WO2020066492A1 - Substrate processing system and substrate processing method - Google Patents

Substrate processing system and substrate processing method Download PDF

Info

Publication number
WO2020066492A1
WO2020066492A1 PCT/JP2019/034565 JP2019034565W WO2020066492A1 WO 2020066492 A1 WO2020066492 A1 WO 2020066492A1 JP 2019034565 W JP2019034565 W JP 2019034565W WO 2020066492 A1 WO2020066492 A1 WO 2020066492A1
Authority
WO
WIPO (PCT)
Prior art keywords
separation
substrate
wafer
processing
unit
Prior art date
Application number
PCT/JP2019/034565
Other languages
French (fr)
Japanese (ja)
Inventor
隼斗 田之上
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to JP2020548272A priority Critical patent/JP7086201B2/en
Publication of WO2020066492A1 publication Critical patent/WO2020066492A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/53Working by transmitting the laser beam through or within the workpiece for modifying or reforming the material inside the workpiece, e.g. for producing break initiation cracks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping

Definitions

  • the present disclosure relates to a substrate processing system and a substrate processing method.
  • Patent Document 1 discloses a method of processing a wafer having a plurality of devices formed on a front surface side.
  • this processing method after the deteriorated layer is formed by irradiating a laser beam between the front side and the back side of the wafer, the back side wafer on the back side of the deteriorated layer and the front side wafer on the front side of the deteriorated layer are formed. And separated into Further, the back side wafer is recycled.
  • the technology according to the present disclosure efficiently separates and regenerates the substrate when separating and thinning the substrate and reusing the separated substrate.
  • One embodiment of the present disclosure is a substrate processing system for processing a substrate, the substrate being separated from a first separation substrate and a second separation substrate starting from an internal surface modification layer formed in a surface direction inside the substrate.
  • the separation and the regeneration can be efficiently performed.
  • FIG. 1 is a plan view schematically showing an outline of a configuration of a wafer processing system according to an embodiment. It is a side view which shows the outline of a structure of a superposition wafer. It is a side view which shows the outline of a part of structure of a superposition wafer. It is a side view which shows the outline of a structure of a reforming separation apparatus. It is a flowchart which shows the main process of the wafer processing concerning this embodiment.
  • FIG. 4 is an explanatory diagram of main steps of wafer processing according to the embodiment. It is a longitudinal cross-sectional view which shows a mode that an internal surface modification layer is formed on a processing wafer in a modification separation apparatus.
  • a semiconductor wafer having a plurality of devices formed on its surface (hereinafter, referred to as a wafer) is thinned.
  • a wafer a semiconductor wafer having a plurality of devices formed on its surface
  • various methods for thinning a wafer For example, there are a method of grinding the back surface of the wafer and a method of separating the wafer as disclosed in Patent Document 1.
  • the device constituting the separated front side wafer can be commercialized, and the back side wafer can be recycled.
  • Patent Document 1 does not disclose or suggest how to treat the modified layer of the backside wafer. Furthermore, no method is considered at all for a method of efficiently reusing the backside wafer. Accordingly, there is room for improvement in conventional wafer processing in separating and thinning wafers and reusing the separated wafers.
  • the technology according to the present disclosure efficiently separates a wafer and reuses the separated wafer.
  • a wafer processing system as a substrate processing system and a wafer processing method as a substrate processing method according to the present embodiment will be described with reference to the drawings.
  • elements having substantially the same function and structure are denoted by the same reference numerals, and redundant description is omitted.
  • FIG. 1 is a plan view schematically showing the outline of the configuration of the wafer processing system 1.
  • a surface bonded to the support wafer S is referred to as a front surface Wa
  • a surface opposite to the front surface Wa is referred to as a back surface Wb.
  • the surface bonded to the processing wafer W is referred to as a front surface Sa
  • the surface opposite to the front surface Sa is referred to as a back surface Sb.
  • the processing wafer W is a semiconductor wafer such as a silicon wafer, for example, and a device layer D including a plurality of devices is formed on a surface Wa. Further, an oxide film Fw, for example, an SiO 2 film (TEOS film) is further formed on the device layer D.
  • the periphery of the processing wafer W is chamfered, and the cross section of the periphery decreases in thickness toward its front end.
  • the support wafer S is a wafer that supports the processing wafer W, and is, for example, a silicon wafer.
  • An oxide film Fs for example, an SiO 2 film (TEOS film) is formed on the surface Sa of the support wafer S.
  • the support wafer S functions as a protective material for protecting devices on the surface Wa of the processing wafer W.
  • a device layer (not shown) is formed on the surface Sa, similarly to the processing wafer W.
  • the device layer D and the oxide films Fw and Fs are not shown in order to avoid complications. Similarly, in other drawings used in the following description, the illustration of the device layer D and the oxide films Fw and Fs may be omitted.
  • the processing wafer W in the overlapped wafer T is separated.
  • the separated processing wafer W on the front surface Wa is referred to as a first separation wafer W1 as a first separation substrate
  • the separated processing wafer W on the rear surface Wb is referred to as a second separation substrate.
  • the first separation wafer W1 has a device layer D and is commercialized.
  • the second separation wafer W2 is reused.
  • the first separated wafer W1 refers to the processing wafer W supported by the support wafer S, and may be referred to as the first separated wafer W1 including the support wafer S.
  • the surface separated on the first separation wafer W1 is called a separation surface W1a
  • the surface separated on the second separation wafer W2 is called a separation surface W2a.
  • the wafer processing system 1 has a configuration in which the carry-in / out station 2 and the processing station 3 are integrally connected.
  • the loading / unloading station 2 and the processing station 3 are arranged side by side from the X axis positive direction side to the negative direction side.
  • the carry-in / out station 2 carries in and out cassettes Ct, Cw1, and Cw2 capable of accommodating, for example, a plurality of overlapped wafers T, a plurality of first separated wafers W1, and a plurality of second separated wafers W2 with the outside. It is.
  • the processing station 3 includes various processing apparatuses that perform desired processing on the overlapped wafer T and the separated wafers W1 and W2.
  • the cassette loading table 10 is provided at the loading / unloading station 2.
  • a plurality of, for example, three cassettes Ct, Cw1, and Cw2 can be mounted on the cassette mounting table 10 in a line in the Y-axis direction.
  • the number of the cassettes Ct, Cw1, and Cw2 mounted on the cassette mounting table 10 is not limited to the present embodiment, and can be arbitrarily determined.
  • a wafer transfer area 20 is provided adjacent to the cassette mounting table 10 on the negative side of the cassette mounting table 10 in the X-axis direction.
  • the wafer transfer area 20 is provided with a wafer transfer device 22 movable on a transfer path 21 extending in the Y-axis direction.
  • the wafer transfer device 22 has two transfer arms 23, 23 for holding and transferring the overlapped wafer T and the separated wafers W1, W2.
  • Each transfer arm 23 is configured to be movable in a horizontal direction (X-axis direction and Y-axis direction), a vertical direction, around a horizontal axis, and around a vertical axis. Note that the configuration of the transfer arm 23 is not limited to the present embodiment, and may have any configuration.
  • the processing station 3 is provided with, for example, three processing blocks G1 to G3 and a wafer transfer area 30.
  • the first processing block G1, the second processing block G2, and the third processing block G3 are arranged in this order from the X-axis negative direction side (the loading / unloading station 2 side) to the positive direction side.
  • the first processing block G1 is disposed on the X-axis positive direction side of the wafer transfer area 30, and the second processing block G2 and the third processing block G3 are disposed on the Y-axis positive direction side of the wafer transfer area 30, respectively. I have.
  • the wafer transfer area 30 is provided with a wafer transfer device 32 that is movable on a transfer path 31 extending in the X-axis direction and that functions as a transfer mechanism.
  • the wafer transfer device 32 is configured to be able to transfer the overlapped wafer T and the separated wafers W1 and W2 to the respective processing devices of the processing blocks G1 to G3.
  • the wafer transfer device 32 has two transfer arms 33, 33 for holding and transferring the overlapped wafer T and the separated wafers W1, W2.
  • the first transfer arm 33 holds the overlapped wafer T and the separation wafers W1 and W2 from below
  • the second transfer arm 33 holds the overlapped wafer T and the separation wafers W1 and W2 from above.
  • Each transfer arm 33 is supported by a multi-joint arm member 34 and is configured to be movable in a horizontal direction, a vertical direction, around a horizontal axis, and around a vertical axis. Note that the configuration of the transfer arm 33 is not limited to the present embodiment, and may have any configuration.
  • the first processing block G1 is provided with two wet etching devices 40 and 41, an alignment device 50, and two cleaning devices 51 and 52.
  • the wet etching devices 40 and 41 are stacked in this order from above on the Y axis positive direction side.
  • the alignment device 50 and the two cleaning devices 51 and 52 are stacked in this order from above on the Y-axis negative direction side.
  • a reversing device 60 and a reforming / separating device 61 are stacked in this order from above.
  • the reversing device 60 constitutes a reversing mechanism according to the present disclosure.
  • the reforming separation device 61 is configured to serve both as the separation unit and the internal surface reforming unit according to the present disclosure.
  • a processing device 70 as a processing unit is provided in the third processing block G3.
  • the number and arrangement of the processing devices 70 are not limited to this embodiment, and a plurality of processing devices 70 may be arbitrarily arranged.
  • a plurality of wafer transfer devices 32 may be provided in the wafer transfer region 30.
  • the wet etching devices 40 and 41 respectively etch the separation surfaces W1a and W2a of the separation wafers W1 and W2 ground by the processing device 70.
  • a chemical solution etching solution
  • HF, HNO 3 , H 3 PO 4 , TMAH, Choline, KOH, or the like is used as the chemical solution, for example.
  • the alignment device 50 adjusts the horizontal direction of the overlapped wafer T before processing. For example, by detecting the position of the notch of the processing wafer W by the detection unit (not shown) while rotating the overlapped wafer T held by the chuck (not shown), the position of the notch is adjusted. The horizontal direction of the overlapped wafer T is adjusted.
  • the cleaning devices 51 and 52 clean the respective separation surfaces W1a and W2a of the separation wafers W1 and W2 ground by the processing device 70, respectively.
  • a brush is brought into contact with the separation surfaces W1a and W2a to scrub the separation surfaces W1a and W2a.
  • a pressurized cleaning liquid may be used for cleaning the separation surfaces W1a and W2a.
  • the reversing device 60 reverses the front and back surfaces of the second separation wafer W2 separated by the reforming separation device 61.
  • the configuration of the reversing device 60 is arbitrary.
  • the reforming / separating device 61 irradiates the inside of the processing wafer W with a laser beam to form an internal surface modified layer described later, and further starts the processing wafer W from the internal surface modified layer as a first separation wafer.
  • the wafer is separated into W1 and a second separation wafer W2.
  • the reforming / separating apparatus 61 has a chuck 80 for holding the overlapped wafer T in a state where the processing wafer W is located on the upper side and the supporting wafer S is located on the lower side as shown in FIG.
  • the chuck 80 is configured to be movable in the X-axis direction and the Y-axis direction by the moving unit 81.
  • the moving unit 81 includes a general precision XY stage.
  • the chuck 80 is configured to be rotatable around a vertical axis by a rotating unit 82.
  • a laser head 90 as an internal surface reforming unit for irradiating the inside of the processing wafer W with laser light.
  • the laser head 90 emits high-frequency pulsed laser light oscillated from a laser light oscillator (not shown) and having a wavelength that is transparent to the processing wafer W inside the processing wafer W.
  • the light is condensed and irradiated at a desired position.
  • the portion where the laser light is focused inside the processing wafer W is modified, and an internal surface modified layer is formed.
  • the laser head 90 irradiates the laser light from the laser light oscillator into a plurality of laser beams at the same time, for example, with a lens or the like.
  • the laser head 90 is configured to be movable in the X-axis direction and the Y-axis direction by the moving unit 91.
  • the moving unit 91 includes a general precision XY stage.
  • the laser head 90 is configured to be movable in the Z-axis direction by an elevating unit 92.
  • a suction pad 100 that holds the back surface Wb of the processing wafer W by suction is provided.
  • the suction pad 100 is configured to be rotatable around a vertical axis by a rotating unit 101. Further, the suction pad 100 is configured to be movable in the Z-axis direction by the elevating unit 102.
  • the processing apparatus 70 grinds the separation surface W1a of the first separation wafer W1 and the separation surface W2a of the second separation wafer W2.
  • the processing device 70 has a rotary table 110, a first grinding unit 120, and a second grinding unit 130.
  • the rotary table 110 is configured to be rotatable around a vertical rotation center line 111 by a rotation mechanism (not shown).
  • a rotation mechanism (not shown).
  • four chucks 112 are provided as holding units for sucking and holding the separated wafers W1 and W2.
  • the chucks 112 are evenly arranged on the same circumference as the rotary table 110, that is, are arranged at intervals of 90 degrees.
  • the four chucks 112 can be moved to the delivery positions A1, A2 and the processing positions B1, B2 by rotating the rotary table 110.
  • the chuck 112 is held by a chuck base (not shown) and is configured to be rotatable by a rotation mechanism (not shown).
  • the first delivery position A1 is a position on the X-axis negative direction side and the Y-axis negative direction side of the turntable 110, and the first separated wafer W1 is delivered.
  • the second transfer position A2 is a position on the X-axis positive direction side and the Y-axis negative direction side of the turntable 110, and the second separated wafer W2 is transferred.
  • the first processing position B1 is a position on the X-axis positive direction side and the Y-axis positive direction side of the turntable 110, and the first grinding unit 120 is disposed.
  • the second processing position B2 is a position on the X-axis negative direction side and the Y-axis positive direction side of the rotary table 110, and the second grinding unit 130 is disposed.
  • the first grinding unit 120 grinds the separation surface W1a of the first separation wafer W1.
  • the first grinding unit 120 has a first grinding unit 121 provided with an annular and rotatable grinding wheel (not shown). Further, the first grinding unit 121 is configured to be movable in the vertical direction along the column 122. Then, while the separation surface W1a of the first separation wafer W1 held by the chuck 112 is in contact with the grinding wheel, the chuck 112 and the grinding wheel are respectively rotated, and the grinding wheel is further lowered, whereby the first The separation surface W1a of the separation wafer W1 is ground. Thus, the internal surface modified layer remaining on the separation surface W1a of the first separation wafer W1 is removed.
  • the separation surface W2a of the second separation wafer W2 is ground.
  • the second grinding unit 130 has a second grinding unit 131 provided with an annular and rotatable grinding wheel (not shown). Further, the second grinding portion 131 is configured to be movable in the vertical direction along the column 132. Then, in a state where the separation surface W2a of the second separation wafer W2 held by the chuck 112 is in contact with the grinding wheel, the chuck 112 and the grinding wheel are rotated, and the grinding wheel is further lowered. The separation surface W2a of the separation wafer W2 is ground. Thus, the internal surface modified layer remaining on the separation surface W2a of the second separation wafer W2 is removed.
  • the control device 140 is, for example, a computer and has a program storage unit (not shown).
  • the program storage section stores a program for controlling the processing of the overlapped wafer T in the wafer processing system 1.
  • the program storage unit also stores programs for controlling operations of driving systems such as the above-described various types of processing apparatuses and transfer apparatuses so as to realize the below-described substrate processing in the wafer processing system 1.
  • the program may be recorded on a storage medium H that can be read by a computer, and may be installed on the control device 140 from the storage medium H.
  • FIG. 5 is a flowchart showing main steps of wafer processing.
  • the processing wafer W and the supporting wafer S are bonded by van der Waals force and hydrogen bonding (intermolecular force) in a bonding apparatus (not shown) outside the wafer processing system 1, and a superposed wafer is previously formed. T is formed.
  • the cassette Ct storing a plurality of overlapped wafers T shown in FIG. 6A is mounted on the cassette mounting table 10 of the loading / unloading station 2.
  • the overlapped wafer T in the cassette Ct is taken out by the wafer transfer device 22 and transferred to the alignment device 50.
  • the horizontal direction of the overlapped wafer T (processed wafer W) is adjusted (Step P1 in FIG. 5).
  • the overlapped wafer T is transferred to the reforming / separating device 61 by the wafer transfer device 32.
  • the internal surface reforming layer M1 is formed inside the processing wafer W as shown in FIG. 6B (Step P2 in FIG. 5).
  • the internal surface modification layer M1 extends in the surface direction and has a horizontally long aspect ratio.
  • the lower end of the internal surface modified layer M1 is located slightly above the target surface (dotted line in FIG. 7) of the processed wafer W after grinding. That is, the distance H1 between the lower end of the internal surface modification layer M1 and the surface Wa of the processing wafer W is slightly larger than the target thickness H2 of the processing wafer W after grinding.
  • the internal surface modified layer M1 has a vertically long aspect ratio, and the plurality of internal surface modified layers M1 may be arranged with a small pitch. Further, cracks C1 propagate from the inner surface modified layer M1 in the surface direction. Further, when the pitch of the internal surface modification layer M1 is small, the crack C1 may not be provided.
  • the laser head 90 and the overlapped wafer T are relatively horizontally moved to form a plurality of internal surface modified layers M1 inside the processing wafer W.
  • the laser head 90 is moved in the X-axis direction to form a row of internal surface modification layers M1.
  • the laser head 90 is shifted in the Y-axis direction, and the laser head 90 is further moved in the X-axis direction to form another row of the internal surface modified layer M1.
  • the plurality of inner surface modification layers M1 are formed at the same height.
  • an internal surface modified layer M1 is formed on the entire internal surface of the processing wafer W.
  • a plurality of laser beams L may be simultaneously irradiated from the laser head 90.
  • the internal surface modification layer M1 can be formed in a shorter time, and the throughput of wafer processing can be improved.
  • the laser head 90 may be moved in the horizontal direction while rotating the chuck 80.
  • the internal surface modification layer M1 is formed in a spiral shape in plan view. Then, the pitch of the plurality of internal surface modification layers M1 may be changed in the concentric direction and the radial direction of the processing wafer W.
  • the processing wafer W is separated into a first separation wafer W1 and a second separation wafer W2 based on the internal surface reforming layer M1 as shown in FIG. 6C. (Step P3 in FIG. 5).
  • the back surface Wb of the processing wafer W is suction-held by the suction pad 100. Then, by rotating the suction pad 100, the first separation wafer W1 and the second separation wafer W2 are cut off at the boundary of the inner surface modified layer M1. Thereafter, as shown in FIG. 9B, in a state where the suction pad 100 sucks and holds the second separation wafer W2, the suction pad 100 is raised to move the second separation wafer W2 from the first separation wafer W1. Is separated.
  • the internal surface modified layer M1 remains on each of the separation surface W1a of the first separation wafer W1 and the separation surface W2a of the second separation wafer W2.
  • the method for separating the processing wafer W is not limited to the present embodiment.
  • the second separation wafer W2 can be separated simply by raising the suction pad 100 as shown in FIG. 9B, the rotation of the suction pad 100 shown in FIG. 9B may be omitted.
  • a tape (not shown) may be used instead of the suction pad 100, and the processing wafer W may be held and separated by the tape.
  • ultrasonic waves may be applied to at least the internal surface modified layer M1 of the processed wafer W, or by heating the internal surface modified layer M1. Is also good. In such a case, it becomes easy to separate the processing wafer W based on the inner surface modified layer M1.
  • the second separation wafer W2 is transferred to the reversing device 60 by the wafer transfer device 32.
  • the reversing device 60 the front and back surfaces of the second separation wafer W2 are reversed (Step P4 in FIG. 5).
  • the second separated wafer W2 is transferred to the processing device 70 by the wafer transfer device 32, and is transferred to the chuck 112 at the second transfer position A2 as shown in FIG.
  • Step P4 the first separated wafer W1 is transferred to the processing device 70 by the wafer transfer device 32, and transferred to the chuck 112 at the first transfer position A1 as shown in FIG.
  • the rotary table 110 is rotated 180 ° counterclockwise to move the first separated wafer W1 to the first processing position B1, and to move the second separated wafer W2. It is moved to the second processing position B2.
  • the separation surface W1a of the first separation wafer W1 is ground, and the internal surface modification layer M1 remaining on the separation surface W1a is removed.
  • the separation surface W2a of the second separation wafer W2 is ground to remove the internal surface modified layer M1 remaining on the separation surface W2a (FIG. Step P5).
  • the rotary table 110 is rotated counterclockwise by 180 ° to move the first separated wafer W1 to the first transfer position A1 in the state shown in FIG. W2 is moved to the second delivery position A2.
  • the separation surface W1a of the first separation wafer W1 may be cleaned with the cleaning liquid using a cleaning liquid nozzle (not shown).
  • the separation surface W2a of the second separation wafer W2 may be cleaned with the cleaning liquid using a cleaning liquid nozzle (not shown).
  • the first separated wafer W1 is transferred to the cleaning device 51 by the wafer transfer device 32, and the second separated wafer W2 is transferred to the cleaning device 52 by the wafer transfer device 32.
  • the separation surface W1a of the first separation wafer W1 is scrub-cleaned
  • the separation surface W2a of the second separation wafer W2 is scrub-cleaned (Step P6 in FIG. 5).
  • the first separated wafer W1 is transferred to the wet etching device 40 by the wafer transfer device 22, and the second separated wafer W2 is transferred to the wet etching device 41 by the wafer transfer device 22.
  • the separation surface W1a of the first separation wafer W1 is wet-etched with a chemical
  • the separation surface W2a of the second separation wafer W2 is wet-etched with a chemical (step P7 in FIG. 5). Grinding marks may be formed on each of the separation surfaces W1a and W2a ground by the processing device 70 described above. In the present step P7, grinding marks can be removed by wet etching, and the separation surfaces W1a and W2a can be smoothed.
  • the first separated wafer W1 and the second separated wafer W2 that have been subjected to all the processes are respectively transferred to the cassettes Cw1 and Cw2 of the cassette mounting table 10 by the wafer transfer device 22.
  • a series of wafer processing in the wafer processing system 1 ends.
  • steps P1 to P7 can be performed to separate the processing wafer W, and the separation surfaces W1a and W2a of the separation wafers W1 and W2 can be appropriately processed by grinding, wet etching, or the like. Therefore, it is possible to commercialize the first separation wafer W1 having the device layer D and reuse the second separation wafer W2. In addition, since these steps P1 to P7 are performed by one wafer processing system 1, wafer processing can be performed efficiently.
