WO2020067511A1 - 積層型電池および積層型電池の製造方法 - Google Patents

積層型電池および積層型電池の製造方法 Download PDF

Info

Publication number
WO2020067511A1
WO2020067511A1 PCT/JP2019/038372 JP2019038372W WO2020067511A1 WO 2020067511 A1 WO2020067511 A1 WO 2020067511A1 JP 2019038372 W JP2019038372 W JP 2019038372W WO 2020067511 A1 WO2020067511 A1 WO 2020067511A1
Authority
WO
WIPO (PCT)
Prior art keywords
short
base material
electrode assembly
tab
circuit prevention
Prior art date
Application number
PCT/JP2019/038372
Other languages
English (en)
French (fr)
Inventor
利絵 寺西
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2020549482A priority Critical patent/JP6832477B2/ja
Publication of WO2020067511A1 publication Critical patent/WO2020067511A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/178Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for pouch or flexible bag cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/564Terminals characterised by their manufacturing process
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a stacked battery and a method for manufacturing the stacked battery.
  • a laminated battery in which positive and negative electrode plates are alternately laminated is widely used.
  • a lithium ion secondary battery can be exemplified.
  • One of the features of the lithium ion secondary battery is that it has a larger capacity than other types of stacked batteries. Lithium ion secondary batteries having such characteristics are expected to be widely used in various applications such as in-vehicle applications and stationary housing applications.
  • the stacked battery usually includes a stacked body (membrane electrode assembly) having a plurality of positive plates and a plurality of negative plates stacked alternately.
  • a stacked body membrane electrode assembly
  • tabs are respectively attached to portions (connection portions) of the electrode plates where no active material layer is provided in order to extract electricity from electrode plates such as a positive electrode plate and a negative electrode plate.
  • the laminated body is accommodated in the exterior body with the tab extended to the outside, and is heat-sealed and sealed by the exterior body.
  • the exterior body usually includes a metal layer, and an insulating resin adhesive layer is provided on the inner surface of the metal layer so that the metal layer does not electrically contact the connection portion of the tab or the electrode plate. At the time of heat sealing, heat is applied to an intended region (peripheral portion) of the resin adhesive layer to fuse the region.
  • the resin adhesive layer may be melted in an unintended region due to heat given for the heat sealing.
  • the metal layer is exposed, and the exposed metal layer may be in electrical contact with the tab or the connection portion of the electrode plate.
  • the present invention has been made in view of such a point, and a stacked battery and a stacked battery capable of preventing electrical contact between a metal layer of an exterior body and a connection portion of a tab and an electrode plate.
  • An object of the present invention is to provide a method for manufacturing a battery.
  • the stacked battery according to the present invention is A first base including a metal layer and a resin adhesive layer provided on an inner surface of the metal layer, a second base opposed to the first base, the first base and the second base, Heat-sealing, a sealing part having a sealing portion forming a sealed space between the first base material and the second base material, A membrane electrode assembly provided in the sealing space, wherein a plurality of first electrode plates and a plurality of second electrode plates alternately stacked, and a plurality of the first electrode plates are electrically connected to each other.
  • a membrane electrode assembly having a first connection portion, A first tab electrically connected to the first connection portion of the membrane / electrode assembly and extending to the outside of the exterior body through the seal portion of the exterior body; A first short-circuit preventing layer provided on a surface of the first connection portion of the membrane electrode assembly on the side of the first substrate and a surface of the first tab on a side of the first substrate, The maximum thickness of the first short-circuit prevention layer in the first tab is different from the maximum thickness of the first short-circuit prevention layer in the first connection portion of the membrane electrode assembly.
  • the first tab is disposed on the side of the second substrate with respect to the first connection portion of the membrane / electrode assembly, A maximum thickness of the first short-circuit prevention layer in the first tab is larger than a maximum thickness of the first short-circuit prevention layer in the first connection portion of the membrane electrode assembly; You may do so.
  • the first tab is disposed on a side of the first base with respect to the first connection portion of the membrane / electrode assembly,
  • the maximum thickness of the first short-circuit prevention layer at the first connection portion of the membrane electrode assembly is larger than the maximum thickness of the first short-circuit prevention layer at the first tab. You may do so.
  • the first short prevention layer in the first tab is formed closer to the first connection part than the seal part. You may do so.
  • the first electrode plate includes: a first electrode current collector including a first connection region and a first effective region adjacent to each other; and a first electrode active material layer provided in the first effective region.
  • the first connection portion of the membrane / electrode assembly is constituted by the first connection region of each of the first electrode current collectors,
  • the first electrode plate disposed closest to the first base member is disposed closer to the first base member than the second electrode plate disposed closest to the first base member,
  • the first short-circuit prevention layer extends to a surface of the first effective region of the first electrode current collector disposed closest to the first base material on a side of the first base material, You may do so.
  • the first short-circuit prevention layer is also provided on a surface of the membrane electrode assembly on the side of the second substrate in the first connection portion and on a surface of the first tab on the side of the second substrate. , You may do so.
  • One of the first electrode plate and the second electrode plate has an insulating layer provided on a surface facing the other,
  • the first short-circuit prevention layer includes the same material as the material of the insulating layer, You may do so.
  • the first short-circuit prevention layer includes alumina. You may do so.
  • the metal layer includes aluminum, You may do so.
  • the first base material has a peripheral portion, and a bulged portion that bulges out on a side opposite to the side of the second base material with respect to the peripheral portion and that defines the sealing space. You may do so.
  • the membrane electrode assembly further includes a second connection portion in which the plurality of second electrode plates are electrically connected to each other, A second tab extending outside the exterior body through the seal portion of the exterior body is electrically connected to the second connection part of the membrane electrode assembly, A second short-circuit prevention layer is provided on a surface of the membrane electrode assembly on the side of the first substrate in the second connection portion and on a surface of the second tab on the side of the first substrate. You may do so.
  • the first electrode plate includes: a first electrode current collector including a first connection region and a first effective region adjacent to each other; and a first electrode active material layer provided in the first effective region.
  • the first electrode plate disposed closest to the first base member is disposed closer to the first base member than the second electrode plate disposed closest to the first base member,
  • the second short-circuit prevention layer extends to a surface of the first electrode current collector disposed closest to the first base material on a side of the first base material in the first effective region, You may do so.
  • the method for manufacturing a stacked battery according to the present invention includes: A membrane electrode assembly comprising: a plurality of first electrode plates and a plurality of second electrode plates alternately stacked; and a first connection portion in which the plurality of first electrode plates are electrically connected to each other.
  • the first tab accommodates the membrane electrode assembly electrically connected, and the first base material and the second base material are separated.
  • the maximum thickness of the first short-circuit prevention layer in the first tab is different from the maximum thickness of the first short-circuit prevention layer in the first connection portion of the membrane electrode assembly.
  • a material of the first short circuit prevention layer is provided on a surface of the first connection portion of the membrane electrode assembly on a side of the first base material and a surface of the first tab on a side of the first base material. Forming the first short-circuit prevention layer by applying You may do so.
  • the first tab is provided with a sealant portion for heat-sealing the first base material and the first tab during the heat sealing step
  • the first short-circuit prevention layer in the first tab is formed closer to the first connection part than the sealant part. You may do so.
  • FIG. 1 is a view for explaining an embodiment of the present invention, and is a perspective view showing a stacked battery in a state where a membrane electrode assembly is sealed with an outer package.
  • FIG. 2 is a perspective view showing a membrane electrode assembly included in the stacked battery of FIG.
  • FIG. 3 is a plan view showing the membrane electrode assembly of FIG.
  • FIG. 4 is a sectional view showing a section taken along line IV-IV in FIG.
  • FIG. 5 is a partially enlarged sectional view showing the membrane / electrode assembly of FIG.
  • FIG. 6 is a partially enlarged cross-sectional view showing a cross section taken along line VI-VI of FIG.
  • FIG. 7 is a partially enlarged cross-sectional view showing a cross section taken along line VII-VII of FIG.
  • FIG. 1 is a view for explaining an embodiment of the present invention, and is a perspective view showing a stacked battery in a state where a membrane electrode assembly is sealed with an outer package.
  • FIG. 2 is a perspective view
  • FIG. 8A is a diagram illustrating a step of preparing a membrane / electrode assembly in the method of manufacturing a stacked battery.
  • FIG. 8B is a diagram for explaining a step of applying a material for a short-circuit prevention layer in the method of manufacturing a stacked battery.
  • FIG. 8C is a diagram for explaining a step of heat-sealing the exterior body in the method of manufacturing the stacked battery.
  • FIG. 8D is a partially enlarged cross-sectional view illustrating the stacked battery manufactured by the method of manufacturing a stacked battery.
  • FIG. 9 is a partially enlarged cross-sectional view showing the first modification in a cross section similar to FIG.
  • FIG. 10 is a partially enlarged cross-sectional view showing the second modification in a cross section similar to FIG.
  • FIGS. 1 to 6 are views for explaining a stacked battery according to the present invention.
  • the stacked battery 1 As shown in FIGS. 1 to 3, the stacked battery 1 according to the present embodiment is connected to the outer package 40, the membrane electrode assembly 5 housed in the outer package 40, and the membrane electrode assembly 5. And a pair of tabs 16 and 26.
  • the exterior body 40 accommodates the membrane electrode assembly 5 therein.
  • the tabs 16 and 26 extend from the inside of the exterior body 40 to the outside.
  • a module configured by combining a plurality of stacked batteries 1 is mounted on a vehicle. Electrical connection between the plurality of stacked batteries 1 is realized via tabs 16 and 26.
  • the outer package 40 is a packaging material for sealing the membrane / electrode assembly 5.
  • the exterior body 40 has a first base material 41 and a second base material 42 facing the first base material 41.
  • the second base 42 is formed in a flat plate shape.
  • the first base material 41 is formed in a convex shape. That is, the first base material 41 has the peripheral portion 43 and the bulging portion 44 bulging outward with respect to the peripheral portion 43 (the side opposite to the side of the second base material 42).
  • the swelling portion 44 defines a sealing space 45 between the first base material 41 and the second base material 42.
  • the membrane electrode assembly 5 is accommodated in the sealing space 45.
  • Such a bulging portion 44 is formed, for example, by pressing (drawing) a desired region of the flat first base material 41.
  • the peripheral portion 43 and the bulging portion 44 are formed integrally.
  • the exterior body 40 may have flexibility.
  • the first base material 41 and the second base material 42 of the exterior body 40 each include a metal layer 40a and a resin adhesive layer 40b laminated on the metal layer 40a.
  • the metal layer 40a preferably has high gas barrier properties and moldability.
  • Such a metal layer 40a is formed of a metal material such as an aluminum foil or a stainless steel foil.
  • the resin adhesive layer 40b is located on the inner surface of the metal layer 40a and functions as a seal layer for joining the metal layer 40a.
  • the resin adhesive layer 40b preferably has insulation, chemical resistance, thermoplasticity, and the like in addition to adhesiveness.
  • Such a resin adhesive layer 40b is formed of a resin material such as polypropylene, modified polypropylene, low-density polypropylene, ionomer, and ethylene / vinyl acetate.
  • the stacked battery 1 according to the present embodiment is manufactured by arranging the membrane electrode assembly 5 in the sealing space 45 and then performing lamination. That is, the resin adhesive layer 40b formed on the inner surface of each of the first base material 41 and the second base material 42 is heat-sealed (heat-welded) at the peripheral portion of the exterior body 40 to form the seal portion 46. . In this manner, the first base material 41 and the second base material 42 are joined, and the inside of the exterior body 40 is sealed.
  • the membrane electrode assembly 5 includes a positive electrode plate 10 ⁇ / b> X (second electrode plate) and a negative electrode plate 20 ⁇ / b> Y (first electrode plate), which are alternately stacked, and a plurality of positive electrode plates 10 ⁇ / b> X. It has a positive electrode connection part 13 (second connection part) that is electrically connected, and a negative electrode connection part 23 (first connection part) in which a plurality of negative electrode plates 20Y are electrically connected to each other.
  • the positive electrode connecting portion 13 and the negative electrode connecting portion 23 are portions where the above-described tabs 16 and 26 are electrically connected. Details of the positive electrode connecting portion 13 and the negative electrode connecting portion 23 will be described later.
  • the membrane electrode assembly 5 constitutes a lithium ion secondary battery.
  • the first electrode plate constitutes the negative electrode plate 20Y
  • the second electrode plate constitutes the positive electrode plate 10X.
  • the first electrode plate may constitute the positive electrode plate 10X
  • the second electrode plate may constitute the negative electrode plate 20Y.
  • the present invention is not limited to a lithium ion secondary battery, and can be widely applied to a membrane electrode assembly 5 in which first electrode plates and second electrode plates are alternately stacked.
  • the membrane electrode assembly 5 has a plurality of positive plates 10X and a plurality of negative plates 20Y.
  • the positive electrode plates 10X and the negative electrode plates 20Y are alternately arranged and stacked along the stacking direction dL.
  • the membrane electrode assembly 5 and the stacked battery 1 have a flat shape as a whole, have a small thickness in the stacking direction dL, and extend in directions d1 and d2 orthogonal to the stacking direction dL.
  • the positive electrode plate 10X and the negative electrode plate 20Y have rectangular outer contours.
  • the positive electrode plate 10X and the negative electrode plate 20Y have a longitudinal direction in a first direction d1, which is a direction orthogonal to the laminating direction dL and extending the tabs 16 and 26 (or in which the pair of tabs 16 and 26 are arranged). It has a short direction (width direction) in a second direction d2 orthogonal to both the direction dL and the first direction d1.
  • the positive electrode plate 10X and the negative electrode plate 20Y are displaced in the first direction d1. More specifically, the plurality of positive electrode plates 10X are arranged closer to one side (the right side in FIG.
  • the positive electrode plate 10X and the negative electrode plate 20Y overlap in the laminating direction dL at a central portion (a positive electrode effective region b1 and a negative electrode effective region b2 described later) in the first direction d1.
  • the positive electrode plate 10X has a sheet-like outer shape as shown in the figure.
  • the positive electrode plate 10X has a positive electrode current collector 11X (second electrode current collector) and a positive electrode active material layer 12X (second electrode active material layer) provided on the positive electrode current collector 11X.
