WO2020066672A1 - Temperature compensation circuit and temperature compensated crystal oscillator - Google Patents

Temperature compensation circuit and temperature compensated crystal oscillator Download PDF

Info

Publication number
WO2020066672A1
WO2020066672A1 PCT/JP2019/035978 JP2019035978W WO2020066672A1 WO 2020066672 A1 WO2020066672 A1 WO 2020066672A1 JP 2019035978 W JP2019035978 W JP 2019035978W WO 2020066672 A1 WO2020066672 A1 WO 2020066672A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
circuit
compensation
signal
current
Prior art date
Application number
PCT/JP2019/035978
Other languages
French (fr)
Japanese (ja)
Inventor
有継 矢島
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to PCT/JP2019/037969 priority Critical patent/WO2020067341A1/en
Publication of WO2020066672A1 publication Critical patent/WO2020066672A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/30Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator
    • H03B5/32Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator

Definitions

  • the present invention relates to a temperature compensation circuit and a temperature compensated crystal oscillator.
  • the quartz crystal oscillator (Crystal Resonator) included in the crystal oscillator (Crystal Oscillator) changes its resonance frequency according to the temperature.
  • a temperature-compensated crystal oscillator Tempoture Compensated crystal Oscillator, hereinafter sometimes referred to as “TCXO”
  • TCXO Temperatur Compensated crystal Oscillator
  • VXO Voltage Control Crystal Oscillator
  • Patent Document 1 describes a temperature-compensated piezoelectric oscillator of an analog circuit type.
  • a temperature-compensated crystal oscillator including a crystal vibrating element having a frequency temperature characteristic similar to a cubic curve, having a local maximum value at a first temperature and a local minimum value at a second temperature higher than the first temperature.
  • a signal for canceling an ideal waveform (hereinafter, sometimes referred to as a “model waveform”) of the frequency temperature characteristic of the vibrating element is applied to a variable frequency crystal oscillator. As a result, the oscillation frequency is controlled to be constant.
  • the present invention has been made in view of the above problems, and an object of the present invention is to appropriately suppress a temperature change of an oscillation frequency.
  • the temperature compensation circuit includes a crystal vibrating element having a frequency temperature characteristic in which a resonance frequency becomes a maximum at a first temperature and a resonance frequency becomes a minimum at a second temperature higher than the first temperature.
  • a low-temperature compensation circuit that outputs a current that substantially changes in a temperature range lower than the first temperature as a first compensation signal, and a second temperature equal to or higher than the first temperature.
  • An intermediate temperature compensation circuit that outputs a current that changes substantially as a second compensation signal, and a high temperature compensation circuit that outputs a current that changes substantially in a temperature range higher than the second temperature as a third compensation signal
  • a compensation circuit that generates a compensation signal that is minimum at a first temperature and maximum at a second temperature, based on a temperature signal of the temperature sensor, and a first temperature or more, and a first temperature and a reference.
  • Warm A first correction circuit that outputs a first correction signal that corrects the first compensation signal in a first temperature range that is equal to or lower than a third temperature, and a fourth temperature that is equal to or higher than a fourth temperature between a reference temperature and a second temperature.
  • a correction circuit including only a second correction circuit that outputs a second correction signal for correcting the third compensation signal in a second temperature range equal to or lower than the second temperature, and a first correction signal corrected by the first correction signal.
  • a frequency-variable type based on a first corrected compensation signal that is a compensation signal, a second compensation signal, and a second compensated compensation signal that is a third compensation signal corrected by the second compensation signal.
  • a temperature compensation signal circuit for applying a control signal to the crystal oscillator.
  • FIG. 2 is a diagram illustrating a configuration of a temperature-compensated crystal oscillator according to an embodiment.
  • FIG. 4 is a diagram showing a relationship between temperature and frequency deviation of AT-cut quartz.
  • FIG. 3 is a diagram illustrating a configuration of a current-voltage conversion circuit of the temperature compensated crystal oscillator according to the embodiment.
  • FIG. 3 is a diagram illustrating a configuration of a compensation circuit and a correction circuit of the temperature-compensated crystal oscillator according to the embodiment.
  • FIG. 4 is a diagram illustrating characteristics of a low-temperature compensation circuit of the temperature-compensated crystal oscillator according to the embodiment.
  • FIG. 4 is a diagram illustrating characteristics of a medium temperature compensation circuit of the temperature compensated crystal oscillator according to the embodiment.
  • FIG. 4 is a diagram illustrating characteristics of a high-temperature compensation circuit of the temperature-compensated crystal oscillator according to the embodiment.
  • FIG. 3 is a diagram illustrating characteristics of a compensation circuit of the temperature compensated crystal oscillator according to the embodiment.
  • FIG. 4 is a diagram illustrating characteristics of a compensation circuit and a correction circuit of the temperature-compensated crystal oscillator according to the embodiment.
  • FIG. 3 is a diagram illustrating a correction principle of the temperature compensated crystal oscillator according to the embodiment.
  • FIG. 3 is a diagram illustrating a correction principle of the temperature compensated crystal oscillator according to the embodiment.
  • FIG. 3 is a diagram illustrating a correction principle of the temperature compensated crystal oscillator according to the embodiment.
  • FIG. 3 is a diagram illustrating a correction principle of the temperature compensated crystal oscillator according to the embodiment.
  • FIG. 3 is a diagram illustrating a correction principle of the temperature compensated crystal oscillator according to the embodiment.
  • FIG. 1 is a diagram showing a configuration of a temperature-compensated crystal oscillator (TCXO) 1 according to an embodiment.
  • the TCXO 1 includes a frequency variable crystal oscillator 2, a temperature sensor 3, and a temperature compensation circuit 4.
  • the variable frequency crystal oscillator 2 is a voltage controlled crystal oscillator (VCXO) 2.
  • the VCXO 2 includes a crystal resonator 11, a resistor 12 as a feedback resistor, an inverter (inverting) circuit 13 as an amplifier, a variable capacitance circuit 14, and a capacitor 15.
  • the crystal resonator element 11 includes an AT-cut crystal blank and excitation electrodes provided on both main surfaces of the crystal blank.
  • the variable capacitance circuit 14 is a variable capacitance diode (varicap). The present disclosure is not limited to variable capacitance diodes. Specifically, the variable capacitance circuit 14 is composed of a plurality of capacitors, the connection state of one or more capacitors on the basis of a control voltage V 2 to be described later may be selected.
  • the crystal resonator 11, the resistor 12, and the inverter circuit 13 are connected in parallel.
  • the variable capacitance circuit 14 is connected between one end of the crystal resonator 11 and a reference potential.
  • the reference potential is exemplified by a ground potential, but the present disclosure is not limited to this.
  • the capacitor 15 is connected between the other end of the crystal resonator 11 and a reference potential. Note that the capacitor 15 may be replaced with a variable capacitance circuit. In this case, the replaced variable capacitance circuit is connected to the temperature compensation circuit 4.
  • the crystal vibrating element 11 has a characteristic that the resonance frequency changes according to the temperature.
  • the ideal waveform 100 represented by the frequency temperature characteristic may be referred to as a “model waveform”.
  • the frequency temperature characteristic of the crystal resonator element 11 used in the VCXO 2, specifically, as shown in FIG. 2, the waveform indicating the change in the resonance frequency deviation with respect to the temperature change of the AT-cut crystal resonator element 11 has a maximum temperature T. 1, the temperature T 5 showing a higher minimum than the temperature T 1, which is similar to waveform tertiary curve exists.
  • the temperature compensation circuit 4 to offset the change in the frequency-temperature characteristics of the crystal resonator element 11, applying a control voltage V 2 to stabilize the frequency-temperature characteristic VCXO2.
  • Control voltage V 2 has a temperature T 1 of which shows the minimum, and the temperature T 5 showing the maximum, the output waveform similar to the tertiary curve exists.
  • T 1 shows the minimum
  • T 5 shows the maximum
  • Control waveform of the control voltage V 2 is compared with the model waveform shown in FIG. 2, it is shown in the vertical axis direction by inverting the waveform.
  • Temperature T 1 is, corresponds to the "first temperature” in the present disclosure
  • the temperature T 5 corresponds to the "second temperature” in the present disclosure.
  • the temperature T 1 is, for example, a temperature of ⁇ 20 ° C. or more and ⁇ 10 ° C. or less, for example, ⁇ 15 ° C., but the present disclosure is not limited thereto.
  • Temperature T 5 are, 65 ° C. or higher 75 ° C. below the temperature, for example 70 ° C. is exemplified, the present disclosure is not limited thereto.
  • the capacitance of the variable capacitance circuit 14 changes.
  • the time constant of the VCXO2 changes, so that the oscillation frequency of the VCXO2 changes.
  • the temperature compensating circuit 4 cancels the temperature change of the oscillation frequency of the VCXO2 by the change of the time constant of the VCXO2.
  • the temperature compensating circuit 4 includes an analog circuit that reproduces an ideal waveform of a change in resonance frequency with respect to a change in temperature in the crystal resonator element 11, and generates a signal that suppresses a temperature change in the oscillation frequency of the VCXO2 based on the ideal waveform.
  • the temperature compensation circuit 4 can control the oscillation frequency of the VCXO2 to be constant.
  • the temperature sensor 3 is disposed near the crystal vibrating element 11 to detect a temperature, and outputs a voltage Vtemp representing a temperature state to the temperature compensation circuit 4.
  • the voltage Vtemp corresponds to the “temperature signal” of the present disclosure.
  • the temperature compensation circuit 4 includes a compensation circuit 5, a correction circuit 6, and a temperature compensation signal circuit 7. Note that the temperature compensation circuit 4 is configured by an analog element.
  • the compensation circuit 5 includes a low temperature compensation circuit 21, a medium temperature compensation circuit 22, and a high temperature compensation circuit 23.
  • the medium temperature, and the temperature above T 1 and the temperature T 5 less temperature range is intended to include a reference temperature T 3.
  • Reference temperature T 3 is a temperature serving as a reference for the oscillation frequency of VCXO2, the temperature of 25 ° C. or higher 30 ° C. or less is exemplified, the present disclosure is not limited thereto.
  • the reference temperature T 3 may be 27 ° C. (300 Kelvin).
  • Reference temperature T 3 may be a center temperature of the temperature above T 1 and the temperature T 5 less temperature range.
  • Cold compensation circuit 21 outputs a current I 1 is a signal for temperature compensation of VCXO2 at low temperatures.
  • Current I 1 corresponds to the "first compensation signal" of the present disclosure.
  • Medium temperature compensation circuit 22 outputs a current I 2 is a signal for temperature compensation of VCXO2 at moderate temperatures.
  • Current I 2 corresponds to the "second compensation signal" of the present disclosure.
  • Hot compensation circuit 23 outputs a current I 3 is a signal for temperature compensation of VCXO2 at high temperatures.
  • Current I 3 corresponding to the "third compensation signal" of the present disclosure.
  • the current I SUM1 corresponds to the “compensation signal” of the present disclosure.
  • the correction circuit 6 includes a first correction circuit 31 and a second correction circuit 32.
  • the first correction circuit 31, the range of temperature above T 1 and temperature T 2 below the temperature, and outputs a current I 4 is a signal for correcting the current I SUM1.
  • temperature T 2 is a temperature lower than the high and the reference temperature T 3 than the temperature T 1. For temperature T 2 will be described later.
  • Temperature T 2 corresponds to the "third temperature” of the present disclosure.
  • Current I 4 corresponds to the "first correction signal" of the present disclosure.
  • the second correction circuit 32 a range of temperature T 4 or more and a temperature T 5 temperature below, and outputs a current I 5 is a signal for correcting the current I SUM1.
  • the temperature T 4 is high and lower than the temperature T 5 temperature than the reference temperature T 3. Temperature T 4 will be described later. Temperature T 4 corresponds to a "fourth temperature” of the present disclosure. Current I 5 corresponds to the "second correction signal" of the present disclosure.
  • Output terminals of the first correction circuit 31 and the second correction circuit 32 are connected by wiring. Therefore, the current I 4 and the current I 5 are added to become the current I SUM2 .
  • the current I SUM2 corresponds to the “correction signal” of the present disclosure.
  • the current I SUM1 and the current I SUM2 are added by the wiring connection, and become the current I SUM3 .
  • the current ISUM3 is input to the temperature compensation signal circuit 7.
  • the current I SUM3 corresponds to the “compensation signal after correction” of the present disclosure.
  • the current I 1 , the current I 2, and the current I 3 are added to form a current I SUM1
  • the current I 4 and the current I 5 are added to form a current I SUM2
  • the present disclosure is not limited to this.
  • the output terminals of the low temperature compensation circuit 21, the medium temperature compensation circuit 22, the high temperature compensation circuit 23, the first correction circuit 31, and the second correction circuit 32 may be connected by wiring. That is, the current I 1 , the current I 2 , the current I 3 , the current I 4, and the current I 5 may be added at one time to obtain the current I SUM3 .
  • the temperature compensation signal circuit 7 includes a current-voltage conversion circuit 41 and an adjustment circuit 42.
  • FIG. 3 is a diagram showing a configuration of a current-voltage conversion circuit of the temperature compensated crystal oscillator according to the embodiment.
  • the current-voltage conversion circuit 41 includes an operational amplifier 41a, a constant voltage source 41b, and resistors 41c and 41d.
  • a constant voltage is input to the non-inverting input terminal of the operational amplifier 41a from the constant voltage source 41b.
  • One end of the resistor 41c is connected to the inverting input terminal of the operational amplifier 41a.
  • the current ISUM3 is input to the other end of the resistor 41c.
  • the resistor 41d is connected between the inverting input terminal and the output terminal of the operational amplifier 41a. That is, the current-voltage conversion circuit 41 is an inverting amplifier circuit. From the output terminal of the operational amplifier 41a, a current - voltage V 1 of the post-voltage conversion, and output to the adjustment circuit 42.
  • Adjusting circuit 42 outputs the control voltage V 2 obtained by multiplying the gain K set in advance in the voltages V 1 to the variable capacitance circuit 14, an amplification circuit.
  • the gain K will be described later.
  • the adjustment circuit 42 is not limited to an amplifier circuit. Adjusting circuit 42, in addition to multiplying the gain K to voltages V 1, the voltages V 1 may perform other processing.
  • the adjustment circuit 42 may be rotated waveforms of voltages V 1.
  • This adjustment circuit 42 by multiplying the large gain in voltages V 1 as the temperature of VCXO2 away from the reference temperature T 3, can be realized.
  • the adjustment circuit 42 or by offsetting the waveform of the voltages V 1 in the frequency direction may be or is offset a waveform of voltages V 1 to a temperature direction. Adjusting circuit 42, at least, it is sufficient that multiplying the gain K to the voltage V 1.
  • the adjustment circuit 42 can appropriately control the fluctuation of the resonance frequency even if the VCXO2 has an individual difference (for example, manufacturing variation of the cut angle of the AT cut).
  • FIG. 4 is a diagram illustrating a configuration of a compensation circuit and a correction circuit of the temperature-compensated crystal oscillator according to the embodiment.
  • the low-temperature compensation circuit 21 includes N-channel transistors Tr1 and Tr2, and a circuit 51.
  • the collector of the transistor Tr1 is connected to the power supply potential VDD.
  • the base of the transistor Tr1 the threshold voltage Vth 1 is input.
  • the emitter of the transistor Tr1 is connected to the emitter of the transistor Tr2.
  • the collector of the transistor Tr2 outputs a current I 1.
  • the actual collector current of the transistor Tr2 flows in the collector.
  • the current-voltage conversion circuit 41 is an inverting amplification circuit. Accordingly, for easy understanding, the direction of the current I 1 is set to a direction flowing out from the collector of the transistor Tr2.
  • a current - voltage converting circuit 41 can be considered replaced with a non-inverting amplifier circuit.
  • Vtemp representing the temperature of VCXO2 is input to the base of the transistor Tr2.
  • the emitter of the transistor Tr2 is connected to the emitter of the transistor Tr1.
  • each transistor is a bipolar transistor, but the present disclosure is not limited to this.
  • Each transistor may be a field effect transistor (Field Effect Transistor: FET).
  • FET Field Effect Transistor
  • the FET has more phase noise than the bipolar transistor. Therefore, from the viewpoint of suppressing phase noise, a bipolar transistor is preferable.
  • FETs are preferable.
  • the circuit 51 includes an N-channel transistor 51a, a resistor 51b, and a constant voltage source 51c.
  • the collector of the transistor 51a is connected to the emitters of the transistors Tr1 and Tr2.
  • a constant voltage is input to the base of the transistor 51a from a constant voltage source 51c.