  • the processing apparatus 70 of the present embodiment includes the rotary table 110, the first grinding unit 120, and the second grinding unit 130, the grinding of the separation surface W1a of the first separation wafer W1 in Step P5. And the grinding of the separation surface W2a of the second separation wafer W2 can be performed in parallel. Therefore, the throughput of the wafer processing can be improved.
  • the processing device 70 of the present embodiment is provided with delivery positions A1, A2 and processing positions B1, B2 corresponding to the four chucks 112 of the rotary table 110. Then, for example, as shown in FIG. 11, grinding of the separation surface W1a at the first processing position B1 and delivery of the first separation wafer W1 at the first delivery position A1 can be performed in parallel. Similarly, grinding of the separation surface W2a at the second processing position B2 and delivery of the second separation wafer W2 at the second delivery position A2 can be performed in parallel. Therefore, the throughput of the wafer processing can be improved.
  • the processing device 70 of the present embodiment is provided with the delivery positions A1 and A2 and the processing positions B1 and B2, for example, when two rotary tables provided with one delivery position and one processing position are used.
  • the number of use of the rotary table is smaller than that of.
  • the occupied area (footprint) of the processing apparatus 70 can be reduced, and the occupied area of the wafer processing system 1 can be reduced.
  • the processing wafer in thinning the processing wafer W, after forming the internal surface modified layer M1 inside the processing wafer W in step P2, in step P3, the processing wafer is formed based on the internal surface modified layer M1. W is separated. For example, when the back surface Wb of the processing wafer W is ground and thinned as in the related art, a grinding wheel is worn and grinding water is used. On the other hand, in the present embodiment, the degree of deterioration of the laser head 90 itself with time is small and consumables are reduced, so that the maintenance frequency can be reduced. In addition, since it is a dry process using a laser, grinding water and wastewater treatment are not required. Therefore, the running cost can be reduced. Furthermore, since the grinding water does not flow to the support wafer S side, it is possible to suppress the support wafer S from being contaminated.
  • the separation surface W1a is ground in step P5, but this grinding may be performed by removing the inner surface modified layer M1, and the grinding amount is as small as several tens of ⁇ m.
  • the grinding amount is as large as 700 ⁇ m or more, for example, and the degree of wear of the grinding wheel is large. For this reason, in the present embodiment, the maintenance frequency can be reduced as well.
  • one processing apparatus 70 grinds the separation surface W1a of the first separation wafer W1 and another processing apparatus 70
  • the separation surface W2a of the separation wafer W2 may be ground.
  • FIG. 12 is a plan view schematically showing a schematic configuration of a wafer processing system 200 according to another embodiment.
  • the formation of the internal surface modified layer M1 and the separation of the processed wafer W in the reforming and separating apparatus 61 of the wafer processing system 1 of the above embodiment are performed by separate apparatuses. That is, the wafer processing system 200 includes a separation / inversion device 201 and a reforming device 202 instead of the reversing device 60 and the reforming / separating device 61 of the wafer processing system 1.
  • the separation inversion device 201 and the reforming device 202 are provided in this order in the second processing block G2 from above.
  • the reforming apparatus 202 forms the internal surface modified layer M1 inside the processing wafer W.
  • the reforming device 202 includes, for example, a member (such as the laser head 90) for forming the internal surface reformed layer M1 in the configuration of the reforming separation device 61.
  • the separation reversing device 201 separates the processing wafer W from the internal surface modified layer M1 as a base point, and reverses the front and back surfaces of the separated second separation wafer W2.
  • the separation and inversion device 201 has, for example, a configuration of the inversion device 60 in addition to a member (the suction pad 100 and the like) for separating the processing wafer W in the configuration of the reforming and separation device 61.
  • the wafer processing system 200 of this embodiment can also perform the steps P1 to P7 of the above embodiment, and can enjoy the same effects as those of the embodiment.
  • FIG. 13 is a plan view schematically showing the outline of the configuration of a wafer processing system 300 according to another embodiment.
  • the wafer processing system 300 separates the processing wafer W in the reforming / separating device 61 of the wafer processing system 1 of the above embodiment and inverts the front and back surfaces of the second separated wafer W2 in the reversing device 60 inside the processing device 70. Is what you do. That is, the wafer processing system 300 includes a reforming device 301 and a separation / reversing unit 302 instead of the reversing device 60 and the reforming / separating device 61 of the wafer processing system 1.
  • the reformer 301 is provided in the second processing block G2.
  • the reforming apparatus 301 forms the internal surface reforming layer M1 inside the processing wafer W.
  • the reforming device 202 includes, for example, a member (such as the laser head 90) for forming the internal surface reformed layer M1 in the configuration of the reforming separation device 61.
  • the separation / reversal unit 302 is provided above the turntable 110 and the chuck 112 at the second delivery position A2 of the processing device 70.
  • the separation / reversal unit 302 includes a separation mechanism 303 for separating the processing wafer W from the internal surface modified layer M1 as a base point, and a reversing mechanism 304 for reversing the front and back surfaces of the separated second separation wafer W2. .
  • the separation mechanism 303 has a suction pad 310 that suction-holds the back surface Wb of the processing wafer W to the overlapped wafer T held by the chuck 112.
  • the suction pad 310 is configured to be rotatable around a vertical axis by a rotating unit 311. Further, the suction pad 310 is configured to be movable in the Z-axis direction by the elevating unit 312. Then, in the separation mechanism 303, first, in a state where the back surface Wb of the processing wafer W is suction-held by the suction pad 310, the suction pad 310 is rotated, and the first separation wafer W1 and the first separation wafer W1 are separated with the internal surface modified layer M1 as a boundary. The second separation wafer W2 is cut off. Thereafter, with the suction pad 310 holding the second separation wafer W2 by suction, the suction pad 100 is raised to separate the second separation wafer W2 from the first separation wafer W1.
  • the reversing mechanism 304 has a holding unit 320 that holds the second separation wafer W2.
  • the method of holding the second separated wafer W2 by the holding unit 320 is not particularly limited, but is, for example, suction holding.
  • the holding unit 320 is configured to be rotatable around a horizontal axis by a rotating unit 321.
  • the holding unit 320 is configured to be movable in the Z-axis direction by the elevating unit 322. Then, in the reversing mechanism 304, while the second separation wafer W2 is being held by the holding unit 320, the holding unit 320 is rotated around a horizontal axis to invert the front and back surfaces of the second separation wafer W2.
  • Step P2 the internal surface reforming layer M1 is formed inside the processing wafer W in the reforming apparatus 301. Thereafter, the processing wafer W is transferred to the processing device 70 by the wafer transfer device 32 in a state of being supported by the support wafer S, that is, in a state of the overlapped wafer T. In the processing device 70, the overlapped wafer T is delivered to the chuck 112 at the second delivery position A2.
  • step P3 the processing wafer W is separated into the separation wafers W1 and W2 by the separation mechanism 303 while the chuck 112 holds the overlapped wafer T.
  • Step P4 the separated second separated wafer W2 is transferred to the holding unit 320 of the reversing mechanism 304, and the holding unit 320 is rotated around a horizontal axis so that the front and back surfaces of the second separated wafer W2 are Inverted.
  • the first separated wafer W1 is transported to the chuck 112 at the first delivery position A1, and the second separated wafer W2 is held as it is by the chuck 112 at the second delivery position A2.
  • the transfer of the first separated wafer W1 may be performed by the wafer transfer device 32.
  • the rotary table 110 is rotated to move the first separation wafer W1 from the second delivery position A2 to the first delivery position A1. It may be transported.
  • the other steps P1, P5 to P7 are the same as those in the above embodiment.
  • the same effects as in the above embodiment can be enjoyed.
  • the wafer processing systems 1, 200, and 300 of the above embodiments may have a CMP device (CMP: Chemical Mechanical Polishing, chemical mechanical polishing) instead of the wet etching devices 40 and 41.
  • CMP Chemical Mechanical Polishing, chemical mechanical polishing
  • This CMP apparatus functions similarly to the wet etching apparatuses 40 and 41. That is, in the CMP apparatus, the separation surfaces W1a and W2a ground by the processing apparatus 70 are polished. Then, the processing device 70 removes grinding marks formed on the separation surfaces W1a and W2a, and smoothes the separation surfaces W1a and W2a.
  • the wafer processing systems 1, 200, and 300 may include both wet etching devices 40 and 41 and a CMP device, and perform both wet etching and CMP on the separation surfaces W1a and W2a.
  • the reversing device 60, the separating / reversing device 201, and the separating / reversing unit 302 reverse the front and back surfaces of the second separated wafer W2.
  • the transfer arm 33 of the device 32 the front and back surfaces of the second separation wafer W2 may be reversed.
  • the transfer arm 33 supported by the arm member 34 rotates around the horizontal axis, and the front and back of the second separation wafer W2 are inverted.
  • one transfer arm 400 may hold and transfer two separated wafers W1 and W2 as shown in FIG.
  • a suction pad 401 for sucking and holding the first separated wafer W1 is provided on one surface of the transfer arm 400, and a suction pad 402 for sucking and holding the second separated wafer W2 on the other surface.
  • the transfer arm 400 is supported by the arm member 34 and is configured to be rotatable around a horizontal axis.
  • the reforming / separating device 61 and the reforming devices 202 and 301 respectively form the internal surface modified layer M1 inside the processing wafer W.
  • the processing may be performed by the processing systems 1, 200, and 300.
  • the internal surface modification layer M1 is formed in advance inside the processing wafer W transferred to the wafer processing system 1, 200, 300.
  • the peripheral portion of the processing wafer W is chamfered.
  • the peripheral portion of the processing wafer W is sharply pointed. Shape (so-called knife edge shape). Then, chipping occurs at the peripheral portion of the processing wafer W, and the processing wafer W may be damaged. Therefore, so-called edge trimming, in which the peripheral portion of the processing wafer W is removed in advance before the grinding process, is performed.
  • edge trim may be performed in the wafer processing systems 1, 200, and 300 of the above embodiments.
  • edge trimming is performed in the wafer processing system 1 in the following description.
  • edge trimming is performed in the reforming / separating device 61. That is, in the reforming separation apparatus 61, a peripheral reforming layer is formed in the thickness direction along the boundary between the peripheral portion and the central portion of the processing wafer W, and the peripheral portion of the processing wafer W is removed based on the peripheral reforming layer. I do.
  • the laser head 90 functions as a peripheral reforming section, and forms a peripheral reforming layer inside the processing wafer W.
  • FIG. 17 is a flowchart showing main steps of wafer processing. In the present embodiment, detailed description of the same processes as those in the embodiment shown in FIG. 5 is omitted.
  • a cassette Ct containing a plurality of overlapped wafers T is mounted on the cassette mounting table 10 of the loading / unloading station 2.
  • the overlapped wafer T in the cassette Ct is taken out by the wafer transfer device 22 and transferred to the alignment device 50.
  • the horizontal direction of the overlapped wafer T (processed wafer W) is adjusted (Step Q1 in FIG. 17).
  • the overlapped wafer T is transferred to the reforming / separating device 61 by the wafer transfer device 32.
  • a peripheral reforming layer M2 is formed inside the processing wafer W as shown in FIG. 18B (step Q2 in FIG. 17).
  • the laser head 90 is moved to a position above the processing wafer W and to a boundary between the peripheral edge portion We and the central portion Wc of the processing wafer W. Thereafter, the laser head 90 irradiates the inside of the processing wafer W with the laser beam L while rotating the chuck 80 by the rotating unit 82. Then, along the boundary between the peripheral edge portion We and the central portion Wc, an annular peripheral edge modified layer M2 is formed.
  • the peripheral edge modified layer M2 is a base point for removing the peripheral edge We in the edge trim, and is formed in an annular shape along the boundary between the peripheral edge We to be removed and the central portion Wc in the processing wafer W. You.
  • the peripheral edge portion We is, for example, in a range of 1 mm to 5 mm in the radial direction from the outer end of the processing wafer W, and includes a chamfered portion.
  • the peripheral edge modified layer M2 extends in the thickness direction and has a vertically long aspect ratio.
  • the lower end of the peripheral edge modified layer M2 is located above the target surface (the dotted line in FIG. 19) of the processed wafer W after the grinding. That is, the distance H3 between the lower end of the peripheral edge modified layer M2 and the surface Wa of the processing wafer W is larger than the target thickness H2 of the processing wafer W after grinding. In such a case, the peripheral modified layer M2 does not remain on the processed wafer W after the grinding.
  • an internal surface reforming layer M3 is formed inside the processing wafer W as shown in FIG. 18C (Step Q3 in FIG. 17). Similar to the internal surface modified layer M1 shown in FIG. 6, the internal surface modified layer M3 extends in the surface direction of the processing wafer W. The internal surface modified layer M3 is formed at the same height as the peripheral edge modified layer M2, and the lower end of the internal surface modified layer M3 is located above the target surface of the processed wafer W after the grinding. Then, a plurality of internal surface modified layers M3 are formed in the surface direction, and the plurality of internal surface modified layers M3 are formed in the surface direction from the central portion to the peripheral edge modified layer M2, that is, in the central portion Wc.
  • the method for forming the inner surface modified layer M3 is the same as that in Step P2. Further, cracks C3 propagate from the inner surface modified layer M3 in the surface direction. Further, when the pitch of the internal surface modification layer M3 is small, the crack C3 may not be provided.
  • the processing wafer W is divided into the first separation wafer W1 and the second separation wafer W1 based on the inner surface reforming layer M3 and the peripheral reforming layer M2.
  • the wafer is separated into separated wafers W2 (Step Q4 in FIG. 17).
  • the second separation wafer W2 is separated integrally with the peripheral edge portion We.
  • the method of separating the processing wafer W is the same as that in Step P3.
  • the second separation wafer W2 is transferred to the reversing device 60 by the wafer transfer device 32.
  • the reversing device 60 the front and back surfaces of the second separation wafer W2 are reversed (Step Q5 in FIG. 17).
  • the method of reversing the second separation wafer W2 is the same as that in Step P4.
  • the first separation wafer W1 and the second separation wafer W2 are transferred to the processing device 70 by the wafer transfer device 32, respectively.
  • the separation surface W1a of the first separation wafer W1 is ground, and the peripheral edge modified layer M2 and the internal surface modified layer M3 remaining on the separation surface W1a are removed.
  • the separation surface W2a of the second separation wafer W2 is ground to remove the peripheral modified layer M2 and the internal surface modified layer M3 remaining on the separation surface W2a (FIG. 17).
  • Step Q6 The method of grinding the separation surfaces W1a and W2a is the same as that in Step P5.
  • the first separation wafer W1 and the second separation wafer W2 are transferred to the cleaning devices 51 and 52 by the wafer transfer device 32, respectively.
  • the cleaning devices 51 and 52 the separation surfaces W1a and W2a are scrub-cleaned (step Q7 in FIG. 17).
  • the method for cleaning the separation surfaces W1a and W2a is the same as that in Step P6.
  • the first separation wafer W1 and the second separation wafer W2 are transferred to the wet etching devices 40 and 41 by the wafer transfer device 22, respectively.
  • the separation surfaces W1a and W2a are wet-etched, respectively (Step Q8 in FIG. 17). Note that the wet etching method of the separation surfaces W1a and W2a is the same as that in Step P7.
  • the first separated wafer W1 and the second separated wafer W2 that have been subjected to all the processes are respectively transferred to the cassettes Cw1 and Cw2 of the cassette mounting table 10 by the wafer transfer device 22.
  • a series of wafer processing in the wafer processing system 1 ends.
  • the same effects as in the above embodiment can be enjoyed.
  • the peripheral edge We is removed with the peripheral edge modified layer M2 as a base point. I have.
  • the peripheral edge portion We is ground or cut, and the grinding wheel is worn, so that periodic replacement is required.
  • the degree of deterioration of the laser head 90 itself with time is small, and the frequency of maintenance can be reduced.
  • the present disclosure does not exclude edge trimming by grinding.
  • the formation of the peripheral edge modified layer M2 in step Q1 and the formation of the inner surface modified layer M3 in step Q3 can be performed in the same reforming separation device 61. Therefore, equipment costs can be reduced.
  • the formation of the peripheral edge modified layer M2 and the formation of the internal surface modified layer M3 may be performed by separate apparatuses. For example, in the case where the above-described wafer processing is continuously performed on a plurality of overlapped wafers T, by forming the peripheral edge modified layer M2 and the internal surface modified layer M1 using different apparatuses, the throughput of the wafer processing can be reduced. Can be improved.
  • the laser head 90 forms the peripheral modified layer M2 and the internal surface modified layer M3.
  • the peripheral modified layer M2 and the internal surface modified layer M3 are separately formed. May be formed using the laser head described above.
  • the method of performing the edge trim in the wafer processing system 1 is not limited to the above embodiment.
  • a wafer process according to another embodiment will be described. This embodiment is almost the same as the embodiment shown in FIG. 18, except for the internal surface modification layer formed in step Q3.
  • an internal surface modification layer M4 is formed inside the processing wafer W as shown in FIG. While the internal surface modified layer M3 shown in FIG. 18 is formed up to the peripheral edge modified layer M2, the internal surface modified layer M4 of the present embodiment extends from the center to the outer end in the surface direction. It is formed. Note that the crack C4 extends from the inner surface modified layer M4 in the surface direction. When the pitch of the internal surface modification layer M4 is small, the crack C4 may not be provided.
  • step Q4 as shown in FIG. 20D, the second separation wafer W2 above the internal surface modified layer M4 and the peripheral portion We below the internal surface modified layer M4 are separately separated. Separated. That is, the second separation wafer W2 is separated based on the inner surface modified layer M4, and the peripheral portion We is separated based on the peripheral modified layer M2.
  • the other steps Q1 to Q2 and Q5 to B8 are the same as those in the embodiment shown in FIG.
  • the peripheral portion We is removed when the processing wafer W is separated.
  • the processing wafer W is separated after removing the peripheral portion We. Good.
  • step Q2 the peripheral reforming layer M5 and the divided reforming layer M6 are formed inside the processing wafer W as shown in FIG.
  • the laser head 90 is moved above the processing wafer W to the boundary between the peripheral edge We and the central part Wc of the processing wafer W. Thereafter, the laser beam L is irradiated from the laser head 90 to the inside of the processing wafer W while the chuck 80 is rotated by the rotating unit 82, so that the peripheral edge modified layer M5 is formed inside the processing wafer W.
  • the peripheral modified layer M5 extends in the thickness direction, and the lower end of the peripheral modified layer M5 is positioned on the target surface of the ground processing wafer W (the dotted line in FIG. 22). ).
  • the laser head 90 is moved in the same reforming / separating apparatus 61 to form a divided reformed layer M6 inside the processing wafer W and radially outside the peripheral reformed layer M5.
  • the split modified layer M6 also extends in the thickness direction similarly to the peripheral modified layer M5, and has a vertically long aspect ratio.
  • the crack C6 extends from the divided modified layer M6 and reaches the front surface Wa and the back surface Wb. Note that a plurality of divided modified layers M6 may also be formed in the thickness direction.
  • the layer M6 is formed.
  • the divided modified layers M6 of the line extending in the radial direction are formed at eight positions, but the number of the divided modified layers M6 is arbitrary.
  • At least the peripheral edge portion We can be removed if the divided modified layer M6 is formed at two places. In such a case, when the peripheral edge portion We is removed in the edge trim, the peripheral edge portion We is divided into a plurality of parts by the divided modified layer M6 while being separated from the annular peripheral modified layer M5 as a base point. Then, the peripheral edge portion We to be removed is fragmented and can be more easily removed.
  • the peripheral portion We of the processing wafer W is removed starting from the peripheral modified layer M5 as shown in FIG.
  • a tape 150 shown in FIG. 24 is provided in the reforming separation device 61 of the present embodiment, and the tape 150 is expanded (expanded) to remove the peripheral edge We.
  • the expandable tape 150 is attached to the back surface Wb of the processing wafer W.
  • the tape 150 is expanded in the radial direction of the processing wafer W, and the peripheral portion We is separated from the processing wafer W based on the peripheral edge modified layer M5.
  • the peripheral edge portion We is divided into small pieces and separated from the division reforming layer M6.
  • the tape 150 is lifted and separated from the processing wafer W, and the peripheral edge portion We is removed.
  • a process of reducing the adhesive strength of the tape 150 for example, an ultraviolet irradiation process may be performed.
  • the method of removing the peripheral edge portion We is not limited to the present embodiment.
  • an air blow or a water jet may be jetted to the peripheral portion We, and the peripheral portion We may be removed by pressing.
  • a jig such as tweezers may be brought into contact with the peripheral edge We to physically remove the peripheral edge We.
  • step Q3 the internal surface modified layer M7 is formed in step Q3 as shown in FIG. 21 (d), and further, in step Q4, the processing wafer W is The wafer is separated into separation wafers W1 and W2.
  • step Q5 the front and back surfaces of the second separation wafer W2 are reversed in step Q5.
  • step Q6 the separation surfaces W1a and W2a are ground in the processing device 70 as shown in FIGS. 21 (f) and 21 (g).
  • step Q7 is performed in the cleaning devices 51 and 52, and step Q8 is performed in the wet etching devices 40 and 41.
  • the same effects as in the above embodiment can be enjoyed. Moreover, according to the present embodiment, since the divided modified layer M6 is formed in step Q2, the peripheral edge portion We to be removed can be reduced into small pieces. Therefore, edge trimming can be performed more easily.
  • the bonding of the processing wafer W and the support wafer S is performed by a bonding apparatus outside the wafer processing systems 1, 200, and 300. It may be provided inside the processing system 1, 200, 300.
  • pre-processing is performed on the oxide films Fw and Fs before the bonding process. May go.
  • the pretreatment for example, the surface layer of the oxide film Fw at the peripheral edge We may be removed, or the oxide film Fw may be made to protrude. Alternatively, the surface of oxide film Fw may be roughened to be rough.
  • the unjoined region is formed before the joining process, but the unjoined region may be formed after the joining process.
  • the bonding strength can be reduced and an unbonded region can be formed.
  • processing wafer W and the support wafer S are directly bonded has been described.
  • the processing wafer W and the support wafer S may be bonded via an adhesive.
  • the above embodiment the case where the processing wafer W in the overlapped wafer T is thinned has been described, but the above embodiment can also be applied to the case where one wafer is thinned. Further, the above embodiment can be applied to a case where the overlapped wafer T is separated into the processing wafer W and the support wafer S.