  • the positive electrode active material layer 12X has a rectangular outer contour. In the lithium ion secondary battery, the positive electrode plate 10X occludes lithium ions during discharging and releases lithium ions during charging.
  • the positive electrode current collector 11X has a first surface 11a and a second surface 11b located on opposite sides as main surfaces.
  • the positive electrode active material layer 12X is formed on at least one of the first surface 11a and the second surface 11b of the positive electrode current collector 11X.
  • the first surface 21a or the second surface 21b of the negative electrode current collector 21Y described later forms the outermost surfaces 5a and 5b in the stacking direction dL of the membrane electrode assembly 5, each positive electrode included in the stacked battery 1
  • the plates 10X may be configured identically as having a pair of positive electrode active material layers 12X provided on both sides of the positive electrode current collector 11X.
  • the positive electrode current collector 11X and the positive electrode active material layer 12X can be manufactured by various manufacturing methods using various materials applicable to the stacked battery 1 (lithium ion secondary battery).
  • the positive electrode current collector 11X can be formed of an aluminum foil.
  • the positive electrode active material layer 12X includes, for example, a positive electrode active material, a conductive additive, and a binder serving as a binder.
  • the positive electrode active material layer 12X is formed by applying a positive electrode slurry obtained by dispersing a positive electrode active material, a conductive auxiliary agent, and a binder in a solvent onto a material forming the positive electrode current collector 11X and solidifying the slurry. Can be done.
  • a lithium metal oxide compound represented by a general formula LiM x O y (where M is a metal, and x and y are composition ratios of the metal M and oxygen O) is used.
  • the lithium metal oxide compound include lithium cobaltate, lithium nickelate, lithium manganate and the like.
  • the conductive assistant graphite powder, acetylene black, or the like can be used.
  • the binder polyvinylidene fluoride or the like can be used.
  • the positive electrode current collector 11 ⁇ / b> X includes a positive electrode connection region a ⁇ b> 1 (second connection region) configuring the above-described positive electrode connection portion 13 and a positive electrode valid region b ⁇ b> 1 (second valid region) adjacent to the positive electrode connection region a ⁇ b> 1. Region).
  • the positive electrode active material layer 12X is disposed only in the positive electrode effective area b1 of the positive electrode current collector 11X.
  • the positive electrode effective region b1 has a rectangular outer contour, and is a region where the positive electrode active material layer 12X is provided as a whole.
  • the positive electrode connection region a1 and the positive electrode effective region b1 are arranged in the first direction d1 of the positive electrode plate 10X.
  • the positive electrode connection region a1 is located outside the positive electrode effective region b1 in the first direction d1 of the positive electrode plate 10X (the right side in FIG. 3).
  • the plurality of positive electrode current collectors 11X are joined and electrically connected in the positive electrode connection region a1 by resistance welding, ultrasonic welding, sticking with tape, fusion, or the like.
  • the positive electrode connecting portion 13 of the membrane electrode assembly 5 is constituted by each positive electrode connecting region a1 of the positive electrode current collector 11X.
  • the positive electrode connecting portion 13 of the membrane / electrode assembly 5 has a first surface 13a which is a surface on the first base material 41 side and a second surface 13b which is a surface on the second base material 42 side. I have.
  • the first surface 13a corresponds to the first surface 11a in the positive electrode connection region a1 of the positive electrode current collector 11X arranged closest to the first base material 41 among the plurality of positive electrode current collectors 11X.
  • the second surface 13b corresponds to the second surface 11b in the positive electrode connection region a1 of the positive electrode current collector 11X arranged closest to the second base material 42 among the plurality of positive electrode current collectors 11X.
  • the positive side tab 16 (second tab) is electrically connected to the second surface 13b.
  • the positive electrode effective region b1 is located in a region of the negative electrode plate 20Y facing a negative electrode active material layer 22Y described later. Such an arrangement of the positive electrode effective region b1 can prevent deposition of lithium from the negative electrode active material layer 22Y.
  • the negative electrode plate 20Y also has a sheet-like outer shape, similarly to the positive electrode plate 10X.
  • the negative electrode plate 20Y has a negative electrode current collector 21Y (first electrode current collector) and a negative electrode active material layer 22Y (first electrode active material layer) provided on the negative electrode current collector 21Y. .
  • the negative electrode active material layer 22Y has a rectangular outer contour. In the lithium ion secondary battery, the negative electrode plate 20Y emits lithium ions when discharging and occludes lithium ions when charging.
  • the negative electrode current collector 21Y has a first surface 21a and a second surface 21b located on opposite sides as main surfaces.
  • the negative electrode active material layer 22Y is formed on at least one of the first surface 21a and the second surface 21b of the negative electrode current collector 21Y. Specifically, when the first surface 21a or the second surface 21b of the negative electrode current collector 21Y forms the outermost surfaces 5a and 5b in the laminating direction dL of the membrane electrode assembly 5, the negative electrode current collector 21Y The negative electrode active material layer 22Y is not provided on the surface.
  • each negative electrode plate 20Y included in the stacked battery 1 has a negative electrode active material layer 22Y on both sides of the negative electrode current collector 21Y and is identical to each other. Can be configured.
  • the negative electrode current collector 21Y and the negative electrode active material layer 22Y can be manufactured by various manufacturing methods using various materials applicable to the stacked battery 1 (lithium ion secondary battery).
  • the negative electrode current collector 21Y is formed of, for example, a copper foil.
  • the negative electrode active material layer 22Y includes, for example, a negative electrode active material made of a carbon material and a binder functioning as a binder.
  • the negative electrode active material layer 22Y forms, for example, a negative electrode slurry formed by dispersing a negative electrode active material composed of carbon powder, graphite powder, and the like and a binder such as polyvinylidene fluoride in a solvent, as a negative electrode current collector 21Y. It can be produced by coating and solidifying on a material.
  • the negative electrode current collector 21Y includes a negative electrode connection region a2 (first connection region) constituting the negative electrode connection portion 23 and a negative electrode active region b2 (first effective region) adjacent to the negative electrode connection region a2. Region).
  • the negative electrode active material layer 22Y is arranged only in the negative electrode effective area b2 of the negative electrode current collector 21Y.
  • the negative electrode effective region b2 has a rectangular outer contour, and is a region where the negative electrode active material layer 22Y is provided as a whole.
  • the negative electrode connection region a2 and the negative electrode effective region b2 are arranged in the first direction d1 of the negative electrode plate 20Y.
  • the negative electrode connection region a2 is located outside the negative electrode effective region b2 in the first direction d1 of the negative electrode plate 20Y (left side in FIG. 3).
  • the plurality of negative electrode current collectors 21Y are joined and electrically connected in the negative electrode connection region a2 by resistance welding, ultrasonic welding, sticking with tape, fusion, or the like.
  • the negative electrode connecting portion 23 of the membrane / electrode assembly 5 is constituted by each negative electrode connecting region a2 of the negative electrode current collector 21Y.
  • the negative electrode connecting portion 23 of the membrane / electrode assembly 5 has a first surface 23a which is a surface on the first base material 41 side and a second surface 23b which is a surface on the second base material 42 side. I have.
  • the first surface 23a corresponds to the first surface 21a in the negative electrode connection region a2 of the negative electrode current collector 21Y disposed closest to the first base material 41 among the plurality of negative electrode current collectors 21Y.
  • the second surface 13b corresponds to the second surface 22b in the negative electrode connection region a2 of the negative electrode current collector 21Y arranged closest to the second base 42 among the plurality of negative electrode current collectors 21Y.
  • the negative side tab 26 (first tab) is electrically connected to the second surface 13b.
  • the negative electrode effective region b2 extends to a region facing the positive electrode active material layer 12X of the positive electrode plate 10X.
  • one of the positive electrode plate 10X and the negative electrode plate 20Y may have a functional layer 30A (first insulating layer) on a surface facing the other.
  • the functional layer 30A has an insulating property and prevents a short circuit between the positive electrode plate 10X and the negative electrode plate 20Y.
  • the negative electrode plate 20Y has a functional layer 30A.
  • the functional layer 30A is provided on the surface of the negative electrode active material layer 22Y on the side of the positive electrode plate 10X (the surface facing the positive electrode plate 10X). That is, the functional layer 30A is provided on the surface of the negative electrode active material layer 22Y facing the positive electrode plate 10X.
  • the surface of each negative electrode active material layer 22Y is covered with the functional layer 30A.
  • the surface of the negative electrode plate 20Y facing the positive electrode active material layer 12X of the positive electrode plate 10X in the stacking direction dL is formed by the functional layer 30A.
  • a functional layer 30A that covers a pair of the positive electrode active material layers 12X included in each positive electrode plate 10X can be provided.
  • the functional layer 30A may have a higher porosity than the negative electrode active material layer 22Y. Further, the functional layer 30A may have excellent heat resistance.
  • An inorganic material may be used as the material of such a functional layer 30A.
  • the inorganic material can provide the functional layer 30 ⁇ / b> A with high porosity and excellent heat resistance, for example, heat resistance of 150 ° C. or higher. Examples of the inorganic material include alumina.
  • An organic material may be used as the material of the functional layer 30A.
  • the organic material examples include fibrous materials and particles such as cellulose and denatured products thereof, polyolefin, polyethylene terephthalate, polybutylene terephthalate, polypropylene, polyester, polyacrylonitrile, aramid, polyamideimide, and polyimide.
  • the functional layer 30A is formed of alumina, the functional layer 30A can be manufactured by coating and solidifying on the negative electrode active material layer 22Y.
  • the positive electrode side tab 16 is electrically connected to the positive electrode connection part 13 of the membrane electrode assembly 5, and the negative electrode side tab 26 is electrically connected to the negative electrode connection part 23 of the membrane electrode assembly 5. It is connected to the.
  • the positive electrode side tab 16 is attached to the second surface 13 b of the positive electrode connection part 13 of the membrane electrode assembly 5, and the negative electrode side tab 26 is connected to the negative electrode connection part 23 of the membrane electrode assembly 5.
  • the tabs 16 and 26 are attached by fusion or the like. Thereby, the positive electrode side tab 16 is electrically connected to the positive electrode current collector 11X, and the negative electrode side tab 26 is electrically connected to the negative electrode current collector 21Y.
  • the tabs 16 and 26 extend from the inside of the exterior body 40 to the outside of the exterior body 40 through the seal portion 46 in the first direction d1, and function as terminals in the stacked battery 1. I do.
  • the first base material 41 of the exterior body 40 and the tabs 16 and 26 are heat-sealed via sealant parts 18 and 28 described later.
  • the second base material 42 of the exterior body 40 and the tabs 16 and 26 are heat-sealed via the sealants 18 and 28. In this way, it is possible to prevent a gap that connects the sealing space 45 and the outside of the exterior body 40 from being formed around the tabs 16 and 26.
  • the positive electrode side tab 16 can be formed using aluminum or the like.
  • the negative electrode side tab 26 can be formed using nickel, nickel-plated copper, or the like.
  • the thickness of each of the tabs 16 and 26 is, for example, 0.1 mm or more, and may be 1 mm or less.
  • the positive-side sealant portion 18 is located between the positive-side tab 16 and the first base material 41 and the second base material 42 of the exterior body 40.
  • the negative-side sealant portion 28 is located between the negative-side tab 26 and the first base material 41 and the second base material 42 of the exterior body 40.
  • the sealants 18, 28 extend in a direction (second direction d2) orthogonal to the tabs 16, 26.
  • the sealants 18, 28 are attached to the tabs 16, 26 so as to extend on both sides of the tabs 16, 26 in the second direction d2.
  • the positive-side sealant portion 18 includes a first surface 16 a that is a surface of the positive-side tab 16 on the side of the first base 41, and a second base 42 of the positive-side tab 16. On both sides of the second surface 16b, which is the side surface, a part of the positive electrode side tab 16 is covered.
  • the positive-electrode-side sealant portion 18 forms a positive electrode between the metal layer 40a of the first base material 41 and the metal layer 40a of the second base material 42 together with the resin adhesive layer 40b of the first base material 41 and the resin adhesive layer 40b of the second base material 42.
  • the side tab 16 is heat-sealed.
  • the positive-electrode-side sealant portion 18 is sandwiched between the first base material 41 and the second base material 42, and the first base material 41 and the second base material 42 are Are heat sealed to each other.
  • this positive electrode side sealant part 18 is integrated with the seal part 46 of the exterior body 40.
  • the negative electrode-side sealant portion 28 includes a first surface 26 a that is a surface of the negative electrode-side tab 26 on the side of the first base material 41, and a second base material of the negative-side tab 26. On both sides of the second surface 26b which is the surface on the side of 42, a part of the negative electrode side tab 26 is covered.
  • the negative electrode-side sealant portion 28 forms the negative electrode layer 40a of the first base material 41 and the metal layer 40a of the second base material 42 together with the resin adhesive layer 40b of the first base material 41 and the resin adhesive layer 40b of the second base material 42.
  • the side tab 26 is heat-sealed.
  • the negative electrode side sealant portion 28 is sandwiched between the first base material 41 and the second base material 42, and the first base material 41 and the second base material 42 are Are heat sealed to each other.
  • this negative electrode side sealant part 28 is integrated with the seal part 46 of the exterior body 40.
  • the sealant portions 18 and 28 are members made of a material that can be welded to the resin adhesive layer 40b of the exterior body 40 and the tabs 16 and 26.
  • Examples of the material of the sealants 18 and 28 include polypropylene, modified polypropylene, low-density polypropylene, ionomer, ethylene / vinyl acetate, and the like, similarly to the resin adhesive layer 40b of the exterior body 40.
  • the thickness of the sealants 18, 28 is, for example, not less than 0.05 mm and may be not more than 0.4 mm.
  • short-circuit prevention layer As shown in FIGS. 6 and 7, the first surface 13 a of the positive electrode connecting portion 13 of the membrane electrode assembly 5, the first surface 16 a of the positive electrode side tab 16, the first surface 23 a of the negative electrode connecting portion 23, and the negative electrode side On the first surface 26a of the tab 26, short-circuit prevention layers 50 and 51 (second insulating layers) are provided.
  • the short-circuit prevention layer 50 (second short-circuit prevention layer) on the positive electrode side prevents the metal layer 40 a of the exterior body 40 from short-circuiting to the positive electrode connection portion 13 and the positive electrode side tab 16 of the membrane electrode assembly 5.
