of plasma cholesterol and liver enzyme activities. The mice were bled after an overnight fast after 2 and 10 weeks of treatment. The plasma samples were used to determine lipoprotein profiles and the levels of cholesterol, alanine aminotransferase (ALT), and aspartate aminotransferase (AST). Measurements of plasma levels of cholesterol, ALT, and AST were performed as described in Zhao et al., ACS Cent. Sci. 3, 639-646, 2017.
Briefly, plasma was separated from whole blood immediately by centrifugation of the blood samples at 5,000 rpm for 10 min at 4°C, and was then stored at -80 °C. Plasma total cholesterol was measured using an enzymatic fluorometric method kit (Amplex® red cholesterol assay kit, No. A12216, Life Technologies) according to the manufacturer’s instructions. Plasma ALT and AST concentrations were measured using Infinity ALT (GPT) and AST (GOT) liquid stable assays, respectively, which are colorimetric kinetic assays (Thermo Scientific). Assays were performed in accordance with the manufacturer's recommendations, adjusting the reagent volumes (20 pL plasma + 200 pL reagent, 0.69 cm light pathlength of the solution in the well) for analysis of samples in 96-well flat-bottom microplate format.
[0082] Pharmacokinetics. These experiments were carried out in part courtesy of Carol S. Ryan, Debra J. Search, Ricardo A. Garcia, and David A. Gordon at Bristol Myers Squibb (Hopewell, NJ, USA). Male Balb/C or C57BL/6 mice (20 g) were maintained on a chow diet. The cyclic peptide c[wLwReQeR] (SEQ ID NO: 11) was dissolved in PBS containing 1% sucrose or 95% 50 mM acetate buffer containing 10% sucrose, 5% DMSO (pH=4), and sterile filtered through a 0.22-pm syringe filter before injection. Mice were fasted beginning 12 h before dosing, and continued the fast until after the 8-h time point blood draw was completed. Groups of three mice received a dose of the cyclic peptide via intraperitoneal injection (5 mL/kg for subcutaneous and intraperitoneal, 10 mL/kg for oral gavage). Blood was drawn (30-60 pL) from the retro-orbital sinus into a heparinized capillary tube before dosing (0 min) and at different intervals from 30 min to 8 h after dosing. Plasma was isolated immediately from the whole blood by centrifugation at 5,000 rpm for 10 min at 4°C.
Immediately after the plasma was isolated, 20 pL of plasma was acidified with 20 pL of 5% TFA to break peptide-protein interactions, and 40 pL of acetonitrile was then added. After vortexing for 30 s, the mixture was centrifuged at 13,000 rpm for 10 min at 4°C. The resultant supernatant was analyzed by using LC-MS SIM as described below.
[0083] LC-MS SIM quantitation of peptide concentration. Cyclic peptide concentrations were quantified by using reverse-phase HPLC coupled with mass spectrometry. The electrospray ionization mass spectrometry measurements were carried out in the positive ionization mode using a single quadrupole mass spectrometer (Hewlett Packard HP 1100 MSD series). 10 or 20 pL of sample were injected through a C8 reverse-phase column (Zorbax 300-SB, 4.6 mm 150 mm, 5 pm) using a flow rate of 1.5 mL/min and binary gradients of solvent A (99% H2O, 0.1% formic acid, 0.01% TFA) and solvent B (99%
acetonitrile, 0.1% formic acid, 0.01% TFA). Mass detection was carried out in the selected ion monitoring (SIM) mode for the positive molecular ion, with the optimized fragmentor and capillary voltages of 180 V and 5 kV, respectively. The selected monitoring mass for cyclic peptide cfwLwReQeR] (SEQ ID NO: 11) was 592.8 ([M+2H]2+). For quantitative calibration, standard curves were established using mouse EDTA-anticoagulated plasma spiked with various concentrations of the peptide. The calibration curve was established by using linear fitting of the data, with correlation coefficient > 0.98.