Abstract

Provided is a substrate processing system for processing a substrate, the system comprising: a separating section for separating the substrate into a first separated substrate and a second separated substrate, said separation starting from an internal plane modified layer formed in an in-plane direction of the interior of the substrate; a machining section for respectively grinding a separation surface of the first separated substrate and a separation surface of the second separated substrate; a conveyance mechanism for conveying the substrate to at least the separating section or the machining section; and an inversion mechanism for inverting the front and rear faces of the second separated substrate.

Description

基板処理システム及び基板処理方法Substrate processing system and substrate processing method
 本開示は、基板処理システム及び基板処理方法に関する。 The present disclosure relates to a substrate processing system and a substrate processing method.
 特許文献1には、複数のデバイスが表面側に形成されたウェハの処理方法が開示されている。この処理方法では、ウェハの表面側と裏面側との間にレーザ光を照射して変質層を形成した後、当該変質層より裏面側の裏面側ウェハと当該変質層より表面側の表面側ウェハとに分離する。さらに、裏面側ウェハをリサイクルする。 Patent Document 1 discloses a method of processing a wafer having a plurality of devices formed on a front surface side. In this processing method, after the deteriorated layer is formed by irradiating a laser beam between the front side and the back side of the wafer, the back side wafer on the back side of the deteriorated layer and the front side wafer on the front side of the deteriorated layer are formed. And separated into Further, the back side wafer is recycled.
特開2010-21398号公報JP 2010-21398 A
 本開示にかかる技術は、基板を分離して薄化し、さらに分離された基板を再利用するにあたり、かかる分離と再生を効率よく行う。 技術 The technology according to the present disclosure efficiently separates and regenerates the substrate when separating and thinning the substrate and reusing the separated substrate.
 本開示の一態様は、基板を処理する基板処理システムであって、基板の内部の面方向に形成された内部面改質層を起点に、当該基板を第1の分離基板と第2の分離基板に分離する分離部と、前記第1の分離基板の分離面と前記第2の分離基板の分離面をそれぞれ研削する加工部と、少なくとも前記分離部又は前記加工部に対して、前記基板を搬送する搬送機構と、前記第2の分離基板の表裏面を反転させる反転機構と、を有する。 One embodiment of the present disclosure is a substrate processing system for processing a substrate, the substrate being separated from a first separation substrate and a second separation substrate starting from an internal surface modification layer formed in a surface direction inside the substrate. A separation unit for separating the substrate, a processing unit for grinding the separation surface of the first separation substrate and a separation surface of the second separation substrate, and the substrate for at least the separation unit or the processing unit. It has a transport mechanism for transporting, and a reversing mechanism for reversing the front and back surfaces of the second separation substrate.
 本開示によれば、基板を分離して薄化し、さらに分離された基板を再利用するにあたり、かかる分離と再生を効率よく行うことができる。 According to the present disclosure, when the substrate is separated and thinned, and the separated substrate is reused, the separation and the regeneration can be efficiently performed.
本実施形態にかかるウェハ処理システムの構成の概略を模式的に示す平面図である。FIG. 1 is a plan view schematically showing an outline of a configuration of a wafer processing system according to an embodiment. 重合ウェハの構成の概略を示す側面図である。It is a side view which shows the outline of a structure of a superposition wafer. 重合ウェハの一部の構成の概略を示す側面図である。It is a side view which shows the outline of a part of structure of a superposition wafer. 改質分離装置の構成の概略を示す側面図である。It is a side view which shows the outline of a structure of a reforming separation apparatus. 本実施形態にかかるウェハ処理の主な工程を示すフロー図である。It is a flowchart which shows the main process of the wafer processing concerning this embodiment. 本実施形態にかかるウェハ処理の主な工程の説明図である。FIG. 4 is an explanatory diagram of main steps of wafer processing according to the embodiment. 改質分離装置において処理ウェハに内部面改質層を形成する様子を示す縦断面図である。It is a longitudinal cross-sectional view which shows a mode that an internal surface modification layer is formed on a processing wafer in a modification separation apparatus. 改質分離装置において処理ウェハに内部面改質層を形成する様子を示す平面図である。It is a top view showing signs that an internal surface modification layer is formed in a processing wafer in a modification separation device. 改質分離装置において処理ウェハを分離する様子を示す説明図である。It is explanatory drawing which shows a mode that a process wafer is isolate | separated in a reforming separation apparatus. 加工装置において分離ウェハの分離面を研削する様子を示す説明図である。It is explanatory drawing which shows a mode that a separation surface of a separation wafer is ground in a processing apparatus. 加工装置において分離ウェハの分離面を研削する様子を示す説明図である。It is explanatory drawing which shows a mode that a separation surface of a separation wafer is ground in a processing apparatus. 他の実施形態にかかるウェハ処理システムの構成の概略を模式的に示す平面図である。It is a top view which shows typically the outline of the structure of the wafer processing system concerning other embodiment. 他の実施形態にかかるウェハ処理システムの構成の概略を模式的に示す平面図である。It is a top view which shows typically the outline of the structure of the wafer processing system concerning other embodiment. 分離反転ユニットの構成の概略を示す側面図である。It is a side view which shows the outline of a structure of a separation inversion unit. ウェハ搬送装置の搬送アームの構成の概略を示す側面図である。It is a side view which shows the outline of a structure of the transfer arm of a wafer transfer apparatus. ウェハ搬送装置の搬送アームの構成の概略を示す側面図である。It is a side view which shows the outline of a structure of the transfer arm of a wafer transfer apparatus. 他の実施形態にかかるウェハ処理の主な工程を示すフロー図である。It is a flowchart which shows the main process of the wafer processing concerning other embodiment. 他の実施形態にかかるウェハ処理の主な工程の説明図である。It is an explanatory view of a main step of wafer processing according to another embodiment. 他の実施形態において処理ウェハに周縁改質層を形成する様子を示す説明図である。It is explanatory drawing which shows a mode that a peripheral edge modification layer is formed in a process wafer in another embodiment. 他の実施形態にかかるウェハ処理の主な工程の説明図である。It is an explanatory view of a main step of wafer processing according to another embodiment. 他の実施形態にかかるウェハ処理の主な工程の説明図である。It is an explanatory view of a main step of wafer processing according to another embodiment. 他の実施形態において処理ウェハに周縁改質層と分割改質層を形成する様子を示す説明図である。It is explanatory drawing which shows a mode that a periphery modification layer and a division | segmentation modification layer are formed in a process wafer in another embodiment. 他の実施形態において処理ウェハに周縁改質層と分割改質層を形成する様子を示す説明図である。It is explanatory drawing which shows a mode that a periphery modification layer and a division | segmentation modification layer are formed in a process wafer in another embodiment. 他の実施形態において処理ウェハの周縁部を除去する様子を示す説明図である。It is explanatory drawing which shows a mode that the peripheral part of a process wafer is removed in another embodiment.
 半導体デバイスの製造工程においては、表面に複数のデバイスが形成された半導体ウェハ(以下、ウェハという)に対し、当該ウェハを薄化することが行われている。ウェハの薄化方法は種々あるが、例えばウェハの裏面を研削加工する方法や、特許文献1に開示したようにウェハを分離する方法などがある。特に特許文献1に開示した方法では、分離された表面側ウェハを構成するデイバスは製品化し、裏面側ウェハはリサイクルすることができる。 In a semiconductor device manufacturing process, a semiconductor wafer having a plurality of devices formed on its surface (hereinafter, referred to as a wafer) is thinned. There are various methods for thinning a wafer. For example, there are a method of grinding the back surface of the wafer and a method of separating the wafer as disclosed in Patent Document 1. In particular, according to the method disclosed in Patent Literature 1, the device constituting the separated front side wafer can be commercialized, and the back side wafer can be recycled.
 ここで、分離された裏面側ウェハの表面には変質層(改質層)が残存し、そのままの状態ではリサイクル(再利用)することはできない。しかしながら、特許文献1は、この裏面側ウェハの改質層をどのように処理するかについては何ら開示も示唆もしていない。ましてや、裏面側ウェハを効率よく再利用する方法までは全く考慮されていない。したがって、ウェハを分離して薄化し、さらに分離されたウェハを再利用するにあたり、従来のウェハ処理には改善の余地がある。 Here, the altered layer (modified layer) remains on the front surface of the separated rear wafer, and cannot be recycled (reused) as it is. However, Patent Document 1 does not disclose or suggest how to treat the modified layer of the backside wafer. Furthermore, no method is considered at all for a method of efficiently reusing the backside wafer. Accordingly, there is room for improvement in conventional wafer processing in separating and thinning wafers and reusing the separated wafers.
 本開示にかかる技術は、ウェハの分離と分離されたウェハの再利用を効率よく行う。以下、本実施形態にかかる基板処理システムとしてのウェハ処理システム、及び基板処理方法としてのウェハ処理方法について、図面を参照しながら説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する要素においては、同一の符号を付することにより重複説明を省略する。 技術 The technology according to the present disclosure efficiently separates a wafer and reuses the separated wafer. Hereinafter, a wafer processing system as a substrate processing system and a wafer processing method as a substrate processing method according to the present embodiment will be described with reference to the drawings. In the specification and the drawings, elements having substantially the same function and structure are denoted by the same reference numerals, and redundant description is omitted.
 先ず、本実施形態にかかるウェハ処理システムの構成について説明する。図1は、ウェハ処理システム1の構成の概略を模式的に示す平面図である。 First, the configuration of the wafer processing system according to the present embodiment will be described. FIG. 1 is a plan view schematically showing the outline of the configuration of the wafer processing system 1.
 ウェハ処理システム1では、図2及び図3に示すように基板としての処理ウェハWと支持ウェハSとが接合された重合ウェハTに対して所望の処理を行い、処理ウェハWを分離して薄化する。以下、処理ウェハWにおいて、支持ウェハSに接合された面を表面Waといい、表面Waと反対側の面を裏面Wbという。同様に、支持ウェハSにおいて、処理ウェハWに接合された面を表面Saといい、表面Saと反対側の面を裏面Sbという。 In the wafer processing system 1, as shown in FIGS. 2 and 3, desired processing is performed on a superposed wafer T in which a processing wafer W as a substrate and a supporting wafer S are joined, and the processing wafer W is separated and thinned. Become Hereinafter, in the processing wafer W, a surface bonded to the support wafer S is referred to as a front surface Wa, and a surface opposite to the front surface Wa is referred to as a back surface Wb. Similarly, in the support wafer S, the surface bonded to the processing wafer W is referred to as a front surface Sa, and the surface opposite to the front surface Sa is referred to as a back surface Sb.
 処理ウェハWは、例えばシリコンウェハなどの半導体ウェハであって、表面Waに複数のデバイスを含むデバイス層Dが形成されている。また、デバイス層Dにはさらに酸化膜Fw、例えばSiO膜(TEOS膜)が形成されている。なお、処理ウェハWの周縁部は面取り加工がされており、周縁部の断面はその先端に向かって厚みが小さくなっている。 The processing wafer W is a semiconductor wafer such as a silicon wafer, for example, and a device layer D including a plurality of devices is formed on a surface Wa. Further, an oxide film Fw, for example, an SiO 2 film (TEOS film) is further formed on the device layer D. The periphery of the processing wafer W is chamfered, and the cross section of the periphery decreases in thickness toward its front end.
 支持ウェハSは、処理ウェハWを支持するウェハであって、例えばシリコンウェハである。支持ウェハSの表面Saには酸化膜Fs、例えばSiO膜(TEOS膜)が形成されている。また、支持ウェハSは、処理ウェハWの表面Waのデバイスを保護する保護材として機能する。なお、支持ウェハSの表面Saの複数のデバイスが形成されている場合には、処理ウェハWと同様に表面Saにデバイス層(図示せず)が形成される。 The support wafer S is a wafer that supports the processing wafer W, and is, for example, a silicon wafer. An oxide film Fs, for example, an SiO 2 film (TEOS film) is formed on the surface Sa of the support wafer S. Further, the support wafer S functions as a protective material for protecting devices on the surface Wa of the processing wafer W. When a plurality of devices on the surface Sa of the support wafer S are formed, a device layer (not shown) is formed on the surface Sa, similarly to the processing wafer W.
 なお、図2においては、図示の煩雑さを回避するため、デバイス層Dと酸化膜Fw、Fsの図示を省略している。また、以下の説明で用いられる他の図面においても同様に、これらデバイス層Dと酸化膜Fw、Fsの図示を省略する場合がある。 Note that, in FIG. 2, the device layer D and the oxide films Fw and Fs are not shown in order to avoid complications. Similarly, in other drawings used in the following description, the illustration of the device layer D and the oxide films Fw and Fs may be omitted.
 また、本実施形態のウェハ処理システム1では、重合ウェハTにおける処理ウェハWを分離する。以下の説明においては、分離された表面Wa側の処理ウェハWを第1の分離基板としての第1の分離ウェハW1といい、分離された裏面Wb側の処理ウェハWを第2の分離基板としての第2の分離ウェハW2という。第1の分離ウェハW1はデバイス層Dを有し製品化される。第2の分離ウェハW2は再利用される。なお、第1の分離ウェハW1は支持ウェハSに支持された状態の処理ウェハWを指し、支持ウェハSを含めて第1の分離ウェハW1という場合がある。また、第1の分離ウェハW1において分離された面を分離面W1aといい、第2の分離ウェハW2において分離された面を分離面W2aという。 In addition, in the wafer processing system 1 of the present embodiment, the processing wafer W in the overlapped wafer T is separated. In the following description, the separated processing wafer W on the front surface Wa is referred to as a first separation wafer W1 as a first separation substrate, and the separated processing wafer W on the rear surface Wb is referred to as a second separation substrate. Of the second separated wafer W2. The first separation wafer W1 has a device layer D and is commercialized. The second separation wafer W2 is reused. Note that the first separated wafer W1 refers to the processing wafer W supported by the support wafer S, and may be referred to as the first separated wafer W1 including the support wafer S. The surface separated on the first separation wafer W1 is called a separation surface W1a, and the surface separated on the second separation wafer W2 is called a separation surface W2a.
 図1に示すようにウェハ処理システム1は、搬入出ステーション2と処理ステーション3を一体に接続した構成を有している。搬入出ステーション2と処理ステーション3は、X軸正方向側から負方向側に向けて並べて配置されている。搬入出ステーション2は、例えば外部との間で複数の重合ウェハT、複数の第1の分離ウェハW1、複数の第2の分離ウェハW2をそれぞれ収容可能なカセットCt、Cw1、Cw2がそれぞれ搬入出される。処理ステーション3は、重合ウェハT、分離ウェハW1、W2に対して所望の処理を施す各種処理装置を備えている。 ウ ェ ハ As shown in FIG. 1, the wafer processing system 1 has a configuration in which the carry-in / out station 2 and the processing station 3 are integrally connected. The loading / unloading station 2 and the processing station 3 are arranged side by side from the X axis positive direction side to the negative direction side. The carry-in / out station 2 carries in and out cassettes Ct, Cw1, and Cw2 capable of accommodating, for example, a plurality of overlapped wafers T, a plurality of first separated wafers W1, and a plurality of second separated wafers W2 with the outside. It is. The processing station 3 includes various processing apparatuses that perform desired processing on the overlapped wafer T and the separated wafers W1 and W2.
 搬入出ステーション2には、カセット載置台10が設けられている。図示の例では、カセット載置台10には、複数、例えば3つのカセットCt、Cw1、Cw2をY軸方向に一列に載置自在になっている。なお、カセット載置台10に載置されるカセットCt、Cw1、Cw2の個数は、本実施形態に限定されず、任意に決定することができる。 The cassette loading table 10 is provided at the loading / unloading station 2. In the illustrated example, a plurality of, for example, three cassettes Ct, Cw1, and Cw2 can be mounted on the cassette mounting table 10 in a line in the Y-axis direction. In addition, the number of the cassettes Ct, Cw1, and Cw2 mounted on the cassette mounting table 10 is not limited to the present embodiment, and can be arbitrarily determined.
 搬入出ステーション2には、カセット載置台10のX軸負方向側において、当該カセット載置台10に隣接してウェハ搬送領域20が設けられている。ウェハ搬送領域20には、Y軸方向に延伸する搬送路21上を移動自在なウェハ搬送装置22が設けられている。ウェハ搬送装置22は、重合ウェハT、分離ウェハW1、W2を保持して搬送する、2つの搬送アーム23、23を有している。各搬送アーム23は、水平方向(X軸方向及びY軸方向)、鉛直方向、水平軸回り及び鉛直軸周りに移動自在に構成されている。なお、搬送アーム23の構成は本実施形態に限定されず、任意の構成を取り得る。 (4) In the loading / unloading station 2, a wafer transfer area 20 is provided adjacent to the cassette mounting table 10 on the negative side of the cassette mounting table 10 in the X-axis direction. The wafer transfer area 20 is provided with a wafer transfer device 22 movable on a transfer path 21 extending in the Y-axis direction. The wafer transfer device 22 has two transfer arms 23, 23 for holding and transferring the overlapped wafer T and the separated wafers W1, W2. Each transfer arm 23 is configured to be movable in a horizontal direction (X-axis direction and Y-axis direction), a vertical direction, around a horizontal axis, and around a vertical axis. Note that the configuration of the transfer arm 23 is not limited to the present embodiment, and may have any configuration.
 処理ステーション3には、例えば3つの処理ブロックG1~G3とウェハ搬送領域30が設けられている。第1の処理ブロックG1、第2の処理ブロックG2、及び第3の処理ブロックG3は、X軸負方向側(搬入出ステーション2側)から正方向側にこの順で並べて配置されている。第1の処理ブロックG1はウェハ搬送領域30のX軸正方向側に配置され、第2の処理ブロックG2と第3の処理ブロックG3はそれぞれウェハ搬送領域30のY軸正方向側に配置されている。 The processing station 3 is provided with, for example, three processing blocks G1 to G3 and a wafer transfer area 30. The first processing block G1, the second processing block G2, and the third processing block G3 are arranged in this order from the X-axis negative direction side (the loading / unloading station 2 side) to the positive direction side. The first processing block G1 is disposed on the X-axis positive direction side of the wafer transfer area 30, and the second processing block G2 and the third processing block G3 are disposed on the Y-axis positive direction side of the wafer transfer area 30, respectively. I have.
 ウェハ搬送領域30には、X軸方向に延伸する搬送路31上を移動自在な、搬送機構として機能するウェハ搬送装置32が設けられている。ウェハ搬送装置32は、処理ブロックG1~G3の各処理装置に対して、重合ウェハT、分離ウェハW1、W2を搬送可能に構成されている。また、ウェハ搬送装置32は、重合ウェハT、分離ウェハW1、W2を保持して搬送する、2つの搬送アーム33、33を有している。一例として、第1の搬送アーム33は下方から重合ウェハT、分離ウェハW1、W2を保持し、第2の搬送アーム33は上方から重合ウェハT、分離ウェハW1、W2を保持する。各搬送アーム33は、多関節のアーム部材34に支持され、水平方向、鉛直方向、水平軸回り及び鉛直軸周りに移動自在に構成されている。なお、搬送アーム33の構成は本実施形態に限定されず、任意の構成を取り得る。 The wafer transfer area 30 is provided with a wafer transfer device 32 that is movable on a transfer path 31 extending in the X-axis direction and that functions as a transfer mechanism. The wafer transfer device 32 is configured to be able to transfer the overlapped wafer T and the separated wafers W1 and W2 to the respective processing devices of the processing blocks G1 to G3. The wafer transfer device 32 has two transfer arms 33, 33 for holding and transferring the overlapped wafer T and the separated wafers W1, W2. As an example, the first transfer arm 33 holds the overlapped wafer T and the separation wafers W1 and W2 from below, and the second transfer arm 33 holds the overlapped wafer T and the separation wafers W1 and W2 from above. Each transfer arm 33 is supported by a multi-joint arm member 34 and is configured to be movable in a horizontal direction, a vertical direction, around a horizontal axis, and around a vertical axis. Note that the configuration of the transfer arm 33 is not limited to the present embodiment, and may have any configuration.
 第1の処理ブロックG1には、2つのウェットエッチング装置40、41、アライメント装置50、及び2つの洗浄装置51、52が設けられている。ウェットエッチング装置40、41は、Y軸正方向側において上方からこの順で積層して配置されている。アライメント装置50、2つの洗浄装置51、52は、Y軸負方向側において上方からこの順で積層して配置されている。 (2) The first processing block G1 is provided with two wet etching devices 40 and 41, an alignment device 50, and two cleaning devices 51 and 52. The wet etching devices 40 and 41 are stacked in this order from above on the Y axis positive direction side. The alignment device 50 and the two cleaning devices 51 and 52 are stacked in this order from above on the Y-axis negative direction side.
 第2の処理ブロックG2には、反転装置60と改質分離装置61が、上方からこの順で積層して設けられている。なお、反転装置60は、本開示の反転機構を構成している。また、改質分離装置61は、本開示の分離部と内部面改質部を兼ねて構成している。 {Circle around (2)} In the second processing block G2, a reversing device 60 and a reforming / separating device 61 are stacked in this order from above. The reversing device 60 constitutes a reversing mechanism according to the present disclosure. In addition, the reforming separation device 61 is configured to serve both as the separation unit and the internal surface reforming unit according to the present disclosure.
 第3の処理ブロックG3には、加工部としての加工装置70が設けられている。なお、加工装置70の数や配置は本実施形態に限定されず、複数の加工装置70が任意に配置されていてもよい。また、複数の加工装置70が設けられる場合、ウェハ搬送領域30には複数のウェハ搬送装置32が設けられていてもよい。 加工 A processing device 70 as a processing unit is provided in the third processing block G3. The number and arrangement of the processing devices 70 are not limited to this embodiment, and a plurality of processing devices 70 may be arbitrarily arranged. When a plurality of processing devices 70 are provided, a plurality of wafer transfer devices 32 may be provided in the wafer transfer region 30.
 ウェットエッチング装置40、41はそれぞれ、加工装置70で研削された分離ウェハW1、W2のそれぞれの分離面W1a、W2aをエッチング処理する。例えば、分離ウェハW1、W2のそれぞれの分離面W1a、W2aに対して薬液(エッチング液)を供給する。なお、薬液には、例えばHF、HNO、HPO、TMAH、Choline、KOHなどが用いられる。 The wet etching devices 40 and 41 respectively etch the separation surfaces W1a and W2a of the separation wafers W1 and W2 ground by the processing device 70. For example, a chemical solution (etching solution) is supplied to each of the separation surfaces W1a and W2a of the separation wafers W1 and W2. In addition, HF, HNO 3 , H 3 PO 4 , TMAH, Choline, KOH, or the like is used as the chemical solution, for example.
 アライメント装置50は、処理前の重合ウェハTの水平方向の向きを調節する。例えばチャック(図示せず)に保持された重合ウェハTを回転させながら、検出部(図示せず)で処理ウェハWのノッチ部の位置を検出することで、当該ノッチ部の位置を調節して重合ウェハTの水平方向の向きを調節する。 The alignment device 50 adjusts the horizontal direction of the overlapped wafer T before processing. For example, by detecting the position of the notch of the processing wafer W by the detection unit (not shown) while rotating the overlapped wafer T held by the chuck (not shown), the position of the notch is adjusted. The horizontal direction of the overlapped wafer T is adjusted.
 洗浄装置51、52はそれぞれ、加工装置70で研削された分離ウェハW1、W2のそれぞれの分離面W1a、W2aを洗浄する。例えば分離面W1a、W2aにブラシを当接させて、当該分離面W1a、W2aをスクラブ洗浄する。なお、分離面W1a、W2aの洗浄には、加圧された洗浄液を用いてもよい。 The cleaning devices 51 and 52 clean the respective separation surfaces W1a and W2a of the separation wafers W1 and W2 ground by the processing device 70, respectively. For example, a brush is brought into contact with the separation surfaces W1a and W2a to scrub the separation surfaces W1a and W2a. Note that a pressurized cleaning liquid may be used for cleaning the separation surfaces W1a and W2a.
 反転装置60は、改質分離装置61で分離された第2の分離ウェハW2の表裏面を反転させる。なお、反転装置60の構成は任意である。 The reversing device 60 reverses the front and back surfaces of the second separation wafer W2 separated by the reforming separation device 61. The configuration of the reversing device 60 is arbitrary.