  • the short-circuit prevention layer 50 is formed continuously on the first surface 13 a of the positive electrode connection portion 13 of the membrane electrode assembly 5 and the first surface 16 a of the positive electrode side tab 16.
  • the short-circuit prevention layer 50 on the first surface 13a of the positive electrode connection portion 13 may be formed over the entire first surface 13a of the positive electrode connection region a1 shown in FIGS.
  • the short-circuit prevention layer 50 on the first surface 16 a of the positive electrode side tab 16 may be formed on the positive electrode connection part 13 side of the seal part 46 (the positive electrode sealant part 18) of the exterior body 40. More specifically, the short circuit prevention layer 50 on the first surface 16 a of the positive electrode side tab 16 may be formed between the positive electrode side sealant portion 18 and the positive electrode connection portion 13.
  • the short circuit prevention layer 50 may be formed so as to extend to the outermost surface 5a of the membrane electrode assembly 5 and cover a part of the outermost surface 5a.
  • the negative electrode plate 20 ⁇ / b> Y (first electrode plate) disposed closest to the first base material 41 in the membrane electrode assembly 5 is disposed closest to the first base material 41.
  • the negative electrode current collector 21Y (first electrode current collector) disposed closest to the first substrate 41 is disposed closer to the first substrate 41 than the positive electrode plate 10X (second electrode plate). It corresponds to the first surface 21a in the negative electrode effective area b2 (first effective area).
  • the functional layer 30A described above may not be provided on the first surface 21a of the negative electrode current collector 21Y constituting the outermost surface 5a.
  • the negative electrode-side short-circuit prevention layer 51 prevents the metal layer 40a of the outer package 40 from short-circuiting to the negative electrode connection portion 23 and the negative electrode side tab 26 of the membrane electrode assembly 5.
  • the short-circuit prevention layer 51 is formed continuously on the second surface 23 b of the negative electrode connecting portion 23 of the membrane electrode assembly 5 and the second surface 26 b of the negative electrode side tab 26.
  • the short-circuit prevention layer 51 on the first surface 23a of the negative electrode connecting portion 23 may be formed over the entire negative electrode connecting region a2 shown in FIGS.
  • the short-circuit prevention layer 51 on the first surface 26a of the negative electrode tab 26 may be formed on the negative electrode connection part 23 side of the seal part 46 (the negative electrode sealant part 28) of the exterior body 40. More specifically, the short circuit prevention layer 51 on the first surface 26a of the negative electrode side tab 26 may be formed between the negative electrode side sealant portion 28 and the negative electrode connection portion 23.
  • the short-circuit prevention layer 51 may be formed to extend to the outermost surface 5a of the membrane electrode assembly 5 and cover a part of the outermost surface 5a. Further, on the outermost surface 5a, the above-described short-circuit prevention layer 50 on the positive electrode side (see FIG. 6) and the short-circuit prevention layer 51 on the negative electrode side (see FIG. 7) may be connected. The short-circuit prevention layers 50 and 51 may be formed over the entirety.
  • the short-circuit prevention layers 50 and 51 have different thicknesses at portions provided at the connection portions 13 and 23 of the membrane electrode assembly 5 and portions provided at the tabs 16 and 26.
  • the maximum thickness of short-circuit prevention layers 50 and 51 in tabs 16 and 26 is larger than the maximum thickness of short-circuit prevention layers 50 and 51 in connection portions 13 and 23 of membrane electrode assembly 5.
  • the maximum thickness of the short-circuit prevention layers 50 and 51 in the tabs 16 and 26 may be, for example, 5 ⁇ m to 60 ⁇ m. When the thickness is 5 ⁇ m or more, the insulating properties can be ensured, and the tabs 16 and 26 can be firmly fixed.
  • the thickness when the thickness is 60 ⁇ m or less, the productivity of the stacked battery 1 can be improved. Further, the maximum thickness of the short-circuit prevention layers 50 and 51 at the connection portions 13 and 23 of the membrane electrode assembly 5 may be, for example, 2 ⁇ m to 50 ⁇ m. When the thickness is 2 ⁇ m or more, insulation can be ensured. On the other hand, when the thickness is 50 ⁇ m or less, an increase in the thickness of the stacked battery 1 can be suppressed, and a decrease in energy density can be suppressed.
  • the maximum thickness of the short-circuit prevention layers 50 and 51 on the outermost surface 5 a of the membrane electrode assembly 5 is smaller than the maximum thickness of the short-circuit prevention layers 50 and 51 at the connection portions 13 and 23 of the membrane electrode assembly 5. Is also good.
  • the maximum thickness of the short circuit prevention layers 50 and 51 on the outermost surface 5a of the membrane electrode assembly 5 may be, for example, 1 ⁇ m to 40 ⁇ m. When the thickness is 1 ⁇ m or more, insulation can be ensured. On the other hand, when the thickness is 40 ⁇ m or less, an increase in the thickness of the stacked battery 1 can be suppressed, and a decrease in energy density can be suppressed.
  • the short-circuit prevention layers 50 and 51 preferably have high heat resistance in addition to insulation.
  • the short-circuit prevention layers 50 and 51 may be formed of the same material as the material of the functional layer 30A of the membrane electrode assembly 5.
  • An inorganic material may be used as a material for the short-circuit prevention layers 50 and 51.
  • As the inorganic material similarly to the functional layer 30 ⁇ / b> A of the membrane / electrode assembly 5, alumina or the like can be used. Further, an organic material may be used as a material of the short-circuit prevention layers 50 and 51.
  • fibrous materials such as cellulose and denatured products thereof, polyolefin, polyethylene terephthalate, polybutylene terephthalate, polypropylene, polyester, polyacrylonitrile, aramid, polyamideimide, and polyimide are used. And particulate matter.
  • the short-circuit prevention layers 50 and 51 are formed of alumina, they can be manufactured by coating and solidifying.
  • the manufacturing method of the stacked battery described below includes a membrane electrode assembly preparing step of preparing the membrane electrode assembly 5, an outer package preparing step of preparing the outer package 40, and a short circuit forming the short circuit prevention layers 50 and 51.
  • the method includes a prevention layer forming step and a heat sealing step of heat sealing the first base material 41 and the second base material 42 of the exterior body 40.
  • each step will be described.
  • the membrane electrode assembly preparing step includes a step of manufacturing the positive electrode plate 10X and the negative electrode plate 20Y, and a step of alternately stacking the positive electrode plate 10X and the negative electrode plate 20Y.
  • the positive electrode plate 10X and the negative electrode plate 20Y may be manufactured at different timings by different processes.
  • the positive electrode plate 10X and the negative electrode plate 20Y are manufactured in parallel and simultaneously, and the manufactured positive electrode plate 10X and the negative electrode plate 20Y are sequentially supplied to the step of alternately stacking the positive electrode plate 10X and the negative electrode plate 20Y. It may be.
  • a composition (slurry) that forms the positive electrode active material layer 12X is applied and solidified on a long aluminum foil that forms the positive electrode current collector 11X.
  • the sheet is cut into a desired size, and a sheet-shaped positive electrode plate 10X can be manufactured.
  • a composition (slurry) that forms the negative electrode active material layer 22Y is coated and solidified on a long copper foil that forms the negative electrode current collector 21Y.
  • the sheet is cut into a desired size, and a sheet-shaped negative electrode plate 20Y can be manufactured.
  • the functional layer 30A is formed of alumina and applied to at least one of the positive electrode plate 10X and the negative electrode plate 20Y, for example, on a long material before cutting or after cutting which becomes the electrode plates 10X and 20Y.
  • the functional layer 30A can be manufactured by applying and solidifying a material containing alumina on the sheet material.
  • a step of alternately stacking the positive electrode plates 10X and the negative electrode plates 20Y is performed.
  • the positive electrode plate 10X and the negative electrode plate 20Y are stacked such that the positive electrode active material layer 12X of the positive electrode plate 10X faces the negative electrode active material layer 22Y of the negative electrode plate 20Y.
  • a membrane electrode assembly 5 in which a plurality of positive plates 10X and a plurality of negative plates 20Y are alternately stacked as shown in FIG. 8A can be obtained.
  • the membrane electrode assembly preparing step includes a step of preparing the tabs 16 and 26 and a step of attaching the tabs 16 and 26.
  • the tabs 16 and 26 extending in the first direction d1 are prepared.
  • the sealants 18, 28 extending in a direction intersecting the first direction d1 are provided on the tabs 16, 26.
  • the sealants 18, 28 are provided so as to cover a part of the first surfaces 16a, 26a and the second surfaces 16b, 26b of the tabs 16, 26 in the first direction d1.
  • the sealants 18 and 28 are attached to the tabs 16 and 26 so as to extend on both sides of the tabs 16 and 26 in the second direction d2.
  • the tabs 16 and 26 provided with the sealants 18 and 28 are attached to the connection sections 13 and 23 formed by the plurality of connection areas a1 and a2 of the membrane electrode assembly 5, respectively. .
  • the negative electrode side tab 26 is placed on the stage.
  • the membrane electrode assembly 5 is placed so that the second surface 23b of the negative electrode connecting portion 23 of the membrane electrode assembly 5 overlaps the first surface 26a of the negative electrode side tab 26.
  • the membrane electrode assembly 5 is positioned with respect to the negative electrode tab 26 so that the center position of the negative electrode connection region a2 in the second direction d2 coincides with the center position of the negative electrode tab 26.
  • the negative electrode side tab 26 is fused to the negative electrode connection part 23 of the membrane electrode assembly 5 by resistance welding, ultrasonic welding, or the like. Thereby, the negative electrode side tab 26 can be electrically connected to the negative electrode connection region a2 of the negative electrode current collector 21Y of the membrane electrode assembly 5.
  • the membrane electrode assembly 5 in which the negative electrode side tab 26 is electrically connected to the negative electrode connecting portion 23 as shown in FIG. 8A can be obtained.
  • the positive electrode side tab 16 is fused to the positive electrode connection portion 13 of the membrane electrode assembly 5, and the positive electrode side tab 16 is electrically connected to the positive electrode connection region a1 of the positive electrode current collector 11X of the membrane electrode assembly 5.
  • the membrane electrode assembly 5 in which the positive electrode side tab 16 is electrically connected to the positive electrode connection portion 13 can be obtained.
  • the exterior body preparation step includes a step of forming the first base material 41 and the second base material 42, respectively.
  • a composition of a resin material that will constitute the resin adhesive layer 40b is applied and solidified on the aluminum foil constituting the metal layer 40a.
  • the sheet is cut into a desired size to obtain a first base material 41 having a flat plate shape.
  • drawing processing is performed on the flat first base material 41 to form a bulging portion 44.
  • the first base material 41 having the bulging portion 44 bulging with respect to the peripheral portion 43 can be manufactured (see FIG. 4).
  • a composition of a resin material that will form the resin adhesive layer 40b is applied and solidified on the aluminum foil that forms the metal layer 40a.
  • the sheet is cut into a desired size, and a flat second base material 42 is obtained.
  • the short circuit prevention layer forming step includes a step of forming the short circuit prevention layer 50 on the positive electrode side and the short circuit prevention layer 51 on the negative electrode side, respectively.
  • the short-circuit prevention layers 50 and 51 are formed of a material containing alumina will be described.
  • the short-circuit prevention layer 51 on the negative electrode side is formed.
  • a liquid material of the short circuit prevention layer 51 containing alumina is applied from the negative electrode side sealant portion 28 to the outermost surface 5a of the membrane electrode assembly 5.
  • the material of the short circuit prevention layer 51 is applied to the first surface 26a of the negative electrode side tab 26 over the entire surface between the negative electrode side sealant portion 28 and the negative electrode connection portion 23.
  • the material of the short-circuit prevention layer 51 is applied to the entire surface of the first surface 23a of the negative electrode connecting portion 23.
  • the material of the short-circuit prevention layer 51 may be applied by spraying. Subsequently, the applied material of the short circuit prevention layer 51 is solidified.
  • the applied material of the short circuit prevention layer 51 flows until it is solidified.
  • the first surface 26a of the negative electrode side tab 26 is attached to the second surface 23b of the negative electrode connection part 23 of the membrane electrode assembly 5, and the first surface 26a of the negative electrode side tab 26 is provided.
  • 26a is disposed below the first surface 23a of the negative electrode connecting portion 23 of the membrane electrode assembly 5. For this reason, a part of the material applied to the first surface 23a of the negative electrode connecting portion 23 of the membrane electrode assembly 5 flows into the first surface 26a of the negative electrode side tab 26 below.
  • the short-circuit prevention layer 51 including alumina has a certain degree of viscosity, the material is adhered to the wall of the negative electrode connecting portion 23 and the wall of the negative electrode sealant portion 28 so that the It tends to stay on one surface 26a.
  • the short-circuit prevention layer 51 on the negative electrode side is configured such that the maximum thickness of the short-circuit prevention layer 51 on the negative electrode side tab 26 is larger than the maximum thickness of the short-circuit prevention layer 51 on the negative electrode connection portion 23 of the membrane electrode assembly 5. It is formed.
  • the first surface 23a of the negative electrode connection portion 23 of the membrane electrode assembly 5 is disposed below the outermost surface 5a of the membrane electrode assembly 5. For this reason, a part of the material applied to the outermost surface 5a of the membrane electrode assembly 5 flows into the first surface 23a of the negative electrode connecting portion 23 of the membrane electrode assembly 5 below. Since the material of the short-circuit prevention layer 51 containing alumina has a certain degree of viscosity, a part of the material tends to remain on the first surface 23 a of the negative electrode connection portion 23 of the membrane electrode assembly 5.
  • the short-circuit prevention layer 51 is formed such that the maximum thickness of the short-circuit prevention layer 51 on the outermost surface 5 a of the membrane electrode assembly 5 is smaller than the maximum thickness of the short-circuit prevention layer 51 at the negative electrode connection portion 23 of the membrane electrode assembly 5. 51 are formed.
  • the short-circuit prevention layer 50 on the positive electrode side is formed in the same manner as the short-circuit prevention layer 51 on the negative electrode side. That is, a liquid material of the short circuit prevention layer 50 containing alumina is applied from the positive electrode side sealant portion 18 to the outermost surface 5 a of the membrane electrode assembly 5. Also in this case, as a result of the flow of the applied material of the short-circuit prevention layer 50, the maximum thickness of the short-circuit prevention layer 50 in the positive electrode side tab 16 becomes smaller than that of the short-circuit prevention layer 50 in the positive electrode connection portion 13 of the membrane electrode assembly 5. The short-circuit prevention layer 50 is formed so as to be larger than the maximum thickness.
  • the short-circuit on the positive electrode side is set so that the maximum thickness of the short-circuit prevention layer 50 on the outermost surface 5a of the membrane electrode assembly 5 is smaller than the maximum thickness of the short-circuit prevention layer 50 on the positive electrode connection portion 13 of the membrane electrode assembly 5.
  • the prevention layer 50 is formed.
  • the heat sealing step includes a step of heat sealing the first base material 41 and the second base material 42 constituting the exterior body 40.
  • the second base material 42 is placed.
  • the membrane electrode assembly 5 to which the tabs 16 and 26 are attached is placed on the second base material 42.