[0084] In vivo cholesterol absorption assay. This experiment was carried out courtesy of Carol S. Ryan, Debra J. Search, Ricardo A. Garcia, and David A. Gordon at Bristol Myers Squibb (Hopewell, NJ, USA). To assess the effects of c[wLwReQeR] (SEQ ID NO: 11) on intestinal absorption of cholesterol, male LDLr 1 mice (Jackson Laboratories) ranging from 8-10 weeks old were acclimated to single housing in standard solid bottom bedded cages for at least one week at BMS facilities. During the acclimation period, the mice were fed a chow diet ad libitum. At the start of the treatment period and for the duration of the study, mice were switched to high-fat, high-cholesterol Western diet (Research Diets D12108C) containing 1.25% cholesterol and 20% fat ad libitum. The peptide was administered in the drinking water ad libitum as a solution with 1% sucrose at 180 mM (~35 mg/kg/day). As a positive control, ezetimibe (3 mg/kg) was administered by once daily oral gavage at 5 mL/kg in a formulation containing 0.1% Tween 80 and 0.75% carboxymethyl cellulose.
[0085] Following a 2-wk treatment period, cholesterol absorption was measured using a dual fecal isotope ratio method. Mice were fasted for 4 hours and each animal was administrated 50 pL of radioisotope cocktail composed of the following: 1.0 pCi of [14C]- cholesterol and 2.0 pCi of p-[3H]-sitosterol mixed in com oil as a carrier. Feces were collected for a period of 48 hours following administration of radioisotope cocktail. At least 50 pl of blood was collected at 24 h and 48 h following administration of radioisotope cocktail via retro-orbital bleeding and was centrifuged to allow isolation of plasma. Plasma (~20 pl) was added to 5 ml of Opti-fluor Scintillation cocktail (Packard Bioscience
#6013199) and counted on 3H and 14C channels to evaluate cholesterol efflux. Radioactivity in feces was analyzed as follows: for each animal, feces recovered over the 48 hours was dried overnight at 50 °C and 0.1 gram of dried feces was transferred to a glass tube. The feces were dissolved in 0.7 ml water and vortexed to a paste. The sample was then treated with 1.4 ml of 1 N NaOH in EtOH at 85 °C for 2 hours. Lipids were extracted with 3 ml of petroleum ether, and samples were centrifuged at 600 rpm for 5 minutes. A volume of 2.0 ml of the top
layer was transferred to a scintillation vial. The samples were dried under a stream of nitrogen gas, and then reconstituted with 100 mΐ chloroform/methanol (1:2). Finally, 5 ml of scintillation fluid was added to the vials for scintillation counting.
[0086] Plasma lipoprotein profile. Pooled plasma (240 pL total, 30 pL from each, n = 8 fasted mice per group) from the two-week blood draw was used for fast protein liquid chromatography (FPLC) analysis. Lipoproteins were separated by using 3 Superdex 200 10/30 columns connected in series (GE Healthcare). The plasma was centrifuged at 11,000 rpm for 10 min at room temperature to remove particulates (floating material was gently mixed into liquid before removing the supernatant for FPLC injection). 200 pL of the pooled plasma was injected on the system eluted with 10 mM tris-HCl buffer, pH 7.4, containing 1 mM EDTA and 150 mM NaCl; a flow rate of 0.5 ml/min and fraction size of 0.5 mL were used.
[0087] Analysis of atherosclerosis. Atherosclerotic lesion severity was assessed in the aortae as previously described. Briefly, at euthanasia, animals were perfused with PBS, followed by 4% formaldehyde (10% UltraPure EM Grade from Polysciences diluted in PBS, pH 7.2). For en face analysis, the entire mouse aorta was dissected from the proximal ascending aorta to the bifurcation of the iliac artery by using a dissecting microscope.
Adventitial fat was removed, and the aorta was opened longitudinally, pinned flat onto black dissecting wax, stained with Sudan IV, and photographed at a fixed magnification. The photographs were digitized, and total aortic areas and lesion areas were calculated by using Adobe Photoshop and NIH Image J software. The results were reported as a percentage of the total aortic area that contained lesions.