 改質分離装置61は、処理ウェハWの内部にレーザ光を照射し、後述する内部面改質層を形成し、さらに当該内部面改質層を起点に、処理ウェハWを第1の分離ウェハW1と第2の分離ウェハW2に分離する。 The reforming / separating device 61 irradiates the inside of the processing wafer W with a laser beam to form an internal surface modified layer described later, and further starts the processing wafer W from the internal surface modified layer as a first separation wafer. The wafer is separated into W1 and a second separation wafer W2.
 改質分離装置61は、図4に示すように処理ウェハWが上側であって支持ウェハSが下側に配置された状態で、重合ウェハTを保持するチャック80を有している。チャック80は、移動部81によってX軸方向及びY軸方向に移動可能に構成されている。移動部81は、一般的な精密XYステージで構成されている。また、チャック80は、回転部82によって鉛直軸回りに回転可能に構成されている。 (4) The reforming / separating apparatus 61 has a chuck 80 for holding the overlapped wafer T in a state where the processing wafer W is located on the upper side and the supporting wafer S is located on the lower side as shown in FIG. The chuck 80 is configured to be movable in the X-axis direction and the Y-axis direction by the moving unit 81. The moving unit 81 includes a general precision XY stage. The chuck 80 is configured to be rotatable around a vertical axis by a rotating unit 82.
 チャック80の上方には、処理ウェハWの内部にレーザ光を照射する、内部面改質部としてのレーザヘッド90が設けられている。レーザヘッド90は、レーザ光発振器(図示せず)から発振された高周波のパルス状のレーザ光であって、処理ウェハWに対して透過性を有する波長のレーザ光を、処理ウェハWの内部の所望位置に集光して照射する。これによって、処理ウェハWの内部においてレーザ光が集光した部分が改質して、内部面改質層が形成される。また、レーザヘッド90は、レーザ光発振器からのレーザ光を、例えばレンズ等で複数に分けて同時に照射する。かかる場合、レーザヘッド90から複数のレーザ光が照射され、処理ウェハWの内部に複数の内部面改質層が同時に形成される。レーザヘッド90は、移動部91によってX軸方向及びY軸方向に移動可能に構成されている。移動部91は、一般的な精密XYステージで構成されている。またレーザヘッド90は、昇降部92によってZ軸方向に移動可能に構成されている。 レ ー ザ Above the chuck 80, a laser head 90 as an internal surface reforming unit for irradiating the inside of the processing wafer W with laser light is provided. The laser head 90 emits high-frequency pulsed laser light oscillated from a laser light oscillator (not shown) and having a wavelength that is transparent to the processing wafer W inside the processing wafer W. The light is condensed and irradiated at a desired position. As a result, the portion where the laser light is focused inside the processing wafer W is modified, and an internal surface modified layer is formed. Further, the laser head 90 irradiates the laser light from the laser light oscillator into a plurality of laser beams at the same time, for example, with a lens or the like. In such a case, a plurality of laser beams are emitted from the laser head 90, and a plurality of internal surface modification layers are simultaneously formed inside the processing wafer W. The laser head 90 is configured to be movable in the X-axis direction and the Y-axis direction by the moving unit 91. The moving unit 91 includes a general precision XY stage. The laser head 90 is configured to be movable in the Z-axis direction by an elevating unit 92.
 また、チャック80の上方には、処理ウェハWの裏面Wbを吸着保持する吸着パッド100が設けられている。吸着パッド100は、回転部101によって鉛直軸回りに回転可能に構成されている。また吸着パッド100は、昇降部102によってZ軸方向に移動可能に構成されている。 (4) Above the chuck 80, a suction pad 100 that holds the back surface Wb of the processing wafer W by suction is provided. The suction pad 100 is configured to be rotatable around a vertical axis by a rotating unit 101. Further, the suction pad 100 is configured to be movable in the Z-axis direction by the elevating unit 102.
 図1に示すように加工装置70は、第1の分離ウェハW1の分離面W1aと第2の分離ウェハW2の分離面W2aをそれぞれ研削する。加工装置70は、回転テーブル110、第1の研削ユニット120、及び第2の研削ユニット130を有している。 加工 As shown in FIG. 1, the processing apparatus 70 grinds the separation surface W1a of the first separation wafer W1 and the separation surface W2a of the second separation wafer W2. The processing device 70 has a rotary table 110, a first grinding unit 120, and a second grinding unit 130.
 回転テーブル110は、回転機構(図示せず)によって、鉛直な回転中心線111を中心に回転自在に構成されている。回転テーブル110上には、分離ウェハW1、W2を吸着保持する、保持部としてのチャック112が4つ設けられている。チャック112は、回転テーブル110と同一円周上に均等、すなわち90度毎に配置されている。4つのチャック112は、回転テーブル110が回転することにより、受渡位置A1、A2及び加工位置B1、B2に移動可能になっている。なお、チャック112はチャックベース(図示せず)に保持され、回転機構(図示せず)によって回転可能に構成されている。 The rotary table 110 is configured to be rotatable around a vertical rotation center line 111 by a rotation mechanism (not shown). On the rotary table 110, four chucks 112 are provided as holding units for sucking and holding the separated wafers W1 and W2. The chucks 112 are evenly arranged on the same circumference as the rotary table 110, that is, are arranged at intervals of 90 degrees. The four chucks 112 can be moved to the delivery positions A1, A2 and the processing positions B1, B2 by rotating the rotary table 110. Note that the chuck 112 is held by a chuck base (not shown) and is configured to be rotatable by a rotation mechanism (not shown).
 本実施形態では、第1の受渡位置A1は回転テーブル110のX軸負方向側且つY軸負方向側の位置であり、第1の分離ウェハW1の受け渡しが行われる。第2の受渡位置A2は回転テーブル110のX軸正方向側且つY軸負方向側の位置であり、第2の分離ウェハW2の受け渡しが行われる。第1の加工位置B1は回転テーブル110のX軸正方向側且つY軸正方向側の位置であり、第1の研削ユニット120が配置される。第2の加工位置B2は回転テーブル110のX軸負方向側且つY軸正方向側の位置であり、第2の研削ユニット130が配置される。 In the present embodiment, the first delivery position A1 is a position on the X-axis negative direction side and the Y-axis negative direction side of the turntable 110, and the first separated wafer W1 is delivered. The second transfer position A2 is a position on the X-axis positive direction side and the Y-axis negative direction side of the turntable 110, and the second separated wafer W2 is transferred. The first processing position B1 is a position on the X-axis positive direction side and the Y-axis positive direction side of the turntable 110, and the first grinding unit 120 is disposed. The second processing position B2 is a position on the X-axis negative direction side and the Y-axis positive direction side of the rotary table 110, and the second grinding unit 130 is disposed.
 第1の研削ユニット120では、第1の分離ウェハW1の分離面W1aを研削する。第1の研削ユニット120は、環状形状で回転自在な研削砥石(図示せず)を備えた第1の研削部121を有している。また、第1の研削部121は、支柱122に沿って鉛直方向に移動可能に構成されている。そして、チャック112に保持された第1の分離ウェハW1の分離面W1aを研削砥石に当接させた状態で、チャック112と研削砥石をそれぞれ回転させ、さらに研削砥石を下降させることによって、第1の分離ウェハW1の分離面W1aを研削する。これにより、当該第1の分離ウェハW1の分離面W1aに残る内部面改質層を除去する。 1 The first grinding unit 120 grinds the separation surface W1a of the first separation wafer W1. The first grinding unit 120 has a first grinding unit 121 provided with an annular and rotatable grinding wheel (not shown). Further, the first grinding unit 121 is configured to be movable in the vertical direction along the column 122. Then, while the separation surface W1a of the first separation wafer W1 held by the chuck 112 is in contact with the grinding wheel, the chuck 112 and the grinding wheel are respectively rotated, and the grinding wheel is further lowered, whereby the first The separation surface W1a of the separation wafer W1 is ground. Thus, the internal surface modified layer remaining on the separation surface W1a of the first separation wafer W1 is removed.
 第2の研削ユニット130では、第2の分離ウェハW2の分離面W2aを研削する。第2の研削ユニット130は、環状形状で回転自在な研削砥石(図示せず)を備えた第2の研削部131を有している。また、第2の研削部131は、支柱132に沿って鉛直方向に移動可能に構成されている。そして、チャック112に保持された第2の分離ウェハW2の分離面W2aを研削砥石に当接させた状態で、チャック112と研削砥石をそれぞれ回転させ、さらに研削砥石を下降させることによって、第2の分離ウェハW2の分離面W2aを研削する。これにより、当該第2の分離ウェハW2の分離面W2aに残る内部面改質層を除去する。 で は In the second grinding unit 130, the separation surface W2a of the second separation wafer W2 is ground. The second grinding unit 130 has a second grinding unit 131 provided with an annular and rotatable grinding wheel (not shown). Further, the second grinding portion 131 is configured to be movable in the vertical direction along the column 132. Then, in a state where the separation surface W2a of the second separation wafer W2 held by the chuck 112 is in contact with the grinding wheel, the chuck 112 and the grinding wheel are rotated, and the grinding wheel is further lowered. The separation surface W2a of the separation wafer W2 is ground. Thus, the internal surface modified layer remaining on the separation surface W2a of the second separation wafer W2 is removed.
 以上のウェハ処理システム1には、制御装置140が設けられている。制御装置140は、例えばコンピュータであり、プログラム格納部(図示せず)を有している。プログラム格納部には、ウェハ処理システム1における重合ウェハTの処理を制御するプログラムが格納されている。また、プログラム格納部には、上述の各種処理装置や搬送装置などの駆動系の動作を制御して、ウェハ処理システム1における後述の基板処理を実現させるためのプログラムも格納されている。なお、上記プログラムは、コンピュータに読み取り可能な記憶媒体Hに記録されていたものであって、当該記憶媒体Hから制御装置140にインストールされたものであってもよい。 制 御 A control device 140 is provided in the wafer processing system 1 described above. The control device 140 is, for example, a computer and has a program storage unit (not shown). The program storage section stores a program for controlling the processing of the overlapped wafer T in the wafer processing system 1. The program storage unit also stores programs for controlling operations of driving systems such as the above-described various types of processing apparatuses and transfer apparatuses so as to realize the below-described substrate processing in the wafer processing system 1. Note that the program may be recorded on a storage medium H that can be read by a computer, and may be installed on the control device 140 from the storage medium H.
 次に、以上のように構成されたウェハ処理システム1を用いて行われるウェハ処理について説明する。図5は、ウェハ処理の主な工程を示すフロー図である。なお、本実施形態では、ウェハ処理システム1の外部の接合装置(図示せず)において、処理ウェハWと支持ウェハSがファンデルワールス力及び水素結合(分子間力)によって接合され、予め重合ウェハTが形成されている。 Next, wafer processing performed using the wafer processing system 1 configured as described above will be described. FIG. 5 is a flowchart showing main steps of wafer processing. In the present embodiment, the processing wafer W and the supporting wafer S are bonded by van der Waals force and hydrogen bonding (intermolecular force) in a bonding apparatus (not shown) outside the wafer processing system 1, and a superposed wafer is previously formed. T is formed.
 先ず、図6(a)に示す重合ウェハTを複数収納したカセットCtが、搬入出ステーション2のカセット載置台10に載置される。 First, the cassette Ct storing a plurality of overlapped wafers T shown in FIG. 6A is mounted on the cassette mounting table 10 of the loading / unloading station 2.
 次に、ウェハ搬送装置22によりカセットCt内の重合ウェハTが取り出され、アライメント装置50に搬送される。アライメント装置50では、重合ウェハT(処理ウェハW)の水平方向の向きが調節される(図5のステップP1)。 (4) Next, the overlapped wafer T in the cassette Ct is taken out by the wafer transfer device 22 and transferred to the alignment device 50. In the alignment device 50, the horizontal direction of the overlapped wafer T (processed wafer W) is adjusted (Step P1 in FIG. 5).
 次に、重合ウェハTはウェハ搬送装置32により改質分離装置61に搬送される。改質分離装置61では、図6(b)に示すように処理ウェハWの内部に内部面改質層M1が形成される(図5のステップP2)。 Next, the overlapped wafer T is transferred to the reforming / separating device 61 by the wafer transfer device 32. In the reforming separation device 61, the internal surface reforming layer M1 is formed inside the processing wafer W as shown in FIG. 6B (Step P2 in FIG. 5).
 図7に示すようにレーザヘッド90から処理ウェハWの内部にレーザ光Lを照射して、内部面改質層M1を形成する。内部面改質層M1は、面方向に延伸し横長のアスペクト比を有する。内部面改質層M1の下端は、研削後の処理ウェハWの目標表面(図7中の点線)より少し上方に位置している。すなわち、内部面改質層M1の下端と処理ウェハWの表面Waとの間の距離H1は、研削後の処理ウェハWの目標厚みH2より少し大きい。なお、内部面改質層M1は縦長のアスペクト比を有し、複数の内部面改質層M1のピッチを小さくして配置してもよい。また、内部面改質層M1からは面方向にクラックC1が進展する。さらに、内部面改質層M1のピッチが小さい場合には、クラックC1が無くてもよい。 (7) As shown in FIG. 7, the inside of the processing wafer W is irradiated with laser light L from the laser head 90 to form the internal surface modified layer M1. The internal surface modification layer M1 extends in the surface direction and has a horizontally long aspect ratio. The lower end of the internal surface modified layer M1 is located slightly above the target surface (dotted line in FIG. 7) of the processed wafer W after grinding. That is, the distance H1 between the lower end of the internal surface modification layer M1 and the surface Wa of the processing wafer W is slightly larger than the target thickness H2 of the processing wafer W after grinding. The internal surface modified layer M1 has a vertically long aspect ratio, and the plurality of internal surface modified layers M1 may be arranged with a small pitch. Further, cracks C1 propagate from the inner surface modified layer M1 in the surface direction. Further, when the pitch of the internal surface modification layer M1 is small, the crack C1 may not be provided.
 そして、図7及び図8に示すようにレーザヘッド90と重合ウェハTを相対的に水平方向に移動させて、複数の内部面改質層M1を処理ウェハWの内部に形成する。具体的には、先ず、レーザヘッド90をX軸方向に移動させて、一列の内部面改質層M1を形成する。その後、レーザヘッド90をY軸方向にずらし、さらに当該レーザヘッド90をX軸方向に移動させて、別列の内部面改質層M1を形成する。これら複数の内部面改質層M1は同じ高さに形成する。そうすると、処理ウェハWの内部面全面に内部面改質層M1が形成される。 Then, as shown in FIGS. 7 and 8, the laser head 90 and the overlapped wafer T are relatively horizontally moved to form a plurality of internal surface modified layers M1 inside the processing wafer W. Specifically, first, the laser head 90 is moved in the X-axis direction to form a row of internal surface modification layers M1. Thereafter, the laser head 90 is shifted in the Y-axis direction, and the laser head 90 is further moved in the X-axis direction to form another row of the internal surface modified layer M1. The plurality of inner surface modification layers M1 are formed at the same height. Then, an internal surface modified layer M1 is formed on the entire internal surface of the processing wafer W.
 なお、改質分離装置61では、レーザヘッド90から複数のレーザ光Lを同時に照射してもよい。かかる場合、内部面改質層M1をより短時間で形成することができ、ウェハ処理のスループットを向上させることができる。また、改質分離装置61では、チャック80を回転させながら、レーザヘッド90を水平方向に移動させてもよい。かかる場合、内部面改質層M1は平面視において渦巻き状に形成される。そして、処理ウェハWの同心円方向及び径方向に、複数の内部面改質層M1のピッチを変えてもよい。 In the modification / separation device 61, a plurality of laser beams L may be simultaneously irradiated from the laser head 90. In this case, the internal surface modification layer M1 can be formed in a shorter time, and the throughput of wafer processing can be improved. In the modification / separation device 61, the laser head 90 may be moved in the horizontal direction while rotating the chuck 80. In such a case, the internal surface modification layer M1 is formed in a spiral shape in plan view. Then, the pitch of the plurality of internal surface modification layers M1 may be changed in the concentric direction and the radial direction of the processing wafer W.
 次に、同じ改質分離装置61において、図6(c)に示すように内部面改質層M1を基点に、処理ウェハWを第1の分離ウェハW1と第2の分離ウェハW2に分離する(図5のステップP3)。 Next, in the same reforming separation apparatus 61, the processing wafer W is separated into a first separation wafer W1 and a second separation wafer W2 based on the internal surface reforming layer M1 as shown in FIG. 6C. (Step P3 in FIG. 5).
 図9(a)に示すように処理ウェハWの裏面Wbを、吸着パッド100で吸着保持する。そして、吸着パッド100を回転させて、内部面改質層M1を境界に第1の分離ウェハW1と第2の分離ウェハW2が縁切りされる。その後、図9(b)に示すように吸着パッド100が第2の分離ウェハW2を吸着保持した状態で、当該吸着パッド100を上昇させて、第1の分離ウェハW1から第2の分離ウェハW2を分離する。なお、第1の分離ウェハW1の分離面W1aと第2の分離ウェハW2の分離面W2aにはそれぞれ、内部面改質層M1が残存している。 裏面 As shown in FIG. 9A, the back surface Wb of the processing wafer W is suction-held by the suction pad 100. Then, by rotating the suction pad 100, the first separation wafer W1 and the second separation wafer W2 are cut off at the boundary of the inner surface modified layer M1. Thereafter, as shown in FIG. 9B, in a state where the suction pad 100 sucks and holds the second separation wafer W2, the suction pad 100 is raised to move the second separation wafer W2 from the first separation wafer W1. Is separated. The internal surface modified layer M1 remains on each of the separation surface W1a of the first separation wafer W1 and the separation surface W2a of the second separation wafer W2.
 なお、処理ウェハWを分離する方法は、本実施形態に限定されない。図9(b)に示したように吸着パッド100を上昇させるだけで第2の分離ウェハW2を分離できる場合、図9(b)に示した吸着パッド100の回転を省略してもよい。また、例えば吸着パッド100に代えてテープ(図示せず)を用い、当該テープで処理ウェハWを保持して分離してもよい。さらに、処理ウェハWを吸着パッド100で吸着保持する前に、例え処理ウェハWの少なくとも内部面改質層M1に超音波を付与してもよいし、あるいは内部面改質層M1を加熱してもよい。かかる場合、内部面改質層M1を基点に処理ウェハWを分離しやすくなる。 The method for separating the processing wafer W is not limited to the present embodiment. When the second separation wafer W2 can be separated simply by raising the suction pad 100 as shown in FIG. 9B, the rotation of the suction pad 100 shown in FIG. 9B may be omitted. Further, for example, a tape (not shown) may be used instead of the suction pad 100, and the processing wafer W may be held and separated by the tape. Further, before the processing wafer W is suction-held by the suction pad 100, ultrasonic waves may be applied to at least the internal surface modified layer M1 of the processed wafer W, or by heating the internal surface modified layer M1. Is also good. In such a case, it becomes easy to separate the processing wafer W based on the inner surface modified layer M1.
 次に、第2の分離ウェハW2はウェハ搬送装置32により反転装置60に搬送される。反転装置60では、第2の分離ウェハW2の表裏面が反転される(図5のステップP4)。その後、第2の分離ウェハW2はウェハ搬送装置32により加工装置70に搬送され、図10(a)に示すように第2の受渡位置A2のチャック112に受け渡される。 Next, the second separation wafer W2 is transferred to the reversing device 60 by the wafer transfer device 32. In the reversing device 60, the front and back surfaces of the second separation wafer W2 are reversed (Step P4 in FIG. 5). Thereafter, the second separated wafer W2 is transferred to the processing device 70 by the wafer transfer device 32, and is transferred to the chuck 112 at the second transfer position A2 as shown in FIG.
 このステップP4と並行して、第1の分離ウェハW1はウェハ搬送装置32により加工装置70に搬送され、図10(a)に示すように第1の受渡位置A1のチャック112に受け渡される。 In parallel with Step P4, the first separated wafer W1 is transferred to the processing device 70 by the wafer transfer device 32, and transferred to the chuck 112 at the first transfer position A1 as shown in FIG.
 次に、図10(b)に示すように回転テーブル110を反時計回りに180°回転させて、第1の分離ウェハW1を第1の加工位置B1に移動させ、第2の分離ウェハW2を第2の加工位置B2に移動させる。 Next, as shown in FIG. 10B, the rotary table 110 is rotated 180 ° counterclockwise to move the first separated wafer W1 to the first processing position B1, and to move the second separated wafer W2. It is moved to the second processing position B2.
 次に、第1の加工位置B1において、図6(d)に示すように第1の分離ウェハW1の分離面W1aを研削し、当該分離面W1aに残る内部面改質層M1を除去する。同時に、第2の加工位置B2において、図6(e)に示すように第2の分離ウェハW2の分離面W2aを研削し、当該分離面W2aに残る内部面改質層M1を除去する(図5のステップP5)。 Next, at the first processing position B1, as shown in FIG. 6D, the separation surface W1a of the first separation wafer W1 is ground, and the internal surface modification layer M1 remaining on the separation surface W1a is removed. At the same time, at the second processing position B2, as shown in FIG. 6E, the separation surface W2a of the second separation wafer W2 is ground to remove the internal surface modified layer M1 remaining on the separation surface W2a (FIG. Step P5).
 次に、回転テーブル110を反時計回りに180°回転させて、図10(a)に示した状態、すなわち第1の分離ウェハW1を第1の受渡位置A1に移動させ、第2の分離ウェハW2を第2の受渡位置A2に移動させる。なお、第1の受渡位置A1では、洗浄液ノズル(図示せず)を用いて、第1の分離ウェハW1の分離面W1aが洗浄液によって洗浄されてもよい。また、第2の受渡位置A2でも、洗浄液ノズル(図示せず)を用いて、第2の分離ウェハW2の分離面W2aが洗浄液によって洗浄されてもよい。 Next, the rotary table 110 is rotated counterclockwise by 180 ° to move the first separated wafer W1 to the first transfer position A1 in the state shown in FIG. W2 is moved to the second delivery position A2. At the first delivery position A1, the separation surface W1a of the first separation wafer W1 may be cleaned with the cleaning liquid using a cleaning liquid nozzle (not shown). Also at the second delivery position A2, the separation surface W2a of the second separation wafer W2 may be cleaned with the cleaning liquid using a cleaning liquid nozzle (not shown).
 次に、第1の分離ウェハW1はウェハ搬送装置32により洗浄装置51に搬送され、第2の分離ウェハW2はウェハ搬送装置32により洗浄装置52に搬送される。洗浄装置51では第1の分離ウェハW1の分離面W1aがスクラブ洗浄され、洗浄装置52では第2の分離ウェハW2の分離面W2aがスクラブ洗浄される(図5のステップP6)。 Next, the first separated wafer W1 is transferred to the cleaning device 51 by the wafer transfer device 32, and the second separated wafer W2 is transferred to the cleaning device 52 by the wafer transfer device 32. In the cleaning device 51, the separation surface W1a of the first separation wafer W1 is scrub-cleaned, and in the cleaning device 52, the separation surface W2a of the second separation wafer W2 is scrub-cleaned (Step P6 in FIG. 5).
 次に、第1の分離ウェハW1はウェハ搬送装置22によりウェットエッチング装置40に搬送され、第2の分離ウェハW2はウェハ搬送装置22によりウェットエッチング装置41に搬送される。ウェットエッチング装置40では第1の分離ウェハW1の分離面W1aが薬液によりウェットエッチングされ、ウェットエッチング装置41では第2の分離ウェハW2の分離面W2aが薬液によりウェットエッチング(図5のステップP7)。上述した加工装置70で研削された分離面W1a、W2aにはそれぞれ、研削痕が形成される場合がある。本ステップP7では、ウェットエッチングすることによって研削痕を除去でき、分離面W1a、W2aを平滑化することができる。 Next, the first separated wafer W1 is transferred to the wet etching device 40 by the wafer transfer device 22, and the second separated wafer W2 is transferred to the wet etching device 41 by the wafer transfer device 22. In the wet etching device 40, the separation surface W1a of the first separation wafer W1 is wet-etched with a chemical, and in the wet etching device 41, the separation surface W2a of the second separation wafer W2 is wet-etched with a chemical (step P7 in FIG. 5). Grinding marks may be formed on each of the separation surfaces W1a and W2a ground by the processing device 70 described above. In the present step P7, grinding marks can be removed by wet etching, and the separation surfaces W1a and W2a can be smoothed.
 その後、すべての処理が施された第1の分離ウェハW1と第2の分離ウェハW2はそれぞれ、ウェハ搬送装置22によりカセット載置台10のカセットCw1、Cw2に搬送される。こうして、ウェハ処理システム1における一連のウェハ処理が終了する。 After that, the first separated wafer W1 and the second separated wafer W2 that have been subjected to all the processes are respectively transferred to the cassettes Cw1 and Cw2 of the cassette mounting table 10 by the wafer transfer device 22. Thus, a series of wafer processing in the wafer processing system 1 ends.
 以上の実施形態によれば、ステップP1~P7を行い、処理ウェハWを分離し、分離ウェハW1、W2の分離面W1a、W2aをそれぞれ研削、ウェットエッチング等して適切に処理することができる。このため、デバイス層Dを有する第1の分離ウェハW1を製品化するとともに、第2の分離ウェハW2を再利用することができる。しかも、これらステップP1~P7を一のウェハ処理システム1で行うので、ウェハ処理を効率よく行うことができる。 According to the above embodiment, steps P1 to P7 can be performed to separate the processing wafer W, and the separation surfaces W1a and W2a of the separation wafers W1 and W2 can be appropriately processed by grinding, wet etching, or the like. Therefore, it is possible to commercialize the first separation wafer W1 having the device layer D and reuse the second separation wafer W2. In addition, since these steps P1 to P7 are performed by one wafer processing system 1, wafer processing can be performed efficiently.