  • the first base material 41 is put thereon, and as shown in FIG. 8C, with the tabs 16 and 26 extended to the outside, the membrane electrode assembly 5 is connected to the first base material 41 and the second base material. It is made to be stored between the members 42.
  • the first base material 41 and the second base material 42 are pressed by the metal heat bar 60 having a temperature of 100 ° C. to 200 ° C. along the peripheral portion of the exterior body 40.
  • the resin adhesive layers 40b formed on the respective inner surfaces of the first base material 41 and the second base material 42 are melted, and they are heat-sealed (heat-welded) to each other.
  • the seal portion 46 is formed.
  • the heat sealing step is performed in a decompression chamber, and the pressure in the sealed space 45 after the heat sealing is reduced.
  • the heat applied for the heat sealing causes the resin adhesive layer 40b to melt in an unintended region, and The layer 40a may be exposed. Such exposure of the metal layer 40a is likely to occur near the seal portion 46 where the temperature becomes high.
  • the first surfaces 13a and 23a of the connection portions 13 and 23 of the membrane electrode assembly 5 and the first surfaces 16a and 26a of the tabs 16 and 26 are provided. Short circuit prevention layers 50 and 51 are formed.
  • sealant portions 18 and 28 are interposed between the exterior body 40 and the tabs 16 and 26. Therefore, when performing heat sealing, heat and pressure are applied to the first base material 41, the second base material 42, and the sealants 18 and 28, and the resin adhesive layer 40b of the first base material 41 and the resin of the second base material 42 The adhesive layer 40b and the sealants 18, 28 dissolve respectively. Thus, the first base member 41 and the tabs 16 and 26 are heat-sealed, and the second base member 42 and the tabs 16 and 26 are heat-sealed. In this way, the formation of a gap around the tabs 16 and 26 that connects the sealing space 45 and the outside of the exterior body 40 is prevented. The sealants 18 and 28 can also prevent the exposed metal layer 40a and the tabs 16 and 26 from being short-circuited. Part of the sealants 18 and 28 may be exposed outside the exterior body 40.
  • the membrane electrode assembly 5 sealed inside the exterior body 40 with the tabs 16 and 26 extending to the outside of the exterior body 40 through the seal portion 46 is formed.
  • the laminated battery 1 provided can be manufactured.
  • the short-circuit is formed between the surfaces of the connection portions 13 and 23 of the membrane electrode assembly 5 on the first base material 41 side and the tabs 16 and 26 on the first base material 41 side.
  • the prevention layers 50 and 51 are provided.
  • the tabs 16 and 26 are arranged on the side of the second base 42 with respect to the connection portions 13 and 23 of the membrane electrode assembly 5, and short-circuit prevention at the tabs 16 and 26 is prevented.
  • the maximum thickness of the layers 50 and 51 is larger than the maximum thickness of the short-circuit prevention layers 50 and 51 at the connection portions 13 and 23 of the membrane / electrode assembly 5.
  • the thickness of the short-circuit prevention layers 50 and 51 at the portions straddling the boundaries between the connection portions 13 and 23 of the membrane electrode assembly 5 and the tabs 16 and 26 can be increased, and the tabs 16 and 26 can be formed as a film. It can be firmly fixed to the electrode assembly 5.
  • the tabs 16 and 26 from coming off unexpectedly during the manufacture or use of the stacked battery 1.
  • workability in manufacturing the stacked battery 1 can be improved, and the reliability of the stacked battery 1 can be improved.
  • the metal layer 40a of the first base material 41 and the tabs 16 and 26 can be more effectively formed. Can be prevented from being short-circuited. Therefore, the reliability of the stacked battery 1 can be further improved.
  • the short-circuit prevention layers 50 and 51 in the tabs 16 and 26 are formed closer to the connection portions 13 and 23 than the seal portion 46 (sealant portions 18 and 28). This makes it possible to prevent the short circuit prevention layers 50 and 51 from intervening in the seal portion 46 between the first base material 41 and the second base material 42 when the exterior body 40 is heat-sealed. Therefore, it is possible to suppress a decrease in the airtightness of the sealing space 45 in the exterior body 40.
  • the short-circuit preventing layers 50 and 51 are provided on the first base material in the negative electrode effective region b2 of the negative electrode current collector 21Y disposed closest to the first base material 41 of the membrane electrode assembly 5. It extends to the surface on the side of the material 41. Thus, it is possible to prevent the exposed metal layer 40a from being in electrical contact with the negative electrode effective region b2 of the membrane electrode assembly 5. As described above, short circuit between the metal layer 40a and the negative electrode effective region b2 of the membrane electrode assembly 5 can be prevented, and the reliability of the stacked battery 1 can be further improved.
  • short-circuit prevention layers 50 and 51 are made of the same material as functional layer 30A (first insulating layer) provided on the surface of one of positive electrode plate 10X and negative electrode plate 20Y facing the other. Contains. Therefore, the material for forming the functional layer 30A can be used as the material for forming the short-circuit prevention layers 50 and 51, and the manufacturing cost of the stacked battery 1 can be reduced.
  • the short-circuit preventing layers 50 and 51 contain alumina. Therefore, the short-circuit prevention layers 50 and 51 have high heat resistance in addition to insulation.
  • the first base member 41 and the second base member 42 are heat-sealed, it is possible to suppress the short circuit prevention layers 50 and 51 from being damaged by heat. For this reason, it is possible to prevent the metal layer 40a from short-circuiting to the connection portions 13 and 23 and the tabs 16 and 26 of the membrane / electrode assembly 5, and to further improve the reliability of the stacked battery 1. it can.
  • metal layer 40a contains aluminum.
  • a reduction reaction occurs, and a lithium aluminum alloy can be generated.
  • the exterior body 40 becomes brittle, and the life of the stacked battery 1 may be shortened. According to the present embodiment, it is possible to suppress the progress of the alloying of aluminum and to suppress a decrease in the life of the stacked battery 1.
  • the first base member 41 has the swelling portion 44 swelling on the opposite side to the side of the second base member 42 with respect to the peripheral portion 43 to define a sealing space.
  • the first base material 41 by forming the bulging portion 44, a part of the resin adhesive layer 40b is thinned, and the metal layer 40a is easily exposed. According to the present embodiment, even if bulging portion 44 is formed in first base material 41 and metal layer 40a is easily exposed, connection portion between exposed metal layer 40a and membrane electrode assembly 5 is formed. It is possible to prevent a short circuit between the first and second terminals 13 and 23 and the tabs 16 and 26.
  • the short-circuit prevention layers 50 and 51 are formed by applying the material of the short-circuit prevention layers 50 and 51.
  • the short-circuit prevention layers 50 and 51 can be formed easily and widely over the connection portions 13 and 23 and the tabs 16 and 26 of the membrane electrode assembly 5. Therefore, the short-circuit prevention layers 50 and 51 can be uniformly formed on the connection portions 13 and 23 and the tabs 16 and 26 of the membrane electrode assembly 5 while suppressing an increase in the manufacturing cost of the stacked battery 1.
  • a part of the material applied in this way can flow until it solidifies.
  • first surfaces 13a and 23a of the connection portions 13 and 23 of the membrane electrode assembly 5 on the first base material 41 side and the surfaces of the tabs 16 and 26 on the first base material 41 side
  • the example in which the short-circuit prevention layers 50 and 51 are provided on the first surfaces 16a and 26a) is shown.
  • Short circuit prevention layers 50 and 51 may also be provided on the surface (second surfaces 16b and 26b) on the side of the second base material 42.
  • the short-circuit prevention layers 50 and 51 are formed continuously on the second surfaces 13 b and 23 b of the connection portions 13 and 23 of the membrane electrode assembly 5 and the second surfaces 16 b and 26 b of the tabs 16 and 26. An example is shown.
  • the short-circuit prevention layers 50 and 51 may be formed so as to extend to the outermost surface 5b of the membrane electrode assembly 5 and cover a part of the outermost surface 5b.
  • the negative electrode plate 20Y disposed closest to the second base 42 is closer to the positive electrode plate 10X than the positive electrode plate 10X disposed closest to the second base 42.
  • it is arranged on the side of the second base 42, it corresponds to the second surface 21b in the negative electrode effective area b2 of the negative electrode current collector 21Y arranged closest to the second base 42.
  • a liquid material for forming the short-circuit prevention layers 50 and 51 is applied in the same manner as in the above-described short-circuit prevention layer forming step. It can be produced by solidifying.
  • short-circuit prevention is also performed on the surfaces of the connection portions 13 and 23 of the membrane electrode assembly 5 on the side of the second substrate 42 and the tabs 16 and 26 on the surface of the second substrate 42.
  • the layers 50 and 51 it is possible to prevent a short circuit between the metal layer 40a of the second base material 42, the connection portions 13 and 23 of the membrane electrode assembly 5, and the tabs 16 and 26. That is, when the first base material 41 and the second base material 42 are heat-sealed, the resin adhesive layer 40b is melted in an unintended region on the side of the second base material 42 due to heat given for the heat sealing. However, the metal layer 40a may be exposed.
  • the exposed metal layer 40a is not connected to the surface of the connection portions 13 and 23 of the membrane electrode assembly 5 on the side of the second base material 42 and the tabs 16 and 26 of the second base material 42. Can be prevented from making electrical contact with the surface.
  • the short-circuit prevention layers 50 and 51 are connected to the second surfaces 13 b and 23 b of the connection portions 13 and 23 of the membrane electrode assembly 5 and the second surfaces 16 b and 26 b of the tabs 16 and 26. Can be provided over the boundary with. For this reason, the tabs 16 and 26 can be more firmly fixed to the membrane electrode assembly 5.
  • the tabs 16 and 26 are arranged on the side of the second base 42 with respect to the connection portions 13 and 23 of the membrane electrode assembly 5 .
  • the tabs 16 and 26 may be arranged on the first base material 41 side with respect to the connection portions 13 and 23 of the membrane / electrode assembly 5.
  • the surfaces (first surfaces 13a and 23a) of the connection portions 13 and 23 of the membrane electrode assembly 5 on the first base material 41 side and the surfaces of the tabs 16 and 26 on the first base material 41 side Short-circuit prevention layers 50 and 51 are formed on the first surfaces 16a and 26a).
  • the short-circuit preventing layers 50 and 51 at the connection portions 13 and 23 of the membrane electrode assembly 5 are larger than the maximum thicknesses of the short-circuit preventing layers 50 and 51 at the tabs 16 and 26. 50 and 51 may be formed.
  • the maximum thickness of the short-circuit prevention layers 50 and 51 at the connection portions 13 and 23 of the membrane electrode assembly 5 may be, for example, 5 ⁇ m to 60 ⁇ m. When the thickness is 5 ⁇ m or more, the insulating properties can be ensured, and the tabs 16 and 26 can be firmly fixed. On the other hand, when the thickness is 60 ⁇ m or less, the productivity of the stacked battery 1 can be improved.
  • the maximum thickness of the short-circuit prevention layers 50 and 51 in the tabs 16 and 26 of the membrane electrode assembly 5 may be, for example, 2 ⁇ m to 50 ⁇ m.
  • the thickness is 2 ⁇ m or more, insulation can be ensured.
  • the thickness is 50 ⁇ m or less, an increase in the thickness of the stacked battery 1 can be suppressed, and a decrease in energy density can be suppressed.
  • the short-circuit prevention layers 50 and 51 may be formed so as to extend to the outermost surface 5a of the membrane electrode assembly 5 and cover a part of the outermost surface 5a.
  • the maximum thickness of the short-circuit prevention layers 50, 51 on the outermost surface 5a of the membrane electrode assembly 5 may be smaller than the maximum thickness of the short-circuit prevention layers 50, 51 at the connection portions 13, 23 of the membrane electrode assembly 5.
  • the maximum thickness of the short circuit prevention layers 50 and 51 on the outermost surface 5a of the membrane electrode assembly 5 may be, for example, 1 ⁇ m to 40 ⁇ m. When the thickness is 1 ⁇ m or more, insulation can be ensured. On the other hand, when the thickness is 40 ⁇ m or less, an increase in the thickness of the stacked battery 1 can be suppressed, and a decrease in energy density can be suppressed.
  • the second surfaces 16b and 26b of the tabs 16 and 26 are attached to the first surfaces 13a and 23a of the connection portions 13 and 23 of the membrane electrode assembly 5, respectively.
  • the first surfaces 13a, 23a of the connection portions 13, 23 of the joined body 5 are arranged below the first surfaces 16a, 26a of the tabs 16, 26. Therefore, in the above-described short-circuit prevention layer forming step, a part of the material applied to the first surfaces 16a and 26a of the tabs 16 and 26 is partially removed from the connection portions 13 and 23 of the membrane electrode assembly 5 located below. It flows into one surface 13a, 23a.
  • the material of the short-circuit prevention layers 50 and 51 including alumina has a certain degree of viscosity, it is attached to the walls of the tabs 16 and 26 so that the connection portions 13 and 23 of the membrane electrode assembly 5 are formed. It tends to stay on the first surfaces 13a and 23a. Therefore, the short-circuit prevention layers 50 and 51 at the connection portions 13 and 23 of the membrane electrode assembly 5 are larger than the maximum thicknesses of the short-circuit prevention layers 50 and 51 at the tabs 16 and 26. 50 and 51 are formed.
  • the first surfaces 13a and 23a of the connection portions 13 and 23 of the membrane electrode assembly 5 are disposed below the outermost surface 5a of the membrane electrode assembly 5. For this reason, a part of the material applied to the outermost surface 5a of the membrane electrode assembly 5 flows into the first surfaces 13a, 23a of the connection portions 13, 23 of the membrane electrode assembly 5 located below. In this way, the maximum thickness of the short-circuit prevention layers 50 and 51 on the outermost surface 5a of the membrane electrode assembly 5 is smaller than the maximum thickness of the short-circuit prevention layers 50 and 51 on the connection portions 13 and 23 of the membrane electrode assembly 5. Thus, the short-circuit prevention layers 50 and 51 are formed.
  • the tabs 16 and 26 are arranged on the side of the first base material 41 with respect to the connection portions 13 and 23 of the membrane electrode assembly 5.
  • the maximum thickness of the short-circuit prevention layers 50 and 51 at the connection portions 13 and 23 of No. 5 is larger than the maximum thickness of the short-circuit prevention layers 50 and 51 at the tabs 16 and 26.
  • the short-circuit preventing layers 50 and 51 are formed by applying the material of the short-circuit preventing layers 50 and 51. Some of the material applied in this way can flow until it solidifies. For this reason, a part of the material applied to the surfaces of the tabs 16 and 26 on the side of the first base material 41 is applied to the surfaces of the connection portions 13 and 23 of the membrane electrode assembly 5 on the side of the first base material 41. Can flow in. In this manner, short-circuiting is performed such that the maximum thickness of the short-circuit prevention layers 50 and 51 at the connection portions 13 and 23 of the membrane electrode assembly 5 is larger than the maximum thickness of the short-circuit prevention layers 50 and 51 at the tabs 16 and 26.
  • the prevention layers 50 and 51 can be formed.
  • connection portions 13 and 23 of the membrane electrode assembly 5 on the side of the second base material 42 and the tabs 16 and 26 The short circuit prevention layers 50 and 51 may be provided on the surface on the side of the two substrates 42.
  • the short-circuit prevention layers 50 and 51 are provided on the positive electrode side (the positive electrode connection portion 13 and the positive electrode side tab 16 of the membrane electrode assembly 5) and the negative electrode side (the negative electrode connection portion 23 and the negative electrode side of the membrane electrode assembly 5).
  • An example is shown in which both side tabs 26) are provided.
  • the short-circuit prevention layers 50 and 51 need only be provided on one of the positive electrode side and the negative electrode side, and need not be provided on the other.
  • the metal layer 40a of the exterior body 40 contains aluminum
  • the short-circuit prevention layers 50 and 51 may be provided on the negative electrode side from the viewpoint of preventing aluminum alloying as described above.