[0088] As a second assessment of atherosclerosis, lesions of the aortic root (heart sinus) were analyzed55. Utilizing stereological principles, lesion volume was estimated across a fixed distance of the aortic sinus. After 10 min fixation in 4% paraformaldehyde, hearts were cut at an angle perpendicular to the atria of the heart and embedded in OCT (Tissue-Tek). Frozen hearts were sectioned on a Leica cryostat, with lO-pm sections collected from the beginning of the aortic sinus (defined as when a valve leaflet became visible) to 500 pm below the beginning of the sinus. For hearts cut at an angle that resulted in valve leaflets not appearing in the same section (due to poor section angle), the lagging leaflet was used to determine the 500-pm distance. Sections were collected in duplicate at 50-pm intervals. Sections were stained with oil red O, counterstained with Gill hematoxylin 1 (Fischer Scientific International), photographed, and digitized for lesion analysis. Scoring of valve
lesion areas was done for each of the 3 valve cusps individually. Lesion areas found only within the valve cusp were measured. Lesion volume estimation was determined from a l-in- 10 sampling rate; hence, valve cusps spaced at 140 pm were used to determine the lesion volume for a total of four sections analyzed per valve cusp. Lesion volume was calculated from an integration of the measured cross-sectional areas. Prediction of the coefficient of error (CE) in approximating lesion volume was computed using the Cavalieri estimator derived from a covariogram analysis of an ordered set of estimates of cross-sectional areas. This yielded CE values of less than 10% that were acceptable for a stereological computation of lesion volume.
[0089] Bacterial RNA-seq sample preparation and sequencing. Total bacterial RNA from feces samples was isolated with ZR Soil/Fecal RNA MicroPrep (Zymo research) following the manufacturer’s instructions. Briefly, the sample was suspended in RNA lysis buffer and lysed by the mixer (Retsch). The supernatant was transferred to a RNA-binding column and washed several times with RNA wash buffer. In-column DNasel digestion at 25°C for 15 min was performed to eliminate DNA contamination in the sample. The presence of genomic DNA contamination was assessed by PCR with universal 16S rRNA gene primers. Before RNA-seq library preparation, rRNA was removed from 2 pg of total bacterial RNA with Ribo-Zero Bacteria kit (Illumina). 100 ng of purified RNA was used for RNA-seq library preparation as described previously56. The cDNA was synthesized by reverse transcription with Superscript III (Life technologies) and second-strand synthesis (New England Biolabs). The sequencing library was generated from purified cDNA with Nextera XT DNA library preparation kit (Illumina) and amplified by PCR. Cycling conditions were 72°C for 3 min, 95°C for 30 s, followed by 16 cycles of 95°C for 10 s, 55°C for 30 s, and 72°C for 30 s. A condition of 72°C for 5 min was used for the final elongation step. Libraries with different indexes were pooled and single-end sequencing (75bp) was performed on an Illumina NextSeq at the Scripps Research Institute next generation sequencing core.
[0090] Functional analysis of bacterial RNA-seq data. We used BWA (version 0.7.12) read alignment program and a custom-built bacterial reference database, which contains 4,700 bacterial genomes from NCBI NR sequence database, to map RNA-seq reads. The reads aligned to individual bacterial genes were counted using HTSeq count (version 0.6.0) and the counts were further normalized based on size factors estimated using the median of the ratios of observed counts method as described previously (Anders et al, Genome Biol.
11, R106, 2010). The proteins predicted by RNA-seq read alignment were annotated with
DIAMOND (version 0.8.26) using the NCBI non redundant (NCBI-nr) database and the default setting (BLASTX e value < 10 3, bit score > 50). For query genes with multiple matches, the annotated reference gene with the lowest e value was chosen. The functional analysis was performed by MEGAN (version 5.11.3) and KEGG analyzer was used to determine read counts in different metabolic pathways from each group. The aggregate expression level changes for sequences within a given function were normalized before the comparison between each group.
[0091] SCFA and amino acid measurements. Fecal SCFA and amino acid content was measured by liquid chromatography -mass spectrometry (LC-MS). The fecal samples were weighed and placed into 2 ml Omni tubes. Ethanol was added to bring the volume to 350 pl. Next, 4 mΐ of 500 mM d-FA-mix and 20 mΐ of 1 mM 3CHPA were added to each sample as internal standard. The samples were homogenized using an Omni bead beater at the speed of 4.5 m/s for 30 sec, and then centrifuged at 13,000 rpm for 15 min. 90 mΐ of the supernatants was transferred into glass HPLC vials. 30 mΐ of freshly prepared 4X 3NPH solution (160 mM 3-nitrophenylhydrazine, 150 mM EDC, pyridine 12% vol, 50% acetonitrile) was added to each sample and the reactions were held at room temperature for 30 min. 2 mΐ of the sample was injected into the LC-MS (Agilent 1290 HPLC, 6550 qTOF). The concentration of each SCFA and amino acid was calculated based on a standard curve and normalized by the internal control and the feces weight.