 また、本実施形態の加工装置70は回転テーブル110、第1の研削ユニット120、及び第2の研削ユニット130を有しているので、ステップP5において第1の分離ウェハW1の分離面W1aの研削と、第2の分離ウェハW2の分離面W2aの研削とを並行して行うことができる。したがって、ウェハ処理のスループットを向上させることができる。 In addition, since the processing apparatus 70 of the present embodiment includes the rotary table 110, the first grinding unit 120, and the second grinding unit 130, the grinding of the separation surface W1a of the first separation wafer W1 in Step P5. And the grinding of the separation surface W2a of the second separation wafer W2 can be performed in parallel. Therefore, the throughput of the wafer processing can be improved.
 なお、本実施形態の加工装置70には、回転テーブル110の4つのチャック112に対応して、受渡位置A1、A2及び加工位置B1、B2が設けられている。そうすると、例えば図11に示すように第1の加工位置B1における分離面W1aの研削と、第1の受渡位置A1における第1の分離ウェハW1の受け渡しとを並行して行うことができる。同様に、第2の加工位置B2における分離面W2aの研削と、第2の受渡位置A2における第2の分離ウェハW2の受け渡しも並行して行うことができる。したがって、ウェハ処理のスループットを向上させることができる。 The processing device 70 of the present embodiment is provided with delivery positions A1, A2 and processing positions B1, B2 corresponding to the four chucks 112 of the rotary table 110. Then, for example, as shown in FIG. 11, grinding of the separation surface W1a at the first processing position B1 and delivery of the first separation wafer W1 at the first delivery position A1 can be performed in parallel. Similarly, grinding of the separation surface W2a at the second processing position B2 and delivery of the second separation wafer W2 at the second delivery position A2 can be performed in parallel. Therefore, the throughput of the wafer processing can be improved.
 また、本実施形態の加工装置70には受渡位置A1、A2及び加工位置B1、B2が設けられているので、例えば1つの受渡位置と1つの加工位置とが設けられる回転テーブルを2つ用いる場合に比べて、回転テーブルの使用数が少ない。その結果、加工装置70の占有面積(フットプリント)を低減でき、ひいてはウェハ処理システム1の占有面積も低減できる。 In addition, since the processing device 70 of the present embodiment is provided with the delivery positions A1 and A2 and the processing positions B1 and B2, for example, when two rotary tables provided with one delivery position and one processing position are used. The number of use of the rotary table is smaller than that of. As a result, the occupied area (footprint) of the processing apparatus 70 can be reduced, and the occupied area of the wafer processing system 1 can be reduced.
 また、本実施形態では、処理ウェハWを薄化するにあたり、ステップP2において処理ウェハWの内部に内部面改質層M1を形成した後、ステップP3において内部面改質層M1を基点に処理ウェハWを分離している。例えば従来のように処理ウェハWの裏面Wbを研削して薄化する場合、研削砥石が摩耗し、また研削水を使用するため、廃液処理も必要となる。これに対して、本実施形態では、レーザヘッド90自体が経時的に劣化する程度が小さく、消耗品が少なくなるため、メンテナンス頻度を低減することができる。また、レーザを用いたドライプロセスであるため、研削水や廃水処理が不要となる。このため、ランニングコストを低廉化することができる。さらに、研削水が支持ウェハS側に回り込むことがないため、支持ウェハSが汚染されるのを抑制することができる。 Further, in this embodiment, in thinning the processing wafer W, after forming the internal surface modified layer M1 inside the processing wafer W in step P2, in step P3, the processing wafer is formed based on the internal surface modified layer M1. W is separated. For example, when the back surface Wb of the processing wafer W is ground and thinned as in the related art, a grinding wheel is worn and grinding water is used. On the other hand, in the present embodiment, the degree of deterioration of the laser head 90 itself with time is small and consumables are reduced, so that the maintenance frequency can be reduced. In addition, since it is a dry process using a laser, grinding water and wastewater treatment are not required. Therefore, the running cost can be reduced. Furthermore, since the grinding water does not flow to the support wafer S side, it is possible to suppress the support wafer S from being contaminated.
 また、本実施形態では、ステップP5において分離面W1aの研削を行っているが、この研削は内部面改質層M1を除去すればよく、その研削量は数十μm程度と少ない。これに対して、従来のように処理ウェハWを薄化するために裏面Wbを研削する場合、その研削量は例えば700μm以上と多く、研削砥石の摩耗度合いが大きい。このため、本実施形態では、やはりメンテナンス頻度を低減することができる。 Also, in the present embodiment, the separation surface W1a is ground in step P5, but this grinding may be performed by removing the inner surface modified layer M1, and the grinding amount is as small as several tens of μm. On the other hand, when the back surface Wb is ground in order to thin the processing wafer W as in the related art, the grinding amount is as large as 700 μm or more, for example, and the degree of wear of the grinding wheel is large. For this reason, in the present embodiment, the maintenance frequency can be reduced as well.
 なお、本実施形態のウェハ処理システム1において加工装置70が複数設けられている場合、一の加工装置70で第1の分離ウェハW1の分離面W1aを研削し、他の加工装置70で第2の分離ウェハW2の分離面W2aを研削してもよい。 In the case where a plurality of processing apparatuses 70 are provided in the wafer processing system 1 of the present embodiment, one processing apparatus 70 grinds the separation surface W1a of the first separation wafer W1 and another processing apparatus 70 The separation surface W2a of the separation wafer W2 may be ground.
 次に、ウェハ処理システムの他の実施形態について説明する。 Next, another embodiment of the wafer processing system will be described.
 図12は、他の実施形態にかかるウェハ処理システム200の構成の概略を模式的に示す平面図である。ウェハ処理システム200は、上記実施形態のウェハ処理システム1の改質分離装置61における内部面改質層M1の形成と処理ウェハWの分離を別々の装置で行うものである。すなわち、ウェハ処理システム200は、ウェハ処理システム1の反転装置60と改質分離装置61に代えて、分離反転装置201と改質装置202を有している。分離反転装置201と改質装置202は、第2の処理ブロックG2において上方からこの順で積層して設けられている。 FIG. 12 is a plan view schematically showing a schematic configuration of a wafer processing system 200 according to another embodiment. In the wafer processing system 200, the formation of the internal surface modified layer M1 and the separation of the processed wafer W in the reforming and separating apparatus 61 of the wafer processing system 1 of the above embodiment are performed by separate apparatuses. That is, the wafer processing system 200 includes a separation / inversion device 201 and a reforming device 202 instead of the reversing device 60 and the reforming / separating device 61 of the wafer processing system 1. The separation inversion device 201 and the reforming device 202 are provided in this order in the second processing block G2 from above.
 改質装置202は、処理ウェハWの内部に内部面改質層M1を形成する。改質装置202は、例えば改質分離装置61の構成において内部面改質層M1を形成するための部材(レーザヘッド90等)を備えている。分離反転装置201は、内部面改質層M1を基点に処理ウェハWを分離するとともに、分離された第2の分離ウェハW2の表裏面を反転させる。分離反転装置201は、例えば改質分離装置61の構成において処理ウェハWを分離するための部材(吸着パッド100等)に加えて、反転装置60の構成を有している。 (4) The reforming apparatus 202 forms the internal surface modified layer M1 inside the processing wafer W. The reforming device 202 includes, for example, a member (such as the laser head 90) for forming the internal surface reformed layer M1 in the configuration of the reforming separation device 61. The separation reversing device 201 separates the processing wafer W from the internal surface modified layer M1 as a base point, and reverses the front and back surfaces of the separated second separation wafer W2. The separation and inversion device 201 has, for example, a configuration of the inversion device 60 in addition to a member (the suction pad 100 and the like) for separating the processing wafer W in the configuration of the reforming and separation device 61.
 本実施形態のウェハ処理システム200でも、上記実施形態のステップP1~P7を行うことができ、当該実施形態と同様の効果を享受できる。 で も The wafer processing system 200 of this embodiment can also perform the steps P1 to P7 of the above embodiment, and can enjoy the same effects as those of the embodiment.
 図13は、他の実施形態にかかるウェハ処理システム300の構成の概略を模式的に示す平面図である。ウェハ処理システム300は、上記実施形態のウェハ処理システム1の改質分離装置61における処理ウェハWの分離と、反転装置60における第2の分離ウェハW2の表裏面の反転とを加工装置70の内部で行うものである。すなわち、ウェハ処理システム300は、ウェハ処理システム1の反転装置60と改質分離装置61に代えて、改質装置301と分離反転ユニット302を有している。 FIG. 13 is a plan view schematically showing the outline of the configuration of a wafer processing system 300 according to another embodiment. The wafer processing system 300 separates the processing wafer W in the reforming / separating device 61 of the wafer processing system 1 of the above embodiment and inverts the front and back surfaces of the second separated wafer W2 in the reversing device 60 inside the processing device 70. Is what you do. That is, the wafer processing system 300 includes a reforming device 301 and a separation / reversing unit 302 instead of the reversing device 60 and the reforming / separating device 61 of the wafer processing system 1.
 改質装置301は、第2の処理ブロックG2に設けられている。改質装置301は、処理ウェハWの内部に内部面改質層M1を形成する。改質装置202は、例えば改質分離装置61の構成において内部面改質層M1を形成するための部材(レーザヘッド90等)を備えている。 The reformer 301 is provided in the second processing block G2. The reforming apparatus 301 forms the internal surface reforming layer M1 inside the processing wafer W. The reforming device 202 includes, for example, a member (such as the laser head 90) for forming the internal surface reformed layer M1 in the configuration of the reforming separation device 61.
 分離反転ユニット302は、加工装置70の第2の受渡位置A2において、回転テーブル110及びチャック112の上方に設けられている。分離反転ユニット302は、内部面改質層M1を基点に処理ウェハWを分離する分離機構303と、分離された第2の分離ウェハW2の表裏面を反転させる反転機構304とを有している。 The separation / reversal unit 302 is provided above the turntable 110 and the chuck 112 at the second delivery position A2 of the processing device 70. The separation / reversal unit 302 includes a separation mechanism 303 for separating the processing wafer W from the internal surface modified layer M1 as a base point, and a reversing mechanism 304 for reversing the front and back surfaces of the separated second separation wafer W2. .
 図14に示すように分離機構303は、チャック112に保持された重合ウェハTに対し、処理ウェハWの裏面Wbを吸着保持する吸着パッド310を有している。吸着パッド310は、回転部311によって鉛直軸回りに回転可能に構成されている。また吸着パッド310は、昇降部312によってZ軸方向に移動可能に構成されている。そして分離機構303では、先ず、吸着パッド310で処理ウェハWの裏面Wbを吸着保持した状態で、当該吸着パッド310を回転させて、内部面改質層M1を境界に第1の分離ウェハW1と第2の分離ウェハW2が縁切りされる。その後、吸着パッド310が第2の分離ウェハW2を吸着保持した状態で、当該吸着パッド100を上昇させて、第1の分離ウェハW1から第2の分離ウェハW2を分離する。 As shown in FIG. 14, the separation mechanism 303 has a suction pad 310 that suction-holds the back surface Wb of the processing wafer W to the overlapped wafer T held by the chuck 112. The suction pad 310 is configured to be rotatable around a vertical axis by a rotating unit 311. Further, the suction pad 310 is configured to be movable in the Z-axis direction by the elevating unit 312. Then, in the separation mechanism 303, first, in a state where the back surface Wb of the processing wafer W is suction-held by the suction pad 310, the suction pad 310 is rotated, and the first separation wafer W1 and the first separation wafer W1 are separated with the internal surface modified layer M1 as a boundary. The second separation wafer W2 is cut off. Thereafter, with the suction pad 310 holding the second separation wafer W2 by suction, the suction pad 100 is raised to separate the second separation wafer W2 from the first separation wafer W1.
 反転機構304は、第2の分離ウェハW2を保持する保持部320を有している。保持部320による第2の分離ウェハW2の保持方法は特に限定されないが、例えば吸着保持である。保持部320は、回転部321によって水平軸回りに回転可能に構成されている。また保持部320は、昇降部322によってZ軸方向に移動可能に構成されている。そして反転機構304では、保持部320で第2の分離ウェハW2を保持した状態で、当該保持部320を水平軸回りに回転させて、第2の分離ウェハW2の表裏面を反転させる。 The reversing mechanism 304 has a holding unit 320 that holds the second separation wafer W2. The method of holding the second separated wafer W2 by the holding unit 320 is not particularly limited, but is, for example, suction holding. The holding unit 320 is configured to be rotatable around a horizontal axis by a rotating unit 321. The holding unit 320 is configured to be movable in the Z-axis direction by the elevating unit 322. Then, in the reversing mechanism 304, while the second separation wafer W2 is being held by the holding unit 320, the holding unit 320 is rotated around a horizontal axis to invert the front and back surfaces of the second separation wafer W2.
 かかる場合、ステップP2では、改質装置301において処理ウェハWの内部に内部面改質層M1が形成される。その後、処理ウェハWは、支持ウェハSに支持された状態、すなわち重合ウェハTの状態で、ウェハ搬送装置32により加工装置70に搬送される。加工装置70では、第2の受渡位置A2のチャック112に重合ウェハTが受け渡される。 In such a case, in Step P2, the internal surface reforming layer M1 is formed inside the processing wafer W in the reforming apparatus 301. Thereafter, the processing wafer W is transferred to the processing device 70 by the wafer transfer device 32 in a state of being supported by the support wafer S, that is, in a state of the overlapped wafer T. In the processing device 70, the overlapped wafer T is delivered to the chuck 112 at the second delivery position A2.
 次にステップP3では、チャック112に重合ウェハTが保持された状態で、分離機構303によって処理ウェハWが分離ウェハW1、W2に分離される。その後ステップP4では、分離された第2の分離ウェハW2が反転機構304の保持部320に受け渡され、当該保持部320を水平軸回りに回転させて、第2の分離ウェハW2の表裏面が反転される。そして、第1の分離ウェハW1は第1の受渡位置A1のチャック112に搬送され、第2の分離ウェハW2はそのまま第2の受渡位置A2のチャック112に保持される。なお、第1の分離ウェハW1の搬送は、ウェハ搬送装置32によって行わってもよい。あるいは、反転機構304によって第2の分離ウェハW2の表裏面を反転している間に、回転テーブル110を回転させ、第1の分離ウェハW1第2の受渡位置A2から第1の受渡位置A1に搬送してもよい。 Next, in step P3, the processing wafer W is separated into the separation wafers W1 and W2 by the separation mechanism 303 while the chuck 112 holds the overlapped wafer T. Thereafter, in Step P4, the separated second separated wafer W2 is transferred to the holding unit 320 of the reversing mechanism 304, and the holding unit 320 is rotated around a horizontal axis so that the front and back surfaces of the second separated wafer W2 are Inverted. Then, the first separated wafer W1 is transported to the chuck 112 at the first delivery position A1, and the second separated wafer W2 is held as it is by the chuck 112 at the second delivery position A2. The transfer of the first separated wafer W1 may be performed by the wafer transfer device 32. Alternatively, while the front and back surfaces of the second separation wafer W2 are being inverted by the reversing mechanism 304, the rotary table 110 is rotated to move the first separation wafer W1 from the second delivery position A2 to the first delivery position A1. It may be transported.
 なお、その他のステップP1、P5~P7は、上記実施形態と同様である。本実施形態のウェハ処理システム300でも、上記実施形態と同様の効果を享受できる。 The other steps P1, P5 to P7 are the same as those in the above embodiment. In the wafer processing system 300 of the present embodiment, the same effects as in the above embodiment can be enjoyed.
 以上の実施形態のウェハ処理システム1、200、300は、ウェットエッチング装置40、41に代えて、CMP装置(CMP:Chemical Mechanical Polishing、化学機械研磨)を有していてもよい。このCMP装置は、ウェットエッチング装置40、41と同様に機能する。すなわち、CMP装置では、加工装置70で研削された分離面W1a、W2aを研磨処理する。そして、加工装置70で分離面W1a、W2aに形成された研削痕を除去し、当該分離面W1a、W2aを平滑化する。なお、ウェハ処理システム1、200、300は、ウェットエッチング装置40、41とCMP装置を両方備え、分離面W1a、W2aに対してウェットエッチングとCMPを両方行ってもよい。 The wafer processing systems 1, 200, and 300 of the above embodiments may have a CMP device (CMP: Chemical Mechanical Polishing, chemical mechanical polishing) instead of the wet etching devices 40 and 41. This CMP apparatus functions similarly to the wet etching apparatuses 40 and 41. That is, in the CMP apparatus, the separation surfaces W1a and W2a ground by the processing apparatus 70 are polished. Then, the processing device 70 removes grinding marks formed on the separation surfaces W1a and W2a, and smoothes the separation surfaces W1a and W2a. Note that the wafer processing systems 1, 200, and 300 may include both wet etching devices 40 and 41 and a CMP device, and perform both wet etching and CMP on the separation surfaces W1a and W2a.
 以上の実施形態のウェハ処理システム1、200、300はそれぞれ、反転装置60、分離反転装置201、分離反転ユニット302において、第2の分離ウェハW2の表裏面を反転していたが、例えばウェハ搬送装置32の搬送アーム33において第2の分離ウェハW2の表裏面を反転してもよい。かかる場合、図15に示すようにアーム部材34に支持された搬送アーム33が水平軸回りに回転して、第2の分離ウェハW2の表裏面を反転させる。 In the wafer processing systems 1, 200, and 300 of the above embodiments, the reversing device 60, the separating / reversing device 201, and the separating / reversing unit 302 reverse the front and back surfaces of the second separated wafer W2. In the transfer arm 33 of the device 32, the front and back surfaces of the second separation wafer W2 may be reversed. In such a case, as shown in FIG. 15, the transfer arm 33 supported by the arm member 34 rotates around the horizontal axis, and the front and back of the second separation wafer W2 are inverted.
 また、ウェハ搬送装置32は2つの搬送アーム33を有していたが、図16に示すように1つの搬送アーム400が2枚の分離ウェハW1、W2を保持して搬送してもよい。搬送アーム400の一面には第1の分離ウェハW1を吸着保持する吸着パッド401が設けられ、他面には第2の分離ウェハW2を吸着保持する吸着パッド402が設けられている。搬送アーム400は、アーム部材34に支持され、水平軸回りに回転自在に構成されている。 {Circle around (2)} Although the wafer transfer device 32 has two transfer arms 33, one transfer arm 400 may hold and transfer two separated wafers W1 and W2 as shown in FIG. A suction pad 401 for sucking and holding the first separated wafer W1 is provided on one surface of the transfer arm 400, and a suction pad 402 for sucking and holding the second separated wafer W2 on the other surface. The transfer arm 400 is supported by the arm member 34 and is configured to be rotatable around a horizontal axis.
 以上の実施形態のウェハ処理システム1、200、300はそれぞれ、改質分離装置61、改質装置202、301において、処理ウェハWの内部に内部面改質層M1を形成していたが、ウェハ処理システム1、200、300で行ってもよい。かかる場合、ウェハ処理システム1、200、300に搬送される処理ウェハWの内部には、予め内部面改質層M1が形成されている。 In the wafer processing systems 1, 200, and 300 of the above embodiments, the reforming / separating device 61 and the reforming devices 202 and 301 respectively form the internal surface modified layer M1 inside the processing wafer W. The processing may be performed by the processing systems 1, 200, and 300. In such a case, the internal surface modification layer M1 is formed in advance inside the processing wafer W transferred to the wafer processing system 1, 200, 300.
 ここで、通常、処理ウェハWの周縁部は面取り加工がされているが、例えば従来のように処理ウェハWの裏面Wbを研削して薄化する場合、処理ウェハWの周縁部が鋭く尖った形状(いわゆるナイフエッジ形状)になる。そうすると、処理ウェハWの周縁部でチッピングが発生し、処理ウェハWが損傷を被るおそれがある。そこで、研削処理前に予め処理ウェハWの周縁部を除去する、いわゆるエッジトリムが行われている。 Here, usually, the peripheral portion of the processing wafer W is chamfered. For example, when the back surface Wb of the processing wafer W is ground and thinned as in the related art, the peripheral portion of the processing wafer W is sharply pointed. Shape (so-called knife edge shape). Then, chipping occurs at the peripheral portion of the processing wafer W, and the processing wafer W may be damaged. Therefore, so-called edge trimming, in which the peripheral portion of the processing wafer W is removed in advance before the grinding process, is performed.
 そこで、以上の実施形態のウェハ処理システム1、200、300において、エッジトリムを行ってもよい。以下の説明においては、ウェハ処理システム1でエッジトリムを行う場合について説明する。 Therefore, edge trim may be performed in the wafer processing systems 1, 200, and 300 of the above embodiments. In the following description, a case where edge trimming is performed in the wafer processing system 1 will be described.
 ウェハ処理システム1においてエッジトリムは、改質分離装置61において行われる。すなわち、改質分離装置61では、処理ウェハWの周縁部と中央部の境界に沿って厚み方向に周縁改質層を形成し、当該周縁改質層を基点に処理ウェハWの周縁部を除去する。本実施形態の改質分離装置61では、レーザヘッド90が周縁改質部として機能し、処理ウェハWの内部に周縁改質層を形成する。 エ ッ ジ In the wafer processing system 1, edge trimming is performed in the reforming / separating device 61. That is, in the reforming separation apparatus 61, a peripheral reforming layer is formed in the thickness direction along the boundary between the peripheral portion and the central portion of the processing wafer W, and the peripheral portion of the processing wafer W is removed based on the peripheral reforming layer. I do. In the reforming separation device 61 of the present embodiment, the laser head 90 functions as a peripheral reforming section, and forms a peripheral reforming layer inside the processing wafer W.
 次に、ウェハ処理システム1を用いて行われる、他の実施形態にかかるウェハ処理について説明する。図17は、ウェハ処理の主な工程を示すフロー図である。なお、本実施形態において、図5に示した実施形態と同様の処理については詳細な説明を省略する。 Next, wafer processing according to another embodiment, which is performed using the wafer processing system 1, will be described. FIG. 17 is a flowchart showing main steps of wafer processing. In the present embodiment, detailed description of the same processes as those in the embodiment shown in FIG. 5 is omitted.
 先ず、図18(a)に示すように重合ウェハTを複数収納したカセットCtが、搬入出ステーション2のカセット載置台10に載置される。 First, as shown in FIG. 18A, a cassette Ct containing a plurality of overlapped wafers T is mounted on the cassette mounting table 10 of the loading / unloading station 2.
 次に、ウェハ搬送装置22によりカセットCt内の重合ウェハTが取り出され、アライメント装置50に搬送される。アライメント装置50では、重合ウェハT(処理ウェハW)の水平方向の向きが調節される(図17のステップQ1)。 (4) Next, the overlapped wafer T in the cassette Ct is taken out by the wafer transfer device 22 and transferred to the alignment device 50. In the alignment apparatus 50, the horizontal direction of the overlapped wafer T (processed wafer W) is adjusted (Step Q1 in FIG. 17).
 次に、重合ウェハTはウェハ搬送装置32により改質分離装置61に搬送される。改質分離装置61では、図18(b)に示すように処理ウェハWの内部に周縁改質層M2が形成される(図17のステップQ2)。 Next, the overlapped wafer T is transferred to the reforming / separating device 61 by the wafer transfer device 32. In the reforming separation device 61, a peripheral reforming layer M2 is formed inside the processing wafer W as shown in FIG. 18B (step Q2 in FIG. 17).
 改質分離装置61では、図19に示すようにレーザヘッド90を、処理ウェハWの上方であって、当該処理ウェハWの周縁部Weと中央部Wcの境界に移動させる。その後、回転部82によってチャック80を回転させながら、レーザヘッド90から処理ウェハWの内部にレーザ光Lを照射する。そして、周縁部Weと中央部Wcとの境界に沿って、環状の周縁改質層M2を形成する。 In the reforming separation apparatus 61, as shown in FIG. 19, the laser head 90 is moved to a position above the processing wafer W and to a boundary between the peripheral edge portion We and the central portion Wc of the processing wafer W. Thereafter, the laser head 90 irradiates the inside of the processing wafer W with the laser beam L while rotating the chuck 80 by the rotating unit 82. Then, along the boundary between the peripheral edge portion We and the central portion Wc, an annular peripheral edge modified layer M2 is formed.
 周縁改質層M2は、エッジトリムにおいて周縁部Weを除去の際の基点となるものであり、処理ウェハWにおける除去対象の周縁部Weと中央部Wcとの境界に沿って、環状に形成される。なお、周縁部Weは、例えば処理ウェハWの外端部から径方向に1mm~5mmの範囲であり、面取り部が含まれる。 The peripheral edge modified layer M2 is a base point for removing the peripheral edge We in the edge trim, and is formed in an annular shape along the boundary between the peripheral edge We to be removed and the central portion Wc in the processing wafer W. You. The peripheral edge portion We is, for example, in a range of 1 mm to 5 mm in the radial direction from the outer end of the processing wafer W, and includes a chamfered portion.