  • the resistor 51b is connected between the emitter of the transistor 51a and a reference potential. That is, the circuit 51 is a constant current circuit for flowing a constant current. Therefore, the circuit 51 keeps the sum of the emitter current of the transistor Tr1 and the emitter current of the transistor Tr2 constant.
  • the low-temperature compensation circuit 21 is an emitter-coupled amplifier (source-coupled amplifier).
  • Cold compensating circuit 21 are the emitter-coupled amplifying circuit (source-coupled amplifier circuit), a current I 1 is expressed by the following equation (1).
  • ⁇ F is the current gain of the transistors Tr1 and Tr2 (base grounded).
  • I EE is the sum of the emitter current of the transistor Tr1 and the emitter current of the transistor Tr2.
  • VT is the thermal voltage.
  • Vid Vth 1 -Vtemp.
  • the current I 1 substantially changes around the threshold voltage Vth 1 when the Vid is approximately in the range of ⁇ 4 V T to 4 V T.
  • the current I 1 is substantially constant when Vid is approximately ⁇ 4 V T or less.
  • Current I 1 is in a range Vid is more than 4V T generally is substantially zero.
  • FIG. 5 is a diagram illustrating characteristics of the low-temperature compensation circuit of the temperature-compensated crystal oscillator according to the embodiment.
  • Waveform 101 represents the current I 1.
  • Current I 1 shows normalized.
  • the threshold voltage Vth 1, as in the current I 1 becomes substantially zero at a temperature above T 1, are set. That is, the current I 1 is substantially varied at a low temperature, no change in the medium temperature and high temperature.
  • the intermediate temperature compensation circuit 22 includes N-channel transistors Tr3 and Tr4 and a circuit 51.
  • the collector of the transistor Tr3 is connected to the power supply potential VDD.
  • the base of the transistor Tr3, the threshold voltage Vth 2 is input.
  • the emitter of the transistor Tr3 is connected to the emitter of the transistor Tr4.
  • the collector of the transistor Tr4 outputs a current I 2.
  • the direction of the current I similar to the current I 1, and the direction flowing out from the collector of the transistor Tr4.
  • a voltage Vtemp representing the temperature of VCXO2 is input to the base of the transistor Tr4.
  • the emitter of the transistor Tr4 is connected to the emitter of the transistor Tr3.
  • the intermediate temperature compensation circuit 22 is an emitter-coupled amplifier (source-coupled amplifier).
  • Medium temperature compensating circuit 22 are the emitter-coupled amplifying circuit (source-coupled amplifier circuit), the current I 2 is expressed by the following equation (2).
  • Vid Vth 2 ⁇ Vtemp.
  • the current I 2 substantially changes around the threshold voltage Vth 2 when the Vid is approximately in the range of ⁇ 4 V T to 4 V T.
  • the current I 2 becomes substantially zero when the Vid is approximately ⁇ 4 V T or less.
  • Current I 2 is in the range Vid is more than 4V T generally substantially constant.
  • FIG. 6 is a diagram illustrating characteristics of the intermediate temperature compensation circuit of the temperature compensation crystal oscillator according to the embodiment.
  • Waveform 102 represents the current I 2.
  • Current I 2 illustrates normalized. Waveform 102 of the current I 2 (soaring), compared with the waveform 101 of the current I 1 (downward-sloping), it is inverted.
  • Threshold voltage Vth 2 together with the current I 2 is substantially zero at temperatures T 1 or less, so that the current I 2 is substantially constant at a temperature T 5 or more, are set. That is, the current I 2 is substantially varied at moderate temperatures and does not change at low and high temperatures.
  • Temperature represented by the threshold voltage Vth 2 for example, may be a reference temperature T 3.
  • the high-temperature compensation circuit 23 includes N-channel transistors Tr5 and Tr6, and a circuit 51.
  • the collector of the transistor Tr5 is connected to the power supply potential VDD.
  • the base of the transistor Tr5, the threshold voltage Vth 3 is input.
  • the emitter of the transistor Tr5 is connected to the emitter of the transistor Tr6.
  • the collector of the transistor Tr6 outputs a current I 3.
  • the direction of the current I similar to the current I 1, and the direction flowing out from the collector of the transistor Tr6.
  • Vtemp representing the temperature of VCXO2 is input to the base of the transistor Tr6.
  • the emitter of the transistor Tr6 is connected to the emitter of the transistor Tr5.
  • the high-temperature compensation circuit 23 is an emitter-coupled amplifier (source-coupled amplifier).
  • Hot compensating circuit 23 are the emitter-coupled amplifying circuit (source-coupled amplifier circuit), a current I 3 is represented by the formula (1) described above.
  • Vth 3 -Vtemp the emitter-coupled amplifying circuit
  • the current I 3 substantially changes with the Vid about the threshold voltage Vth 3 within a range of approximately ⁇ 4 V T to 4 V T.
  • Current I 3, in the range Vid is more than 4V T generally is substantially zero.
  • each of the low-temperature compensation circuit 21, the medium-temperature compensation circuit 22, and the high-temperature compensation circuit 23 is an emitter-coupled amplifier (source-coupled amplifier), but the present disclosure is not limited to this.
  • Each of the low-temperature compensation circuit 21, the medium-temperature compensation circuit 22, and the high-temperature compensation circuit 23 may be another amplification circuit or a circuit other than the amplification circuit.
  • FIG. 7 is a diagram illustrating characteristics of the high-temperature compensation circuit of the temperature-compensated crystal oscillator according to the embodiment.
  • Waveform 103 represents the current I 3.
  • Current I 3 shows normalized.
  • Threshold voltage Vth 3 like current I 3 is substantially constant at a temperature T 5 less, and is set. That is, the current I 3 is substantially varied at a high temperature, it does not change at low and moderate temperatures.
  • FIG. 8 is a diagram illustrating characteristics of a compensation circuit of the temperature compensated crystal oscillator according to the embodiment.
  • Waveform 104 represents current I SUM1 .
  • the current I SUM1 (waveform 104) becomes a minimum at a temperature T 1, the maximum temperature T 5.
  • the temperature compensation range of the TCXO1 is a range of the temperature T 0 or more and the temperature T 6 or less.
  • the temperature T 0 is exemplified to be lower than the temperature T 1 and in a range in which the current I 1 (waveform 101) changes, but the present disclosure is not limited to this.
  • the temperature T 6 is exemplified to be higher than the temperature T 5 and in a range where the current I 3 (waveform 103) changes, but the present disclosure is not limited to this.
  • the temperature compensation range TCXO1 a temperature T 0 or more and the temperature T 6 the range, it is possible below.
  • Cold compensation circuit 21 since it is not necessary to consider the temperature lower than the temperature T 0, the various values (parameter, e.g., gain, etc. of the transistors Tr1 and Tr2) by adjusting the, at low temperatures, the waveform 104 model It can be adjusted to the waveform with high accuracy.
  • the high-temperature compensation circuit 23 since it is not necessary to consider the temperature higher than the temperature T 6, by adjusting the various values, at high temperatures, can be aligned with high precision waveform 104 in model waveform.
  • the first correction circuit 31 is provided to correct the current I SUM1 in the first temperature range 111.
  • the second correction circuit 32 is provided to correct the current I SUM1 in the second temperature range 112.
  • Temperature T 2 by comparing the waveform and model waveform of the current I SUM1, is predetermined.
  • the magnitude of the current I 4 is at the first temperature range 111, depending on the magnitude of the difference (error) between the waveform and the model waveform of the current I SUM1, is predetermined.
  • the temperature T 4 by comparing the waveform and model waveform of the current I SUM1, is predetermined. Also, the magnitude of the current I 5, i.e., the size of the transistors Tr9 and Tr10 are in the second temperature range 112, depending on the magnitude of the difference (error) between the waveform and the model waveform of the current I SUM1, predetermined Can be
  • the correction circuit 6 includes both the first correction circuit 31 and the second correction circuit 32, but the present disclosure is not limited to this.
  • the second correction circuit 32 is not required.
  • the first correction circuit 31 is not required. That is, the correction circuit 6 only needs to include at least one of the first correction circuit 31 and the second correction circuit 32.
  • the first correction circuit 31 includes N-channel transistors Tr7 and Tr8 and a circuit 51.
  • the collector of the transistor Tr7 is connected to the power supply potential VDD.
  • the base of the transistor Tr7, the threshold voltage Vth 4 is input.
  • the emitter of the transistor Tr7 is connected to the emitter of the transistor Tr8.
  • the collector of the transistor Tr8 outputs a current I 4.
  • the direction of the current I 4 similar to the current I 1, and the direction flowing out from the collector of the transistor Tr8.
  • Vtemp representing the temperature of VCXO2 is input to the base of the transistor Tr8.
  • the emitter of the transistor Tr8 is connected to the emitter of the transistor Tr7.
  • the first correction circuit 31 is an emitter-coupled amplifier (source-coupled amplifier).
  • the transistor Tr7 corresponds to the “first transistor” of the present disclosure.
  • the transistor Tr8 corresponds to the “second transistor” of the present disclosure.
  • the threshold voltage Vth 4 corresponds to the “first threshold voltage” of the present disclosure.
  • the first correction circuit 31 are the emitter-coupled amplifying circuit (source-coupled amplifier circuit), the current I 4 is represented by the equation (2).
  • Vid Vth 4 ⁇ Vtemp.
  • the current I 4 substantially changes around the threshold voltage Vth 4 when the Vid is approximately in the range of ⁇ 4 V T to 4 V T.
  • Current I 4 is in the following range Vid is almost -4 V T, becomes substantially zero.
  • Current I 4 is in the range Vid is more than 4V T generally substantially constant.
  • the second correction circuit 32 includes N-channel transistors Tr9 and Tr10 and a circuit 51.
  • the collector of the transistor Tr9 is connected to the power supply potential VDD.
  • the base of the transistor Tr9, the threshold voltage Vth 5 is input.
  • the emitter of the transistor Tr9 is connected to the emitter of the transistor Tr10.
  • the collector of the transistor Tr10 outputs a current I 5.
  • Vtemp representing the temperature of VCXO2 is input to the base of the transistor Tr10.
  • the emitter of the transistor Tr10 is connected to the emitter of the transistor Tr9.
  • the second correction circuit 32 is an emitter-coupled amplifier (source-coupled amplifier).
  • the transistor Tr9 corresponds to the “third transistor” of the present disclosure.
  • the transistor Tr10 corresponds to a “fourth transistor” of the present disclosure.
  • Threshold voltage Vth 5 corresponds to the "second threshold voltage" of the present disclosure.
  • the second correction circuit 32 are the emitter-coupled amplifying circuit (source-coupled amplifier circuit), a current I 5 is represented by the formula (1) described above.
  • a current I 5 is represented by the formula (1) described above.
  • Vid Vth 5 -Vtemp.
  • the current I 5 substantially changes with the Vid approximately in the range of ⁇ 4 V T to 4 V T around the threshold voltage Vth 5 .
  • Current I 5 is in the range Vid is generally less -4 V T, is substantially constant.
  • Current I 5 is in the range Vid is more than 4V T generally is substantially zero.
  • each of the currents I 4 and I 5 is smaller than each of the currents I 1 to I 3 .
  • the size of each transistor can be adjusted, for example, by changing the number of fingers.
  • the size of the transistors Tr9 and Tr10 i.e., the magnitude of the current I 5 is in the second temperature range 112, depending on the magnitude of the difference (error) between the waveform and the model waveform of the current I SUM1, is predetermined.
  • each of the first correction circuit 31 and the second correction circuit 32 is an emitter-coupled amplifier (source-coupled amplifier), but the present disclosure is not limited to this.
  • Each of the first correction circuit 31 and the second correction circuit 32 may be another amplifier circuit or a circuit other than the amplifier circuit.
  • FIG. 9 is a diagram illustrating characteristics of a compensation circuit and a correction circuit of the temperature-compensated crystal oscillator according to the embodiment.
  • Waveform 105 represents the current I 4.
  • Waveform 108 represents current I SUM3 .
  • the first correction circuit 31 are the emitter-coupled amplifying circuit (source-coupled amplifier circuit), a waveform 105 of the current I 4 is a soaring.
  • Current I 4 is the lower temperature range than the temperature T 1 (low temperature), it becomes substantially zero.
  • Current I 4 is a temperature range higher than the temperature T 2 is substantially constant. That is, the threshold voltage Vth 4 is set at the center of the first temperature range 111.
  • Current I 4 is the lower temperature range than the temperature T 1 (low temperature), since substantially be zero, it does not affect the shape of the waveform of the current I SUM1. That is, at low temperatures, waveform 108 (current I SUM3 ) matches waveform 104 (current I SUM1 ).
  • Current I 4 is the temperature above T 1 and temperature T 2 below the first temperature range 111, so varies substantially, affects the shape of the waveform of the current I SUM1. That is, in the first temperature range 111, the shape of the waveform 108 (current I SUM3 ) is different from the shape of the waveform 104 (current I SUM1 ).
  • Current I 4 is a temperature T 2 above temperature range is substantially constant. That is, at temperature T 2 above temperature range, the shape of the waveform 108 (current I SUM3) is the same as the shape of the waveform 104 (current I SUM1). However, the waveform 108 is obtained by offsetting the waveform 104 by the offset amount 121 in the positive direction. Offset 121 is the same as the current I 4.
  • the waveform 108 (current I SUM3) is offset amount 121 waveform 104 (current I SUM1) in the positive direction, becomes offset.
  • the inventor has found that the effect of the offset amount 121 can be suppressed by multiplying the voltage V 1 (current I SUM3 ) by the gain K in the adjustment circuit 42.
  • FIG. 10 to FIG. 13 are diagrams for simplifying and explaining the correction principle of the temperature compensated crystal oscillator according to the embodiment.
  • a model waveform 131 is an example of a waveform obtained by simplifying the frequency temperature characteristics of the crystal resonator 11.
  • the compensation waveform 132 is an example of the waveform of the compensation circuit.
  • x 0 corresponds to the temperature T 1
  • x 2 corresponds to the temperature T 2.
  • the function of the model waveform 131 is represented by the following equation (3).
  • y f (x) [x 0 ⁇ x ⁇ x 2 ]
  • the function of the compensation waveform 132 is represented by the following equation (4) as a linear function for simplification.
  • the difference between the model waveform 131 and the compensation waveform 132 is defined as ⁇ y.
  • a difference waveform 133 is a difference ⁇ y between the model waveform 131 and the compensation waveform 132.
  • ⁇ y at x 0, 0, in the vicinity of x 1 (slightly positive than x 1), a maximum, in x 2, 0.
  • a correction waveform 134 is an example of a correction circuit waveform.
  • the function of the correction waveform 134 is represented by the following equation (5).
  • y ⁇ g (x) [x 0 ⁇ x ⁇ x 2 ] (5)
  • ⁇ g (x) is simplified by the following equations (6) and (7).
  • a composite waveform 135 is an example of a composite waveform obtained by adding the correction waveform 134 to the compensation waveform 132.
  • the control waveform 136 is an example of a waveform for explaining the principle of the waveform of the control signal Ref. That is, the control waveform 136 is an example of a waveform for explaining the principle of generating a waveform of the control signal Ref after multiplying the composite waveform 135 by the gain K. That is, a control waveform 136 obtained by multiplying the composite waveform 135 obtained by adding the correction waveform 134 to the compensation waveform 132 and the gain K is obtained.
  • the difference between the control waveform 136 and the model waveform 131 is smaller than the difference between the compensation waveform 132 and the model waveform 131. That is, it can be seen that the shape of the control waveform 136 is closer to the model waveform 131 than the shape of the compensation waveform 132.
  • the first correction circuit 31 outputs the current I 4 (the principle is described with the correction waveform 134 in FIG. 11), and the adjustment circuit 42 , Multiply the value of the current I SUM3 after the current-voltage conversion by the gain K.
  • the temperature compensating circuit 4 controls the control waveform 136, which is an example of the simplified waveform of the control voltage V 2 , in the first temperature range 111 and the frequency in the crystal vibrating element 11.
  • the difference (error) from the model waveform 131 which is an example of the waveform whose temperature characteristic is simplified can be suitably reduced, and the change in the resonance frequency of the crystal resonator element 11 can be suitably suppressed.
  • the first correction circuit 31 corrects the current I SUM1 in the first temperature range 111 by outputting the current I 4
  • the second correction circuit 32 by outputting the current I 5, corrects the current I SUM1 in a second temperature range 112.
  • Current I 5 is substantially changed in the second temperature range 112, substantially unchanged in other temperature ranges. That is, the threshold voltage Vth 5 is in the middle of the second temperature range 112 is set.
  • the adjustment circuit 42 multiplies the value of the current I SUM3 after the current-voltage conversion by the gain K.
  • the temperature compensating circuit 4 in the second temperature range 112, and suitably suppressed the difference (error) between the waveform and the model waveform of the control voltage V 2, suitably suppresses the change in the oscillation frequency of VCXO2 be able to.
  • the second correction circuit 32 a simple circuit configuration that emitter-coupled amplifying circuit (see FIG. 4), it is possible to output the current I 5.
  • each of the low-temperature compensation circuit 21, the medium-temperature compensation circuit 22, the high-temperature compensation circuit 23, the first correction circuit 31, and the second correction circuit 32 has the same circuit configuration (in the embodiment, the emitter-coupled amplifier (source-coupled amplifier)). ), It is easy to realize the temperature compensation circuit 4 on a semiconductor integrated circuit device with an analog circuit configuration.