Abstract

積層型電池は、金属層と樹脂接着層とを含む第1基材と、第1基材に対向する第2基材と、第1基材と第2基材とをヒートシールして、第1基材と第2基材との間に封止空間を形成するシール部と、を有する外装体と、膜電極接合体と、膜電極接合体の第1接続部と電気的に接続され、外装体のシール部を通って外装体の外部に延びる第1タブと、を備えている。また、積層型電池は、膜電極接合体の第1接続部における第1基材の側の面および第1タブにおける第1基材の側の面に設けられた第1短絡防止層を備えている。第1タブにおける第1短絡防止層の最大厚みは、膜電極接合体の第1接続部における第1短絡防止層の最大厚みと異なっている。

Description

積層型電池および積層型電池の製造方法
 本発明は、積層型電池および積層型電池の製造方法に関する。
 例えば特許文献1で提案されているように、正極板と負極板とを交互に積層してなる積層型電池が広く普及している。積層型電池の一例として、リチウムイオン二次電池が例示され得る。リチウムイオン二次電池は、他の形式の積層型電池と比較して大容量であることを特徴の一つとしている。このような特徴を有するリチウムイオン二次電池は、今般、車載用途や定置住宅用途等の種々の用途での更なる普及を期待されている。
 積層型電池は、通常、交互に積層される複数の正極板および複数の負極板を有する積層体(膜電極接合体)を備えている。積層体は、正極板および負極板等の電極板から電気を取り出すために、各電極板のうち活物質層が設けられていない部分(接続部)にそれぞれタブが取り付けられている。積層体は、タブが外部に延び出た状態で外装体に収容され、ヒートシールされて外装体により封止される。外装体は、通常、金属層を含んでおり、当該金属層がタブや電極板の接続部と電気的に接触しないよう、金属層の内面に絶縁性を有する樹脂接着層が設けられている。ヒートシールする際、樹脂接着層のうち意図した領域(周縁部)に熱が与えられて当該領域を溶着させる。
特開2017-41346号公報
 しかしながら、外装体をヒートシールする際、ヒートシールのために与えられた熱により、意図しない領域で樹脂接着層が溶解するおそれがある。この場合、金属層が露出し、露出した金属層が、タブや電極板の接続部と電気的に接触するおそれがある。
 本発明は、このような点を考慮してなされたものであり、外装体の金属層とタブおよび電極板の接続部との電気的な接触を防止することができる積層型電池および当該積層型電池の製造方法を提供することを目的とする。
 本発明による積層型電池は、
 金属層と前記金属層の内面に設けられた樹脂接着層とを含む第1基材と、前記第1基材に対向する第2基材と、前記第1基材と前記第2基材とをヒートシールして、前記第1基材と前記第2基材との間に封止空間を形成するシール部と、を有する外装体と、
 前記封止空間に設けられた膜電極接合体であって、交互に積層された複数の第1電極板および複数の第2電極板と、複数の前記第1電極板が互いに電気的に接続された第1接続部と、を有する膜電極接合体と、
 前記膜電極接合体の前記第1接続部と電気的に接続され、前記外装体の前記シール部を通って前記外装体の外部に延びる第1タブと、
 前記膜電極接合体の前記第1接続部における前記第1基材の側の面および前記第1タブにおける前記第1基材の側の面に設けられた第1短絡防止層と、を備え、
 前記第1タブにおける前記第1短絡防止層の最大厚みが、前記膜電極接合体の前記第1接続部における前記第1短絡防止層の最大厚みと異なる。
 本発明による積層型電池において、
 前記第1タブは、前記膜電極接合体の前記第1接続部に対して前記第2基材の側に配置され、
 前記第1タブにおける前記第1短絡防止層の最大厚みが、前記膜電極接合体の前記第1接続部における前記第1短絡防止層の最大厚みよりも大きい、
ようにしてもよい。
 本発明による積層型電池において、
 前記第1タブは、前記膜電極接合体の前記第1接続部に対して前記第1基材の側に配置され、
 前記膜電極接合体の前記第1接続部における前記第1短絡防止層の最大厚みが、前記第1タブにおける前記第1短絡防止層の最大厚みよりも大きい、
ようにしてもよい。
 本発明による積層型電池において、
 前記第1タブにおける前記第1短絡防止層は、前記シール部よりも前記第1接続部の側に形成されている、
ようにしてもよい。
 本発明による積層型電池において、
 前記第1電極板は、互いに隣接する第1接続領域および第1有効領域を含む第1電極集電体と、前記第1有効領域に設けられた第1電極活物質層と、を有し、
 前記膜電極接合体の前記第1接続部は、前記第1電極集電体の各々の前記第1接続領域によって構成され、
 最も前記第1基材の側に配置された前記第1電極板は、最も前記第1基材の側に配置された前記第2電極板よりも前記第1基材の側に配置され、
 前記第1短絡防止層は、最も前記第1基材の側に配置された前記第1電極集電体の前記第1有効領域における前記第1基材の側の面に延びている、
ようにしてもよい。
 本発明による積層型電池において、
 前記第1短絡防止層は、前記膜電極接合体の前記第1接続部における前記第2基材の側の面および前記第1タブにおける前記第2基材の側の面にも設けられている、
ようにしてもよい。
 本発明による積層型電池において、
 前記第1電極板および前記第2電極板の一方は、他方に対向する面に設けられた絶縁層を有し、
 前記第1短絡防止層は、前記絶縁層の材料と同じ材料を含む、
ようにしてもよい。
 本発明による積層型電池において、
 前記第1短絡防止層は、アルミナを含む、
ようにしてもよい。
 本発明による積層型電池において、
 前記金属層は、アルミニウムを含む、
ようにしてもよい。
 本発明による積層型電池において、
 前記第1基材は、周辺部と、前記周辺部に対して前記第2基材の側とは反対側に膨出した、前記封止空間を画定する膨出部と、を有する、
ようにしてもよい。
 本発明による積層型電池において、
 前記膜電極接合体は、複数の前記第2電極板が互いに電気的に接続された第2接続部を更に有し、
 前記膜電極接合体の前記第2接続部に、前記外装体の前記シール部を通って前記外装体の外部に延びる第2タブが電気的に接続され、
 前記膜電極接合体の前記第2接続部における前記第1基材の側の面および前記第2タブにおける前記第1基材の側の面に、第2短絡防止層が設けられている、
ようにしてもよい。
 本発明による積層型電池において、
 前記第1電極板は、互いに隣接する第1接続領域および第1有効領域を含む第1電極集電体と、前記第1有効領域に設けられた第1電極活物質層と、を有し、
 最も前記第1基材の側に配置された前記第1電極板は、最も前記第1基材の側に配置された前記第2電極板よりも前記第1基材の側に配置され、
 前記第2短絡防止層は、最も前記第1基材の側に配置された前記第1電極集電体の前記第1有効領域における前記第1基材の側の面に延びている、
ようにしてもよい。
 本発明による積層型電池の製造方法は、
 交互に積層された複数の第1電極板および複数の第2電極板と、複数の前記第1電極板が互いに電気的に接続された第1接続部と、を有する膜電極接合体であって、前記膜電極接合体の前記第1接続部と第1タブが電気的に接続された前記膜電極接合体を準備する第1準備工程と、
 金属層と前記金属層の内面に設けられた樹脂接着層とを含む第1基材と、前記第1基材に対向する第2基材と、を有し、前記第1基材と前記第2基材との間に前記膜電極接合体を収容するための外装体を準備する第2準備工程と、
 前記膜電極接合体の前記第1接続部における前記第1基材の側の面および前記第1タブにおける前記第1基材の側の面に第1短絡防止層を形成する形成工程と、
 前記第1基材と前記第2基材との間に、前記第1タブが電気的に接続された前記膜電極接合体を収容して、前記第1基材と前記第2基材とをヒートシールしてシール部を形成するヒートシール工程であって、前記第1タブが、前記シール部を通って前記外装体の外部に延びるように配置される、ヒートシール工程と、を備え、
 前記第1タブにおける前記第1短絡防止層の最大厚みが、前記膜電極接合体の前記第1接続部における前記第1短絡防止層の最大厚みと異なる。
 本発明による積層型電池の製造方法において、
 前記形成工程において、前記膜電極接合体の前記第1接続部における前記第1基材の側の面および前記第1タブにおける前記第1基材の側の面に前記第1短絡防止層の材料を塗工することにより前記第1短絡防止層を形成する、
ようにしてもよい。
 本発明による積層型電池の製造方法において、
 前記第1準備工程において、前記第1タブに、前記ヒートシール工程の際に前記第1基材と前記第1タブとをヒートシールするシーラント部が設けられており、
 前記形成工程において、前記第1タブにおける前記第1短絡防止層は、前記シーラント部よりも前記第1接続部の側に形成される、
ようにしてもよい。
 本発明によれば、外装体の金属層とタブおよび電極板の接続部との電気的な接触を防止することができる。
図1は、本発明の一実施の形態を説明するための図であって、膜電極接合体が外装体により封止された状態の積層型電池を示す斜視図である。 図2は、図1の積層型電池に含まれる膜電極接合体を示す斜視図である。 図3は、図2の膜電極接合体を示す平面図である。 図4は、図1のIV-IV線に沿った断面を示す断面図である。 図5は、図2の膜電極接合体を示す部分拡大断面図である。 図6は、図3のVI-VI線に沿った断面を示す部分拡大断面図である。 図7は、図3のVII-VII線に沿った断面を示す部分拡大断面図である。 図8Aは、積層型電池の製造方法において、膜電極接合体を準備する工程を説明するための図である。 図8Bは、積層型電池の製造方法において、短絡防止層の材料を塗工する工程を説明するための図である。 図8Cは、積層型電池の製造方法において、外装体をヒートシールする工程を説明するための図である。 図8Dは、積層型電池の製造方法により作製された積層型電池を示す部分拡大断面図である。 図9は、第1の変形例を図6と同様な断面で示す部分拡大断面図である。 図10は、第2の変形例を図6と同様な断面で示す部分拡大断面図である。
 以下、図面を参照して本発明の一実施の形態について説明する。なお、本件明細書に添付する図面においては、理解のしやすさの便宜上、適宜縮尺および縦横の寸法比等を、実物のそれらから変更し誇張してある。
 図1~図6は、本発明による積層型電池を説明するための図である。
 図1~図3に示すように、本実施の形態による積層型電池1は、外装体40と、外装体40内に収容された膜電極接合体5と、膜電極接合体5に接続された一対のタブ16,26と、を備えている。外装体40は、その内部に膜電極接合体5を収容している。タブ16,26は、外装体40の内部から外部へと延び出している。電気自動車等の自動車の分野においては、複数の積層型電池1を組み合わせることにより構成されるモジュールが自動車に搭載される。複数の積層型電池1の間の電気的な接続は、タブ16,26を介して実現される。
 以下、積層型電池1の各構成要素について説明する。
 (外装体)
 外装体40は、膜電極接合体5を封止するための包装材である。図4に示すように、外装体40は、第1基材41と、第1基材41に対向する第2基材42と、を有している。第2基材42は、平板状に形成されている。一方、第1基材41は、凸状に形成されている。すなわち、第1基材41は、周辺部43と、周辺部43に対して外側(第2基材42の側とは反対側)に膨出した膨出部44と、を有している。この膨出部44により、第1基材41と第2基材42との間に、封止空間45が画定されている。この封止空間45に、膜電極接合体5が収容される。このような膨出部44は、例えば、平板状の第1基材41のうち所望の領域を押圧すること(絞り加工)により形成される。この場合、周辺部43と膨出部44は一体的に形成される。
 外装体40は、フレキシブル性を有していてもよい。外装体40の第1基材41および第2基材42はそれぞれ、金属層40aと、この金属層40aに積層された樹脂接着層40bと、を有している。金属層40aは、高ガスバリア性と成形加工性を有することが好ましい。このような金属層40aは、アルミニウム箔やステンレス箔等の金属材料により形成されている。樹脂接着層40bは、金属層40aの内面に位置し、金属層40aを接合するためのシール層として機能する。樹脂接着層40bは、接着性に加え、絶縁性、耐薬品性、熱可塑性等を有していることが好ましい。このような樹脂接着層40bは、ポリプロピレン、変性ポリプロピレン、低密度ポリプロピレン、アイオノマー、エチレン・酢酸ビニル等の樹脂材料により形成されている。
 本実施の形態による積層型電池1は、封止空間45に膜電極接合体5を配置した後、ラミネート加工を行うことによって作製される。すなわち、外装体40の周縁部において、第1基材41および第2基材42の各々の内面に形成された樹脂接着層40bがヒートシール(熱溶着)されて、シール部46が形成される。このようにして、第1基材41と第2基材42とが接合されて、外装体40の内部を封止している。
 (膜電極接合体)
 図2および図3に示すように、膜電極接合体5は、交互に積層された正極板10X(第2電極板)および負極板20Y(第1電極板)と、複数の正極板10Xが互いに電気的に接続された正極接続部13(第2接続部)と、複数の負極板20Yが互いに電気的に接続された負極接続部23(第1接続部)と、を有している。正極接続部13および負極接続部23は、上述したタブ16,26が電気的に接続される部分である。正極接続部13および負極接続部23についての詳細は後述する。
 本実施の形態においては、膜電極接合体5がリチウムイオン二次電池を構成する例について説明する。この例において、第1電極板は負極板20Yを構成し、第2電極板は正極板10Xを構成するものとする。ただし、以下に説明する作用効果の記載からも理解され得るように、第1電極板が正極板10Xを構成し、第2電極板が負極板20Yを構成してもよい。更には、リチウムイオン二次電池に限定されることなく、第1電極板および第2電極板を交互に積層してなる膜電極接合体5に広く適用され得る。
 図2~図5に示すように、膜電極接合体5は、複数の正極板10Xおよび複数の負極板20Yを有している。正極板10Xおよび負極板20Yは、積層方向dLに沿って交互に配列されて積層されている。膜電極接合体5および積層型電池1は、全体的に偏平形状を有し、積層方向dLへの厚さが薄く、積層方向dLに直交する方向d1,d2に広がっている。
 図示された非限定的な例において、正極板10Xおよび負極板20Yは、長方形形状の外輪郭を有している。正極板10Xおよび負極板20Yは、積層方向dLに直交するとともにタブ16,26が延びる(あるいは一対のタブ16,26が配列される)方向である第1方向d1に長手方向を有し、積層方向dLおよび第1方向d1の両方に直交する第2方向d2に短手方向(幅方向)を有している。正極板10Xおよび負極板20Yは、第1方向d1にずらして配置されている。より具体的には、複数の正極板10Xは、第1方向d1における一側(図3の右側)に寄って配置され、複数の負極板20Yは、第1方向d1における他側(図3の左側)に寄って配置されている。正極板10Xおよび負極板20Yは、第1方向d1における中央部(後述する正極有効領域b1および負極有効領域b2)において、積層方向dLに重なり合っている。
 正極板10Xは、図示するように、シート状の外形状を有している。正極板10Xは、正極集電体11X(第2電極集電体)と、正極集電体11X上に設けられた正極活物質層12X(第2電極活物質層)と、を有している。正極活物質層12Xは、長方形形状の外輪郭を有している。リチウムイオン二次電池において、正極板10Xは、放電時にリチウムイオンを吸蔵し、充電時にリチウムイオンを放出する。
 正極集電体11Xは、互い反対側に位置する第1面11aおよび第2面11bを主面として有している。正極活物質層12Xは、正極集電体11Xの第1面11aおよび第2面11bの少なくとも一方の面上に形成される。後述する負極集電体21Yの第1面21aまたは第2面21bが、膜電極接合体5のうちの積層方向dLにおける最外面5a,5bを形成する場合、積層型電池1に含まれる各正極板10Xは、正極集電体11Xの両側に設けられた一対の正極活物質層12Xを有するものとして、互いに同一に構成され得る。
 正極集電体11Xおよび正極活物質層12Xは、積層型電池1(リチウムイオン二次電池)に適用され得る種々の材料を用いて種々の製法により、作製され得る。一例として、正極集電体11Xは、アルミニウム箔によって形成され得る。正極活物質層12Xは、例えば、正極活物質、導電助剤、およびバインダーとなる結着剤を含んでいる。正極活物質層12Xは、正極活物質、導電助剤および結着剤を溶媒に分散させてなる正極用スラリーを、正極集電体11Xをなす材料上に塗工して固化させることで、作製され得る。正極活物質として、例えば、一般式LiM(ただし、Mは金属であり、xおよびyは金属Mと酸素Oの組成比である)で表される金属酸リチウム化合物が用いられる。金属酸リチウム化合物の具体例として、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム等が例示され得る。導電助剤としては、黒鉛粉末やアセチレンブラック等が用いられ得る。結着剤としては、ポリフッ化ビニリデン等が用いられ得る。
 図3に示すように、正極集電体11Xは、上述した正極接続部13を構成する正極接続領域a1(第2接続領域)と、正極接続領域a1に隣接する正極有効領域b1(第2有効領域)と、を有している。正極活物質層12Xは、正極集電体11Xの正極有効領域b1のみに配置されている。正極有効領域b1は、長方形形状の外輪郭を有しており、全体的に正極活物質層12Xが設けられた領域になっている。正極接続領域a1および正極有効領域b1は、正極板10Xの第1方向d1に配列されている。正極接続領域a1は、正極有効領域b1よりも正極板10Xの第1方向d1における外側(図3における右側)に位置している。
 複数の正極集電体11Xは、正極接続領域a1において、抵抗溶接や超音波溶接、テープによる貼着、融着等によって接合され、電気的に接続している。このように、正極集電体11Xの各々の正極接続領域a1によって、膜電極接合体5の正極接続部13を構成している。膜電極接合体5の正極接続部13は、第1基材41の側の面である第1面13aと、第2基材42の側の面である第2面13bと、を有している。すなわち、第1面13aは、複数の正極集電体11Xのうち最も第1基材41の側に配置された正極集電体11Xの正極接続領域a1における第1面11aに相当する。また、第2面13bは、複数の正極集電体11Xのうち最も第2基材42の側に配置された正極集電体11Xの正極接続領域a1における第2面11bに相当する。本実施の形態では、第2面13bに、正極側タブ16(第2タブ)が電気的に接続されている。一方、正極有効領域b1は、負極板20Yの後述する負極活物質層22Yに対面する領域内に位置している。このような正極有効領域b1の配置により、負極活物質層22Yからのリチウムの析出を防止することができる。
 次に、負極板20Yについて説明する。負極板20Yも、正極板10Xと同様に、シート状の外形状を有している。負極板20Yは、負極集電体21Y(第1電極集電体)と、負極集電体21Y上に設けられた負極活物質層22Y(第1電極活物質層)と、を有している。負極活物質層22Yは、長方形形状の外輪郭を有している。リチウムイオン二次電池において、負極板20Yは、放電時にリチウムイオンを放出し、充電時にリチウムイオンを吸蔵する。
 負極集電体21Yは、互い反対側に位置する第1面21aおよび第2面21bを主面として有している。負極活物質層22Yは、負極集電体21Yの第1面21aおよび第2面21bの少なくとも一方の面上に形成される。具体的には、負極集電体21Yの第1面21aまたは第2面21bが、膜電極接合体5のうちの積層方向dLにおける最外面5a,5bを形成する場合、負極集電体21Yの当該面には負極活物質層22Yが設けられない。この最外面5a,5bを構成する負極集電体21Yを除き、積層型電池1に含まれる各負極板20Yは、負極集電体21Yの両側に負極活物質層22Yを有し、互いに同一に構成され得る。