[0092] Mouse RNA-seq sample preparation and sequencing. Mouse tissues were harvested after 2 weeks of treatment, stored in RNAlater, and snap-frozen. 20-30 mg of mouse tissue was used for RNA extraction with RNeasy Mini Kit (Qiagen) following the manufacturer’s instructions. Ribosomal RNA was removed from total RNA with Ribo-Zero Gold rRNA removal kit (Illumina). Strand-specific RNA-seq libraries were constructed as described previously (Hainer et al, Genes Dev. 29, 362-378, 2015). Libraries with different barcodes were pooled and single-end sequencing (75bp) was performed on an Illumina NextSeq at the Scripps Research Institute next generation sequencing core.
[0093] Mouse RNA sequencing data analysis. After ribosomal RNA sequences were removed, the RNA transcripts were quantified using RSEM. Differentially expressed genes were identified by DESeq2 and significantly changed genes were selected using a cutoff of adjusted p-value < 0.1, comparing peptide-treated animals (n=3) to vehicle-control animals (n=3) for each group (CHD or WD-fed animals). Enrichment of Gene Ontology terms and categories was performed with DAVID 6.8.
[0094] Quantitative real-time PCR. To validate selected gene expression results, qPCR reactions were carried out. Mouse livers were harvested two weeks after peptide treatment and total RNA was extracted using RNeasy Mini (Qiagen) following manufacturer’s instructions. Reverse transcription was performed for 1 h using random priming (Promega). qPCR reactions (0.5 pl cDNA, 0.2 mM each primer, SYBR green Master Mix (Kapa biosystems)) were performed on a Bio-Rad CFX384 Touch Real-Time PCR detection system, using primers specific for each gene. Data were normalized to loading controls (16S and b-actin).
Primers for qPCR experiment:
[0095] Bulk bile acid quantification. Total bile acids were measured enzymatically using a total bile acid assay kit (Cell Biolabs) following manufacturer’s instruction. Feces were obtained between 0900-1100 am from non-fasted animals after a 2-wk treatment period. The extraction of bile acid from feces was performed as described in Yu et al., J. Biol. Chem. 275, 15482-15489, 2000. In brief, the feces from individual mice were collected, weighed, and agitated in 75% ethanol in an ultrasonic bath at 50°C for 2 h. After centrifugation at 3,500 g for 10 min, the supernatant was transferred to a new tube and diluted with 25% PBS. The total bile acid level was then determined enzymatically using the kit. For plasma samples, the plasma was diluted 1 : 10 with 25% PBS prior to enzymatic bile acid measurement using the kit.
[0096] Measurement of secondary bile acids. Feces were obtained between 0900-1100 am from non-fasted animals after a 2-wk treatment period. Bile acids were extracted from samples according to published procedures (Wegner et al, Anal. Bioanal. Chem. 409, 1231-
1245, 2017). Briefly, fecal samples were lyophilized and homogenized. Five milligrams of fecal powder were extracted with 250 pL of methanol containing heavy internal standards. Fifty microliters of plasma were extracted with 150 pL of methanol containing heavy internal standards. After vortexing for 10 minutes and centrifuging (16,000 x g, 4 C, 10 min), supernatants were transferred to glass vials for injection and analysis by LCMS. Bile acids were analyzed on a Dionex Ultimate 3000 LC system (Thermo) coupled to a TSQ Quantiva mass spectrometer (Thermo) fitted with a Kinetex Cl 8 reversed phase column (2.6 pm, 150 x 2.1 mm i.d., Phenomenex). The following LC solvents were used: solution A, 0.1% formic acid and 20 mM ammonium acetate in water, solution B, acetonitrile/methanol (3/1, v/v) containing 0.1% formic acid and 20 mM ammonium acetate. The following reversed phase gradient was utilized: at a flow rate of 0.2 mL/min with a gradient consisting of 25-29% B in 1 min, 29-33% B in 14 min, 33-70% B in 15 min, up to 100% B in 1 min, 100% B for 9 min and re-equilibrated to 25% B for 10 min, for a total run time of 50 min. The injection volume for all samples was 10 pL, the column oven temperature was set to 50 °C and the
autosampler kept at 4 °C. MS analyses were performed using electrospray ionization in positive and negative ion modes, with spray voltages of 3.5 and -3 kV, respectively, ion transfer tube temperature of 325 °C, and vaporizer temperature of 275 °C. Multiple reaction monitoring (MRM) was performed by using mass transitions between specific parent ions into corresponding fragment ions for each analyte. The transitions and retention time for each analyte and internal standards are shown in Table 7.