Abstract

A temperature compensation circuit, including: a compensation circuit for generating, on the basis of a temperature signal sensed by a temperature sensor, a compensation signal, which is minimum at a first temperature and maximum at a second temperature higher than the first temperature; a correction circuit for generating a correction signal for correcting the compensation signal at a first temperature range and/or a second temperature range, the first temperature range being between the first temperature and a third temperature inclusive, the third temperature being between the first temperature and the second temperature, the second temperature range being between a fourth temperature and the second temperature inclusive, the fourth temperature being between the first temperature and the second temperature; and a temperature compensation signal circuit for applying a control signal to a frequency-variable-type crystal oscillator, the control signal being applied on the basis of a corrected compensation signal, which is the compensation signal after being corrected by the correction signal.

Description

温度補償回路及び温度補償水晶発振器Temperature compensation circuit and temperature compensated crystal oscillator
 本発明は、温度補償回路及び温度補償水晶発振器に関する。 The present invention relates to a temperature compensation circuit and a temperature compensated crystal oscillator.
 水晶発振器(Crystal Oscillator)に含まれる水晶振動素子(Crystal Resonator)は、温度に応じて共振周波数が変化する。温度補償型水晶発振器(Temperature Compensated crystal Oscillator、以下、「TCXO」と称する場合がある)は、温度に応じて、電圧制御水晶発振器(Voltage Contorolled crystal Oscilator、以下、「VCXO」と称する場合がある)に印加する電圧を生成する温度補償回路を有する。この温度補償回路により、温度が変化しても、温度補償型水晶発振器の発振周波数が一定になるよう制御できる。 The quartz crystal oscillator (Crystal Resonator) included in the crystal oscillator (Crystal Oscillator) changes its resonance frequency according to the temperature. A temperature-compensated crystal oscillator (Temperature Compensated crystal Oscillator, hereinafter sometimes referred to as “TCXO”) may be a voltage-controlled crystal oscillator (Voltage Control Crystal Oscillator, hereinafter referred to as “VCXO”) depending on the temperature. Has a temperature compensation circuit for generating a voltage to be applied to. This temperature compensation circuit can control the oscillation frequency of the temperature compensated crystal oscillator to be constant even if the temperature changes.
 下記の特許文献1には、アナログ回路方式の、温度補償型圧電発振器が記載されている。 The following Patent Document 1 describes a temperature-compensated piezoelectric oscillator of an analog circuit type.
特開平11-261336号公報JP-A-11-261336
 第1の温度で極大値を有し、第1の温度より高い第2の温度で極小値を有する、三次曲線に類似した周波数温度特性を有する水晶振動素子を含む温度補償型水晶発振器において、水晶振動素子の周波数温度特性の理想的な波形(以下、「モデル波形」と称する場合がある)を相殺する信号を周波数可変型の水晶発振器に印加する。その結果、発振周波数が一定になるよう制御される。 A temperature-compensated crystal oscillator including a crystal vibrating element having a frequency temperature characteristic similar to a cubic curve, having a local maximum value at a first temperature and a local minimum value at a second temperature higher than the first temperature. A signal for canceling an ideal waveform (hereinafter, sometimes referred to as a “model waveform”) of the frequency temperature characteristic of the vibrating element is applied to a variable frequency crystal oscillator. As a result, the oscillation frequency is controlled to be constant.
 実際の水晶振動素子の周波数温度特性の波形に対するモデル波形への近似度合いを高めるために、より高次の数式を用いて近似することが考えられる。近似式の次数を高くすれば波形を原理的には近似できる。しかしながら、アナログ回路方式において、高次式を実現するためには、より多くの回路構成が必要となる。回路構成数が増加すれば、各回路の誤差が積み重なり、アナログ回路全体の誤差が拡大することが起こり得る。 In order to increase the degree of approximation of the waveform of the frequency temperature characteristic of the actual crystal vibrating element to the model waveform, approximation using a higher-order mathematical expression may be considered. If the order of the approximate expression is increased, the waveform can be approximated in principle. However, in the analog circuit system, in order to realize a higher-order expression, more circuit configurations are required. If the number of circuit configurations increases, errors in each circuit may accumulate, and errors in the entire analog circuit may increase.
 本発明は上記課題を鑑みて発明されたものであって、本発明の目的は発振周波数の温度変化を好適に抑制することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to appropriately suppress a temperature change of an oscillation frequency.
 本発明の一側面の温度補償回路は、第1温度で共振周波数が極大となり、第1温度より高い第2温度で共振周波数が極小となる周波数温度特性を有する水晶振動素子を含む、周波数可変型の水晶発振器の温度補償を行う回路であって、第1温度より低い温度範囲において実質的に変化する電流を、第1補償信号として出力する、低温補償回路と、第1温度以上且つ第2温度以下において実質的に変化する電流を、第2補償信号として出力する、中温補償回路と、第2温度より高い温度範囲において実質的に変化する電流を、第3補償信号として出力する、高温補償回路と、を含み、温度センサの温度信号に基づいて、第1温度で極小となり、第2温度で極大となる補償信号を生成する、補償回路と、第1温度以上、且つ、第1温度と基準温度との間の第3温度以下の第1温度範囲において第1補償信号を補正する第1補正信号を出力する第1補正回路、及び、基準温度と第2温度との間の第4温度以上、且つ、第2温度以下の第2温度範囲において第3補償信号を補正する第2補正信号を出力する第2補正回路のみから成る、補正回路と、第1補正信号により補正された後の第1補償信号である第1補正後補償信号と、第2補償信号と、第2補正信号により補正された後の第3補償信号である第2補正後補償信号と、に基づいて、周波数可変型の水晶発振器に制御信号を印加する、温度補償信号回路と、を備える。 The temperature compensation circuit according to one aspect of the present invention includes a crystal vibrating element having a frequency temperature characteristic in which a resonance frequency becomes a maximum at a first temperature and a resonance frequency becomes a minimum at a second temperature higher than the first temperature. A low-temperature compensation circuit that outputs a current that substantially changes in a temperature range lower than the first temperature as a first compensation signal, and a second temperature equal to or higher than the first temperature. An intermediate temperature compensation circuit that outputs a current that changes substantially as a second compensation signal, and a high temperature compensation circuit that outputs a current that changes substantially in a temperature range higher than the second temperature as a third compensation signal And a compensation circuit that generates a compensation signal that is minimum at a first temperature and maximum at a second temperature, based on a temperature signal of the temperature sensor, and a first temperature or more, and a first temperature and a reference. Warm A first correction circuit that outputs a first correction signal that corrects the first compensation signal in a first temperature range that is equal to or lower than a third temperature, and a fourth temperature that is equal to or higher than a fourth temperature between a reference temperature and a second temperature. In addition, a correction circuit including only a second correction circuit that outputs a second correction signal for correcting the third compensation signal in a second temperature range equal to or lower than the second temperature, and a first correction signal corrected by the first correction signal. A frequency-variable type based on a first corrected compensation signal that is a compensation signal, a second compensation signal, and a second compensated compensation signal that is a third compensation signal corrected by the second compensation signal. A temperature compensation signal circuit for applying a control signal to the crystal oscillator.
 本発明によれば、発振周波数の温度変化を好適に抑制することが可能となる。 According to the present invention, it is possible to preferably suppress the temperature change of the oscillation frequency.
実施の形態の温度補償水晶発振器の構成を示す図である。FIG. 2 is a diagram illustrating a configuration of a temperature-compensated crystal oscillator according to an embodiment. ATカット水晶の温度-周波数偏差の関係を示す図である。FIG. 4 is a diagram showing a relationship between temperature and frequency deviation of AT-cut quartz. 実施の形態の温度補償水晶発振器の電流-電圧変換回路の構成を示す図である。FIG. 3 is a diagram illustrating a configuration of a current-voltage conversion circuit of the temperature compensated crystal oscillator according to the embodiment. 実施の形態の温度補償水晶発振器の補償回路及び補正回路の構成を示す図である。FIG. 3 is a diagram illustrating a configuration of a compensation circuit and a correction circuit of the temperature-compensated crystal oscillator according to the embodiment. 実施の形態の温度補償水晶発振器の低温補償回路の特性を示す図である。FIG. 4 is a diagram illustrating characteristics of a low-temperature compensation circuit of the temperature-compensated crystal oscillator according to the embodiment. 実施の形態の温度補償水晶発振器の中温補償回路の特性を示す図である。FIG. 4 is a diagram illustrating characteristics of a medium temperature compensation circuit of the temperature compensated crystal oscillator according to the embodiment. 実施の形態の温度補償水晶発振器の高温補償回路の特性を示す図である。FIG. 4 is a diagram illustrating characteristics of a high-temperature compensation circuit of the temperature-compensated crystal oscillator according to the embodiment. 実施の形態の温度補償水晶発振器の補償回路の特性を示す図である。FIG. 3 is a diagram illustrating characteristics of a compensation circuit of the temperature compensated crystal oscillator according to the embodiment. 実施の形態の温度補償水晶発振器の補償回路及び補正回路の特性を示す図である。FIG. 4 is a diagram illustrating characteristics of a compensation circuit and a correction circuit of the temperature-compensated crystal oscillator according to the embodiment. 実施の形態の温度補償水晶発振器の補正原理を説明する図である。FIG. 3 is a diagram illustrating a correction principle of the temperature compensated crystal oscillator according to the embodiment. 実施の形態の温度補償水晶発振器の補正原理を説明する図である。FIG. 3 is a diagram illustrating a correction principle of the temperature compensated crystal oscillator according to the embodiment. 実施の形態の温度補償水晶発振器の補正原理を説明する図である。FIG. 3 is a diagram illustrating a correction principle of the temperature compensated crystal oscillator according to the embodiment. 実施の形態の温度補償水晶発振器の補正原理を説明する図である。FIG. 3 is a diagram illustrating a correction principle of the temperature compensated crystal oscillator according to the embodiment.
 以下に、本発明の温度補償回路及び温度補償水晶発振器の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態により本発明が限定されるものではない。各実施の形態は例示であり、異なる実施の形態で示した構成の部分的な置換又は組み合わせが可能であることは言うまでもない。第2の実施の形態以降では第1の実施形態と共通の事柄についての記述を省略し、異なる点についてのみ説明する。特に、同様の構成による同様の作用効果については実施形態毎には逐次言及しない。 Hereinafter, embodiments of the temperature compensation circuit and the temperature compensation crystal oscillator of the present invention will be described in detail with reference to the drawings. The present invention is not limited by the embodiment. Each embodiment is an exemplification, and it goes without saying that the configurations shown in the different embodiments can be partially replaced or combined. From the second embodiment onward, description of matters common to the first embodiment will be omitted, and only different points will be described. In particular, the same operation and effect of the same configuration will not be sequentially described for each embodiment.
 図1は、実施の形態の温度補償水晶発振器(TCXO)1の構成を示す図である。TCXO1は、周波数可変型の水晶発振器2と、温度センサ3と、温度補償回路4と、を含む。周波数可変型の水晶発振器2は、電圧制御水晶発振器(VCXO)2とする。 FIG. 1 is a diagram showing a configuration of a temperature-compensated crystal oscillator (TCXO) 1 according to an embodiment. The TCXO 1 includes a frequency variable crystal oscillator 2, a temperature sensor 3, and a temperature compensation circuit 4. The variable frequency crystal oscillator 2 is a voltage controlled crystal oscillator (VCXO) 2.
 VCXO2は、水晶振動素子11と、帰還抵抗である抵抗12と、増幅回路であるインバータ(反転)回路13と、可変容量回路14と、コンデンサ15と、を含む。水晶振動素子11は、ATカットされた水晶片と、水晶片の両主面に設けられた励振電極とを含むものとする。可変容量回路14は、可変容量ダイオード(バリキャップ)とする。本開示は可変容量ダイオードに限定されない。具体的には、可変容量回路14は、複数のコンデンサで構成され、後述する制御電圧Vに基づいて1つ又は複数のコンデンサの接続状態が選択されても良い。 The VCXO 2 includes a crystal resonator 11, a resistor 12 as a feedback resistor, an inverter (inverting) circuit 13 as an amplifier, a variable capacitance circuit 14, and a capacitor 15. The crystal resonator element 11 includes an AT-cut crystal blank and excitation electrodes provided on both main surfaces of the crystal blank. The variable capacitance circuit 14 is a variable capacitance diode (varicap). The present disclosure is not limited to variable capacitance diodes. Specifically, the variable capacitance circuit 14 is composed of a plurality of capacitors, the connection state of one or more capacitors on the basis of a control voltage V 2 to be described later may be selected.
 水晶振動素子11、抵抗12及びインバータ回路13は、並列に接続されている。可変容量回路14は、水晶振動素子11の一端と基準電位との間に接続されている。基準電位は、接地電位が例示されるが、本開示はこれに限定されない。コンデンサ15は、水晶振動素子11の他端と基準電位との間に接続されている。なお、コンデンサ15を可変容量回路に置き換えてもよい。この場合、置き換えた可変容量回路は、温度補償回路4に接続される。 (4) The crystal resonator 11, the resistor 12, and the inverter circuit 13 are connected in parallel. The variable capacitance circuit 14 is connected between one end of the crystal resonator 11 and a reference potential. The reference potential is exemplified by a ground potential, but the present disclosure is not limited to this. The capacitor 15 is connected between the other end of the crystal resonator 11 and a reference potential. Note that the capacitor 15 may be replaced with a variable capacitance circuit. In this case, the replaced variable capacitance circuit is connected to the temperature compensation circuit 4.
 水晶振動素子11は、温度に応じ共振周波数が変化する特性を有する。周波数温度特性の示す理想的な波形100を以下、「モデル波形」と称する場合がある。VCXO2に用いられる水晶振動素子11の周波数温度特性、具体的には図2に示すように、ATカットの水晶振動素子11の温度変化に対する共振周波数偏差の変化を示す波形は、極大を示す温度Tと、温度Tより高く極小を示す温度Tと、が存在する三次曲線に類似した波形である。 The crystal vibrating element 11 has a characteristic that the resonance frequency changes according to the temperature. Hereinafter, the ideal waveform 100 represented by the frequency temperature characteristic may be referred to as a “model waveform”. The frequency temperature characteristic of the crystal resonator element 11 used in the VCXO 2, specifically, as shown in FIG. 2, the waveform indicating the change in the resonance frequency deviation with respect to the temperature change of the AT-cut crystal resonator element 11 has a maximum temperature T. 1, the temperature T 5 showing a higher minimum than the temperature T 1, which is similar to waveform tertiary curve exists.
 そこで、温度補償回路4は、水晶振動素子11の周波数温度特性の変化を相殺して、周波数温度特性を安定化させる制御電圧VをVCXO2に印加する。制御電圧Vは、極小を示す温度Tと、極大を示す温度Tと、が存在する三次曲線に類似した入出力の波形を有する。なお、温度補償回路4において周波数温度特性を一定に制御するため、共振周波数の増加に対してVCXO2に印加する制御電圧Vを減少させている。制御電圧Vの制御波形は、図2に示したモデル波形と比較して、縦軸方向に波形を反転して図示している。温度Tが、本開示の「第1温度」に対応し、温度Tが、本開示の「第2温度」に対応する。温度Tは、-20℃以上-10℃以下の温度、例えば-15℃が例示されるが、本開示はこれに限定されない。温度Tは、65℃以上75℃以下の温度、例えば70℃が例示されるが、本開示はこれに限定されない。 Therefore, the temperature compensation circuit 4, to offset the change in the frequency-temperature characteristics of the crystal resonator element 11, applying a control voltage V 2 to stabilize the frequency-temperature characteristic VCXO2. Control voltage V 2 has a temperature T 1 of which shows the minimum, and the temperature T 5 showing the maximum, the output waveform similar to the tertiary curve exists. In order to control the frequency temperature characteristic constant in the temperature compensation circuit 4, thereby reducing the control voltage V 2 applied to VCXO2 with an increase in the resonant frequency. Control waveform of the control voltage V 2 is compared with the model waveform shown in FIG. 2, it is shown in the vertical axis direction by inverting the waveform. Temperature T 1 is, corresponds to the "first temperature" in the present disclosure, the temperature T 5 corresponds to the "second temperature" in the present disclosure. The temperature T 1 is, for example, a temperature of −20 ° C. or more and −10 ° C. or less, for example, −15 ° C., but the present disclosure is not limited thereto. Temperature T 5 are, 65 ° C. or higher 75 ° C. below the temperature, for example 70 ° C. is exemplified, the present disclosure is not limited thereto.
 可変容量回路14は、静電容量が変化する。可変容量回路14の静電容量が変化すると、VCXO2の時定数が変化するので、VCXO2の発振周波数が変化する。温度補償回路4は、VCXO2の発振周波数の温度変化を、VCXO2の時定数の変化により打ち消す。温度補償回路4は、水晶振動素子11における温度の変化に対する共振周波数の変化の理想波形を再現したアナログ回路を含み、この理想波形に基づきVCXO2の発振周波数の温度変化を抑制する信号を生成する。温度補償回路4によって、VCXO2の発振周波数が一定になるよう制御することができる。 (4) The capacitance of the variable capacitance circuit 14 changes. When the capacitance of the variable capacitance circuit 14 changes, the time constant of the VCXO2 changes, so that the oscillation frequency of the VCXO2 changes. The temperature compensating circuit 4 cancels the temperature change of the oscillation frequency of the VCXO2 by the change of the time constant of the VCXO2. The temperature compensating circuit 4 includes an analog circuit that reproduces an ideal waveform of a change in resonance frequency with respect to a change in temperature in the crystal resonator element 11, and generates a signal that suppresses a temperature change in the oscillation frequency of the VCXO2 based on the ideal waveform. The temperature compensation circuit 4 can control the oscillation frequency of the VCXO2 to be constant.