 負極集電体21Yおよび負極活物質層22Yは、積層型電池1(リチウムイオン二次電池)に適用され得る種々の材料を用いて種々の製法により、作製され得る。一例として、負極集電体21Yは、例えば銅箔によって形成される。負極活物質層22Yは、例えば、炭素材料からなる負極活物質、および、バインダーとして機能する結着剤を含んでいる。負極活物質層22Yは、例えば、炭素粉末や黒鉛粉末等からなる負極活物質とポリフッ化ビニリデンのような結着剤とを溶媒に分散させてなる負極用スラリーを、負極集電体21Yをなす材料上に塗工して固化することで、作製され得る。
 図3に示すように、負極集電体21Yは、上述した負極接続部23を構成する負極接続領域a2(第1接続領域)と、負極接続領域a2に隣接する負極有効領域b2(第1有効領域)と、を有している。負極活物質層22Yは、負極集電体21Yの負極有効領域b2のみに配置されている。負極有効領域b2は、長方形形状の外輪郭を有しており、全体的に負極活物質層22Yが設けられた領域になっている。負極接続領域a2および負極有効領域b2は、負極板20Yの第1方向d1に配列されている。負極接続領域a2は、負極有効領域b2よりも負極板20Yの第1方向d1における外側(図3における左側)に位置している。
 複数の負極集電体21Yは、負極接続領域a2において、抵抗溶接や超音波溶接、テープによる貼着、融着等によって接合され、電気的に接続している。このように、負極集電体21Yの各々の負極接続領域a2によって、膜電極接合体5の負極接続部23を構成している。膜電極接合体5の負極接続部23は、第1基材41の側の面である第1面23aと、第2基材42の側の面である第2面23bと、を有している。すなわち、第1面23aは、複数の負極集電体21Yのうち最も第1基材41の側に配置された負極集電体21Yの負極接続領域a2における第1面21aに相当する。また、第2面13bは、複数の負極集電体21Yのうち最も第2基材42の側に配置された負極集電体21Yの負極接続領域a2における第2面22bに相当する。本実施の形態では、第2面13bに、負極側タブ26(第1タブ)が電気的に接続されている。一方、負極有効領域b2は、正極板10Xの正極活物質層12Xに対面する領域に広がっている。
 図5に示すように、正極板10Xおよび負極板20Yの一方が、他方に対向する面に機能層30A(第1絶縁層)を有していてもよい。機能層30Aは、絶縁性を有し、正極板10Xおよび負極板20Yが短絡することを防止する。図示された例においては、負極板20Yが機能層30Aを有している。機能層30Aは、負極活物質層22Yの正極板10Xの側の面(正極板10Xに対向する面)に設けられている。すなわち、各負極活物質層22Yの対面する正極板10Xの側の面に機能層30Aが設けられている。各負極活物質層22Yの当該面は、機能層30Aにより覆われている。そして、負極板20Yは、正極板10Xの正極活物質層12Xと積層方向dLに対向する面を、機能層30Aによって形成されている。ただし、図示された機能層30Aに加えて、各正極板10Xに含まれる一対の正極活物質層12Xを覆う機能層30Aを設置することも可能である。
 機能層30Aは、負極活物質層22Yよりも高い空孔率を有していてもよい。また、機能層30Aは、優れた耐熱性を有していてもよい。このような機能層30Aの材料には、無機材料を用いてもよい。無機材料は、高い空孔率とともに優れた耐熱性、例えば150℃以上の耐熱性を機能層30Aに付与することができる。無機材料としては、アルミナ等が挙げられる。また、機能層30Aの材料には、有機材料を用いてもよい。有機材料としては、セルロースおよびその変成体、ポリオレフィン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリプロピレン、ポリエステル、ポリアクリロニトリル、アラミド、ポリアミドイミド、ポリイミド等の繊維状物や粒子状物が挙げられる。機能層30Aは、アルミナで形成する場合には、負極活物質層22Y上に塗工して固化させることで、作製され得る。
 (タブ)
 図1~図3に示すように、膜電極接合体5の正極接続部13に正極側タブ16が電気的に接続され、膜電極接合体5の負極接続部23に負極側タブ26が電気的に接続されている。図示された例においては、正極側タブ16は、膜電極接合体5の正極接続部13の第2面13bに取り付けられており、負極側タブ26は、膜電極接合体5の負極接続部23の第2面23bに取り付けられている。タブ16,26はそれぞれ、融着等によって取り付けられている。これにより、正極側タブ16は、正極集電体11Xと電気的に接続され、負極側タブ26は、負極集電体21Yと電気的に接続される。
 図1に示すように、タブ16,26はそれぞれ、外装体40の内部からシール部46を通って外装体40の外部へ第1方向d1に延び出ており、積層型電池1における端子として機能する。外装体40の第1基材41と各タブ16,26とは、後述するシーラント部18,28を介してヒートシールされる。同様に、外装体40の第2基材42と各タブ16,26とは、シーラント部18,28を介してヒートシールされる。このようにして、封止空間45と外装体40の外部とを連通するような隙間が各タブ16,26の周囲に形成されることを防止している。
 正極側タブ16は、アルミニウム等を用いて形成され得る。負極側タブ26は、ニッケル、ニッケルメッキ銅等を用いて形成され得る。各タブ16,26の厚みは、例えば0.1mm以上であり、1mm以下であってもよい。
 (シーラント部)
 正極側タブ16と、外装体40の第1基材41および第2基材42との間に、正極側シーラント部18が位置している。負極側タブ26と、外装体40の第1基材41および第2基材42との間に、負極側シーラント部28が位置している。シーラント部18,28は、タブ16、26に直交する方向(第2方向d2)に延びている。シーラント部18、28は、第2方向d2において、タブ16,26の両側に延び出るように、タブ16,26に取り付けられる。
 図6に示すように、正極側シーラント部18は、正極側タブ16のうち第1基材41の側の面である第1面16a、および、正極側タブ16のうち第2基材42の側の面である第2面16bの両面において、正極側タブ16の一部を覆っている。正極側シーラント部18は、第1基材41の樹脂接着層40bおよび第2基材42の樹脂接着層40bと共に第1基材41の金属層40aおよび第2基材42の金属層40aを正極側タブ16にヒートシールしている。このように、正極側シーラント部18は、第1基材41と第2基材42との間に挟持されて、正極側タブ16を挟んで、第1基材41と第2基材42とを互いにヒートシールしている。なお、この正極側シーラント部18は、外装体40のシール部46に一体化される。
 また、図7に示すように、負極側シーラント部28は、負極側タブ26のうち第1基材41の側の面である第1面26a、および、負極側タブ26のうち第2基材42の側の面である第2面26bの両面において、負極側タブ26の一部を覆っている。負極側シーラント部28は、第1基材41の樹脂接着層40bおよび第2基材42の樹脂接着層40bと共に第1基材41の金属層40aおよび第2基材42の金属層40aを負極側タブ26にヒートシールしている。このように、負極側シーラント部28は、第1基材41と第2基材42との間に挟持されて、負極側タブ26を挟んで、第1基材41と第2基材42とを互いにヒートシールしている。なお、この負極側シーラント部28は、外装体40のシール部46に一体化される。
 シーラント部18,28は、外装体40の樹脂接着層40bとタブ16,26とに溶着可能な材料から構成された部材である。シーラント部18,28の材料としては、外装体40の樹脂接着層40bと同様に、ポリプロピレン、変性ポリプロピレン、低密度ポリプロピレン、アイオノマー、エチレン・酢酸ビニル等を挙げることができる。シーラント部18,28の厚みは、例えば0.05mm以上であり、0.4mm以下であってもよい。
 (短絡防止層)
 図6および図7に示すように、膜電極接合体5の正極接続部13の第1面13aおよび正極側タブ16の第1面16a、並びに、負極接続部23の第1面23aおよび負極側タブ26の第1面26aに、短絡防止層50,51(第2絶縁層)が設けられている。
 正極側の短絡防止層50(第2短絡防止層)は、外装体40の金属層40aと、膜電極接合体5の正極接続部13および正極側タブ16とが短絡することを防止する。当該短絡防止層50は、膜電極接合体5の正極接続部13の第1面13aと正極側タブ16の第1面16aとに連続状に形成されている。正極接続部13の第1面13aにおける短絡防止層50は、図2および図3に示される正極接続領域a1の第1面13aの全体に渡って形成されていてもよい。正極側タブ16の第1面16aにおける短絡防止層50は、外装体40のシール部46(正極側シーラント部18)よりも正極接続部13の側に形成されていてもよい。より具体的には、正極側タブ16の第1面16aにおける短絡防止層50は、正極側シーラント部18と正極接続部13との間に形成されていてもよい。
 また、短絡防止層50は、膜電極接合体5の最外面5aに延びて、当該最外面5aの一部を覆うように形成されていてもよい。ここで、最外面5aは、膜電極接合体5において、最も第1基材41の側に配置された負極板20Y(第1電極板)が、最も第1基材41の側に配置された正極板10X(第2電極板)よりも第1基材41の側に配置された場合、最も第1基材41の側に配置された負極集電体21Y(第1電極集電体)の負極有効領域b2(第1有効領域)における第1面21aに相当する。なお、この最外面5aを構成する負極集電体21Yの第1面21aには、上述した機能層30Aは設けられていなくてもよい。
 負極側の短絡防止層51(第1短絡防止層)は、外装体40の金属層40aと、膜電極接合体5の負極接続部23および負極側タブ26とが短絡することを防止する。当該短絡防止層51は、膜電極接合体5の負極接続部23の第2面23bと負極側タブ26の第2面26bとに連続状に形成されている。負極接続部23の第1面23aにおける短絡防止層51は、図2および図3に示される負極接続領域a2の全体に渡って形成されていてもよい。負極側タブ26の第1面26aにおける短絡防止層51は、外装体40のシール部46(負極側シーラント部28)よりも負極接続部23の側に形成されていてもよい。より具体的には、負極側タブ26の第1面26aにおける短絡防止層51は、負極側シーラント部28と負極接続部23との間に形成されていてもよい。
 また、短絡防止層51は、膜電極接合体5の上述した最外面5aに延びて、当該最外面5aの一部を覆うように形成されていてもよい。更には、当該最外面5aにおいて、上述した正極側の短絡防止層50(図6参照)と負極側の短絡防止層51(図7参照)とが、接続されていてもよく、当該最外面5aの全体に渡って短絡防止層50,51が形成されていてもよい。
 短絡防止層50,51は、膜電極接合体5の接続部13,23に設けられた部分とタブ16,26に設けられた部分とで、厚みが異なっている。本実施の形態では、タブ16,26における短絡防止層50,51の最大厚みが、膜電極接合体5の接続部13,23における短絡防止層50,51の最大厚みよりも大きくなっている。タブ16,26における短絡防止層50,51の最大厚みは、例えば5μm~60μmとしてもよい。5μm以上とすることにより、絶縁性を確保することができるとともに、タブ16,26を強固に固定することができる。一方、60μm以下とすることにより、積層型電池1の製造性を向上させることができる。また、膜電極接合体5の接続部13,23における短絡防止層50,51の最大厚みは、例えば2μm~50μmとしてもよい。2μm以上とすることにより、絶縁性を確保することができる。一方、50μm以下とすることにより、積層型電池1の厚みの増大を抑制し、エネルギー密度の低下を抑制することができる。
 また、膜電極接合体5の最外面5aにおける短絡防止層50,51の最大厚みが、膜電極接合体5の接続部13,23における短絡防止層50,51の最大厚みよりも小さくなっていてもよい。膜電極接合体5の最外面5aにおける短絡防止層50,51の最大厚みは、例えば1μm~40μmとしてもよい。1μm以上とすることにより、絶縁性を確保することができる。一方、40μm以下とすることにより、積層型電池1の厚みの増大を抑制し、エネルギー密度の低下を抑制することができる。
 短絡防止層50,51は、絶縁性に加え、高い耐熱性を有していることが好ましい。短絡防止層50,51は、膜電極接合体5の機能層30Aの材料と同じ材料で形成されていてもよい。このような短絡防止層50,51の材料には、無機材料を用いてもよい。無機材料としては、膜電極接合体5の機能層30Aと同様に、アルミナ等が挙げられる。また、短絡防止層50,51の材料には、有機材料を用いてもよい。有機材料としては、膜電極接合体5の機能層30Aと同様に、セルロースおよびその変成体、ポリオレフィン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリプロピレン、ポリエステル、ポリアクリロニトリル、アラミド、ポリアミドイミド、ポリイミド等の繊維状物や粒子状物が挙げられる。短絡防止層50,51は、アルミナで形成する場合には、塗工して固化させることで、作製され得る。
 次に、リチウムイオン二次電池として構成された本実施の形態に係る積層型電池1の製造方法について説明する。以下に説明する積層型電池の製造方法は、膜電極接合体5を準備する膜電極接合体準備工程と、外装体40を準備する外装体準備工程と、短絡防止層50,51を形成する短絡防止層形成工程と、外装体40の第1基材41と第2基材42とをヒートシールするヒートシール工程と、を備える。以下、各工程について説明する。
 (膜電極接合体準備工程)
 膜電極接合体準備工程(第1準備工程)は、正極板10Xおよび負極板20Yをそれぞれ作製する工程と、正極板10Xおよび負極板20Yを交互に積層する工程と、を含んでいる。
 まず、正極板10Xおよび負極板20Yをそれぞれ作製する工程について説明する。正極板10Xおよび負極板20Yは、別々の工程により別々のタイミングで作製されてもよい。また、正極板10Xおよび負極板20Yは、並行して同時に作製され、作製された正極板10Xおよび負極板20Yが、順次、正極板10Xおよび負極板20Yを交互に積層する工程に供給されるようにしてもよい。
 まず、正極集電体11Xを構成するようになる長尺のアルミニウム箔上に、正極活物質層12Xを構成するようになる組成物(スラリー)を塗工して固化する。次に、所望の大きさに断裁し、枚葉状の正極板10Xが作製され得る。同様に、負極集電体21Yを構成するようになる長尺の銅箔上に、負極活物質層22Yを構成するようになる組成物(スラリー)を塗工して固化する。次に、所望の大きさに断裁し、枚葉状の負極板20Yが作製され得る。なお、正極板10Xおよび負極板20Yの少なくとも一方に機能層30Aをアルミナで形成して付与する場合には、例えば、電極板10X,20Yをなすようになる断裁前の長尺材上または断裁後の枚葉材上に、アルミナを含む材料を塗布して固化させることで機能層30Aを作製することができる。
 次に、正極板10Xおよび負極板20Yを交互に積層する工程を実施する。この工程では、正極板10Xの正極活物質層12Xと負極板20Yの負極活物質層22Yとが正対するようにして、正極板10Xおよび負極板20Yを積層していく。このようにして、図8Aに示すような複数の正極板10Xおよび複数の負極板20Yが交互に積層された膜電極接合体5を得ることができる。
 また、膜電極接合体準備工程は、タブ16,26を準備する工程と、タブ16,26を取り付ける工程と、を含んでいる。
 タブ16,26を準備する工程においては、まず、第1方向d1に延びるタブ16,26を準備する。続いて、第1方向d1に交差する方向(タブ16,26に直交する方向)に延びるシーラント部18,28を、タブ16,26に設ける。シーラント部18,28は、第1方向d1においてタブ16,26の第1面16a,26aおよび第2面16b,26bの一部を覆うようにそれぞれ設けられる。好ましくは、シーラント部18,28は、第2方向d2において、タブ16,26の両側に延び出るように、タブ16,26に取り付けられる。
 タブ16,26を取り付ける工程においては、シーラント部18,28が設けられたタブ16,26を、膜電極接合体5の複数の接続領域a1,a2によって構成される接続部13,23にそれぞれ取り付ける。
 まず、負極側タブ26をステージ上に載置する。次に、負極側タブ26の第1面26aに膜電極接合体5の負極接続部23の第2面23bが重なるように、膜電極接合体5を載せる。この際、第2方向d2における負極接続領域a2の中心位置と負極側タブ26の中心位置とが一致するように、負極側タブ26に対する膜電極接合体5の位置合わせを行う。その後、抵抗溶接や超音波溶接等によって負極側タブ26を膜電極接合体5の負極接続部23に融着させる。これにより、負極側タブ26を膜電極接合体5の負極集電体21Yの負極接続領域a2に電気的に接続させることができる。このようにして、図8Aに示すような、負極接続部23に負極側タブ26が電気的に接続された膜電極接合体5を得ることができる。同様にして、正極側タブ16を膜電極接合体5の正極接続部13に融着させて、正極側タブ16を膜電極接合体5の正極集電体11Xの正極接続領域a1に電気的に接続させる。このようにして、正極接続部13に正極側タブ16が電気的に接続された膜電極接合体5を得ることができる。
 (外装体準備工程)
 外装体準備工程(第2準備工程)は、第1基材41および第2基材42をそれぞれ作成する工程を含んでいる。
 まず、金属層40aを構成するアルミニウム箔上に、樹脂接着層40bを構成するようになる樹脂材料の組成物を塗工して固化する。次に、所望の大きさに断裁し、平板状の第1基材41が得られる。その後、平板状の第1基材41に対して、絞り加工を行い、膨出部44を形成する。これにより、周辺部43に対して膨出した膨出部44を有する第1基材41が作製され得る(図4参照)。また、金属層40aを構成するアルミニウム箔上に、樹脂接着層40bを構成するようになる樹脂材料の組成物を塗工して固化する。次に、所望の大きさに断裁し、平板状の第2基材42が得られる。
 (短絡防止層形成工程)
 短絡防止層形成工程は、正極側の短絡防止層50および負極側の短絡防止層51をそれぞれ形成する工程を含んでいる。ここでは、アルミナを含む材料で短絡防止層50,51が形成される例について説明する。
 まず、負極側の短絡防止層51を形成する。図8Bに示すように、負極側シーラント部28から膜電極接合体5の最外面5aに渡って、アルミナを含む短絡防止層51の液状の材料を塗工する。この際、負極側タブ26の第1面26aには、負極側シーラント部28と負極接続部23との間の全面に渡って短絡防止層51の材料が塗工される。負極接続部23の第1面23aには、全面に渡って短絡防止層51の材料が塗工される。短絡防止層51の材料は、スプレー塗布されるようにしてもよい。続いて、塗工された短絡防止層51の材料を固化させる。
 塗工された短絡防止層51の材料は、固化するまでの間、流動する。ここで、図8Bに示すように、負極側タブ26の第1面26aが、膜電極接合体5の負極接続部23の第2面23bに取り付けられており、負極側タブ26の第1面26aは、膜電極接合体5の負極接続部23の第1面23aよりも下方に配置されている。このため、膜電極接合体5の負極接続部23の第1面23aに塗工された材料の一部は、下方にある負極側タブ26の第1面26aに流れ込む。アルミナを含む短絡防止層51の材料は、ある程度の粘性を有しているため、負極接続部23の壁と負極側シーラント部28の壁に対して付着するようにして、負極側タブ26の第1面26a上に留まる傾向にある。このため、負極側タブ26における短絡防止層51の最大厚みが、膜電極接合体5の負極接続部23における短絡防止層51の最大厚みよりも大きくなるように、負極側の短絡防止層51が形成される。