 また、周縁改質層M2は、厚み方向に延伸し縦長のアスペクト比を有する。周縁改質層M2の下端は、研削後の処理ウェハWの目標表面(図19中の点線)より上方に位置している。すなわち、周縁改質層M2の下端と処理ウェハWの表面Waとの間の距離H3は、研削後の処理ウェハWの目標厚みH2より大きい。かかる場合、研削後の処理ウェハWに周縁改質層M2が残らない。 {Circle around (2)} The peripheral edge modified layer M2 extends in the thickness direction and has a vertically long aspect ratio. The lower end of the peripheral edge modified layer M2 is located above the target surface (the dotted line in FIG. 19) of the processed wafer W after the grinding. That is, the distance H3 between the lower end of the peripheral edge modified layer M2 and the surface Wa of the processing wafer W is larger than the target thickness H2 of the processing wafer W after grinding. In such a case, the peripheral modified layer M2 does not remain on the processed wafer W after the grinding.
 さらに処理ウェハWの内部には、周縁改質層M2からクラックC2が進展し、表面Waに到達している。但し、クラックC2は裏面Wbには到達していない。 {Circle around (4)} Cracks C2 further extend from the peripheral modified layer M2 into the inside of the processed wafer W and reach the surface Wa. However, the crack C2 has not reached the back surface Wb.
 次に、同じ改質分離装置61において、図18(c)に示すように処理ウェハWの内部に内部面改質層M3が形成される(図17のステップQ3)。図6に示した内部面改質層M1と同様に、内部面改質層M3は、処理ウェハWの面方向に延伸している。また、内部面改質層M3は周縁改質層M2と同じ高さに形成され、当該内部面改質層M3の下端は、研削後の処理ウェハWの目標表面より上方に位置している。そして、内部面改質層M3は面方向に複数形成され、当該複数の内部面改質層M3は、面方向に中心部から周縁改質層M2まで、すなわち中央部Wcに形成される。なお、内部面改質層M3の形成方法は、上記ステップP2と同様である。また、内部面改質層M3からは面方向にクラックC3が進展する。さらに、内部面改質層M3のピッチが小さい場合には、クラックC3が無くてもよい。 Next, in the same reforming separation apparatus 61, an internal surface reforming layer M3 is formed inside the processing wafer W as shown in FIG. 18C (Step Q3 in FIG. 17). Similar to the internal surface modified layer M1 shown in FIG. 6, the internal surface modified layer M3 extends in the surface direction of the processing wafer W. The internal surface modified layer M3 is formed at the same height as the peripheral edge modified layer M2, and the lower end of the internal surface modified layer M3 is located above the target surface of the processed wafer W after the grinding. Then, a plurality of internal surface modified layers M3 are formed in the surface direction, and the plurality of internal surface modified layers M3 are formed in the surface direction from the central portion to the peripheral edge modified layer M2, that is, in the central portion Wc. The method for forming the inner surface modified layer M3 is the same as that in Step P2. Further, cracks C3 propagate from the inner surface modified layer M3 in the surface direction. Further, when the pitch of the internal surface modification layer M3 is small, the crack C3 may not be provided.
 次に、同じ改質分離装置61において、図18(d)に示すように内部面改質層M3及び周縁改質層M2を基点に、処理ウェハWを第1の分離ウェハW1と第2の分離ウェハW2に分離する(図17のステップQ4)。この際、内部面改質層M3と周縁改質層M2が同じ高さに形成されているため、第2の分離ウェハW2は周縁部Weと一体になって分離される。なお、処理ウェハWの分離方法は、上記ステップP3と同様である。 Next, in the same reforming separation apparatus 61, as shown in FIG. 18D, the processing wafer W is divided into the first separation wafer W1 and the second separation wafer W1 based on the inner surface reforming layer M3 and the peripheral reforming layer M2. The wafer is separated into separated wafers W2 (Step Q4 in FIG. 17). At this time, since the inner surface modified layer M3 and the peripheral edge modified layer M2 are formed at the same height, the second separation wafer W2 is separated integrally with the peripheral edge portion We. The method of separating the processing wafer W is the same as that in Step P3.
 次に、第2の分離ウェハW2はウェハ搬送装置32により反転装置60に搬送される。反転装置60では、第2の分離ウェハW2の表裏面が反転される(図17のステップQ5)。なお、第2の分離ウェハW2の反転方法は、上記ステップP4と同様である。 Next, the second separation wafer W2 is transferred to the reversing device 60 by the wafer transfer device 32. In the reversing device 60, the front and back surfaces of the second separation wafer W2 are reversed (Step Q5 in FIG. 17). The method of reversing the second separation wafer W2 is the same as that in Step P4.
 次に、第1の分離ウェハW1と第2の分離ウェハW2はそれぞれウェハ搬送装置32により加工装置70に搬送される。加工装置70では、図18(e)に示すように第1の分離ウェハW1の分離面W1aを研削し、当該分離面W1aに残る周縁改質層M2と内部面改質層M3を除去する。同時に、図18(f)に示すように第2の分離ウェハW2の分離面W2aを研削し、当該分離面W2aに残る周縁改質層M2と内部面改質層M3を除去する(図17のステップQ6)。なお、分離面W1a、W2aの研削方法は、上記ステップP5と同様である。 Next, the first separation wafer W1 and the second separation wafer W2 are transferred to the processing device 70 by the wafer transfer device 32, respectively. In the processing apparatus 70, as shown in FIG. 18E, the separation surface W1a of the first separation wafer W1 is ground, and the peripheral edge modified layer M2 and the internal surface modified layer M3 remaining on the separation surface W1a are removed. At the same time, as shown in FIG. 18F, the separation surface W2a of the second separation wafer W2 is ground to remove the peripheral modified layer M2 and the internal surface modified layer M3 remaining on the separation surface W2a (FIG. 17). Step Q6). The method of grinding the separation surfaces W1a and W2a is the same as that in Step P5.
 次に、第1の分離ウェハW1と第2の分離ウェハW2はそれぞれウェハ搬送装置32により洗浄装置51、52に搬送される。洗浄装置51、52ではそれぞれ、分離面W1a、W2aがスクラブ洗浄される(図17のステップQ7)。なお、分離面W1a、W2aの洗浄方法は、上記ステップP6と同様である。 Next, the first separation wafer W1 and the second separation wafer W2 are transferred to the cleaning devices 51 and 52 by the wafer transfer device 32, respectively. In the cleaning devices 51 and 52, the separation surfaces W1a and W2a are scrub-cleaned (step Q7 in FIG. 17). The method for cleaning the separation surfaces W1a and W2a is the same as that in Step P6.
 次に、第1の分離ウェハW1と第2の分離ウェハW2はそれぞれウェハ搬送装置22によりウェットエッチング装置40、41に搬送される。ウェットエッチング装置40、41ではそれぞれ、分離面W1a、W2aがウェットエッチングされる(図17のステップQ8)。なお、分離面W1a、W2aのウェットエッチング方法は、上記ステップP7と同様である。 Next, the first separation wafer W1 and the second separation wafer W2 are transferred to the wet etching devices 40 and 41 by the wafer transfer device 22, respectively. In the wet etching devices 40 and 41, the separation surfaces W1a and W2a are wet-etched, respectively (Step Q8 in FIG. 17). Note that the wet etching method of the separation surfaces W1a and W2a is the same as that in Step P7.
 その後、すべての処理が施された第1の分離ウェハW1と第2の分離ウェハW2はそれぞれ、ウェハ搬送装置22によりカセット載置台10のカセットCw1、Cw2に搬送される。こうして、ウェハ処理システム1における一連のウェハ処理が終了する。 After that, the first separated wafer W1 and the second separated wafer W2 that have been subjected to all the processes are respectively transferred to the cassettes Cw1 and Cw2 of the cassette mounting table 10 by the wafer transfer device 22. Thus, a series of wafer processing in the wafer processing system 1 ends.
 本実施形態でも、上記実施形態と同様の効果を享受できる。しかも、本実施形態によればエッジトリムを行うにあたり、ステップQ2において処理ウェハWの内部に周縁改質層M2を形成した後、当該周縁改質層M2を基点に、周縁部Weを除去している。例えば従来の方法では周縁部Weを研削又は切削しており、研削砥石が摩耗し定期的な交換が必要となる。これに対して、本実施形態では、レーザヘッド90自体が経時的に劣化する程度が小さく、メンテナンス頻度を低減することができる。 で も In this embodiment, the same effects as in the above embodiment can be enjoyed. Moreover, according to the present embodiment, in performing the edge trimming, after forming the peripheral edge modified layer M2 inside the processing wafer W in step Q2, the peripheral edge We is removed with the peripheral edge modified layer M2 as a base point. I have. For example, in the conventional method, the peripheral edge portion We is ground or cut, and the grinding wheel is worn, so that periodic replacement is required. On the other hand, in this embodiment, the degree of deterioration of the laser head 90 itself with time is small, and the frequency of maintenance can be reduced.
 但し、本開示は、研削によるエッジトリムを除外するものではない。 However, the present disclosure does not exclude edge trimming by grinding.
 しかも、ステップQ1における周縁改質層M2の形成とステップQ3における内部面改質層M3の形成は、同一の改質分離装置61において行うことができる。したがって、設備コストも低廉化することができる。なお、これら周縁改質層M2の形成と内部面改質層M3の形成を別々の装置で行ってももちろんよい。例えば、上述したウェハ処理が複数の重合ウェハTに対して連続して行われる場合、これら周縁改質層M2と内部面改質層M1を別々の装置で形成することで、ウェハ処理のスループットを向上させることができる。 In addition, the formation of the peripheral edge modified layer M2 in step Q1 and the formation of the inner surface modified layer M3 in step Q3 can be performed in the same reforming separation device 61. Therefore, equipment costs can be reduced. The formation of the peripheral edge modified layer M2 and the formation of the internal surface modified layer M3 may be performed by separate apparatuses. For example, in the case where the above-described wafer processing is continuously performed on a plurality of overlapped wafers T, by forming the peripheral edge modified layer M2 and the internal surface modified layer M1 using different apparatuses, the throughput of the wafer processing can be reduced. Can be improved.
 また、以上の改質分離装置61では、レーザヘッド90は周縁改質層M2と内部面改質層M3を形成していたが、これら周縁改質層M2と内部面改質層M3はそれぞれ別々のレーザヘッドを用いて形成してもよい。 In the above-described reforming separation device 61, the laser head 90 forms the peripheral modified layer M2 and the internal surface modified layer M3. However, the peripheral modified layer M2 and the internal surface modified layer M3 are separately formed. May be formed using the laser head described above.
 ウェハ処理システム1においてエッジトリムを行う方法は、上記実施形態に限定されない。次に、他の実施形態にかかるウェハ処理について説明する。本実施形態は図18に示した実施形態とほぼ同様であるが、ステップQ3で形成される内部面改質層が異なる。 方法 The method of performing the edge trim in the wafer processing system 1 is not limited to the above embodiment. Next, a wafer process according to another embodiment will be described. This embodiment is almost the same as the embodiment shown in FIG. 18, except for the internal surface modification layer formed in step Q3.
 ステップQ3では、図20(c)に示すように処理ウェハWの内部に内部面改質層M4が形成される。図18に示した内部面改質層M3が周縁改質層M2まで形成されたのに対し、本実施形態の内部面改質層M4は、面方向に中心部から外端部まで延伸して形成される。なお、内部面改質層M4からは面方向にクラックC4が進展する。また、内部面改質層M4のピッチが小さい場合には、クラックC4が無くてもよい。 In step Q3, an internal surface modification layer M4 is formed inside the processing wafer W as shown in FIG. While the internal surface modified layer M3 shown in FIG. 18 is formed up to the peripheral edge modified layer M2, the internal surface modified layer M4 of the present embodiment extends from the center to the outer end in the surface direction. It is formed. Note that the crack C4 extends from the inner surface modified layer M4 in the surface direction. When the pitch of the internal surface modification layer M4 is small, the crack C4 may not be provided.
 かかる場合、ステップQ4では、図20(d)に示すように内部面改質層M4より上方の第2の分離ウェハW2と、内部面改質層M4より下方の周縁部Weとが、別々に分離される。すなわち、第2の分離ウェハW2は内部面改質層M4を基点に分離され、周縁部Weは周縁改質層M2を基点に分離される。なお、その他のステップQ1~Q2、Q5~B8は、図18に示した実施形態と同様である。 In such a case, in step Q4, as shown in FIG. 20D, the second separation wafer W2 above the internal surface modified layer M4 and the peripheral portion We below the internal surface modified layer M4 are separately separated. Separated. That is, the second separation wafer W2 is separated based on the inner surface modified layer M4, and the peripheral portion We is separated based on the peripheral modified layer M2. The other steps Q1 to Q2 and Q5 to B8 are the same as those in the embodiment shown in FIG.
 本実施形態においても、上記実施形態と同様の効果を享受することができる。 も In the present embodiment, the same effects as in the above embodiment can be enjoyed.
 以上の実施形態では、ウェハ処理システム1においてエッジトリムを行うにあたり、処理ウェハWを分離する際に周縁部Weを除去していたが、周縁部Weを除去した後に処理ウェハWを分離してもよい。 In the above-described embodiment, when performing the edge trimming in the wafer processing system 1, the peripheral portion We is removed when the processing wafer W is separated. However, even if the processing wafer W is separated after removing the peripheral portion We. Good.
 かかる場合、改質分離装置61では、先ずステップQ2において、図21(b)に示すように処理ウェハWの内部に周縁改質層M5と分割改質層M6が形成される。 In such a case, in the reforming / separating apparatus 61, first, in step Q2, the peripheral reforming layer M5 and the divided reforming layer M6 are formed inside the processing wafer W as shown in FIG.
 図22に示すようにレーザヘッド90を、処理ウェハWの上方であって、当該処理ウェハWの周縁部Weと中央部Wcの境界に移動させる。その後、回転部82によってチャック80を回転させながら、レーザヘッド90から処理ウェハWの内部にレーザ光Lを照射して、処理ウェハWの内部に周縁改質層M5を形成する。 。 As shown in FIG. 22, the laser head 90 is moved above the processing wafer W to the boundary between the peripheral edge We and the central part Wc of the processing wafer W. Thereafter, the laser beam L is irradiated from the laser head 90 to the inside of the processing wafer W while the chuck 80 is rotated by the rotating unit 82, so that the peripheral edge modified layer M5 is formed inside the processing wafer W.
 上記実施形態の周縁改質層M2と同様に、周縁改質層M5は厚み方向に延伸し、当該周縁改質層M5の下端は、研削後の処理ウェハWの目標表面(図22中の点線)より上方に位置している。 As in the case of the peripheral modified layer M2 of the above embodiment, the peripheral modified layer M5 extends in the thickness direction, and the lower end of the peripheral modified layer M5 is positioned on the target surface of the ground processing wafer W (the dotted line in FIG. 22). ).
 さらに処理ウェハWの内部には、周縁改質層M5からクラックC5が進展し、表面Waと裏面Wbに到達している。なお、周縁改質層M5は厚み方向に複数形成されていてもよい。 {Circle around (5)} Cracks C5 propagate from the peripheral edge modified layer M5 inside the processed wafer W and reach the front surface Wa and the back surface Wb. Note that a plurality of peripheral edge modified layers M5 may be formed in the thickness direction.
 次に、同じ改質分離装置61においてレーザヘッド90を移動させて、処理ウェハWの内部であって、周縁改質層M5の径方向外側に分割改質層M6を形成する。分割改質層M6も、周縁改質層M5と同様に厚み方向に延伸し、縦長のアスペクト比を有する。また、分割改質層M6からクラックC6が進展し、表面Waと裏面Wbに到達している。なお、分割改質層M6も厚み方向に複数形成されていてもよい。 Next, the laser head 90 is moved in the same reforming / separating apparatus 61 to form a divided reformed layer M6 inside the processing wafer W and radially outside the peripheral reformed layer M5. The split modified layer M6 also extends in the thickness direction similarly to the peripheral modified layer M5, and has a vertically long aspect ratio. In addition, the crack C6 extends from the divided modified layer M6 and reaches the front surface Wa and the back surface Wb. Note that a plurality of divided modified layers M6 may also be formed in the thickness direction.
 そして、分割改質層M6及びクラックC6を径方向に数μmのピッチで複数形成することで、図23に示すように周縁改質層M5から径方向外側に延伸する、1ラインの分割改質層M6が形成される。なお、図示の例においては、径方向に延伸するラインの分割改質層M6は8箇所に形成されているが、この分割改質層M6の数は任意である。少なくとも、分割改質層M6が2箇所に形成されていれば、周縁部Weは除去できる。かかる場合、エッジトリムにおいて周縁部Weを除去する際、当該周縁部Weは、環状の周縁改質層M5を基点に分離しつつ、分割改質層M6によって複数に分割される。そうすると、除去される周縁部Weが小片化され、より容易に除去することができる。 Then, by forming a plurality of divided modified layers M6 and cracks C6 in the radial direction at a pitch of several μm, as shown in FIG. The layer M6 is formed. In the illustrated example, the divided modified layers M6 of the line extending in the radial direction are formed at eight positions, but the number of the divided modified layers M6 is arbitrary. At least the peripheral edge portion We can be removed if the divided modified layer M6 is formed at two places. In such a case, when the peripheral edge portion We is removed in the edge trim, the peripheral edge portion We is divided into a plurality of parts by the divided modified layer M6 while being separated from the annular peripheral modified layer M5 as a base point. Then, the peripheral edge portion We to be removed is fragmented and can be more easily removed.
 次に、同じ改質分離装置61において、図21(c)に示すように周縁改質層M5を基点に、処理ウェハWの周縁部Weを除去する。本実施形態の改質分離装置61には、図24に示すテープ150が設けられ、当該テープ150を拡張(エキスパンド)することで、周縁部Weを除去する。 Next, in the same reforming and separating apparatus 61, the peripheral portion We of the processing wafer W is removed starting from the peripheral modified layer M5 as shown in FIG. A tape 150 shown in FIG. 24 is provided in the reforming separation device 61 of the present embodiment, and the tape 150 is expanded (expanded) to remove the peripheral edge We.
 先ず、図24(a)に示すように拡張可能なテープ150を処理ウェハWの裏面Wbに貼り付ける。続いて、図24(b)に示すようにテープ150を処理ウェハWの径方向に拡張させ、周縁改質層M5を基点に、処理ウェハWから周縁部Weを分離する。またこの際、分割改質層M6を基点に、周縁部Weは小片化して分離される。その後、図24(c)に示すようにテープ150を上昇させて処理ウェハWから剥離して、周縁部Weを除去する。なおこの際、このテープ150の剥離を容易にするため、テープ150の粘着力を低下させる処理、例えば紫外線照射処理などを行ってもよい。 First, as shown in FIG. 24A, the expandable tape 150 is attached to the back surface Wb of the processing wafer W. Subsequently, as shown in FIG. 24B, the tape 150 is expanded in the radial direction of the processing wafer W, and the peripheral portion We is separated from the processing wafer W based on the peripheral edge modified layer M5. Also, at this time, the peripheral edge portion We is divided into small pieces and separated from the division reforming layer M6. Thereafter, as shown in FIG. 24C, the tape 150 is lifted and separated from the processing wafer W, and the peripheral edge portion We is removed. At this time, in order to facilitate the peeling of the tape 150, a process of reducing the adhesive strength of the tape 150, for example, an ultraviolet irradiation process may be performed.
 なお、周縁部Weを除去する方法は、本実施形態に限定されない。例えば、周縁部Weに対してエアブローやウォータジェットを噴射し、当該周縁部Weを打圧して除去してもよい。あるいは、例えばピンセットのような治具を周縁部Weに接触させ、当該周縁部Weを物理的に除去してもよい。 The method of removing the peripheral edge portion We is not limited to the present embodiment. For example, an air blow or a water jet may be jetted to the peripheral portion We, and the peripheral portion We may be removed by pressing. Alternatively, for example, a jig such as tweezers may be brought into contact with the peripheral edge We to physically remove the peripheral edge We.
 次に、同じ改質分離装置61では、ステップQ3において図21(d)に示すように内部面改質層M7が形成され、さらにステップQ4において図21(e)に示すように処理ウェハWを分離ウェハW1、W2に分離する。 Next, in the same reforming / separating apparatus 61, the internal surface modified layer M7 is formed in step Q3 as shown in FIG. 21 (d), and further, in step Q4, the processing wafer W is The wafer is separated into separation wafers W1 and W2.
 次に、反転装置60ではステップQ5において第2の分離ウェハW2の表裏面が反転される。その後、加工装置70でステップQ6において図21(f)及び図21(g)に示すように分離面W1a、W2aが研削される。その後、洗浄装置51、52においてステップQ7が行われ、ウェットエッチング装置40、41においてステップQ8が行われる。こうして、ウェハ処理システム1における一連のウェハ処理が終了する。 Next, in the reversing device 60, the front and back surfaces of the second separation wafer W2 are reversed in step Q5. Thereafter, in step Q6, the separation surfaces W1a and W2a are ground in the processing device 70 as shown in FIGS. 21 (f) and 21 (g). Thereafter, step Q7 is performed in the cleaning devices 51 and 52, and step Q8 is performed in the wet etching devices 40 and 41. Thus, a series of wafer processing in the wafer processing system 1 ends.
 本実施形態においても、上記実施形態と同様の効果を享受することができる。しかも、本実施形態によれば、ステップQ2において分割改質層M6を形成しているので、除去される周縁部Weを小片化することができる。したがって、エッジトリムをさらに容易に行うことができる。 も In the present embodiment, the same effects as in the above embodiment can be enjoyed. Moreover, according to the present embodiment, since the divided modified layer M6 is formed in step Q2, the peripheral edge portion We to be removed can be reduced into small pieces. Therefore, edge trimming can be performed more easily.
 以上の実施形態のウェハ処理システム1、200、300では、処理ウェハWと支持ウェハSの接合はウェハ処理システム1、200、300の外部の接合装置で行われていたが、かかる接合装置はウェハ処理システム1、200、300の内部に設けられてもよい。 In the wafer processing systems 1, 200, and 300 of the above embodiments, the bonding of the processing wafer W and the support wafer S is performed by a bonding apparatus outside the wafer processing systems 1, 200, and 300. It may be provided inside the processing system 1, 200, 300.
 なお、処理ウェハWと支持ウェハSを接合する際、周縁部Weにおいて酸化膜Fw、Fsも接合されてしまう場合には、接合処理の前に、当該酸化膜Fw、Fsに対して前処理を行ってもよい。前処理としては、例えば周縁部Weにおける酸化膜Fwの表層を除去してもよいし、あるいは酸化膜Fwを突出させてもよい。あるいは、酸化膜Fwの表面を荒らして粗面化してもよい。このような前処理を行うことで、周縁部Weにおいて酸化膜Fw、Fsが接合されるのを抑制することができ、すなわち周縁部Weにおいて酸化膜Fw、Fsの未接合領域を形成することができ、周縁部Weを適切に除去することができる。 If the oxide films Fw and Fs are also bonded at the peripheral edge portion We when bonding the processing wafer W and the support wafer S, pre-processing is performed on the oxide films Fw and Fs before the bonding process. May go. As the pretreatment, for example, the surface layer of the oxide film Fw at the peripheral edge We may be removed, or the oxide film Fw may be made to protrude. Alternatively, the surface of oxide film Fw may be roughened to be rough. By performing such pretreatment, bonding of the oxide films Fw and Fs at the peripheral portion We can be suppressed. That is, it is possible to form an unbonded region of the oxide films Fw and Fs at the peripheral portion We. Thus, the peripheral edge portion We can be appropriately removed.
 また、上記例においては、接合処理の前に未接合領域を形成したが、接合処理後に未接合領域を形成してもよい。例えば処理ウェハWと支持ウェハSを接合後、酸化膜Fwの外周部にレーザ光を照射することで、接合強度を低下させ、未接合領域を形成することも可能である。 Also, in the above example, the unjoined region is formed before the joining process, but the unjoined region may be formed after the joining process. For example, after bonding the processing wafer W and the support wafer S, by irradiating the outer periphery of the oxide film Fw with laser light, the bonding strength can be reduced and an unbonded region can be formed.
 以上の実施形態では、処理ウェハWと支持ウェハSを直接接合する場合について説明したが、これら処理ウェハWと支持ウェハSは接着剤を介して接合されてもよい。 In the above embodiments, the case where the processing wafer W and the support wafer S are directly bonded has been described. However, the processing wafer W and the support wafer S may be bonded via an adhesive.
 また、以上の実施形態では、重合ウェハTにおける処理ウェハWを薄化する場合について説明したが、1枚のウェハを薄化する場合にも上記実施形態は適用できる。また、重合ウェハTを処理ウェハWと支持ウェハSに剥離する場合にも、上記実施形態は適用できる。 In the above embodiment, the case where the processing wafer W in the overlapped wafer T is thinned has been described, but the above embodiment can also be applied to the case where one wafer is thinned. Further, the above embodiment can be applied to a case where the overlapped wafer T is separated into the processing wafer W and the support wafer S.
 今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の請求の範囲及びその主旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。 実 施 The embodiments disclosed this time are to be considered in all respects as illustrative and not restrictive. The above embodiments may be omitted, replaced, or modified in various forms without departing from the scope and spirit of the appended claims.
  1   ウェハ処理システム
  32  ウェハ搬送装置
  60  反転装置
  61  改質分離装置
  70  加工装置
  S   支持ウェハ
  T   重合ウェハ
  W   処理ウェハ
Reference Signs List 1 wafer processing system 32 wafer transfer device 60 reversing device 61 reforming / separating device 70 processing device S support wafer T superposed wafer W processing wafer