 温度センサ3は、水晶振動素子11の近傍に配置されて温度を検出し、温度状態を表す電圧Vtempを温度補償回路4に出力する。電圧Vtempが、本開示の「温度信号」に対応する。 (4) The temperature sensor 3 is disposed near the crystal vibrating element 11 to detect a temperature, and outputs a voltage Vtemp representing a temperature state to the temperature compensation circuit 4. The voltage Vtemp corresponds to the “temperature signal” of the present disclosure.
 温度補償回路4は、補償回路5と、補正回路6と、温度補償信号回路7と、を含む。なお、温度補償回路4は、アナログ素子により構成されている。 The temperature compensation circuit 4 includes a compensation circuit 5, a correction circuit 6, and a temperature compensation signal circuit 7. Note that the temperature compensation circuit 4 is configured by an analog element.
 補償回路5は、低温補償回路21と、中温補償回路22と、高温補償回路23と、を含む。本開示において、低温とは、温度Tよりも低い温度範囲とする。中温とは、温度T以上且つ温度T以下の温度範囲とし、基準温度Tを含むものとする。基準温度Tは、VCXO2の発振周波数の基準となる温度であり、25℃以上30℃以下の温度が例示されるが、本開示はこれに限定されない。例えば、基準温度Tは、27℃(300ケルビン)であっても良い。基準温度Tは、温度T以上且つ温度T以下の温度範囲の中央の温度であっても良い。本開示において、高温とは、温度Tよりも高い温度範囲とする。 The compensation circuit 5 includes a low temperature compensation circuit 21, a medium temperature compensation circuit 22, and a high temperature compensation circuit 23. In the present disclosure, a low temperature, a lower temperature range than the temperature T 1. The medium temperature, and the temperature above T 1 and the temperature T 5 less temperature range is intended to include a reference temperature T 3. Reference temperature T 3 is a temperature serving as a reference for the oscillation frequency of VCXO2, the temperature of 25 ° C. or higher 30 ° C. or less is exemplified, the present disclosure is not limited thereto. For example, the reference temperature T 3 may be 27 ° C. (300 Kelvin). Reference temperature T 3 may be a center temperature of the temperature above T 1 and the temperature T 5 less temperature range. In the present disclosure, a high temperature, a higher temperature range than the temperature T 5.
 低温補償回路21は、低温でのVCXO2の温度補償を行う信号である電流Iを出力する。電流Iが、本開示の「第1補償信号」に対応する。 Cold compensation circuit 21 outputs a current I 1 is a signal for temperature compensation of VCXO2 at low temperatures. Current I 1 corresponds to the "first compensation signal" of the present disclosure.
 中温補償回路22は、中温でのVCXO2の温度補償を行う信号である電流Iを出力する。電流Iが、本開示の「第2補償信号」に対応する。 Medium temperature compensation circuit 22 outputs a current I 2 is a signal for temperature compensation of VCXO2 at moderate temperatures. Current I 2 corresponds to the "second compensation signal" of the present disclosure.
 高温補償回路23は、高温でのVCXO2の温度補償を行う信号である電流Iを出力する。電流Iが、本開示の「第3補償信号」に対応する。 Hot compensation circuit 23 outputs a current I 3 is a signal for temperature compensation of VCXO2 at high temperatures. Current I 3, corresponding to the "third compensation signal" of the present disclosure.
 低温補償回路21、中温補償回路22及び高温補償回路23の出力端子は、配線接続されている。従って、電流I、電流I及び電流Iは、加算されて、電流ISUM1となる。電流ISUM1が、本開示の「補償信号」に対応する。 Output terminals of the low-temperature compensation circuit 21, the medium-temperature compensation circuit 22, and the high-temperature compensation circuit 23 are connected by wiring. Therefore, the current I 1 , the current I 2, and the current I 3 are added to become the current I SUM1 . The current I SUM1 corresponds to the “compensation signal” of the present disclosure.
 補正回路6は、第1補正回路31と、第2補正回路32と、を含む。 The correction circuit 6 includes a first correction circuit 31 and a second correction circuit 32.
 第1補正回路31は、温度T以上且つ温度T以下の温度の範囲で、電流ISUM1を補正する信号である電流Iを出力する。ここで、温度Tは、温度Tより高く且つ基準温度Tより低い温度である。温度Tについては、後で説明する。温度Tが、本開示の「第3温度」に対応する。電流Iが、本開示の「第1補正信号」に対応する。 The first correction circuit 31, the range of temperature above T 1 and temperature T 2 below the temperature, and outputs a current I 4 is a signal for correcting the current I SUM1. Here, temperature T 2 is a temperature lower than the high and the reference temperature T 3 than the temperature T 1. For temperature T 2 will be described later. Temperature T 2 corresponds to the "third temperature" of the present disclosure. Current I 4 corresponds to the "first correction signal" of the present disclosure.
 第2補正回路32は、温度T以上且つ温度T以下の温度の範囲で、電流ISUM1を補正する信号である電流Iを出力する。ここで、温度Tは、基準温度Tより高く且つ温度Tより低い温度である。温度Tについては、後で説明する。温度Tが、本開示の「第4温度」に対応する。電流Iが、本開示の「第2補正信号」に対応する。 The second correction circuit 32, a range of temperature T 4 or more and a temperature T 5 temperature below, and outputs a current I 5 is a signal for correcting the current I SUM1. Here, the temperature T 4 is high and lower than the temperature T 5 temperature than the reference temperature T 3. Temperature T 4 will be described later. Temperature T 4 corresponds to a "fourth temperature" of the present disclosure. Current I 5 corresponds to the "second correction signal" of the present disclosure.
 第1補正回路31及び第2補正回路32の出力端子は、配線接続されている。従って、電流I及び電流Iは、加算されて、電流ISUM2となる。電流ISUM2が、本開示の「補正信号」に対応する。電流ISUM1及び電流ISUM2は、配線接続により加算されて、電流ISUM3となる。電流ISUM3は、温度補償信号回路7に入力される。電流ISUM3が、本開示の「補正後補償信号」に対応する。 Output terminals of the first correction circuit 31 and the second correction circuit 32 are connected by wiring. Therefore, the current I 4 and the current I 5 are added to become the current I SUM2 . The current I SUM2 corresponds to the “correction signal” of the present disclosure. The current I SUM1 and the current I SUM2 are added by the wiring connection, and become the current I SUM3 . The current ISUM3 is input to the temperature compensation signal circuit 7. The current I SUM3 corresponds to the “compensation signal after correction” of the present disclosure.
 なお、実施の形態では、理解の容易のために、電流I、電流I及び電流Iが加算されて電流ISUM1となり、電流I及び電流Iが加算されて電流ISUM2となり、電流ISUM1及び電流ISUM2が加算されて電流ISUM3となることとしたが、本開示はこれに限定されない。例えば、低温補償回路21、中温補償回路22、高温補償回路23、第1補正回路31及び第2補正回路32の出力端子が、配線接続されても良い。つまり、電流I、電流I、電流I、電流I及び電流Iが、一度に加算されて、電流ISUM3となっても良い。 In the embodiment, for the sake of easy understanding, the current I 1 , the current I 2, and the current I 3 are added to form a current I SUM1 , and the current I 4 and the current I 5 are added to form a current I SUM2 , Although the current I SUM1 and the current I SUM2 are added to obtain the current I SUM3 , the present disclosure is not limited to this. For example, the output terminals of the low temperature compensation circuit 21, the medium temperature compensation circuit 22, the high temperature compensation circuit 23, the first correction circuit 31, and the second correction circuit 32 may be connected by wiring. That is, the current I 1 , the current I 2 , the current I 3 , the current I 4, and the current I 5 may be added at one time to obtain the current I SUM3 .
 温度補償信号回路7は、電流-電圧変換回路41と、調整回路42と、を含む。 The temperature compensation signal circuit 7 includes a current-voltage conversion circuit 41 and an adjustment circuit 42.
 図3は、実施の形態の温度補償水晶発振器の電流-電圧変換回路の構成を示す図である。電流-電圧変換回路41は、オペアンプ41aと、定電圧源41bと、抵抗41c及び41dと、を含む。 FIG. 3 is a diagram showing a configuration of a current-voltage conversion circuit of the temperature compensated crystal oscillator according to the embodiment. The current-voltage conversion circuit 41 includes an operational amplifier 41a, a constant voltage source 41b, and resistors 41c and 41d.
 オペアンプ41aの非反転入力端子には、定電圧が定電圧源41bから入力される。抵抗41cの一端は、オペアンプ41aの反転入力端子に接続されている。抵抗41cの他端には、電流ISUM3が入力される。抵抗41dは、オペアンプ41aの反転入力端子と出力端子との間に接続されている。つまり、電流-電圧変換回路41は、反転増幅回路である。オペアンプ41aの出力端子からは、電流-電圧変換後の電圧Vが、調整回路42に出力される。 A constant voltage is input to the non-inverting input terminal of the operational amplifier 41a from the constant voltage source 41b. One end of the resistor 41c is connected to the inverting input terminal of the operational amplifier 41a. The current ISUM3 is input to the other end of the resistor 41c. The resistor 41d is connected between the inverting input terminal and the output terminal of the operational amplifier 41a. That is, the current-voltage conversion circuit 41 is an inverting amplifier circuit. From the output terminal of the operational amplifier 41a, a current - voltage V 1 of the post-voltage conversion, and output to the adjustment circuit 42.
 調整回路42は、予め定められたゲインKを電圧Vに乗じた制御電圧Vを可変容量回路14に出力する、増幅回路である。ゲインKについては、後で説明する。なお、調整回路42は、増幅回路に限定されない。調整回路42は、ゲインKを電圧Vに乗じることに加えて、電圧Vに他の処理を実施しても良い。 Adjusting circuit 42 outputs the control voltage V 2 obtained by multiplying the gain K set in advance in the voltages V 1 to the variable capacitance circuit 14, an amplification circuit. The gain K will be described later. Note that the adjustment circuit 42 is not limited to an amplifier circuit. Adjusting circuit 42, in addition to multiplying the gain K to voltages V 1, the voltages V 1 may perform other processing.
 例えば、調整回路42は、基準温度Tでの電圧Vの値を中心として、電圧Vの波形を回転させても良い。これは、調整回路42が、VCXO2の温度が基準温度Tから離れるほど大きなゲインを電圧Vに乗じることで、実現可能である。また、例えば、調整回路42は、電圧Vの波形を周波数方向にオフセットさせたり、電圧Vの波形を温度方向にオフセットさせたりしても良い。調整回路42は、少なくとも、ゲインKを電圧Vに乗じることができれば良い。調整回路42は、これらの処理を実施することにより、VCXO2に個体差(例えば、ATカットのカット角度の製造ばらつき)があっても、共振周波数の変動を好適に制御できる。 For example, the adjustment circuit 42, as the center values of the voltages V 1 at the reference temperature T 3, may be rotated waveforms of voltages V 1. This adjustment circuit 42, by multiplying the large gain in voltages V 1 as the temperature of VCXO2 away from the reference temperature T 3, can be realized. Further, for example, the adjustment circuit 42, or by offsetting the waveform of the voltages V 1 in the frequency direction may be or is offset a waveform of voltages V 1 to a temperature direction. Adjusting circuit 42, at least, it is sufficient that multiplying the gain K to the voltage V 1. By performing these processes, the adjustment circuit 42 can appropriately control the fluctuation of the resonance frequency even if the VCXO2 has an individual difference (for example, manufacturing variation of the cut angle of the AT cut).
 図4は、実施の形態の温度補償水晶発振器の補償回路及び補正回路の構成を示す図である。低温補償回路21は、Nチャネル型のトランジスタTr1及びTr2と、回路51と、を含む。 FIG. 4 is a diagram illustrating a configuration of a compensation circuit and a correction circuit of the temperature-compensated crystal oscillator according to the embodiment. The low-temperature compensation circuit 21 includes N-channel transistors Tr1 and Tr2, and a circuit 51.
 トランジスタTr1のコレクタは、電源電位VDDに接続されている。トランジスタTr1のベースには、閾値電圧Vthが入力される。トランジスタTr1のエミッタは、トランジスタTr2のエミッタに接続されている。 The collector of the transistor Tr1 is connected to the power supply potential VDD. The base of the transistor Tr1, the threshold voltage Vth 1 is input. The emitter of the transistor Tr1 is connected to the emitter of the transistor Tr2.
 トランジスタTr2のコレクタは、電流Iを出力する。なお、トランジスタTr2の実際のコレクタ電流は、コレクタに流入する向きである。しかし、先に説明したように、電流-電圧変換回路41は、反転増幅回路である。そこで、理解の容易のため、電流Iの向きは、トランジスタTr2のコレクタから流出する向きとした。電流Iの向きをトランジスタTr2のコレクタから流出する向きとすると、電流-電圧変換回路41は、非反転増幅回路に置き換えて考えることができる。 The collector of the transistor Tr2 outputs a current I 1. Note that the actual collector current of the transistor Tr2 flows in the collector. However, as described above, the current-voltage conversion circuit 41 is an inverting amplification circuit. Accordingly, for easy understanding, the direction of the current I 1 is set to a direction flowing out from the collector of the transistor Tr2. When the direction of flow out the direction of the current I 1 from the collector of the transistor Tr2, a current - voltage converting circuit 41 can be considered replaced with a non-inverting amplifier circuit.
 トランジスタTr2のベースには、VCXO2の温度を表す電圧Vtempが入力される。トランジスタTr2のエミッタは、トランジスタTr1のエミッタに接続されている。 電 圧 A voltage Vtemp representing the temperature of VCXO2 is input to the base of the transistor Tr2. The emitter of the transistor Tr2 is connected to the emitter of the transistor Tr1.
 なお、本開示において、各トランジスタは、バイポーラトランジスタとしたが、本開示はこれに限定されない。各トランジスタは、電界効果トランジスタ(Field Effect Transistor:FET)であっても良い。但し、FETは、バイポーラトランジスタよりも、位相ノイズが多い。従って、位相ノイズを抑制する観点からは、バイポーラトランジスタが好ましい。しかし、コスト、実装面積、及び、低消費電力を抑制する観点からは、FETが好ましい。 In the present disclosure, each transistor is a bipolar transistor, but the present disclosure is not limited to this. Each transistor may be a field effect transistor (Field Effect Transistor: FET). However, the FET has more phase noise than the bipolar transistor. Therefore, from the viewpoint of suppressing phase noise, a bipolar transistor is preferable. However, from the viewpoints of suppressing cost, mounting area, and low power consumption, FETs are preferable.
 回路51は、Nチャネル型のトランジスタ51aと、抵抗51bと、定電圧源51cと、を含む。 The circuit 51 includes an N-channel transistor 51a, a resistor 51b, and a constant voltage source 51c.
 トランジスタ51aのコレクタは、トランジスタTr1及びTr2のエミッタに接続されている。トランジスタ51aのベースには、定電圧が定電圧源51cから入力される。抵抗51bは、トランジスタ51aのエミッタと基準電位との間に接続されている。つまり、回路51は、一定の電流を流す定電流回路である。従って、回路51は、トランジスタTr1のエミッタ電流と、トランジスタTr2のエミッタ電流と、の和を一定に維持する。 (4) The collector of the transistor 51a is connected to the emitters of the transistors Tr1 and Tr2. A constant voltage is input to the base of the transistor 51a from a constant voltage source 51c. The resistor 51b is connected between the emitter of the transistor 51a and a reference potential. That is, the circuit 51 is a constant current circuit for flowing a constant current. Therefore, the circuit 51 keeps the sum of the emitter current of the transistor Tr1 and the emitter current of the transistor Tr2 constant.
 つまり、低温補償回路21は、エミッタ結合増幅回路(ソース結合増幅回路)である。 {That is, the low-temperature compensation circuit 21 is an emitter-coupled amplifier (source-coupled amplifier).
 低温補償回路21は、エミッタ結合増幅回路(ソース結合増幅回路)であるので、電流Iは、次の式(1)で表される。式(1)において、αは、トランジスタTr1及びTr2の電流増幅率(ベース接地)である。IEEは、トランジスタTr1のエミッタ電流と、トランジスタTr2のエミッタ電流と、の和である。Vは、熱電圧である。低温補償回路21では、Vid=Vth-Vtempである。 Cold compensating circuit 21 are the emitter-coupled amplifying circuit (source-coupled amplifier circuit), a current I 1 is expressed by the following equation (1). In the formula (1), α F is the current gain of the transistors Tr1 and Tr2 (base grounded). I EE is the sum of the emitter current of the transistor Tr1 and the emitter current of the transistor Tr2. VT is the thermal voltage. In the low-temperature compensation circuit 21, Vid = Vth 1 -Vtemp.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 電流Iは、閾値電圧Vthを中心として、Vidが概ね-4Vから4Vの範囲内で、実質的に変化する。電流Iは、Vidが概ね-4V以下の範囲では、実質的に一定となる。電流Iは、Vidが概ね4V以上の範囲では、実質的にゼロとなる。 The current I 1 substantially changes around the threshold voltage Vth 1 when the Vid is approximately in the range of −4 V T to 4 V T. The current I 1 is substantially constant when Vid is approximately −4 V T or less. Current I 1 is in a range Vid is more than 4V T generally is substantially zero.
 図5は、実施の形態の温度補償水晶発振器の低温補償回路の特性を示す図である。波形101は、電流Iを表す。電流Iは、正規化して示している。閾値電圧Vthは、電流Iが温度T以上で実質的にゼロになるように、設定されている。つまり、電流Iは、実質的に、低温で変化し、中温及び高温では変化しない。 FIG. 5 is a diagram illustrating characteristics of the low-temperature compensation circuit of the temperature-compensated crystal oscillator according to the embodiment. Waveform 101 represents the current I 1. Current I 1 shows normalized. The threshold voltage Vth 1, as in the current I 1 becomes substantially zero at a temperature above T 1, are set. That is, the current I 1 is substantially varied at a low temperature, no change in the medium temperature and high temperature.
 再び図4を参照すると、中温補償回路22は、Nチャネル型のトランジスタTr3及びTr4と、回路51と、を含む。 Referring again to FIG. 4, the intermediate temperature compensation circuit 22 includes N-channel transistors Tr3 and Tr4 and a circuit 51.
 トランジスタTr3のコレクタは、電源電位VDDに接続されている。トランジスタTr3のベースには、閾値電圧Vthが入力される。トランジスタTr3のエミッタは、トランジスタTr4のエミッタに接続されている。 The collector of the transistor Tr3 is connected to the power supply potential VDD. The base of the transistor Tr3, the threshold voltage Vth 2 is input. The emitter of the transistor Tr3 is connected to the emitter of the transistor Tr4.
 トランジスタTr4のコレクタは、電流Iを出力する。なお、電流Iの向きは、電流Iと同様に、トランジスタTr4のコレクタから流出する向きとした。 The collector of the transistor Tr4 outputs a current I 2. The direction of the current I 2, similar to the current I 1, and the direction flowing out from the collector of the transistor Tr4.