Table 7. MRM transitions in positive and negative modes for all bile acids.
Retention MW Ionization
Analyte _ time (min) (g/mol Mode MRM transition (m/z)
d5-CA 25.8 413.6 Positive 431.4 378.3
(d5-Cholic Acid) 431.4 360.3
431.4 396.3
431.4 342.2
CA 25.8 408.57 Positive 426.3 355.2
(Cholic Acid) 426.3 373.2
426.3 391.2
426.3 337.2
a-MCA 22.2 408.57 Positive 426.3 355.2
(a-Muricholic Acid) 426.3 373.2
426.3 391.2
426.3 337.2
P-MCA 23 408.57 Positive 426.3 355.2
(b-Muricholic Acid) 426.3 373.2
426.3 391.2
426.3 337.2
w-MCA 21.8 408.57 Positive 426.3 355.2
(w-Muricholic Acid) 426.3 373.2
426.3 391.2
426.3 337.2
HCA 24.6 408.57 Positive 409.4 355.2
(Hyocholic Acid) 409.4 373.2
409.4 337.1
d4-LCA 33.2 380.6 Negative 379.3 379.3
(d4-Lithocholic Acid)
LCA 33.2 376.57 Negative 375.3 375.3
(Lithocholic Acid)
d4-UDCA 25.7 396.6 Negative 395.3 394.8
(d4-Ursodeoxycholic Acid) 395.3 377.3
UDCA 25.7 392.57 Negative 391.3 390.7
(Ursodeoxycholic Acid) 391.3 377.3
d4-DCA 30.2 396.6 Positive 414.3 361.2
(d4-Deoxycholic Acid) 414.3 379.2
414.3 343.2
DC A 30.2 392.57 Positive 410.4 357.2
(Deoxycholic Acid 410.4 375.3
410.4 339.2
d4-TCA 16.7 519.7 Positive 537.3 520.3
(d4-Taurocholic Acid) 537.3 466.3
537.3 484.2
537.3 502.2
TCA 16.7 515.70 Positive 533.3 462.2
(Taurocholic Acid) 533.3 516.3
533.3 498.2
533.3 480.2
T-a-MCA 7.8 515.70 Positive 533.3 462.2
(Tauro-a-Muricholic Acid) 533.3 516.3
533.3 498.2
533.3 480.2
T-P-MCA 8.2 515.70 Positive 533.3 462.2
(Tauro-P-Muricholic Acid) 533.3 516.3
533.3 498.2
533.3 480.2
T-w-MCA 7.4 515.70 Positive 533.3 462.2
(Tauro-co-Muricholic Acid) 533.3 516.3
533.3 498.2
533.3 480.2
THCA 11.7 515.7 Positive 533.3 462.2
(Taurohyocholic Acid) 533.3 516.3
533.3 498.2
533.3 480.2
TDCA 23.4 499.7 Positive 517.3 500.2
(Taurodeoxycholic Acid) 517.3 464.3
517.3 482.3
[0097] Quantification of regulatory T cells. Lamina propria (LP) immune cells from the small intestine were isolated using lamina propria dissociation kit (Miltenyi Biotec) following the manufacturer’s instruction. All antibodies and flow cytometry reagents were obtained from Thermo Fisher. We used FITC anti-CD4 (RM4-5), PE anti-Foxp3 (FJK-l6s), PE-
Cyanine 7 anti-GATA3 (TWAJ), APC anti ROR gamma t (AFKJS-9), APC-efluor780 anti- Helios (22F6) and e-fluor 450 anti-CD3 (17A2) antibodies. To block non-antigen specific binding of immunoglobulins and discriminate live from dead cells, LP cell suspensions were incubated with mouse BD Fc block (BD Biosciences) and e-fluor 506 fixable viability dye (Thermo Fisher) for 30 minutes on ice. For surface staining, the cells were incubated with antibodies for 25 min, washed and fixed in fixation/permeabilization solution (Thermo Fisher). After being washed with transcription factor wash buffer (Thermo Fisher), cells were stained intracellularly for 45 min at room temperature, washed, and resuspended in PBS. Samples were read in a FACs canto analyzer (BD Biosciences) and analyzed with FACs Diva software v 8.0 (BD Biosciences). Total LP cell numbers were quantified to calculate regulatory T cell ratios. Flow Jo vlO software was used for dot plots generation and final analysis.