Claims (14)

  1. 基板を処理する基板処理システムであって、
    基板の内部の面方向に形成された内部面改質層を起点に、当該基板を第1の分離基板と第2の分離基板に分離する分離部と、
    前記第1の分離基板の分離面と前記第2の分離基板の分離面をそれぞれ研削する加工部と、
    少なくとも前記分離部又は前記加工部に対して、前記基板を搬送する搬送機構と、
    前記第2の分離基板の表裏面を反転させる反転機構と、を有する、基板処理システム。
    A substrate processing system for processing a substrate,
    A separation unit that separates the substrate into a first separation substrate and a second separation substrate, starting from an internal surface modification layer formed in a plane direction inside the substrate;
    A processing unit for grinding the separation surface of the first separation substrate and the separation surface of the second separation substrate, respectively;
    At least for the separation unit or the processing unit, a transport mechanism for transporting the substrate,
    A reversing mechanism for reversing the front and back surfaces of the second separation substrate.
  2. 前記搬送機構は、少なくとも前記分離部又は前記加工部に対して、第1の分離基板及び前記第2の分離基板を搬送する、請求項1に記載の基板処理システム。 2. The substrate processing system according to claim 1, wherein the transfer mechanism transfers the first separation substrate and the second separation substrate to at least the separation unit or the processing unit. 3.
  3. 前記加工部は、
    前記基板、前記第1の分離基板又は前記第2の分離基板を保持する複数の保持部を備え、回転自在な回転テーブルと、
    前記保持部に保持された前記第1の分離基板の分離面を研削する第1の研削部と、
    前記保持部に保持された前記第2の分離基板の分離面を研削する第2の研削部と、を有する、請求項1又は2に記載の基板処理システム。
    The processing unit is
    A plurality of holding units for holding the substrate, the first separation substrate or the second separation substrate, and a rotatable rotary table;
    A first grinding unit for grinding a separation surface of the first separation substrate held by the holding unit;
    The substrate processing system according to claim 1, further comprising: a second grinding unit configured to grind a separation surface of the second separation substrate held by the holding unit.
  4. 前記分離部は、前記回転テーブルの上方に設けられ、前記保持部に保持された前記基板を分離する、請求項3に記載の基板処理システム。 The substrate processing system according to claim 3, wherein the separation unit is provided above the turntable and separates the substrate held by the holding unit.
  5. 前記分離部は前記反転機構を有する、請求項4に記載の基板処理システム。 The substrate processing system according to claim 4, wherein the separation unit has the reversing mechanism.
  6. 前記反転機構は前記搬送機構に設けられている、請求項1~5のいずれか一項に記載の基板処理システム。 The substrate processing system according to any one of claims 1 to 5, wherein the reversing mechanism is provided in the transport mechanism.
  7. 前記基板の内部にレーザ光を照射して、前記内部面改質層を形成する内部面改質部を有する、請求項1~5のいずれか一項に記載の基板処理システム。 The substrate processing system according to any one of claims 1 to 5, further comprising: an internal surface modification unit configured to irradiate the inside of the substrate with a laser beam to form the internal surface modification layer.
  8. 前記基板の内部において、除去対象の周縁部と中央部との境界に沿って厚み方向にレーザ光を照射して、周縁改質層を形成する周縁改質部を有する、請求項1~7のいずれか一項に記載の基板処理システム。 8. The semiconductor device according to claim 1, further comprising: a peripheral edge modified portion that forms a peripheral edge modified layer by irradiating a laser beam in a thickness direction along a boundary between a peripheral portion and a central portion to be removed inside the substrate. The substrate processing system according to claim 1.
  9. 基板を処理する基板処理方法であって、
    分離部において、基板の内部の面方向に形成された内部面改質層を起点に、当該基板を第1の分離基板と第2の分離基板に分離することと、
    反転機構によって、前記第2の分離基板の表裏面を反転させることと、
    加工部において、前記第1の分離基板の分離面と前記第2の分離基板の分離面をそれぞれ研削することと、を有する、基板処理方法。
    A substrate processing method for processing a substrate, comprising:
    In the separation unit, separating the substrate into a first separation substrate and a second separation substrate, starting from an internal surface modification layer formed in a plane direction inside the substrate;
    Reversing the front and back surfaces of the second separation substrate by a reversing mechanism;
    A substrate processing method, comprising: grinding a separation surface of the first separation substrate and a separation surface of the second separation substrate in a processing unit.
  10. 前記加工部は、
    前記基板、前記第1の分離基板又は前記第2の分離基板を保持する複数の保持部を備え、回転自在な回転テーブルと、
    前記保持部に保持された前記第1の分離基板の分離面を研削する第1の研削部と、
    前記保持部に保持された前記第2の分離基板の分離面を研削する第2の研削部と、を有し、
    前記第1の研削部による前記第1の分離基板の分離面の研削と、前記第2の研削部による前記第2の分離基板の分離面の研削とを並行して行う、請求項9に記載の基板処理方法。
    The processing unit is
    A plurality of holding units for holding the substrate, the first separation substrate or the second separation substrate, and a rotatable rotary table;
    A first grinding unit for grinding a separation surface of the first separation substrate held by the holding unit;
    A second grinding unit for grinding a separation surface of the second separation substrate held by the holding unit,
    The grinding of the separation surface of the first separation substrate by the first grinding unit and the grinding of the separation surface of the second separation substrate by the second grinding unit are performed in parallel. Substrate processing method.
  11. 前記分離部は、前記回転テーブルの上方に設けられ、前記保持部に保持された前記基板を分離する、請求項10に記載の基板処理方法。 The substrate processing method according to claim 10, wherein the separation unit is provided above the turntable and separates the substrate held by the holding unit.
  12. 前記分離部で分離された前記第2の分離基板を搬送中に、前記反転機構によって当該第2の分離基板の表裏面を反転させる、請求項9~11のいずれか一項に記載の基板処理方法。 The substrate processing according to any one of claims 9 to 11, wherein the reverse mechanism reverses the front and back surfaces of the second separated substrate while transporting the second separated substrate separated by the separation unit. Method.
  13. 前記分離部で前記基板を分離する前に、前記基板の内部にレーザ光を照射して、前記内部面改質層を形成する、請求項9~12のいずれか一項に記載の基板処理方法。 The substrate processing method according to any one of claims 9 to 12, wherein before the substrate is separated by the separation unit, the inside of the substrate is irradiated with laser light to form the internal surface modified layer. .
  14. 前記分離部で前記基板を分離する前に、前記基板の内部において、除去対象の周縁部と中央部との境界に沿って厚み方向にレーザ光を照射して、周縁改質層を形成する、請求項9~13のいずれか一項に記載の基板処理方法。 Before separating the substrate at the separation unit, inside the substrate, irradiate a laser beam in the thickness direction along the boundary between the peripheral portion and the central portion of the removal target, to form a peripheral modified layer, The substrate processing method according to any one of claims 9 to 13.
PCT/JP2019/034565 2018-09-25 2019-09-03 Substrate processing system and substrate processing method WO2020066492A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020548272A JP7086201B2 (en) 2018-09-25 2019-09-03 Board processing system and board processing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-179305 2018-09-25
JP2018179305 2018-09-25