 トランジスタTr4のベースには、VCXO2の温度を表す電圧Vtempが入力される。トランジスタTr4のエミッタは、トランジスタTr3のエミッタに接続されている。 (4) A voltage Vtemp representing the temperature of VCXO2 is input to the base of the transistor Tr4. The emitter of the transistor Tr4 is connected to the emitter of the transistor Tr3.
 つまり、中温補償回路22は、エミッタ結合増幅回路(ソース結合増幅回路)である。 That is, the intermediate temperature compensation circuit 22 is an emitter-coupled amplifier (source-coupled amplifier).
 中温補償回路22は、エミッタ結合増幅回路(ソース結合増幅回路)であるので、電流Iは、次の式(2)で表される。中温補償回路22では、Vid=Vth-Vtempである。 Medium temperature compensating circuit 22 are the emitter-coupled amplifying circuit (source-coupled amplifier circuit), the current I 2 is expressed by the following equation (2). In the intermediate temperature compensation circuit 22, Vid = Vth 2 −Vtemp.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 電流Iは、閾値電圧Vthを中心として、Vidが概ね-4Vから4Vの範囲内で、実質的に変化する。電流Iは、Vidが概ね-4V以下の範囲では、実質的にゼロとなる。電流Iは、Vidが概ね4V以上の範囲では、実質的に一定となる。 The current I 2 substantially changes around the threshold voltage Vth 2 when the Vid is approximately in the range of −4 V T to 4 V T. The current I 2 becomes substantially zero when the Vid is approximately −4 V T or less. Current I 2 is in the range Vid is more than 4V T generally substantially constant.
 図6は、実施の形態の温度補償水晶発振器の中温補償回路の特性を示す図である。波形102は、電流Iを表す。電流Iは、正規化して示している。電流Iの波形102(右肩上がり)は、電流Iの波形101(右肩下がり)と比較して、反転している。閾値電圧Vthは、電流Iが温度T以下で実質的にゼロになるとともに、電流Iが温度T以上で実質的に一定となるように、設定されている。つまり、電流Iは、実質的に、中温で変化し、低温及び高温では変化しない。閾値電圧Vthで表される温度は、例えば、基準温度Tであっても良い。 FIG. 6 is a diagram illustrating characteristics of the intermediate temperature compensation circuit of the temperature compensation crystal oscillator according to the embodiment. Waveform 102 represents the current I 2. Current I 2 illustrates normalized. Waveform 102 of the current I 2 (soaring), compared with the waveform 101 of the current I 1 (downward-sloping), it is inverted. Threshold voltage Vth 2, together with the current I 2 is substantially zero at temperatures T 1 or less, so that the current I 2 is substantially constant at a temperature T 5 or more, are set. That is, the current I 2 is substantially varied at moderate temperatures and does not change at low and high temperatures. Temperature represented by the threshold voltage Vth 2, for example, may be a reference temperature T 3.
 再び図4を参照すると、高温補償回路23は、Nチャネル型のトランジスタTr5及びTr6と、回路51と、を含む。 Referring again to FIG. 4, the high-temperature compensation circuit 23 includes N-channel transistors Tr5 and Tr6, and a circuit 51.
 トランジスタTr5のコレクタは、電源電位VDDに接続されている。トランジスタTr5のベースには、閾値電圧Vthが入力される。トランジスタTr5のエミッタは、トランジスタTr6のエミッタに接続されている。 The collector of the transistor Tr5 is connected to the power supply potential VDD. The base of the transistor Tr5, the threshold voltage Vth 3 is input. The emitter of the transistor Tr5 is connected to the emitter of the transistor Tr6.
 トランジスタTr6のコレクタは、電流Iを出力する。なお、電流Iの向きは、電流Iと同様に、トランジスタTr6のコレクタから流出する向きとした。 The collector of the transistor Tr6 outputs a current I 3. The direction of the current I 3, similar to the current I 1, and the direction flowing out from the collector of the transistor Tr6.
 トランジスタTr6のベースには、VCXO2の温度を表す電圧Vtempが入力される。トランジスタTr6のエミッタは、トランジスタTr5のエミッタに接続されている。 電 圧 A voltage Vtemp representing the temperature of VCXO2 is input to the base of the transistor Tr6. The emitter of the transistor Tr6 is connected to the emitter of the transistor Tr5.
 つまり、高温補償回路23は、エミッタ結合増幅回路(ソース結合増幅回路)である。 {That is, the high-temperature compensation circuit 23 is an emitter-coupled amplifier (source-coupled amplifier).
 高温補償回路23は、エミッタ結合増幅回路(ソース結合増幅回路)であるので、電流Iは、前述した式(1)で表される。高温補償回路23では、Vid=Vth-Vtempである。電流Iは、閾値電圧Vthを中心として、Vidが概ね-4Vから4Vの範囲内で、実質的に変化する。電流Iは、Vidが概ね-4V以下の範囲では、実質的に一定となる。電流Iは、Vidが概ね4V以上の範囲では、実質的にゼロとなる。 Hot compensating circuit 23 are the emitter-coupled amplifying circuit (source-coupled amplifier circuit), a current I 3 is represented by the formula (1) described above. In the high temperature compensation circuit 23, Vid = Vth 3 -Vtemp. The current I 3 substantially changes with the Vid about the threshold voltage Vth 3 within a range of approximately −4 V T to 4 V T. Current I 3, in the following ranges Vid is almost -4 V T, is substantially constant. Current I 3, in the range Vid is more than 4V T generally is substantially zero.
 なお、実施の形態では、低温補償回路21、中温補償回路22及び高温補償回路23の各々をエミッタ結合増幅回路(ソース結合増幅回路)としたが、本開示はこれに限定されない。低温補償回路21、中温補償回路22及び高温補償回路23の各々は、他の増幅回路であっても良いし、増幅回路以外の回路であっても良い。 In the embodiment, each of the low-temperature compensation circuit 21, the medium-temperature compensation circuit 22, and the high-temperature compensation circuit 23 is an emitter-coupled amplifier (source-coupled amplifier), but the present disclosure is not limited to this. Each of the low-temperature compensation circuit 21, the medium-temperature compensation circuit 22, and the high-temperature compensation circuit 23 may be another amplification circuit or a circuit other than the amplification circuit.
 図7は、実施の形態の温度補償水晶発振器の高温補償回路の特性を示す図である。波形103は、電流Iを表す。電流Iは、正規化して示している。閾値電圧Vthは、電流Iが温度T以下で実質的に一定になるように、設定されている。つまり、電流Iは、実質的に、高温で変化し、低温及び中温では変化しない。 FIG. 7 is a diagram illustrating characteristics of the high-temperature compensation circuit of the temperature-compensated crystal oscillator according to the embodiment. Waveform 103 represents the current I 3. Current I 3 shows normalized. Threshold voltage Vth 3, like current I 3 is substantially constant at a temperature T 5 less, and is set. That is, the current I 3 is substantially varied at a high temperature, it does not change at low and moderate temperatures.
 図8は、実施の形態の温度補償水晶発振器の補償回路の特性を示す図である。波形104は、電流ISUM1を表す。 FIG. 8 is a diagram illustrating characteristics of a compensation circuit of the temperature compensated crystal oscillator according to the embodiment. Waveform 104 represents current I SUM1 .
 低温(温度Tよりも低い温度範囲)では、電流I(波形102)は、実質的にゼロであり、電流I(波形103)は、実質的に「1」である。従って、電流ISUM1(波形104)は、電流I(波形101)を正方向に「1」だけシフトしたものとなる。 Cold In (a temperature range lower than the temperature T 1), the current I 2 (waveform 102) is substantially zero, the current I 3 (waveform 103) is substantially "1". Therefore, current I SUM1 (waveform 104) is such as to shift by "1" current I 1 (waveform 101) in the positive direction.
 中温(温度T以上且つ温度T以下の温度範囲)では、電流I(波形101)は、実質的にゼロであり、電流I(波形103)は、実質的に「1」である。従って、電流ISUM1(波形104)は、電流I(波形102)を正方向に「1」だけシフトしたものとなる。 In medium temperature (temperature above T 1 and the temperature T 5 less temperature range), the current I 1 (waveform 101) is substantially zero, the current I 3 (waveform 103) is substantially in the "1" . Therefore, current I SUM1 (waveform 104) is such as to shift by "1" current I 2 (waveform 102) in the positive direction.
 高温(温度Tよりも高い温度範囲)では、電流I(波形101)は、実質的にゼロであり、電流I(波形102)は、実質的に「1」である。従って、電流ISUM1(波形104)は、電流I(波形103)を正方向に「1」だけシフトしたものとなる。 High temperature in (a temperature range higher than the temperature T 5), the current I 1 (waveform 101) is substantially zero, the current I 2 (waveform 102) is substantially "1". Therefore, current I SUM1 (waveform 104) is such as to shift by "1" current I 3 (waveform 103) in the positive direction.
 つまり、電流ISUM1(波形104)は、温度Tで極小となり、温度Tで極大となる。 That is, the current I SUM1 (waveform 104) becomes a minimum at a temperature T 1, the maximum temperature T 5.
 なお、TCXO1の温度補償範囲は、温度T以上且つ温度T以下の範囲である。温度Tは、温度Tより低く、且つ、電流I(波形101)が変化している範囲とすることが例示されるが、本開示はこれに限定されない。温度Tは、温度Tより高く、且つ、電流I(波形103)が変化している範囲とすることが例示されるが、本開示はこれに限定されない。 Note that the temperature compensation range of the TCXO1 is a range of the temperature T 0 or more and the temperature T 6 or less. The temperature T 0 is exemplified to be lower than the temperature T 1 and in a range in which the current I 1 (waveform 101) changes, but the present disclosure is not limited to this. The temperature T 6 is exemplified to be higher than the temperature T 5 and in a range where the current I 3 (waveform 103) changes, but the present disclosure is not limited to this.
 TCXO1の温度補償範囲を温度T以上且つ温度T以下の範囲とすることにより、以下のことが可能になる。低温補償回路21は、温度Tより低い温度を考慮しなくても良いので、各種の値(パラメータ、例えば、トランジスタTr1及びTr2のゲイン等)を調整することにより、低温において、波形104をモデル波形に高精度で合わせることができる。同様に、高温補償回路23は、温度Tより高い温度を考慮しなくても良いので、各種の値を調整することにより、高温において、波形104をモデル波形に高精度で合わせることができる。 By the temperature compensation range TCXO1 a temperature T 0 or more and the temperature T 6 the range, it is possible below. Cold compensation circuit 21, since it is not necessary to consider the temperature lower than the temperature T 0, the various values (parameter, e.g., gain, etc. of the transistors Tr1 and Tr2) by adjusting the, at low temperatures, the waveform 104 model It can be adjusted to the waveform with high accuracy. Similarly, the high-temperature compensation circuit 23, since it is not necessary to consider the temperature higher than the temperature T 6, by adjusting the various values, at high temperatures, can be aligned with high precision waveform 104 in model waveform.
 但し、低温及び高温において、波形104をモデル波形に高精度で合わせると、中温において、波形104とモデル波形との間に差分(誤差)が生じることが見出された。詳しくは、中温の範囲内の低温側端部、即ち、温度T以上且つ温度T以下の第1温度範囲111において、電流ISUM1の波形とモデル波形との間に差分(誤差)が生じることが見出された。同様に、中温の範囲内の高温側端部、即ち、温度T以上且つ温度T以下の第2温度範囲112において、電流ISUM1の波形とモデル波形との間に差分(誤差)が生じることが見出された。 However, it has been found that when the waveform 104 is accurately matched to the model waveform at low and high temperatures, a difference (error) occurs between the waveform 104 and the model waveform at medium temperatures. Specifically, the cold end of the range of medium temperature, i.e., at a temperature above T 1 and temperature T 2 below the first temperature range 111, the difference (error) is generated between the waveform and the model waveform of the current I SUM1 Was found. Similarly, the high temperature end of the range of medium temperature, i.e., at a second temperature range 112 of the temperature T 4 or more and a temperature T 5 less, the difference (error) between the waveform and the model waveform of the current I SUM1 occur Was found.
 そこで、第1温度範囲111において、電流ISUM1を補正すべく、第1補正回路31を設けた。同様に、第2温度範囲112において、電流ISUM1を補正すべく、第2補正回路32を設けた。温度Tは、電流ISUM1の波形とモデル波形とを比較することにより、予め定められる。また、電流Iの大きさは、第1温度範囲111での、電流ISUM1の波形とモデル波形との差分(誤差)の大きさに応じて、予め定められる。 Therefore, the first correction circuit 31 is provided to correct the current I SUM1 in the first temperature range 111. Similarly, the second correction circuit 32 is provided to correct the current I SUM1 in the second temperature range 112. Temperature T 2, by comparing the waveform and model waveform of the current I SUM1, is predetermined. Also, the magnitude of the current I 4 is at the first temperature range 111, depending on the magnitude of the difference (error) between the waveform and the model waveform of the current I SUM1, is predetermined.
 同様に、温度Tは、電流ISUM1の波形とモデル波形とを比較することにより、予め定められる。また、電流Iの大きさ、即ち、トランジスタTr9及びTr10のサイズは、第2温度範囲112での、電流ISUM1の波形とモデル波形との差分(誤差)の大きさに応じて、予め定められる。 Similarly, the temperature T 4, by comparing the waveform and model waveform of the current I SUM1, is predetermined. Also, the magnitude of the current I 5, i.e., the size of the transistors Tr9 and Tr10 are in the second temperature range 112, depending on the magnitude of the difference (error) between the waveform and the model waveform of the current I SUM1, predetermined Can be
 なお、実施の形態では、補正回路6が、第1補正回路31及び第2補正回路32の両方を含むこととしたが、本開示はこれに限定されない。例えば、TCXO1の温度補償範囲の上限が温度Tよりも低い場合には、第2温度範囲112で電流ISUM1を補正する必要がないので、第2補正回路32は不要である。また、例えば、TCXO1の温度補償範囲の下限が温度Tよりも高い場合には、第1温度範囲111で電流ISUM1を補正する必要がないので、第1補正回路31は不要である。即ち、補正回路6は、第1補正回路31及び第2補正回路32の内の少なくとも一方を含んでいれば良い。 In the embodiment, the correction circuit 6 includes both the first correction circuit 31 and the second correction circuit 32, but the present disclosure is not limited to this. For example, if the upper limit of the temperature compensation range TCXO1 is lower than the temperature T 4, there is no need to correct the current I SUM1 by the second temperature range 112, the second correction circuit 32 is not required. For example, when the lower limit of the temperature compensation range TCXO1 is higher than the temperature T 2, it is not necessary to correct the current I SUM1 at a first temperature range 111, the first correction circuit 31 is not required. That is, the correction circuit 6 only needs to include at least one of the first correction circuit 31 and the second correction circuit 32.
 再び図4を参照すると、第1補正回路31は、Nチャネル型のトランジスタTr7及びTr8と、回路51と、を含む。 Referring again to FIG. 4, the first correction circuit 31 includes N-channel transistors Tr7 and Tr8 and a circuit 51.
 トランジスタTr7のコレクタは、電源電位VDDに接続されている。トランジスタTr7のベースには、閾値電圧Vthが入力される。トランジスタTr7のエミッタは、トランジスタTr8のエミッタに接続されている。 The collector of the transistor Tr7 is connected to the power supply potential VDD. The base of the transistor Tr7, the threshold voltage Vth 4 is input. The emitter of the transistor Tr7 is connected to the emitter of the transistor Tr8.
 トランジスタTr8のコレクタは、電流Iを出力する。なお、電流Iの向きは、電流Iと同様に、トランジスタTr8のコレクタから流出する向きとした。 The collector of the transistor Tr8 outputs a current I 4. The direction of the current I 4, similar to the current I 1, and the direction flowing out from the collector of the transistor Tr8.
 トランジスタTr8のベースには、VCXO2の温度を表す電圧Vtempが入力される。トランジスタTr8のエミッタは、トランジスタTr7のエミッタに接続されている。 電 圧 A voltage Vtemp representing the temperature of VCXO2 is input to the base of the transistor Tr8. The emitter of the transistor Tr8 is connected to the emitter of the transistor Tr7.
 つまり、第1補正回路31は、エミッタ結合増幅回路(ソース結合増幅回路)である。 That is, the first correction circuit 31 is an emitter-coupled amplifier (source-coupled amplifier).
 トランジスタTr7が、本開示の「第1トランジスタ」に対応する。トランジスタTr8が、本開示の「第2トランジスタ」に対応する。閾値電圧Vthが、本開示の「第1閾値電圧」に対応する。 The transistor Tr7 corresponds to the “first transistor” of the present disclosure. The transistor Tr8 corresponds to the “second transistor” of the present disclosure. The threshold voltage Vth 4 corresponds to the “first threshold voltage” of the present disclosure.
 第1補正回路31は、エミッタ結合増幅回路(ソース結合増幅回路)であるので、電流Iは、上記した式(2)で表される。第1補正回路31では、Vid=Vth-Vtempである。電流Iは、閾値電圧Vthを中心として、Vidが概ね-4Vから4Vの範囲内で、実質的に変化する。電流Iは、Vidが概ね-4V以下の範囲では、実質的にゼロとなる。電流Iは、Vidが概ね4V以上の範囲では、実質的に一定となる。 The first correction circuit 31 are the emitter-coupled amplifying circuit (source-coupled amplifier circuit), the current I 4 is represented by the equation (2). In the first correction circuit 31, Vid = Vth 4 −Vtemp. The current I 4 substantially changes around the threshold voltage Vth 4 when the Vid is approximately in the range of −4 V T to 4 V T. Current I 4 is in the following range Vid is almost -4 V T, becomes substantially zero. Current I 4 is in the range Vid is more than 4V T generally substantially constant.
 第2補正回路32は、Nチャネル型のトランジスタTr9及びTr10と、回路51と、を含む。 The second correction circuit 32 includes N-channel transistors Tr9 and Tr10 and a circuit 51.
 トランジスタTr9のコレクタは、電源電位VDDに接続されている。トランジスタTr9のベースには、閾値電圧Vthが入力される。トランジスタTr9のエミッタは、トランジスタTr10のエミッタに接続されている。 The collector of the transistor Tr9 is connected to the power supply potential VDD. The base of the transistor Tr9, the threshold voltage Vth 5 is input. The emitter of the transistor Tr9 is connected to the emitter of the transistor Tr10.
 トランジスタTr10のコレクタは、電流Iを出力する。なお、電流Iの向きは、電流Iと同様に、トランジスタTr10のコレクタから流出する向きとした。 The collector of the transistor Tr10 outputs a current I 5. The direction of the current I 5, as in the current I 1, and the direction flowing out from the collector of the transistor Tr10.
 トランジスタTr10のベースには、VCXO2の温度を表す電圧Vtempが入力される。トランジスタTr10のエミッタは、トランジスタTr9のエミッタに接続されている。 電 圧 A voltage Vtemp representing the temperature of VCXO2 is input to the base of the transistor Tr10. The emitter of the transistor Tr10 is connected to the emitter of the transistor Tr9.
 つまり、第2補正回路32は、エミッタ結合増幅回路(ソース結合増幅回路)である。 {That is, the second correction circuit 32 is an emitter-coupled amplifier (source-coupled amplifier).
 トランジスタTr9が、本開示の「第3トランジスタ」に対応する。トランジスタTr10が、本開示の「第4トランジスタ」に対応する。閾値電圧Vthが、本開示の「第2閾値電圧」に対応する。 The transistor Tr9 corresponds to the “third transistor” of the present disclosure. The transistor Tr10 corresponds to a “fourth transistor” of the present disclosure. Threshold voltage Vth 5 corresponds to the "second threshold voltage" of the present disclosure.