 同様に、膜電極接合体5の負極接続部23の第1面23aは、膜電極接合体5の最外面5aよりも下方に配置されている。このため、膜電極接合体5の最外面5aに塗工された材料の一部は、下方にある膜電極接合体5の負極接続部23の第1面23aに流れ込む。アルミナを含む短絡防止層51の材料は、ある程度の粘性を有しているため、一部は膜電極接合体5の負極接続部23の第1面23a上に留まる傾向にある。このため、膜電極接合体5の最外面5aにおける短絡防止層51の最大厚みが、膜電極接合体5の負極接続部23における短絡防止層51の最大厚みよりも小さくなるように、短絡防止層51が形成される。
 また、負極側の短絡防止層51と同様にして、正極側の短絡防止層50を形成する。すなわち、正極側シーラント部18から膜電極接合体5の最外面5aに渡って、アルミナを含む短絡防止層50の液状の材料を塗工する。この場合においても、塗工された短絡防止層50の材料が流動する結果、正極側タブ16における短絡防止層50の最大厚みが、膜電極接合体5の正極接続部13における短絡防止層50の最大厚みよりも大きくなるように、短絡防止層50が形成される。また、膜電極接合体5の最外面5aにおける短絡防止層50の最大厚みが、膜電極接合体5の正極接続部13における短絡防止層50の最大厚みよりも小さくなるように、正極側の短絡防止層50が形成される。
 (ヒートシール工程)
 ヒートシール工程は、外装体40を構成する第1基材41と第2基材42とをヒートシールする工程を含んでいる。
 ヒートシール工程においては、まず、第2基材42を載置する。次に、第2基材42の上にタブ16,26が取り付けられた膜電極接合体5を載せる。続いて、その上から第1基材41を被せて、図8Cに示すように、タブ16,26が外部に延び出た状態で、膜電極接合体5が第1基材41と第2基材42との間に収容されるようにする。その後、外装体40の周縁部に沿って、第1基材41と第2基材42とをそれぞれ、100℃~200℃の温度を有する金属製のヒートバー60により押圧する。これにより、ヒートバー60により押圧された領域の近傍において、第1基材41と第2基材42の各々の内面に形成された樹脂接着層40bが溶解し、それらが互いにヒートシール(熱溶着)して、シール部46が形成される。なお、ヒートシールする工程は、減圧チャンバ内で行われ、ヒートシール後の封止空間45は減圧される。
 ところで、ヒートシール工程において、第1基材41と第2基材42とをヒートシールする際、そのヒートシールのために与えられた熱により、意図しない領域で樹脂接着層40bが溶解し、金属層40aが露出するおそれがある。このような金属層40aの露出は、高温となるシール部46の近傍において生じやすい。これに対して、本実施の形態では、ヒートシールする際には、膜電極接合体5の接続部13,23の第1面13a,23aおよびタブ16,26の第1面16a,26aに、短絡防止層50,51が形成されている。このため、意図しない領域で樹脂接着層40bが溶解し、金属層40aが露出したとしても、露出した金属層40aと、膜電極接合体5の接続部13,23およびタブ16,26とが短絡することを防止することができる。
 また、図8Cに示すように、シール部46において、外装体40とタブ16,26との間には、シーラント部18,28が介在されている。このため、ヒートシールする際、第1基材41、第2基材42およびシーラント部18,28に熱および圧力が加わり、第1基材41の樹脂接着層40b、第2基材42の樹脂接着層40bおよびシーラント部18,28がそれぞれ溶解する。これにより、第1基材41とタブ16,26とがヒートシールされるとともに、第2基材42とタブ16,26とがヒートシールされる。このようにして、タブ16,26の周囲に、封止空間45と外装体40の外部とを連通するような隙間が形成されることを防止している。また、シーラント部18,28は、露出した金属層40aと、タブ16,26とが短絡することを防止することもできる。シーラント部18,28の一部は、外装体40の外部に露出していてもよい。
 このようにして、図8Dに示すような、タブ16,26がシール部46を通って外装体40の外部に延び出た状態で外装体40の内部に封止された膜電極接合体5を備える積層型電池1を作製することができる。
 このように本実施の形態によれば、膜電極接合体5の接続部13,23における第1基材41の側の面およびタブ16,26における第1基材41の側の面に、短絡防止層50,51が設けられている。このことにより、第1基材41と第2基材42とをヒートシールする際、そのヒートシールのために与えられた熱により、意図しない領域で第1基材41の樹脂接着層40bが溶解し、第1基材41の金属層40aが露出したとしても、露出した金属層40aが、膜電極接合体5の接続部13,23およびタブ16,26と電気的に接触することを防止することができる。このように第1基材41の金属層40aと、膜電極接合体5の接続部13,23およびタブ16,26とが短絡することを防止することができ、積層型電池1の信頼性を向上させることができる。
 また、本実施の形態によれば、タブ16,26は、膜電極接合体5の接続部13,23に対して第2基材42の側に配置されており、タブ16,26における短絡防止層50,51の最大厚みが、膜電極接合体5の接続部13,23における短絡防止層50,51の最大厚みよりも大きくなっている。このことにより、膜電極接合体5の接続部13,23とタブ16,26との境界を跨っている部分の短絡防止層50,51の厚みを大きくすることができ、タブ16,26を膜電極接合体5に対して強固に固定することができる。このため、積層型電池1の製造時または使用時にタブ16,26が不意に外れてしまうことを防止することができる。この結果、積層型電池1の製造時の作業性を向上させることができるとともに、積層型電池1の信頼性を向上させることができる。また、短絡がより発生しやすいシール部46に近い側で短絡防止層50,51の最大厚みが大きくなっているため、より効果的に第1基材41の金属層40aとタブ16,26とが短絡することを防止することができる。このため、積層型電池1の信頼性をより一層向上させることができる。
 また、本実施の形態によれば、タブ16,26における短絡防止層50,51は、シール部46(シーラント部18,28)よりも接続部13,23の側に形成されている。このことにより、外装体40をヒートシールする際、第1基材41と第2基材42との間のシール部46に短絡防止層50,51が介在することを抑制することができる。このため、外装体40内の封止空間45の気密性の低下を抑制することができる。
 また、本実施の形態によれば、短絡防止層50,51は、膜電極接合体5の最も第1基材41の側に配置された負極集電体21Yの負極有効領域b2における第1基材41の側の面に延びている。このことにより、露出した金属層40aが、膜電極接合体5の負極有効領域b2と電気的に接触することを防止することができる。このように金属層40aと、膜電極接合体5の負極有効領域b2とが短絡することを防止することができ、積層型電池1の信頼性をより一層向上させることができる。
 また、本実施の形態によれば、短絡防止層50,51は、正極板10Xおよび負極板20Yの一方の他方に対向する面に設けられた機能層30A(第1絶縁層)と同じ材料を含んでいる。このため、短絡防止層50,51を形成する材料に、機能層30Aを形成する材料を用いることができ、積層型電池1の製造コストを低減することができる。
 また、本実施の形態によれば、短絡防止層50,51は、アルミナを含んでいる。このため、短絡防止層50,51は、絶縁性に加え、高い耐熱性を有している。このことにより、第1基材41と第2基材42とをヒートシールする際、熱により短絡防止層50,51が破損してしまうことを抑制することができる。このため、金属層40aと、膜電極接合体5の接続部13,23およびタブ16,26とが短絡することを防止することができ、積層型電池1の信頼性をより一層向上させることができる。
 また、本実施の形態によれば、金属層40aは、アルミニウムを含んでいる。アルミニウムは、膜電極接合体5の負極接続部23または負極側タブ26と接触すると、還元反応を起こし、リチウムアルミニウム合金が生成され得る。このようなアルミニウムの合金化が進行すると、外装体40が脆くなり、積層型電池1の寿命が低下するおそれがある。本実施の形態によれば、このようなアルミニウムの合金化の進行を抑制し、積層型電池1の寿命の低下を抑制することができる。
 また、本実施の形態によれば、第1基材41は、周辺部43に対して第2基材42の側とは反対側に膨出した、封止空間を画定する膨出部44を有している。第1基材41は、この膨出部44が形成されることで、樹脂接着層40bの一部が薄くなり、金属層40aが露出し易くなる。本実施の形態によれば、第1基材41に膨出部44が形成され、金属層40aが露出し易くなっていたとしても、露出した金属層40aと、膜電極接合体5の接続部13,23およびタブ16,26とが短絡することを防止することができる。
 また、本実施の形態によれば、短絡防止層50,51の材料を塗工することにより短絡防止層50,51を形成している。このことにより、膜電極接合体5の接続部13,23およびタブ16,26において、簡単に、かつ広範囲に渡って、短絡防止層50,51を形成することができる。このため、積層型電池1の製造コストの増大を抑制しつつ、膜電極接合体5の接続部13,23およびタブ16,26上において、満遍なく短絡防止層50,51を形成することができる。この結果、より確実に、露出した金属層40aと、膜電極接合体5の接続部13,23およびタブ16,26とが短絡することを防止することができる。更には、このように塗工された材料の一部は、固化するまでの間、流動することができる。このため、膜電極接合体5の接続部13,23における第1基材41の側の面に塗工された材料の一部は、タブ16,26における第1基材41の側の面に流れ込むことができる。このようにして、タブ16,26における短絡防止層50,51の最大厚みが、膜電極接合体5の接続部13,23における短絡防止層50,51の最大厚みよりも大きくなるように、短絡防止層50,51を形成することができる。
 以上において、具体例を参照しながら一実施の形態を説明してきたが、上述した具体例が一実施の形態を限定することを意図していない。上述した一実施の形態は、その他の様々な具体例で実施されることが可能であり、その要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。
 以下、図面を参照しながら、変形の一例について説明する。以下の説明および以下の説明で用いる図面では、上述した具体例と同様に構成され得る部分について、上述の具体例における対応する部分に対して用いた符号と同一の符号を用いるとともに、重複する説明を省略する。
(第1の変形例)
 上述した説明において、膜電極接合体5の接続部13,23における第1基材41の側の面(第1面13a,23a)およびタブ16,26における第1基材41の側の面(第1面16a,26a)に短絡防止層50,51を設ける例を示した。しかしながら、図9に示すように、そのことに加えて、膜電極接合体5の接続部13,23における第2基材42の側の面(第2面13b,23b)およびタブ16,26における第2基材42の側の面(第2面16b,26b)にも短絡防止層50,51を設けてよい。図9では、短絡防止層50,51は、膜電極接合体5の接続部13,23の第2面13b,23bとタブ16,26の第2面16b,26bとに連続状に形成されている例が示されている。
 また、短絡防止層50,51は、膜電極接合体5の最外面5bに延びて、当該最外面5bの一部を覆うように形成されていてもよい。ここで、最外面5bは、膜電極接合体5において、最も第2基材42の側に配置された負極板20Yが、最も第2基材42の側に配置された正極板10Xよりも第2基材42の側に配置された場合、最も第2基材42の側に配置された負極集電体21Yの負極有効領域b2における第2面21bに相当する。
 また、このような短絡防止層50,51は、アルミナで形成する場合には、上述した短絡防止層形成工程と同様にして、短絡防止層50,51を形成する液状の材料を塗工して固化させることで、作製され得る。
 図9に示す変形例によれば、膜電極接合体5の接続部13,23における第2基材42の側の面およびタブ16,26における第2基材42の側の面にも短絡防止層50,51を設けたことにより、第2基材42の金属層40aと、膜電極接合体5の接続部13,23およびタブ16,26とが短絡することを防止することができる。すなわち、第1基材41と第2基材42とをヒートシールする際、そのヒートシールのために与えられた熱により、第2基材42の側の意図しない領域で樹脂接着層40bが溶解し、金属層40aが露出するおそれがある。そのような場合であっても、露出した金属層40aが、膜電極接合体5の接続部13,23における第2基材42の側の面およびタブ16,26における第2基材42の側の面と電気的に接触することを防止することができる。
 また、図9に示す変形例によれば、短絡防止層50,51を、膜電極接合体5の接続部13,23の第2面13b,23bとタブ16,26の第2面16b,26bとの境界に跨って設けることができる。このため、タブ16,26を膜電極接合体5に対してより一層強固に固定することができる。
(第2の変形例)
 上述した説明において、タブ16,26が、膜電極接合体5の接続部13,23に対して第2基材42の側に配置されている例を示した。しかしながら、図10に示すように、タブ16,26が、膜電極接合体5の接続部13,23に対して第1基材41の側に配置されていてもよい。この場合においても、膜電極接合体5の接続部13,23における第1基材41の側の面(第1面13a,23a)およびタブ16,26における第1基材41の側の面(第1面16a,26a)に、短絡防止層50,51が形成される。
 ここで、膜電極接合体5の接続部13,23における短絡防止層50,51の最大厚みが、タブ16,26における短絡防止層50,51の最大厚みよりも大きくなるように、短絡防止層50,51を形成してもよい。膜電極接合体5の接続部13,23における短絡防止層50,51の最大厚みは、例えば5μm~60μmとしてもよい。5μm以上とすることにより、絶縁性を確保することができるとともに、タブ16,26を強固に固定することができる。一方、60μm以下とすることにより、積層型電池1の製造性を向上させることができる。また、膜電極接合体5のタブ16,26における短絡防止層50,51の最大厚みは、例えば2μm~50μmとしてもよい。2μm以上とすることにより、絶縁性を確保することができる。一方、50μm以下とすることにより、積層型電池1の厚みの増大を抑制し、エネルギー密度の低下を抑制することができる。
 また、短絡防止層50,51は、膜電極接合体5の上述した最外面5aに延びて、当該最外面5aの一部を覆うように形成されていてもよい。膜電極接合体5の最外面5aにおける短絡防止層50,51の最大厚みが、膜電極接合体5の接続部13,23における短絡防止層50,51の最大厚みよりも小さくなっていてもよい。膜電極接合体5の最外面5aにおける短絡防止層50,51の最大厚みは、例えば1μm~40μmとしてもよい。1μm以上とすることにより、絶縁性を確保することができる。一方、40μm以下とすることにより、積層型電池1の厚みの増大を抑制し、エネルギー密度の低下を抑制することができる。
 本変形例では、図10に示すように、タブ16,26の第2面16b,26bが膜電極接合体5の接続部13,23の第1面13a,23aに取り付けられており、膜電極接合体5の接続部13,23の第1面13a,23aは、タブ16,26の第1面16a,26aよりも下方に配置されている。このため、上述した短絡防止層形成工程において、タブ16,26の第1面16a,26aに塗工された材料の一部は、下方にある膜電極接合体5の接続部13,23の第1面13a,23aに流れ込む。アルミナを含む短絡防止層50,51の材料は、ある程度の粘性を有しているため、タブ16,26の壁に対して付着するようにして、膜電極接合体5の接続部13,23の第1面13a,23a上に留まる傾向にある。このため、膜電極接合体5の接続部13,23における短絡防止層50,51の最大厚みが、タブ16,26における短絡防止層50,51の最大厚みよりも大きくなるように、短絡防止層50,51が形成される。
 同様に、膜電極接合体5の接続部13,23の第1面13a,23aは、膜電極接合体5の最外面5aよりも下方に配置されている。このため、膜電極接合体5の最外面5aに塗工された材料の一部は、下方にある膜電極接合体5の接続部13,23の第1面13a,23aに流れ込む。このようにして、膜電極接合体5の最外面5aにおける短絡防止層50,51の最大厚みが、膜電極接合体5の接続部13,23における短絡防止層50,51の最大厚みよりも小さくなるように、短絡防止層50,51が形成される。
 このように図10に示す変形例によれば、タブ16,26は、膜電極接合体5の接続部13,23に対して第1基材41の側に配置されており、膜電極接合体5の接続部13,23における短絡防止層50,51の最大厚みが、タブ16,26における短絡防止層50,51の最大厚みよりも大きくなっている。このことにより、膜電極接合体5の接続部13,23とタブ16,26との間を跨っている部分の短絡防止層50,51の厚みを大きくすることができ、タブ16,26を膜電極接合体5に対して強固に固定することができる。このため、積層型電池1の製造時または使用時にタブ16,26が不意に外れてしまうことを防止することができる。この結果、積層型電池1の製造時の作業性を向上させることができるとともに、積層型電池1の信頼性を向上させることができる。
 また、図10に示す変形例によれば、短絡防止層50,51の材料を塗工することにより短絡防止層50,51を形成している。このように塗工された材料の一部は、固化するまでの間、流動することができる。このため、タブ16,26における第1基材41の側の面に塗工された材料の一部は、膜電極接合体5の接続部13,23における第1基材41の側の面に流れ込むことができる。このようにして、膜電極接合体5の接続部13,23における短絡防止層50,51の最大厚みが、タブ16,26における短絡防止層50,51の最大厚みよりも大きくなるように、短絡防止層50,51を形成することができる。
 なお、図10に示す変形例においても、図9の変形例で示したように、膜電極接合体5の接続部13,23における第2基材42の側の面およびタブ16,26における第2基材42の側の面に短絡防止層50,51を設けてもよい。
(第3の変形例)
 また、上述した説明において、短絡防止層50,51が、正極側(膜電極接合体5の正極接続部13および正極側タブ16)並びに負極側(膜電極接合体5の負極接続部23および負極側タブ26)の両方に設けられている例を示した。しかしながら、短絡防止層50,51は、正極側および負極側のいずれか一方に設けられていればよく、他方には設けられていなくてもよい。例えば、外装体40の金属層40aがアルミニウムを含んでいる場合、上述したようなアルミニウムの合金化を防ぐ観点から、負極側に短絡防止層50,51を設けるようにしてもよい。
 以上において上述した実施の形態に対するいくつかの変形例を説明してきたが、当然に、複数の変形例を適宜組み合わせて適用することも可能である。