Publications (1)

Publication Number Publication Date
WO2020066492A1 true WO2020066492A1 (en) 2020-04-02

Family

ID=69949915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034565 WO2020066492A1 (en) 2018-09-25 2019-09-03 Substrate processing system and substrate processing method

Country Status (3)

Country Link
JP (1) JP7086201B2 (en)
TW (1) TW202018794A (en)
WO (1) WO2020066492A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021199585A1 (en) * 2020-04-02 2021-10-07

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004111606A (en) * 2002-09-18 2004-04-08 Tokyo Seimitsu Co Ltd Method of processing wafer
JP2006179868A (en) * 2004-11-25 2006-07-06 Tokyo Seimitsu Co Ltd Method and device for peeling off film
JP2010021398A (en) * 2008-07-11 2010-01-28 Disco Abrasive Syst Ltd Method of treating wafer
JP2016064459A (en) * 2014-09-24 2016-04-28 株式会社ディスコ Method of grinding workpiece
JP2016519433A (en) * 2013-04-18 2016-06-30 ハンファテクウィン株式会社Hanwha Techwin Co.,Ltd. Wafer thinning method and apparatus
JP2017092314A (en) * 2015-11-12 2017-05-25 株式会社ディスコ SiC SUBSTRATE SEPARATING METHOD
JP2017204606A (en) * 2016-05-13 2017-11-16 株式会社ディスコ Manufacturing method of wafer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004111606A (en) * 2002-09-18 2004-04-08 Tokyo Seimitsu Co Ltd Method of processing wafer
JP2006179868A (en) * 2004-11-25 2006-07-06 Tokyo Seimitsu Co Ltd Method and device for peeling off film
JP2010021398A (en) * 2008-07-11 2010-01-28 Disco Abrasive Syst Ltd Method of treating wafer
JP2016519433A (en) * 2013-04-18 2016-06-30 ハンファテクウィン株式会社Hanwha Techwin Co.,Ltd. Wafer thinning method and apparatus
JP2016064459A (en) * 2014-09-24 2016-04-28 株式会社ディスコ Method of grinding workpiece
JP2017092314A (en) * 2015-11-12 2017-05-25 株式会社ディスコ SiC SUBSTRATE SEPARATING METHOD
JP2017204606A (en) * 2016-05-13 2017-11-16 株式会社ディスコ Manufacturing method of wafer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021199585A1 (en) * 2020-04-02 2021-10-07
JP7354420B2 (en) 2020-04-02 2023-10-02 東京エレクトロン株式会社 Substrate processing method and substrate processing apparatus

Also Published As

Publication number Publication date
JPWO2020066492A1 (en) 2021-08-30
JP7086201B2 (en) 2022-06-17
TW202018794A (en) 2020-05-16

Similar Documents

Publication Publication Date Title
JP7357101B2 (en) Substrate processing system, substrate processing method, and computer storage medium
JP7109537B2 (en) Substrate processing system and substrate processing method
TWI814814B (en) Substrate processing system and substrate processing method
JP7133633B2 (en) Processing system and processing method
JP7058738B2 (en) Board processing system and board processing method
WO2020012986A1 (en) Substrate processing system and substrate processing method
JP7386075B2 (en) Substrate processing method and substrate processing system
JP7412131B2 (en) Substrate processing method and substrate processing system
WO2020066492A1 (en) Substrate processing system and substrate processing method
JP2021068869A (en) Substrate processing method and substrate processing system
TWI836786B (en) Substrate processing system, substrate processing method, and computer storage medium
JP7258175B2 (en) Substrate processing method and substrate processing system
KR102656400B1 (en) Substrate processing system and substrate processing method
TWI837149B (en) Substrate processing system and substrate processing method
JP2021040075A (en) Substrate processing apparatus and substrate processing method
KR20240045348A (en) Substrate processing system and substrate processing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864687

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020548272

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19864687

Country of ref document: EP

Kind code of ref document: A1