 第2補正回路32は、エミッタ結合増幅回路(ソース結合増幅回路)であるので、電流Iは、前述した式(1)で表される。第2補正回路32では、Vid=Vth-Vtempである。電流Iは、閾値電圧Vthを中心として、Vidが概ね-4Vから4Vの範囲内で、実質的に変化する。電流Iは、Vidが概ね-4V以下の範囲では、実質的に一定となる。電流Iは、Vidが概ね4V以上の範囲では、実質的にゼロとなる。 The second correction circuit 32 are the emitter-coupled amplifying circuit (source-coupled amplifier circuit), a current I 5 is represented by the formula (1) described above. In the second correction circuit 32, Vid = Vth 5 -Vtemp. The current I 5 substantially changes with the Vid approximately in the range of −4 V T to 4 V T around the threshold voltage Vth 5 . Current I 5 is in the range Vid is generally less -4 V T, is substantially constant. Current I 5 is in the range Vid is more than 4V T generally is substantially zero.
 なお、トランジスタTr7からTr10は、トランジスタTr1からTr6と比較して、サイズが小さい。つまり、電流I及びIの各々は、電流IからIの各々と比較して、小さい。各トランジスタのサイズは、例えば、フィンガー数を変えることで調整できる。 Note that the transistors Tr7 to Tr10 are smaller in size than the transistors Tr1 to Tr6. That is, each of the currents I 4 and I 5 is smaller than each of the currents I 1 to I 3 . The size of each transistor can be adjusted, for example, by changing the number of fingers.
 トランジスタTr7及びTr8のサイズ、即ち、電流Iの大きさは、第1温度範囲111での、電流ISUM1の波形とモデル波形との差分(誤差)の大きさに応じて、予め定められる。 The size of the transistors Tr7 and Tr8, i.e., the magnitude of the current I 4 is at the first temperature range 111, depending on the magnitude of the difference (error) between the waveform and the model waveform of the current I SUM1, is predetermined.
 トランジスタTr9及びTr10のサイズ、即ち、電流Iの大きさは、第2温度範囲112での、電流ISUM1の波形とモデル波形との差分(誤差)の大きさに応じて、予め定められる。 The size of the transistors Tr9 and Tr10, i.e., the magnitude of the current I 5 is in the second temperature range 112, depending on the magnitude of the difference (error) between the waveform and the model waveform of the current I SUM1, is predetermined.
 なお、実施の形態では、第1補正回路31及び第2補正回路32の各々をエミッタ結合増幅回路(ソース結合増幅回路)としたが、本開示はこれに限定されない。第1補正回路31及び第2補正回路32の各々は、他の増幅回路であっても良いし、増幅回路以外の回路であっても良い。 In the embodiment, each of the first correction circuit 31 and the second correction circuit 32 is an emitter-coupled amplifier (source-coupled amplifier), but the present disclosure is not limited to this. Each of the first correction circuit 31 and the second correction circuit 32 may be another amplifier circuit or a circuit other than the amplifier circuit.
 以下においては、第1補正回路31が、第1温度範囲111において、電流ISUM1を補正する場合について、説明する。第2補正回路32が、第2温度範囲112において、電流ISUM1を補正する場合は、第1補正回路31が第1温度範囲111において電流ISUM1を補正する場合と同様であるので、図示及び説明を省略する。 Hereinafter, a case where the first correction circuit 31 corrects the current I SUM1 in the first temperature range 111 will be described. The case where the second correction circuit 32 corrects the current I SUM1 in the second temperature range 112 is the same as the case where the first correction circuit 31 corrects the current I SUM1 in the first temperature range 111. Description is omitted.
 図9は、実施の形態の温度補償水晶発振器の補償回路及び補正回路の特性を示す図である。波形105は、電流Iを表す。波形108は、電流ISUM3を表す。先に説明したように、第1補正回路31は、エミッタ結合増幅回路(ソース結合増幅回路)であるので、電流Iの波形105は、右肩上がりとなる。 FIG. 9 is a diagram illustrating characteristics of a compensation circuit and a correction circuit of the temperature-compensated crystal oscillator according to the embodiment. Waveform 105 represents the current I 4. Waveform 108 represents current I SUM3 . As described above, the first correction circuit 31 are the emitter-coupled amplifying circuit (source-coupled amplifier circuit), a waveform 105 of the current I 4 is a soaring.
 電流Iは、温度Tより低い温度範囲(低温)では、実質的にゼロとなる。電流Iは、温度Tより高い温度範囲では、実質的に一定となる。つまり、閾値電圧Vthは、第1温度範囲111の中央に、設定されている。 Current I 4 is the lower temperature range than the temperature T 1 (low temperature), it becomes substantially zero. Current I 4 is a temperature range higher than the temperature T 2 is substantially constant. That is, the threshold voltage Vth 4 is set at the center of the first temperature range 111.
 電流Iは、温度Tより低い温度範囲(低温)では、実質的にゼロであるので、電流ISUM1の波形の形状に影響を与えない。つまり、低温では、波形108(電流ISUM3)は、波形104(電流ISUM1)と一致する。 Current I 4 is the lower temperature range than the temperature T 1 (low temperature), since substantially be zero, it does not affect the shape of the waveform of the current I SUM1. That is, at low temperatures, waveform 108 (current I SUM3 ) matches waveform 104 (current I SUM1 ).
 電流Iは、温度T以上且つ温度T以下の第1温度範囲111では、実質的に変化するので、電流ISUM1の波形の形状に影響を与える。つまり、第1温度範囲111では、波形108(電流ISUM3)の形状は、波形104(電流ISUM1)の形状と異なる。 Current I 4 is the temperature above T 1 and temperature T 2 below the first temperature range 111, so varies substantially, affects the shape of the waveform of the current I SUM1. That is, in the first temperature range 111, the shape of the waveform 108 (current I SUM3 ) is different from the shape of the waveform 104 (current I SUM1 ).
 電流Iは、温度T以上の温度範囲では、実質的に一定である。つまり、温度T以上の温度範囲では、波形108(電流ISUM3)の形状は、波形104(電流ISUM1)の形状と同じである。但し、波形108は、波形104を正方向にオフセット量121だけオフセットしたものとなる。オフセット量121は、電流Iと同じである。 Current I 4 is a temperature T 2 above temperature range is substantially constant. That is, at temperature T 2 above temperature range, the shape of the waveform 108 (current I SUM3) is the same as the shape of the waveform 104 (current I SUM1). However, the waveform 108 is obtained by offsetting the waveform 104 by the offset amount 121 in the positive direction. Offset 121 is the same as the current I 4.
 なお、理解の容易のため、電流Iは強調して、大きく図示している。電流Iの実際の値は、図示した値よりも小さい。 Incidentally, for easy understanding, the current I 4 is stressed, are largely shown. The actual value of the current I 4 is less than the value shown.
 温度T以上の温度範囲では、波形108(電流ISUM3)は、波形104(電流ISUM1)を正方向にオフセット量121だけ、オフセットしたものとなる。本発明者は、調整回路42で電圧V(電流ISUM3)にゲインKを乗じることにより、オフセット量121の影響を抑制できることを見出した。 In temperature T 2 above temperature range, the waveform 108 (current I SUM3) is offset amount 121 waveform 104 (current I SUM1) in the positive direction, becomes offset. The inventor has found that the effect of the offset amount 121 can be suppressed by multiplying the voltage V 1 (current I SUM3 ) by the gain K in the adjustment circuit 42.
 以下、電圧V(電流ISUM3)にゲインKを乗ずることにより、オフセット量121の影響を抑制できる原理を説明する。 Hereinafter, the principle that the influence of the offset amount 121 can be suppressed by multiplying the gain V by the voltage V 1 (current I SUM3 ) will be described.
 図10から図13は、実施の形態の温度補償水晶発振器の補正原理を簡略化して説明する図である。図10において、モデル波形131は、水晶振動素子11の周波数温度特性を簡略化した波形の一例である。補償波形132は、補償回路の波形の一例である。図10において、xは、温度Tに対応し、xは、温度Tに対応する。 FIG. 10 to FIG. 13 are diagrams for simplifying and explaining the correction principle of the temperature compensated crystal oscillator according to the embodiment. In FIG. 10, a model waveform 131 is an example of a waveform obtained by simplifying the frequency temperature characteristics of the crystal resonator 11. The compensation waveform 132 is an example of the waveform of the compensation circuit. In FIG. 10, x 0 corresponds to the temperature T 1, x 2 corresponds to the temperature T 2.
 モデル波形131の関数を、次の式(3)で表す。
  y=f(x) [x≦x≦x] ・・・(3)
 補償波形132の関数を、簡略化のため1次関数として、次の式(4)で表す。
  y=g(x)=x [x≦x≦x] ・・・(4)
 モデル波形131と補償波形132との差分をΔyとする。
The function of the model waveform 131 is represented by the following equation (3).
y = f (x) [x 0 ≦ x ≦ x 2 ] (3)
The function of the compensation waveform 132 is represented by the following equation (4) as a linear function for simplification.
y = g (x) = x [x 0 ≦ x ≦ x 2 ] (4)
The difference between the model waveform 131 and the compensation waveform 132 is defined as Δy.
 y=g(x)=xであり、y=g(x)=xであり、y=g(x)=xである。 y 0 = g (x 0 ) = x 0 , y 1 = g (x 1 ) = x 1 , and y 2 = g (x 2 ) = x 2 .
 図11において、差分波形133は、モデル波形131と補償波形132との差分Δyである。Δyは、xにおいて、0であり、xの近傍(xよりも若干正方向)において、極大であり、xにおいて、0である。 11, a difference waveform 133 is a difference Δy between the model waveform 131 and the compensation waveform 132. Δy, at x 0, 0, in the vicinity of x 1 (slightly positive than x 1), a maximum, in x 2, 0.
 図11において、補正波形134は、補正回路の波形の一例である。補正波形134の関数を、次の式(5)で表す。
  y=Δg(x) [x≦x≦x] ・・・(5)
 ここで、Δg(x)を、次の式(6)及び式(7)で、簡略化する。
  y=Δg(x)=x [x≦x<x] ・・・(6)
  y=Δg(x)=x [x≦x≦x] ・・・(7)
In FIG. 11, a correction waveform 134 is an example of a correction circuit waveform. The function of the correction waveform 134 is represented by the following equation (5).
y = Δg (x) [x 0 ≦ x ≦ x 2 ] (5)
Here, Δg (x) is simplified by the following equations (6) and (7).
y = Δg (x) = x [x 0 ≦ x <x 1 ] (6)
y = Δg (x) = x 1 [x 1 ≦ x ≦ x 2 ] (7)
 図12において、合成波形135は、補償波形132に補正波形134を加えた合成波形の一例である。
 合成波形135の関数は、次の式(8)で表される。
  y=g(x)+Δg(x) [x≦x≦x] ・・・(8)
In FIG. 12, a composite waveform 135 is an example of a composite waveform obtained by adding the correction waveform 134 to the compensation waveform 132.
The function of the composite waveform 135 is represented by the following equation (8).
y = g (x) + Δg (x) [x 0 ≦ x ≦ x 2 ] (8)
 y=g(x)+Δg(x)は、次の式(9)及び式(10)で表される。
  y=g(x)+Δg(x)=2x [x≦x<x] ・・・(9)
  y=g(x)+Δg(x)=x+x [x≦x≦x] ・・・(10)
y = g (x) + Δg (x) is expressed by the following equations (9) and (10).
y = g (x) + Δg (x) = 2x [x 0 ≦ x <x 1 ] (9)
y = g (x) + Δg (x) = x + x 1 [x 1 ≦ x ≦ x 2 ] (10)
 ここで、合成波形135とモデル波形131とのxにおける偏差をなくすため、合成波形135に、ゲインKを乗じて、制御信号Refを得る。つまり、制御信号Refは、次の式(11)で表される。
  Ref=K(g(x)+Δg(x)) ・・・(11)
Here, in order to eliminate the deviations in x 2 in the synthesized waveform 135 and the model waveform 131, the composite waveform 135, it is multiplied by a gain K, to obtain a control signal Ref. That is, the control signal Ref is represented by the following equation (11).
Ref = K (g (x) + Δg (x)) (11)
 ここで、任意の座標x(x≧x)において、f(x)=K(g(x)+Δg(x))となるように、ゲインKが予め定められる。つまり、ゲインKは、次の式(12)で予め定められる。
  K=f(x)/(g(x)+Δg(x)) ・・・(12)
Here, at an arbitrary coordinate x 3 (x 3 ≧ x 2 ), the gain K is predetermined so that f (x 3 ) = K (g (x 3 ) + Δg (x 3 )). That is, the gain K is predetermined by the following equation (12).
K = f (x 3 ) / (g (x 3 ) + Δg (x 3 )) (12)
 例えば、f(x)=xである。また、g(x)+Δg(x)=x+xである。従って、ゲインKは、次の式(13)の値となる。
  K=x/(x+x) ・・・(13)
For example, f (x 3 ) = x 3 . Also, g (x 3 ) + Δg (x 3 ) = x 3 + x 1 . Therefore, the gain K has the value of the following equation (13).
K = x 3 / (x 3 + x 1 ) (13)
 例えば、f(x1)=2x・K=2x/(x+x)である。 For example, it is f (x1) = 2x 1 · K = 2x 3 x 1 / (x 3 + x 1).
 図13において、制御波形136は、制御信号Refの波形の原理を説明する波形の一例である。つまり、制御波形136は、合成波形135にゲインKを乗じた後の制御信号Refの波形生成の原理を説明する波形の一例である。つまり、補償波形132に補正波形134を加えた合成波形135にゲインKを乗じた制御波形136が得られる。図13に示されるように、制御波形136とモデル波形131との差分は、補償波形132とモデル波形131との差分より、小さくなることが分かる。すなわち、制御波形136の形状が、補償波形132の形状よりも、モデル波形131に近似していることが分かる。 In FIG. 13, the control waveform 136 is an example of a waveform for explaining the principle of the waveform of the control signal Ref. That is, the control waveform 136 is an example of a waveform for explaining the principle of generating a waveform of the control signal Ref after multiplying the composite waveform 135 by the gain K. That is, a control waveform 136 obtained by multiplying the composite waveform 135 obtained by adding the correction waveform 134 to the compensation waveform 132 and the gain K is obtained. As shown in FIG. 13, the difference between the control waveform 136 and the model waveform 131 is smaller than the difference between the compensation waveform 132 and the model waveform 131. That is, it can be seen that the shape of the control waveform 136 is closer to the model waveform 131 than the shape of the compensation waveform 132.
 以上簡略化して説明した温度補償に用いる制御信号の生成原理を適応すれば、第1補正回路31が、電流I(図11の補正波形134で原理を説明)を出力し、調整回路42が、電流ISUM3の電流-電圧変換後の値にゲインKを乗じる。これにより、温度補償回路4は、図13に示すように、第1温度範囲111において、制御電圧Vの原理を簡略化して説明した波形の一例である制御波形136と水晶振動素子11における周波数温度特性を簡略化して説明した波形の一例であるモデル波形131との間の差分(誤差)を好適に低減し、水晶振動素子11の共振周波数の変化を好適に抑制することができる。また、第1補正回路31は、エミッタ結合増幅回路(図4参照)という簡易な回路構成で、電流Iを出力することができる。 If the above-described simplified principle of generating the control signal used for the temperature compensation is applied, the first correction circuit 31 outputs the current I 4 (the principle is described with the correction waveform 134 in FIG. 11), and the adjustment circuit 42 , Multiply the value of the current I SUM3 after the current-voltage conversion by the gain K. As a result, as shown in FIG. 13, the temperature compensating circuit 4 controls the control waveform 136, which is an example of the simplified waveform of the control voltage V 2 , in the first temperature range 111 and the frequency in the crystal vibrating element 11. The difference (error) from the model waveform 131 which is an example of the waveform whose temperature characteristic is simplified can be suitably reduced, and the change in the resonance frequency of the crystal resonator element 11 can be suitably suppressed. The first correction circuit 31, a simple circuit configuration that emitter-coupled amplifying circuit (see FIG. 4), it is possible to output a current I 4.
 なお、上記では、第1補正回路31が、電流Iを出力することにより、第1温度範囲111において電流ISUM1を補正する場合について、説明した。これと同様に、第2補正回路32が、電流Iを出力することにより、第2温度範囲112において電流ISUM1を補正する。電流Iは、第2温度範囲112において実質的に変化し、その他の温度範囲において実質的に変化しない。つまり、閾値電圧Vthは、第2温度範囲112の中央に、設定されている。そして、上記と同様に、調整回路42が、電流ISUM3の電流-電圧変換後の値にゲインKを乗じる。これにより、温度補償回路4は、第2温度範囲112において、制御電圧Vの波形とモデル波形との間の差分(誤差)を好適に抑制し、VCXO2の発振周波数の変化を好適に抑制することができる。また、第2補正回路32は、エミッタ結合増幅回路(図4参照)という簡易な回路構成で、電流Iを出力することができる。 In the above, the case where the first correction circuit 31 corrects the current I SUM1 in the first temperature range 111 by outputting the current I 4 has been described. Similarly, the second correction circuit 32, by outputting the current I 5, corrects the current I SUM1 in a second temperature range 112. Current I 5 is substantially changed in the second temperature range 112, substantially unchanged in other temperature ranges. That is, the threshold voltage Vth 5 is in the middle of the second temperature range 112 is set. Then, similarly to the above, the adjustment circuit 42 multiplies the value of the current I SUM3 after the current-voltage conversion by the gain K. Thus, the temperature compensating circuit 4, in the second temperature range 112, and suitably suppressed the difference (error) between the waveform and the model waveform of the control voltage V 2, suitably suppresses the change in the oscillation frequency of VCXO2 be able to. The second correction circuit 32, a simple circuit configuration that emitter-coupled amplifying circuit (see FIG. 4), it is possible to output the current I 5.
 また、低温補償回路21、中温補償回路22、高温補償回路23、第1補正回路31及び第2補正回路32の各々を同じ回路構成(実施の形態では、エミッタ結合増幅回路(ソース結合増幅回路))とすることにより、温度補償回路4を半導体集積回路装置上にアナログ回路の構成で実現することが容易となる。 Further, each of the low-temperature compensation circuit 21, the medium-temperature compensation circuit 22, the high-temperature compensation circuit 23, the first correction circuit 31, and the second correction circuit 32 has the same circuit configuration (in the embodiment, the emitter-coupled amplifier (source-coupled amplifier)). ), It is easy to realize the temperature compensation circuit 4 on a semiconductor integrated circuit device with an analog circuit configuration.
 なお、上記した実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更/改良され得るとともに、本発明にはその等価物も含まれる。 Note that the above-described embodiments are intended to facilitate understanding of the present invention, and are not intended to limit the present invention. The present invention may be changed / improved without departing from the spirit thereof, and the present invention also includes equivalents thereof.
 1 温度補償水晶発振器
 2 周波数可変型の水晶発振器
 3 温度センサ
 4 温度補償回路
 5 補償回路
 6 補正回路
 7 温度補償信号回路
 11 水晶振動素子
 12、41c、41d、51b 抵抗
 13 インバータ回路
 14 可変容量回路
 15 コンデンサ
 21 低温補償回路
 22 中温補償回路
 23 高温補償回路
 31 第1補正回路
 32 第2補正回路
 41 電流-電圧変換回路
 41a オペアンプ
 41b、51c 定電圧源
 42 調整回路
 51a、Tr1、Tr2、Tr3、Tr4、Tr5、Tr6、Tr7、Tr8、Tr9、Tr10 トランジスタ
DESCRIPTION OF SYMBOLS 1 Temperature-compensated crystal oscillator 2 Variable-frequency crystal oscillator 3 Temperature sensor 4 Temperature-compensation circuit 5 Compensation circuit 6 Correction circuit 7 Temperature-compensation signal circuit 11 Quartz- vibration element 12, 41c, 41d, 51b Resistance 13 Inverter circuit 14 Variable capacitance circuit 15 Capacitor 21 Low temperature compensation circuit 22 Medium temperature compensation circuit 23 High temperature compensation circuit 31 First correction circuit 32 Second correction circuit 41 Current-voltage conversion circuit 41a Operational amplifier 41b, 51c Constant voltage source 42 Adjustment circuit 51a, Tr1, Tr2, Tr3, Tr4, Tr5, Tr6, Tr7, Tr8, Tr9, Tr10 Transistor