Claims (15)

  1.  金属層と前記金属層の内面に設けられた樹脂接着層とを含む第1基材と、前記第1基材に対向する第2基材と、前記第1基材と前記第2基材とをヒートシールして、前記第1基材と前記第2基材との間に封止空間を形成するシール部と、を有する外装体と、
     前記封止空間に設けられた膜電極接合体であって、交互に積層された複数の第1電極板および複数の第2電極板と、複数の前記第1電極板が互いに電気的に接続された第1接続部と、を有する膜電極接合体と、
     前記膜電極接合体の前記第1接続部と電気的に接続され、前記外装体の前記シール部を通って前記外装体の外部に延びる第1タブと、
     前記膜電極接合体の前記第1接続部における前記第1基材の側の面および前記第1タブにおける前記第1基材の側の面に設けられた第1短絡防止層と、を備え、
     前記第1タブにおける前記第1短絡防止層の最大厚みが、前記膜電極接合体の前記第1接続部における前記第1短絡防止層の最大厚みと異なる、積層型電池。
  2.  前記第1タブは、前記膜電極接合体の前記第1接続部に対して前記第2基材の側に配置され、
     前記第1タブにおける前記第1短絡防止層の最大厚みが、前記膜電極接合体の前記第1接続部における前記第1短絡防止層の最大厚みよりも大きい、請求項1に記載の積層型電池。
  3.  前記第1タブは、前記膜電極接合体の前記第1接続部に対して前記第1基材の側に配置され、
     前記膜電極接合体の前記第1接続部における前記第1短絡防止層の最大厚みが、前記第1タブにおける前記第1短絡防止層の最大厚みよりも大きい、請求項1に記載の積層型電池。
  4.  前記第1タブにおける前記第1短絡防止層は、前記シール部よりも前記第1接続部の側に形成されている、請求項1~3のいずれか一項に記載の積層型電池。
  5.  前記第1電極板は、互いに隣接する第1接続領域および第1有効領域を含む第1電極集電体と、前記第1有効領域に設けられた第1電極活物質層と、を有し、
     前記膜電極接合体の前記第1接続部は、前記第1電極集電体の各々の前記第1接続領域によって構成され、
     最も前記第1基材の側に配置された前記第1電極板は、最も前記第1基材の側に配置された前記第2電極板よりも前記第1基材の側に配置され、
     前記第1短絡防止層は、最も前記第1基材の側に配置された前記第1電極集電体の前記第1有効領域における前記第1基材の側の面に延びている、請求項1~4のいずれか一項に記載の積層型電池。
  6.  前記第1短絡防止層は、前記膜電極接合体の前記第1接続部における前記第2基材の側の面および前記第1タブにおける前記第2基材の側の面にも設けられている、請求項1~5のいずれか一項に記載の積層型電池。
  7.  前記第1電極板および前記第2電極板の一方は、他方に対向する面に設けられた絶縁層を有し、
     前記第1短絡防止層は、前記絶縁層の材料と同じ材料を含む、請求項1~6のいずれか一項に記載の積層型電池。
  8.  前記第1短絡防止層は、アルミナを含む、請求項1~7のいずれか一項に記載の積層型電池。
  9.  前記金属層は、アルミニウムを含む、請求項1~8のいずれか一項に記載の積層型電池。
  10.  前記第1基材は、周辺部と、前記周辺部に対して前記第2基材の側とは反対側に膨出した、前記封止空間を画定する膨出部と、を有する、請求項1~9のいずれか一項に記載の積層型電池。
  11.  前記膜電極接合体は、複数の前記第2電極板が互いに電気的に接続された第2接続部を更に有し、
     前記膜電極接合体の前記第2接続部に、前記外装体の前記シール部を通って前記外装体の外部に延びる第2タブが電気的に接続され、
     前記膜電極接合体の前記第2接続部における前記第1基材の側の面および前記第2タブにおける前記第1基材の側の面に、第2短絡防止層が設けられている、請求項1~10のいずれか一項に記載の積層型電池。
  12.  前記第1電極板は、互いに隣接する第1接続領域および第1有効領域を含む第1電極集電体と、前記第1有効領域に設けられた第1電極活物質層と、を有し、
     最も前記第1基材の側に配置された前記第1電極板は、最も前記第1基材の側に配置された前記第2電極板よりも前記第1基材の側に配置され、
     前記第2短絡防止層は、最も前記第1基材の側に配置された前記第1電極集電体の前記第1有効領域における前記第1基材の側の面に延びている、請求項11に記載の積層型電池。
  13.  交互に積層された複数の第1電極板および複数の第2電極板と、複数の前記第1電極板が互いに電気的に接続された第1接続部と、を有する膜電極接合体であって、前記膜電極接合体の前記第1接続部と第1タブが電気的に接続された前記膜電極接合体を準備する第1準備工程と、
     金属層と前記金属層の内面に設けられた樹脂接着層とを含む第1基材と、前記第1基材に対向する第2基材と、を有し、前記第1基材と前記第2基材との間に前記膜電極接合体を収容するための外装体を準備する第2準備工程と、
     前記膜電極接合体の前記第1接続部における前記第1基材の側の面および前記第1タブにおける前記第1基材の側の面に第1短絡防止層を形成する形成工程と、
     前記第1基材と前記第2基材との間に、前記第1タブが電気的に接続された前記膜電極接合体を収容して、前記第1基材と前記第2基材とをヒートシールしてシール部を形成するヒートシール工程であって、前記第1タブが、前記シール部を通って前記外装体の外部に延びるように配置される、ヒートシール工程と、を備え、
     前記第1タブにおける前記第1短絡防止層の最大厚みが、前記膜電極接合体の前記第1接続部における前記第1短絡防止層の最大厚みと異なる、積層型電池の製造方法。
  14.  前記形成工程において、前記膜電極接合体の前記第1接続部における前記第1基材の側の面および前記第1タブにおける前記第1基材の側の面に前記第1短絡防止層の材料を塗工することにより前記第1短絡防止層を形成する、請求項13に記載の積層型電池の製造方法。
  15.  前記第1準備工程において、前記第1タブに、前記ヒートシール工程の際に前記第1基材と前記第1タブとをヒートシールするシーラント部が設けられており、
     前記形成工程において、前記第1タブにおける前記第1短絡防止層は、前記シーラント部よりも前記第1接続部の側に形成される、請求項13または14に記載の積層型電池の製造方法。
PCT/JP2019/038372 2018-09-28 2019-09-27 積層型電池および積層型電池の製造方法 WO2020067511A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020549482A JP6832477B2 (ja) 2018-09-28 2019-09-27 積層型電池および積層型電池の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018185952 2018-09-28
JP2018-185952 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020067511A1 true WO2020067511A1 (ja) 2020-04-02

Family

ID=69951920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038372 WO2020067511A1 (ja) 2018-09-28 2019-09-27 積層型電池および積層型電池の製造方法

Country Status (2)

Country Link
JP (1) JP6832477B2 (ja)
WO (1) WO2020067511A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001325945A (ja) * 2000-03-06 2001-11-22 Mitsubishi Chemicals Corp 電池及びその製造方法
JP2004087260A (ja) * 2002-08-26 2004-03-18 Nissan Motor Co Ltd 積層型電池、組電池、電池モジュール並びに電気自動車
JP2016081681A (ja) * 2014-10-15 2016-05-16 凸版印刷株式会社 リチウムイオン二次電池
JP2017107851A (ja) * 2015-11-30 2017-06-15 旭化成株式会社 蓄電デバイス用セパレータ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009224173A (ja) * 2008-03-17 2009-10-01 Sumitomo Electric Ind Ltd 電池
WO2015147066A1 (ja) * 2014-03-25 2015-10-01 日本電気株式会社 積層型電池及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001325945A (ja) * 2000-03-06 2001-11-22 Mitsubishi Chemicals Corp 電池及びその製造方法
JP2004087260A (ja) * 2002-08-26 2004-03-18 Nissan Motor Co Ltd 積層型電池、組電池、電池モジュール並びに電気自動車
JP2016081681A (ja) * 2014-10-15 2016-05-16 凸版印刷株式会社 リチウムイオン二次電池
JP2017107851A (ja) * 2015-11-30 2017-06-15 旭化成株式会社 蓄電デバイス用セパレータ

Also Published As

Publication number Publication date
JP6832477B2 (ja) 2021-02-24
JPWO2020067511A1 (ja) 2021-02-15

Similar Documents

Publication Publication Date Title
KR20160046160A (ko) 파우치형 이차 전지 및 이의 제조방법
JP2005129344A (ja) 二次電池、組電池、複合組電池、車輌、及び、二次電池の製造方法
WO2021060400A1 (ja) 積層型電池および積層型電池の搬送方法
JP2020095907A (ja) 積層型電池および積層型電池の製造方法
CN106549121B (zh) 蓄电装置
WO2021060399A1 (ja) 積層型電池および積層型電池の製造方法
JP6832477B2 (ja) 積層型電池および積層型電池の製造方法
JP7201482B2 (ja) 蓄電素子および蓄電素子の製造方法
JP7171351B2 (ja) ラミネート型二次電池及びその製造方法
JP2017073209A (ja) 蓄電デバイス
CN113950766A (zh) 叠层型电池
JP2019220333A (ja) 積層型電池及び積層型電池の製造方法
JP2020170636A (ja) 積層型電池
JP2019197677A (ja) 積層型電池
JP2020144998A (ja) 蓄電素子
JP7193407B2 (ja) 積層型電池
JP2020170667A (ja) 積層型電池の製造方法および積層型電池
JP6889222B2 (ja) 積層型電池および積層型電池の製造方法
JP7010904B2 (ja) 蓄電素子の製造方法
JP7268584B2 (ja) 蓄電装置及び蓄電装置の製造方法
JP2020149798A (ja) 積層型電池および積層型電池の製造方法
JP2020170639A (ja) 積層型電池
JP2020140833A (ja) 積層型電池および積層型電池の製造方法
JP2020140891A (ja) 積層型電池
JP2011216202A (ja) 蓄電デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19867807

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020549482

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19867807

Country of ref document: EP

Kind code of ref document: A1