[0098] Statistics. Data are expressed as the mean ± S.D. Statistical significance was determined by analysis of variance (ANOVA) with Tukey post hoc test, or Student’s t-test, as determined by using GraphPad Prism software (version 5.0d). p values <0.05 were considered as statistically significant for in vivo animal study.
[0099] Sequencing data have been deposited in the Gene Expression Omnibus under accession number GSE104915. 16S rRNA data have been deposited to European Nucleotide Archive under accession number PRJEB26424.
[00100] Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it will be readily apparent to one of ordinary skill in the art in light of the teachings of this invention that certain changes and modifications may be made thereto without departing from the spirit or scope of the appended claims.
[00101] All publications, databases, GenBank sequences, patents, and patent applications cited in this specification are herein incorporated by reference as if each was specifically and individually indicated to be incorporated by reference.
Claims
1. A method for identifying an agent that remodels gut microbiome of a subject, comprising (a) obtaining a gut microbiota sample from the subject, (b) inoculating and incubating the gut microbiota sample in a growth media in the presence of a plurality of test compounds, (c) assessing effect of the test compounds on remodeling the microbiota, and (d) identifying from the test compounds a compound that remodels the gut microbiome.
2. The method of claim 1, wherein effect of the test compounds on remodeling the microbiota is assessed by determining activity and selectivity of each test compound for remodeling the microbiota.
3. The method of claim 1, wherein the subject is afflicted with the disease that is associated with a dysfunctional gut microbiome.
4. The method of claim 3, wherein the identified compound remodels the dysfunctional gut microbiome to a functional state.
5. The method of claim 1, wherein assessing effect of the test compounds on remodeling the microbiota comprises detecting an alteration in gut microbiota transcriptome.
6. The method of claim 5, wherein alteration in gut microbiota transcriptome is detected en masse by next-generation sequencing of bacterial mRNA transcripts.
7. The method of claim 1, wherein assessing effect of the test compounds on remodeling the microbiota comprises determining the relative abundances of gut microbiota taxa by sequencing of the 16S rRNA amplicon.
8. The method of claim 6, wherein the relative bacterial abundances are used for determining the ratio of Bacteroidetes to Firmicutes.
9. The method of claim 1, wherein the identified compound remodels the microbiota sample to a desired alternative state without adversely affecting its diversity.
10. The method of claim 1, wherein the test compounds comprises a library of cyclic peptide having a sequence of from four to about sixteen amino acid residues or analogs
thereof, which are alternating D- and L-residues along partial or entire sequence of the peptide.
11. A method for remodeling imbalanced or dysfunctional gut microbiota in a subject, comprising administering to the subject a pharmaceutical composition that comprises a therapeutically effective amount of a cyclic peptide, wherein the cyclic peptide comprises a sequence of from four to about sixteen amino acid residues or analogs thereof that are alternating D- and L-residues along partial or entire sequence of the peptide.
12. The method of claim 11, wherein the subject is afflicted with or at risk of developing hypercholesterolemia, a cardiovascular disorder, an atherosclerotic vascular disease, a cerebrovascular disease, aneurysm, a peripheral vascular disease or intermittent claudication.
13. The method of claim 11, wherein cyclic peptide remodels the gut microbiota in the subject to a functional state without adversely affecting its diversity.
14. The method of claim 11, wherein the pharmaceutical composition is administered to the subject orally, intravenously, subcutaneously or intraperitoneally.
15. The method of claim 11, wherein the cyclic peptide comprises alternating D- and L-a-amino acid residues along its entire sequence.
16. The method of claim 11, wherein the cyclic peptide compound has a sequence formula of c[B-J-Ul-X-U2-Z],
wherein B is a peptide segment comprising at least 2 hydrophobic amino acid residues or analogs thereof; J comprises a positively charged amino acid residue, a polar uncharged amino acid residue, or an analog thereof; one or both of Ul and U2 comprise a negatively charged amino acid residue, a polar uncharged amino acid residue or analog thereof; X comprises a polar uncharged amino acid residue, a His residue or an analog thereof; and Z comprises Asn, Gln, a charged amino acid residue, or an analog thereof; and
wherein amino acid residues or analogs of the cyclic peptide are alternating D- and L- residues along the entire sequence of the cyclic peptide.