Claims (16)

  1.  第1温度で共振周波数が極大となり、前記第1温度より高い第2温度で共振周波数が極小となる周波数温度特性を有する水晶振動素子を含む、周波数可変型の水晶発振器の温度補償を行う回路であって、
     前記第1温度より低い温度範囲において実質的に変化する電流を、第1補償信号として出力する、低温補償回路と、前記第1温度以上且つ前記第2温度以下において実質的に変化する電流を、第2補償信号として出力する、中温補償回路と、前記第2温度より高い温度範囲において実質的に変化する電流を、第3補償信号として出力する、高温補償回路と、を含み、温度センサの温度信号に基づいて、前記第1温度で極小となり、前記第2温度で極大となる補償信号を生成する、補償回路と、
     前記第1温度以上、且つ、前記第1温度と基準温度との間の第3温度以下の第1温度範囲において前記第1補償信号を補正する第1補正信号を出力する第1補正回路、及び、前記基準温度と前記第2温度との間の第4温度以上、且つ、前記第2温度以下の第2温度範囲において前記第3補償信号を補正する第2補正信号を出力する第2補正回路のみから成る、補正回路と、
     前記第1補正信号により補正された後の前記第1補償信号である第1補正後補償信号と、前記第2補償信号と、前記第2補正信号により補正された後の前記第3補償信号である第2補正後補償信号と、に基づいて、前記周波数可変型の水晶発振器に制御信号を印加する、温度補償信号回路と、
     を備える、
     温度補償回路。
    A circuit for performing temperature compensation of a variable-frequency crystal oscillator including a crystal resonator having a frequency temperature characteristic in which a resonance frequency becomes maximum at a first temperature and a resonance frequency becomes minimum at a second temperature higher than the first temperature. So,
    A low-temperature compensation circuit that outputs a current that substantially changes in a temperature range lower than the first temperature as a first compensation signal; and a current that substantially changes in a temperature range between the first temperature and the second temperature. A medium temperature compensation circuit that outputs a second compensation signal; and a high temperature compensation circuit that outputs a current that changes substantially in a temperature range higher than the second temperature as a third compensation signal. A compensating circuit that generates a compensation signal that is minimum at the first temperature and maximum at the second temperature based on the signal.
    A first correction circuit that outputs a first correction signal for correcting the first compensation signal in a first temperature range equal to or higher than the first temperature and equal to or lower than a third temperature between the first temperature and the reference temperature; A second correction circuit that outputs a second correction signal for correcting the third compensation signal in a second temperature range between a fourth temperature between the reference temperature and the second temperature and equal to or lower than the second temperature. A correction circuit consisting of
    A first compensation signal, which is the first compensation signal compensated by the first compensation signal, a second compensation signal, and the third compensation signal compensated by the second compensation signal; A temperature-compensated signal circuit for applying a control signal to the variable-frequency crystal oscillator based on a certain second corrected compensation signal;
    Comprising,
    Temperature compensation circuit.
  2.  請求項1に記載の温度補償回路であって、
     前記第1補正回路は、
     ベースに第1閾値電圧が入力され、コレクタが電源電位に電気的に接続された第1トランジスタと、
     ベースに前記温度信号が入力され、エミッタが前記第1トランジスタのエミッタに電気的に接続され、コレクタから前記第1補正信号を出力する第2トランジスタと、
     前記第1トランジスタのエミッタ電流と前記第2トランジスタのエミッタ電流との和を一定にする定電流回路と、
     を含む、
     温度補償回路。
    The temperature compensation circuit according to claim 1,
    The first correction circuit includes:
    A first transistor having a first threshold voltage input to the base and a collector electrically connected to a power supply potential;
    A second transistor having a base to which the temperature signal is input, an emitter electrically connected to an emitter of the first transistor, and outputting the first correction signal from a collector;
    A constant current circuit for making a sum of an emitter current of the first transistor and an emitter current of the second transistor constant;
    including,
    Temperature compensation circuit.
  3.  請求項1に記載の温度補償回路であって、
     前記第2補正回路は、
     ベースに第2閾値電圧が入力され、コレクタが電源電位に電気的に接続された第3トランジスタと、
     ベースに前記温度信号が入力され、エミッタが前記第3トランジスタのエミッタに電気的に接続され、コレクタから前記第2補正信号を出力する第4トランジスタと、
     前記第3トランジスタのエミッタ電流と前記第4トランジスタのエミッタ電流との和を一定にする定電流回路と、
     を含む、
     温度補償回路。
    The temperature compensation circuit according to claim 1,
    The second correction circuit includes:
    A third transistor having a second threshold voltage input to the base and a collector electrically connected to a power supply potential;
    A fourth transistor having the base inputted with the temperature signal, an emitter electrically connected to the emitter of the third transistor, and outputting the second correction signal from a collector;
    A constant current circuit for making the sum of the emitter current of the third transistor and the emitter current of the fourth transistor constant;
    including,
    Temperature compensation circuit.
  4.  請求項1から3のいずれか1項に記載の温度補償回路であって、
     前記第1補正回路は、
     前記第1温度範囲で実質的に変化し、前記第1温度範囲の範囲外で実質的に変化しない電流を、前記第1補正信号として出力する、
     温度補償回路。
    The temperature compensation circuit according to claim 1, wherein:
    The first correction circuit includes:
    Outputting a current that substantially changes in the first temperature range and does not substantially change outside the first temperature range as the first correction signal;
    Temperature compensation circuit.
  5.  請求項4に記載の温度補償回路であって、
     前記第1補正回路は、
     増幅回路である、
     温度補償回路。
    The temperature compensation circuit according to claim 4,
    The first correction circuit includes:
    Amplifier circuit,
    Temperature compensation circuit.
  6.  請求項5に記載の温度補償回路であって、
     前記第1補正回路は、
     エミッタ結合増幅回路である、
     温度補償回路。
    The temperature compensation circuit according to claim 5,
    The first correction circuit includes:
    An emitter-coupled amplifier circuit,
    Temperature compensation circuit.
  7.  請求項1から3のいずれか1項に記載の温度補償回路であって、
     前記第2補正回路は、
     前記第2温度範囲で実質的に変化し、前記第2温度範囲の範囲外で実質的に変化しない電流を、前記第2補正信号として出力する、
     温度補償回路。
    The temperature compensation circuit according to claim 1, wherein:
    The second correction circuit includes:
    Outputting, as the second correction signal, a current that substantially changes in the second temperature range and does not substantially change outside the second temperature range;
    Temperature compensation circuit.
  8.  請求項7に記載の温度補償回路であって、
     前記第2補正回路は、
     増幅回路である、
     温度補償回路。
    The temperature compensation circuit according to claim 7, wherein
    The second correction circuit includes:
    Amplifier circuit,
    Temperature compensation circuit.
  9.  請求項8に記載の温度補償回路であって、
     前記第2補正回路は、
     エミッタ結合増幅回路である、
     温度補償回路。
    The temperature compensation circuit according to claim 8, wherein
    The second correction circuit includes:
    An emitter-coupled amplifier circuit,
    Temperature compensation circuit.
  10.  請求項1から9のいずれか1項に記載の温度補償回路であって、
     前記低温補償回路、前記中温補償回路及び前記高温補償回路の各々は、
     ベースに各々の閾値電圧が入力され、コレクタが電源電位に電気的に接続された第5トランジスタと、
     ベースに前記温度信号が入力され、エミッタが前記第5トランジスタのエミッタに電気的に接続され、コレクタから補償信号を出力する第6トランジスタと、
     前記第5トランジスタのエミッタ電流と前記第6トランジスタのエミッタ電流との和を一定にする定電流回路と、
     を含む、
     温度補償回路。
    The temperature compensation circuit according to claim 1, wherein:
    Each of the low temperature compensation circuit, the medium temperature compensation circuit and the high temperature compensation circuit,
    A fifth transistor having each base input with a threshold voltage, and a collector electrically connected to a power supply potential;
    A sixth transistor having the base inputted with the temperature signal, an emitter electrically connected to an emitter of the fifth transistor, and outputting a compensation signal from a collector;
    A constant current circuit for making the sum of the emitter current of the fifth transistor and the emitter current of the sixth transistor constant;
    including,
    Temperature compensation circuit.
  11.  請求項10に記載の温度補償回路であって、
     前記低温補償回路、前記中温補償回路及び前記高温補償回路の各々は、増幅回路である、
     温度補償回路。
    The temperature compensation circuit according to claim 10, wherein
    Each of the low temperature compensation circuit, the medium temperature compensation circuit and the high temperature compensation circuit is an amplifier circuit,
    Temperature compensation circuit.
  12.  請求項11に記載の温度補償回路であって、
     前記低温補償回路、前記中温補償回路及び前記高温補償回路の各々は、エミッタ結合増幅回路である、
     温度補償回路。
    The temperature compensation circuit according to claim 11, wherein
    Each of the low temperature compensation circuit, the medium temperature compensation circuit and the high temperature compensation circuit is an emitter-coupled amplifier circuit.
    Temperature compensation circuit.
  13.  請求項1から12のいずれか1項に記載の温度補償回路であって、
     前記温度補償信号回路は、
     少なくとも、予め定められたゲインを、前記第1補正後補償信号、前記第2補償信号、及び、前記第2補正後補償信号に乗ずることにより、前記制御信号を出力する、調整回路を含む、
     温度補償回路。
    The temperature compensation circuit according to claim 1, wherein:
    The temperature compensation signal circuit,
    An adjustment circuit that outputs the control signal by multiplying at least a predetermined gain by the first corrected compensation signal, the second compensation signal, and the second corrected compensation signal,
    Temperature compensation circuit.
  14.  第1温度で共振周波数が極大となり、前記第1温度より高い第2温度で共振周波数が極小となる周波数温度特性を有するATカットの水晶振動素子を含む周波数可変型の水晶発振器の温度補償を行う回路であって、
     前記第1温度より低い温度範囲において実質的に変化する電流を、第1補償信号として出力する、低温補償回路と、前記第1温度以上且つ前記第2温度以下において実質的に変化する電流を、第2補償信号として出力する、中温補償回路と、前記第2温度より高い温度範囲において実質的に変化する電流を、第3補償信号として出力する、高温補償回路と、を含み、温度センサの温度信号に基づいて、前記第1温度で極小となり、前記第2温度で極大となる補償信号を生成する、補償回路と、
     前記第1温度以上、且つ、前記第1温度と基準温度との間の第3温度以下の第1温度範囲において前記第1補償信号を補正する第1補正信号を出力する第1補正回路、及び、前記基準温度と前記第2温度との間の第4温度以上、且つ、前記第2温度以下の第2温度範囲において前記第3補償信号を補正する第2補正信号を出力する第2補正回路のみから成る、補正回路と、
     前記第1補正信号により補正された後の前記第1補償信号である第1補正後補償信号と、前記第2補償信号と、前記第2補正信号により補正された後の前記第3補償信号である第2補正後補償信号と、に基づいて、前記周波数可変型の水晶発振器に制御信号を印加する、温度補償信号回路と、
     を備える、
     温度補償回路。
    The temperature compensation is performed on a frequency-variable type crystal oscillator including an AT-cut crystal vibrating element having a frequency temperature characteristic in which the resonance frequency becomes maximum at the first temperature and becomes minimum at the second temperature higher than the first temperature. A circuit,
    A low-temperature compensation circuit that outputs a current that substantially changes in a temperature range lower than the first temperature as a first compensation signal; and a current that substantially changes in a temperature range between the first temperature and the second temperature. A medium temperature compensation circuit that outputs a second compensation signal; and a high temperature compensation circuit that outputs a current that changes substantially in a temperature range higher than the second temperature as a third compensation signal. A compensating circuit that generates a compensation signal that is minimum at the first temperature and maximum at the second temperature based on the signal.
    A first correction circuit that outputs a first correction signal for correcting the first compensation signal in a first temperature range equal to or higher than the first temperature and equal to or lower than a third temperature between the first temperature and the reference temperature; A second correction circuit that outputs a second correction signal for correcting the third compensation signal in a second temperature range between a fourth temperature between the reference temperature and the second temperature and equal to or lower than the second temperature. A correction circuit consisting of
    The first compensation signal, which is the first compensation signal after being compensated by the first compensation signal, is the first compensation signal, the second compensation signal, and the third compensation signal, which is compensated by the second compensation signal. A temperature-compensated signal circuit for applying a control signal to the variable-frequency crystal oscillator based on a certain second corrected compensation signal;
    Comprising,
    Temperature compensation circuit.
  15.  第1温度で共振周波数が極大となり、前記第1温度より高い第2温度で共振周波数が極小となる周波数温度特性を有する水晶振動素子を含む、周波数可変型の水晶発振器と、
     温度信号を出力する温度センサと、
     前記第1温度より低い温度範囲において実質的に変化する電流を、第1補償信号として出力する、低温補償回路と、前記第1温度以上且つ前記第2温度以下において実質的に変化する電流を、第2補償信号として出力する、中温補償回路と、前記第2温度より高い温度範囲において実質的に変化する電流を、第3補償信号として出力する、高温補償回路と、を含み、前記温度信号に基づいて、前記第1温度で極小となり、前記第2温度で極大となる補償信号を生成する、補償回路と、
     前記第1温度以上、且つ、前記第1温度と基準温度との間の第3温度以下の第1温度範囲において前記第1補償信号を補正する第1補正信号を出力する第1補正回路、及び、前記基準温度と前記第2温度との間の第4温度以上、且つ、前記第2温度以下の第2温度範囲において前記第3補償信号を補正する第2補正信号を出力する第2補正回路のみから成る、補正回路と、
     前記第1補正信号により補正された後の前記第1補償信号である第1補正後補償信号と、前記第2補償信号と、前記第2補正信号により補正された後の前記第3補償信号である第2補正後補償信号と、に基づいて、前記周波数可変型の水晶発振器に制御信号を印加する、温度補償信号回路と、
     を備える、
     温度補償水晶発振器。
    A frequency variable type crystal oscillator including a crystal vibrating element having a frequency temperature characteristic in which a resonance frequency becomes maximum at a first temperature and a resonance frequency becomes minimum at a second temperature higher than the first temperature;
    A temperature sensor that outputs a temperature signal,
    A low-temperature compensation circuit that outputs a current that substantially changes in a temperature range lower than the first temperature as a first compensation signal; and a current that substantially changes in a temperature range between the first temperature and the second temperature. A medium-temperature compensation circuit that outputs a second compensation signal; and a high-temperature compensation circuit that outputs a current that substantially changes in a temperature range higher than the second temperature as a third compensation signal. A compensation circuit that generates a compensation signal that is minimum at the first temperature and maximum at the second temperature,
    A first correction circuit that outputs a first correction signal for correcting the first compensation signal in a first temperature range equal to or higher than the first temperature and equal to or lower than a third temperature between the first temperature and the reference temperature; A second correction circuit that outputs a second correction signal for correcting the third compensation signal in a second temperature range between a fourth temperature between the reference temperature and the second temperature and equal to or lower than the second temperature. A correction circuit consisting of
    A first compensation signal, which is the first compensation signal compensated by the first compensation signal, a second compensation signal, and the third compensation signal compensated by the second compensation signal; A temperature-compensated signal circuit for applying a control signal to the variable-frequency crystal oscillator based on a certain second corrected compensation signal;
    Comprising,
    Temperature compensated crystal oscillator.
  16.  第1温度で共振周波数が極大となり、前記第1温度より高い第2温度で共振周波数が極小となる周波数温度特性を有するATカットの水晶振動素子を含む、周波数可変型の水晶発振器と、
     温度信号を出力する温度センサと、
     前記第1温度より低い温度範囲において実質的に変化する電流を、第1補償信号として出力する、低温補償回路と、前記第1温度以上且つ前記第2温度以下において実質的に変化する電流を、第2補償信号として出力する、中温補償回路と、前記第2温度より高い温度範囲において実質的に変化する電流を、第3補償信号として出力する、高温補償回路と、を含み、前記温度信号に基づいて、前記第1温度で極小となり、前記第2温度で極大となる補償信号を出力する、補償回路と、
     前記第1温度以上、且つ、前記第1温度と基準温度との間の第3温度以下の第1温度範囲において前記第1補償信号を補正する第1補正信号を出力する第1補正回路、及び、前記基準温度と前記第2温度との間の第4温度以上、且つ、前記第2温度以下の第2温度範囲において前記第3補償信号を補正する第2補正信号を出力する第2補正回路のみから成る、補正回路と、
     前記第1補正信号により補正された後の前記第1補償信号である第1補正後補償信号と、前記第2補償信号と、前記第2補正信号により補正された後の前記第3補償信号である第2補正後補償信号と、に基づいて、前記周波数可変型の水晶発振器に制御信号を印加する、温度補償信号回路と、
     を備える、
     温度補償水晶発振器。
    A frequency-variable crystal oscillator including an AT-cut crystal vibrating element having a frequency temperature characteristic in which a resonance frequency becomes maximum at a first temperature and a resonance frequency becomes minimum at a second temperature higher than the first temperature;
    A temperature sensor that outputs a temperature signal,
    A low-temperature compensation circuit that outputs a current that substantially changes in a temperature range lower than the first temperature as a first compensation signal; and a current that substantially changes in a temperature range between the first temperature and the second temperature. A medium-temperature compensation circuit that outputs a second compensation signal; and a high-temperature compensation circuit that outputs a current that substantially changes in a temperature range higher than the second temperature as a third compensation signal. A compensation circuit that outputs a compensation signal that is minimum at the first temperature and maximum at the second temperature,
    A first correction circuit that outputs a first correction signal for correcting the first compensation signal in a first temperature range equal to or higher than the first temperature and equal to or lower than a third temperature between the first temperature and the reference temperature; A second correction circuit that outputs a second correction signal for correcting the third compensation signal in a second temperature range between a fourth temperature between the reference temperature and the second temperature and equal to or lower than the second temperature. A correction circuit consisting of
    A first compensation signal, which is the first compensation signal compensated by the first compensation signal, a second compensation signal, and the third compensation signal compensated by the second compensation signal; A temperature-compensated signal circuit for applying a control signal to the variable-frequency crystal oscillator based on a certain second corrected compensation signal;
    Comprising,
    Temperature compensated crystal oscillator.
PCT/JP2019/035978 2018-09-28 2019-09-12 Temperature compensation circuit and temperature compensated crystal oscillator WO2020066672A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/037969 WO2020067341A1 (en) 2018-09-28 2019-09-26 Temperature compensation circuit and temperature compensation crystal oscillator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018183327 2018-09-28
JP2018-183327 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020066672A1 true WO2020066672A1 (en) 2020-04-02

Family

ID=69952860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035978 WO2020066672A1 (en) 2018-09-28 2019-09-12 Temperature compensation circuit and temperature compensated crystal oscillator

Country Status (1)

Country Link
WO (1) WO2020066672A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0334708A (en) * 1989-06-30 1991-02-14 Nippon Dempa Kogyo Co Ltd Compensation voltage generating circuit for temperature compensation oscillator
JPH08116214A (en) * 1994-10-17 1996-05-07 Fujitsu Ltd Function generator and oscillation circuit with temperature compensation
JPH11251838A (en) * 1998-03-04 1999-09-17 Toyo Commun Equip Co Ltd Temperature compensating-type quartz oscillator
JP2004153541A (en) * 2002-10-30 2004-05-27 Mitsumi Electric Co Ltd Variable gain circuit, temperature compensation circuit and oscillation circuit using the same
JP2004236079A (en) * 2003-01-31 2004-08-19 Kyocera Kinseki Corp Temperature compensation circuit with oscillator and secondary function generator
JP2006253974A (en) * 2005-03-09 2006-09-21 Epson Toyocom Corp Temperature compensation type piezoelectric oscillator
JP2008211757A (en) * 2007-01-29 2008-09-11 Epson Toyocom Corp Temperature compensated piezoelectric oscillator
JP2009284045A (en) * 2008-05-20 2009-12-03 Epson Toyocom Corp Piezoelectric oscillator
JP2016143965A (en) * 2015-01-30 2016-08-08 セイコーエプソン株式会社 Oscillator, electronic equipment, and mobile object
JP2018007165A (en) * 2016-07-07 2018-01-11 セイコーエプソン株式会社 Temperature compensation type oscillation circuit, oscillator, electronic apparatus, mobile body, and manufacturing method for oscillator

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0334708A (en) * 1989-06-30 1991-02-14 Nippon Dempa Kogyo Co Ltd Compensation voltage generating circuit for temperature compensation oscillator
JPH08116214A (en) * 1994-10-17 1996-05-07 Fujitsu Ltd Function generator and oscillation circuit with temperature compensation
JPH11251838A (en) * 1998-03-04 1999-09-17 Toyo Commun Equip Co Ltd Temperature compensating-type quartz oscillator
JP2004153541A (en) * 2002-10-30 2004-05-27 Mitsumi Electric Co Ltd Variable gain circuit, temperature compensation circuit and oscillation circuit using the same
JP2004236079A (en) * 2003-01-31 2004-08-19 Kyocera Kinseki Corp Temperature compensation circuit with oscillator and secondary function generator
JP2006253974A (en) * 2005-03-09 2006-09-21 Epson Toyocom Corp Temperature compensation type piezoelectric oscillator
JP2008211757A (en) * 2007-01-29 2008-09-11 Epson Toyocom Corp Temperature compensated piezoelectric oscillator
JP2009284045A (en) * 2008-05-20 2009-12-03 Epson Toyocom Corp Piezoelectric oscillator
JP2016143965A (en) * 2015-01-30 2016-08-08 セイコーエプソン株式会社 Oscillator, electronic equipment, and mobile object
JP2018007165A (en) * 2016-07-07 2018-01-11 セイコーエプソン株式会社 Temperature compensation type oscillation circuit, oscillator, electronic apparatus, mobile body, and manufacturing method for oscillator

Similar Documents

Publication Publication Date Title
US5883550A (en) Crystal oscillator with a temperature-compensating analog circuit
JPH04233805A (en) Voltage-controlled balanced oscillator circuit
US8659361B2 (en) Function generator circuit
JP6377192B2 (en) Temperature compensated crystal oscillator
WO2020066672A1 (en) Temperature compensation circuit and temperature compensated crystal oscillator
WO2020067341A1 (en) Temperature compensation circuit and temperature compensation crystal oscillator
US20070222532A1 (en) Temperature-compensated crystal oscillator
US4051446A (en) Temperature compensating circuit for use with a crystal oscillator
US10193557B2 (en) Oscillation control apparatus and oscillation apparatus
CN112684824B (en) Temperature control circuit, oscillation control circuit, and temperature control method
JP2004304564A (en) Fluctuation compensating oscillator
JP4978134B2 (en) Voltage controlled oscillator
EP0917764A2 (en) Oscillator frequency-drift compensation
US8610513B2 (en) Crystal oscillator
JP2002135051A (en) Piezoelectric oscillator
WO2021009956A1 (en) Temperature compensation circuit and temperature compensated crystal oscillator
JP6339252B2 (en) Oscillation control device and oscillation device
JP2002026658A (en) Quartz oscillator circuit
JP4428124B2 (en) Temperature compensated oscillator
JPH10270941A (en) Temperature compensated piezoelectric oscillator
WO2023234141A1 (en) Temperature-compensation-type piezoelectric oscillator
JP5918546B2 (en) Temperature compensated crystal oscillator
JP4311313B2 (en) Piezoelectric oscillator
JP2006033092A (en) Piezoelectric oscillator
JP3638543B2 (en) Temperature compensated crystal oscillator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19865468

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19865468

Country of ref document: EP

Kind code of ref document: A1