17. The method of claim 16, wherein B consists of 2, 3, 4, 5, 6, or 7 hydrophobic amino acid residues or analogs thereof.
18. The method of claim 16, wherein B consists of 3 hydrophobic amino acid residues or analogs thereof.
19. The method of claim 18, wherein B consists of DTrp-Leu-DTrp, °Tyr-Leu- DTyr, DTrp- Trp-DTrp, DPhe- Leu-°Trp, Trp-°Leu-Trp, Tyr-°Leu-Tyr, Trp-DTrp-Trp, or Phe- °Leu-Trp.
20. The method of claim 16, wherein J is Lys, Arg, Ser, His, Om (ornithine), diaminobutyric acid or diaminopropionic acid.
21. The method of claim 16, wherein J is naphthylalanine (Nal), homoleucine (Hml), or 2-amino-octanoic acid (Aoc).
22. The method of claim 16, wherein Ul and U2 are each independently a DAsp, DGlu or DSer residue.
23. The method of claim 16, wherein X is Asn or Gln.
24. The method of claim 16, wherein Z is a positively charged residue.
25. The method of claim 24, wherein Z is a Lys, Arg, His, Om (ornithine) or diaminobutyric acid.
26. The method of claim 16, wherein B consists of DTrp-Leu-DTrp or DTyr- Leu-°Tyr; J is Lys, Arg, or Ser; Ul and U2 are each independently a DAsp, °Glu or DSer residue; X is Asn or Gln; and Z is Lys, Arg, Om (ornithine) or diaminobutyric acid.
27. The method of claim 16, wherein the cyclic peptide is selected from the group consisting of cfwLwReQeR] (SEQ ID NO: 11), cfwLwKhShK] (SEQ ID NO: l), c[wLwKkKr] (SEQ ID NO: 17), c[WlWlKhKr] (SEQ ID NO: 18), c[wLff wKkK] (SEQ ID NO:2), c[WlWwKkKk] (SEQ ID NO:20), c[wLhLwKrK] (SEQ ID NO:2l), c[WlWlKrFr] (SEQ ID NO: 19), c[FwHlYoHq] (SEQ ID NO: 12), c[WlLlKkKs] (SEQ ID NO:7), c[wLlWkKkS] (SEQ ID NO: 5), c[wWwKsKsK] (SEQ ID NO: 8), c[lLwHoK] (SEQ ID NO:24), c[wLyKkK] (SEQ ID NO:22), c[wFkSkSkS] (SEQ ID NO:3), and c[lFlAlKhK]
(SEQ ID NO: 10), c[WwLlHsKk (SEQ ID NO:4), c[YlYlYkSo] (SEQ ID NO: 14), cffWwYqHhQ] (SEQ ID NO: 15), c[fVwYkK] (SEQ ID NO:23), c[LlWhQk] (SEQ ID NO:6), c[WwQoHdKt] (SEQ ID NO:27), c[WlWlWkSk] (SEQ ID NO:9), c[wLeLwKsK] (SEQ ID NO: 16), c[wLwSeQhK] (SEQ ID NO:25), c[YlWyKhAe] (SEQ ID NO: 13), c[YwElYsKq] (SEQ ID NO:26), c[wLwSeQeO] (SEQ ID NO:28), and c[wLlEeKkN] (SEQ ID NO:29).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/280,660 US20220040255A1 (en) | 2018-09-27 | 2019-09-26 | Chemotherapeutic remodeling of the gut microbiome |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201862737547P | 2018-09-27 | 2018-09-27 | |
US62/737,547 | 2018-09-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2020069130A2 true WO2020069130A2 (en) | 2020-04-02 |
WO2020069130A3 WO2020069130A3 (en) | 2020-09-17 |
Family
ID=69952575
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2019/053155 WO2020069130A2 (en) | 2018-09-27 | 2019-09-26 | Chemotherapeutic remodeling of gut microbiome |
Country Status (2)
Country | Link |
---|---|
US (1) | US20220040255A1 (en) |
WO (1) | WO2020069130A2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022077111A1 (en) * | 2020-10-16 | 2022-04-21 | Mcpharma Biotech Inc. | Detection, treatment, and monitoring of microbiome-dependent gastrointestinal discomfort |
WO2022192904A1 (en) * | 2021-03-12 | 2022-09-15 | Vast Life Sciences Inc. | Systems and methods for identifying microbial biosynthetic genetic clusters |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2779290A1 (en) * | 2009-10-29 | 2011-05-19 | Lucia Irene Gonzalez | Ligand-targeted multi-stereoisomer peptide polymer conjugates and uses thereof |
WO2014165563A2 (en) * | 2013-04-02 | 2014-10-09 | The Scripps Research Institute | Uses of cyclic peptides for treating and preventing atherosclerosis |
-
2019
- 2019-09-26 US US17/280,660 patent/US20220040255A1/en active Pending
- 2019-09-26 WO PCT/US2019/053155 patent/WO2020069130A2/en active Application Filing
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022077111A1 (en) * | 2020-10-16 | 2022-04-21 | Mcpharma Biotech Inc. | Detection, treatment, and monitoring of microbiome-dependent gastrointestinal discomfort |
WO2022192904A1 (en) * | 2021-03-12 | 2022-09-15 | Vast Life Sciences Inc. | Systems and methods for identifying microbial biosynthetic genetic clusters |
Also Published As
Publication number | Publication date |
---|---|
US20220040255A1 (en) | 2022-02-10 |
WO2020069130A3 (en) | 2020-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yao et al. | A selective gut bacterial bile salt hydrolase alters host metabolism | |
US10646520B2 (en) | Methods and compositions for reducing vancomycin-resistant Enterococci infection or colonization | |
Foley et al. | Lactobacillus bile salt hydrolase substrate specificity governs bacterial fitness and host colonization | |
KR20180006303A (en) | Nanovesicles derived from Propionibacterium bacteria and Use thereof | |
US20220040255A1 (en) | Chemotherapeutic remodeling of the gut microbiome | |
Han et al. | Protective effects of tuna meat oligopeptides (TMOP) supplementation on hyperuricemia and associated renal inflammation mediated by gut microbiota | |
BR112017023707B1 (en) | Composition, use of a composition, recombinant vector, transgenic microorganism, and recombinant polypeptide | |
WO1997008199A2 (en) | Antimicrobial cationic peptides and methods of screening for the same | |
Velkov et al. | Rediscovering the octapeptins | |
US20190382827A1 (en) | Use of microbial metabolites for treating diseases | |
US20210369795A1 (en) | Methods and compositions for identifying and treating subjects at risk for checkpoint blockade therapy associated colitis | |
WO2020041581A1 (en) | Methods and compositions for preventing and treating inflammatory bowel disease and nonalcoholic fatty liver disease | |
Coats et al. | Porphyromonas gingivalis resistance to polymyxin B is determined by the lipid A 4′‐phosphatase, PGN_0524 | |
Mosby et al. | Interaction with mammalian enteric viruses alters outer membrane vesicle production and content by commensal bacteria | |
Wang et al. | Methamphetamine induces intestinal injury by altering gut microbiota and promoting inflammation in mice | |
WO2021005059A1 (en) | Modified escherichia coli strain nissle and treatment of gastrointestinal disorder | |
EP1720559A1 (en) | An anti-inflammatory, cytoprotective factor derivable from a probiotic organism | |
CN111886333A (en) | Compositions and methods for inducing CD8+ T cells | |
CN112574283B (en) | Human MUC1 specific binding polypeptide and extraction method thereof | |
US11439673B2 (en) | Bacteria engineered to treat liver disease | |
US20210024975A1 (en) | Methods for identifying inhibitors of lipid a deacylase and expression vectors related to same | |
Keller et al. | Chemoproteomic identification of a dipeptidyl peptidase 4 (DPP4) homolog in Bacteroides thetaiotaomicron important for envelope integrity and fitness | |
EP4076489A1 (en) | Lon protease, alpha-hemolysin, ck1-alpha-1; c-myb inhibitor or a cebp-delta inhibitor as therapeutics | |
Omary | Understanding the role of LRBA in patients with inflammatory bowel disease | |
US20200386776A1 (en) | SCREENING METHOD FOR BLOOD IgA PRODUCTION INHIBITOR OR FOR PROPHYLACTIC OR THERAPEUTIC AGENT AGAINST DISEASES CAUSED BY EXCESSIVE IgA IN BLOOD |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19864387 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19864387 Country of ref document: EP Kind code of ref document: A2 |